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In this dissertation, we show how we can use principles of saliency to enhance

depiction, manage visual attention, and increase interactivity for 3D graphics and visual-

ization. Current mesh saliency approaches are inspired by low-level human visual cues,

but have not yet been validated. Our eye-tracking-based user study shows that the cur-

rent computational model of mesh saliency can well approximate human eye movements.

Artists, illustrators, photographers, and cinematographers have long used the principles

of contrast and composition to guide visual attention. We present a visual-saliency-based

operator to draw visual attention to selected regions of interest. We have observed that it

is more successful at eliciting viewer attention than the traditional Gaussian enhancement

operator for visualizing both volume datasets and 3D meshes.

Mesh saliency can be measured in various ways. The previous model of saliency

computes saliency by identifying the uniqueness of curvature. Another way to identify

uniqueness is to look for non-repeating structure in the middle of repeating structure. We

have developed a system to detect repeating patterns in 3D point datasets. We introduce



the idea of creating vertex and transformation streams that represent large point datasets

via their interaction. This dramatically improves arithmetic intensity and addresses the

input geometry bandwidth bottleneck for interactive 3D graphics applications.

Fast-previewing of time-varing datasets is important for the purpose of summariza-

tion and abstraction. We compute the salient frames in molecular dynamics simulations

through the subspace analysis of the protein’s residue orientations. We first compute an

affinity matrix for each frame i of the simulation based on the similarity of the orientation

of the protein’s backbone residues. Eigenanalysis of the affinity matrix gives us the sub-

space that best represents the conformation of the current frame i. We use this subspace

to represent the frames ahead and behind frame i. The more accurately we can use the

subspace of frame i to represent its neighbors, the less salient it is.

Taken together, the tools and techniques developed in this dissertation are likely

to provide the building blocks for the next generation visual analysis, reasoning, and

discovery environments.
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Chapter 1

Introduction

1.1 Motivation

The last decade has seen a phenomenal growth in the complexity of 3D graphics

and scientific visualization models due to the advances in acquisition and simulation tech-

nologies. This trend coupled with the recent advances in graphics hardware and displays

has brought us to a stage where we now have an unprecedented ability to model and ren-

der detail. The human visual system, though impressive and complex, has its limits in

comprehending detail. An important issue here is how to exploit this largely fixed band-

width channel of the human visual system to allow users to comprehend information more

quickly. In this dissertation, we incorporate principles of saliency inspired by human per-

ception into the traditional graphics and visualization pipeline to augment analysis and

image synthesis for 3D datasets.

As a first step towards our goal, we would like to have a model of saliency that

has been validated with respect to human performance. Even though the previously pro-

posed model of mesh saliency [69] uses a center-surround mechanism which is inspired

by the human visual system, it has not yet been validated by comparing it with human

eye movements. We examine the previous model of mesh saliency by quantifying the

similarity between the model and human eye fixations.

Once we have a validated model of saliency, we discuss how to draw viewers atten-
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tion to desired regions of interest by inverting this computational model of saliency. The

guidance of attention can be helpful for facilitating communication and exploration of a

3D dataset. A content creator or a domain expert can identify high importance regions

and use this technique in helping viewers navigate and understand complex datasets. We

can also apply this approach to exploratory visualization systems that rely on automated

and fuzzy detection of features. Such systems could use saliency-based perceptual en-

hancement to generate a variable level of perceptual interest to the human observer.

Designing a high-level representation to extract important components of the dataset

is useful not only for analyzing but also for improving the interactivity of graphics and vi-

sualization applications. For example, looking for the most salient repeating structure can

help in succinctly representing a 3D dataset as well as communicating it efficiently be-

tween the CPU and the GPU. As the gap between processing speeds and memory access

times grows ever wider, the impact of this kind of high-level representation on graphics

rendering performance should rise even further.

Saliency-based analysis can be applied to time-varying 3D datasets for the purpose

of summarization, abstraction, and motion analysis. As the sizes of time-varying datasets

continue to grow, it becomes more and more difficult to comprehend them. Automatically

generated thumbnail images and previewing of time-varying datasets can help viewers

explore and understand the datasets significantly faster as well as provide new insights.

1.2 Dissertation Hypothesis

My dissertation hypothesis is that principles of saliency inspired by the human
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visual system are important in enhancing depiction, managing visual attention, and

increasing interactivity for 3D graphics and visualization.

I have designed and implemented the following systems to address my research

hypothesis:

• Saliency Validation: We examine how well the existing model of saliency correlates

with the human visual system through an eye-tracking-based user study. Having a

validated model of mesh saliency is greatly helpful for identifying the role of 3D

information in the human visual system as well as building further saliency-based

systems for tasks such as visual enhancement.

• Visual Enhancement: We present a novel visual-saliency-based operator to enhance

selected regions of interest both in volume datasets and in 3D meshes. We have

found that it is more successful at eliciting viewer attention than the traditional

Gaussian regional enhancement approach.

• Salient Transformation Streams: We introduce the idea of creating vertex and trans-

formation streams that represent large point data sets via their interaction. We iden-

tify the most salient repetitive patterns in 3D point datasets, and use that information

to improve the rendering rate.

• Salient Frame Detection: We introduce a salient frame detection technique based

on motion subspaces analysis for large time-varying datasets. We validate our ap-

proach for molecular dynamics simulations.
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1.3 Saliency Validation

1.3.1 Problem Definition

Original Human Eye Fixations Mesh Saliency

Figure 1.1: Human eye fixations and Mesh Saliency on the Cyberware Male model. Warm
colors in the saliency map indicate high saliency regions while cool colors indicate low
saliency regions.

With the increase in size, number, and complexity of 3D graphics datasets, it will

become increasingly important to integrate principles of saliency with geometric process-

ing of meshes. Lee et al. [69] have proposed a model of mesh saliency as a measure of

regional importance. Their method for computing mesh saliency uses a center-surround

mechanism that is inspired by the human visual system. Similar mechanisms have been

widely used in models of 2D image saliency [52] [66], and their models were validated

with respect to human performance [91] [99]. As far as we know, there has been no work

in comparing models of 3D saliency to eye movements, although many experiments have

measured eye movements as participants examine 3D objects [18] [49] [74].

The problem we wish to address through user studies is how effective the model

of mesh saliency as proposed by Lee et al. [69] is in modeling human eye movements.

Having a validated model of mesh saliency will be likely useful in several contexts. For
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example, it could be helpful for identifying the role of 3D information in a visual search

task as Enns and Rensink have explored in their work [30]. It can be also helpful for

designing a better visual saliency model which is closer to human eye movements.

1.3.2 Our Approach

In Chapter 2 we present a user study that compares the previous mesh saliency

approaches with human eye fixations. We quantify how much better a computational

model of saliency models human eye movements than can be expected by chance or by a

curvature-based model for 3D rendered images. The main contributions of this disserta-

tion on saliency validation are:

1. We compare models of 3D mesh saliency to eye movements through an eye-tracking-

based user study.

2. We introduce the normalized chance-adjusted saliency to quantify the correlation

between mesh saliency and fixations for 3D rendered scenes. This is more appro-

priate for 3D rendered scenes than the previous chance-adjusted saliency measure

which was designed for 2D images.

3. We show that the current computational model of mesh saliency models human eye

movements significantly better than can be expected by chance or due to curvature

alone.
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(a) Original Models

(b) Human Eye Fixations

Figure 1.2: The Dinosaur, Isis, Male, Armadillo, and Igea models and recorded Human
Eye Fixations in our study. Here, we represent human eye fixations with hot-spot maps
where warm colors indicate highly-fixated regions.

1.3.3 Results of Saliency Validation

We have used five natural scanned models for our user study. Figure 1.2 illus-

trates these models and human eye fixations recorded for the first 5 seconds from 18

participants. Fixation points are illustrated with hot-spot maps, where warm colors show

highly-fixated regions.

Figure 1.1 illustrates the fixation points and computed mesh saliency for the Male

model, and Figure 1.3 further illustrates the fixation points, computed mean curvature,

and mesh saliency for the Dinosaur model. The curvature-based model has been used

for comparison with the mesh saliency model. We observe that most fixation points are

closely related to the mesh saliency model.

To quantify how each of saliency models (curvature-based and mesh saliency) cor-
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(a) Eye Fixations (b) Mean Curvature (c) Mesh Saliency

Figure 1.3: The saliency models and human eye fixations on the Dinosaur model in Fig-
ure 1.2.

relates to human eye fixations, we have introduced normalized chance-adjusted saliency.

This measurement will be discussed in great details in Chapter 2. We note that the bigger

the normalized chance-adjusted value is, the better correlation each saliency model has

with human eye fixations. The normalized chance-adjusted saliency allows us to quan-

tify how much better a computational model of saliency models human eye movements

than can be expected by chance for 3D rendered images. It can be also used to indirectly

compare which saliency models (curvature-based and mesh saliency) better correlate with

human eye fixations.

Figure 1.4 shows the average normalized chance-adjusted saliency values computed

by the curvature model and the mesh saliency model across all participants. In general,

we have observed that both computational models of saliency have higher correlation with

human eye fixations than a random model as the normalized chance-adjusted saliency

values are higher than 1, the value that can be expected purely by chance. We observe

lower variances in normalized chance-adjusted saliency than chance-adjusted saliency

cases.
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Figure 1.4: Average Normalized Chance-Adjusted Saliency Values and 95% Confidence
Interval using Curvature and Mesh Saliency across All Participants for each Model. For
all the cases, the values are higher than 1, which is the value that can be expected by
chance.

Our analysis shows that the mesh saliency model has a significantly higher correla-

tion with human eye fixations than a random model and a curvature-based model.

1.4 Visual Enhancement for 3D Meshes

1.4.1 Problem Definition

Visual attention can be guided in a goal-driven fashion or by external stimuli [98].

In this work we focus on the latter and therefore do not consider the high-level semantics

of the objects or tasks at hand. Visual attention can be drawn to a specific region by

simply having the selected pixels rapidly change and flash colors. Other approaches to

draw attention to a region could include lighting it brightly, using high-saturation colors,

or adding a high-curvature spike. Although these approaches would likely work, they

should be considered coercive and obtrusive instead of being persuasive. The challenge
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Figure 1.5: An overview of persuading visual attention through geometry. The content
creator defines a region of attention over the mesh in (a) as shown in (b); Mesh filter-
ing over the desired attention region provides a set of displacements (c) along the vertex
normals; Vertex displacements are weighted by a curvature change map (d) and then
added to the input mesh. The resulting mesh in (f) elicits greater visual attention in the
desired region (the second saint). Further, the mesh retains its visual attention persua-
siveness through various rendering styles and illuminations (g) and this is validated by
eye-tracking-based user study as shown in (h).

in gently guiding visual attention is to do so in a finely nuanced style that only introduces

subtle changes. We have examined how saliency alteration in 3D geometry may affect

viewer attention.

1.4.2 Our Approach

In Chapter 3 we explore visual attention persuasion by making changes only to

geometry. The advantage of pursuing visual attention persuasion through geometry ma-

nipulation is that by pushing the influence of attention deeper into the graphics pipeline,

content creators can have greater flexibility in using other conventional techniques later

in the graphics pipeline. The various stages in our approach are shown in Figure 1.5 and

summarized below.
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1. We allow the content designer to specify attentional regions in a scene by directly

selecting vertices, regions, or objects.

2. We discuss an approach to enhancing the saliency of a region to attract greater

visual attention by designing a general class of mesh filters.

3. Once a persuasion filter has been applied to a given region we would like to have

some objective evidence that it results in eliciting greater visual attention. We have

conducted an eye-tracking-based user study to verify the impact of our persuasion

filters.

4. Our approach of geometry filtering incorporates visual attention persuasion early

in the graphics pipeline. We have empirically observed that these changes are suc-

cessfully propagated to the final rendering under several illumination and rendering

styles.

1.4.3 Results of Visual Enhancement for Meshes

We have empirically tested our models with and without the application of the per-

suasion filters with several illumination and rendering styles. These include the standard

OpenGL lighting model and suggestive contours [23]. The results of the application of

our persuasion filters are clearly discernible with each of these lighting models and illumi-

nation styles. These are shown in Figure 1.6. The reason for the successful propagation of

fine geometry alterations to the final rendered image could be that the bilateral displace-

ments allow us to preserve and enhance edges in the target attention area, while smoothing

them around it. These effects are perhaps most clearly visible in the suggestive contour
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Figure 1.6: Illustration of the Romanesque Relief and the Armadillos by Lambertian light-
ing and Suggestive Contours. The first and the third column show the original models
while the second and the fourth column have persuasion filters applied to the third saint
with (λ+ = 0.2,λ− = 0.1) and to the frontmost Armadillo with (λ+ = 0.3,λ− = 0.3),
respectively.

rendering emphasizing the third saint and the closest Armadillo in Figure 1.6.

To gather objective evidence of the effectiveness of our approach we have carried

out an eye-tracking-based user study and have analyzed the results on the percentage

of fixation points on the region of interest. We compare our results with prior art (the

Gaussian-based enhancement method). The Gaussian fall-off function has been used in

regional enhancement for volume illustration [104], in attention-based modulation of de-

tail for exaggerated shading [106], and in stylized rendering [18].

The results of our user study can be seen in Figure 1.7 and they show the increase

in fixation points on the regions selected by the user. Each grouping of bars in Figure 1.7

is labeled by the object or region on which the filters was applied. Figure 1.8 shows the

increase in the number of fixation points on the region of interest after the application of

persuasion filters. In Figure 1.8(b), the third saint was processed with persuasion filters
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Figure 1.7: The bars show the average percentage of fixation points on the region of
interest for the original, the Gaussian-filtered and the Persuasion-filtered models.

(a) (b)

Figure 1.8: Image(a) and (b) show the fixation points on the original model and the
model altered by persuasion filter, respectively. Fixation points are recorded over the first
5 seconds from 9 subjects, and visualized with hot spot map where warm colors show the
areas of highest fixation count.

and this resulted in an 87% increase in the percentage of fixation points on it.

We have carried out a two-way ANOVA on the percentage of fixations for two

conditions: filtering methods and image sets. As shown in Figure 1.7, participants fix-

ated more on the regions of interest when they are filtered with enhancement techniques.

Overall, there was a strong difference for the percentage of fixations depending on en-

hancement techniques, F(2,153) = 30.09, p < 0.001.

Since we filtered two regions of interest for each image set, we did another analysis
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Table 1.1: The ANOVA Tests
Condition F-Value p-Value

Enhancement techniques on three sets 30.09 < 0.001
Enhancement techniques on Golfball 13.45 < 0.001
Enhancement techniques on Relief 9.728 < 0.001
Enhancement techniques on Armadillos 7.2 0.002
Gaussian vs. Persuasion on three sets 21.23 < 0.001

Table 1.2: The Pairwise t-tests (two-tailed)
Model Condition t-Value p-Value

Golfball No Change vs. Gaussian −3.34 0.004
No Change vs. Persuasion −5.84 < 0.001
Gaussian vs. Persuasion −2.81 0.012

Relief No Change vs. Gaussian −0.47 0.647
No Change vs. Persuasion −4.69 < 0.001
Gaussian vs. Persuasion −3.95 0.001

Armadillos No Change vs. Gaussian −1.56 0.138
No Change vs. Persuasion −3.42 0.003
Gaussian vs. Persuasion −2.31 0.033

with filtering methods and regions for each image set. Amongst regions, there were no

statistically significant differences (F(2,48)= 0.027∼ 0.195, p > 0.661) as expected. For

enhancement methods, there were statistically significant differences for all the models.

We also carried out a two-way ANOVA test with two enhancement methods (Gaussian

and Persuasion) to see if the Persuasion-based enhancement is better. The result shows

a significant improvement on the percentage of fixations with Persuasion-based enhance-

ment, F(1,102) = 21.23, p < 0.001.

The results in this section clearly validate a significant increase of fixations on the

regions of interest by the persuasion filter over the original as well as the Gaussian-filtered

meshes.
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1.5 Visual Enhancement for 3D Volume Datasets

1.5.1 Problem Definition

Visually depicting large volume datasets in a comprehensible way has been a long-

standing challenge. Transfer functions have been widely used to help visualize the fea-

tures and details in volumes by assigning varying optical properties such as color and

opacity to different densities of a volumetric scalar field. Significant advances have been

made in the art and the science of devising transfer functions that successfully show the

inherent structures within a given volume dataset. Despite these impressive advances

the transfer functions remain a mapping of the physical appearance to the local geomet-

ric attributes such as the local density of the scalar field and its first and higher-order

derivatives. Notwithstanding the pioneering work in dual-domain interactions by Kniss

et al. [64], transfer functions by and large remain ill-suited to directly afford the appear-

ance manipulation of selected regions of a volume. As the volume datasets have grown

in complexity, so too has the need to emphasize and draw visual attention to appropriate

regions in their visualization.

1.5.2 Our Approach

In Chapter 4 we address the growing need for tools and techniques that can draw

visual attention to user-specified regions in a direct volume-rendering environment. To-

wards this goal we seek solutions based on multi-scale methods for visual saliency that

can be used to guide visual attention based on varying perceptual importance.
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(a) (b)

Figure 1.9: Saliency-guided Enhancement for Volume Visualization: Image (a) shows the
traditional volume visualization and image (b) shows the result of applying our saliency-
guided enhancement operator to the mouth.

We have introduced a new visualization enhancement operator that is inspired by

the center-surround mechanism of visual saliency. Our goal is to enhance human per-

ception of the volume data by guiding a viewer’s attention to specific regions of interest.

Since our method considers the influence of each voxel at multiple scales, it can em-

phasize volumetric features at an appropriate visual scale. Existing transfer functions,

based on local geometry and its derivatives, would find it difficult to achieve a similar

level of multi-scale emphasis. Our saliency-guided enhancement framework provides

scientists and medical researchers a valuable tool to enable them to easily emphasize

and de-emphasize regions of interests even in large volume datasets, successfully guiding

user’s visual attention to desired regions without sacrificing their local context. Saliency-

guided emphasis is likely to find use in large-scale visual knowledge discovery applica-

tions where knowledge discovery modules could identify the regions satisfying a certain

criteria and then present them visually with subtle variations to draw a user’s attention to

those regions in order of their importance.
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Figure 1.10: (a) The traditional visualization pipeline. (b) Saliency-enhanced visualiza-
tion pipeline. The saliency field is modified by the enhancement operator to generate an
emphasis field. The emphasis field is used to enhance the perception of features in volume
by modulating appearance attributes such as luminance, chrominance, and texture detail.

The main contributions of this dissertation on visual enhancement for 3D volume

datasets are:

1. We present a new saliency-based enhancement operator to guide visual attention in

volume visualization.

2. We discuss augmenting the existing visualization pipeline by incorporating en-

hancement operators to increase the visual saliency of different regions of a volume

dataset.

3. We present an eye-tracking-based user study that shows that our saliency-enhancement

operator is successful in eliciting viewer attention in volume visualization.
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(a) (b) (c)

(d) (e) (f)

Figure 1.11: The Visible Male model (128× 256× 256) is rendered by the traditional
volume visualization in image (a). Images (b) and (c) show the visualization with regional
enhancement by a Gaussian and our saliency-guided operator, respectively. Images (d),
(e), and (f) show the fixation points collected from our user study with the images (a), (b),
and (c), respectively.

1.5.3 Results of Visual Enhancement for 3D Volume Datasets

We show our results by changing the value parameter in the HSV color model. Fig-

ure 1.11 compares the enhancement by a traditional Gaussian operator and by our new

saliency-guided enhancement operator on the Visible Male model. Notice that the orig-

inal image has high brightness regions such as the nose. While the Gaussian operator

increases the brightness of the user-specified regions, our saliency-enhancement opera-

tor additionally lowers the brightness in the neighborhood. This difference results in a

17



(a) (b) (c)

(d) (e) (f)

Figure 1.12: The Engine Block model (256× 256× 256) is rendered by the traditional
volume visualization in image (a). Images (b) and (c) show the visualization with regional
enhancement by a Gaussian and our saliency-guided operator, respectively. Images (d),
(e), and (f) show the fixation points collected from our user study with the images (a), (b),
and (c), respectively.

much greater user attention to the desired regions, even with subtle changes to the overall

brightness. Figure 1.12 shows another comparison on the Engine Block model.

We have carried out an eye-tracking-based user study to gather objective evidence

of the effectiveness of our approach. Our goal in this user study is to validate our ability

to draw a viewer’s attention by subtle changes to the appearance of the volume data. We

have used the volume datasets of the Engine Block, the Foot, the Visible Male, and the

Sheep Heart model for our study. The results of our study are shown in Figure 1.13. Each
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Figure 1.13: Fixation results for volume visualization enhancements.

Table 1.3: List of pairwise t-tests.

Model Condition: No Change vs. t-Value p-Value

Engine Gaussian-based enhancement −2.36 0.042
Block Saliency-guided enhancement −2.86 0.019

Foot Gaussian-based enhancement −2.67 0.026
Saliency-guided enhancement −3.34 0.009

Visible Gaussian-based enhancement −0.661 0.525
Male Saliency-guided enhancement −6.65 < 0.001

Sheep Gaussian-based enhancement −3.86 0.005
Heart Saliency-guided enhancement −4.49 0.002

grouping of bars shows the percentage of fixations that fell in a desired region for the

unaltered, Gaussian-enhanced, and Saliency-enhanced visualizations for a specific model

and region on that model.

We next carried out a pairwise t-test on the percentage of fixations before and after

we apply enhancement techniques for each model (this is the only condition in the test).

Table 1.3 shows the results from all the models. We found a significant difference in the

percentage of fixations when we applied saliency-guided enhancement for all the models.
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There was a difference for the percentage of fixations when we applied Gaussian-based

enhancement for all the models other than the Visible Male model.

1.6 Salient Transformation Streams

We believe looking for non-repeating structure in the middle of repeating structure

is another way to identify the salient regions. Figure 1.14 shows five examples where

detecting repeating patterns could be useful for identifying salient parts. Human observers

seeing Figure 1.14(a) are likely to characterize the pipe as being more salient than any

brick. This could be because the bricks are repeating and the pipe is not. Humans tend

to spend more time on salient features that have attracted their attention. This led us

Figure 1.14: Image (a) shows a pipe against a brick wall at the horitcultural center
in Philadelphia’s Fairmount Park. Image (b) shows a battlescape generated by Oc-
zone.com, and Image (c) shows an organic model created by the XfrogPlants software.
Image (d) shows repeating geometric patterns in the Palace model. Image (e) shows
an example of frequently occurring common translations of vertices in Stanford’s David
model.
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to wonder if allocation of computational resources based on saliency could be used to

enhance the efficiency of the graphics pipeline.

Modern graphics processors currently assign the same default importance to every

primitive. However, it could be argued that the work done in drawing the first brick could

be reused in drawing the second and subsequent bricks due to their similarity. This would

suggest a design of the graphics pipeline where the processing was proportional to the

saliency of a primitive. Repetitive patterns lend themselves well to succinct representa-

tions. The challenge is in automatic discovery of such patterns. It is easy to find such

repeating patterns in crowd models (Figure 1.14(b)), in organic models such as trees and

flowers (Figure 1.14(c)), or in 3D architectural objects such as the Palace (Figure 1.14(d)).

Even in the Stanford’s digital representation of Michelangelo’s David model, we

can find translational self-similarities of points shown in Figure 1.14(e). This is not as

visually salient as the other examples in Figure 1.14. Here, we show how the high-level

representation to extract important components of the dataset can be used for improving

the interactivity of graphics applications.

1.6.1 Problem Definition

Recent advances in the development of a stream programming environment for

GPUs [14] and the use of stream programming for GPUs [43] have enabled graphics re-

searchers and practitioners alike to view graphics operations in the context of data parallel

semantics. The stream programming abstraction allows us to consider graphics primitives

as streams of records and graphics operations as kernels that operate on such streams. This
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simple and yet compelling abstraction has not only had a powerful impact on graphics ap-

plications, it has also enabled a wide variety of applications from diverse disciplines such

as scientific computing, machine learning, signal processing, computer vision, real-time

audio, and computational biology to be mapped on to the GPUs. An important factor

behind this success has been the power of the stream programming abstraction to em-

body, implicitly or explicitly, several important parallel algorithm design considerations

such as data parallelism, task parallelism, coherence and latency of memory accesses,

producer-consumer locality, and arithmetic intensity.

As the size of a floating-point unit on a 90 nm chip has decreased to almost 0.1%

of its area, the challenge has gradually shifted away from trying to accommodate multi-

ple processing units on a single chip towards maximizing the returns from the available

bandwidth. In other words, arithmetic is cheap and bandwidth is the critical problem [21].

1.6.2 Our Approach

In Chapter 5 we present a novel method to dramatically enhance the arithmetic

intensity (the compute to bandwidth ratio) [22], for vertex streams on the GPUs. The

inspiration for our work lies in the idea that two interacting streams are significantly more

powerful than a single stream. This basic idea has been around in computer architecture

for a while (it was used in IBM 7950 as early as 1961 [8]) but its applications to graph-

ics were not yet possible due to lack of programmable hardware support at the graphics

processor level. The recent emergence of instance streams in modern GPUs [28] has al-

lowed us to formulate and validate our ideas on representing geometry as two interacting
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Figure 1.15: Overview of Salient Transformation Streams. As a preprocess, the PCA
analysis of a group of points results in a binary partition tree. Each node of the tree
is divided into its child nodes depending on the positions at its local orientation frame.
In transformation palettes stage, we identify the most common translations among the
vertices in each node. Then, we construct two vertex transformation pools by which we
cover as many vertices as possible. At runtime, a view-dependent manager determines
the cut in the tree and each node of the cut is visualized by the interaction between vertex
and transformation streams.

streams of coordinates and transformations.

The main contributions of this dissertation on salient transformation streams are:

1. We introduce the idea of interacting vertex and transformation streams to encode

general point cloud datasets and discuss how these streams can be decoded using

modern vertex shaders.

2. We discuss how to efficiently build vertex and transformation streams from a pool

of paired vertices and transformations.

3. We outline a method to identify the most common transformations that can map a

set of vertices to itself using the Fast Fourier Transform.

4. We show how our approach of using transformation streams can improve the arith-

metic intensity in a view-dependent rendering application.
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1.6.3 Results of Salient Transformation Streams

We have validated the results of our approach to efficiently identify and use interact-

ing streams of vertex and transformation data on a number of 3D graphics models using

a view-dependent point rendering system. We have run our experiments on a 1.6 GHz

Pentium IV Windows PC with 2 GB RAM with a NVIDIA GeForce 6800 Ultra AGP

graphics card. We have used the geometry instancing hardware feature in vertex shader

3.0 model and used DrawIndexedPrimitive( ) command in DirectX 9.0 API.

We have compared our results along two dimensions of performance – the improve-

ment in CPU-GPU communication bandwidth and the improvement in the frame rates.

The left and the center columns of Figure 1.16 show the conventional rendering and the

rendering by Salient Transformation Streams, respectively. The right column of Fig-

ure 1.16 shows the rendering of the vertices covered by the vertex-transformation pools.

Two most salient vertex transformation pools are identified by our algorithm, and they

cover about 80% of all the vertices. The vertices that are not covered by these two pools

are rendered without any geometry instancing using conventional rendering. The gains

shown include the overhead of sending singleton vertices that our transformation streams

model could not cover.
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1.69M Verts 1.69M Verts 1.37M Verts
20.3FPS / 12.92MB 24.3FPS / 3.45MB N/A / 997KB

1.17M Verts 1.17M Verts 878K Verts
29.8FPS / 8.90MB 35.0FPS / 2.92MB N/A / 712KB

1.02M Verts 1.02M Verts 926K Verts
32.9FPS / 7.75MB 43.4FPS / 1.25MB N/A / 565KB
(a) Conventional (b) STS (c) Coverage by pools

Figure 1.16: The result of rendering XYZ RGB’s Troll, Stanford’s David and XYZ RGB’s
Manuscript. The left images show the conventional rendering of the models, the center
images show the rendering of them by salient transformation streams and the right images
show the vertices covered by the vertex-transformation pools for the models. We report the
number of vertices rendering, the frame rates achieved, and the per-frame communication
bandwidth required for the conventional approach and our approach.
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1.7 Salient Frame Detection for Molecular Dynamics Simulations

1.7.1 Problem Definition

Recent advances in acquisition and simulation techniques have generated a huge

amount of time-varying datasets. Time-varying data can be acquired from scientific sim-

ulation, videos, and animation libraries. Features in the time-varying datasets are com-

monly defined as the regions of interest that a human observer is likely to look for. As

the number and complexity of these datasets increase exponentially [53], it is becoming

impractical to expect a human observer or a domain expert to discover all the features

manually. Automatic or semi-automatic tools to help humans discover scientifically in-

teresting features are especially important for this reason. To the best of our knowledge,

there have been no salient frame detection techniques for molecular dynamics simulations

despite a great need for such tools for this area.

Mechanosensitive ion channels play a critical role in transducing physical stresses at

the cell membrane into an electrochemical response. The crystal structure of E. coli MscS

has provided a starting point for detailed descriptions of its mechanism. Figure 1.17 shows

the opening of the E. coli mechanosensitive ion channel that we will consider throughout

Chapter 6. There are 7 subunits in this ion channel, and all 7 subunits are topologically

identical, but do not act independently in the simulation. Each subunit has residues 1 to

175 (with few gaps cut out). To understand this mechanism, identifying the presence of

kinks in α-helices is critical because they have functional importance.
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(a) (b)

Figure 1.17: Image (a) and (b) show opening of the E. coli mechanosensitive ion channel,
respectively. There are seven subunits in this ion channel, and all seven subunits are
topologically identical, but do not act independently in the simulation.

1.7.2 Our Approach

In the method of image saliency by Itti et al. [52] or mesh saliency by Lee et

al. [69], they use a center-surround operator to identify the uniqueness of a pixel or a

vertex with respect to its neighborhood. We have decided to use a similar approach and

define saliency as the uniqueness of a single frame with respect to its neighboring frames

both forwards and backwards in time. Our collaborator (Dr. Sergei Sukharev’s group at

the Biology Department at the University of Maryland) was interested in identifying the

frames in molecular dynamics simulations where the changes in the kinks (anomalies) in

the secondary structures occur in the Ecoli channel. We validate the effectiveness of our

salient frame detection algorithm in this molecular dynamics simulation.

1.7.3 Results of Salient Frame Detection

We have compared our detected salient frames with the ones identified indepen-

dently by our collaborators (biology scientists) for molecular dynamics simulations. Fig-
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ure 1.18 shows the five most salient frames detected by our method for the subunit 4 in the

E. coli mechanosensitive ion channel in Figure 1.17. The frames 5, 26, 30, and 34 which

have been detected by our method are the same or very close to the frames 3, 24, 26, 30,

and 35 with changes in the kinks, which were detected manually by our collaborators.

The frame 39 detected by our algorithm is not close to any frame detected manually by

our collaborators, but it had the lowest saliency value among the five most salient frames.

Generally, kinks change towards the end of this simulation, and our method successfully

detects these important frames.

Figure 1.19 shows the five most salient frames detected by our method for the sub-

unit 1 in the ion channel shown in Figure 1.17. This subunit is topologically identical

to the subunit 4, but acts differently in the simulation. Therefore, it results in different

salient frames (frames 11, 19, 21, 35, and 39) as shown in Figure 1.19. Our collaborators

identified frames 2, 18, 20, 23, 35, 36, and 39 as being salient. Figure 1.20 shows the six

most salient frames detected by our method for the subunit 4 in the symmetry annealing

of MscS F68S mutant. In this molecular dynamics simulation, residue 68 was mutated to

another, serine, which has very specific consequences for channel inactivation in real ex-

periments. As changes in the kinks occur more frequently than the previous simulations,

we observe a larger number of salient frames than in the previous cases. Our collabora-

tors have manually identified frames 2, 4, 18, 34, and 38 as being salient. Among these,

frames 2, 4, 18, and 38 are the same or close to the frames 1, 5, 18, and 39 detected by

our algorithm, and the remaining frame 34 also exhibits a relatively high saliency value

as shown in Figure 1.20.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 1.18: Five most salient frames detected by our method for the subunit 4 in the E.
coli ion channel (MscS) in Figure 1.17. The changes in the kinks are detected towards the
end of this simulation, and our method successfully detects some of the most important
frames.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 1.19: Five most salient frames detected by our method for the subunit 1 in the
E. coli ion channel (MscS) in Figure 1.17. This subunit is topologically identical to the
subunit 1, but acts differently in the simulation.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 1.20: Six most salient frames detected by our method for the subunit 4 in the other
molecular dynamics simulation, showing the symmetry annealing of MscS F68S mutant
– the residue 68 was mutated to another, serine, which has very specific consequences for
channel inactivation in real experiments.
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Chapter 2

Saliency Validation

Mesh saliency has been proposed as a computational model of perceptual impor-

tance for meshes and it has been used in graphics for abstraction, simplification, seg-

mentation, illumination, rendering, and illustration. Even though this technique is in-

spired by models of low-level human vision, it has not yet been validated with respect

to human performance. Here we present a user study that compares the previous mesh

saliency approaches with human eye movements. To quantify the correlation between

mesh saliency and fixation locations for 3D rendered images, we introduce the normal-

ized chance-adjusted saliency by improving the previous chance-adjusted saliency mea-

sure. Our results show that the current computational model of mesh saliency can model

human eye movements significantly better than a purely random model or a curvature-

based model.

2.1 Related Work

When people examine an image, their eyes tend to fixate on certain points, then

jump quickly, with saccades, to new points. Although viewers may attend to portions of

an image on which they do not fixate, a good deal of evidence suggests that viewers tend

to move their eyes to parts of an image that have attracted their attention (see [90], Chapter

11, for a brief review). For this reason, many models of visual attention and saliency have
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been evaluated by their ability to predict eye movements. It is not realistic to expect any

model to perfectly predict eye movements, because of the variability between human par-

ticipants and even for the same participant at different times. However, recent research

demonstrates that there is a significant correlation between existing models and human

eye fixations. For example, Privitera and Stark [99] compare points of fixation by partici-

pants to clusters formed by the most salient regions predicted by a large number of simple

models of 2D image saliency. They compare this with the degree to which fixations agree

between participants. Of the three classes of images they have looked at, they have found

that for one class of images (paintings), algorithms based on simple operators including

symmetry, center-surround, and discrete wavelet transform cohere very well with human

data and approach the coherence among fixations across participants. Parkhurst et al. [91]

measure the saliency at points of fixation and show that the model of 2D image saliency

of Itti et al. [52] is more predictive of fixation points than a random model. Previous

research also makes the useful methodological points that bottom-up models can better

predict the first fixations, which are less influenced by top-down knowledge ([91]), and

that the exact order of fixations is highly variable and difficult to predict [99].

There have been many experiments measuring eye movements as participants ex-

amine 3D objects [18] [49] [74]. For instance, Cole et al. [18] emphasize a region of

interest by rendering it in a different style from other regions. They validate the effects of

their rendering styles by an eye-tracking experiment. Howlett and O’Sullivan [49] cap-

ture saliency values of 3D models by recording where participants look in 3D rendered

images. They use this saliency information to simplify 3D models.

The computational model of mesh saliency [69] uses a center-surround mechanism
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that is inspired by the human visual system. There have been other approaches to iden-

tifying salienct regions on a mesh. Watanabe and Belyaev [127] have identified salient

regions on meshes by estimating curvature values, and guided the simplification process

to preserve them better. Gal and Cohen-Or [36] have constructed salient geometric fea-

tures by clustering a set of local descriptors that have a high curvature and a high variance

of curvature values for partial shape matching of meshes. Shilane and Funkhouser [111]

have identified the important regions of a 3D object which define the object type and dis-

tinguish it from other types of objects. They compute how distinctive the regions are with

respect to multiple types of objects in a 3D shape database. Feixas et al. [31] have defined

an information channel between the viewpoints and an object. They use this channel to

compute the viewpoint mutual information, which is further used for viewpoint selection

and mesh saliency computation. While the notion of saliency in Lee et al. [69] and Feixas

et al. [31] is based on perceptual and visual importance, the notion of saliency in Gal

and Cohen-Or [36] and Shilane and Funkhouser [111] is specific to the tasks of shape

matching, shape similarity, and shape uniqueness.

In this chapter, we compare a model of mesh saliency with a purely random model

and a curvature-based model. There are a number of excellent approaches that generalize

differential-geometry-based definition of curvatures to discrete meshes [37, 83, 118, 134];

we use Taubin’s method [118] for computing mean curvature in this dissertation.
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2.2 Background on User Studies and Psychological Statistics

In this section we present the background on the design of user studies and data

analysis using psychological statistics. This will be helpful in understanding our eye-

tracking-based user studies performed throughout this dissertation. We refer the interested

readers for further details to the seminal work in this area by Cohen [16].

2.2.1 Experiment, Score, Sample, Group, and Variable

Experiments are designed to establish cause-effect relationships. Participants are

assigned into two or more groups created by the manipulation of an independent variable

(the cause). These groups are measured on the same dependent variable (the effect),

returning two or more sets of scores among the groups. Sometimes it is not practical to

gather all of the scores from the groups. In such cases, we obtain scores from a subset of

the population in the group; this subset is called a sample.

2.2.2 Null Hypothesis and Statistical Significance

The null hypothesis states that the experimental manipulation of an independent

variable has no effect on the dependent variable. When we have a certain degree of

confidence (say 95%) that the data do not support the null hypothesis, we reject this null

hypothesis. Statistical significance means that a given result is unlikely to have occurred

by chance. Given a statistical value (such as t-value and F-value) and its corresponding

probability (p-value), we conclude whether or not the differences among the scores of the

dependent variable in different groups are statistically significant or due to chance.
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2.2.3 Degrees of freedom

In the context of fitting statistical models, the term Degrees of freedom (df) is the

number of independent pieces of information about variability. In other words, it de-

notes the number of separate pieces of information available to estimate another piece

of information. For instance, if you have one score, you have one piece of information

about mean, but you do not have any piece of information about variability. If you have

two scores, you have two pieces of information about mean and one piece of information

about variability because the two scores are equally distant from the mean. Generally,

when there are N scores, the degrees of freedom is N −1.

2.2.4 t-test

Each sample is characterized by its mean, standard deviation, and a number of

scores. We use a t-test to determine if the samples from two groups created by the manip-

ulation of an independent variable could have possibly come from the same distribution

(assumed normal). Depending on the degrees of freedom, t-test returns a corresponding

p-value. If the p-value is below the threshold chosen for statistical significance usually

with the 0.05 or 0.01 level, the means of two normally distributed scores are distinct.

There are two versions of the t-test depending on whether the two samples are unpaired

or paired. We discuss this next.

Unpaired t-test: In the unpaired t-test, participants are randomly assigned into two

groups so that samples are independent of each other. Then the independent groups of

participants are compared, and each participant is measured only once on the dependent
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variable. The two sets of scores in two groups are therefore uncorrelated.

Paired (Pairwise) t-test: In a paired t-test, each member of one sample has a one-to-

one relationship with a particular member of the other sample. When the same partici-

pants need to be measured before and after the manipulation of the independent variable,

this is the appropriate test to perform. There are still two sets of scores on the dependent

variable, but the scores are correlated since the two sets of scores to be compared are

obtained from the same participants.

2.2.5 Bonferroni Correction

If we test n hypotheses on a set of data, the probability of being right on all occa-

sions would decrease substantially. For instance, if we test n hypotheses using 0.05 as

the significance level, the probability of being wrong at least once increases as 1−0.95n.

The Bonferroni correction is one of the safeguards against multiple tests of statistical sig-

nificance on the same data falsely giving the appearance of significance. It says if we test

n hypotheses, the statistical significance level should be decreased to 1/n times what it

would be for one hypothesis. For instance, if there are five independent hypotheses on

the same data at 0.05 significance level, instead of using a p-value threshold of 0.05, we

would use a stricter threshold of 0.01(= 0.05/5).

2.2.6 Analysis of variance (ANOVA)

As with the t-test, ANOVA tests for significant differences between groups created

by the manipulation of an independent variable. While the t-test is limited to the compar-
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ison of only two groups, ANOVA can be used to test differences in three or more groups.

The ANOVA produces an F-value and a corresponding probability p-value depending on

the degrees of freedom. This probability allows us to reject or retain the null hypothe-

sis. A significant F-value only indicates that there is a significant difference somewhere

among the groups; it does not indicate which groups are different. To determine this,

secondary comparisons are needed.

One-way ANOVA vs. two-way ANOVA: While one-way ANOVA can only assess

the effect of one independent variable on a single dependent variable, two-way ANOVA

(or factorial ANOVA) allows us to test the effects of two independent variables. When

there are two independent variables, two-way ANOVA is the appropriate test to perform

because (1) it generates the same information that two one-way ANOVA’s would, and (2)

it also assesses the interaction between these variables to influence scores of the depen-

dent variable. While one-way ANOVA only generates one F-value, two-way ANOVA

generates three F-values: two to test the main effects of independent variables, and one

to test the interaction effect.

Degrees of freedom and Measures of effect size: For ANOVA, two components of

degrees of freedom should be calculated: dfbet and dfW . The degrees of freedom between

groups (dfbet) is one less than the number of groups: bfbet = k − 1, and the degrees of

freedom within groups (dfW ) is equal to the total number of participants minus one for

each group: dfW = NT −k, where k is the number of groups and NT is the total number of

participants.
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Measures of effect size in ANOVA are the correlation between the effect (a main

effect of an independent variable or an interaction effect) and the dependent variable. It

indicates how influential an independent variable or an interaction is on the dependent

variable. Partial Eta squared (η2) is one of the commonly used measures of effect size in

ANOVA.

Example: We performed a two-way ANOVA on saliency values with two variables:

7 fixation points and 2 saliency models. Fixation points and saliency models are inde-

pendent variables, and saliency values is a dependent variable. This analysis gives us

three F-values (one to test the main effect of fixation points, one to test the main effect of

saliency models, and one to test the interaction effect of the two independent variables):

• F(6,238) = 1.066, p = 0.3831,η2
p = 0.026 for fixation points

• F(1,238) = 34.70, p < 0.001,η2
p = 0.127 for saliency models

• F(6,238) = 0.494, p = 0.813,η2
p = 0.012 for interaction between two variables

For fixation points, the first parameter in the F-value indicates the degrees of free-

dom between groups (dfbet), which is 6 because there are 7 different groups. The second

parameter in the F-value indicates the degrees of freedom within groups (dfW ). The num-

ber of groups is 14 (= 2 (saliency models) × 7 (fixation points)), and the total number of

participants is regarded as 252 (= 14 (groups) × 18 (participants)). Therefore, dfW (the

degrees of freedom within groups) is 238 (= 252− 14). Since the F-value is 1.066 and

the corresponding p-value is 0.3831, which is much greater than 0.05, we can say that

there is no significant difference among (groups created by the manipulation of) fixation

points.
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For saliency models, dfbet is 1 because there are 2 saliency models, and dfW is 238

as in the previous case. Since the F-value is 34.70 and the corresponding p-value is

less than 0.001, we can say that we can observe significant differences bewteen saliency

models. The last F-value indicates the ways in which these two variables interact with

one another to influence scores of the dependent variable. Since the F-value is 0.494 and

the corresponding p-value is greater than 0.05, we can say that there is no interaction

between two variables. Partial Eta squared (η2
p) values also indicate that saliency models

has the largest main effect on saliency values (the dependent variable).

2.2.7 Counterbalancing Problem

When each participant receives more than one manipulation of an independent vari-

able, there exists a possibility of order effects. For example, if the same participant is to

see two images (image A and image B) in a row, whichever type of image is presented

second will have an unfair advantage (practice) or disadvantage (fatigue) for the partic-

ipant, depending on the details of the study. The solution is to vary the order in which

participants receive manipulations to minimize the bias; this is called counterbalancing.

In this example, we can counterbalance the order effects by making half the participants

see the image A first and the other half see the image B first. Counterbalancing becomes

more complicated when there are more than two manipulation levels. Fortunately, random

ordering neutralizes the order effect to some extent, and there are clever counterbalancing

schemes, such as the Latin square design, which do not require all possible orders to be

presented and yet eliminate order effects.
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2.2.8 Differential Carryover Effects

While counterbalancing can eliminate the confounding effects such as practice and

fatigue that result from the order of the manipulation levels, it cannot eliminate differen-

tial carryover effects. Differential carryover effects are the effects which differ depending

on the particular order of manipulations. Suppose we want to measure the effect of the

enhancement techniques A and B, and present three similar images (original image, the

image A enhanced by technique A, and the image B enhanced by technique B) to partic-

ipants. If the image A is presented first, it might affect the participants’ visual attention

for the next image B, thus increasing or decreasing the effect of technique B. This effect

may not be symmetrical (e.g., presenting the image B first would not affect a partici-

pant’s visual attention for the next image A) and would therefore not be balanced out by

counterbalancing. Imposing some neutral task or taking time between the presentation of

manipulation levels can help reduce differential carryover effects.

2.3 Physical Setup and Fixation Analysis

To gather objective evidence of the correlation between saliency models and hu-

man eye fixations, we have carried out two eye-tracking-based user studies (pilot study

and main study) and have quantified the similarity between the models and human eye

fixations. In this section, we present the physical setup, eye-tracker calibration, and fix-

ation point extraction mechanism which are commonly used in the two studies. We also

introduce the normalized chance-adjusted saliency to quantify the correlation between a

saliency model and fixation points for 3D rendered images. Other experimental design
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Figure 2.1: Experimental setup for the user study with the ISCAN ETL-500 eye-tracker.

issues such as hypotheses, stimuli, and participants of the studies will be explained in

Sections 2.4 and 2.5 in detail.

2.3.1 Physical Setup

We used the ISCAN ETL-500 monocular eye-tracker which can record eye move-

ments continuously at 60 Hz. The study was carried out on a 17-inch LCD display with

a resolution of 1280×1024, placed at a distance of 24 inches, subtending a visual angle

of approximately 31.4 degrees horizontally. The participants had a chin rest to minimize

head movements and to maintain calibration. Our experimental setup is shown in Fig-

ure 2.1.

2.3.2 Eye-tracker Calibration and Participant Selection

The standard calibration of ETL-500 eye-tracker was performed with 4 corner

points and one center point shown in Figure 2.2(a). However, this was not sufficiently ac-

curate for our purposes due to non-linearities in the eye-tracker-calibrated screen space.

Therefore we used the second calibration step which involves a more densely-sampled

calibration phase similar to [91] with 13 additional points shown in Figure 2.2(b). For
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this we asked the participants to successively look at and click on 13 points presented on

the screen. This gave us an accurate correspondence between the eye-tracker space and

the monitor space for that participant. We then triangulated the monitor’s screen space

using these 13 points and 4 corner points from the first phase calibration as shown in

Figure 2.2(c). Such a triangulation allowed us to get an accurate position on the monitor

by interpolating inside the triangle where the subject was looking. After this we tested

the accuracy of the calibration by asking the participants to look at 16 randomly selected

(a) (b)

(c) (d)

Figure 2.2: Eye-tracker calibration steps used in our study. Image (a) shows 4 corner
points and one center point used for the standard calibration of ETL-500 eye-tracker.
Image (b) and (c) shows 13 additional points used in our second calibration step and tri-
angulation based on these, respectively. Image (d) shows eye movements on 16 randomly
selected points to test the accuracy of the calibration.
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points (shown in Figure 2.2(d)) on the screen. We proceeded with our study using the

participants who were able to successfully calibrate to within an accuracy of 30 pixels

(about .75 degrees) for each of the 16 points. Our participants had normal or corrected-

to-normal vision and were not familiar with the goals of this study. The participants were

told to freely view the images with no assigned goal.

2.3.3 Fixation Points

We divide the raw data points from the eye-tracker into two groups – fixation points

which correspond to a user looking at a single location and saccade points which corre-

spond to fast eye movements from one fixation point to the next. We followed an approach

similar to the one suggested by Stampe [113] to identify fixations and saccades. Figure 2.3

shows a two step process to extract fixation points from the raw data points. We consid-

ered data points that had a velocity greater than 15◦/sec as saccade points and removed

them. We then averaged consecutive eye locations that were within 15 pixels and clas-

sified them as a single fixation point. Some researchers have advocated discarding short

(exploratory) fixations in measuring the attention of the viewer [47] to discriminate be-

tween distraction and attention. We ignored brief fixations below the threshold of 133ms.

This corresponds to 8 consecutive points in the ISCAN ETL-500 eye-tracking device.
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(a) Raw Data Points (b) Saccades removed (c) Fixation Points

Figure 2.3: Image (a) shows all the raw data points from the eye-tracking device. Image
(b) shows the points remaining after removing saccade points. Image (c) shows final
fixation points after removing brief fixations and combining consecutive points if they are
spatially close.

2.3.4 Normalized Chance-adjusted Saliency

2.3.4.1 Chance-adjusted Saliency

Parkhurst et al. [91] introduced the notion of chance-adjusted saliency to quan-

tify the correlation between stimulus saliency and fixation locations for an image. They

compute the chance-adjusted saliency as follows. Consider a collection of images Ii,

1 ≤ i ≤ N. A participant is asked to look at each image in turn. This generates a set

of fixation points fi j, 1 ≤ j ≤ Fi for each image Ii, where Fi is the number of fixation

points. Let us consider the k-th fixation points fik across all the images Ii. Let sik be

the saliency value at the k-th fixation point fik in the image Ii. They compute the mean

fixation saliency for the k-th fixation points as s̄ f
k = 1

N ∑N
i=1sik. To compute the mean ran-

dom saliency, they first generate Fi random points ri j over each image Ii, where 1 ≤ i ≤ N

and 1 ≤ j ≤ Fi. Then, the mean random saliency s̄r
k is computed as the average saliency

over the k-th random point rik across all the images Ii, 1 ≤ i ≤ N. Finally, they define
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Figure 2.4: The left image shows the random points in chance-adjusted saliency compu-
tation. These points are scattered all over the image. The right image shows the points
that we consider in normalized chance-adjusted saliency computation. We only include
the foreground pixels that are covered by projected triangles of the mesh. For each fixa-
tion point represented as a cross, we also take into account the eye-tracker accuracy of
20 pixels, which is represented as a circle.

the chance-adjusted saliency (sc
k) for the k-th fixation points as the difference between the

mean fixation saliency (s̄ f
k ) and the mean random saliency (s̄r

k): sc
k = s̄ f

k − s̄r
k.

2.3.4.2 Normalized Chance-adjusted Saliency

We observed three shortcomings in using the previously defined chance-adjusted

saliency to quantify the correlation between human eye fixations and the model of mesh

saliency.

1. The chance-adjusted saliency was developed for images in which there is a well-

defined saliency at every pixel. We are trying to measure the correlation between

a mesh saliency approach and the fixation points on the mesh but not the fixa-

tions on the entire rendered image. Therefore, we should only consider the fore-

ground pixels that are covered by projected triangles of the mesh. This ensures

fairer comparisons between a random model and the saliency model for 3D ren-

dered images because excluding the background pixels would prevent lowering the
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average saliency values in a random model. Figure 2.4 shows the points considered

in chance-adjusted saliency and normalized chance-adjusted saliency.

2. The chance-adjusted saliency does not consider eye-tracker accuracy. Since the fix-

ation point acquired from the eye-tracker can differ from the actual pixel that a user

looked at, we have to consider the eye-tracker accuracy as shown in Figure 2.4(b)

when we assign the mesh saliency value to the fixation point.

3. The chance-adjusted saliency is defined over a collection of images. This restricts

the analysis of the effect of different models. We need a method that normalizes

saliency on a per-image basis.

To address these problems, we define normalized chance-adjusted saliency in this

section. First, we consider the eye-tracker accuracy ε which depends on both the accu-

racy of the eye-tracking device and the calibration steps. We have used ε = 20 pixels,

subtending a visual angle of approximately 0.5 degree horizontally. Note that a fixation

point and a pixel share the same coordinate system. Let us consider the pixel pi j on

which a fixation point fi j falls. Instead of taking the saliency value on a fixation point fi j,

we compute the error-adjusted saliency sε
i j as the maximum of the saliency values within

a radius of ε = 20 pixels around pi j in the image Ii, 1 ≤ i ≤ N: sε
i j = max

k∈N ε
j

sik, where

N ε
j = {k|dist(pi j,k) ≤ ε}. For each rendered image Ii, we compute the mean (s̄ε

i ) of the

saliency sε
i j over all the pixels j that are covered by the rendered mesh. We now define

our normalized chance-adjusted saliency for the fixation point fik as sn
ik = sε

ik/s̄ε
i . Here

we use the ratio instead of the difference to enable it to be used across different models

and different view points; otherwise we will need to normalize the 3D saliency values for

each rendered image for fair comparisons with different models and different views of

47



a model. We note that we could have computed the mean of the error-adjusted saliency

differently for each participant as in chance-adjusted saliency: generate random points on

the pixels covered by the rendered mesh and compute the average saliency values on these

random points. However, this causes high variance in the means among different partic-

ipants, resulting in a high variance in normalized chance-adjusted saliency values even

for the same image. To avoid this high variance, we have decided to use s̄ε
i in computing

normalized chance-adjusted saliency for all fixation points on the image Ii.

2.4 Pilot Study

To figure out what independent variables can affect the correlation between saliency

models and human eye fixations, we performed a pilot study with 6 subjects. In this sec-

tion, we would like to summarize its experimental design and some of the interesting

results. We will also explain what we have learned from our pilot study and how these

lessons affected our design choices for the main study explained in Section 2.5.

2.4.1 Stimuli

We have illustrated five natural scanned models used for our study in Figure 2.5.

Each model was shown from 10 different views. Since the computational model of mesh

saliency relies only on geometric properties (curvature values), we would like to see

whether it actually correlates with the human eye fixations from all viewing directions.

For this purpose, we generated images from 10 different views and used them in our study.

As shown in Figure 2.6, we have generated ten (five right-side-up and five upside-down)
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Figure 2.5: The Dinosaur, Isis, Male, Armadillo, and Igea models used in our pilot study.

views for each model. We manually choose the first view. We rotate this model −30◦,

−15◦, 15◦, and 30◦ along the vertical axis to generate four more views of the model. Then

we turn each of these views upside down to generate the remaining five views.

Image Ordering: The user study had 52 trials (images). The data captured for

the first two images was discarded as they were intended to give the subjects a sense of

the duration. Each trial started with the subject seeing a blank screen with a cross at the

center of the screen. The subject was asked to look at the cross before clicking the mouse

to bring up the next image. This ensured that each trial started with the subject’s eyes

fixated at the center of the image. Each image was shown for 5 seconds. When we ordered

the images for each user, we minimized differential carryover effects by placing similar

images far apart. Alleviating differential carryover effect was very important because

each user looked at 5 similar images (−30◦, −15◦, 0◦, 15◦, and 30◦).

Image Synthesis Consideration: In our pilot study for validating mesh saliency,

we wanted to minimize the influence of lighting on the human perception of the rendered

images. The easiest solution is to use a simple ambient term, but this approach leads to

indiscriminate flatness. Instead, we use ambient occlusion [67] [137], in which illumi-

nation at a vertex is proportional to the fraction of the environment that it can see. We
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Figure 2.6: Ten different views of the Isis model with ambient occlusion. There are five
right-side-up and five upside-down views, and these views are rotated 15 degrees apart
along the vertical axis.

preprocess the view-independent occlusion information using ray casting and then use

this information at runtime for ambient occlusion lighting.

2.4.2 Hypothesis

The hypothesis in our pilot study is that the computational model of mesh saliency

has better correlation with human eye fixations than a random model regardless of view-

ing direction for the first few seconds after stimulus onset. There are three independent

variables in our pilot study: models, rotations of models, and right-side-up vs. upside-

down views.

Models and rotations: Parkhurst et al. [91] have observed that fixations for the

subjects are usually biased towards the center. In our experiment, each subject is asked to

look at the cross at the center of the screen before each trial. By using different models

and rotating the models, we change the distances from the center to the high saliency

regions.

Right-side-up vs. upside-down views: Recent work on gaze control has fo-

cused on two attentional models: bottom-up stimulus-based information and top-down
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(a) Right-side-up Views (b) Upside-down Views

Figure 2.7: Average normalized chance-adjusted saliency value across subjects for each
viewing direction for each model. For all the cases, the values are higher than 1, which is
the value that can be expected by chance.

memory-based knowledge [46]. The 3D models we used in our study were not absolutely

knowledge-free as they were scanned models of animals or humans. Subjects could use

generic semantic and spatial knowledge even though we are measuring their eye move-

ments for short time (the first five seconds). Parkhurst et al. [91] support this argument by

showing that stimulus dependence is greatest for early fixations in their work. We include

upside down views to slow down the onset of top-down attentional effects.

2.4.3 Results

The results of our normalized chance-adjusted saliency values can be seen in Fig-

ure 2.7. In general, we have observed that the computational model of saliency has

a higher correlation with human eye fixations than a random model as the normalized

chance-adjusted saliency values are higher than 1, the value that can be expected purely

by chance. However, there is considerable variability depending on the models and rota-

tions of models as shown in Figure 2.7.
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To observe the effects of each independent variable, we first carried out a three-way

ANOVA on the normalized chance-adjusted saliency values with three conditions: dif-

ferent models (M), rotation angles (A), and right-side-up vs. upside-down views (I). For

models, we have observed significant differences: F(4,250) = 55.424, p < 0.001,η 2
p =

0.917 as expected in Figure 2.7. For rotation angles, we have also observed significant

differences: F(4,250) = 5.012, p < 0.006,η2
p = 0.501. The result indicates that even

though saliency of each vertex in a model can be computed once and does not change,

the projection of a model could result in different behavior in drawing viewers’ atten-

tion depending on viewing directions. The possible causes include occlusion amongst

salient and non-salient regions and distance changes from the center to the salient re-

gions. For right-side-up vs. upside-down views, we have observed a marginal difference

(F(1,250) = 4.8664, p = 0.079,η2
p = 0.493). Though the difference is not significant

(p > 0.05), the effect size index (η2
p) suggests that there is a moderate difference here and

this non-significant result is probably caused by a small number of subjects. Turning the

model upside down is likely to reduce the effect of semantics, and therefore this result in-

dicates the effect of semantics plays a certain role in the correlation between eye fixations

and the mesh saliency model in our study. Since there were three independent variables

(M, A, and I), we investigated the interaction effects between any two independent vari-

ables (M and A, M and I, and A and I). Among these, only the interaction effect between

model and rotation angle was significant: F(16,250) = 4.428, p < 0.001,η 2
p = 0.470.

This means that the effect of rotation angles depends on the model that we consider.

We have also carried out a pairwise t-test on the average saliency values between

fixation points and random points for each model (this is the only condition in the test).
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Table 2.1: List of pairwise t-tests (two-tailed).

Model t-Value p-Value

Armadillo −8.37 < 0.0001

Dinosaur −7.20 < 0.0001

Igea −18.26 < 0.0001

Isis −17.18 < 0.0001

Male −12.54 < 0.0001

We compared the model of saliency to the random model as in Parkhurst et al. [91].

We compute the average saliency values from randomly chosen locations lying on the

foreground instead of the observed fixation locations. Table 2.1 shows that there are

significant differences in the average saliency values for all the 3D models between the

mesh saliency model and the random model. The results validate that the mesh saliency

model has significantly higher correlation with human eye fixations than a random model

regardless of viewing direction.

2.4.4 Limitations

The results in our pilot study show that the mesh saliency model has signifi-

cantly higher correlation with human eye fixations than a random model regardless of

the viewing direction. In general, the number of subjects in our pilot study was too

small to draw meaningful conclusions in several places. For example, in analysis of

the effect of right-side-up vs. upside-down views, we have observed a marginal differ-

ence (F(1,250) = 4.8664, p = 0.079,η2
p = 0.493). When we performed another two-

way ANOVA with rotation and right-side-up vs. upside-down views for each model, we
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could also observe the marginal differences in normalized chance-adjusted saliency val-

ues for the Armadillo and the Male models (F(1,50) = 5.562, p = 0.065,η 2
p = 0.527 and

F(1,50) = 6.581, p = 0.050,η2
p = 0.568, respectively). The interactions between rotation

angles and right-side-up vs. upside-down views were the strongest for these two models

as well. This might support the idea that there were some other effects, such as those

due to semantics, when subjects looked at these models. However, this is still question-

able, since the difference between right-side-up views and upside-down views was not

statistically significant (p ≥ 0.05).

All of these limitations and other concerns in our pilot study made us modify our

experimental design in the following ways:

1. For better analysis of results, we performed our new experiment with 18 subjects

and analyzed the results.

2. We realized that the use of ambient occlusion made the images unnatural even

though they could minimize the effect of local lighting. We instead used a local

lighting model with a directional light source from a viewer’s position in our new

study.

3. While the effects of viewing direction suggested by our pilot study are intriguing,

a thorough analysis of this issue requires careful study, which we leave for future

work. In addition to the main effect of rotation angles caused by occlusion and dis-

tance changes explained in Section 2.4.3, the local lighting model could completely

hide some salient features on the surface of a model depending on the normal and

the lighting directions. We need to design a new study much more carefully by

considering all the implications of view dependency.
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4. We included a curvature-based model and compared the mesh saliency model to

this as well as a random model.

2.5 Main Study

Our pilot study has shown that there may be certain view-dependent effects such

as view angles and orientation on human eye movements. Although studying view-

dependence of mesh saliency is an important area, a view-independent model of mesh

saliency is desirable for several applications. For instance, offline mesh simplification,

mesh segmentation, view selection, lighting design, as well as allocation of computa-

tional resources in the rendering pipeline all benefit from a view-independent model of

mesh saliency. For such applications, it is crucial to establish the correlation between

human eye movements and view-independent models of mesh saliency.

Considering all the limitations discussed in Section 2.4.4, we performed another

user study with 18 subjects in the slightly different setting. We will explain our new

experimental design by focusing on the changes from the pilot study in this section.

2.5.1 Stimuli

We have used the same set of 3D models illustrated in Figure 2.8. Each image was

shown for 5 seconds and we randomized the order of images to counterbalance overall

effects. There are two differences from the pilot study: (i) We only consider the front view

of each model in our main study. (ii) We use a local lighting model with a directional light

source from a viewer’s position.
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Figure 2.8: The Dinosaur, Isis, Male, Armadillo, and Igea models used in our study.

2.5.2 Hypothesis

Our hypothesis in our main study is that the computational model of mesh saliency

has better correlation with human eye fixations than a random model and a curvature-

based model for the first few seconds after stimulus onset.

2.5.3 Results

Figure 2.9 shows the fixation points and computed mean curvature and mesh saliency

for each model. Fixation points are illustrated with hot spot maps, where warm colors

show highly fixated regions. We observe that most fixations are close to warm-colored

salient regions computed by the model of mesh saliency.

We first report the results of chance-adjusted saliency values and identify some

shortcomings along the lines of what we discussed in Section 2.3.4. We then present the

results using our new normalized chance-adjusted saliency values. Figure 2.10 shows

the average of the chance-adjusted saliency values across all participants. As in [80,

88], the study is restricted to the first seven fixations. In general, we observe that the

curvature-based model and mesh saliency model have a higher correlation with human

eye fixations than a random model as the chance-adjusted saliency values are higher
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(a) Computed Mean Curvature

(b) Computed Mesh Saliency

(c) Human Eye Fixations

Figure 2.9: The saliency models and human eye fixations. The first and second rows
show the mean curvature and mesh saliency, respectively on the models used in the study.
Here warm colors indicate high saliency regions while cool colors indicate low saliency
regions. The third row shows the human eye fixations from our eye-tracking-based user
study with hot spot maps.
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Figure 2.10: Average chance-adjusted saliency values and 95% confidence interval using
curvature and mesh saliency across all participants for each model. For all the cases, the
values are higher than 0, which is the value that can be expected by chance. They exhibit
high variances in computed chance-adjusted saliency values for all cases.

than 0, the value that can be expected purely by chance. As noted in Section 2.3.4,

one of the problems in chance-adjusted saliency is that it can be overvalued if random

points on background pixels are included in the process of computing the mean ran-

dom saliency. This overvaluation causes high variances in computed chance-adjusted

saliency for all k-th fixation points (1 ≤ k ≤ 7) in Figure 2.10. We have performed a

two-way ANOVA on the chance-adjusted saliency values with two variables: k-th fix-

ation points (1 ≤ k ≤ 7) and different saliency models. For k-th fixation points, there

is no significant difference (F(6,238) = 1.066, p = 0.3831,η 2
p = 0.026). However, for

saliency models (curvature model and mesh saliency model), we observed significant dif-

ferences (F(1,238) = 34.70, p < 0.001,η2
p = 0.127). There was no interaction between

two variables (F(6,238) = 0.494, p = 0.813,η 2
p = 0.012).

Figure 2.11 shows the average normalized chance-adjusted saliency values com-

puted by the curvature model and the mesh saliency model across all participants. In
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Figure 2.11: Average normalized chance-adjusted saliency values and 95% confidence
interval using curvature and mesh saliency across all participants for each model. For
all the cases, the values are higher than 1, which is the value that can be expected by
chance.

general, we have observed that both computational models of saliency have higher corre-

lation with human eye fixations than a random model as the normalized chance-adjusted

saliency values are higher than 1, the value that can be expected purely by chance. We

observe lower variances in normalized chance-adjusted saliency than chance-adjusted

saliency cases. To observe the effects of saliency models and 3D models, we carried

out a two-way ANOVA on the normalized chance-adjusted saliency values with two vari-

ables: different saliency models and different 3D models. We have found that there is

a main effect of saliency models (F(1,170) = 37.75, p < 0.001,η 2
p = 0.182). This indi-

cates that the mesh saliency model exhibits higher correlation with human eye fixations

than the curvature-based model. A significant main effect was also obtained for 3D mod-

els (F(4,170) = 19.86, p < 0.001,η2
p = 0.319). The result indicates that there are certain

models which correlate better with human eye fixations than others. The possible cause is

the difference in numbers of highly salient regions inherent in models. For instance, the
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Table 2.2: The Pairwise t-tests (two-tailed)
Model t-Value p-Value

Armadillo −2.643 0.017

Dinosaur −4.122 < 0.001

Igea −4.546 < 0.001

Isis −3.786 0.001

Male −7.489 < 0.001

Armadillo model has a large number of highly salient regions distributed on the model

while the Male model has a small number of highly salient regions as one can observe

in Figure 2.9. We have also found there is a strong interaction between two variables

(F(4,170) = 5.093, p = 0.01,η2
p = 0.107), meaning that the effects of saliency models

depend on 3D models under consideration. Next, we perform a pairwise t-test on the nor-

malized chance-adjusted saliency values between two saliency models (curvature-based

and mesh saliency). Table 2.2 shows the result for each of the models. We found a signif-

icant difference between two saliency models in the normalized chance-adjusted saliency

values for each of the 3D models. Even with the Bonferroni correction, we found a bor-

derline statistical significance for the Armadillo model and statistically significant results

for all other models.

The results validate that the mesh saliency model has significantly higher correla-

tion with human eye fixations than a random model and a curvature-based model.
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2.6 Discussion and Future Work

We have used a few devices to reduce the effect of semantics: (i) we did not give

any tasks to the users when viewing images, and (ii) we limited the time of a stimulus

to the first five seconds. Others [91] [108] have also used similar durations. However,

five seconds could be considered too long since semantic interpretation starts increasing

right after the stimulus onset. Further study is needed to quantify the effect of semantics

with varying duration. Another thing we can do to reduce the effect of semantics is to

experiment with objects that do not carry semantic information for most users (such as

molecular models) or close-up views of scanned models.

We currently compute mesh saliency in a view-independent way. However, there

is some evidence in our pilot study showing that the correlation between eye fixations

and mesh saliency is view dependent. Further study is needed to fully understand the im-

plication of view-dependent variables such as illumination and viewing angles on visual

saliency. In this context, it will be interesting to compare and contrast the mesh saliency

model to 2D image saliency models.

2.7 Conclusions

In this chapter, we have taken the first steps towards validating an existing model of

mesh saliency through an eye-tracking-based user study. We have introduced the notion

of normalized chance-adjusted saliency which is a robust measure of success of a mesh

saliency model. We have observed significant correlations between the model of mesh

saliency and human eye fixations. We believe that our carefully designed user study
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can be useful for designing a better visual saliency model which is closer to human eye

movements. This will also enable us to build further saliency-based systems for tasks

such as visual enhancement.
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Chapter 3

Persuading Visual Attention through Geometry

Artists, illustrators, photographers, and cinematographers have long used the prin-

ciples of contrast and composition to guide visual attention. In this chapter we introduce

geometry modification as a tool to persuasively direct visual attention. We build upon

recent advances in mesh saliency to develop techniques to alter geometry to elicit greater

visual attention. Eye-tracking-based user studies show that our approach successfully

guides user attention in a statistically significant manner. Our approach operates directly

on geometry, and therefore produces view-independent results that can be used with ex-

isting view-dependent techniques of visual persuasion.

3.1 Background

Artists have long used a rich collection of compositional and rendering techniques

to persuade the viewers to pay greater attention to specific characters and objects in their

paintings. The artist-determined visual hierarchy leads the viewer through the painting to

see objects in the order of their relative importance, thereby finely controlling the com-

munication of the message and purpose of their work. Image features such as luminance,

color, and orientation are believed to guide the visual attention in the low-level human

vision [90] and the role of luminance and texture contrast in attracting visual attention

has been recently verified by Parkhurst and Niebur [92]. Recently, ideas inspired by the
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Figure 3.1: An overview of persuading visual attention through geometry. The content
creator defines a region of attention over the mesh in (a) as shown in (b); Mesh filter-
ing over the desired attention region provides a set of displacements (c) along the vertex
normals; Vertex displacements are weighted by a curvature change map (d) and then
added to the input mesh. The resulting mesh in (f) elicits greater visual attention in the
desired region (the second saint). Further, the mesh retains its visual attention persua-
siveness through various rendering styles and illuminations (g) and this is validated by
eye-tracking-based user study as shown in (h).

principles of visual communication based in art, perceptual psychology, and cognitive

science have begun to be carefully studied in the context of visual depiction [1]. As an

example, discrepant lighting can be used to emphasize and depict user-specified detail in

images [2] as well as meshes [68, 106].

Visual attention is a complex process that consists of an observer processing se-

lected aspects of visual information more than others [90]. Eye movements are one of

the most important, but not the only, means of visual selection. Many models of visual

attention and saliency in an image have been evaluated by their ability to predict eye

movements [91, 99]. Several computational models of visual saliency that model human

attention have been developed. Based on Koch and Ullman’s [66] model of early vision,

Itti et al. [52] identify regions of images that are distinct from their neighbors by apply-
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ing center-surround mechanisms to different multi-scale image feature maps and combine

them to compute a saliency value for each pixel. There are a number of other approaches

to modeling visual attention that combine local and global image features as in the work of

Tsotsos et al. [122], Milanese et al. [84], Rosenholtz [105], and Torralba [120]. Santella

et al. [108] have studied the relationship between eye movements and image saliency to

explore the effect of local detail modulation to the way viewers examine an image. Enns

and Rensink [30] have shown that salient pop-out phenomenon is not just limited to 2D

image attributes but also occurs for 3D objects that differ in spatial orientation. Methods

for computation of salient regions on 3D meshes have been developed by Watanabe and

Belyaev [127], Hisada et al. [48], Lee et al. [69], and Howlett and O’Sullivan [49].

Saliency has been used in several 3D graphics applications including animation

compression [81], rendering acceleration [135], viewpoint selection [69, 133], shape

matching [36], and mesh simplification [49, 69]. Perception-based methods have been

used for level-of-detail simplification for 3D meshes [77, 76]. Su et al. [114] have de-

veloped an elegant post-processing technique to reduce the salience of distracting regions

in an image. They alter regional saliency by reducing its texture variation through the

use of steerable pyramids [112]. In this dissertation we examine how saliency alteration

in 3D geometry may affect viewer attention. We thereby aim to expand the scope of vi-

sual attention persuasion techniques from luminance contrast, color contrast, and texture

contrast to include changes in geometry.
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3.2 Overview

Visual attention can be guided in a goal-driven fashion or by external stimuli [98].

In this work we focus on the latter and therefore do not consider the high-level semantics

of the objects or tasks at hand. Visual attention can be drawn to a specific region by

simply having the selected pixels rapidly change and flash colors. Other approaches to

draw attention to a region could include lighting it brightly, using high-saturation colors,

or adding a high-curvature spike. Although these approaches would likely work, they

should be considered coercive and obtrusive instead of being persuasive. The challenge

in gently guiding visual attention is to do so in a finely nuanced style that only introduces

subtle changes. In this dissertation we explore visual attention persuasion by making

changes only to geometry. The various stages in our approach are shown in Figure 3.1

and summarized below.

Region Selection. We allow the content designer to specify attentional regions in

a scene by directly selecting vertices, regions, or objects. The details of this interface are

covered in Section 3.3.

Persuasion Filters. In Section 3.4 we discuss an approach to enhancing the saliency

of a region to attract greater visual attention by designing a general class of mesh filters.

Validation. Once a persuasion filter has been applied to a given region we would

like to have some objective evidence that it results in eliciting greater visual attention. Eye

tracking is the most prevalent method of estimating visual attention. We have conducted

an eye-tracking-based user study to verify the impact of our persuasion filters and report

the results in Section 3.5.
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Stylized Rendering. Our approach of geometry filtering incorporates visual atten-

tion persuasion early in the graphics pipeline. We have empirically observed that these

changes are successfully propagated to the final rendering under several illumination and

rendering styles. We discuss this in Section 3.5.4.

3.3 Region Selection

The input to our method is a mesh and a collection of one or more regions on

it that have been selected by the user for eliciting greater visual attention. One of the

simplest and most effective ways to specify regions on a mesh is by a WYSIWYG painting

interface, such as the one developed by Hanrahan and Haeberli [44]. We use a similar

screen-space brush in which the screen-space coordinates are projected back onto the

surface by inverting the viewing transformation. This allows us to readily locate the

appropriate mesh triangles and vertices in the vicinity of the brush location. The size of

the brush is variable and can be modified to provide the user with coarse-to-fine control

over the selected regions.

Figure 3.2: A user can interactively define the regions on the mesh where greater attention
is desired.
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Although initially it seemed attractive to allow a user to paint arbitrarily-shaped re-

gions, we soon realized that this was not necessarily the best way to validate our results

through user studies. The challenge here lay in attempting to isolate the effects of our per-

suasion filters from those arising naturally from the shape of the selected regions. Thus if

a user specifies a T-shaped region on a mesh, the confluence of two linear regions is likely

to elicit greater attention due to perceptual principles other than the ones we are targeting

in this dissertation. Therefore we have only used simple circular or rectangular region

selections. We have found it helpful to also add a spherical region selector. Figure 3.2

shows some of the regions selected by our region selection tool.

3.4 Persuasion Filters

Modifying the contrast of visually important features has been recently used in

several contexts such as video abstraction [130] and attention-based modulation of detail

for exaggerated shading [106]. Winnemoller et al. [130] regard the luminance and color

opponency as visually important features and modified their contrast for image abstraction

with the assumption that the changes in these frequencies are perceptually important.

We believe manipulating geometry by smoothing and sharpening is a basic but use-

ful method for guiding viewer attention in a view-independent way for 3D graphics ap-

plications. However, applying this approach to a 3D mesh is not trivial and has several

issues. First, we have to identify which 3D mesh property to modify by smoothing and

sharpening operators just as luminance and color opponency are used in imagery. Second,

we need a framework which can structure the modification of the geometry in a controlled
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manner.

We change the mean curvature values at the vertices around the user-specified re-

gion by using bilateral displacements [33], and the amount of bilateral displacements is

guided by the mesh saliency. In this section, we explain our design choices.

3.4.1 Bilateral Displacements

Taubin [119] introduced the Laplacian-operator-based isotropic mesh smoothing.

An implicit formulation for isotropic mesh smoothing based on the analogy of geometric

flow was developed by Desbrun et al. [25]. Anisotropic filtering techniques were subse-

quently developed by Guskov et al. [42], Desbrun et al. [26], Zhang and Fiume [136],

Bajaj and Xu [6], and others. Bilateral filtering was introduced for meshes by Fleishman

et al. [33] and Jones et al. [55] as a more stable alternative to anisotropic diffusion. These

approaches are similar in formulation but differ in how they predict the local surface

around a point.

There are a number of methods to alter the mean curvature values of a mesh. These

include applying any kind of smoothing and sharpening operators explained above, dis-

placing vertices, changing local normals, and even applying level-of-detail techniques.

Amongst these, we would like to focus on methods that change the mean curvature val-

ues in a controlled manner.

Nealen et al. [85] captured high frequency details at a vertex vi using the Laplacian
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coordinates [25], [83] in their mesh editing framework as:

di = vi −
∑{i, j}∈E wi jvj

∑{i, j}∈E wi j
(3.1)

Here the vertices vj are the one-ring neighbors of a vertex vi and wi j are determined us-

ing the cotangent weights [83]. Since di is in the local normal direction and the length

‖ di ‖ is proportional to the mean curvature around vertex vi, Laplacian-based vertex dis-

placement offers a direct way to change mean curvature values in the selected region of

interest. However, the vertex displacement di in equation (3.1) only operates for one-ring

neighbors. We would like to guide the amount of displacements by mesh saliency. Since

the mesh saliency operator does not operate at one-ring neighbors, but at a scale σ , we

generalize the definition of neighbors with respect to the scale σ . Displacing vertices

based on Fleishman et al.’s bilateral filter [33] satisfies this requirement while preserv-

ing all the benefits of Laplacian-based vertex displacement in changing mean curvatures.

They smooth vertex v with a normal n as:

S(v) = v+d ·n (3.2)

d =
∑p∈N(v,2σc)Wc(‖ v−p ‖)W f (< n,v−p >) < n,v−p >

∑p∈N(v,2σc)Wc(‖ v−p ‖)W f (< n,v−p >)

Here Wc(x) = e−x2/2σc
2

is the closeness smoothing function with parameter σc that gives a

greater weight to the vertices closer to the center vertex v, W f (x) = e−x2/2σ f
2

is the feature

weight function with parameter σ f that penalizes a large variation in height from the local

tangent plane, and N(v,2σc) is the neighborhood of v containing all vertices p such that
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‖ v−p ‖< 2σc. Note the similarities and differences between equations (3.1) and (3.2).

3.4.2 Saliency-guided Attention Persuasion

Lee et al. [69] have defined mesh saliency of a vertex v at a scale σ using the

center-surround mechanism as:

S (v) = |G(C ,v,σ)−G(C ,v,2σ)|

where C denotes the mean curvature values around a vertex v and G(C ,v,σ) is the

Gaussian-weighted average of the mean curvature of vertices in the neighborhood N(v,2σ).

In fact, the center-surround mechanism used in this definition is the Difference of Gaus-

sians (DoG) function at a fine scale σ and a coarse scale 2σ . We are interested in changing

mean curvature values at the vertices around the user-specified region of interest so that

those modifications result in user-desired saliency changes ∆S . For this purpose, we

slightly modify the center-surround mechanism and define the center-surround operator

at a vertex v using the Laplacian of the Gaussian-weighted averages as:

S (v) = w1G(C ,v,σ)−w2G(C ,v,2σ)

where w1 and w2 indicate the positive weights of the Gaussian-weighted averages at a fine

and a coarse scale, respectively. From this definition, the saliency change at a vertex v

71



can be simply expressed as:

∆S (v) = w1G(∆C ,v,σ)−w2G(∆C ,v,2σ)

where ∆C is defined as the curvature change map. Given a user-specified saliency change

map ∆S we can compute the curvature change map (∆C ) around a vertex v by solving

the following system of linear equations:
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where the coefficients ci, j represent the difference between two Gaussian weights at scale

σ and at scale 2σ for a vertex v j in the neighborhood of the center vertex vi. Setting the

two weights w1 and w2 to be equal results in a rank-deficient system. We have observed

that the system is stable for unequal weights. This corresponds to defining the saliency

function using an aggregate of Difference-of-Gaussians (DoG) and a Gaussian (G) instead

of just a DoG function. Specifically, we have found that using the weights w1 = 3/4 and

w2 = 1/4, that corresponds to 1/4DoG + 1/2G, results in a stable system that alleviates

the rank-deficiency of the coefficient matrix.

We solve this system of linear equations at multiple scales σi to get the curvature

change map (∆Ci) at each scale σi. The overall curvature change map is computed as

the multi-scale summation of ∆Ci. Assuming a spherical region of interest, the resulting
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curvature change map has the shape of the green curve shown in Figure 3.3(a).

Since we are interested in emphasizing user-specified regions on meshes we gen-

eralize the spherical region of interest by using distance fields on a mesh [117]. Given

a region of interest (ROI), we compute the distance field from the boundary of ROI and

define the radius of the user-specified region r as the distance from the inner-most point

to the boundary. Let db(v) be the distance from the boundary of ROI to the vertex v.

We define dist(v) as r + db(v) for the vertex v which is outside of ROI and r − db(v)

for the vertex v which is inside of ROI. The resulting curvature change map based on

(a) (b)

(c) (d)

Figure 3.3: Saliency-guided curvature change map. Here r denotes the radius of the user-
specified region. Figure (a) shows the curvature change map generated by multi-scale
summation of curvature change maps in green and the approximation of it in blue with
λ+ = 2.34 and λ− = 0.28 for comparison. Figure (b) shows the Gaussian that is used
for enhancement for the user study in Section 3.5. Figure (c) and Figure (d) show the
curvature change maps for circular and rectangular regions
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this distance field along the x-axis is shown for a rectangular region in Figure 3.1(d) and

Figure 3.3(d).

We change the mean curvature values of the vertices in a mesh by using the bilateral

displacements. We modify the mean curvature around a vertex v by displacing it as:

P(v) = v−∆C (dist(v)) ·d ·n (3.3)

where d is the displacement in the normal direction n for vertex v from the bilateral mesh

filter in equation (3.2) and ∆C (x) is the curvature change map. We refer to this as the

persuasion filter P .

In practice, we approximate the computed curvature change map by piecewise C2-

continuous degree 4 polynomial radial functions inspired by [129] as:

∆C (x) = d(x)+w(x) ·g(ρ(x),σ(x))

g(ρ,σ) =















(1− ρ
2σ )3( 3ρ

2σ +1) ,if ρ ≤ 2σ

0 ,otherwise

where d(x), w(x), ρ(x) ,and σ(x) are determined by:































































d = λ+,w = 0 ,if x < 7
8r

d = −λ−,w = λ+ +λ−,ρ = x− 7
8r,σ = 3

16r ,elif x < 10
8 r

d = −λ−,w = 0 ,elif x < 2r

d = 0,w = −λ−,ρ = x−2r,σ = 1
2r ,elif x < 3r

d = 0,w = 0 ,otherwise
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Our approximating function is shown by the blue curve in Figure 3.3(a). In our cur-

rent implementation we use 0.1≤ λ− ≤ λ+ ≤ 0.3. For all the examples in this dissertation

we have applied the persuasion filter five times to the region of interest.

Figure 3.3(b) shows the Gaussian fall-off function used for the comparisons in Sec-

tion 3.5. The Gaussian fall-off function has been used in regional enhancement for volume

illustration [104], in attention-based modulation of detail for exaggerated shading [106],

(a) (b)

(c) (d)

Figure 3.4: Images show the saliency changes before and after the application of the
persuasion filter on the Golf ball model. Image (a) shows the original model and Image
(b) shows its original saliency. Image (c) shows the result of applying the persuasion
filters to the top part of the Golf ball with (λ+ = 0.2,λ− = 0.2), and Image (d) shows its
saliency.
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and in stylized rendering [18]. There are several ways to define the Gaussian fall-off

function. In this dissertation, we have used the Gaussian fall-off from the boundary of the

region of interest instead of from a point to more closely match our computed curvature

change map. We call the filter based on this Gaussian fall-off function as the Gaussian

filter. For our evaluations we have kept the maximum change (λ+) of the Gaussian filter

to be the same as the maximum change of the approximated curvature change map in blue

in Figure 3.3(b) and the standard-deviation (σ ) of this function from the boundary of the

region of interest is determined to make the area under its curve equal to that under the

persuasion filter curve (to equalize the changes introduced by the two filters).

Figure 3.4 shows the application of the persuasion filter around the front part of the

Golf ball model that results in an average saliency increase of 101.6% for the region.

Figure 3.7 further shows the enhancement by persuasion filter in the last row. Com-

pared to the original models in the first row, the effects of applying our filters are clearly

visible. The application of the persuasion filter depends on the number of vertices in the

region of interest. For the lower left part of the Golf ball model in Figure 3.7, 11.2K ver-

tices were involved and it took 0.8 seconds. For one of saints in Figure 3.7, 26K vertices

were involved and it took 2 seconds. When one of the Armadillos in Figure 3.7 was se-

lected, there were 650K vertices involved in the persuasion filtering and it took about 15

seconds. These times were measured on a 2.93 GHz Intel(R) Core(TM)2 CPU Windows

PC with 4 GB RAM.
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3.5 Validation and Results

As we discussed in the previous section, the geometry-based model of visual at-

tention persuasion results in an increase in mesh saliency over the user-specified region.

The real measure of success however is whether this actually results in eliciting greater

viewer attention. To gather objective evidence of the effectiveness of our approach we

have carried out an eye-tracking-based user study and have analyzed the results in two

different ways: percentage of fixation points on the region of interest and average dura-

tion of consecutive fixation points on the region of interest. The first analysis is to see if

our technique attracts the viewers’ gaze to the region of interest while the second analysis

reveals if it holds the viewers’ gaze. An excellent guide to the experimental design of

eye-tracking-based user studies appears in Parkhurst et al. [91].

3.5.1 Hypotheses

There are two hypotheses for each analysis, resulting in a total of four hypotheses.

Our first hypothesis (H1) is that the eye fixations increase over the region of interest by

using the persuasion filter as compared to the original, unaltered model. Our second

hypothesis (H2) is that the eye fixations increase over the region of interest by using the

persuasion filter compared to the use of a Gaussian filter. Our third hypothesis (H3) is

that the average durations of eye fixations on the region of interest increase by using the

persuasion filter as compared to the original, unaltered model. Our fourth hypothesis (H4)

is that the average durations of eye fixations on the region of interest increase by using

the persuasion filter compared to a Gaussian filter. We next examine the validity of these
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hypotheses. We examine hypotheses H1 and H2 in Section 3.5.3.1 and hypotheses H3

and H4 in Section 3.5.3.2.

3.5.2 Experimental Design

Data were collected from a total of 18 subjects participating for pay. They had

normal or corrected-to-normal vision and were not familiar with the goals of this study.

Subjects were told to freely view the images with no assigned goal. General settings of

eye-tracker and its calibration are similar to those explained in Section 2.3.

Duration: The user study had 13 trials (images) including 4 irrelevant images.

Each trial started with the subject seeing a blank screen with a cross at the center of the

screen. The subject was asked to look at the cross before clicking the mouse to bring

up the next image. This ensured that each trial started with the subject’s eyes fixated at

the center of the image. Each image was shown for 5 seconds. Each study took about

80 seconds. Two irrelevant images were shown at the start of the experiment to give the

subject a sense of the duration.

Image Ordering: There were a total of 15 images used over all the experiments.

Each image set consists of one original image and four filtered images in which one of

the two regions is enhanced by either a Gaussian or our persuasion filter. Images and the

regions of interest were carefully chosen so that two regions of interest in each image set

have similar shape, size, and saliency values (as computed by [69]). We have used the

Golf ball, the Romanesque Relief, and the Armadillos models shown in Figure 3.7 for

our study. Each user saw 9 images out of these 15 images. When we ordered the im-
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ages for each user, we considered differential carryover effects and the counter-balancing

problem. First, we placed similar images far apart to alleviate differential carryover. At

the same time, we did not place the similar images in perfectly regular manner so that

a user could not predict the next image. We did this by inserting a couple of unrelated

images. Alleviating differential carryover effect had the highest priority in our ordering

because each user looked at 3 similar images (original and filtered with two different tech-

niques). Finally, we randomized the order of regions and the order of enhancement types

(Gaussian and Persuasion-filtered) to counterbalance overall effects.

Fixation Points: We divide the raw data points into fixation points and saccade

points as described in Section 2.3.3. After we removed short fixations, we weighted the

contribution of each fixation point by its duration to give more weight to longer fixations.

For the rest of this chapter, when we refer to a fixation point we imply a duration-weighted

fixation point. For every image that we used in our study, we had a specified region of

desired visual attention.

3.5.3 Data Analysis

3.5.3.1 Percentage of Fixation Points

The results of our study can be seen in Figure 3.5 and they show the increase in

fixation points on the regions selected by the user. Each grouping of bars in Figure 3.5

is labeled by the object or region on which the filters was applied. Figure 3.6 shows the

increase in the number of fixation points on the attention area after the application of

persuasion filters. In Figure 3.6(b), the third saint was processed with persuasion filters
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Figure 3.5: The bars show the average percentage of fixation points on the region of
interest for the original, the Gaussian-filtered and the Persuasion-filtered models.

(a) (b)

Figure 3.6: Image(a) and (b) show the fixation points on the original model and the
model altered by persuasion filter, respectively. Fixation points are recorded over the first
5 seconds from 9 subjects, and visualized with hot spot map where warm colors show the
areas of highest fixation count.

Table 3.1: The ANOVA Tests
Condition F-Value p-Value

Enhancement techniques on three sets 30.09 < 0.001
Enhancement techniques on Golfball 13.45 < 0.001
Enhancement techniques on Relief 9.728 < 0.001
Enhancement techniques on Armadillos 7.2 0.002
Gaussian vs. Persuasion on three sets 21.23 < 0.001

and this resulted in 87% increase in percentage of fixation points on it.
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Table 3.2: The Pairwise t-tests (two-tailed)
Model Condition t-Value p-Value

Golfball No Change vs. Gaussian −3.34 0.004
No Change vs. Persuasion −5.84 < 0.001
Gaussian vs. Persuasion −2.81 0.012

Relief No Change vs. Gaussian −0.47 0.647
No Change vs. Persuasion −4.69 < 0.001
Gaussian vs. Persuasion −3.95 0.001

Armadillos No Change vs. Gaussian −1.56 0.138
No Change vs. Persuasion −3.42 0.003
Gaussian vs. Persuasion −2.31 0.033

We have carried out a two-way ANOVA on the percentage of fixations for two

conditions: filtering methods and image sets. As shown in Figure 3.5, participants fix-

ated more on the regions of interest when they are filtered with enhancement techniques.

Overall, there was a strong difference for the percentage of fixations depending on en-

hancement techniques, F(2,153) = 30.09, p < 0.001.

Since we filtered two regions of interest for each image set, we did another analysis

with filtering methods and regions for each image set. Amongst regions, there were no

statistically significant differences (F(2,48)= 0.027∼ 0.195, p > 0.661) as expected. For

enhancement methods, there were statistically significant differences for all the models.

We also carried out a two-way ANOVA test with two enhancement methods (Gaussian

and Persuasion) to see if the Persuasion-based enhancement is better. The result shows

a significant improvement on the percentage of fixations with Persuasion-based enhance-

ment, F(1,102) = 21.23, p < 0.001.

Next, we performed a pairwise t-test on the percentage of fixations before and after

we apply the enhancement techniques for each model (this is the only condition in the
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Figure 3.7: A subset of images used in the user study. The first row shows the original
models. The second row shows enhancement by the Gaussian filter. The last row shows
the enhancement by the persuasion filter. Filters were applied to the lower left part of
the Golfball model with (λ+ = 0.2,λ− = 0.2), the second saint of the Romanesque Relief
model with (λ+ = 0.2,λ− = 0.1), and the second Armadillo of the Armadillos model with
(λ+ = 0.3,λ− = 0.3), respectively.

test). Table 3.2 shows the results for each of the models. We found a significant difference

in the percentage of desired fixations after we applied the persuasion filters for each of

the models. There was a significant difference in the percentage of desired fixations for

the Gaussian filters only for the Golf ball model. When we carried out a pairwise t-test

between two filtering methods (Gaussian and Persuasion) for each image set, we still

observed a significant difference for each case.

The results in this section clearly validate that there are significant increase of fix-

ations on the regions of interest by the persuasion filter over the original as well as the
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Gaussian-filtered meshes.

3.5.3.2 Average Duration of Consecutive Fixation Points

Towards the end of Section 3.5.2 we discussed why we weighted the contribution

of each fixation point by its duration. However, simply weighting fixation points by their

duration cannot distinguish frequent brief fixations from single long fixation. Henderson

et al. [47] advocate that fixation points correlate with attention when they are longer in

duration. To show that the images enhanced by our persuasion filter actually hold viewer

gaze, we have done another analysis on the average duration of fixation points on regions

of interest. Table 3.3 shows the result of the average duration and their standard deviation

of fixation points across the subjects for each model in seconds.

Since the standard deviations are large, we assessed the statistical significance

of these results through ANOVA. We carried out a two-way ANOVA on the average

durations for two conditions: enhancement methods and regions. Each image set has

two regions of interest for a data set (Golfball, Relief and Armadillos). Overall, there

Table 3.3: The Average Duration and Standard Deviation of Fixation Points across the
Subjects in seconds

Model Condition Average Std Dev.

Golfball No Change 0.204 0.270
Gaussian Enhancement 0.374 0.351
Persuasion Enhancement 0.744 0.467

Relief No Change 0.483 0.541
Gaussian Enhancement 0.457 0.269
Persuasion Enhancement 1.000 0.631

Armadillos No Change 0.408 0.318
Gaussian Enhancement 0.476 0.354
Persuasion Enhancement 0.678 0.618
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was a strong difference for the average durations depending on enhancement techniques,

F(2,153) = 15.37, p < 0.001. Amongst regions, there were no statistically significant

differences (F(2,48) = 0.49 2.735, p > 0.105), as expected.

We carried out a two-way ANOVA test comparing the unaltered (original) and

Persuasion-enhanced meshes with the two regions. The result shows a significant im-

provement on the average durations with Persuasion-based enhancement, F(1,102) =

21.65, p < 0.001. We also carried out a two-way ANOVA test with two enhancement

methods (Gaussian and Persuasion) with the two regions. The result shows a significant

improvement on the average durations with Persuasion-based enhancement, F(1,102) =

16.96, p < 0.001.

The results validate the statistically significant increase of average durations on the

regions of interest by the persuasion filter over the original as well as the Gaussian-based

methods.

3.5.4 Stylized Rendering

We have empirically tested our models with and without the application of the per-

suasion filters with several illumination and rendering styles. These include the standard

OpenGL lighting model and suggestive contours [23]. The results of the application of

our persuasion filters are clearly discernible with each of these lighting models and illumi-

nation styles. These are shown in Figure 3.8. The reason for the successful propagation of

fine geometry alterations to the final rendered image could be that the bilateral displace-

ments allow us to preserve and enhance edges in the target attention area, while smoothing
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Figure 3.8: Illustration of the Romanesque Relief and the Armadillos by Lambertian light-
ing and Suggestive Contours. The first and the third column show the original models
while the second and the fourth column have persuasion filters applied to the third saint
with (λ+ = 0.2,λ− = 0.1) and to the frontmost Armadillo with (λ+ = 0.3,λ− = 0.3),
respectively.

them around it. These effects are perhaps most clearly visible in the suggestive contour

rendering emphasizing the third saint and the closest Armadillo in Figure 3.8.

Since persuasion filters are applied to the geometry before the graphics pipeline,

this process is view-independent. The empirical results of this section suggest that per-

suasion filters may also be able to elicit attention across a wide class of illumination and

stylized rendering techniques. This encourages us to believe that it may be possible to

combine geometry-based visual attention persuasion techniques with other visual atten-

tion persuasion techniques that are independent of geometry, such as luminance contrast,

color contrast, and texture contrast.
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3.5.5 Discussion

We believe that this work presents an exciting new direction in visual attention

persuasion through geometry. At the same time it is important to note the underlying

assumptions, limitations, and distinctions from other related work.

In this dissertation, we have used bilateral displacements for smoothing and sharp-

ening operations to alter the frequencies in the geometry. Therefore, if a surface is com-

pletely flat and its mean curvature is zero at every vertex, there is no enhancement by our

persuasion filter since the displacement of the bilateral filter would be also zero. Also,

we should note that sharpening is an inherently unstable process. We have tried to reduce

these effects by using small delta values (0.1 ∼ 0.35) iteratively (5 times) in our dis-

sertation. However, repeated application of our persuasion filter can eventually produce

degenerate triangles. We are planning to incorporate remeshing [116, 125] and subdivi-

sion operators [29, 138] to incrementally remove degenerate triangles produced during

the repeated application of our persuasion filter in the future.

Our desired saliency change map contains content at all frequencies but our saliency

operator, which has become a convolution, is band-pass. As a result, we use unequal

weights w1 and w2 to reproduce all the frequencies of our saliency change map. Also,

when we invert the saliency computation, we have only considered positive weights be-

cause we are interested in finding one assignment of the curvature change map which

satisfies the saliency computation. Positive weights w1 and w2 emphasize the center and

de-emphasize the surrounding while negative weights achieve the opposite. We believe

that there could be an application which can get benefit from de-emphasizing the cen-
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ter and emphasizing the surrounding, and plan to study the implications of the negative

weights in the future.

Our technique is mainly designed to increase mesh saliency values around the se-

lected region of interest. It could sometimes change the most salient regions in a mesh.

The overall strength of such a change with respect to other salient features should be

studied further. Also, we should note that even though there is a qualitative saliency en-

hancement for the desired region as in Figure 3.4, we have not quantified the change in

presence of other salient regions on the mesh.

In this chapter we have provided a technique to guide viewer attention by only alter-

ing the geometry of the mesh and not its other appearance attributes. We did this because

we wished to systematically establish the role of geometry alteration in persuading vi-

sual attention. Our method directly operates on meshes and therefore is more general

than prior art that only operates at the level of rendering stylization. Further our method

is view-independent and therefore by pushing the influence of attention deeper into the

graphics pipeline, allows content creators to have greater flexibility in using other con-

ventional techniques later in the graphics pipeline. Our initial results in this direction

have raised a number of other interesting questions and issues that we hope subsequent

research will be able to address. For instance, we do not yet know if geometric techniques

for persuading visual attention will prove to be more or less powerful than other visual at-

tention persuasion techniques based on say, luminance, chrominance, or texture contrast.

How do these multiple channels of visual attention persuasion interact with each other’s

effectiveness – do they have mutual reinforcements or cancellations?

An important assumption for us has been to consider visual attention persuasion in
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a task-independent setting. This is similar in spirit to the early work in image saliency

that relied on determining what constitutes the “pop-out” phenomenon during the highly-

parallel pre-attentive state of the human visual system. We have attempted to limit the

role of semantics in three ways: (i) we presented each image for only 5 seconds, (ii) we

did not give any tasks to the users when viewing images, and (iii) we had users view 3D

models that were composed of semantically similar objects such as multiple Armadillos

and multiple saints. We hope that once geometric visual attention persuasion has been

firmly established in a pre-attentive task-independent setting, it will lead to further work

on semantically-based techniques for persuading visual attention using geometry alter-

ation.

Previous work on user-guided simplifications [59, 72] and spatially-varying detail

control [86] enables detail alteration based on user preferences or view dependence for

rendering acceleration and for reducing visual clutter. Our work differs in its underlying

motivation as well as approach in that we develop and validate a mechanism to guide

viewer attention through geometry alteration.

Finally, we would like to mention that although our filter as seen in Figure 3.3 may

appear to be similar, at a first glance, to the Difference-of-Gaussians (DoG) filter, it is not;

the classical DoG does not have a flat top.

3.6 Conclusions & Future Work

Visual attention persuasion can be helpful in 3D graphics in several contexts – visu-

ally guiding users through complex graphics, facilitating interactions with attention-aware
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graphics tools and applications, and providing users with a more rewarding experience by

guiding their attention to regions and objects desired by content creators. We have defined

persuasion filters for meshes by inverting the center-surround saliency operator. Our user

study shows that persuasion filters are able to draw greater user attention and that this

condition is statistically significant. Our approach adds geometry alteration to the list of

techniques at the disposal of visual persuaders.

At present our filters are not informed by the local mesh properties. Kim and

Rossignac [61] have recently developed a mesh filtering framework that can compute

filter parameters based on user-specifiable mesh features. This is an interesting devel-

opment that could lead to design of persuasion filters that could be guided not just by

regions but also by features. Another interesting direction to explore will be to incorpo-

rate view-dependence in persuasion filtering. As mentioned earlier, in this work we have

exclusively considered the role of geometry in the context of visual attention persuasion.

It will be interesting to see how other visual attention persuasion channels of color, lu-

minance, and texture contrast interact with geometry alteration using the techniques of

persuasion filters presented here.
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Chapter 4

Saliency-guided Enhancement for Volume Visualization

In previous chapter we introduced saliency-based visual enhancement for 3D meshes

through geometry modification. In this chapter we present a visual-saliency-based oper-

ator to enhance selected regions of a volume. We show how we use such an operator on

a user-specified saliency field to compute an emphasis field. We further discuss how the

emphasis field can be integrated into the visualization pipeline through its modifications

of regional luminance and chrominance. Finally, we validate our work using an eye-

tracking-based user study and show that our new saliency enhancement operator is more

effective at eliciting viewer attention than the traditional Gaussian enhancement operator.

4.1 Related Work

Direct volume rendering models the attenuation of light in a volume composed of

particles with varying densities and opacities [58, 70]. Volume rendering has evolved con-

siderably over the past two decades and now engineers, scientists, medical researchers,

and visual designers use a rich suite of tools and techniques to specify the visual appear-

ance of a volume based on their needs. Transfer functions have played a crucial role

in broad use of direct volume rendering. The design of transfer functions to generate

informative visualizations has been a significant challenge that has been addressed by a

number of researchers [95]. A number of heuristics are used to guide the users in selecting
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(a) (b)

Figure 4.1: Saliency-guided Enhancement for Volume Visualization: Image (a) shows the
traditional volume visualization and image (b) shows the result of applying our saliency-
guided enhancement operator to the mouth.

appropriate transfer functions. For instance, Levoy [70] suggested the use of the gradient

magnitude to identify surfaces in volume data. Kindlmann and Durkin [62] used the first

and second derivatives along the gradient direction to calculate a boundary emphasis to be

included in the opacity transfer function. In addition to the design of the opacity transfer

function, general multi-dimensional transfer functions were studied to better convey the

boundaries and features in volume data [63, 64, 65, 78].

Stylized rendering in volume visualization has attracted extensive research inter-

est in the last few years. Treavett and Chen [121] developed techniques for pen-and-ink

illustrations of surfaces within volumes. Lu et al. [75] used stippling techniques for in-

teractively previewing large datasets. Burns et al. [15] identified and depicted silhouettes

and suggestive contours in volumes. Rheingans and Ebert [104] developed a variety of

volume illustration techniques. They used the scalar field gradient in addition to the local

density to carry out a sophisticated set of perceptual enhancements that are view- and

light-dependent. Interrante et al. explored the use of carefully oriented textures to convey
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surface shape in volumes [50] and to convey 3D flows [51]. With few exceptions, all

of these enhance the important features based on the volume sample value or the local

volume characteristics.

Viewers pay greater visual attention to regions that they find salient [90]. Therefore,

many models of visual attention and saliency in an image have been evaluated by their

ability to predict eye movements [91, 99]. Conversely, eye movements have been used

to guide meaningful abstractions of photographs [24, 108] and volume composition [74].

Several computational models of visual saliency that model human attention have been

developed. Itti et al. [52] developed a computational model of visual attention based

on the center-surround operators in an image. Recently, Lee et al. [69] have proposed

saliency for meshes based on a multi-scale center-surround mechanism that operates on

local curvature.

Once saliency for a volume is computed either by using eye-tracking data, or through

computational models of human perception, or through feature extraction, it can be used

to better inform the visualization process. Machiraju et al. [79] used feature-based

saliency to perform progressive visualization. They first project the volume data into a

wavelet basis and identify features at multiple scales. Then, they use the ranked regions

of interest in a priority scheduling scheme to progressively visualize the data. Rheingans

and Ebert [104] suggested the idea of importance-based regional enhancement for volume

illustration. Their approach involves enhancing a region around a user-specified point of

interest using a gradual fall-off function based on the view direction. Viola et al. [124]

developed an innovative importance-driven approach to emphasize features in volumes.

Their approach modulates the opacity of a feature based upon its importance as well as
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the importance of the features that it occludes. This approach has been shown to be

very valuable in simultaneously visualizing interior and exterior structures of a volume in

clutter-free renderings that show the important regions while suppressing or eliminating

the less important regions [13]. Hauser [45] suggested emphasizing regions in volumes

using opacity, color, frequency (focus), and rendering styles.

A very interesting beginning in altering saliency to guide viewer attention has been

made by Su et al. [114]. They have developed an elegant post-processing technique to

reduce the salience of distracting regions in an image. They alter regional saliency by

reducing its texture variation through the use of steerable pyramids and validate their

results with eye-tracking-based user studies.

In this dissertation we propose a new enhancement operator for emphasizing re-

gions of volumes. Our enhancement operators are based on the idea of reversing the

visual saliency computation at multiple scales and we show that they can be used to guide

viewer attention. We integrate the application of our enhancement operator to the visual-

ization pipeline through an emphasis field that could be used to modulate luminance and

chrominance to enhance visual perception of volume data.

4.2 Overview

Guiding user attention in volume visualization is an important component of the

overall visual experience. Visual attention can be achieved by obtrusive methods such

as very bright or flashing pixels in the desired region. However, such techniques dis-

tract the viewer from adequately exploring other regions of the volume data. Artists and
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Figure 4.2: (a) The traditional visualization pipeline. (b) Saliency-enhanced visualiza-
tion pipeline. The saliency field is modified by the enhancement operator to generate an
emphasis field. The emphasis field is used to enhance the perception of features in volume
by modulating appearance attributes such as luminance, chrominance, and texture detail.

illustrators have long used the principles of visual perception to gently guide viewer’s

attention to regions and objects that they wished to emphasize. In the preceding section

we have provided a summary of several techniques used in volume visualization to em-

phasize regions. Most emphasis methods involve increasing the perceptual importance

of a given region through a Gaussian fall-off function centered at the region of interest.

Such Gaussian functions have been used to modulate opacity, luminance, chrominance,

and texture detail. In this dissertation we present a novel saliency-guided enhancement

operator based on computational models of visual saliency and show that it is better at

drawing visual attention than a Gaussian. The various stages in our approach are shown

in Figure 4.2 and summarized below.

Saliency Field. We assume that a saliency change is assigned to each voxel of the

volume data. This assignment could be based upon user specification (manual painting),
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eye-tracking data, or feature computation.

Enhancement Operator. We introduce a general class of saliency-guided enhance-

ment operators that generate an emphasis field from a saliency field. These operators are

based on the center-surround mechanisms at multiple scales and invert the process of the

saliency computation at each scale.

Emphasis Field. Emphasis field is used to guide the modulation of the visual

appearance by locally changing luminance or chrominance. Note that since the emphasis

field operates independently of the transfer function, its effects on the overall visualization

pipeline are complementary to those achieved by transfer functions alone.

Validation. We would like to have some objective evidence that our saliency-based

enhancement operators elicit greater visual attention than the original volume visualiza-

tion as well as the traditional Gaussian-based enhancement. We have conducted an eye-

tracking-based user study to verify the impact of our enhancement operators and report

the results of our method in Section 4.5.

4.3 Emphasis field computation

The starting point for our approach is the generation of a saliency field ∆S that

defines a desired saliency change for every voxel. We assume that the saliency field for

each voxel defines its importance on a scale from 0 to 1. Such a saliency field could be

specified through a number of methods. The first possibility is to acquire it by recording

a user’s eye movements when a given volume is shown [74]. Another possibility is for

an illustrator or a domain expert to specify the desired saliency changes for one or more
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voxels [45, 104, 124]. A third possibility is to procedurally detect and rank features in the

order of their importance [79].

We would like to define an enhancement operator guided by the saliency field that is

used to increase the perceptual importance. For this we start with a computational model

of saliency. Itti et al. [52] have defined saliency using the center-surround mechanism

on the non-oriented properties such as intensity and color in an image at multiple scales.

Lee et al. [69] have recently defined mesh saliency using the center-surround mechanism

on the mean curvature at each vertex at multiple scales. Since the overall volumetric

appearance is a multivariate process, we use the above idea to compute the saliency field

on a virtual emphasis field E . The emphasis field can then be used to logically decouple

the processes of specifying multi-scale enhancement and achieving it through modulation

of various volumetric appearance such as color and opacity. Let a voxel vi be the i-th

voxel within a volume V . Then, let ∆S (vi) and E (vi) be the saliency change and the

emphasis value for a voxel vi, respectively. We define the saliency change for a voxel vi

using the center-surround mechanism L of the emphasis field E at scale, σ as:

∆S (vi) = L(E ,vi,σ) (4.1)

In general, there can be infinitely many solutions for an emphasis field E that will give us

a desired value of saliency field ∆S depending on the definition of the center-surround

operator L. Let G(E ,vi,σ) be the Gaussian-weighted average of the emphasis field cen-

tered at a voxel vi:

G(E ,vi,σ) = ∑
v j∈V

E (v j)g(vi,v j,σ) (4.2)
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where g(vi,v j,σ) =
exp[−‖v j−vi‖2/(2σ2)]

∑
vk∈V

exp[−‖vk−vi‖2/(2σ2)]
.

We define the center-surround operator at a voxel vi using the Laplacian of the

Gaussian-weighted averages as:

L(E ,vi,σ) = w1G(E ,vi,σ)−w2G(E ,vi,2σ) (4.3)

where w1 and w2 indicate the weights of the Gaussian-weighted averages at a fine and

a coarse scale, respectively. Positive weights w1 and w2 emphasize the center and de-

emphasize the surrounding while negative weights achieve the opposite. In our work, we

have used positive weights.

4.3.1 Saliency-Enhancement Operator

Let us reformulate the saliency change for a voxel vi using Equations 4.1- 4.3:

∆S (vi) = w1 ∑
v j∈V

E (v j)g(vi,v j,σ)−w2 ∑
v j∈V

E (v j)g(vi,v j,2σ)

= ∑
v j∈V

E (v j) · ci, j

where ci, j = w1g(vi,v j,σ)−w2g(vi,v j,2σ). We can express the above as the fol-

lowing system of simultaneous linear equations:
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This can be rewritten as CE = ∆S which implies E = C−1∆S . Thus, given a saliency

field ∆S , the enhancement operator C−1 will generate the emphasis field E . There are

two parameters that govern the stability of the inversion of the matrix C. The first param-

eter is the relation between w1 and w2. Using the same values (w1 = w2) makes the matrix

C rank-deficient because the sum of each row is zero. To alleviate the rank-deficiency we

use unequal weights: w1 = 3/4 and w2 = 1/4. The second parameter is the scale σ and

we discuss its effect on the matrix C in Section 4.3.2.

4.3.2 Emphasis Field

We have defined the enhancement operator C−1 which can generate an appropriate

emphasis field for a given saliency field at a scale σ . Just as the saliency computation

is based on the center-surround mechanisms at multiple scales, we would like to use

enhancement operators at multiple scales σi. Let Ei be the emphasis field at scale σi.

We compute this by applying the enhancement operator C−1
i on the saliency field ∆S .

Then, the final emphasis field may be computed as the summation of Ei. These steps are

illustrated in Figure 4.3.

For simplicity, we discuss the 1D binary case here. Consider the saliency field that

is 1 over a desired emphasis region of length 2r and 0 everywhere else. This is shown in
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Figure 4.3(b). We start by applying the enhancement operator C−1
1 at scale σ1 = (

√
2/8)r

on the saliency field ∆S . We consider a geometric sequence of scales σi = 2i−1 ·(
√

2/8)r

while σi ≤
√

2r.

We have observed that the matrix C is well-conditioned for small values of σ that

result in a diagonally dominant form. As the value of σ is increased, the matrix C ceases

to remain diagonally dominant and in fact becomes close to singular. To address this,

we sub-sample the saliency field by factors of r/4 (∆S1), r/2 (∆S2), r (∆S3), etc. and

construct the appropriate matrices Ci. We then compute Ei = C−1
i ∆Si (shown in Fig-

ure 4.3(c)) and sum Ei to get the overall emphasis field E = ∑k
i=1 Ei as shown in Fig-

ure 4.3(d). Note that we super-sample the sub-sampled fields so that the summation of all

emphasis fields is carried out at the original scale.

Figure 4.3: Enhancement operator at scale σi is denoted by C−1
i in (a). Figure (b) shows

an example of saliency field with a desired emphasis region of length 2r. The application
of enhancement operator C−1

i on saliency field ∆S gives an emphasis field Ei in (c).
Multi-scale summation of emphasis fields Ei generates the overall emphasis field E in (d).
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(a)

(b) (c)

Figure 4.4: Saliency-guided emphasis field. Here r denotes the radius of the user-specified
region. Figure (a) shows the emphasis field approximated by a piecewise polynomial
function. Figure (b) shows the emphasis field generated by multi-scale summation of
emphasis fields in green and the approximation of it in blue with λ+ = 2.34 and λ− = 0.28
for comparison. Figure (c) shows the Gaussian that is used for enhancement for results
in Figure 4.10.

4.3.3 Emphasis Field in Practice

A system of simultaneous linear equations in n variables may be solved in time

varying from O(kn2) for the Gauss-Seidel method where k is number of iterations to

O(n3) for the Gaussian elimination method. For our experiments we were interested in

enhancing saliency over regions that ranged in size from n = 128×256×256 to n = 352×

352× 256. This clearly would have been computationally very expensive. To address
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this, we solve a 1D system of equations over n = 640 and assuming a spherical region

of interest (ROI), interpret the results to be along the radial dimension. The 1D solution

is shown in Figure 4.3(d) and by the green curve in Figure 4.4(b). Radial functions have

been expressed using Gaussians, quadratic and higher-degree polynomials [9]. Here we

use piecewise polynomial radial functions inspired by Wendland [129] to approximate

the results. Our approximating function is shown in Figure 4.4(a) and by the blue curve

in Figure 4.4(b). Figure 4.4(c) shows the Gaussian fall-off function from the boundary

of the specified region with σ = r/2. The enhancements generated by this Gaussian are

used for the comparisons in Section 4.4 and 4.5.

4.4 Visualization Enhancement

Once we have computed the emphasis field we can use it to modulate the various

visualization parameters. Here we first discuss changing just one of these parameters –

the brightness of a voxel as determined by the Value parameter in the HSV color model.

Brightness has been regarded as one of the most important components of color for

drawing visual attention. Artists like Rembrandt and Caravaggio have skillfully used

luminance contrast to emphasize key regions and characters in a painting. With our

saliency-guide enhancement field E (v) at a voxel v, we can easily modulate its bright-

ness value V as:

Vnew(v) = V (v) · (1+E (v))

where −λ− ≤ E (v) ≤ λ+. In the current implementation, we have used 0.4 ≤ λ+ ≤ 0.6

and 0.15 ≤ λ− ≤ 0.35. Figure 4.5 compares the enhancement by a traditional Gaus-
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The Visible Male model (128×256×256) is rendered by the traditional vol-
ume visualization in image (a). Images (b) and (c) show the visualization with regional en-
hancement by a Gaussian and our saliency-guided operator, respectively. User-specified
spherical region of interest is shown in red in image (d) with a radius r = 20. Image (e)
shows the Gaussian enhancement with σ = 10. Image (f) shows the emphasis field based
on our method. The emphasis field value changes from λ+(= 0.4) to 0 to −λ−(= −0.15)
are represented by the color changes from red to black to blue. The radii of the spherical
regions affected by the Gaussian-based and our method are 40 and 60, respectively.

sian operator and by our new saliency-guided enhancement operator on the Visible Male

model. Notice that the original image has high brightness regions such as the nose. While

the Gaussian operator increases the brightness of the user-specified regions, our saliency-

enhancement operator additionally lowers the brightness in the neighborhood. This dif-

ference results in a much greater user attention to the desired regions, even with subtle

changes to the overall brightness. Figure 4.6 shows another comparison on the Engine

Block model.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: The Engine Block model (256× 256× 256) is rendered by the traditional
volume visualization in image (a). Images (b) and (c) show the visualization with re-
gional enhancement by a Gaussian and our saliency-guided operator, respectively. User-
specified spherical region of interest is shown in red in image (d) with a radius r = 20.
Image (e) shows the Gaussian enhancement with σ = 10. Image (f) shows the emphasis
field based on our method. The emphasis field values change from λ+(= 0.55) to 0 to
−λ−(= −0.35). The radii of the spherical regions affected by the Gaussian-based and
our method are 40 and 60, respectively.

Visual saliency can be increased by enhancing color saturation as well as the bright-

ness. In cases where the brightness is already very high, it could be helpful to draw greater

visual attention by enhancing color saturation. For instance in Figure 4.7(a) increasing the

brightness any further will diminish the appearance of blood vessels at the center of the

Sheep Heart. However a simple change in saturation can serve to draw visual attention as

shown in Figure 4.7(b). Our technique can increase the overall color saturation in a way

similar to what we have outlined above for brightness.

103



(a) (b)

(c) (d)

Figure 4.7: Saturation enhancement for the Sheep Heart and the Foot models. Images
(a) and (c) show the tranditional volume visualization. Images (b) and (d) show the visu-
alization with color saturation enhancement based on our saliency-guided enhancement
operator applied on the blood vessels at the center and the fourth toe, respectively in each
model.

4.5 User Study

We have carried out an eye-tracking-based user study to gather objective evidence

of the effectiveness of our approach. Our goal in this user study is to validate our ability

to draw a viewer’s attention by subtle changes to the appearance of the volume data.
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4.5.1 Hypothesis

Our first hypothesis is that the eye fixations increase over the region of interest in a

volume by the saliency-guided enhancement compared to the traditional volume visual-

ization. Our second hypothesis is that the eye fixations increase over the region of interest

in a volume by the saliency-guided enhancement compared to the Gaussian-based en-

hancement. We would like to validate both of the above hypotheses with a visually subtle

level of enhancement.

4.5.2 Experimental Design

We carried out the study with 10 subjects that had normal or corrected-to-normal

vision and who were not familiar with this work. General settings of eye-tracker and its

calibration are similar to those explained in Section 2.3.

Duration: The user study had 12 trials (images). Each trial started with the subject

seeing a blank screen with a cross at the center of the screen. The subject was asked to

look at the cross before clicking the mouse to bring up the next image. This ensured that

each trial started with the subject’s eyes fixated at the center of the image. Each image

was shown for 5 seconds. Each study took about 80 seconds. Subjects were told to freely

view the images with no assigned goal and were informed in advance about the design

of each trial including the duration each image would be shown and the total number of

images.

Image Ordering: There were a total of 20 images used in all the experiments.

Each image set consists of one original image and four enhanced images in which one
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of two regions is enhanced by either a Gaussian or our saliency enhancement. We have

used the volume datasets of the Engine Block, the Foot, the Visible Male, and the Sheep

Heart model for our study. Each user saw 12 images out of these 20 images. When

we ordered the images for each user, we considered differential carryover effects and

the counter-balancing problem for the pairwise analysis on the results. First, we placed

similar images far apart to alleviate differential carryover. At the same time, we did

not place the similar images in perfectly regular manner so that a user could not guess

what image will be shown next. Alleviating differential carryover effect had the highest

priority in our ordering because a user is supposed to look at 3 similar images (original,

enhancement on two different regions) for each model. Second, each user looked at two

images where we enhanced different regions with different types of operators (Gaussian-

based and Saliency-guided). Finally, we randomized the order of regions and the order of

enhancement types (Gaussian and saliency-based) to counterbalance overall effects.

4.5.3 Data Analysis

The results of our study are shown in Figure 4.8. Each grouping of bars shows the

percentage of fixations that fell in a desired region for the unaltered, Gaussian-enhanced,

and Saliency-enhanced visualizations for a specific model and region on that model. Fig-

ure 4.9 shows the increase in the number of fixation points on the region of interest after

the application of the saliency-guided operator.

First, we analyzed the effects of each enhancement technique on two different re-

gions for each model. We have analyzed the differences in fixations between the first
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Figure 4.8: Fixation results for volume visualization enhancements.

region and the second region of each model for the three cases – (a) unaltered, original

visualization, (b) first region is enhanced, and (c) second region is enhanced. We carried

out pairwise t-tests with the assumption that each region of interest occupies the same

number of image pixels and has a similar percentage of fixations in the original model.

This assumption did not hold for the Engine Block model since one region turned out to

be brighter than the other. Also, it did not hold for the Sheep Heart model since one region

was closer to the center and drew greater fixations [91]. Therefore, we did not include

these two in Table 4.1. As the results show, we did not observe significant differences in

the percentage of fixations when a region was enhanced by the Gaussian-based method in

any of cases. However, we can clearly observe significant differences in all cases when a

region is enhanced by the Saliency-guided method.

We next carried out a pairwise t-test on the percentage of fixations before and after

we apply enhancement techniques for each model (this is the only condition in the test).

Table 4.2 shows the results from all the models. We found a significant difference in the
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Images (a), (b), (c) and images (d), (e), (f) show the fixation points collected
from our user study with the images generated from the Visible Male model and the Engine
Block model, respectively. The images (a) and (d) were rendered using the traditional
volume visualization. The images (b) and (e) were enhanced by a Gaussian operator
while the images (c) and (f) were enhanced by our saliency-guided operator, respectively.

percentage of fixations when we applied saliency-guided enhancement for all the models.

There was a difference for the percentage of fixations when we applied Gaussian-based

enhancement for all the models other than the Visible Male model.

When the results from each region alone in Visible Male and Sheep Heart were

analyzed by pairwise t-tests with saliency-guided technique condition, there also was a

significant effect, (t-value=-7.35, p=0.002 for Visible Male). However for the Engine

Block and the Foot model, there was only a borderline significant effect by saliency-
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Table 4.1: Pairwise t-tests on the 1st and the 2nd Areas of Interest.

Model Condition t-Value p-Value

Foot No Change 0.312 0.762
Region1 enhanced by Gaussian 1.35 0.248
Region1 enhanced by Saliency 2.74 0.052
Region2 enhanced by Gaussian −0.68 0.534
Region2 enhanced by Saliency −2.96 0.042

Visible No Change 0.959 0.363
Male Region1 enhanced by Gaussian 1.34 0.25

Region1 enhanced by Saliency 4.39 0.012
Region2 enhanced by Gaussian −0.57 0.601
Region2 enhanced by Saliency −5.82 0.004

Table 4.2: List of pairwise t-tests.

Model Condition: No Change vs. t-Value p-Value

Engine Gaussian-based enhancement −2.36 0.042
Block Saliency-guided enhancement −2.86 0.019

Foot Gaussian-based enhancement −2.67 0.026
Saliency-guided enhancement −3.34 0.009

Visible Gaussian-based enhancement −0.661 0.525
Male Saliency-guided enhancement −6.65 < 0.001

Sheep Gaussian-based enhancement −3.86 0.005
Heart Saliency-guided enhancement −4.49 0.002

guided technique. We can only observe a significant effect when the results from each

region alone in Sheep Heart were analyzed with Gaussian-based technique. We think that

this is due to the small number of observations. We believe those results would also be

significant if there were more participants because there was a clear trend showing an

improvement on all models in Figure 4.8.
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4.6 Conclusions and Future Work

We have developed a saliency-based enhancement of volume visualization and suc-

cessfully validated its ability to elicit viewer attention. Our model is inspired by the

center-surround mechanisms of the human visual system. We have found that it is more

successful at eliciting viewer attention than the traditional Gaussian regional enhance-

ment approach. Saliency-guided enhancement for volume visualization can be helpful

in several contexts. For instance, our approach could be used in helping users navigate

through complex volumetric datasets and facilitating their understanding by guiding their

attention to regions and objects selected by a domain expert. It will also be interesting to

examine the applicability of this approach for exploratory visualization systems that rely

on automated and fuzzy detection of features. Such systems could use saliency-based

perceptual enhancement to generate a variable level of perceptual interest to the human

observer. At present we have explored saliency-guided alteration of brightness and color

saturation for volumes. In future we plan to also explore the implications of this frame-

work for other appearance attributes such as opacity and texture detail. Our approach

at this time has been validated only on static volumetric scalar field datasets. It will be

interesting to generalize it further to be able to handle time-varying datasets with multiple

superposed scalar and vector fields.

Our current method has been validated on spherical regions of interest and binary-

valued saliency field. Generating an emphasis field from an arbitrary-shaped region with

general saliency values will be considered in the future. At this time we do not have

any evidence if our approach can actually enhance the comprehensibility of the volume
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rendered images. We will like to further study this in the future. Visual saliency is very

sensitive to scale. Identifying the appropriate scales and their relative importance is an-

other valuable area for future research in guiding visual attention.
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Figure 4.10: A subset of images used in the user study. The first column shows the saliency
fields, the spherical regions of interest (ROI) marked in red. We also show the size of
each volume dataset, the center of ROI, the radius of ROI, and each of weights, λ+ and
λ− used for enhancements above each saliency field image. The second column shows
the traditional volume rendering. The third column shows the visualization with value
enhancement in HSV color model based on the Gaussian-based enhancement while the
fourth column shows the visualization with value enhancement based on our saliency-
guided enhancement.
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Chapter 5

Salient Transformation Streams

In a number of real-life datasets, we observe that certain local geometries may ap-

pear in the same configuration in another part of the model. These self-similarities are

obvious for architectural CAD (repeated doors, windows, furniture), mechanical CAD

(repeated sub-assemblies, bolts, cylinders), molecular CAD (repeated amino acids, nu-

cleic acids, alpha helices, beta sheets), and terrain layouts for games (trees, grass, flow-

ers). We believe looking for non-repeating structure in the middle of repeating structure is

another way to identify the salient regions in these datasets. In this chapter, we efficiently

encode such repeating patterns to increase interactivity for 3D graphics and visualization.

Our salient transformation streams idea was also inspired by recent trends in par-

allel computer architecture. These trends strongly suggest the need to improve the arith-

metic intensity (the compute-to-bandwidth ratio) for greater performance in time-critical

applications, such as interactive 3D graphics. At the same time, advances in stream pro-

gramming abstraction for graphics processors (GPUs) have enabled us to use parallel

algorithm design methods for GPU programming.

In this chapter, we explore the interactions between multiple data streams to im-

prove arithmetic intensity and address the input geometry bandwidth bottleneck for in-

teractive 3D graphics applications. We introduce the idea of creating vertex and trans-

formation streams that represent large point data sets via their interaction. We discuss
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how to factor such point datasets into a set of source vertices and transformation streams

by identifying the most common translations amongst vertices. We accomplish this by

identifying peaks in the cross-power spectrum of the dataset in the Fourier domain. We

validate our approach by integrating it with a view-dependent point rendering system and

show significant improvements in input geometry bandwidth requirements as well as ren-

dering frame rates.

5.1 Related Work

The graphics community has long faced the challenge of interactively exploring

very large 3D graphics models while reconciling the mutually conflicting goals of scene

realism and interactivity. A crucial bottleneck in this has been the input geometry band-

width. Consequently, there has been a long history of work related to reduction of the

geometry bandwidth to the graphics processor to achieve greater interactivity.

Triangle strips and triangle fans are amongst the earliest data-structures designed to

address the input geometry bandwidth bottleneck. Although each triangle can be specified

by three vertices, to maximize the use of the available data bandwidth it is desirable to

order the triangles so that consecutive triangles share an edge. Such ordered sequences of

triangles are referred to as triangle strips or triangle fans. Using such an ordering, only

the incremental change of one vertex per triangle needs to be specified. These methods

require sending n + 2 vertices for n triangles, instead of 3n vertices, potentially reducing

the input geometry requirements by a factor of three.

Visibility-based culling and level-of-detail-based rendering reduce the input geom-
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etry by reducing the number of graphics primitives. Visibility-based culling schemes only

send those primitives to the graphics processor that are visible or potentially visible [17].

Level-of-detail-based rendering schemes send simpler, lower fidelity representations of

an object whenever higher complexity representations are deemed unnecessary – such

as when the object is being displayed on a small number of pixels on the screen or is

otherwise perceptually less important [77].

Recent improvements in scene acquisition techniques such as laser scanning and

computer-vision-based sensing have resulted in a growing collection of 3D graphics datasets

that are based on points. Consequently, point-based rendering schemes [38, 71, 73, 96,

107, 109] have evolved as a viable alternative to triangle-based representations. The point

primitives can be rendered as spheres [107], points with attributes (Surfels) [96], tan-

gential disks (Surface splats) [10, 41, 89, 102, 139], tangential ellipses [132], quadratic

surfaces [57], higher degree (3 or 4) polynomials [4, 32], using wavelet basis [128], and

octree cells [11, 96, 131]. These and several other techniques involve transmission of

points and their attributes from the CPU to the GPU every frame. Points can also be

rendered without any CPU involvement by storing the point geometry directly on the

graphics card [10, 20, 41]. Temporal coherence can be exploited by keeping track of the

visible Surfels in the frame buffer of successive frames [40].

In some ways, the flavor of the approach presented in this dissertation is closer to

that of triangle strips and triangle fans, that involve re-ordering the input list of primitives

to succinctly represent them as a single data stream. However, it differs from all previous

work in that it addresses the geometry bandwidth bottleneck by harnessing the power of

multiple interacting streams of data, instead of a single stream. Our approach is comple-
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Figure 5.1: Overview of Salient Transformation Streams. As a preprocess, the PCA anal-
ysis of a group of points results in a binary partition tree. Each node of the tree is divided
into its child nodes depending on the positions at its local orientation frame. In trans-
formation palettes stage, we identify the most common translations among the vertices
in each node. Then, we construct two vertex transformation pools by which we cover
as many vertices as possible. At runtime, a view-dependent manager determines the cut
in the tree and each node of the cut is visualized by the interaction between vertex and
transformation streams.

mentary to, and can augment, existing schemes such as level-of-detail-based rendering

that reduce the number of geometry primitives to be rendered.

5.2 Overview

Figure 5.1 shows the overview of our salient transformation streams. We introduce

the idea of interacting vertex and transformation streams to encode general point cloud

datasets and discuss how these streams can be decoded using modern vertex shaders in

Section 5.3. We discuss how to efficiently build vertex and transformation streams from

a pool of paired vertices and transformations in Section 5.4. In Section 5.5, we outline

a method to identify the most common transformations that can map a set of vertices to
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Figure 5.2: Stream Interactions: ‘Vertex Stream’ contains the mesh vertices, ‘Transforma-
tion Stream’ contains instance transformations that will act on the vertices in the vertex
stream. The two streams are combined on the GPU and generate the ‘Tensor Product
Stream’ which has the output vertices for rendering.

itself using the Fast Fourier Transform. Finally in Section 5.6 and 5.7, we show how

our approach of using transformation streams can improve the arithmetic intensity in a

view-dependent rendering application.

5.3 Interacting Streams

Our goal in factoring an input list of vertices into two interacting streams of vertices

and transformations is to reduce the input geometry bandwidth requirements and improve

the arithmetic intensity of the participating streams. As shown in Figure 5.2, these two

streams – the vertex stream and the transformation stream – can then be combined with

each other on a GPU resulting in an output stream of vertices that is a tensor product of

the input streams. Thus, in the best case, we might be able to factor n vertices into two

streams of size
√

n each, thereby reducing the input bandwidth requirements by a factor

of O(
√

n).

Consider an idealized geometry of 16 points shown by spheres in Figure 5.3. Let

the four white points comprise the vertex stream. Then using a set of four translations as

shown in the figure, one can generate all the input points. We include the null translation
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Figure 5.3: The vertex stream has the four white source vertices and the transformation
stream has four translations. Each of the twelve black vertices can be reached by applying
one of the three non-null translations to the white vertices.

(0,0,0) for completeness.

The vertex transformation streams discussed above are ideal. In practice it is rare to

find such a perfect mapping between vertices and transformations. Even when we did find

such mappings, they covered very small sets of vertices. To get larger interaction streams

we decided to generalize our interactions between vertices and transformations. Instead

of insisting that every vertex interacts with every transformation, we allowed some vertex

transformation pairs to not contribute any vertex to the output stream. This simple gen-

eralization allowed us to greatly enhance the scope and size of the vertex transformation

streams that our approach could identify. In Figure 5.4 we show the relationships between

translations and vertices of two sets of geometries. A 1 indicates that the translation in

the row interacts with the vertex of the column while a 0 indicates non-interaction. Our

generalization allows us to construct interacting streams that can represent the slightly

irregular geometry of Figure 5.4(b).

We have implemented stream interaction on current-generation GPUs using the ge-

ometry instancing features of the latest vertex shader model (VS 3.0). Consider the case

of n vertices in stream 0 and m transformations in stream 1 as shown in Figure 5.2. To use
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(a) (b)

Figure 5.4: Interactions between the vertex stream and the transformation stream are rep-
resented by binary tables. In these vertex-transformation tables, a 1 indicates interaction
between a vertex and a translation and 0 indicates no interaction. Figure (a) shows the
table for the idealized point set of Figure 5.3. Figure (b) shows another point set and its
vertex-transformation table.

the geometry instancing feature of (VS 3.0) we set the frequency of the vertex stream to

m and the frequency of the transformation stream to 1. As shown in Figure 5.2, the vertex

shader is first invoked with V0T0. This is followed by V1T0, V2T0, and so on. After all the

vertices for the first transformation(T0) have been processed, the pointer to vertex stream

(stream 0) is reset and the pointer to transformation stream (stream 1) is incremented to

T1 [28].

In our implementation, we specify the frequency of the vertex stream to be the

number of transformations in the transformation stream. Since the geometry instancing

only allows us to achieve all-pairs interactions between the elements of the two streams,

we encode the interaction information between the transformation and vertex streams

using tags that we pass with the elements of each stream. The transformation stream’s

tag is just a short integer which indicates the index of that transformation in its stream.

Thus the ith transformation’s tag has value i. A vertex’s tag is an occupancy bit vector
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Figure 5.5: Pseudo-code for a Vertex Shader program shows how we use vertex and
transformation tags to determine if a pair of elements across vertex and transformation
streams should interact, and if so how to generate the output stream vertices.

that encodes the translations that the vertex should interact with. Therefore, if we use

an unsigned integer as the tag for a vertex, we can encode its interactions with up to 32

translations. Figure 5.5 shows the pseudo code of the vertex shader program for checking

and implementing such interactions. Note that if the interaction between a vertex and a

transformation is not supposed to happen, our code sets the output vertex to infinity (in

homogenous coordinates) and the vertex is then culled away. Unfortunately, the current

generation of GPUs do not support bit-wise integer operations. As a result we had to

emulate these bit operations by using floating-point operations that were available to us.
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5.4 Vertex Transformation Pools

In the previous section we discussed how we can generate an output stream of ver-

tices as a tensor product of vertex and transformation streams. We also discussed how we

can fine-tune (allow or disallow) interactions between the two streams by appropriately

tagging the elements of the two streams and using vertex shader programs. In this section

we shall discuss how to identify such streams from raw input point datasets.

Consider a model with n points, ~pi, 0 ≤ i < n. For any pair of points ~pi and ~p j,

0 ≤ i, j < n, consider a transformation that maps ~pi to ~p j. In general, there are an in-

finite number of such transformations. Therefore, let us restrict ourselves to the set of

translations. Let translation~ti j be specified as~ti j = ~p j −~pi. For n points, we can iden-

tify n2 such transformations. Now, for most real-life datasets we have observed that out

of these n2 transformations only m << n2 are unique. We discuss some reasons for this

transformation space coherence and give a method to identify such unique transforma-

tions in Section 5.5. Now consider a large vertex transformation table whose columns

are n vertices and whose rows are the m unique transformations. The (i, j)th element of

this table is a boolean value which is set to 1 iff~ti +~p j = ~pk for some k < n. That is, if

the ith translation maps the jth vertex to some other vertex in the input data, we flag this

as an interaction we permit. Otherwise we set the (i, j)th entry’s boolean value to 0. If

~ti +~p j = ~pk, we say that point ~p j covers point ~pk.

In order to get large vertex and transformation streams, our goal is to find the largest

rectangle in the vertex-transformation matrix (after reordering rows and columns) such

that the fraction of ones in it is higher than some threshold (δ ). We refer to such a maxi-
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mal reordered rectangle as a vertex transformation pool. Large values of δ tend to return

very small vertex-transformation pools whereas small values of δ result in too many non-

interacting vertex-transformation pairs which will later require culling. We have observed

that δ = 0.5 reconciles these goals well. Identification of the vertex transformation pools

is an iterative process. After we find a vertex transformation pool, we zero-out its en-

tries in the vertex transformation table, and repeat the process to get the next-best vertex

transformation pool.

5.4.1 Finding the First Vertex Transformation Pool

At first glance, the problem of finding good vertex transformation pools resembles

the edge-maximizing bipartite clique problem [94, 60], where the rows are one side of

the graph, the columns are the other, and there is an edge between i and j if the (i, j)th

entry’s boolean value is 1. However, our problem is different because we would also like

to include some 0 entries in the pool as long as it allows us to increase the overall fraction

of 1’s in the pool. A polynomial-time optimal solution to this problem seems unlikely, so

we have used a greedy heuristic.

We first find the vertex ~p j that has the most 1-values in its column. Let the number

of transformations for ~p j be k. We next restrict ourselves to the k rows for which the

column for ~p j has a 1. We then sort all the vertices by the sum of 1-values they have in

these k rows and process them in the decreasing order of their sums. For each vertex ~pi,

we determine the number of vertices it can cover that were previously not covered. If the

number of newly covered vertices is greater than a threshold, we include ~pi in the pool. In
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all our experiments we have set the threshold to be 25% of the value of k for the current

pool. We have observed that this gives us vertex-transformation pools with the fraction of

ones in the pool, δ ≈ 0.5.

It turns out that there can be redundant coverage amongst the vertices in a pool.

Thus, it is possible that~ti +~p j =~ti′ +~p j′ = ~pk. This is wasteful in that we might end

up processing the same vertex multiple times. We handle this by not counting such pre-

viously covered vertices in our quest to maximize the size of our vertex transformation

pools.

5.4.2 Updating for Subsequent Pools

After identifying a vertex transformation pool we update the vertex transformation

table to discard the covered vertices. Since we prioritize the vertices based on the number

of their 1-entries, the number of vertices that a given vertex covers is actually its impor-

tance level for inclusion in future pools. For each vertex ~pk that our identified pool covers,

we decrease the weights of all other vertices that could cover ~pk. Thus, for each covered

vertex ~pk we set all those (i, j) entries in the vertex transformation table to 0, for which

~ti +~p j = ~pk. We can do this updating efficiently if each vertex maintains a list of all other

vertices that it can cover. Thus, let ~pk have the list of vertices (~pk1,~pk2, . . . ,~pkl) that can be

reached from itself using its translations (~tk1,~tk2, . . . ,~tkl). Each of these covered vertices

~pki must have the reverse translation (−~tki) in its own translation lists. Therefore, we can

decrease the importance of those covered vertices by one by just resetting the appropriate

elements in the vertex transformation table.
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(a) (b) (c)

Figure 5.6: Tradeoffs between the number of pools, vertex coverage, and rendering time
for Stanford’s David model. Figure (a) shows the vertex coverage and figure (b) shows the
rendering time as we increase the number of pools. Figure (c) shows the changes of the
size of each vertex transformation pool, which is the product of the number of translations
and the number of vertices in each pool.

5.4.3 Determining the Number of Pools

To show how the number of pools affects the overall performance of this algorithm,

we have plotted the effect of the number of pools against the vertex coverage and the final

rendering time for the Stanford’s David in Figure 5.6. As we increase the number of vertex

transformation pools, they can cover more vertices, but the overall rendering performance

drops. There are two reasons for this. First, using additional blocks incurs the overhead

of using drawCall( ). We have observed that using too many drawCall( )s makes the

applications CPU bound. Second, as we identify more pools, the size of each pool, which

is the product of the translations and the vertices in it, gets smaller. For small pools, the

overhead of using instancing for drawing outweighs the benefit of transferring less data

to the GPU. Based on these considerations, we decided to select only the first two pools

for our results. The vertices that are not covered by these two pools are rendered without

any geometry instancing using conventional rendering.
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5.5 Transformation Palettes

We have thus far discussed how to identify maximally-sized vertex-transformation

pools and how to convert them into interacting vertex and transformation streams. In this

section we discuss how to identify the most common transformations amongst vertices.

As we discussed earlier in Section 5.4, if we consider a model with n points, ~pi, 0 ≤ i < n

and restrict ourselves to translations, it is possible to get n2 transformations amongst all

pairs of points. In the worst case, each of these n2 transformations can be unique and we

will not be able to benefit from a transformation-based coding of the input data. Fortu-

nately, real data does have plenty of such coherence due to several factors – input data

symmetries, coherence in procedural or simulation data generation, coherence due to ac-

quisition device characteristics, and even coherence due to quantization algorithms. In

a number of real-life datasets, we observe that certain local geometries may appear in

the same configuration in another part of the model. These symmetries are obvious for

architectural CAD (repeated doors, windows, furniture), mechanical CAD (repeated sub-

assemblies, bolts, cylinders), molecular CAD (repeated amino acids, nucleic acids, alpha

helices, beta sheets), and terrain layouts for games (trees, grass, flowers). Our algorithm

can easily detect such symmetries in the transformation space. What is more interesting,

however, is that for several cases, such repeated patterns might not even be visually ob-

vious. We have observed that a large fraction of 3D point geometry representing real-life

datasets from 3D scanners can be efficiently expressed in this way. In Figure 5.7 we show

one example of a frequent translation our algorithm discovered in the Stanford’s David

model.
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Figure 5.7: An example of frequently occurring common translations of vertices identified
by our algorithm in Stanford’s David model. If we quantize the David model on a 1283

grid to 150K quantized points we find the translation (62,−6,−5) ocurring 1261 times
as shown.

The problem of finding the set of two point pairs which specify the same trans-

lation ~t can be reduced from 3SUM problem. The 3SUM problem can be solved by

a simple O(n2) algorithm [35] and recent advances present a subquadratic randomized

algorithm [7]. Using a finite precision model, a 3SUM hard problem can be solved in

O(n logn) time using the FFT (Fast Fourier Transform) [19]. Here we used the FFT to

find the common translations efficiently.

We explain our method in the simplified one-dimensional case. For a point set P =

{p0, p1, p2, ..., pN−1}, 0 ≤ pi ≤ M, we can think of a polynomial A(x) where the exponent

of each term is the coordinate of each point, and we can think of another polynomial B(x)

where the exponent of each term is the negative value of the exponent of A(x).
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A(x) =
M

∑
i=0

aixi, where ai =















1, if i ∈ P

0, otherwise
(5.1)

B(x) =
M

∑
i=0

aix−i, where ai =















1, if i ∈ P

0, otherwise
(5.2)

Let C(x) be the polynomial representing the multiplication of polynomials A(x) and

B(x). The exponent of each term in C(x) can be interpreted as the translation between two

points in P, and the coefficient of that term indicates the frequency of occurrence of the

translation. In other words, ci is the number of points in P which can be translated from

other points in P by translation i.

C(x) =
M

∑
i=−M

cixi (5.3)

The multiplication of two polynomials can be computed in O(n lgn) time by con-

verting polynomials into point-value representations using the FFT, and then creating the

coefficient representation of the multiplication of two point-value polynomials using the

inverse FFT [19]. Because B(x) is the transposed image of A(x), the FFT of C(x) can be

computed by transposing the multiplication of the FFT of A(x) by the complex conjugate

of the FFT of A(x). For 3D points, we use 3D FFT with the same algorithm as for the

1D case. We note that this is same as computing the cross-power spectrum in the Fourier

domain, a technique widely used for image registration [101].

We have implemented our method using FFTW package [34] for computing the
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FFT and the inverse FFT, and tested this on several 3D datasets. We are currently using

FFTW since we are dealing with quantized values of points that is guided by the precision

necessary for the view-dependent rendering application discussed in the next section.

After 3D FFT stage, we identify the most common transformations and label them as the

transformation palette. We currently identify the most common 256 translations and use

them in building the vertex-transformation tables and interacting streams of vertices and

transformations.

5.6 View-dependent Rendering with Transformation Streams

View-dependent rendering has introduced the concept of rendering different regions

of a scene at varying detail based on their perceptual significance. Our view-dependent

rendering algorithm is similar to the ones generally used for triangle meshes [77] and

points. We first build a binary hierarchy over the input points by following a principal-

component-analysis (PCA)-based partitioning [27]. The PCA of a set of n points in a 3D

space gives us the mean µ , an orthogonal frame f , and the standard deviation σ of the

data. The terms µ and σ are 3D vectors and we refer to their i-th component as µ i and σ i

respectively, where σ i ≥ σ j if i > j. The frame f consists of three 3D vectors with the

i-th vector referred to as f i.

The distortion of a partitioning is defined as the sum of the distances of the points

from the partition’s mean [27]. In our partitioning scheme we reduce this distortion by

using k-means clustering with k = 2. We initialize the two starting means (centers) for

the k-means algorithm by doing a PCA over the points and choosing µp +
σ1

p
2 f 1

p and
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Figure 5.8: View Dependent Rendering. The entire tree is a complete binary tree. Red
nodes were cut in view-dependent manner. Node ’A’ can be expanded into two nodes, ’B’
and ’C’ for the fine details.

µp −
σ1

p
2 f 1

p as the initial guesses. This is a reasonable assumption since the data varies

maximally along f 1
p . The k-means clustering algorithm then iterates over the twin steps

of partitioning the point set according to the proximity of each point to the two means

and then updating the two means according to this partitioning. [93] use a geometric

way to separate the point set for their point-based simplification hierarchy. They separate

along the principal direction f 1
p with the separating plane passing through the mean µp.

Their approach is equivalent to the first iteration of our clustering scheme. Subsequent

iterations then successively reduce the distortion. We stop iterating when the difference

in the distortion between two successive iterations is less than 10−7 or when the number

of iterations is more than 30, whichever happens earlier.

Next, for each node in the binary tree we carry out the steps mentioned earlier in

the dissertation – we identify the most common transformations appropriate for that node,

we build vertex-transformation pools, and identify the transformation vertex streams. At

the end of this pre-processing step we store the transformation vertex streams with each

node in the binary hierarchy.
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Figure 5.9: Expansion of a node. Consider the node A in Figure 5.8. We compute how
many pixels the bounding box of the node A occupies when it is projected to the window
and use it to decide whether to split to its children B and C or not.

At run time we maintain an active list of nodes representing a cut in this binary

hierarchy as shown in Figure 5.8. The points from the active nodes comprise a level of

detail appropriate to a given view. We merge sibling nodes if they project to a screen-

space area below a threshold and split a parent node into its children if the projected

screen-space area is too large. We use the resolution of the projected screen-space area of

a node to guide the quantization of the vertices in that node. Thus if a node projects onto

a screen-space area no larger than 128√
2
× 128√

2
pixels, a 7-bit vertex quantization along each

of x,y, and z axes suffices. While rendering we transform these 7-bit quantized values

using the µ , f , and σ values for the node to locate them in the appropriate 3-space.

For each frame we sequentially visit each of the active nodes and decide whether

for the given view parameters it will be appropriate to render it directly, or merge it with

its siblings, or refine it to its children. Once an appropriate level of detail for a node
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has been finalized, we use the vertex transformation streams associated with that node to

render the points contained in that node.

5.7 Results

We have validated the results of our approach to efficiently identify and use inter-

acting streams of vertex and transformation data on a number of 3D graphics models. We

have run our experiments on a 1.6 GHz Pentium IV Windows PC with 2 GB RAM with

a NVIDIA GeForce 6800 Ultra AGP graphics card. We have used the geometry instanc-

ing hardware feature in vertex shader 3.0 model and used DrawIndexedPrimitive( )

command in DirectX 9.0 API.

We have compared our results along two dimensions of performance – the improve-

ment in CPU-GPU communication bandwidth and the improvement in the frame rates.

We have measured the frame rates under a constant GPU memory usage model. In this

model we allocate a fixed amount of memory on the GPU for rendering using our trans-

formation streams method and using the conventional point rendering method.

Let us assume there are n vertices and m translations in a vertex transformation pool

and f is the fraction of the vertices that are actually displayed from the pool (the fraction

of unique vertices covered by the pool without redundancy). Then, the pool covers f ×

n × m vertices. Assume we need Av bytes for a vertex and At bytes for a translation

in our transformation streams model, and An bytes for a vertex in the traditional point

rendering model. Our transformation streams model will therefore use (n×Av +m×At)

bytes instead of the traditional model’s ( f ×n×m×An) bytes.
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In our experiments Av = 26, At = 12, and An = 8. Here Av is the sum of the bytes for

indexing (2 bytes), the number of bytes for a vertex coordinates (8 bytes), and the number

of bytes for vertex tagging (16 bytes). At is the sum of the number of bytes for translation

coordinates (8 bytes) and the number of bytes for translation tagging (4 bytes). SHORT4

data type is the most compact representation we can use in DirectX to represent vertices

and translations, even though we only needed 3 shorts (6 bytes). For a fair comparison be-

tween our transformation streams model and the traditional model, we did not exploit the

extra short for tagging purposes. The reason we need so many bytes for tagging purposes

is because the current-generation GPUs do not support bit-operations for integers in ver-

tex shaders. Therefore, in our experiments we limited ourselves to four floating-point tags

per vertex. In each 4-byte floating-point tag we used 22 bits of the mantissa as a fixed-

point integer. This allowed us to represent up to 88 translations in a vertex-transformation

pool. We decided to limit ourselves to four floating-point vertex tags because of two rea-

sons. First, increasing the number of floats costs more in bandwidth to the vertex shader.

Second, using more than four floats required us to differentiate amongst multiple inputs

to the vertex shader, thereby adding one more conditional branch in addition to the one

shown in Figure 5.5. If in future we are allowed to pass 32-bit unsigned integers directly

to vertex shaders we can save 4 bytes for Av while at the same time increase the number

of translations covered to 96. In Section 5.3, we had proposed using 16-bit translation

tags. The reason why we instead use two shorts (8 bytes) in our implementation is that

we currently pass the remainder and the quotient for the modulo operation in the vertex

shader (Figure 5.5) to reduce the number of floor and divide operations.

To give you a flavor of our results, our approach achieved n = 150, m = 88 (the limit
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Figure 5.10: Communication bandwidth improvement for CPU-GPU transmission for
transformation streams model compared to traditional point rendering.

due to four floats discussed above), and f = 0.32 for Stanford’s David model. Figure 5.10

shows the data transmission gains from using transformation streams as we increase the

number of nodes in the hierarchy. We used a 8-level hierarchy for view-dependent ren-

dering. The gains shown include the overhead of sending singleton vertices that our

transformation streams model could not cover.

For comparison of frame rates between the transformation streams model and the

traditional point rendering model, we used a fixed amount of GPU memory. Let Apools be

the amount of data used by the vertex transformation pools in the transformation streams

model. For both models we draw Apools amount of data from GPU vertex buffers and the

rest from conventional memory.

Our method currently processes geometry without appearance attributes. An easy

way to draw models with appearance attributes using our method is to use texturing. The

use of texturing results in only a 10% overhead with our method. Visual results of our

133



Figure 5.11: Coverage of vertices by transformation streams model when using two vertex
transformation pools.

approach are shown in Figure 5.12. We have achieved 200% to 500% improvement in

communication bandwidth to the GPU and 17% to 32% improvement in frame rates.

The left and the center columns of Figure 5.12 shows the conventional rendering and

the rendering by Transformation Streams, respectively. As shown in Figure 5.11, two

vertex transformation pools can cover about 80% of all the vertices. The right column

of Figure 5.12 shows the rendering of the vertices covered by the vertex-transformation

pools.

5.8 Conclusions and Future Work

We have developed a novel method for representing 3D point data using interacting

streams of vertices and transformations. We have validated this method for accelerating

conventional view-dependent rendering applications for points.
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Although our method achieves a factor of two to five improvement in the commu-

nication requirements to the GPU, our frame rates do not improve by a similar factor. As

the graphics community engages in image synthesis for ever larger 3D point datasets and

as the gap between processing speeds and memory access times grows ever wider, the

impact of our method on graphics rendering performance should rise even further.

One of the important considerations in our method is the space required to en-

code the boolean interaction matrix. Recent advances in efficiently compressing boolean

matrices [54] are relevant to such encodings and suggest a fruitful direction for future

research. At present the GPU programmability and the geometry instancing framework

offer limited flexibility in exploring sophisticated boolean interaction matrix compression

techniques. Still, such compression techniques could greatly assist in remote visualization

applications.

We hope that our approach of transformation streams will provide a road-map

for future research into how one can use multiple interacting streams in the stream-

programming abstraction to map other problems of interest on the GPUs. Our current

results appear promising for combining stream programming abstractions with traditional

procedural graphics approaches. We believe these are first steps towards more general

combinations of multiple data streams for processing geometry, appearance, and physical

simulations.
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1.69M Verts 1.69M Verts 1.37M Verts
20.3FPS / 12.92MB 24.3FPS / 3.45MB N/A / 997KB

1.17M Verts 1.17M Verts 878K Verts
29.8FPS / 8.90MB 35.0FPS / 2.92MB N/A / 712KB

1.02M Verts 1.02M Verts 926K Verts
32.9FPS / 7.75MB 43.4FPS / 1.25MB N/A / 565KB
(a) Conventional (b) STS (c) Coverage by pools

Figure 5.12: The result of rendering XYZ RGB’s Troll, Stanford’s David and XYZ RGB’s
Manuscript. The left images show the conventional rendering of the models, the center
images show the rendering of them by salient transformation streams and the right images
show the vertices covered by the vertex-transformation pools for the models. We report the
number of vertices rendering, the frame rates achieved, and the per-frame communication
bandwidth required for the conventional approach and our approach.
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Chapter 6

Salient Frame Detection for Molecular Dynamics Simulations

Saliency-based analysis can be applied to time-varying 3D datasets for the purpose

of summarization, abstraction, and motion analysis. As the sizes of time-varying datasets

continue to grow, it becomes more and more difficult to comprehend vast amounts of data

and information in a short period of time. Automatically generated thumbnail images and

previewing of time-varying datasets can help viewers explore and understand the datasets

significantly faster as well as provide new insights. In this chapter, we introduce a novel

method for detecting salient frames for molecular dynamics simulations. Experimental

results on E. coli mechanosensitive ion channels show the effectiveness of our method.

6.1 Introduction

Recent advances in acquisition and simulation techniques have generated a huge

amount of time-varying datasets. Time-varying data can be acquired from scientific sim-

ulation, videos, and animation libraries. Features in the time-varying datasets are com-

monly defined as the regions of interest that a human observer is likely to look for. As

the number and complexity of these datasets increase exponentially [53], it is becoming

impractical to expect a human observer or a domain expert to discover all the features

manually. Automatic or semi-automatic tools to help humans discover scientifically in-

teresting features are especially important for this reason.
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Many illustration-based techniques have been proposed by several researchers [5,

56, 123] to summarize time-varying datasets such as ocean flow, volume, and human

skeletons. The basic step for these illustration techniques is automatic detection of salient

frames which have interesting features. In the method of image saliency by Itti et al. [52]

or mesh saliency by Lee et al. [69], they use a center-surround operator to identify the

uniqueness of a pixel or a vertex with respect to its neighborhood. In this chapter, we

have decided to use a similar approach and define saliency as the uniqueness of a single

frame with respect to its neighboring frames both forwards and backwards in time. Our

collaborator, Dr. Sergei Sukharev’s group at Biology Department at the University of

Maryland, was interested in identifying the frames in molecular dynamics simulations,

where the anomalies (kinks) in the secondary structures happen in the opening and closing

simulations of the Ecoli channel [3]. We validate the effectiveness of our salient frame

detection algorithm in this molecular dynamics simulation. To the best of our knowledge,

there have been no salient frame detection techniques for molecular dynamics simulations

despite a great need for such tools for this area.

The rest of this chapter is organized as follows. A review of related work is provided

in Section 6.2. In Section 6.3, we formulate the relationship between one residue and the

neighboring residues in space, and present an algorithm to detect saliency in time. Results

are presented in Section 6.4, Section 6.5 concludes this chapter and discusses future work.

138



6.2 Related Work

This section briefly reviews the related research in the areas of (1) saliency analysis

for time-varying 3D datasets and (2) some introductory background for protein structures

and ion channels.

6.2.1 Saliency-based Motion Analysis

Designers and artists have long used a single static image or a few images to il-

lustrate dynamics of scenes for motion. They have depicted dynamics to facilitate vi-

sual communication in comic books and storyboards [82]. Recently, several graphics

researchers [56, 87, 97] have proposed illustration-based techniques to depict the dynam-

ics of time-varying data in a compact way. They use principles of visual art such as

glyphs, and generate an image (or a few images) to summarize the time-varying data

to facilitate visual communication. For instance, Joshi and Rheingans [56] have used

illustration-based techniques such as speedlines, flow ribbons, and strobe silhouettes to

convey change over time for a time-varying dataset. Nienhaus and Dollner [87] have used

dynamic glyphs such as directed acyclic graphs and behavior graphs to provide further

information about dynamics in the 3D scene.

A very interesting beginning in detecting salient frames for human skeleton datasets

has been made by Assa et al. [5]. They generate an action synopsis for presenting the

motion of a single skeleton-based character. They represent motion in affinity matrices,

constructed from various aspects of a pose such as joint positions, joint velocities, joint

angles, and joint angular velocities. They first define a vector xk
a which represents an as-
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pect a of the pose at frame k. Then, they compute the dissimilarity of the aspect a between

two given frames i and j by a simple distance measure to identify key poses. Finally, they

compose these key poses into a single image by including the most significant poses.

6.2.2 Protein Structures

A protein structure is formed by a unique three-dimensional assembly of a spe-

cific polypeptide chain. Each polypeptide chain contains a particular sequence of serially

linked amino acids. Figure 6.1(a) shows an amino acid which is composed of an amino

group, a carboxyl group, and a side-chain, which are connected at the central Cα atom.

(a)

(b)

Figure 6.1: Image (a) shows the structure of an amino acid. Image (b) shows a peptide
bond formed by the reaction between a carboxyl group of one amino acid and an amino
group of the other amino acid. Each peptide bond releases a molecule of water (H2O).
Images are adapted from [12].
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When the carboxyl group of one amino acid reacts with the amino group of another amino

acid, a peptide (i.e., amide) bond (Figure 6.1(b)) is formed by releasing a molecule of wa-

ter (H2O). This peptide bond is typically composed of four atoms (C, O, N, and H) which

lie on a common plane due to the partial double bond characteristic at the CO-NH con-

nection. Here, the recurring atomic array of N-Cα -C(=O) from each amino acid of a

polypeptide chain constitutes the protein backbone. By definition, the specific amino acid

sequence for each polypeptide chain is the primary structure of the protein. Segments

of polypeptides often fold locally into stable structures such as α-helices or β -strands,

each of which is called a secondary structure. Typically, the α-helix is a right-handed

coiled conformation, resembling a spring. β -strands connected laterally by three or more

hydrogen bonds, form a generally twisted, pleated sheet.

The angle between two planes is referred as their dihedral angle. Figure 6.2(a) and

(b) shows how we can compute the dihedral angle when there are four atoms which are not

co-linear in 3D space. We first align the atoms B and C as shown in Figure 6.2(b). Then

the dihedral angle corresponds to the angle measured in clockwise direction between the

atom A and the atom D. Similarly, for a sequence of protein’s polypeptide chain, back-

bone atoms (C, N, and Cα ) allow for three different dihedral angles of proteins as depicted

in Figure 6.2(c): φ involving the backbone atoms C-N-Cα -C, ψ involving the backbone

atoms N-Cα -C-N, and ω involving the backbone atoms Cα -C-N-Cα . The planarity of the

peptide bond usually restricts ω to be 180◦ or 0◦. Thus the Ramachandran plot [100] con-

siders two variable dihedral (torsion) angles (φ and ψ) and shows possible combinations

of these conformational angles of representative secondary structures in a polypeptide

such as α-helices or β -sheets.
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6.2.3 Ion Channels

Ion channels are proteins that regulate the flow of ions into and out of the cells. Ion

channels enable a very rapid flow of ions – sometimes as many as a million ions a second.

Ion channel transitions are very fast – some opening for less than a millisecond before

they close. This rapid and highly specific gating of ion channels is necessary for survival

of cells. The speed at which ions flow across the cell membrane (i.e., the ion channel ki-

netics) impacts the reaction time of a nerve or a muscle cell, and thus dictates the response

time of the animal to the possible environmental dangers. An accurate understanding of

the structural changes and functioning of ion channels is vital for therapeutic drug design.

Nearly a third of the top 100 pharmaceutical drugs target ion-channels.

(a) (b)

(c)

Figure 6.2: Image (a) and (b) show the computation of a dihedral angle between 4 atoms
(A, B, C, and D). When we align the atom B and the atom C as shown in Image (b), the
dihedral angle θ is defined as the angle between the atom A and the atom D in clockwise
direction. Image (c) shows the dihedral angles (φ between C-N-Cα -C, ψ between N-Cα -
C-N, and ω between Cα -C-N-Cα ) and the normal vectors (~n1 and ~n2 on the planes defined
using N-Cα -C in residue 1 and residue 2, respectively. Images are adapted from [12].
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(a) (b)

Figure 6.3: Image (a) and (b) show opening of the E. coli mechanosensitive ion channel,
respectively. There are seven subunits in this ion channel, and all seven subunits are
topologically identical, but do not act independently in the simulation.

6.3 Salient Frame Detection

In this chapter, we define saliency as the uniqueness of a single frame with respect

to its surrounding frames in time, and detect the salient frames for molecular dynamics

simulations. Mechanosensitive ion channels play a critical role in transducing physical

stresses at the cell membrane into an electrochemical response. The crystal structure of

E. coli MscS has provided a starting point for detailed descriptions of its mechanism.

Figure 6.3 shows the opening of the E. coli mechanosensitive ion channel that we will

consider throughout this chapter. There are 7 subunits in this ion channel, and all 7 sub-

units are topologically identical, but do not act independently in the simulation. Each

subunit has residues 1 to 175 (with few gaps cut out). To understand this mechanism,

identifying the presence of kinks in α-helices is critical because they have functional im-

portance. Kink detection, however, is a tricky question because there are many factors

involved. These include the state (ruptured or not) of the H bonds, local geometric infor-
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mation such as Ramachandran angles (torsion angles), and more global information such

as the angles among multiple atoms.

In this section, we formulate the relationship between one residue and the neighbor-

ing residues spacially, and present an algorithm to detect saliency in time. Our framework

encompasses the global and local geometric properties of backbone residues in a molec-

ular dynamics simulation.

6.3.1 Construction of Affinity Matrices in Space

We explore the relationship between one residue and the neighboring residues to

detect the changes in α-helices. The straightening and buckling of α-helices are inter-

esting because they appear in many of simulations of ion channels and are believed to be

correlated with conformational states of the whole channel [115]. There are many ways

to define the relationship among residues, but we believe the angles in backbone atoms

would be one of the best ways since backbone atoms are much more stable in their posi-

tions than side-chains. As Ramachandran plot suggests, we could have measured torsion

(dihedral) angles and conjectured the changes of secondary structures for each residue.

However, analysis of Ramachandran angles only considers very local properties inside

a residue, and does not encompass the global geometric property among a sequence of

residues. Instead, we use the relative angles between one Cα (α-carbon) and other α-

carbons within a cut-off distance rs.

Molecular dynamics simulation gives us a trajectory file which holds all the atom

positions in 3D space for every frame k. Since three non-colinear points in 3D space
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can define a plane, the positions of N-Cα -C atoms in each residue can define a plane and

its normal vector ~n as shown in Figure 6.2(c). We first compute normal vectors (~ni) to

the planes formed by these N-Cα -C atoms in residues (Ri) for every frame k. Then, we

construct an affinity matrix Ak for the k-th frame as:

Ak =

































~n1 · ~n1 ~n1 · ~n2 ~n1 · ~n3 . . . ~n1 · ~nm

~n2 · ~n1 ~n2 · ~n2 ~n2 · ~n3 . . . ~n2 · ~nm

~n3 · ~n1 ~n3 · ~n2 ~n3 · ~n3 . . . ~n3 · ~nm

...
...

... . . . ...

~nm · ~n1 ~nm · ~n2 ~nm · ~n3 . . . ~nm · ~nm

































(6.1)

where m is the number of residues that we consider. Here each element ak(i, j) is simply a

dot product between the normals ~ni and ~n j. If the difference between two residues Ri and

R j is larger than a cut-off distance rs, we set ak(i, j) to be zero. On average, there are 3.6

amino acids per turn in α-helices. Throughout this chapter, we use rs = 5, which covers

about 3 turns forwards and backwards in α-helices. Figure 6.4 visualizes the affinity

matrices from the first and the second frames for 33 residues (from residue 94 to residue

126) of the subunit 1 for the molecule shown in Figure 6.3.

6.3.2 Saliency Detection among Neighboring Affinity Matrices

Our affinity matrix in equation 6.1 represents geometric relationship among neigh-

boring residues. This angular relationship cannot be represented by a single vector x as

in [5]. Therefore, the dissimilarity between two given frames i and j should be computed
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by the difference between two affinity matrices Ai and A j. There are several ways to

compute the difference between two matrices. However, we have decided to use singular

value decomposition (SVD) in computing the difference between two matrices. Singular

value decomposition (SVD) [39] factorizes a given m× n matrix A into three matrices:

A = U ×Σ×V ′, where U is an m×m unitary matrix (U ×U ′ = I and U ′×U = I), Σ

is m× n diagonal matrix with nonnegative numbers, and V ′ is the transpose of an n× n

unitary matrix V. There are two nice properties in the SVD decomposition: (1) U and

V are a set of orthonormal basis vectors (singular vectors), and (2) the diagonal entries

in Σ are called singular values, which are sorted in non-increasing order and indicate the

importance of the corresponding basis vectors. If there is noise in the original matrix A,

the noise is represented by the least important basis vectors and singular values.

In α-helices, backbone atoms (C, O, N, and H) are much more stable than side-

chains because of the H bonds. However, there could be still a lot of vibrations in the

positions of backbone atoms over time. By using SVD analysis, we expect these vibra-

Figure 6.4: Visualization of affinity matrices computed from the first and the second
frames for 33 residues of the subunit 1 for E. coli MscS (shown in Figure 6.3) when
the cut-off distance, rs = 5 is used.
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tions to occur amongst the least significant singular values, which are ignored. This is

why we use SVD over any other methods for computing the uniqueness of the affinity

matrix Ai from the affinity matrix A j.

Uniqueness of the affinity matrix Ai from the affinity matrix A j: We perform a

singular value decomposition on Ai: Ai = Ui ×Σi ×V ′
i . This returns the best basis vectors

as the column vectors in Ui. Since the basis vectors are sorted by their importance in

SVD decomposition, we can obtain a reduced matrix Ûi by taking the first ri basis vectors

in Ui. For the j-th frame A j, we use these ri basis vectors to best approximate it. For

this, we project A j to the low-dimensional subspace spanned by the ri basis vectors as:

Wi, j = Û ′
i ×A j. This gives us the weight matrix Wi, j for the ri basis vectors. We use this

weight matrix to approximate A j by: Â j = Ûi ×Wi, j. Finally we compute the root mean

square error (εi j) between Â j and A j: ‖ Â j −A j ‖F . , where the Frobenius norm of a

matrix M is defined as ‖ M ‖F=

√

m

∑
i=1

n

∑
j=1

|li j|2.

Saliency Value si for the frame i: To compute the uniqueness of a frame i from other

frames j, we avoid considering all possible pairs (i, j). Instead, we consider neighboring

frames j where |i− j| ≤ rt . Throughout this chapter, we use rt = F/10, where F is the

number of total frames. The final saliency value si is the average of the errors εi j in

neighboring frames of i:

si =

∑
| j−i|≤rt

εi j

Fi

where Fi is the number of frames whose distance from the frame i is less than or equal to

rt . Figure 6.5 shows the graph for these saliency values in blue.
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6.4 Results

We have compared our detected salient frames with the ones identified indepen-

dently by our collaborators (biology scientists) for molecular dynamics simulations. Fig-

ure 6.5 shows the five most salient frames detected by our method for the subunit 4 in the

E. coli mechanosensitive ion channel in Figure 6.3. The frames 5, 26, 30, and 34 which

have been detected by our method are the same or very close to the frames 3, 24, 26, 30,

and 35 with changes in the kinks, which were detected manually by our collaborators.

The frame 39 detected by our algorithm is not close to any frame detected manually by

our collaborators, but it had the lowest saliency value among the five most salient frames.

Generally, kinks change towards the end of this simulation, and our method successfully

detects these important frames.

Figure 6.6 shows the five most salient frames detected by our method for the subunit

1 in the ion channel shown in Figure 6.3. This subunit is topologically identical to the

subunit 4, but acts differently in the simulation. Therefore, it results in different salient

frames (frames 11, 19, 21, 35, and 39) as shown in Figure 6.6. Our collaborators identified

frames 2, 18, 20, 23, 35, 36, and 39 as being salient. Figure 6.7 shows the six most salient

frames detected by our method for the subunit 4 in the symmetry annealing of MscS

F68S mutant. In this molecular dynamics simulation, residue 68 was mutated to another,

serine, which has very specific consequences for channel inactivation in real experiments.

As changes in the kinks occur more frequently than the previous simulations, we observe

a larger number of salient frames than in the previous cases. Our collaborators have

manually identified frames 2, 4, 18, 34, and 38 as being salient. Among these, frames
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2, 4, 18, and 38 are the same or close to the frames 1, 5, 18, and 39 detected by our

algorithm, and the remaining frame 34 also exhibits a relatively high saliency value as

shown in Figure 6.7.

6.5 Conclusions and Future Work

In this chapter, we have detected salient frames for molecular dynamics simulations.

We have introduced the notion of saliency in time, and successfully identified some of the

key frames which have changes in the kinks (i.e., appearance or disappearance of a kink)

for Ecoli channel. We believe that our method can enable researchers to focus on the

important frames for further analysis of the dataset.

We currently consider the angles among residues in α-helices, and identify the

anomalies (kinks) in the secondary structures for an Ecoli channel. We believe, however,

this framework can be easily extended to encompass other salient features in molecular

dynamics simulations by changing the way we construct affinity matrices to address other

needs by scientists or domain experts. In this context, it will be interesting to compare

and contrast the results of salient frames detected by a new method with what scientists

think salient in their domains.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 6.5: Five most salient frames detected by our method for the subunit 4 in the E.
coli ion channel (MscS) in Figure 6.3. The changes in the kinks are detected towards the
end of this simulation, and our method successfully detects some of the most important
frames.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 6.6: Five most salient frames detected by our method for the subunit 1 in the E. coli
ion channel (MscS) in Figure 6.3. This subunit is topologically identical to the subunit 1,
but acts differently in the simulation.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Figure 6.7: Six most salient frames detected by our method for the subunit 4 in the other
molecular dynamics simulation, showing the symmetry annealing of MscS F68S mutant
– the residue 68 was mutated to another, serine, which has very specific consequences for
channel inactivation in real experiments.
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Chapter 7

Conclusions and Future Work

Our ability to generate 3D data has far surpassed our ability to visually compre-

hend it due to the recent advances in acquisition and simulation technologies. Therefore,

graphics and visualization applications need to incorporate principles of visual perception

to allow people to comprehend information more quickly. Our research has focused on

having a validated model of mesh saliency, using a saliency-guided operator to enhance

desired regions of 3D datasets, and identifying salient frames for time-varying datasets.

Our research has shown that the previous model of mesh saliency can well approxi-

mate human eye movements. We believe looking for non-repeating structure in the middle

of repeating structure is another way to identify the salient regions. We have shown that

this high-level representation to extract important components of the data set is useful not

only for analyzing but also for improving the interactivity of graphics applications. Next,

we have shown how one can use saliency for enhancing specific region of interest both in

a 3D mesh and in a volume. Our saliency-guided enhancement operator is more effective

than the conventional Gaussian-based enhancement in drawing viewers’ attention to a de-

sired region of interest. Finally, we have shown that the notion of saliency can be applied

to time-varying 3D datasets. Our SVD-based analysis on a time-varying dataset has suc-

cessfully identified salient frames in molecular dynamics simulations. During our studies,

we have uncovered several interesting issues that need further investigation, such as con-
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sidering multiple appearance attributes in the computational model of mesh saliency and

applying our enhancement operator to arbitrary regions of interest with different levels of

enhancement. Finally, we believe that our salient frame detection framework can be also

useful for anomaly detection in large time-varying datasets.

7.1 Multichannel Mesh Saliency

Previous models of mesh saliency have only considered geometric attributes such

as mean curvature and its variation. However, visualization systems today are character-

ized by a rich visual complexity that arises from several visual channels including color,

texture, and geometry. Figure 7.1(a) shows a Stanford Bunny model with high variance

texture. There are many regions where the geometry has little variation, but the color

intensity and the color opponency have large variation. Generalizing mesh saliency to en-

compass these attributes should be an important direction for further research. Computing

each channel of saliency for a 3D model does not seem complicated if we want to use the

same multi-scale center-surround mechanism proposed in Lee et. al. [69]. We can just

change the scalar values from mean curvature to other property such as color intensity and

color opponency for each channel. Figure 7.1(b), (c), and (d) show multichannel saliency

values for the Stanford Bunny Model in Figure 7.1(a).

The real challenge in computing multichannel mesh saliency is how to aggregate

these channels. We should be able to answer the following questions. Is a region of a

mesh that has a high color contrast but a low curvature gradient more effective at eliciting

viewer attention than another region that has a high curvature gradient but a lower color
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(a) (b)

(c) (d)

Figure 7.1: Multichannel Saliency Values for the Stanford Bunny Model. Image (a) shows
the Stanford Bunny model with high variance texture. Image (b), (c), and (d) show the
saliency from the gradient of mean curvatures, the gradient of color intensity, and the
color opponency by the normalized sum of the saliency at all scales, respectively.

opponency? Are some visual channels clearly superior in eliciting visual attention than

others? Should we use the same scale or scale weights for different salient channels?

Finally, the new multichannel mesh saliency model should be validated again with respect

to human eye movements through eye-tracking-based user study.
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7.2 General Saliency Detection in Large Time-Varying Datasets

Our salient frame detection framework is extremely useful for detecting other anoma-

lies in these large time-varying 3D datasets. Right now, we construct a matrix for each

frame i and do the SVD analysis on it to compute the most important basis vectors. We

then use these basis vectors from the frame i to approximate neighboring frames j. This

results in the approximation errors, which are the saliency values in our salient frame

detection framework in Chapter 6.

7.2.1 Data Analysis for 4D Spaces

As the size of time-varying 3D datasets grows, there have been several efficient

visualization techniques developed based on parallel algorithms for graphics processing

unit (GPU) or multi-core processors [103, 110, 126]. Large time-varying 3D datasets can

be regarded as 4D datasets. We can also carry out our analysis on any combination of

space and time. For instance in molecular dynamics simulations, if we construct a matrix

for each residue with the information of all the time frames, we can do analysis similar to

what we have presented in Chapter 6 to detect anomalous movements at the residue level.

7.2.2 Animation Data Compression

As the computing power has been increasing, one of the greatest bottlenecks in ren-

dering 3D datasets is the data transfer time from the memory to the graphics processor.

Our salient frame detection framework can be adapted to progressively update motion

subspaces for fast rendering of large time-varying datasets. Instead of formulating a ma-
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trix for each frame, we could construct one matrix for all frames. The k-th column of

this matrix holds the information of the frame k. Then, we can find a fixed set of motion

subspaces which can be shared by consecutive frames. We automatically update these

subspaces only if a new salient frame emerges. This idea can significantly improve the

communication bandwidth requirement in rendering animation data.

7.3 Enhancement for Multiple Regions

Our saliency-based enhancement technique for volume datasets has been validated

on spherical regions of interest and a binary-valued saliency field. Generating an emphasis

field from an arbitrary-shaped region with general saliency values can be considered in

the future. With this advance, one can see the effect of our method on two or more regions

with varying degrees of importance.

Extending our technique for multiple regions, however, is not obvious. Assume

there are two regions of interest with different degrees of importance. This will result

in two different emphasis fields around them with our current technique. If they are

separated from each other, we can combine them easily. However, if they overlap, there

could be several ways to combine them. For instance, we can compute the mean or

take the maximum of two field values at each voxel. Instead of trying to combine two

emphasis fields in 3D space with our current technique, we can also think of performing

the whole computation in frequency domain because the convolution of the Gaussian

function and our emphasis field can be easily processed in that space. It will be interesting

to investigate several possibilities for aggregating emphasis fields for two or more regions
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of interest. Once we have a technique to enhance multiple regions with varying degrees

of importance, it should be validated with an eye-tracking-based user study.
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[125] J. Vorsatz, C. Rössl, L. Kobbelt, and H.-P. Seidel. Feature sensitive remeshing.

Computer Graphics Forum, 20(3):393–401, 2001.

[126] Q. Wang and J. JaJa. Interactive high-resolution isosurface ray casting on mul-

ticore processors. IEEE Transactions on Visualization and Computer Graphics,

14(3):603–614, 2008.

[127] K. Watanabe and A. G. Belyaev. Detection of salient curvature features on polyg-

onal surfaces. Computer Graphics Forum (Eurographics 2001), 20(3):385–392,

2001.

[128] T. Welsh and K. Mueller. A frequency-sensitive point hierarchy for images and

volumes. In IEEE Visualization’03, pages 425–432, October 2003.

[129] H. Wendland. Piecewise polynomial, positive definite and compactly supported

radial functions of minimal degree. In Advances in Computational Mathematics,

volume 4, pages 389–396, 1995.
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