
1.  Introduction
Magnetic reconnection is a universal process that converts magnetic energy to particle energy by changing the 
magnetic field topology. It is considered responsible for many plasma phenomena exhibiting particle acceler-
ation and heating, and large magnetic geometry changes, such as stellar flares (Masuda et  al.,  1994; Shibata 
& Magara, 2011), magnetospheric substorms (Angelopoulos et al., 2008) and other high energy processes in 
astrophysical and laboratory systems (Sironi et al., 2015; Zweibel & Yamada, 2009). Thus, understanding the 
efficiency of magnetic reconnection is a key aspect of determining the consequence and impact of many phenom-
ena and processes.

The simplest way of describing magnetic reconnection is given by the model developed by Sweet (1958) and 
Parker (1957). This model, which consists of a very elongated diffusion region, results in a reconnection rate 
too slow to explain the energy release time scales of flares and substorms (Parker, 1963, 1973). Petschek (1964) 
developed a new model which included a localized diffusion region with an open geometry, which could support 
much higher reconnection rates. Today, both numerical simulations and observations (Genestreti et al., 2018) 
suggest that the global rate of magnetic reconnection is 𝐴𝐴 ≃ (0.1) in normalized units (Cassak et al., 2017), but the 
reason why reconnection is limited to this rate is still not completely understood (Liu et al., 2017).

Abstract  Using a resistive MagnetoHydroDynamic (MHD) simulation, we study how the magnitude and 
shape of diffusion influence magnetic reconnection. Specifically, we investigate how and why the reconnection 
rate is influenced by variations in the diffusion distribution and magnitude. By running multiple MHD 
simulations where we vary the localized resistivity, we find that the properties of the diffusion region greatly 
influence the rate of reconnection. Increasing the magnitude of the imposed resistivity results in a higher 
reconnection rate, but the rate saturates at approximately 0.2. We show how a redistribution of the current 
density, leading to a bifurcated current sheet, play a major role in this limitation. In addition, we investigate the 
impact of different shapes of resistive region. The shape of the diffusion region also plays a major role in how 
efficient the reconnection energy conversion can operate. The highest reconnection rate, approximately 0.25, is 
achieved for an optimal opening angle. Our results imply that reconnection has a speed limit that may depend 
on properties outside the diffusion region.

Plain Language Summary  Magnetic reconnection is a fundamental plasma process, which can 
explosively convert magnetic energy to particle energy. When reconnection operates, it releases almost all of 
the energy stored in the magnetic field to plasma acceleration and heating. The consequences of reconnection 
depend on the magnetic energy available and the process' ability to rapidly release the energy. Thus, the 
effectiveness of reconnection, which can be quantified by the rate at which energy is converted, is a key factor 
in understanding the consequences and implications of this universal process. This paper investigates how the 
reconnection rate depends on the resistivity in the system. In our fluid-based scheme, resistivity determines 
the plasma's ability to diffuse across the magnetic field - allowing new magnetic topologies to form. We show 
that, even when inserting very strong resistive spots with varying shapes, there appears to be a maximum rate 
of reconnection the system can support. In addition, we find that a sub-optimal choice of resistivity magnitude 
or shape of the resistive spot leads to lower overall reconnection rates. These results imply that the reconnection 
rate depends significantly on properties of the diffusion region, even if the size of that region is much smaller 
than the system.
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Over the years, significant work has been done on the different mechanisms that influence the reconnection rate 
(Drake et al., 1994; Li & Liu, 2021; Liu et al., 2019). Recently, the importance of multi-species plasma on the 
efficiency of magnetic reconnection has been recognized in the community (e.g., Tenfjord et al., 2019; Tole-
do-Redondo et al., 2021). These plasma descriptions can be reproduced by models such as Particle-In-Cell (PIC) 
simulations. The present study uses a resistive MagnetoHydroDynamic (MHD) model to investigate what limits 
the effectiveness of magnetic reconnection. The benefit of resistive MHD is that we can control the magnitude 
and shape of the diffusion. This enables us to study how the process behaves and resolves different scenarios, for 
specific diffusion region properties.

The influence of the resistivity profile on the magnetic reconnection process has long been studied by various 
authors. Ugai and Tsuda (1977) obtained a stable Petschek open geometry in 2D MHD simulations with a local-
ized resistivity at the x-line. To mimic the effect of anomalous resistivity resulting from a current driven insta-
bility (Sato & Hayashi, 1979), used a local resistivity enhancement that depended linearly on the current density. 
They found that this setup lead to fast magnetic reconnection. These results were corroborated by Ugai (1984), 
who employed different current-dependent resistivity models. Yan et  al.  (1993) studied reconnection with a 
combination of uniform and localized resistivity and found that the diffusion region length and width scale with 
the localization of the resistivity. Additionally, they found, consistent with analytical predictions, that for uniform 
resistivity the diffusion region tends to lengthen and evolves slowly. Kulsrud (2001) suggested that a Petschek-
type reconnection rate can be induced if there is a gradient in the resistivity. This hypothesis was confirmed by a 
recent study by Lin et al. (2021). It shows that fast reconnection can be achieved using a 1D hyperbolic tangent 
resistivity profile varying along the outflow direction, obtaining a maximum rate value of ≈0.2.

In a collisionless plasma, resistivity is generally thought to be provided by either wave-particle interactions 
(anomalous resistivity) or meandering electron trajectories associated with non-gyrotropic electron distributions 
in the vicinity of the X line (e.g., Hesse et  al., 1999). Recent spacecraft observations have demonstrated the 
prevalence of such electron distributions in reconnecting environments (e.g., Torbert et al., 2018), supporting 
the meandering electron reconnection model. However, the role of waves is still being actively investigated (e.g., 
Chen et al., 2020; Graham et al., 2017).

The purpose of the present study is to investigate numerically whether there are upper limits to the reconnection 
rate in a current sheet, and whether such limits depend on certain properties of the diffusion region. We inves-
tigate this question by ad-hoc variations of amplitude and shape of a resistive spot in MHD simulations. We 
acknowledge that, in collisionless plasmas, microphysical processes determine properties of the diffusion region. 
Consequently, not all shapes or amplitudes of our resistive region may be reproduced by processes in nature. This 
implies that the reconnection rates should be interpreted as upper limits of what might be found in real plasmas.

We use a 2D resistive MHD model to study how effective the reconnection rate can be by varying magnitudes and 
shapes of a localized resistivity centered at the x-line. Furthermore, we analyze the physics inside the diffusion 
region using the induction equation, which allows us to identify the contribution of advection and diffusion to the 
current profile. The highest rate in our series of simulations is found for very high magnitudes of the resistivity, 
combined with a specific choice of the aspect ratio. This maximum value is close to 0.25 in normalized units, 
which is similar to the 0.2 value predicted by Liu et al. (2017).

The paper is organized as follows: In Section 2, we describe the simulation setup employed in this study. In 
Section 3 we investigate the impact of the magnitude of the resistivity on the reconnection rate and the diffusion 
region. In Section 4 we study the impact of the shape of the resistive region on the reconnection rate and the 
diffusion region. Section 5 is a summary of our results with some discussion.

2.  Simulation Setup
The study is performed using 2D MHD simulations, which solve the time-dependent resistive MHD equations 
using an explicit finite-difference method. More on this has previously been described in detail by Birn and 
Hones (1981). The governing equations are:

𝜕𝜕𝑡𝑡𝜌𝜌 = −∇ ⋅ (𝜌𝜌𝐯𝐯)� (1)

𝜕𝜕𝑡𝑡(𝜌𝜌𝐯𝐯) = ∇ ⋅ (𝜌𝜌𝐯𝐯𝐯𝐯 − 𝐏𝐏 +𝐌𝐌)� (2)
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𝜕𝜕𝑡𝑡𝐁𝐁 = ∇ × (𝐯𝐯 × 𝐁𝐁) + 𝜂𝜂∇2
𝐁𝐁 − ∇𝜂𝜂 × 𝐣𝐣� (3)

𝜕𝜕𝑡𝑡𝑢𝑢 = −∇ ⋅ (𝑢𝑢𝐯𝐯) +
𝛾𝛾 − 1

𝛾𝛾
𝑢𝑢
1−𝛾𝛾

𝜂𝜂𝜂𝜂
2� (4)

where η is the resistivity, γ = 5/3 is the adiabatic index, u is defined as u = p 1/γ (Birn, 1980) and M is the Maxwell 
Stress Tensor, defined by 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ≡

1

𝜇𝜇0

𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 −
1

2𝜇𝜇0
𝐵𝐵

2
𝛿𝛿𝑖𝑖𝑖𝑖 . The permeability μ0 is set to one in code unit. Equations 1 

and 2 are the mass and momentum conservation equations, respectively. Equation 3 is the induction equation, 
which describes the evolution of the magnetic field. We use the resistive Ohm's law to determine the electric field: 
E = −v × B + ηj. Equation 4 is the conservation law for thermal energy.

The simulation takes place in a simulation domain large enough to prevent any boundary effects intervening with 
the reconnection process. Our simulation domain is 400 × 200, with x going from 0 to 400 and z from −100 to 
100, distributed over 3,200 × 1,600 cells. The boundary conditions consist of solid and ideally conducting walls 
at the top and bottom of the box, while the left and right walls are periodic. The code runs on the Alfvén times-
cale, where t = L/vA and L is the characteristic length scale, corresponding to the distance an Alfvén wave can 
travel in a time unit. The computational time step is dt = 0.0125.

The initial condition in our simulation consists of a two-dimensional Harris-type equilibrium (Harris, 1962), 
in which the magnetic field is 𝐴𝐴 𝐁𝐁(𝑧𝑧) = tanh(𝑧𝑧∕𝐿𝐿)𝐱̂𝐱 , where L is unity. The plasma density is ρ = sech 2(z/L) + ρ0, 
where ρ0 is the plasma density at the inflow, and the plasma pressure is given by p = ρT, where T is the sum of 
the electron and ion temperature and fulfill T = Ti + Te = 0.5. This leads to p = 1/2 sech 2(z/L) + p0, with p0 = Tρ0. 
The coordinate system is as follows: x is the reconnection outflow direction, y is the current direction and z is the 
inflow direction.

The total resistivity, η consists of a background resistivity (η0) plus an exponential function in the center of the 
box given by

𝜂𝜂 = 𝜂𝜂0 + 𝜂𝜂1𝑒𝑒
−

[

(

𝑥𝑥− 𝑥𝑥max∕2

𝐿𝐿𝑥𝑥

)2
+

(

𝑧𝑧

𝐿𝐿𝑧𝑧

)2
]

.
� (5)

Here, η1 determines the peak magnitude of the resistivity, while Lx and Lz determine the shape of the resistive 
region. Figure 1a shows the resistivity profile for a background resistivity of η0 = 0.0015, a peak resistivity of 
η1 = 2.4 and an aspect ratio of Lx/Lz = 5 as a function of x and z.

Figure 1b shows the out-of-plane current density profile at timestep t = 50. The gray lines indicate constant values 
of the vector potential, A, defined as B = ∇ × A, or magnetic field lines. At this time, the inflowing magnetic 
field lines are considerably deformed compared to their initial state as a consequence of their expansion toward 
the reconnection region. This effect is amplified by the outflow structures that can be observed around x = 150 
and 250 in the current density. Similar outflow structures were also found by Zenitani et al. (2009), and we refer 
to that paper for a description on the associated outflow dynamics. In this paper we focus on the reconnection rate 
and the behavior and dynamics surrounding the diffusion region.

With the described simulation setup, we will now investigate how the reconnection rate scales with different 
values of the magnitude and the shape of the resistive region. A total of 32 runs have been carried out. Table 1 

Figure 1.  Simulation overview at timestep t = 50 for η1 = 2.4, Lx = 5 and Lz = 1. (a) Resistivity profile as a function of x and 
z. (b) Current density profile as a function of x and z. The gray lines indicate constant values of the vector potential, (A).
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specifies the value of the magnitude of the resistivity (η1), Lx, Lz and the 
maximum reconnection rate for 6 selected runs for each part of the study.

3.  Impact of the Magnitude of the Resistivity
In this section, we investigate how the system responds to different magni-
tudes of localized resistivity. Figure 2a shows the time evolution of the recon-
nection rate for the 6 M runs specified in Table 1. Reconnection rates in these 
simulations are calculated using the in-to-plane electric field at the x-line, 
Ey,xline = ηxline jy,xline. They are normalized as R ≡ Ey,xline/(B0vA0) where B0 is the 
inflow magnetic field and 𝐴𝐴 𝐴𝐴𝐴𝐴0 = 𝐵𝐵0∕

√

𝜌𝜌0 , calculated with the same inflow 
magnetic field and the Harris sheet density (ρ0 = 1). Note that our inflow 
density has a value of ρin = 0.2ρ0, and the value of the reconnection rate would 
change if normalized to this quantity. As follows, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 =

√

𝜌𝜌𝑖𝑖𝑖𝑖∕𝜌𝜌0𝑅𝑅 ∼
√

0.2𝑅𝑅 , 
where Rin is the reconnection rate normalized to the inflow Alfvén speed.

In runs M1 and M2, the reconnection process is very slow, resulting in a 
slow evolution of the system. As a consequence, the peak reconnection rate 

is reached at much later time steps than for the other 4 cases. Runs M3, M4, and M5 have a significantly faster 
evolution, reaching their peak at earlier time steps. Run M6, despite being the fastest, does not vary significantly 
from M5, indicating that the rate saturates or is limited. The decrease in the reconnection rate after the peak is 
a result of finite amount of flux in our simulations domain. The initial growth of the reconnection rate for large 
enough values of the gradient of the resistivity (see runs M3 to M6 in Figure 2a) is given by the term ∇η × j. It is 
clear that this initial evolution scales as 𝐴𝐴 𝐴𝐴

−1
𝑚𝑚  , where Rm is the magnetic Reynolds number.

Figure 2b shows the peak reconnection rate as a function of η1 for the 16 runs carried out. The colored stars corre-
spond to the labeled runs in panel a. For weak resistivities (η1 ≲ 0.5), the reconnection rate is slow but increases 
rapidly with increasing values of η. For strong resistivities (η1  ≳  1), the rapid increase ceases, and the rate 
saturates at approximately 0.2. This behavior illustrates that the effect of increased resistivity can significantly 
influence the reconnection rate, but only to a certain level.

The solid blue line in Figure 2b represents the function � (�1) = ��1
�+ �1

+ � , where a = 0.2, b = 0.1 and c = 0.01. 
The function describes the behavior of the reconnection rate with great accuracy. The value of a relates to the 
maximum reconnection rate and has dimensions corresponding to the electric field. The value of b determines 
how quickly the function converges, and has dimensions corresponding to η. It is possible that the constant c is 
related to the uniform background resistivity η0, signifying a constant energy conversion throughout the simula-
tion domain.

Thus, even if we enable the diffusion region to support extreme diffusion, the reconnection rate appears to be 
controlled and limited by properties on larger scales. This result is in agreement with Lin et al. (2021), who found 
that the reconnection rate is bounded by physics outside of the diffusion region, and with Liu et al. (2017) who 

suggested this limitation to be related to the force-balance in the upstream 
region.

In Figure 3, we investigate the behavior of the reconnection rate for the runs 
M3 and M6 at the time of peak reconnection rate. These runs are identical 
except for different values of η1. Panels 3a and 3days show the current density 
profile, jy, in blue and the resistivity profile, η, in orange as a function of z 
in a cut along x through the x-line. The current density profiles are distinctly 
different between the runs: For Run M3 (η1 = 0.075), the current density has 
a peak at the x-line, while M6 (η1 = 2.4) has a bifurcated current sheet with a 
significantly decreased jy at the z = 0.

The product of the resistivity and the current density yields the reconnection 
electric field, and it is clear that as η increases, the current density distribu-
tion is altered to limit the rate at the center. As the width of the current sheet 
increases, the regions of enhanced current density move toward the edge of 

Run η1 Lx Lz Peak rate Run η1 Lx Lz Peak rate

M1 3 × 10 −3 5 1 0.019 S1 2.4 0.5 1 0.224

M2 1.5 × 10 −2 5 1 0.053 S2 2.4 2 1 0.254

M3 7.5 × 10 −2 5 1 0.103 S3 2.4 5 1 0.203

M4 0.3 5 1 0.158 S4 2.4 8 1 0.157

M5 1.5 5 1 0.198 S5 2.4 15 1 0.075

M6 2.4 5 1 0.203 S6 2.4 40 1 0.020

Note. M stands for magnitude, while S stands for shape. η1, Lx and Lz 
correspond to the parameters written in Equation  5. η1 corresponds to the 
value of the resistivity at the x-line. Lx and Lz describe the shape of the 
resistive region. The last column in each table indicates the peak reconnection 
rate for each of the runs.

Table 1 
Simulation Parameters for 6 Selected Runs for Each Part of the Study

Figure 2.  (a) Time evolution of the reconnection rate for the six runs specified 
in Table 1. The colored labels indicate which run we are referring to. (b) 
Peak reconnection rate as a function of η1 for all 16 runs. The colored ∗’s 
correspond to the runs in panel (a). Note that the reconnection rate is bounded 
by a value ≃0.2. The solid blue line represents a fit to the data, with the 
function written in the panel.
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the diffusion region, as indicated by the highlighted areas in panel 3d. These peaks in the current density are 
determined by the curl of the magnetic field, described by Ampère's Law. Panels 3b and 3e show the profile 
of Bx, with the corresponding areas with the largest gradient highlighted. For the run M6, the gradient of the 
reconnecting magnetic field (Bx) has been forced toward the edge of the diffusion region, effectively reducing 
the  magnitude around the x-line.

A reconfiguration of the current sheet width involves a change of the magnetic field distribution. The evolution 
of the magnetic field is given by Faraday's law, 𝐴𝐴

𝜕𝜕𝐁𝐁

𝜕𝜕𝜕𝜕
= −∇ × 𝐄𝐄 , where E in our case is given by the resistive Ohm's 

law: E = −v × B + ηJ. The induction equation can then be expressed as:

𝜕𝜕𝑡𝑡𝐵𝐵𝑥𝑥 = ∇ × (𝐯𝐯 × 𝐁𝐁) |
𝑥𝑥
− 𝜂𝜂∇ × 𝐣𝐣 |

𝑥𝑥
− ∇𝜂𝜂 × 𝐣𝐣 |

𝑥𝑥
.� (6)

We evaluate this equation at the inflow region.

The first term in the right-hand side of this equation corresponds to the advection of magnetic flux, whereas the 
second term corresponds to the diffusion of magnetic flux due to gradients in the current density. The final term 
enables us to study the role and effect of resistivity gradients on the diffusion. To investigate which terms are 
responsible for the creation of the bifurcated current profile we show the contribution of each of these terms for 
the runs M3 and M6 in a cut along the x-direction through the x-line in Figures 3c and 3f.

In both runs, the temporal variation of Bx (black line) is negligible. This is expected as the system has already 
established the magnetic field and associated current structure, neither of which move or change significantly in 
magnitude. The advective term (blue line) has a positive value for z > 0, which means that it is trying to increase 
Bx by transporting new field lines into the region. The green and orange lines show the contribution from diffu-
sion to the profile of Bx. The diffusion in Bx enables the formation of new magnetic connections and will result 
in an increased Bz in the outflow region. Since ∂Bx/∂t is almost zero, there must exist a balance between the 
advective and diffusive terms, which means that the flux is being diffused at the same rate at which it is being 
transported into the diffusion region.

Run M3 has a small gradient in η, which results in a small contribution by the −∇η × j term (green line). 
Consequently, more flux is being transported into the diffusion region by the advective term (blue line) than 
being diffused away by the gradient of the resistivity. However, adding the contribution from the gradient of the 
current density (orange line) establish the balance. This enables the system to maintain a current sheet with a 

Figure 3.  Comparison of diffusion region for the runs M3 (a)–(c) and M6 (d)–(f) at the time of their peak reconnection rate. 
(a) and (d) Current density profile in blue and resistivity profile in orange as a function of z. Note that the current density 
drops significantly at the x-line for M6.(b) and (e) Inflow magnetic field profile. The pink shaded areas indicate where the 
gradient in Bx is largest, corresponding to the peaks in the current density, jy. (c) and (f) Contribution of the different terms of 
the induction equation. In black: time derivative of Bx. In blue: advection term. In green and orange: resistive terms.
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characteristic current density profile (as seen in panel a). Thus, the current 
sheet profile is maintained by the balance between advection of fresh flux 
and diffusion by both the gradient of η and the current density.

Run M6 has an extremely large gradient in η, which results in a large contri-
bution by the term −∇η × j. This is evident by looking at the green line in 
Figure 3f. This large gradient in the resistivity forces the flux to be diffused 
away in a very short spatial scale, which results in a rapid decrease of the 
advective term (blue line). For z > 0, we observe the negative contribution of 
the green line, together with the rapid decrease in the positive advective term 
around z ≈ 1.8. The term related to the curl of the current density (orange line) 
is negative for z ≳ 1.8, but has a positive contribution for 0 < z ≲ 1.8. This 
term tries to diffuse the bifurcated peak in both directions (toward z = 0 and 
to z > 1.8). Compared to panel c, the advective contribution to the magnetic 
field gradient close to the x-line in panel f is dominated by this diffusion of 

the current peak. Thus, the distribution of the orange diffusive term allows a finite jy at the x-line, which is neces-
sary for reconnection to operate. This is how the system is able to maintain a finite reconnection rate.

The expression in the functional fit is describes the gradient length scale of the term accounting for the gradient 
in the resistivity. Although by design, this gradient length scale is the same for all the different runs since the 
resistivity has a fixed shape. However, as the magnetic field gradients are forced outwards from the current sheet, 
resulting in a bifurcated current sheet, the local value of this gradient length scale changes. We suggest that the 
functional fit captures this effect.

4.  Impact of the Shape of the Resistive Spot
In the previous section, we saw that the reconnection rate increases when increasing the magnitude of the resis-
tivity, but only up to a value of around 0.2. The reconnection rate is limited by the bifurcation of the current sheet 
when the gradients of the magnetic field are pushed out of the diffusion region, which results in a reduced current 
density around the x-line. Now, we take the highest value of the magnitude of the resistivity from the previous 
section (η1 = 2.4), to study how the reconnection rate varies when changing the shape of the resistive region. This 
is achieved by varying the x-extent of the resistivity while keeping a constant z-extent.

Figure 4a shows the time evolution of the reconnection rate for the 6 different runs specified in Table 1 in the 
same format as Figure 2. Note that run S3 is equivalent to run M6. The small perturbation that appears at around 
t = 85 is due to a small perturbation in Ey created at the center of the current sheet at t = 0. This perturbation 
travels to the edge of the box, reflects and reaches the current sheet again at around t = 85, slightly modifying the 
reconnection rate. This is a boundary effect that has no influence on the results of our study.

In Figure 4b, we have plotted the peak reconnection rate as a function of Lx for all 17 runs carried out. The peak 
reconnection rate has a value of around 0.25. This maximum value is reached for run S2, which has an aspect 
ratio of Lx/Lz = 2. The slowest reconnection rates are reached for the largest values of Lx, as expected as the 
diffusion region becomes very elongated. This resembles the original Sweet-Parker description (Parker, 1957; 
Sweet, 1958), where the length of the diffusion region is comparable to the system scale. The rate becomes very 
small since there is no significant tension on the reconnected field lines to transport the flux away.

For large aspect ratios, we would expect the reconnection rate to scale as predicted by the Sweet-Parker scaling, R 
∼ Lz/Lx = 1/Lx. This function has been plotted as a blue line in Figure 4b. As expected, the function fits with the 
data only for very large aspect ratios (Lx/Lz > 15). However, it does not reproduce the behavior of the reconnection 
rate for smaller aspect ratios.

For Lx ≲ 2, the peak reconnection rate decreases with decreasing Lx. The reconnection rate is proportional to the 
current density at the x-line, since Ey,xline = ηxline jy,xline and ηxline is the same for all the runs in this part. Figure 5a 
shows the out of plane current density in a cut along z = 0 for S1, S2, and S3. Accordingly, jy at the x-line is largest 
for S2. We also note that the distribution of the current density is significantly different for the three choices of 
Lx. This directly reflects the influence of the resistive shape on the gradients of the magnetic field. The highest 
current density is seen adjacent to the x-line for S1, while S2's profile is slightly wider and has a lower peak 

Figure 4.  (a) Time evolution of the reconnection rate for the six runs specified 
in Table 1. The colored labels indicate which run are we referring to. (b) Peak 
reconnection rate as a function of Lx for all 17 runs. Note that the maximum 
reconnection rate is achieved for Lx = 2.
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magnitude. For S3, the current density is distributed over a larger area. Hence, the distance between the peaks 
adjusts to the width of the resistive region for each of the runs.

In Figure 5d, we show the outflow magnetic field, Bz (multiplied by a factor of 2) at z = 0 as a function of x. Note 
that the strength of Bz of the reconnected magnetic field decreases for larger Lx: ∇ ⋅ � = 0 ⇒ �� ∼ ����

��
 . In this 

panel, we can see how the magnetic field gradients coincide with the current density profile. The shaded area 
highlights the large gradient in Bz around the x-line for the case S1. Figures 5b and 5c show the out of plane current 
density as a function of x for the runs S2 and S1, respectively. To determine how each magnetic field component 
contributes to the current density, we show both terms of Ampère's law, jy = ∇ × B|y = ∂Bx/∂z − ∂Bz/∂x. For 
the run S1 there is a large contribution of ∂Bz/∂x at the x-line, which subtracted from ∂Bx/∂z results in a smaller 
current density than S2 (see panel b) and, consequently, a lower reconnection rate.

Hence, for Lx ≲ 2, the large enhancement of Bz close to the x-line results in a lower reconnection rate. This 
enhancement must be due to the large resistivity gradient in the x direction appearing when η has an extremely 
short x-extent. Figures 5e and 5f show the contribution of the advective and resistive terms to the variation of Bz, 
in a similar way as in Figures 3c and 3f. Panel 5f shows the large contribution of the ∇η × j|z term (green) to the 
Bz profile. For x > 200, we note that this term is the only positive contribution to Bz, while the other two terms 
have a negative contribution which balances the former when a quasi-steady state is reached. Contrary to S1, for 
the run S2 η has a larger extent, which results in a contribution of the green term more distributed over space and 
a smaller Bz (see panel e). This confirms that the large gradient in Bz appears due to the short extent of the strong 
resistive region in the x-direction.

The scaling function in Figure 5b does not capture the effects of the gradient of Bz for small aspect ratios. This 
effect accounts for at least parts of the discrepancy between the functional fit and the data. For large aspect ratios, 
∂Bz/∂x is negligible, and the change in the current density is fully determined by ∂Bx/∂z.

5.  Summary and Discussion
We have shown that increasing the magnitude of the resistivity in our system indeed results in an increased 
reconnection rate, but only to a value of about 0.25. For high magnitudes of the resistivity, the rate is limited by 
the bifurcation of the current sheet. To maintain the balance between advection and diffusion, the gradient of the 

Figure 5.  Comparison of diffusion region for cases where Lx ≤ 2 at the time of their peak reconnection rate in a cut along 
z = 0. (a) jy as a function of x for S1, S2, and S3. Note that S2 has the highest current density at the x-line, which corresponds 
to the fastest reconnection rate. (b) and (c) Different terms of the equation j = ∇ × B contributing to the out of plane current 
density for S1 and S2. (d) Outflow magnetic field as a function of z for S1, S2 and S3. Note the enhancement near the x-line 
for the run S1. The quantity has been multiplied by a factor two for esthetic reasons. (e) and (f) Contribution of the induction 
terms for S1 and S2.
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magnetic field is pushed toward the boundary of the diffusion region, resulting in a smaller current density at the 
center, and a limited reconnection rate.

The bifurcation of the current sheet occurs when the flux is being diffused at a faster rate than it is being trans-
ported into the diffusion region. In our case, we observe a current sheet bifurcation for the runs M4, M5 and M6, 
but not for M1, M2 and M3. Thus, the transition occurs between M3 and M4. Equation 6 is used to analyze the 
rates of advection and diffusion in both runs. Written in terms of characteristic quantities, Equation 6 becomes

𝐵𝐵

𝜏𝜏
∼

𝑣𝑣𝑣𝑣

𝐿𝐿𝐵𝐵

−
𝜂𝜂𝜂𝜂

𝐿𝐿𝐷𝐷𝐿𝐿𝐵𝐵

,� (7)

where τ represents the time scale, LD represents the effective diffusion length in the z direction and LB repre-
sents the length scale of the magnetic field. Multiplying the whole equation by LB we get the flux per unit time 
processed:

𝐵𝐵𝐵𝐵𝐵𝐵

𝜏𝜏
∼ 𝑣𝑣𝑣𝑣 −

𝜂𝜂𝜂𝜂

𝐿𝐿𝐷𝐷

.� (8)

The first term on the right-hand side represents the flux transported by the advection term, while the second term 
represents the flux processed by the diffusion term. To estimate the contribution we assume that the incoming 
magnetic field has a value of 1 (equal to the initial inflow magnetic field strength). LD is determined when we 
define the resistive spot and does not change between these runs. It corresponds to Lz = 1. For run M3, the inflow 
velocity is ≈0.1. Then, the advection term transports flux into the diffusion region at a rate of ≈0.1, while the 
diffusion rate is approximately 0.075 (∂Bx/∂z = Jy ≈ 1) for η = 0.075. Accordingly, since 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴

𝜂𝜂𝜂𝜂

𝐿𝐿𝐷𝐷

 , the diffusion 
will be distributed throughout the entire diffusion region. In M4, the inflow velocity is ≈0.2. Consequently, the 
diffusion region can diffuse the magnetic field at a higher rate (≈0.3 for η1 = 0.3) than the advective term can 
transport fresh flux into the region (≈0.2). As a result, the flux is diffused over a shorter length scale, resulting 
in a bifurcated current sheet.

Bifurcated current sheets are frequently observed in space by in situ spacecraft (Hoshino et al., 1996; Runov 
et  al.,  2006). In this study, we have shown that the current sheet bifurcation occurs as a result of an imbal-
ance between the diffusion rate and the transport rate. In nature, the diffusion is set up self-consistently (Hesse 
et al., 2018). Thus, we have to relate our enhanced diffusion rate to a physical process that could have the same 
properties. Many theoretical and simulation efforts have been made to find the origin of the current sheet bifur-
cation (Sitnov et al., 2004; Zelenyi et al., 2003). A recent study by Jiang and Lu (2021) found that the bifurcated 
profile of the current density is caused by an electron pressure anisotropy formed at the center of the current sheet, 
which decreases the current density at the center. This pressure anisotropy may be the trigger for our diffusion 
enhancement in MHD. Other studies have shown that the bifurcated current is largely carried by diamagnetic 
drifts associated with non-gyrotropic electron distributions (Norgren et al., 2018).

When varying the shape of the diffusion region, we demonstrated that there is a maximum reconnection rate for 
an aspect ratio of Lx/Lz = 2. We showed that for very small aspect ratios, the resistivity gradient in the x direc-
tion is so large that it influences the Jy at the X-point, and consequently reduces the reconnection rate. One can 
relate the extent of the resistive region to the aspect ratio of the diffusion region by Lx and Lz. Liu et al. (2017) 
showed that the reconnection rate has a maximal value for an intermediate opening angle of the separatrix, 
which is related to the shape of the diffusion region. The J × B force driving the outflow becomes smaller as 
the opening angle increases. The tension force is canceled by the magnetic pressure force when the separatrices 
form an angle of 90°, stopping reconnection. For small opening angles, the J × B also becomes smaller as the 
opening  angle decreases, since the z component of the reconnected magnetic field decreases. Thus, an optimal 
opening angle  must exist, which, in our case, is achieved in the run S2, for Lx = 2 and Lz = 1.

Figure 6 shows magnetic field lines for 4 different runs: S1, S2, S3, and S4. These lines have been plotted using 
constant values of the magnetic vector potential, A, defined by B = ∇ × A. For each of the runs there is an inflow 
magnetic field line and a reconnecting magnetic field line. The highest reconnection is obtained for Lx = 2, which 
has a opening angle of ∼15° (S2 in Figure 6). The opening angle is comparable to the analytically predicted value 
of ∼17°, suggested by Liu et al. (2017). Figure 6) shows a clear trend in the opening angle versus the reconnec-
tion rate. As Lx decreases from 8 (S4) to 2 (S2), the opening angle increases, which consistently means that the 
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outflow driving force increases, accordingly with the reconnection rate. However, for values between Lx = 2 (S2) 
to Lx = 0.5 (S1), we observe a macroscopic decrease of the opening angle, contrary to what we would expect at 
microscopic scales. This is still consistent with the reduction of jy. The current density, the outflow force and 
velocity, the reconnection rate, and the opening angle are coupled and self-consistently regulated between micro-
scopic and macroscopic scales. The maximum reconnection rate is achieved when the different properties of the 
reconnection site conspire to allow and support an optimum opening angle. In the inflow region, different levels 
of field line deformation can be observed for the different runs. This deformation is related to the opening angle 
of the separatrix.

In summary, the present study shows that when inserting very strong resistive spots with varying shapes, there 
appears to be a maximum rate of reconnection the system can support. In addition, a sub-optimal choice of the 
magnitude and shape of the resistive spot leads to lower overall reconnection rates. This implies that the recon-
nection rate depends significantly on the properties of the diffusion region, even if the size of that region is much 
smaller than the system. However, there are also very strong indications that the rate of reconnection is limited 
due to larger-scale system properties.

Data Availability Statement
Data for this paper is available at Pérez-Coll Jiménez (2021).
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