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Abstract. For a long time, gravitational instability in the disk of planetesimals has been suspected to be the main engine
responsible for the beginning of dust growth, its advantage being that it provides for rapid growth. Its real importance in
planetary formation is still debated, mainly because the potential presence of turbulence can prevent the settling of particles
into a gravitationally unstable layer. However, several mechanisms could yield strongly inhomogeneous distributions of solids
in the disk: radial drift, trapping in vortices, perturbations by other massive bodies, etc. In this paper we present a numerical
study of a gravitationally unstable layer. This allows us to go beyond the classical analytical study of linear perturbations,
exploring a highly non-linear regime. A hierarchical growth of structure in the presence of dissipation (gas drag) can yield
large, virialized clusters of planetesimals, the first time such clusters have been observed in the context of planetesimal disks.
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1. Introduction

The formation of planetesimals from dust in the solar nebula,
and their growth to form bodies of planetary size, is a complex
process. In the earliest stages of this process, dust-gas inter-
actions, collective effects, and timescales are topics of intense
research. Controversy persists as to whether the first solid bod-
ies grew solely by physical collisions and sticking, by gravita-
tional instability in a layer of dust (or larger particles), or by
some combination of these processes.

The first detailed qualitative description of planetesimal
formation was due to K. E. Edgeworth, who is better known for
having postulated the existence of a huge reservoir of cometary
bodies beyond Neptune’s orbit (the so-called Edgeworth-
Kuiper Belt). He inferred that the settling of particles toward
the central plane of a disk-shaped nebula would produce a layer
with density much greater than that of the gas, with sufficient
density to become unstable due to self-gravity (Edgeworth
1949). In order for this instability to occur, the mutual attrac-
tion of the particles had to overcome both the tidal pull of the
Sun and the “internal heat” associated with their velocity dis-
persion. The resultant clusters of particles could then collapse
into solid bodies, which would collide and coalesce into larger
and larger bodies, eventually producing the planets.

The first mathematical analyses of this process were
produced by Safronov (1969), and independently by

� P.T. acknowledges the support of the Poincaré fellowship of the
Observatoire de la Côte d’Azur and of the Programme National de
Planétologie.

Goldreich & Ward (1973). They performed linear stabil-
ity analyses of a particle layer with Keplerian rotation. They
showed that the particle velocity dispersion stabilized density
perturbations of small spatial scale, while rotation acted to
stabilize large ones. That is to say, there was a preferred scale
for gravitational instabilities, which would tend to produce
condensations with a characteristic size. These analyses
assumed that there was no obstacle to settling of particles,
so that the particle layer could attain the critical density.
However, the presence of any kind of turbulence in the gas, as
is generally accepted as an unavoidable source of viscosity in
accretion disks, could inhibit sedimentation of small particles.
Even in a purely laminar nebula, settling of particles into a
dense layer could be inhibited. The nebular gas necessarily
has a slightly sub-Keplerian velocity due to the existence of
a radial pressure gradient. If a particle layer in the midplane
attains a density greater than that of the gas, it lacks pressure
support and tends toward more nearly Keplerian rotation.
The resulting shear generates turbulence that may prevent
further settling, so that the critical density for gravitational
instability is not reached (Weidenschilling 1980). However, the
effectiveness of this process is currently under debate (Youdin
& Shu 2002; Weidenschilling 2003). If the dust/gas ratio can
be enhanced several times over solar abundance, by global
transport (Youdin & Shu 2002) or local shear instabilities
(Goodman & Pindor 2000), it may be possible to attain the
critical density. It may be achieved more simply if some degree
of particle coagulation occurs, as decimeter-sized or larger
bodies will decouple form shear-induced turbulence.
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Attainment of the critical density allows gravitational insta-
bility, but does not guarantee it. A realistic system of particles
would contain bodies with a range of sizes; as the gas drag
produces size-dependent radial velocities, there will be some
velocity dispersion. This can inhibit instability, until the the
mean size becomes larger than a threshold size, estimated by
Weidenschilling (1995) to be of the order of 10 m. However, the
outcome of gravitational instability in that case may be signif-
icantly different from that experienced in a layer of small par-
ticles. Goldreich & Ward (1973) assumed cm-sized particles,
which would be subject to damping by collisions and gas drag,
and set the velocity dispersion to zero, allowing instabilities
on all length scales below the limit set by rotation. In contrast,
10-m bodies are only weakly damped, and may retain a signifi-
cant velocity dispersion that favors instabilities at a single scale
length (Weidenschilling 1995). Numerical simulations of par-
ticle coagulation in the outer solar system, where cometary nu-
clei presumably accreted, showed that gravitational instability
could have occurred in such an environment (Weidenschilling
1997; henceforth W97). At 30 AU from the Sun, the size of the
unstable regions would be∼0.016 AU for a low-mass solar neb-
ula, containing ∼1022 g of condensed matter. Weidenschilling
speculated that clusters of decameter-sized bodies on this scale
would not collapse to solid bodies with diameters ∼100 km;
rather, he suggested that due to the lack of damping such con-
densations would be transient. However, the detailed evolution
of such clusters, their duration, and their possible influence on
the growth of planetesimals have not been explored by numer-
ical simulations. In general, two elements play against gravita-
tional collapse: the overall velocity dispersion, if not damped
by collisions or gas drag, and the angular momentum of a grav-
itationally bound cluster due to the Keplerian rotation of the
particle layer. If both of these quantities are too large, the first
can prevent instability on small scales, while the second can
prevent collapse beyond a certain upper-limit scale.

As detailed in Sect. 2, all these factors are taken into ac-
count in the linear perturbation analysis of the stability of a
nearly homogeneous disk. However, the subsequent evolution
can be highly non-linear and its study requires the use of nu-
merical simulations.

Given the long-lasting interest in the general problem of
gravitational instability and its importance for our understand-
ing of the planetesimal growth process, both in our solar sys-
tem and elsewhere, we present in this work the numerical study
of the evolution of a gravitationally unstable layer of planetes-
imals in orbit around the Sun. Simulating the process allows
us to explore the collective evolution, going beyond the linear
approximation usually employed to describe the onset of grav-
itational instability, and to study the dynamics of planetesimal
clusters. A fully consistent simulation of the W97 scenario is,
however, well beyond the current computational limits. In fact
it is simply not possible to simulate a sufficiently large disk
patch at 30 AU with a number of particles, distributed in a range
of sizes, large enough to reproduce the evolution and accretion
of a planetesimal swarm starting from 1 cm or 1 m bodies.

We use the N-body hierarchical tree code pkdgrav,
(Richardson et al. 2000) which is able to treat physical col-
lision between particles in a consistent way, simulating their

coalescence into larger bodies. Given the large numbers of in-
teractions and particles involved, all the runs presented here
required the use of high-performance parallel computers1. The
unstable regime was explored both in a gas-free environment
and in the presence of a Keplerian non-turbulent gas disk. We
note that the results obtained here can also be helpful for under-
standing the process of gravitational collapse in other scenarios
where gravitational instability could play a role, such as those
invoking particle concentration in the core of large-scale anti-
cyclonic vortices (Barge et al. 1995; Tanga et al. 1996).

In the following section we will address the numerical
method employed, together with boundary conditions. Later
(Sect. 3) we illustrate the evolution of a layer of single-sized
large planetesimals, considering either energy-conserving (per-
fectly elastic) mutual collisions or inelastic bouncing. In Sect. 4
we show the effect of enhancing dissipation by including the
gas drag exerted by a laminar, Keplerian flow.

2. Numerical framework

The pkdgrav parallel N-body code allows in principle for treat-
ment of a large number (N) of particles, and numerical ex-
periments have been successfully performed with N ranging
from 105 up to 106 (see for example Richardson et al. 2000;
Tanga et al. 2002). The main advantage provided by this code
for our purpose is the possibility to assign a physical size to
particles (considered to be spherical) and to efficiently detect
mutual collisions. The collisional outcome can be treated in
different ways. In the following we will show results obtained
either by imposing perfectly elastic bouncing between the col-
liders, or by making the colliders merge into a single body of
mass equal to the sum of their masses, with the same internal
density. Considering the colliding bodies as an isolated sys-
tem, the first case implies energy conservation in the reference
frame referred to the center of mass. In the second case, dissi-
pation occurs. Accordingly, we will refer to the two families of
simulations with the acronyms “EC” (for “energy conserving”
collisions) and “CM” (for “collisional merging”).

All the simulations presented in the following have been
performed in the approximation introduced by Wisdom &
Tremaine (1988), that is by assuming that a dense ring of plan-
etesimals at distance a from the central body can be divided
into local boxes (or “patches”) of size L, with L � a. In a co-
ordinate frame centered on the box, with the x-axis pointing
away from the Sun, the y-axis being tangential to the direction
of motion, and the z-axis perpendicular to the orbital plane, the
equation of motion for one particle can be linearized:

ẍ = Fx + 3Ω2x + 2Ωẏ,
ÿ = Fy − 2Ωẋ,
z̈ = Fz −Ω2z,

(1)

in which Ω is the angular frequency at distance a from the Sun,
and F represents the gravitational force (per unit mass) due to
the other particles.

1 In particular, we wish to acknowledge the use of SIVAM-II at the
Observatoire de la Côte d’Azur, of the PC cluster installed in the same
institute by ALINEOS, and of the IDRIS computing facilities.
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The box in which the simulation is performed is considered
to be periodic in the (x, y) plane. In order to reduce bound-
ary effects, the gravitational contribution coming from three
orders of ghost patches, each containing a copy of the parti-
cles in the main domain, is considered. The ghost patches are
nested around the central one; those having a distance from the
Sun different from a have a velocity tangential to the orbit con-
sistent with the Keplerian shear.

It must be noted that the collective particle behavior can be
associated to structures (such as clusters, waves, etc.) whose
typical scale length must be much smaller than L to avoid
boundary effects. However, given the limited resolution avail-
able in terms of N, it may happen that adequate sampling of
all interesting scales present in the disk is not possible. In other
words, while the largest scales are always limited by the size
of L, the smallest possible scales that can be represented in the
simulation have a size corresponding to several times the aver-
age particle diameter.

The spatial scales that we are interested in can be estimated
from the linear theory of gravitational instability in a rotating
disk of planetesimals (in the following, we use the notation of
Ward 1976). The dispersion relation that is obtained, in the case
of a thin disk locally rotating at frequency Ω, for a slightly
overdense domain of size λ, can be written as:

F(λ) = 2π2c2 − 4π2GΣλ + λ2Ω2 < 0, (2)

in which c represents the velocity dispersion and Σ the lo-
cal surface density of solids. An unstable solution exists when
F(λ) < 0, i.e., for c < ccrit = πGΣ/Ω. The widest range of
unstable wavelengths is obtained when c = 0; in that case,
for λ < 2λcrit instability is possible. λcrit is the value of the most
unstable wavelength (minimum of the dispersion relation) and
is given by:

λcrit =
2π2GΣ
Ω2

· (3)

As will be shown, the overdense regions grow by hierarchical
merging into larger and larger structures. However, before their
sizes become comparable to L, the increase in velocity disper-
sion stabilizes the dust layer, so that these structures dissipate.

3. Unstable structure growth in a “cold” disk

We simulate here a patch of the disk at an average distance
from the Sun of a0 = 30 AU. Since the observed structures
develop on scales�λcrit, a box size comparable to λcrit does not
appear to be a serious limitation. In the following, we choose
a patch size L = 0.04 AU, i.e., ∼70% larger than the critical
wavelength, λcrit ∼ 0.024 AU. We checked one case with L =
7λcrit, but no qualitative difference was noted in the evolution
of structures. We are thus confident that the results presented
here are not seriously affected by boundary effects.

The imposed initial conditions are derived from the comet
formation model in W97 after t ∼ 105 yr of model evolution. At
that stage, a theoretically unstable layer is formed. This choice
is just a reasonable starting point for investigating the dynam-
ics of planetesimals in the comet-forming region even though,

as we will see, the limitations in computing power prevent a
direct comparison to the W97 scenario.

The conditions for the onset of the instability require a den-
sity above a certain critical value, so that self-gravity can over-
come the solar tides that otherwise have the tendency to shear
away all structures. This critical density is usually written as:

ρcrit =
3M

2πa3
=

3Ω2

2πG
· (4)

The initial vertical dispersion h chosen in our simulations
corresponds to a volume density ρ ∼ 16 × ρcrit, consistent
with W97. The initial positions of the particles are generated
by assigning random positions inside a L× L× h box, avoiding
particle overlaps. The components of the velocity dispersion
on the disk plane, that we indicate by cx and cy, are initially
set equal to zero. As a consequence, the particles start on ideal,
circular Keplerian orbits. Concerning cz, its value is imposed to
be consistent with the vertical dispersion.

The surface density is Σ = 0.41 g cm−2. W97 states that
“about two-thirds” of the total solids take part in the instability.
However, we did not reduce the average surface density accord-
ingly, preferring to let the dynamics of the layer determine the
evolution of the entire mass.

A good compromise between the simulation speed, the
number of particles and the time step was found for N =

4 × 104, with 1.6 × 105 steps per revolution. This allows for
computation of the dynamical evolution over a few orbits in
about 100 h of CPU on a cluster of four SP4 processors.

In order to reproduce the surface density given above, with
the material bulk density of particles set to 1 g cm−3, the par-
ticle radius must be taken equal to R = 10 km. This size is
about 100 times the particle size that is built at t ∼ 105 yr in
the model of W97. The consequence is a stronger gravitational
stirring: we can thus expect that, in the absence of any dissipa-
tion, the vertical dispersion of the planetesimal disk will rapidly
increase beyond the initially imposed value.

Because of this large size, it is clear that we will not be
able to obtain a realistic simulation of the comet-forming re-
gion. A direct comparison with the scenario of W97 is thus
not straightforward. Nevertheless, we can infer some interest-
ing properties of the collapsing layer, and shed some light on
previously ignored behaviors.

In this case, the EC and the CM simulations have several
features in common. According to (3), the small wavelengths
emerge first (Fig. 1). The growth of structures at larger scales
is associated with the gradual coalescence of larger and larger
structures, similar to what happens during the process of hier-
archical growth already observed in numerical simulations of
cosmological structures. The main difference with cosmology,
here, is the deformation of clusters due to shear, translating into
the elongated structures that in the context of planetary rings
are known as “wakes” (see e.g., Richardson 1994). Later, the
structures dissipate at all scales. This sequence of events is ev-
ident in Fig. 1, which shows snapshots from the CM case. The
instability, here, is not sufficient to create conditions for an effi-
cient local collapse, and the size distribution of the CM simula-
tion (Fig. 2) shows that only a small fraction of the population
has moderately grown in size.
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Fig. 1. Particles positions as projected on the (x, y) plane in the CM simulation. The first panel represents initial conditions. Time is expressed
in orbital periods (at 30 AU, about 164 years).

In order to get some quantitative estimate of the local den-
sity enhancement, we computed the surface density Σ(n,m) on
a N × M grid (N being the dimension along x). Figure 3 (up-
per panel) shows the time evolution of the maximum density
found in the domain, using N = M = 32. A peak corresponding
to a ten-fold enhancement can be identified at t ∼ 0.42 orbit.
As expected from visual inspection, at later times the distribu-
tion slowly recovers its initial homogeneity. This can be seen
also in a histogram of the density at different times (Fig. 3,

lower panel), which shows that the rapid initial clustering cre-
ates strongly overdense regions and a large population of nearly
empty areas (dashed line). Later, the peak of the distribution
gradually returns toward the average value and the tail at large
densities is lost.

An estimate of the wavelengths of the structures at given
times can be obtained by computing the power spectrum of the
density distribution. In principle, this could be derived from the
2D Fourier transform (FT) of the surface density field Σ(n,m)
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Fig. 2. Cumulative size distribution for the CM simulation at the end
of the run (t = 2.24 orbits).

in the disk patch. However, since the structures are stretched
along the y direction by the Keplerian shear, a 1D FT along x is
easier to interpret and compute. The power spectrum was thus
computed as the average of the FT of the M rows:

P(k) =
1
M

M∑

i=1

‖F (Σ(n, i))‖, (5)

where F represents the Fourier transform. In this case we
chose N = 128, M = 40 and we applied an FFT algorithm.

The results thus obtained are summarized in Fig. 4. As ex-
pected the power spectrum of the initial conditions corresponds
to white noise. However, the evolution shows quite well the en-
ergy accumulating in larger and larger wavelengths, as shown
by the displacement of the maximum of the power spectrum.
The last (upper) curve shows that when large structures are
present, a flat spectrum is recovered at high frequencies, in-
dicating the disappearance of small scale structures.

The time evolution of the wavelength corresponding to the
maximum of the power spectrum is shown in Fig. 5. The noise
associated to the limited resolution does not allow for precise
conclusions to be drawn on the trend. Qualitatively, all we can
observe is that it is not possible to detect significant departures
from linear growth.

As shown also in Fig. 6, the system evolves toward an equi-
librium state at which velocity dispersions have stabilized all
the wavelengths. Here, the velocity dispersion c used to com-
pute the dispersion relation (Eq. (2)) is the quadratic average of
the three components cx,y,z. Each component is obtained by the
mass-weighted dispersion, i.e., by computing:

c =

√∑
i mi(vi − 〈v〉)2
∑

mi
, (6)

in which i is the index referred to particles, and sums are com-
puted over the total particle number. The initial ordered motion
in the dynamically “cold” disk has been transformed in a few
orbits into a warmer swarm of particles, as a result of gravita-
tional stirring. At the end of the run, it is clear that the instabil-
ity is no longer possible; being favored by the entropy increase,
the current state is stable.

Fig. 3. The two panels show the time evolution of the local surface
density, computed on a regular grid of 32×32 boxes, in the simulation
of Fig. 1. The upper panel shows the evolution in time of the maximum
and the minimum value; the horizontal dotted line corresponds to the
average. The lower panel shows the histogram of the density values
at different times. The continuous line refers to the initial conditions
(t = 0). The dashed line (with maximum at 0) refers to t = 0.30 orbit,
the dotted to t = 0.45 orbit, the dash-dotted to t = 0.74 orbit. The
remaining line, at the end of the evolution (t = 2.25 orbits) approaches
again the original Gaussian distribution, centered on the average value.

Until now we have not discussed the dissipative effect of
inelastic collisions, resulting in particle growth and mergers.
However, the EC simulation does not show any difference in
comparison to the analysis shown here. Collisions and very
close encounters thus seem not relevant for the evolution in
the short timescale corresponding to the lifetime of the ob-
served density waves. This can also be seen by considering
the timescale due to damping by mutual collisions. Following
Ward (1976), this timescale can be written as:

τdamp ∼ 4
3

ρpR

Σ

1
βΩ

(7)

in which β represents the fraction of energy dissipated at each
collision. In our case, having β = 1, τdamp ∼ 3 × 103 orbits,



1110 P. Tanga et al.: Gravitational instability in planetesimal disks

Fig. 4. Average power spectrum along x. Each curve corresponds to a
different time of the simulation, i.e., from bottom to top: t = 0, t =
0.11, t = 0.15, t = 0.30, t = 0.37 orbit (to be compared with the first
frames of Fig. 1). The small vertical bar indicates the approximate
position of the maximum of each curve. The frequency is expressed
as (1/λ AU−1). To simplify comparisons, an arbitrary vertical shift has
been added to each curve.

Fig. 5. Wavelength corresponding to the maximum of the power spec-
trum, as a function of time.

several orders of magnitudes higher than the timescale of the
velocity dispersion increase observed here.

In other words, the development of the features observed
on short timescales, corresponding to the transition from a dy-
namically cold, unstable disk, to a dynamically hot one, is prac-
tically independent of mutual collisions.

Fig. 6. The dispersion relation F(λ) for the simulation presented in
Fig. 1, at the corresponding times. The lower curve corresponds to the
initial conditions.

4. The instability in the presence of gas drag

An efficient dissipation of kinetic energy can be obtained by
introducing friction of the planetesimals from a gaseous nebula.
In the following, we suppose that the gas flow, represented by
the velocity u = (ux, uy, uz), follows a purely laminar, Keplerian
profile. In the local co-rotating system this can be written as:

ux = 0; uy = −3
2
Ωx; uz = 0. (8)

The gas drag over the particle is as an additional acceleration
having the form:

du
dt
= − 1
τstop

(u − u(x, y, z)) , (9)

where u is computed at the position of the particle (x, y, z). For
simplicity of computation, we assume that the stopping time is
proportional to the size of the particle: τstop = R/γ, γ being a
constant controlling the amount of gas friction. A given value
of γ will thus correspond to a specific stopping time for each
particle size.

In the discussion following, however, we prefer to express
gas drag through the Stokes parameter, defined as the ratio of
the stopping time to the typical dynamical time of the fluid mo-
tion (the orbital period): St = τstopΩ/2π. In our case, we will
indicate the value of St for the initial particle size.

Depending on the value of τstop, the particles will be more
or less forced to follow the Keplerian shear (8). On the other
hand, particles exactly moving as in Eq. (8) will not be influ-
enced by any energy dissipation. As a result, no radial migra-
tion can be reproduced in this ideal case, and the only effect of
the drag is to reduce velocity dispersions.

In the case of the minimum mass solar nebula, the gas drag
would hardly have any effect on planetesimals with R = 10 km
in the time span covered by the simulation presented here.
Instead of imposing a realistic drag, we thus look for the small-
est dissipation necessary to preserve some structures in the
disk. Since the lifetime of the structures observed in the pre-
vious section is about ∼1 orbit, we predict that a stopping time
of the same order of magnitude should deeply affect their evo-
lution. We thus test the evolution assuming St = 1.
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Fig. 7. Results from the CM simulation with St = 1 (left column) and St = 10 (right column), with merging particles. Large cluster merging is
observed in the first case, while in the second one only a small spherical cluster survives at the end of the simulation. Circles in the left column
snapshots represent the area used for computing detailed statistics, as detailed in the text.

In this case the effects of gas drag are readily apparent.
Both in CM and EC simulations, the initial amplification of
small wavelength fluctuations is followed by their hierarchi-
cal growth, as usual. The dissipation, however, prevents high-
density regions from dispersing, and the mutual interactions
make clusters grow by merging. As can be seen qualitatively
from the time evolution of the (x, y) distribution of parti-
cles (Fig. 7, left column), the clusters evolve toward circular
symmetry.

Except for the very beginning of the dynamical evolution,
this kind of distribution is no longer well suited for character-
ization by the study of the Fourier transform, since a periodic
density wave is not present. On the other hand, the two-point
correlation function can be computed in order to give a statisti-
cal estimate of the degree of clustering. Formally, the two-point
correlation function ξ(r) is defined as the excess probability
(relatively to a homogeneous distribution) of finding a point
in a volume drs (s being the space topological dimension) at
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distance r from a randomly chosen point. If δP is the probabil-
ity of finding a particle in the volume drs, then:

δP = n̄
[
1 + ξ(r)

]
drs, (10)

in which n̄ is the average number density of points in the dis-
tribution. Since we are mainly interested in the distribution on
the z = 0 plane, the computation of ξ(r) was made in two di-
mensions (s = 2), by considering the positions of the particles
projected on that plane.

Conventionally the length λh for which ξ(λh) ≡ 1 is as-
sumed to be the “characteristic length,”, i.e., the scale of the
largest typical clusters. From a practical point of view, we com-
puted ξ(r) by the method discussed in Rivolo (1986). Since
boundary conditions are periodic, the procedure is exact in
our case. The results obtained for four epochs are illustrated
in Fig. 8. The strong growth of ξ(r) at small distances is a clear
sign of the increasing clustering. It can be noted that the prob-
ability of finding a particle close to another one (at a vanishing
distance) grows to more than 40 times the average value. This
value is averaged over the whole patch, thus including those
particles that are not in the clusters. Nevertheless, since the
fraction of clustered bodies is dominating the distribution, this
can be considered to be a reliable estimate, at least at the end of
the simulation. In the time interval considered, the characteris-
tic length stabilizes around λh ∼ 2.5 × 10−3 AU.

Taking this value for the average radius of the clusters,
we can estimate their overall properties. At the latest time
shown in (Fig. 7, left column), the cylinders of radius λh ∼
2.5 × 10−3 AU centered on the two larger clusters (in the up-
per right quadrant of the patch) include masses of 2.3 × 1022 g
and 3.6 × 1022 g. Both clusters include a member with a di-
ameter larger than 100 km in their cores. If the entire mass was
concentrated into single bodies of volume density 1 g/cm3, they
would have radii of 176 and 204 km, respectively. The corre-
sponding Hill radii would be 4.7×10−3 AU and 5.4×10−3 AU.
At later times in the simulation the two clusters merge into a
single one, containing about 40% of the total mass available
in the patch. At the time reached by our longest simulations
(i.e., t ∼ 4 orbits) only two large clusters remain, whose av-
erage distance is larger than their Hill radius. However, we do
not present here a detailed analysis of such end states, since
to study the dynamics of such large clusters a much larger
patch (of several Hill radii per side) would be necessary. We
stress again here that the same qualitative behavior, on the same
timescale, is observed when particle collisions are treated as
bounces (EC case) or as merging events (CM).

In this last case it is interesting to check the properties of
the evolving cumulative size distribution of particles. Figure 9
presents this distribution at two different times. Besides the
global distribution, the size distribution restricted to a spe-
cific cluster is also computed. It can be seen that (especially
at the most evolved stages) large members are present inside
the clusters. We also computed the volume density on a cubic
grid N × M × L with N = M = L = 32 and used it to study
the relation between the size of a particle and the density of the
cell in which it is contained. The existing correlation (Fig. 9,
lower panel) indicates that large particles form and remain

Fig. 8. The two-point correlation function at times t = 0, t = 4.70, t =
7.28, t = 10.81 orbits. The line ξ(r) = 1 has been added as a reference.

inside dense areas. We can thus state that particle growth is
acting preferentially inside clusters.

Concerning some specific cluster properties, we note that:

a– The cluster shape is close to spherical. A plot of isodensity
surfaces shows that a small flattening is indeed present at a
distance of ∼2 × 10−3 from the cluster center, but is negli-
gible in its inner part.

b– The density profile in the central part of the cluster behaves
like ρ ∼ r−2 (Fig. 10). This central region is about 10−3 AU
in size.

c– The orientation of the orbits around the cluster barycen-
tre appear to be randomized. This can be seen by the fact
that the velocities do not show any systematic orientation.
We have analyzed the horizontal velocity uh after having
subtracted the average Keplerian shear of each particle and
having decomposed it into its radial and tangential compo-
nents (vr, vt) relative to the direction of the cluster barycen-
tre. No trend can be identified by plotting vr or vt as a func-
tion of rh (distance from barycentre as projected on the disk
equatorial plane). In addition, the direction of vh is uni-
formly distributed in the [0, 2π] range. These statistics do
not change if they are computed by considering all particles
or only a subset of them, close to the disk average plane.
The typical velocity dispersions close to the cluster center
are very small, of the order of σvr ∼ σvt ∼ 1.5 m s−1.

d– In the CM case, particle sizes are roughly sorted accord-
ingly to their distance to the cluster center: large particles
are close to the barycentre, while small bodies are scattered
all around (Fig. 11). This behavior can be expected as the
result of a sort of energy equipartition due to dynamical
friction. We recall that, in flattened, stable disks, the effect
of dynamical friction is to reduce the velocity dispersion
of large bodies that are surrounded by a swarm of small
particles. As a consequence, this swarm is “heated” and
its velocity dispersion increases. From the point of view
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Fig. 9. Some statistics concerning the size distribution of the simula-
tion in Fig. 7 (left column). The upper and middle panels show the
size distribution at t = 7.05 and t = 7.15 orbits, respectively. The up-
per curve is the distribution obtained when including all particles. The
lower curve is the distribution referred to the domain inside the corre-
sponding circle in Fig. 7 (lower left panel). The plot of particle size vs.
local density (lower panel), shows the tendency of particles to grow
faster in overdense regions, and is referred to time t = 10.81 orbits.

of the vertical distribution relative to the average plane, this
translates into the large particles being less dispersed than
the small ones. Inside the clusters studied here, the mech-
anism is the same, except that the system has a spherical
symmetry.

e– According to these dynamics, runaway growth is present,
with the largest body detaching from the distribution and
growing faster.

Fig. 10. The average radial density profile (solid line) in the most
dense part of the cluster circled in Fig. 7 (middle panel, left column).
The dotted line represents the power law R−2.

Fig. 11. The particle distribution in the most dense part of the cluster
circled in Fig. 7 (middle panel, left column). Each circle is centered on
the position of a particle in the (r, z) plane; the radius is proportional
to the mass of the particle in order to emphasize the effect of size
differences. As can be seen, the center of the cluster is populated by
large bodies.

It must be noted that both the radial profile and the ran-
domization of velocities are in agreement with that of a self-
gravitating, completely virialized cluster. The ρ ∼ r−2 density
distribution was suggested for virialized halos with isother-
mal profiles (Gunn & Gott 1972). Indirectly, the virialization
is confirmed by the fact that, given the order of magnitude of
the cluster size, the typical cluster crossing time for a particle
is tcross ∼ 2.5 × 10−3 orbits, i.e., several times less than the
cluster lifetime observed in our simulations. The correspond-
ing two-body relaxation time for globular clusters composed
of Nclus bodies is usually computed as trel ∼ 0.1 Nclus

ln Nclus
tcross. In

our most populated clusters, Nclus ∼ 104, yielding trel ∼ 0.64 or-
bits, i.e., less than the duration of our simulations.
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Furthermore, it must be noted that the clusters interact and
merge on a timescale of a few orbits. During this interval, the
dynamics is not affected by collisions, being comparable both
in the CM and the EC scenario.

We also verified that St ∼ 1 corresponds to the gas drag that
maximally preserves the structures, by running some simula-
tions with higher and lower values of γ, in power-of-ten steps.
In general, we observe that with a very strong drag (St = 10−3),
as expected, all velocity dispersions are rapidly damped. The
vertical distribution becomes very thin and close encounters
are favored by the nearly two-dimensional distribution. Due to
small relative velocities and increasingly strong gravitational
focusing, mutual collisions are frequent. If merging is allowed,
the masses of the particles grow fast. This particular simulation
ends at t = 3800 with N decreased to N = 980, and without the
formation of any structures.

Only at St = 0.1 do clusters of particles begin to emerge
from the distribution. The velocity dispersion increases with
time, and accretion is still very efficient. However, a large frac-
tion of particles remains outside the clusters. It can be seen that
a strong correlation exists between the size of the particles and
the surrounding volume density of solids (Fig. 12).

On the other hand, for larger stopping times (St = 10) it is
interesting to note that the transient formation of several clus-
ters is present. However, instead of merging, they rapidly dis-
appear due to gravitational stirring. In the case of our simula-
tion, we observe one remaining condensation (containing only
about 2.3% of the total mass available), indicating that cluster
survival is at least marginally allowed (Fig. 7, right column).

Even longer stopping times will yield a drag insufficient to
promote cluster formation.

We also tested the formation of clusters starting with com-
pletely different initial conditions, i.e. with the “hot disk”
shown in Fig. 1 (bottom right panel), and allowing the gas to
operate the “cooling” necessary to drive the system to the un-
stable regime. Some differences in the details of the evolution
exist. In particular, due to the higher velocity dispersion, the
instability does not take place at small scales, but directly at a
scale close to λc. Details of this process will be further inves-
tigated; here we just want to stress that, even in this “inverse”
case, clusters form and have the same properties as presented
in this work.

5. Conclusions

The system explored, when no dissipation is acting, evolves
spontaneously toward a stable configuration in which velocity
dispersions are too high to allow any gravitational instability.
This is clearly shown in the simulation presented in Fig. 1. As
already discussed, mutual collisions are not able to damp ve-
locity dispersions efficiently, and play a secondary role over the
observed dynamical evolution. However, this can be regarded
as a consequence of the particular regime that has been cho-
sen. In fact, closer to the sun and/or using much smaller parti-
cles, the dynamics could be collision-dominated (Furuya et al.
2002).

Our simulations underline the role of both the non-linear
evolution of the collapsing layer and of its granularity. Thanks

Fig. 12. Some results from the CM simulation with St = 0.1. The up-
per panel shows the final cumulative size distribution: the upper curve
represents the distribution computed by taking into account all the par-
ticles. The lower curve takes into account only particles belonging to
the larger cluster. The bottom panel shows that a correlation between
the size of the particle and the surrounding volume density is present.

to the hierarchical growth of structures, the particle-particle in-
teraction is gradually substituted by the cluster-cluster one at
larger scales. At the end of the simulations that include gas
drag, large clusters behave as super-particles dominating the
dynamics. A first set of tests, made by isolating a single clus-
ter from the surrounding particles and computing its evolution
on long times, seems to show that the clusters are intrinsically
“stable” structures. Gas friction also guarantees that they can
shrink and collapse to form large bodies, although on time
scales much larger than those explored here.

Of course, our approach is also affected by some limita-
tions. A strong limit of our study concerns the use of a layer
of equally sized particles representing the solid component. It
has been suggested that a full range of particle sizes, exhibiting
different couplings to the nebular gas, could deeply affect the
instability of the disk (Weidenschilling 1995; Ward 2000). This
point will be investigated in a coming paper.

Furthermore, in order to study the dynamics of larger bod-
ies in the presence of dissipation, we introduced a gas drag law
with intensity not physically related to particle sizes. In other
words, the resulting stopping time was much smaller than any
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realistic value that could correspond to km-sized planetesimals
in the environment of a classical protoplanetary disk.

On the other hand, it must be noted that the formation of
self-gravitating, virialized clusters is not specific to this choice.
In fact, the dynamics observed is essentially collisionless, be-
ing unaltered by the presence of merging or perfectly bounc-
ing particles. Thus, as commonly done in cosmology, we can
assume that our discrete distribution of large bodies just repre-
sents a single possible sampling of the density field. Probably,
its dynamics would be qualitatively equivalent if the field was
sampled by much smaller bodies, as long as long-range inter-
actions are possible (i.e., the Hill radius is much larger than the
physical radius) and the stopping time is comparable to the or-
bital period (St ∼ 1). In a “realistic” minimum-mass nebula,
this could be true for particle sizes of the order of R ∼ 1 m,
sufficiently far from the sun (in order to satisfy the Hill radius
constraint), provided the radial velocity dispersion can be ne-
glected – which would not always be the case. Under these con-
ditions, the mechanism illustrated here could thus dominate the
dynamics of an unstable layer of solids. Further investigations
are under way following this direction, and will be the subject
of a future publication.

Another major drawback in the direct application of this
scenario to the growth of planetesimals is related to the fact
that the action of particles over gas is neglected. In fact, it is
clear that, when solids are strongly concentrated inside clus-
ters, they could deeply affect the motion of the surrounding
gas. This feedback was already invoked as a cause of stabiliza-
tion of the midplane dust layer, through the stirring operated
by the turbulence. In that scenario, the main cause of turbu-
lence is the shear due to the systematic velocity difference be-
tween dust particles and gas. In our case, since cluster member
velocities are randomized, no net systematic motion would be
induced in the average gas flow. However some kind of small-
scale turbulence, with the associated diffusivity, could oppose
the collapse.

In conclusion, we want to underline the observation, in our
numerical simulations, of the extremely rich dynamics hidden
behind gravitational instability in a Keplerian disk. Even
though the application to the study of planetesimal growth

requires further effort, the phenomena exposed here may al-
ways be present when collective effects, rather than collisional
effects, dominate the dynamics.
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