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Many systems in engineering applications are modeled as piecewise smooth

systems. The piecewise smoothness presents great challenges for stability analysis

and control synthesis for these systems. Over the years, the theory of absolute

stability has been one of the few tools developed by control theory researchers to

meet these challenges. For systems in which the nonlinearity is known to be bounded

within certain sectors, many stability and control problems can be addressed using

results from absolute stability theory.

During the last few decades, many important advances have been made in the

study of the absolute stability. In these studies, it is commonly assumed that the

sector bound for the system nonlinearity is symmetric with respect to the origin in

state space. However, in many practical engineering systems, the nonlinearity does

not satisfy such a symmetry assumption. To study stability and control problems

for these systems, in this work the author studies generalized absolute stability prob-

lems involving asymmetric sector bounds. Nonlinear systems with Lure’ structure



are considered. For second-order systems, conditions that are both necessary and

sufficient for generalized absolute stability are obtained. These conditions can be

easily tested in engineering applications. For general finite-order systems, sufficient

conditions are provided for generalized absolute stability. The derived conditions

may be easily tested by using numerical tools for linear programming. With the

generalizations in this work, absolute stability theory becomes a more powerful tool

in the sense that it applies to an extended class of piecewise smooth systems in

which the nonlinearities can be asymmetric with respect to the state variables.

This work includes general theoretical questions as well as detailed investi-

gations of an application to models of supercavitating vehicles. For these high-

speed underwater vehicles, the dive-plane motion is naturally modeled as a piece-

wise smooth system with a dead zone. The strong nonlinear planing force plays an

important role in determining the dive-plane dynamics. To design control laws that

stabilize the dive-plane motion, the necessary and sufficient condition for general-

ized absolute stability of second-order systems is applied to a reduced-order model

obtained through the backstepping control approach. The obtained sufficient condi-

tions for generalized absolute stability of finite-order systems can also be successfully

applied for stabilizing the dive-plane motion. In comparison with alternative control

approaches, control designs with the aid of theoretical findings in generalized abso-

lute stability lead to stability that is robust to the modeling errors in the nonlinearity

such as the magnitude, local slope and the dead zone location.

The dissertation also includes basic results on bifurcation and bifurcation con-

trol of supercavitating vehicles. The presence of bifurcations in the dive-plane dy-



namics is demonstrated, and control techniques for modifying the bifurcation be-

havior to improve the vehicle dynamic performance are developed. These results

complement the absolute stability results to give a more complete picture of the

dynamics and control of supercavitating vehicles.
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Chapter 1

Introduction

1.1 Piecewise Smooth Systems

In engineering applications, many systems are modeled as a set of piecewise

smooth differential equations. In other words, these systems have a nonsmooth

vector field. Here a nonsmooth function refers to a function that is C0 continuous,

that is, the function is continuous, but its first-order or higher-order derivative is

discontinuous. Examples of piecewise smooth systems include nonsmooth friction

force models [34], suspension bridge models in structure analysis [15], nuclear reactor

safety systems [67], a thermodynamical process [11], switching circuits in power

electronics [8] and tunnel diodes [47].

Piecewise smooth systems can also result from nonsmooth control of a smooth

system. In some control designs, nonsmoothness is introduced intentionally in order

to achieve desired closed-loop system dynamics. Besides the supercavitating vehicle

example in Chapter 6, relay feedback in [28], bifurcation control in [61], switching

control of nonlinear systems in [18] and hybrid control in [29] are examples that

apply nonsmooth control actions.
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Piecewise smooth system can in some cases be used to approximate a nonlinear

smooth system. For example, the authors in [58] analyzed a nonlinear system by

approximating it with a piecewise smooth system.

For the three reasons above, piecewise smooth models can be found in many

engineering problems. Correspondingly, it is of importance to study the stabilization

and control of piecewise smooth systems. In consideration of the fact that modeling

errors often occur in these piecewise smooth models, in this work a robust stability

analysis tool, absolute stability, is adopted for the purpose of stability analysis and

control synthesis. By designing control laws to ensure the asymptotic stability of

the closed-loop system as long as the nonlinearity is bound within certain sectors,

the absolute stability is achieved and the piecewise smooth system is stable with

robustness to the modeling errors in the nonlinearity.

1.2 Literature on Absolute Stability

Absolute stability is one of the most well-known open problems in control

theory. Since the absolute stability concept was introduced in the 1940s, there have

been extensive literatures on this subject ([2] [45] [64] [43] [51] [52] [26] [30] [54]

[59]). Many important results have been achieved including the well-known circle

criterion and Popov criterion. Details of the circle criterion and Popov criterion can

be found in nonlinear dynamics and control literatures, for example, [30].

During the last decade, switched systems received numerous attention from

researchers in the control system community. Because the absolute stability problem

2



is closely related to the stability analysis of switched systems, this subject gained

revived interest among researchers in control systems in recent years and this leads

to a number of published studies ([5] [14] [13] [22] [39] [60] [25]).

In regard to solving the absolute stability problem, there are two fundamen-

tally distinct approaches – frequency-domain based methods and time-domain based

methods. Frequency-domain based results involve the transfer function of the lin-

ear part and include tools such as the circle criterion and the Popov criterion.

Time-domain based methods generally involve the usage of Lyapunov functions and

generalized Lyapunov functions. Time-domain based results include sufficient con-

ditions in [51] [63], and necessary and sufficient conditions in [43], which, however,

are not easily verifiable and not feasible in practice even with advanced numerical

tools.

In contrast with the extensive literature on absolute stability, a trackable so-

lution to the absolute stability problem giving conditions that are both necessary

and sufficient has not been available. However, for the special case of second-order

systems, very recent work ([42] by Margaliot and Langholz, and [35] by Leonov)

has resulted in new necessary and sufficient conditions for absolute stability that is

easily trackable.

Since the introduction of the absolute stability concept, theoretical results on

absolute stability have been extensively applied in various engineering applications.

For example, absolute stability results were used in the stability analysis of systems

with actuation limits [44] [33] and systems involving stick-slip frictions [10]. In

addition, absolute stability results were also applied in the control of chaotic motions

3



FNL(v)

v

slope:k

Figure 1.1: Sector conditions in classical absolute stability studies.

[9], nonlinear observer design [4], DVD storage drive controller design [24], control

of material handling systems [41], recursive parameter identifications [62], dynamic

analysis of musical instruments [66], control of Chua’s circuits [36], a PWM system

[50], a Coulomb friction system [65], gear meshing dynamics in automobile engines

[20], supercavitating vehicles [37] and many more.

Recently, Hu et al. [27] extended the classical absolute stability concept to

admit more general sector conditions. The sector bounds, which are linear functions

in the setting of the classical absolute stability, are allowed to be piecewise linear

functions that are symmetric with respect to the origin. Sufficient conditions are

found for the generalized absolute stability by utilizing common quadratic Lyapunov

functions.
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1.3 Generalization of Classical Absolute Stability

However in all studies on the absolute stability problem so far, the sector

boundaries have been assumed to be odd functions, such as the one illustrated in

Figure 1.1. In other words, the sector conditions are symmetric with respect to the

origin. However in engineering systems, a general nonlinearity need not satisfy this

symmetry assumption. Asymmetric nonlinearities are encountered, for instance,

in dynamic models of amplifier circuits [3], autonomous underwater vehicles [7],

earthquake engineering [17], and hard disk drives [23].

Even if a nonlinearity is known to be symmetric, it may be desired to oper-

ate the system at an equilibrium point other than the origin. This bias from the

origin would transform the symmetric nonlinearity to a nonsymmetric one. More-

over, switching control laws may lead to asymmetric nonlinearities. Therefore it is

important both for theory and practice, to generalize the classical absolute stability

results to allow nonsymmetric sector conditions.

Driven by the need in the stabilization and control of many piecewise smooth

engineering systems with asymmetric nonlinearities, the author of this dissertation

generalized the classical absolute stability concept to allow for asymmetric sector

bounds and correspondingly, derived necessary and sufficient conditions for the gen-

eralized absolute stability.

The symmetry assumption in the sector boundary, illustrated in Figure 1.1, is

dropped in this study. Instead, we allow the sector boundaries to be asymmetric,

as depicted for instance in Figures 1.2 and 1.3. For an engineering system with

5
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Figure 1.2: Nonlinearity bound in the asymmetric sector (0, k1, k2)

.

the nonlinearity bound by an asymmetric sector bound, one can expect to design

a less conservative control law to robustly stabilize the system by applying results

on generalized absolute stability in this work, compared with a control law that is

designed according to the existing results on classical absolute stability.

It is interesting that the generalization of the absolute stability concept is

trivial for first-order systems. Consider a first-order system

ẋ = Ax + bφ(cx) (1.1)

where all quantities are scalar and the nonlinearity φ(.) is bound in the asymmetric

sector (0, k1, k2) as illustrated in Figure 1.2. It is straight-forward to show that

the system is absolutely stable if and only if A < 0, A + bck1 < 0, A + bck2 < 0.

This condition is equivalent to A < 0, A + bcK where K = max {k1, k2}. On the

other hand, this is necessary and sufficient condition for the system (1.1) where the

nonlinearity φ(.) is bound in the symmetric sector (0, K) as illustrated in Figure 1.1.
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Figure 1.3: Nonlinearity bound in the more general asymmetric sector (k1, k2, k3, k4)

Therefore a system with the nonlinearity bound by the asymmetric sector bound

(0, k1, k2) is absolutely stable if and only if the system with the nonlinearity bound

by the symmetric sector bound (0, max {k1, k2}). Consequently the generalization

that allows for asymmetric sector bounds is of trivial value for first-order systems.

However for second-order and high-order systems, the generalization is nontriv-

ial and there is need to derive necessary and sufficient conditions for the generalized

absolute stability. In Section 7.2.2, we give a third-order system example that is

absolutely stable with the asymmetric sector bound (0, 0.1, 0.5) but not absolutely

stable with the symmetric sector bound (0, 0.5).

In this dissertation, we are interested in a system of Lure’s form with one

single nonlinearity. By Lure’s form, we mean continuous-time systems that can be

formulated as a feedback interconnection between a linear system and a nonlinearity.

By relaxing the symmetric constraints on the sector bounds in the generalized

absolute stability, control laws can be designed to ensure robust stability of a more

general class of dynamic systems. However, the presence of nonsymmetric sector

7



bounds complicates the stability analysis considerably and makes inapplicable the

frequency-domain analytical tools such as the circle criterion. With the aid of the

geometry-related tools, necessary and sufficient conditions for the generalized abso-

lute stability of second-order systems are derived. For a general finite-order systems,

sufficient conditions are given with the help of generalized Lyapunov function meth-

ods. It is noted that for high-order systems, necessary and sufficient conditions are

not available to date even for the classical absolute stability that was introduced

long time ago.

1.4 Organization of Dissertation

The rest of this dissertation proceeds as follows. In the next chapter, theoreti-

cal background materials that will be employed in subsequent chapters are collected.

The definition and some conditions for the classical absolute stability will be intro-

duced. Furthermore, the linear programming and backstepping control are briefly

introduced as they will be used in other chapters.

In Chapter 3, two recent works, which give necessary and sufficient conditions

for the classical absolute stability of second-order systems, are introduced. Further,

the relationship between these two independent results are examined. After correct-

ing some mistakes in the original results, it is proved that these two results are in

fact equivalent to each other.

In Chapter 4, the classical absolute stability concept is generalized to admit

asymmetric sector boundaries. The focus in this chapter is on second-order or planar

8



systems. Conditions that are both necessary and sufficient, are derived for general-

ized absolute stability of these systems. These conditions include as a special case

the conditions for the classical absolute stability, which are elaborated in Chapter

3.

In Chapter 5, the generalized absolute stability problem is considered for high-

order systems. It is proved that a piecewise linear Lyapunov function exists if and

only if the system is absolutely stable. Furthermore, with the aid of piecewise linear

Lyapunov functions, sufficient conditions are established.

In Chapter 6, an engineering system - the supercavitating vehicle system is

introduced. The dive-plane model and some dynamical behavior of this system is

presented. Without robustness requirement, two simple control schemes are pro-

posed to stabilize the dive-plane motion. Through nonlinearity analysis including

the bifurcation study, the tail-slap phenomenon of supercavitating vehicles is inter-

preted as a limit cycle motion.

In Chapter 7, a few examples are utilized to illustrate the application of the

theoretic results that are derived in the previous chapters. The necessary and suffi-

cient conditions for generalized absolute stability of second-order systems are applied

to the supercavitating vehicle model through a backstepping control approach. Fol-

lowing that, the sufficient conditions for a general finite-order system are applied

to three examples including a second-order system, a third-order system and the

fourth-order dive-plane model of supercavitating vehicle.

In Chapter 8, conclusion remarks are collected and a list of future work is

provided.
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Chapter 2

Preliminary Material

In this chapter, we review some background material that will be employed

in the remaining chapters. The topics we discuss include: definition and some

conditions for classical absolute stability; linear programming; and backstepping

control.

2.1 Absolute Stability

2.1.1 Definition

First let us review the standard definition of absolute stability. This definition

involves the following notion of sector boundaries. A nonlinearity φ(.) is said to be

bound in the sector (kl, kh) if the following inequality holds for all y ∈ <:

kly
2 ≤ yφ(y) ≤ khy

2 (2.1)

A nonlinearity satisfying such a sector bound is illustrated in Figure 1.1.

A system in the so-called Lure’ form (2.2) is said to be absolutely stable if the

origin is globally uniformly asymptotically stable for any nonlinearity φ(·) bound in

10



the sector (kl, kh).

ẋ = Ax + Bu

y = CT x (2.2)

u = −φ(y)

Here the dimensions of the various quantities are as follows: x ∈ <n, u ∈ <, y ∈

<, A ∈ <n×n, B ∈ <n, C ∈ <n.

It is important to point out that the absolute stability concept is closely related

to a problem that has received attention from many researchers in the last two

decades – stability analysis of a switched linear system with arbitrary switchings.

A switched linear system can be described as

ẋ = Aσx (2.3)

where x ∈ <n and Ai ∈ <n×n for i = 1, 2, ..., M . Here the switching signal σ(t) is a

piecewise constant function: [0,∞) → P = {1, 2, ..., M}. Consider such a switched

linear system with an arbitrary switching signal σ. Let M = 2 and

A1 = A + klBCT

A2 = A + khBCT (2.4)

It is straightforward to show that solving the absolute stability problem (2.2)

implies deriving the necessary and sufficient conditions for global asymptotic stabil-

ity of the origin of the switched linear system (2.4).

11



2.1.2 Frequency Domain Results

Roughly speaking, the absolute stability problem has been studied with meth-

ods of two categories: frequency domain based approaches and time domain based

approaches. In this section we will introduce some results from the frequency do-

main based approaches. Results from the time domain based approaches will be

introduced in the next section.

Without loss of generality, it is assumed that kl = 0 in the absolute stabil-

ity problem (2.2). Otherwise, a simple trick called loop transformation [30] can be

applied to transform the sector condition from (kl, kh) to (0, kh−kl) and correspond-

ingly the linear part will include an additional term klBCT x.

Making use of Lyapunov functions and positive realness concept, one can derive

the circle criterion as

Theorem 2.1 The system (2.2) with kl = 0 and kh > 0 is absolutely stable if

(A,B,CT ) is a minimal realization of G(s) = CT (sI −A)−1B, G(s) is Hurwitz and

the Nyquist plot of G(jω) lies to the right of the vertical line defined by Re[s] =

−1/kh. If these conditions are satisfied only on an interval of y, then the system

is absolutely stable with a finite domain that may be estimated as an ellipsoid by

using the Lyapunov function. 2

When the sector condition (2.1) is satisfied only in a finite interval a ≤ y ≤ b,

the region of attraction (ROA) of the equilibrium point can be estimated by using

Lyapunov functions. The ROA can be estimated as

Ω = {x ∈ <4|V (x) = xT Px ≤ c3} (2.5)

12



where the matrix P , a row vector L, and a scalar ε satisfy

PA + AT P = −LT L− εP

PB = CT K −
√

2LT (2.6)

and c3 = min V (x) subject to a ≤ y ≤ b. Equation (2.6) is formulated as a Riccati

equation; that is,

P [
εI

2
+ A] + [

εI

2
+ AT ]P +

1

2
(KCT − PB)(KC −BT P ) = 0 (2.7)

The matrix P is found by numerically solving (2.7) using tools such as MATLAB,

and the Lagrange method is applied to find c3. Here, the scalar ε is chosen such

that 1 + khG(s − 0.5ε is positive real and ε
2
I + A is Hurwitz. More details can be

found in the reference [30].

The circle criterion allows us to investigate the absolute stability by using

the Nyquist plot of G(jω), which can be experimentally determined. Therefore

the circle criterion has been widely used in engineering applications, although the

derived condition is only sufficient but not necessary.

For a system involving more than one nonlinearities, correspondingly the mul-

tivariable circle criterion gives the sufficient condition for absolute stability. How-

ever, this criterion cannot be described as conditions for the Nyquist plots. It is

noted that in this dissertation, we focus on systems involving only one nonlinearity.

Besides the circle criterion, the frequency domain results also include the

Popov criterion, which also gives sufficient conditions for absolute stability. This

criterion will not be introduced here since it is not used in the sequel. Those who

are interested in it can find related information in references such as [30] and [59].

13



2.1.3 Time Domain Results

In this section, we introduce results from time domain based approaches. Lya-

punov functions have provided a very important tool in the analysis and synthesis

of control systems for dynamic systems. In particular, quadratic Lyapunov func-

tions are widely used in stability analysis of dynamic systems because: 1) for linear

systems, it is not only sufficient but also necessary for stability that a system have

a quadratic Lyapunov function; and 2) in many nonlinear systems, associated linear

matrix inequalities (LMI) can be formulated for seeking a Lyapunov function, and

these LMI’s can then be solved numerically in an efficient manner.

Similarly, to solve the absolute stability problem, it is natural to apply the

quadratic Lyapunov function and to use this function to find sufficient conditions.

As stated early in this chapter, the absolute stability problem (2.2) is equivalent to

the stability problem of a switched linear system (2.3) with an arbitrary switching

signal σ. Therefore the origin of the system (2.2) is absolutely stable if a common

quadratic Lyapunov function V (x) = xT Px exists for the linear system ẋ = A1x and

the system ẋ = A2x where Ai, i = 1, 2 are defined in (2.4). It is reminded that the

existence of a common quadratic Lyapunov function is sufficient but not necessary

for the absolute stability. Even if a common quadratic Lyapunov function cannot

be found, a system may still be absolutely stable. Therefore the derived sufficient

condition may be quite conservative for achieving absolute stability.

In order to reduce the conservativeness of the sufficient condition derived by

using the common quadratic Lyapunov function approach, Zelentsovsky [68] applied

14



the nonlinear transformation of

yl = xpl1
1 xpl2

2 ...xpln
n , l = 1, ..., m (2.8)

Here pli are chosen so that pli ≥ 0 and
∑n

i=1 pli = p, and m =




n + p− 1

p


. For

example, if the original system is a 2nd-order system and the states are x1 and x2,

then one choice of nonlinear transformations is y1 = x2
1, y2 = x1x2, y3 = x2

2 with

p = 2, n = 2. It is shown that the common quadratic Lyapunov function approach

with the nonlinear transformation may generate less conservative conditions for the

absolute stability of the original system.

Instead of using quadratic Lyapunov functions, in the work [63], Xie et al.

adopted two kinds of piecewise quadratic Lyapunov functions as follows:

V (x) = max {xT P1x, xT P2x}, P1 > 0, P2 > 0 (2.9)

and

V (x) = min {xT P1x, xT P2x}, P1 > 0, P2 > 0 (2.10)

Consider a linear time-varying system

ẋ = A(t)x, A(t) ∈ Co{A1, A2} (2.11)

where CoA1, A2 denotes the convex hull of A1 and A2 and x ∈ <n. It is proved that

this system is robustly stable with the Lyapunov function (2.9) if and only if there

exist δ1, δ2 ∈ [0, 1] such that the following set of LMIs have a solution for H1 and

15



H2:

A′
1H1 + H1A1 < 0, A′

2H2 + H2A2 < 0

(1− δ2)(A
′
1H2 + H2A1) + δ2(H2 −H1) < 0

(1− δ1)(A
′
2H1 + H1A2)− δ1(H2 −H1) < 0 (2.12)

0 < H1 < I, 0 < H2 < I.

Recall that this robust stabilization problem is equivalent to the absolute stability

problem with the choice of (2.4). With a second-order system example, the authors

of this paper showed that the usage of the two-term piecewise quadratic Lyapunov

functions further reduces the conservativeness of the sufficient conditions for the

absolute stability, although computation time is increased.

Recently, Hu et al. [27] extended the classical absolute stability concept to

admit more general sector conditions. The sector conditions are allowed to be piece-

wise linear functions that is either convex or concave. Common quadratic Lyapunov

functions are utilized to generate sufficient conditions for the absolute stability and

compute the region of attraction if the absolute stability does not hold globally.

2.2 Linear Programming

Linear programming is a special category of convex optimization problems in

which the objective function and the constraints are linear [19]. Since its develop-

ment in late 1940s, linear programming has found applications in many optimization

problems in various disciplines such as microeconomics, business management and

engineering.
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A linear programming problem can be described in the standard form:

maximize cT x

subject to Ax ≤ b (2.13)

where c ∈ <n, x ∈ <n, A ∈ <mxn, b ∈ <m. It is straightforward to show that all

linear programming problems, for example, one that minimizes a linear objective

function with equality constraints, may be written in the standard form. It is noted

that each linear programming problem corresponds to a dual problem. For example,

the dual problem for the standard form (2.13) is

minimize bT x

subject to AT x ≥ c (2.14)

It is reminded that not all linear programming problems are feasible. For a

feasible linear programming problem, however, the optimal solution can be found

in a very efficient manner because the local optima are also global optima and the

optimum is always attained at a vertex of the convex polyhedron corresponding

to the inequality constraints. Linear programming problems are often solved by

simplex-based methods and interior point methods.

The command linprog from the optimization toolbox of MatlabTM implements

the simplex algorithm to solve a linear programming problem. There is almost no

practical limit on the number of variables and constraints that the Matlab solver

can handle. Nonetheless, for a large-scale linear programming problem, one might

want to choose other solvers, such as the GNU Linear Programming Kit (GLPK)

[21], to achieve improved efficiency.
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2.3 Backstepping Control

Consider the system

η̇ = f(η) + g(η)ξ

ξ̇ = u (2.15)

where η ∈ <n, ξ ∈ <, u ∈ <, f ∈ <n, g ∈ <n and f(0) = 0.

We want to design a state feedback control law to stabilize the origin of this

system. Suppose a control law ξ = φ(η) with φ(0) = 0 asymptotically stabilizes the

state η. In other words, the origin of the system η̇ = f(η)+g(η)φ(η) is asymptotically

stable. Consequently for this system one can find a Lyapunov function V (η) with

the following inequality satisfied for all η. Here W (η) is positive definite.

∂V

∂η
[f + gφ] ≤ −W (η) (2.16)

After the change of variables z = ξ − φ(η), the system (2.15) becomes

η̇ = [f(η) + g(η)φ(η)] + g(η)z

ż = u− φ̇ (2.17)

With the notation of v = u− φ̇ and the choice of control effort v = −∂V
∂η

g(η)−

kz, k > 0, one can easily prove the asymptotical stability of the origin of the system

(2.17) by using the Lyapunov function Va(η, ξ) = V (η)+0.5z2. The associated state

feedback control law is thus obtained as

u =
∂φ

∂η
[f(η) + g(η)ξ]− ∂V

∂η
g(η)− k[ξ − φ(η)] (2.18)
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In summary, the backstepping control is stated in the following lemma.

Lemma 2.1 Consider the system (2.15). Let φ(η) be a stabilizing state feed-

back control for the state η with φ(0) = 0, and V (η) be a Lyapunov function that

satisfies (2.16) with some positive definite function W (η). Then, the state feedback

control (2.18) stabilizes the origin of (2.15), with V (η) + 0.5[ξ − φ(η)]2 as a Lya-

punov function. Moreover, if all the assumptions hold globally and V (η) is radially

unbounded, the origin is globally asymptotically stable. 2

Next a more general system is considered:

η̇ = f(η) + g(η)ξ

ξ̇ = fa(η, ξ) + ga(η, ξ)u (2.19)

where η ∈ <n, ξ ∈ <m, u ∈ <m, f ∈ <n, g ∈ <n×m, fa ∈ <m, ga ∈ <m×m and

f(0) = 0. This system can be transformed to the form (2.15) by using the control

input

u = ga(η, ξ)−1[v − fa(η, ξ)] (2.20)

so that ξ̇ = v.

In the above, the stabilization of the state ξ is achieved by feedback lineariza-

tion that requires a fairly accurate knowledge of the nonlinearity fa(η, ξ). However,

in practical engineering systems, this exact knowledge is in general not attainable.

As an alternative, the state ξ may be stabilized by using other control schemes,

for example, the one that will be illustrated in Chapter 6 in stabilization of the

dive-plane motion of supercavitating vehicles.
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Chapter 3

Classical Absolute Stability for Second-Order Systems

In this chapter, we will focus on classical absolute stability of second-order

systems, that is, absolute stability of second-order systems with symmetric sec-

tor bounds. Absolute stability of second-order systems with nonsymmetric sector

bounds will be discussed in the next chapter.

Despite the extensive literature on absolute stability of nonlinear systems,

even for the particular cases of second-order systems, a complete solution for the

absolute stability problem has not been found until very recently in two independent

papers [42] and [35]. In [42], Margaliot and Langholz discovered a necessary and

sufficient condition for absolute stability of second-order systems by identifying the

most destabilizing nonlinearity within the sector bounds. In [35], Leonov derived a

necessary and sufficient condition for absolute stability of second-order systems by

comparing the vector field of the nonlinear system with that of various piecewise

linear systems.

Although the above-mentioned two papers addressed the same problem, the

two results appear quite different. In this chapter, the existing results are refined

to correct some mistakes in the original work and to make them easier to apply in

practice. Furthermore, the refined two results are proved to be equivalent to each

other. The rest of this chapter is organized as follows. In Section 3.1, Leonov’s
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Figure 3.1: A nonlinearity bound in the sector (kl, kh)

result on absolute stability is introduced and refined. In Section 3.2, Margaliot and

Langholz’s result is presented and revised. In Section 3.3, the connection between

these two results is established. To illustrate the application of these results, an

example is given in Section 3.4.

3.1 Orginal Theory and Refinement: Leonov’s Result

First let us review briefly the standard definition of sector boundaries and

absolute stability. A nonlinearity φ(.) is said to be bound in the sector (kl, kh) if the

following inequality holds for all y values

kly
2 ≤ yφ(y) ≤ khy

2 (3.1)

Such a nonlinearity is illustrated in Figure 3.1.

A system of the so-called Lure’s form (3.2) is said to be absolutely stable if the

origin is globally uniformly asymptotically stable for any nonlinearity φ(.) bound in
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the sector (kl, kh).

ẋ = Ax + Bu

y = CT x (3.2)

u = −φ(y)

Here we focus on second-order systems with a single nonlinearity where x =

(x1 x2)
T ∈ <2, u ∈ <1, A ∈ <2×2, B ∈ <2 and C ∈ <2. In Leonov’s work, the

two-dimensional state space (x1, x2) is divided into the following four regions.

Ω1 = {(x1, x2) : x2 ≥ 0, ax2 + bx1 ≥ 0}

Ω2 = {(x1, x2) : x2 ≥ 0, ax2 + bx1 ≤ 0}

Ω3 = {(x1, x2) : x2 ≤ 0, ax2 + bx1 ≤ 0}

Ω4 = {(x1, x2) : x2 ≤ 0, ax2 + bx1 ≥ 0}

Suppose there is a second-order linear system

ẋ1 = x2

ẋ2 = −λ̂x2 − µ̂x1 (3.3)

By specifying different values in each of the four regions for the linear coefficients λ̂

and µ̂, we define a system PLS as a system of the form (3.3) with

λ̂ =





λ + kla if (x1, x2) ∈ Ω1 or Ω3

λ + kha if (x1, x2) ∈ Ω2 or Ω4

(3.4)

and

µ̂ =





µ + klb if (x1, x2) ∈ Ω1 or Ω3

µ + khb if (x1, x2) ∈ Ω2 or Ω4

(3.5)
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ax2+bx1=0

Ω2Ω1
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(x1p,x2p)

(x1n,x2n)

Figure 3.2: Definition of x1n and x1p when a > 0 and b > 0.

where λ, µ, a, b are constants.

Suppose one trajectory of the system PLS starts from the point (−1, 0) and

intersects with the line ax2 + bx1 = 0 at a point (x1p, x2p) with x1p > 0; another

trajectory of this system starts from the point (−1, 0), and, in a negative time,

intersects with the line ax2 + bx1 = 0 at a point (x1n, x2n) with x1n > 0. Figure

3.2 illustrates the regions Ωi (i = 1, 2, 3, 4) and these special trajectories for the

case when a > 0 and b < 0. These regions and trajectories can be constructed in a

similar manner for the case when a > 0 and b > 0.

With the above-mentioned definitions, we are ready to state Leonov’s result

in Theorem 3.1.

ẋ1 = x2

ẋ2 = −λx2 − µx1 − FNL(t, ax2 + bx1) (3.6)

Theorem 3.1 [35]: For a second-order system of the form (3.6) where FNL

is any nonlinearity bound in the sector (0, k), when a > 0, the system is absolutely
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stable if and only if λ > 0, µ > 0, λ + ak > 0, µ + bk > 0 and one of the following

five conditions is satisfied. When a < 0, the system is absolutely stable if and only

if the same conditions hold where a, b, µ, λ are replaced with −a,−b, µ + ka, λ + kb

respectively. If a = 0, the system is absolutely stable if and only if these conditions

hold with a → 0. Furthermore, the nonlinear system is absolutely stable for k = ∞

if one of the first three conditions hold.

1. b = 0

2. b < 0 and λ2 ≥ 4µ

3. b > 0, λ2 ≥ 4µ and λ
2

+
√

λ2

4
− µ ≥ b

a

4. b > 0; Condition 3 does not hold; and (λ + ak)2 ≥ 4(µ + bk), λ+ak
2

−
√

(λ+ak)2

4
− (µ + bk) ≤ b

a

5. Conditions 1-4 do not hold and x1n−x1p > 0 where the quantities x1n, x1p are

associated with kl = 0, kh = k.

Proof Compare the vector field of the nonlinear system with that of the

system PLS and construct closed curves in the planar state space. Details can be

found in the reference [35]. 2

It is important to point out that if the second condition holds, the system is

not absolutely stable for k = ∞ because the condition µ+bk > 0 breaks down when

b < 0. This mistake will be corrected in Theorem 3.2.

Below we will refine Theorem 3.1 to make it easier to apply in practice. With

respect to the same problem as that in Theorem 3.1, we have the following result.
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Theorem 3.2: For a second-order system of the form (3.6) where FNL is any

nonlinearity bound in the sector (0, k), when a > 0, the system is absolutely stable

if and only if λ > 0, µ > 0, λ + ak > 0, µ + bk > 0 and one of the following four

conditions is satisfied. When a < 0, the system is absolutely stable if and only if

the same conditions hold where a, b, µ, λ are replaced with −a,−b, µ + ka, λ + kb

respectively. If a = 0, the system is absolutely stable if and only if these conditions

hold with a → 0. Furthermore, the nonlinear system is absolutely stable for k = ∞

if the first or the third condition holds.

1. b = 0

2. b < 0 and λ2 ≥ 4µ

3. b > 0, λ2 ≥ 4µ and λ
2

+
√

λ2

4
− µ ≥ b

a

4. b > 0; Condition 3 does not hold; (λ + ak)2 ≥ 4(µ + bk), and λ+ak
2

≤ b
a

5. Conditions 1-4 do not hold and x1n−x1p > 0 where the quantities x1n, x1p are

associated with kl = 0, kh = k.

Proof It is clear that the difference between this theorem and Theorem 3.1

exists in Condition 4. When Condition 3 does not hold and λ2 < 4µ, we have

b2− abλ+ a2µ > b2− abλ+ a2λ2/4 ≥ 0. When the last part of Condition 3 does not

hold, that is, λ
2

+
√

λ2

4
− µ < b

a
, it is clear that b2− abλ + a2µ > 0. When λ+ak

2
≤ b

a
,

the inequality λ+ak
2

+
√

(λ+ak)2

4
− (µ + bk) ≥ b

a
can be proved to be equal to the

inequality b2 − abλ + a2µ > 0. Therefore Condition 4 of Theorem 3.1 is simplified

as Condition 4 in this theorem. 2
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3.2 Original Theory and Refinement: Margaliot and Langholz’s Re-

sult

First integrals are widely used in the study of Hamiltonian systems [6]. For a

general system that is not Hamiltonian, Margaliot and Langholz [42] generalized the

concept of first integrals. The generalized first integrals are then utilized to identify

the worst case switching law (WCSL) that results in a least-stable nonlinear system

among the admissible set of nonlinear systems. By applying the WCSL, the maximal

sector boundary (0, k∗) for absolute stability is determined by solving a nonlinear

equation numerically. The system is then absolute stable with any sector (0, k)

where 0 < k < k∗, and not absolute stable with any sector (0, k) where k ≥ k∗.

A linear Hamiltonian system

ẋ = Ax (3.7)

admits a classical first integral, that is, a function H(x) which satisfies H(x(t)) ≡

H(x(0)) along any trajectory. However, for a general linear system that is not Hamil-

tonian, the concept of first integrals does not apply. Instead, a function HA(x(t)),

called a generalized first integral, can be constructed to be piecewise constant along

any trajectory. The generalized first integral for a second-order linear system (3.7)

can be constructed by considering two cases: in one case, the matrix A has a pair

of complex eigenvalues and in the other case, the matrix A has real eigenvalues. It

is noted that the generalized first integral is introduced to study absolute stability.

Therefore the system (3.7) is assumed to be stable because otherwise the system is

not absolutely stable and there is no need to introduce the generalized first integral.
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In the first case, the system has a pair of complex eigenvalues. We denote

one eigenvalue as λ1 = α + jβ with α < 0 and β < 0 and the eigenvector of

AT corresponding to this eigenvalue as z1 = w − jv. With P = wwT + vvT , the

generalized first integral is constructed as

HA(x) = xT Pxe
2α
β

arctan vT x

wT x (3.8)

This generalized first integral assumes a constant value almost everywhere. At times

when wT x(t) = 0, the function value jumps from one constant to another.

In the second case, the matrix A has two negative real eigenvalues. We denote

the two eigenvalues as 0 > λ1 > λ2, and the eigenvectors of AT corresponding to

these eigenvalues as w1 and w2. The generalized first integral is then constructed to

be

HA(x) =
(wT

1 x)
λ2
λ1

wT
2 x

(3.9)

The system studied by Margaliot and Langholz [42] is a second-order nonlinear

system of the form

ẋ = Ax + Bφ(t, y)

y = CT x (3.10)

where x ∈ <2, y ∈ <1, A ∈ <2×2, B ∈ <2, C ∈ <2 and the scalar function φ(t, y)

represents any nonlinearity bound by the sector (0, k). It is straightforward to see

that this nonlinear system is equivalent to the system (3.11) where 0 ≤ δ(t, x) ≤ 1

and Bk = A + kBCT .

ẋ = δ(t, x)Ax + (1− δ(t, x))Bkx (3.11)
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Now we are ready to state Margaliot and Langholz’s main result.

Theorem 3.3 [42]: For the second-order system (3.11), the worst case switch-

ing law (WCSL) δ(t, x) is given as

δ(t, x) =





1 if x ∈ PA

0 otherwise

(3.12)

where PA = {x : ḢA
Bk

= ∇HA(x)Bkx < 0}. The nonlinear system is absolutely

stable for k < k∗. When k = k∗, any trajectory x̃(t) of the system with the WCSL,

starting from a non-origin point is closed. The constant k∗ can be found by solving

a transcendental equation numerically.

Proof By specifying a Lyapunov function, the WCSL can be identified and

the absolute stability is proved. Details can be found in the reference [42]. 2

In Theorem 3.3, the quantity k∗ plays a key role in determining absolute

stability. However, in some cases, such a k∗ does not exist and accordingly we refine

Theorem 3.3 as follows.

Theorem 3.4: For the second-order system (3.11), the worst case switching

law (WCSL) δ(t, x) is given as

δ(t, x) =





1 if x ∈ PA

0 otherwise

(3.13)

where PA = {x : ḢA
Bk

= ∇HA(x)Bkx < 0}. Starting from a non-origin point, any

trajectory x̃(t) of the nonlinear system with the WCSL is either 1) not closed for
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any k ≥ 0, or 2) closed if and only if k = k∗ where k∗ can be found by solving a

transcendental equation numerically.

Proof If k∗ exists, the proof can be found in the reference [42]. The proof of

this theorem becomes complete if an example can be shown where the quantity k∗

does not exist.

For a system (3.6) with a = 1, b = −1, µ = 1, λ = 3, a special system of the

general form 3.11, it is straightforward to find the WCSL to be:

δ(t, x) =





1 if x2(ax2 + bx1) ≥ 0

0 otherwise

(3.14)

According to the definitions in Section 3.1, the regions (x1, x2) where x2(ax2+bx1) ≥

0 are Ω1 and Ω3. Within Ω1 and Ω3, the stable manifolds are located in the first

and third quadrants, as is shown Figure 3.3. Therefore starting from a point (ci, 0),

where ci < 0, the system trajectory is attracted to the origin and will never enter

the region Ω2. Based on the index theory [30], any closed orbit of this system must

encircle the origin. As a result, this system has no closed trajectory. It is noted that

this fact holds regardless of the k value because the vector field of the system with

the WCSL in the regions Ω1 and Ω3 does not contain k. 2

3.3 Equivalence of the Two Results

Leonov’s result is based on systems of the particular form (3.6). In contrast,

Margaliot and Langholz’s result is based on systems of the general form (3.10).

This difference is not critical though, because the general form can be transformed
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Figure 3.3: A system example in which there exists no k∗ and none of system

trajectories is closed. Dotted straight lines are stable manifolds.

to the special form through the state transformations in the Appendix A.1 when the

system is controllable. For simplicity and without loss of generality we will focus on

systems of the special form (3.6) for the purpose of comparison between these two

results.

The following theorem establishes a connection between the WCSL in Mar-

galiot and Langholz’s result and the nonlinear system PLS in Leonov’s result.

Theorem 3.5: The system (3.11) with δ(t, x) being the WCSL is the nonlinear

system PLS that is used to prove Theorem 3.1 and Theorem 3.2.

Proof To find the WCSL, we first identify the matrices A and Bk in (3.11)
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for the system (3.6)

A =




0 1

−µ −λ


 (3.15)

Bk =




0 1

−(µ + kb) −(λ + ka)


 (3.16)

Here two cases are considered where the matrix A has different types of eigen-

values. In the first case, ∆ = λ2 − 4µ < 0 and the matrix A has a pair of complex

conjugate eigenvalues. According to the discussions in Section 3.2, the generalized

first integral and the boundary function of PA are determined as

HA = [µx2
1 + λx1x2 + x2

2]e
2λ√

4µ−λ2
arctan

√
4µ−λ2x1

λx1+2x2 (3.17)

∇HA(x)Bkx = −2kx2(bx1 + ax2)e
2λ√

4µ−λ2
arctan

√
4µ−λ2x1

λx1+2x2 (3.18)

In the second case, ∆ = λ2 − 4µ > 0 and the matrix A has real eigenvalues.

The generalized first integral and the boundary function of PA are accordingly

determined as

HA =
(λ+

√
∆

2
x1 + x2)

−λ−√∆

−λ+
√

∆

λ−√∆
2

x1 + x2

(3.19)

∇HA(x)Bkx = −2kx2(bx1 + ax2)

√
∆(λ+

√
∆

2
x1 + x2)

−2
√

∆

−λ+
√

∆

(λ−√∆
2

x1 + x2)2(λ−√∆)
(3.20)

In both cases, we have PA = Ω1 ∪Ω3 and therefore this theorem is proved. 2

Furthermore, it is discovered that Leonov’s result is equivalent to Margaliot

and Langholz’s result although different approaches are applied.

Theorem 3.6: Refined Leonov’s result is equivalent to refined Margaliot and

Langholz’s result. That is, Theorem 3.2 is equivalent to Theorem 3.4.
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Proof This theorem is proved by verifying the equivalence between Conditions

1-4 in Theorem 3.2 and cases 1)-2) in Theorem 3.4.

If Condition 1 or Condition 2 holds, then we have a similar situation as that

in the proof of Theorem 3.4 (Figure 3.3). It is clear that closed trajectories are

impossible and k∗ does not exist. If Condition 3 holds, the system is absolutely

stable according to Theorem 3.2. The absolute stability implies global asymptotic

stability of the origin in the nonlinear system PLS. Thus this system has no closed

trajectories and k∗ does not exist.

If Condition 4 is satisfied, the system is absolutely stable and a closed trajec-

tory does not exist in the system (3.11) with the WCSL. If the value of k is increased

and Condition 4 breaks down, one need to check Condition 5 in order to determine

whether the system is absolutely stable.

In the following Condition 5 is examined. In this case, the condition x1n−x1p >

0 (Figure 3.2) is equivalent to the condition x1l > −1 (Figure 3.4). From the

symmetry of the vector field of the nonlinear system PLS, these conditions are also

equivalent to the condition x1r < 1.

In order to check the condition x1r < 1, here two cases are considered to find

dx1r

dk
depending upon the type of eigenvalues of the system PLS in the region Ω2 and

Ω4.

1. The Jacobian matrix in the region Ω2 and Ω4 has two negative real eigen-
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Figure 3.4: Illustration for the proof of Theorem 3.6.

values. After cumbersome algebraic manipulations, we have

dx1r

dk
=

2x1me−
λ2t2

2

a∆2

√
(2µ2a− λ2b)2 − b2∆2

[−2b + (λ2b− 2µ2a)t2](b
2 + µ2a

2 − λ2ab) > 0

(3.21)

where t2 = 1√
∆2

ln 2µ2a+b(−λ2−
√

∆2)

2µ2a+b(−λ2+
√

∆2)
> 0, ∆2 = λ2

2−4µ2 > 0, λ2 = λ+ka, µ2 = µ+kb.

2. The Jacobian matrix in the region Ω2 and Ω4 has a pair of complex eigen-

values with negative real parts. After cumbersome algebraic manipulations, we have

dx1r

dk
= 2eα2t2x1m cos β2t2

µ2a
2 + b2 − λ2ab

a∆2

(
2b

2µ2a− λ2b
+ t2) > 0 (3.22)

where t2 = 1
β2

arctan b
√−∆2

2µ2a−λ2b
> 0, α2 = −λ

2
, β2 = −

√−∆2

2

Suppose Condition 5 holds for some k. As k is increased, x1r increases. For

any k > 0, x1r < 1; or at some value k = k∗, x1r = 1. These correspond to case 1)

and 2) in Theorem 3.4 respectively. 2
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3.4 Example

Refinement of the absolute stability conditions in previous sections corrects

some mistakes in the original works and makes them easier to apply in applications.

In this section, a system example is given to illustrate application of the refined

results and also the connection between the refined version of the work [35] and

[42].

Suppose there is a system




˙̂x1

˙̂x2


 =




−1 −5/8

−25/8 −3







x̂1

x̂2


 +



−1

−1


 FNL(t, x̂1 + x̂2) (3.23)

with the nonlinearity FNL bound in the sector (0, 1).

After the state transformation



x1

x2


 =




−2 2

0.75 0.25







x̂1

x̂2


 (3.24)

the system becomes one in the form (3.6) with a = 0.25, b = 2, λ = 4, µ = 1, k = 1. It

is straightforward to show that Condition 4 of Theorem 3.2 is satisfied and therefore

this system is absolutely stable. The determination of absolute stability here only

involves some simple algebraic calculations.

To illustrate the result of Theorem 3.6, we identify the nonlinear system PLS

in Leonov’s approach and also the WCSL δ(t, x) that are associated with this system.
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According to (3.4) and (3.5), the system PLS is:




ẋ1

ẋ2


 =








x2

−4x2 − x1


 if x2(0.25x2 + 2x1) ≥ 0




x2

−4.25x2 − 3x1


 if x2(0.25x2 + 2x1) ≤ 0

(3.25)

Following the definition of the WCSL in Theorem 3.3, we find

PA = {x : ∇HA(x)Bkx < 0} = {(x1, x2) : x2(0.25x2 + 2x1) ≥ 0} (3.26)

and the WCSL:

δ(t, x) =





1 if x2(0.25x2 + 2x1) ≥ 0

0 if x2(0.25x2 + 2x1) ≥ 0

(3.27)

Therefore the system (3.11) with the WCSL is exactly the nonlinear system

PLS and Theorem 3.5 is confirmed.

To compute the quantity k∗, we first find that Condition 4 of Theorem 3.2 is

violated if k is increased to be greater than 2.04. By increasing k further, we need

to check Condition 5 of Theorem 3.2. It can be numerically found that k∗ = ∞ for

this system. In other words, this system is absolutely stable for any nonlinearity

living in the first and third quadrants.

35



Chapter 4

Generalized Absolute Stability for Second-Order Systems

In the previous chapter, necessary and sufficient conditions for absolute sta-

bility of second-order systems are studied. The absolute stability in that setting

is associated with nonlinearities that are within a symmetric sector bound. In the

current chapter, this classical absolute stability concept is generalized to allow non-

symmetric sector bounds.

In Section 4.1, motivation for this generalization is given. In Section 4.2, the

problem to be solved in the remaining parts of this chapter is formulated. In Section

4.3, duality in the generalized absolute stability is introduced. In Section 4.4, neces-

sary and sufficient condition is elaborated. Finally in Section 4.5, the nonsymmetric

sector bound is further generalized and associated necessary and sufficient condition

is given.

4.1 Motivation for the Generalization

Since the introduction of the absolute stability concept in the 1940s, the sector

bound of nonlinearities has been symmetric with respect to the origin (illustrated

in Figure 4.1). However in practical engineering systems, a general nonlinearity and

associated sector bound does not satisfy this symmetry assumption. For instance,

nonsymmetric nonlinearities are encountered in dynamic models of amplifier circuits
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[3], engineering control systems [32], autonomous underwater vehicles [7], earthquake

engineering [17], and hard disk drives [23].

Nonlinearities in some other engineering systems have the symmetric prop-

erty. For some reasons such as navigation and guidance, one may desire to operate

these systems at an equilibrium point other than the origin. This bias from the ori-

gin would then transform the symmetric nonlinearity to a nonsymmetric one with

respect to the equilibrium point.

Therefore it is of important value, in both theoretic development and engi-

neering practice, to generalize the classical concept of absolute stability to allow

nonsymmetric sector bounds, both in theory and in practice. One may argue that a

nonsymmetric sector bound can always be relaxed to a larger symmetric one. How-

ever, by doing this, conservativeness is introduced in stability analysis and controller

design of the system. In some cases, the relaxation of sector bounds may even leads

to infeasibility in stabilization effort.

4.2 Problem Statement

For the purpose of comparison, the classical symmetric sector bound is illus-

trated again here in Figure 4.1.

The nonsymmetric sector bounds are defined by using the following piecewise

linear functions where ki, i = 1, 2 are positive real numbers:

ρk1,k2(v) =





k1v if v ≤ 0

k2v if v > 0

(4.1)
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FNL(v)

v

slope:k

Figure 4.1: Sector conditions in classical absolute stability studies.

A nonsymmetric sector bound is then defined as follows. One such sector

bound is illustrated in Figure 4.2.

Definition 4.1: A nonlinearity FNL(t, v) lies in the sector (0, k1, k2) if

0 ≤ vFNL(t, v) ≤ vρk1,k2(v). (4.2)

If k1 6= k2, the nonlinearity is said to be bound by a nonsymmetric sector with

respect to the variable v. Otherwise (k1 = k2 = k), the nonlinearity is bound in a

symmetric sector, which is associated with the classical absolute stability concept.

As a further generalization, the following definition is introduced and corre-

sponding illustration is presented in Figure 4.3.

Definition 4.2: A nonlinearity FNL(t, v) is said to be bound in sector (k1, k2, k3, k4)

if

k2v ≤ FNL(t, v) ≤ k3v if v ≤ 0

k1v ≤ FNL(t, v) ≤ k4v if v > 0 (4.3)

It is noted that in Definition 4.1, k1 > 0, k2 > 0 whereas in Definition 4.2,
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Figure 4.2: Nonlinearity bound in the nonsymmetric sector (0, k1, k2)

.

v

slope:k2

slope:k4

slope:k3

slope:k1

FNL(v)

Figure 4.3: Nonlinearity bound in the more general asymmetric sector (k1, k2, k3, k4)
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ki, i = 1, 2, 3, 4 can be positive or negative if only they satisfy the inequalities k1 <

k4, k2 > k3. Apparently, the sector (0, k1, k2) is equivalent to the sector (0, k1, 0, k2).

Based on the generalizations of sector bounds, two main problems of this

chapter are formulated as follows.

Problem 4.1: Determine necessary and sufficient conditions for global asymp-

totic stability at the origin for the second-order nonlinear system

ẋ = y

ẏ = −αy − βx− FNL(t, ay + bx) (4.4)

where the nonlinearity FNL(t, ·) is bound in the nonsymmetric sector (0, k1, k2). 2

Problem 4.2: Determine necessary and sufficient conditions for global asymp-

totic stability at the origin for the second-order nonlinear system (4.4) where the

nonlinearity FNL(t, ·) is bound in the nonsymmetric sector (k1, k2, k3, k4). 2

It is important to point out that the particular form (4.4) is chosen without

loss of generality because any controllable second-order Lur’e system can be put into

this form by using some appropriate state transformation, as shown in the Appendix

A.1.

4.3 Duality

Regarding the absolute stability of systems with nonsymmetric sector bounds,

here a duality principle is established.

Theorem 4.1: The nonlinear system (4.4) with the sector bound (0, k1, k2) is

absolutely stable if and only if the system (4.4) with the sector bound (0, k2, k1) is
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absolutely stable.

Proof For the nonlinear system (4.4) with the sector bound (0, k1, k2), we

carry out the state transformation x̂ = −x, ŷ = −y. The system equation in the

new states reads as:

˙̂x = ŷ

˙̂y = −αŷ − βx̂− F̂NL(t, aŷ + bx̂) (4.5)

Here F̂NL(t, aŷ + bx̂) = −FNL(t, ay + bx). Making use of the fact that FNL(t, ·) is

bound by the sector (0, k1, k2), it is straightforward to show that the nonlinearity

F̂NL(t, ·) is bound by the sector (0, k2, k1). Therefore the absolute stability of the

system (4.4) with the sector bound (0, k1, k2) is equivalent to that of the system

(4.5) with the sector bound (0, k2, k1). 2

For nonlinear systems with a more general nonsymmetric sector bound, the

following theorem holds.

Theorem 4.2: The nonlinear system (4.4) with the sector bound (k1, k2, k3, k4)

is absolutely stable if and only if the system (4.4) with the sector bound (k3, k4, k1, k2)

is absolutely stable.

Proof The proof of this theorem is similar as that of Theorem 4.1, in which

the key step is the state transformation x̂ = x, ŷ = −y. 2

4.4 Solution to Problem 4.1: Generalization of Sector Bounds

In this section, necessary and sufficient condition is derived for Problem 4.1,

through application of Leonov’s approach of vector field comparison. As a first step,
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a few definitions are given including the following regions

Ω1 = {y ≥ 0, ay + bx ≥ 0}

Ω2 = {y ≥ 0, ay + bx ≤ 0}

Ω3 = {y ≤ 0, ay + bx ≤ 0} (4.6)

Ω4 = {y ≤ 0, ay + bx ≥ 0}

a linear system

ẋ = y

ẏ = −µx− λy (4.7)

and various linear systems

1. LS13: system (4.7) with µ = β, λ = α.

2. LS2: (4.7) with µ = β + k1b, λ = α + k1a.

3. LS4: (4.7) with µ = β + k2b, λ = α + k2a.

In the following, we denote the quantity p associated with the system q as p|q. For

convenience, we name the nonlinear system in Problem 4.1 as NLS1. Then in the

regions Ω1 and Ω3, it can be shown that

ẏ

ẋ
|NLS1 =

−αy − βx− FNL

y
≤ −αy − βx

y
=

ẏ

ẋ
|LS13 (4.8)

Similarly in the region Ω2, we have

ẏ

ẋ
|NLS1 ≤

ẏ

ẋ
|LS2 (4.9)

42



In the region Ω4, we have

ẏ

ẋ
|NLS1 ≤

ẏ

ẋ
|LS4 (4.10)

Here we first look at the case when a > 0. For different values of the system

parameters a, b, α, β, k1, k2, the following propositions are given. These propositions

are then summarized in Theorem 4.3 giving necessary and sufficient condition for

Problem 1 when a > 0. The cases when a < 0 and a = 0 will be addressed in

Theorem 4.4 and Theorem 4.5 respectively.

Proposition 4.1: If a > 0, then the uncertain system in Problem 4.1 is not

absolutely stable if one or more of the following conditions does not hold.

1. α > 0

2. β > 0

3. β + bk1 > 0

4. β + bk2 > 0

Proof : If α ≤ 0 or β ≤ 0, the system in Problem 4.1 is unstable with a trivial

nonlinearity FNL(t, u) = 0. Regarding the last two conditions, we consider a system

PLS that has the same vector field as that of the linear system LSi in the region Ωi,

where i = 13, 2, 4. If β+bk1 ≤ 0, the system PLS is unstable because the system LS2

has a saddle point and the unstable manifold is located in the region Ω2. Similarly,

if β + bk2 ≤ 0, the system PLS is unstable. Therefore the last two conditions are

needed to ensure absolute stability of the uncertain system in Problem 4.1. 2
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Proposition 4.2: If a > 0, b = 0 and α > 0, β > 0, the uncertain system in

Problem 4.1 is absolutely stable for any k1 > 0, k2 > 0.

Proof : With a > 0 and b = 0, the state space (x, y) is divided into the

region Ω1 (the half plane y ≥ 0) and the region Ω3 (the half plane y ≤ 0). For the

linear system LS13, we have λ > 0 and µ > 0 due to the assumption of α > 0 and

β > 0. If λ2 ≥ 4µ, the origin of this linear system is a stable node and both stable

manifolds lie in the second and fourth quadrants. Therefore two trajectories can

be constructed ending at the points (c, 0) and (−c, 0) with c > 0, as illustrated in

Figure 4.4. It is noted that the particular vector field form of the system (4.4) forces

the trajectory to travel to the right in the upper half plane (y > 0) and to the left

in the lower half plane (y < 0). A closed curve (not a trajectory) is then formed by

joining these two trajectories with the vertical lines x = ±c.

The inequality in (4.8) implies that the vector field of the uncertain system

NLS1 on the two trajectories ending at the points (c, 0 and (−c, 0) points towards

the inner side of the closed curve that is constructed. On the vertical lines x = ±c,

the vector field also points towards the inner side of the closed curve, as determined

by the first equation in (4.4). Therefore the region enveloped by the closed curve is

an invariant subspace. Clearly this invariant property remains unchanged for other

positive values of c. In other words, all trajectories will ultimately be attracted to

the origin and the absolute stability is proven.

If λ2 ≤ 4µ, the origin of LS13 is a stable focus. A closed curve as illustrated

in Figure 4.5 can be constructed. This curve is composed of the trajectory starting

from the point (c, 0) in a positive time, the trajectory starting from the same point in
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x
-c

Ω1

Ω3

Figure 4.4: Illustration for the proof of Proposition 4.2. The origin of the system

LS13 is a stable node.

a negative time, and a vertical line in the second quadrant. The region enveloped by

this closed curve is an invariant subspace for any positive value of c. THe absolute

stability in this case is thus proved. 2

Proposition 4.3: If a > 0, b < 0, α > 0, β+bk1 > 0, β+bk2 > 0 and α2 ≥ 4β,

the uncertain system in Problem 4.1 is absolutely stable.

Proof : With a > 0 and b < 0, the state space is divided into four regions

Ωi, i = 1, 2, 3, 4 as defined in (4.6). With regards to the regions Ω1 and Ω3, the origin

of the system LS13 is a stable node and both stable manifolds are in the second and

fourth quadrants.

Due to the assumption β + bk1 > 0, β + bk2 > 0, the origin of the systems LS2

and LS4 must be either a stable focus, or a stable node. If it is a stable node, a

straightforward calculation shows that the stable manifolds are in the second and

fourth quadrants. In both cases (focus or node), the trajectories of the systems LS2

and LS4 starting from the point (c, 0) and (−c, 0) respectively intersect with the line
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Figure 4.5: Illustration for the proof of Proposition 4.2. The origin of the system

LS13 is a stable focus.

ay + bx = 0 in a negative time. Therefore we can construct a closed curve as shown

in Figure 4.6. Following the same argument as that in the proof of Proposition

4.2, we can prove the absolute stability of the uncertain system in Problem 4.1 by

verifying the invariant property of the region enveloped by the closed curve. 2

Proposition 4.4: If a > 0, b > 0, α > 0, β > 0, α2 ≥ 4β and α
2
+

√
α2

4
− β ≥ b

a
,

the uncertain system in Problem 4.1 is absolutely stable for any k1 > 0, k2 > 0.

Proof : In this case, the origin of the system LS13 is a stable node. Fur-

thermore, at least one of the stable manifolds is located between the y axis and

the line ay + bx = 0. Consequently a closed curve as illustrated in Figure 4.7 can

be constructed. Absolute stability is then proved by using the invariant subspace

argument that is used in the proof of Propositions 4.2 and 4.3. 2

Proposition 4.5: If a > 0, b > 0, α > 0, β > 0, conditions in Proposition 4.4

do not hold, and (α + ak1)
2 ≥ 4(β + bk1),

α+ak1

2
−

√
(α+ak1)2

4
− (β + bk1) ≤ b

a
, the

uncertain system in Problem 4.1 is absolutely stable.
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Figure 4.6: Illustration for the proof of Proposition 4.3.
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Figure 4.7: Illustration for the proof of Proposition 4.4.
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Figure 4.8: Illustration for the proof of Proposition 4.5. The origin of the system

LS4 is a node.

Proof : Because the conditions in Proposition 4.4 do not hold, the system

LS13 has a stable focus or a stable node of which both stable manifolds are located

in the regions Ω2 and Ω4. Therefore the trajectory of LS13 starting from the point

(c, 0) will intersect with the line ay+bx = 0 in a negative time. With the conditions

related to k1 in this proposition, the system LS2 has a stable node, of which at least

one of the stable manifolds is located in the region Ω2 and Ω4.

Regarding the system LS4, here two cases are considered. In the first case,

the origin of the system is a node. Since α + k1a > 0 and β + k2b > 0, both stable

manifolds of LS4 is located in the second and fourth quadrants. Depending on the

relative location of the stable manifolds with respect to the line ay + bx = 0, a

closed curve as illustrated in Figures 4.8-4.10 can be constructed. Correspondingly

the absolute stability is then proved by comparing the vector field on this closed

curve with that of the uncertain system in Problem 4.1.
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Figure 4.9: Illustration for the proof of Proposition 4.5. The origin of the system

LS4 is a focus.

In the second case, the system LS4 has a stable focus. Depending on the

relative location of the intersection point Q with respect to the point (c, 0), a closed

curve, as illustrated in Figure 4.9 and in Figure 4.10 respectively, can be constructed

to prove the absolute stability of the uncertain system in Problem 4.1. 2

Proposition 4.6: If a > 0, b > 0, α > 0, β > 0, conditions in Proposition 4.4

do not hold, and (α + ak2)
2 ≥ 4(β + bk2),

α+ak2

2
−

√
(α+ak2)2

4
− (β + bk2) ≤ b

a
, the

uncertain system in Problem 4.1 is absolutely stable.

Proof : By the duality principle in Theorem 4.1, the absolute stability in this

case is equivalent to that in Proposition 4.5. 2

Recall that the system PLS has the same vector field as that of the linear

system LSi in the region Ωi, where i = 13, 2, 4. In Propositions 4.2-4.6, none of

the trajectories of the system PLS travels through all four regions Ωi. Next we
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Figure 4.10: Illustration for the proof of Proposition 4.5. The origin of the system

LS4 is a focus.

consider the cases where these propositions are not applicable. That is, in these

cases, each of the trajectories of the system PLS travel through all four regions. As

illustrated in Figure 4.11, the trajectory of the system PLS starts from the point

(−c, 0), intersects with the line ay + bx = 0 at a point (x1, y1) and with the line

y = 0 at a point (x2, 0), and finally intersects again with the line ay + bx = 0 at a

point (xpc, ypc). In a negative time, the trajectory of the system PLS starting from

the point (−c, 0) intersects with the line ay + bx = 0 at a point (xnc, ync). When

c = 1, we let xp = xpc, yp = ypc, xn = xnc, yn = ync. With these notations, the

following two propositions give conditions for determining absolute stability of the

uncertain system in Problem 1.

Proposition 4.7: When the absolute stability of the uncertain system in

Problem 4.1 cannot be judged according to Propositions 4.1-4.6, the uncertain sys-

tem is absolutely stable if and only if yn < yp.
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Figure 4.11: Illustration for the proof of Proposition 4.7.

Proof : Given the fact that each of the systems LS13, LS2 and LS4 has a linear

vector field, it is easily shown that yn < yp ⇔ ync < ypc for any positive number

c. If a > 0, b > 0, a closed curve, as illustrated in Figure 4.11, can be constructed

because conditions in Propositions 4.1-4.6 are not satisfied. Here the vertical line

in the region Ω3 connects the linear system trajectories. Absolute stability is then

proved by applying the invariant subspace argument to the region enveloped by the

closed curve. In a similar manner, absolute stability is established in the case where

a > 0, b < 0.

If yn < yp does not hold, an unstable trajectory can be identified for the

uncertain system in Problem 4.1 with a particular choice of the following nonlinearity

FNL(t, u) =





0 if t0 ≤ t < t1

k1u if t1 ≤ t < t2

0 if t2 ≤ t < t3

k2u if if t3 ≤ t < t4

......

(4.11)
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Figure 4.12: Illustration for the proof of Proposition 4.7.

where tj, j = 0, 1, 2, ... are times as shown in Figure 4.12. This nonlinearity is bound

in the sector (0, k1, k2) and the trajectory starting at t0 goes to ∞. Therefore the

uncertain system in Problem 4.1 is not absolutely stable. 2

To summarize, these seven propositions combined give the following necessary

and sufficient condition for absolute stability of an uncertain system in Problem 4.1.

Theorem 4.3: If a > 0, the uncertain system in Problem 4.1 is absolutely

stable if and only if α > 0, β > 0 and one of the following conditions is satisfied.

1. b = 0

2. b > 0, α2 ≥ 4β and one set of the following inequalities hold.

• α
2

+
√

α2

4
− β ≥ b

a

• α
2

+
√

α2

4
− β < b

a
, (α + ak1)

2 ≥ 4(β + bk1),
α+ak1

2
≤ b

a

• α
2

+
√

α2

4
− β < b

a
, (α + ak2)

2 ≥ 4(β + bk2),
α+ak2

2
≤ b

a

3. b > 0, α2 < 4β and one set of the following inequalities hold.
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Figure 4.13: Illustration for the proof of last three conditions in Theorem 4.4.
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Figure 4.14: Illustration for the proof of the first two conditions in Theorem 4.4.
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• (α + ak1)
2 ≥ 4(β + bk1),

α+ak1

2
≤ b

a

• (α + ak2)
2 ≥ 4(β + bk2),

α+ak2

2
≤ b

a

4. b > 0, Condition 2) or 3) does not hold, and yn < yp

5. b < 0, β + k1b > 0, β + k2b > 0 and α2 ≥ 4β

6. b < 0, β + k1b > 0, β + k2b > 0, α2 < 4β, and yn < yp

Proof : According to Proposition 4.1, α > 0 and β > 0 must be satisfied to

ensure absolute stability. Condition 1) in this theorem comes directly from Propo-

sition 4.2. Condition 1) is independent of k1 and k2 and thus the absolute stability

holds for any k1 > 0, k2 > 0.

In Condition 2), the first set of inequalities comes from Proposition 4.4. The

second set of inequalities in Condition 2) and the first set of inequalities in Condition

3) combined is equivalent to the conditions in Proposition 4.5. The equivalence be-

comes clear with some algebraic calculations. Other sets of inequalities in Condition

2) and 3) are established through the duality principle or from Proposition 4.6.

Condition 5) is directly from Proposition 4.3. Condition 4) and 6) come from

Proposition 4.7. 2

So far in all discussions, the assumption a > 0 is made. Next, the result with

a < 0 and a = 0 is presented.

Theorem 4.4: If a < 0, the uncertain system in Problem 4.1 is absolutely

stable if and only if α > 0, β > 0 and one of the following conditions is satisfied.

1. b = 0
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2. b < 0, β + bk1 > 0, β + bk2 > 0, max{α + ak1, 4(β + bk1) − (α + ak1)
2} >

0, max{α + ak2, 4(β + bk2) − (α + ak2)
2} > 0 and one set of the following

inequalities hold

• α2 ≥ 4β, α
2
−

√
α2

4
− β ≤ b

a

• α + ak1 > 0, (α+ak1)
2

+
√

(α+ak1)2

4
− (β + bk1) ≥ b

a

• α + ak2 > 0, (α+ak2)
2

+
√

(α+ak2)2

4
− (β + bk2) ≥ b

a

3. b < 0, β+bk1 > 0, β+bk2 > 0, α2 < 4β, max{α+ak1, 4(β+bk1)−(α+ak1)
2} >

0, max{α + ak2, 4(β + bk2)− (α + ak2)
2} > 0 and yn < yp

4. b > 0, max{α + ak1, 4(β + bk1)− (α + ak1)
2} > 0, max{α + ak2, 4(β + bk2)−

(α + ak2)
2} > 0 and one set of the following inequalities hold

• α + ak1 > 0, (α + ak1)
2 ≥ 4(β + bk1)

• α + ak2 > 0, (α + ak2)
2 ≥ 4(β + bk2)

5. b > 0, (α + ak1)
2 < 4(β + bk1), (α + ak2)

2 < 4(β + bk2), and yn < yp

Proof : If the first condition is satisfied, a closed curve as illustrated in Figure

4.14 (a)(b) can be constructed ((a) if α2 − 4β ≥ 0 and (b) if α2 − 4β < 0) and the

absolute stability becomes clear.

When b < 0, β + bk1 > 0, β + bk2 > 0 must hold to ensure absolute stability.

If β + bk1 ≤ 0, the system LS2 has an unstable manifold in the region Ω2 and

thus the system PLS becomes unstable. Similarly, if β + bk2 ≤ 0, the system PLS

becomes unstable. If the first set of inequalities in Condition 2) includes two that

56



do not involve k1 or k2. When these two inequalities are satisfied, at least one of

the stable manifolds of the system LS13 is located inside the regions Ω1 and Ω3.

The last two inequalities in the first set involve the max function and exclude the

possibility where the system LS2 has an unstable manifold in the region Ω2 and

the possibility where the system LS4 has an unstable manifold in the region Ω4.

Combined together, the first set of inequalities enables one to construct a closed

curve as illustrated in Figure 4.13 (d) and prove the absolute stability. In a similar

manner, if the second set of inequalities holds, one can construct closed curves as

illustrated in Figure 4.13 (a) (b) (c) and prove the absolute stability. The third set

of inequalities is the dual version of the second one. Based on the arguments above,

it is clear to find Condition 3) from Proposition 4.7.

If b > 0, the trajectory of the system LS13, starting from the point (c, 0),

intersects with the line ay + bx = 0 in a negative time. In the fourth condition, if

the first set of inequalities holds, the system LS2 has a stable node of which both

stable manifolds are located in the second and fourth quadrants. The inequality

involving the max function excludes the possibility where the system LS4 has an

unstable manifold in the region Ω4. Therefore one can construct the closed curves

as illustrated in Figure 4.14 (c) (d) (e) to prove the absolute stability. Here, the

system LS4 has a stable node in Figure 4.14 (c) and has a focus in Figure 4.14 (d)

(e). The second set of inequalities is a result of the duality principle in Theorem

4.1. Based on the arguments above, it is clear to find Condition 5) from Proposition

4.7. 2

In the special case of a = 0, we have the following result.
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Theorem 4.5: If a = 0, the uncertain system in Problem 4.1 is absolutely

stable if and only if α > 0, β > 0 and one of the following conditions is satisfied.

1. b = 0

2. b > 0 and for at least one of the indices i = 1, 2, α2 ≥ 4(β + bki)

3. b > 0, α2 < 4(β + bk1), α
2 < 4(β + bk2) and yn < yp

4. b < 0, β + bk1 > 0, β + bk2 > 0 and α2 ≥ 4β

5. b < 0, β + bk1 > 0, β + bk2 > 0, α2 < 4β and yn < yp

Proof : If b = 0, the uncertain system in Problem 4.1 is degenerated to a

simple linear system. This linear system is stable when α > 0, β > 0.

Since α > 0, β > 0, the system LS13 has a stable focus or a stable node of

which both stable manifolds are located in the second and fourth quadrants. When

b > 0, each of the systems LS2 and LS4 has a stable node or a stable focus. With

α2 ≥ 4(β + bk1), the system LS2 has a stable node. One can construct a closed

curve that is the same as that in Figure 4.14 (c)-(e) except that the line ay + bx = 0

here coincides with the y axis. The absolute stability is then proved by applying

the invariant subspace argument. By using the duality principle in Theorem 4.1,

absolute stability is proved when b > 0 and α2 ≥ 4(β +bk2). Condition 3) is a direct

result of Proposition 4.7.

When b < 0, if Condition 4) is satisfied, one can construct a closed curve,

similar as the one in Figure 4.14 (d), to prove the absolute stability. Condition 5)

comes from Proposition 4.7. 2
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Combined together, Theorem 4.3-4.5 give a complete solution to Problem 4.1.

Here two comments are made regarding these results.

Comments :

1. Conditions in Theorem 4.3 and Theorem 4.4 are equivalent to that in Theorem

4.5 by taking the right limit and left limit a → 0 respectively.

2. With the constraint k1 = k2, Problem 4.1 is simplified to the classical absolute

stability problem with symmetric sector bounds. Therefore, with k1 = k2,

these three theorems are degenerated to Leonov’s results in Theorem 3.2.

4.5 Solution to Problem 4.2: Further Generalization of Sector Bounds

The results in the previous section are derived by comparing the vector field of

the system NLS with a sequence of linear systems LS13, LS2, LS4. In the derivation,

the nonlinearity is assumed to be bound in the asymmetric sector (0, k1, k2). Here

we apply the same method and give results for more general asymmetric sector

conditions.

For some other nonlinearity within such asymmetric sector bounds, the clas-

sical absolute stability results can be applied by expanding the sector bounds to

symmetric ones. By doing this, the derived absolute stability conditions are conser-

vative.

Let us call the system (4.4) with the nonlinearity bound in the asymmetric

sector (k1, k2, k3, k4) NLS GL. Here in this section, a generalized version of Problem

4.2 is formulated below and followed by solutions.
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Theorem 4.6: If a > 0, the uncertain system in Problem 4.2 is absolutely

stable if and only if one of the following conditions is satisfied. If a < 0, conditions for

the absolute stability are found by the conditions in the case a > 0 after replacing the

parameter set (k1, k2, k3, k4, a, b) in Problem 4.2 with (−k2,−k1,−k4,−k3,−a,−b).

If a = 0, absolute stability conditions correspond to those in the case a > 0 with

a → 0.

1. b = 0, β + bk1 > 0, β + bk3 > 0 and one set of the following inequalities holds

• α+ak1 > 0, (α+ak1)
2 ≥ 4(β+bk1), max{α+ak3, 4(β+bk3)−(α+ak3)

2} >

0

• α+ak3 > 0, (α+ak3)
2 ≥ 4(β+bk3), max{α+ak1, 4(β+bk1)−(α+ak1)

2} >

0

• (α + ak1)
2 < 4(β + bk1), (α + ak3)

2 < 4(β + bk3) and α+ak1√
4(β+bk1)−(α+ak1)2

+

α+ak3√
4(β+bk3)−(α+ak3)2

< 0

2. b > 0, β + bk1 > 0, β + bk3 > 0, max{α + ak1, 4(β + bk1) − (α + ak1)
2} >

0, max{α + ak3, 4(β + bk3) − (α + ak3)
2} > 0 and one set of the following

inequalities holds

• α + ak1 > 0, (α + ak1)
2 ≥ 4(β + bk1),

α+ak1

2
+

√
(α+ak1)2

4
− (β + bk1) ≥ b

a

• α + ak3 > 0, (α + ak3)
2 ≥ 4(β + bk3),

α+ak3

2
+

√
(α+ak3)2

4
− (β + bk3) ≥ b

a

• α + ak2 > 0, (α + ak2)
2 ≥ 4(β + bk2),

α+ak2

2
−

√
(α+ak2)2

4
− (β + bk2) ≤ b

a

• α + ak4 > 0, (α + ak4)
2 ≥ 4(β + bk4),

α+ak4

2
−

√
(α+ak4)2

4
− (β + bk4) ≤ b

a

• none of the above sets of inequalities holds and yn < yp
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3. b < 0, min{max{β+bki,−α+aki

2
+

√
(α+ak2

i

4
− (β + bki)+

b
a
},max{α+aki,−β−

bki, 4(β + bki)− (α + aki)
2,−α+aki

2
−

√
(α+ak2

i

4
− (β + bki) + b

a
}} > 0 with k =

2, 4, min{max{β + bki,
α+aki

2
−

√
(α+ak2

i

4
− (β + bki)− b

a
},max{α + aki,−β −

bki, 4(β+bki)−(α+aki)
2, α+aki

2
−

√
(α+ak2

i

4
− (β + bki)− b

a
}} > 0 with k = 1, 3,

and one set of the following inequalities holds

• α + ak1 > 0, (α + ak1)
2 ≥ 4(β + bk1)

• α + ak3 > 0, (α + ak3)
2 ≥ 4(β + bk3)

• neither of the above sets of inequalities holds and yn < yp

Proof : When b = 0, the state space (x, y) is divided into the regions Ω1 and

Ω3. If β + bk1 ≤ 0, the system LS1 has a saddle point and the unstable manifold is

located in the region Ω1. Therefore the system NLS is unstable and the uncertain

system in Problem 4.2 is not absolutely stable. Similarly β + bk3 > 0 must hold to

ensure absolute stability. The first set of inequalities includes constraints involving

k1 and k3. With the constraints involving k1, the system LS1 has a stable node

and both stable manifolds are located in the second and fourth quadrants. With

the constraints involving k3, the system LS3 either has a focus or has a stable node

of which both stable manifolds are located in the second and fourth quadrants.

Therefore one can construct closed curves as illustrated in Figure 4.15 (a)-(c) to

prove the absolute stability. The second set of inequalities is proved by applying

the duality principle in Theorem 4.2. If the third set of inequalities holds, we have

xn > xp where the two quantities are illustrated in Figure 4.15 (d). The absolute

stability is then proved by applying Proposition 4.6.
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Figure 4.15: Illustration for the proof of Theorem 4.6 when b = 0.

62



When b > 0, if β + bk1 > 0, the system LS1 has a saddle point and thus

the system PLS is unstable. Therefore the uncertain system in Problem 4.2 is not

absolutely stable. The same argument leads to the condition β+bk3 > 0. If max{α+

ak1, 4(β+bk1)−(α+ak1)
2} ≤ 0, the system LS1 has an unstable node of which both

unstable manifolds are located in the first and third quadrants. Therefore the system

PLS is not stable and the uncertain system in Problem 4.2 is not absolutely stable.

The same argument leads to the condition max{α+ak3, 4(β+bk3)−(α+ak3)
2} > 0.

If the first set of inequalities holds, the system LS1 has a stable node of which at

least one stable manifold is located between the y axis and the line ay + bx = 0.

One can then construct closed curves as illustrated in Figure 4.16 (a)-(c) to prove

the absolute stability. Similarly, if the third set of inequalities holds, the system

LS2 has a stable node of which at least one stable manifold is located between the

x axis and the line ay + bx = 0. One can then construct closed curves as illustrated

in Figure 4.16 (d)-(g) to prove the absolute stability. The second and fourth sets

of inequalities are dual version of the first and third sets respectively. If none of

the first four sets of inequalities holds, the trajectories of the system PLS rotate

clockwise around the origin. Proposition 4.7 can be applied to prove the absolute

stability, as illustrated in Figure 4.16 (h) (i).

When b < 0, if max{β + bk2,−α+ak2

2
+

√
(α+ak2

2

4
− (β + bk2) + b

a
} ≤ 0, the

system LS2 has a saddle point and the unstable manifold is located in the region

Ω2 and Ω4. Therefore the system PLS is unstable and the uncertain system in

Problem 4.2 is not absolutely stable. If max{α + ak2,−β − bk2, 4(β + bk2) − (α +

ak2)
2,−α+ak2

2
−

√
(α+ak2

2

4
− (β + bk2) + b

a
} ≤ 0, the system LS2 has an unstable

63



1

y

c
x

-c

ay+bx=0

Ω1

Ω2

Ω3 Ω4

(a)

y

c
x

-c

ay+bx=0

Ω1

Ω2

Ω3 Ω4

(b)

y

c
x

-c

ay+bx=0

Ω1

Ω2

Ω3 Ω4

(c)

y

c
x

-c

ay+bx=0

Ω1
Ω2

Ω3 Ω4

(d)

y

c
x

-c

ay+bx=0

Ω1Ω2

Ω3 Ω4

(e)

y

c
x

-c

ay+bx=0

Ω1
Ω2

Ω3 Ω4

(f)

y

c
x

-c

ay+bx=0

Ω1
Ω2

Ω3 Ω4

(g)

y

c
x

-c

ay+bx=0

Ω1Ω2

Ω3 Ω4

(xpc,ypc)

(xnc,ync)

(x2,0)

(x1,y1)

(h)

y

c
x

-c

ay+bx=0

Ω1Ω2

Ω3 Ω4

t0

t3

t2

t1

t4

(i)

Figure 4.16: Illustration for the proof of Theorem 4.6 when b > 0.
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node of which at least one unstable manifold is located in the region Ω2 and Ω4.

Therefore the system PLS is unstable and the uncertain system in Problem 4.2 is

not absolutely stable. The same argument can be applied to derive the necessary

conditions involving the min(·, ·) function. If the first set of inequalities holds, the

system LS1 has a stable manifold. One can construct closed curves as illustrated

in Figure 4.17 (a)-(c) to prove the absolute stability. The second set of inequalities

is the dual version of the first set according to Theorem 4.2. If neither of the first

two sets of inequalities holds, the trajectories of the system PLS rotate clockwise

around the origin. Proposition 4.7 can be applied to prove the absolute stability, as

illustrated in Figure 4.17 (d).

If a < 0, the uncertain system in Problem 4.2 is equivalent to

ẋ = y

ẏ = −αy − βx− FNL(t, ay + bx) = −αy − βx− F̃NL(t,−ay − bx) (4.12)

where the nonlinearity F̃NL(t, ·) is bound in the nonsymmetric sector (−k2,−k1,−k4,−k3).

Therefore Problem 4.2 with a < 0 is also solved. 2
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Chapter 5

Generalized Absolute Stability for Finite-Order Systems

5.1 Problem Statement

In the previous chapter, geometry-based methods are used to find necessary

and sufficient conditions for generalized absolute stability of second-order systems.

In this chapter, we will focus on finite-order systems, which generally have an order

higher than two. The geometry-based methods in the previous chapter are not

applicable to general finite-order systems. Therefore new methods are needed for

these systems to find conditions of generalized absolute stability.

With the generalization of sector bounds, the main problem of this chapter is

formulated as follows.

Problem 5.1: Determine sufficient conditions for global asymptotic stability

at the origin for nth-order nonlinear system

ẋ = Ax + bFNL(t, c′x) (5.1)

where the scalar nonlinearity FNL(t, ·) is bound in the asymmetric sector (k1, k2, k3, k4)

as defined in Definition 4.2. Here x, b, c ∈ <n and A ∈ <n×n. 2

It is important to point out that even for the classical absolute stability prob-
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lem of a general finite-order system where the sector bound is symmetric, a trackable

solution that is not only sufficient but also necessary has not been available, despite

the large amount of research effort in this area. Here in this chapter, the generalized

absolute stability problem is more complicated than the classical problem due to

the non-symmetry of the sector bound. As a result, the objective in this chapter

is to find sufficient conditions for the generalized absolute stability, rather than a

condition that is not only sufficient but also necessary.

If we drop t on the right hand side of equality in (5.1) and make the system

time-invariant, Problem 5.1 remains the same. Therefore (5.1) is replaced by

ẋ = Ax + bFNL(c′x) (5.2)

The absolute stability of the system in Problem 5.1 is also equivalent to the

robust stability of the linear time-varying system

ẋ = Ax + bu(t)c′x (5.3)

where the quantity u(t) belongs to an admissible set U

U = {u(t) : k2 ≤ u(t) ≤ k3 if c′x(t) ≤ 0, and k1 ≤ u(t) ≤ k4 otherwise} (5.4)

5.2 Existence of Piecewise Linear Lyapunov Functions

Quadratic Lyapunov functions (QLFs) and piecewise quadratic Lyapunov func-

tions (PWQLFs) may be used to determine the classical absolute stability with a

symmetric sector bound. QLFs and PWQLFs are symmetric with respect to the

origin of the state space due to the quadratic or piecewise quadratic forms. As a
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result, if a QLF or a PWQLF is found to prove the generalized absolute stabil-

ity with the asymmetric sector bound (0, k1, k2), the same Lyapunov function can

be used to prove the classical absolute stability with the symmetric sector bound

(0, K = max {k1, k2}). It is recalled that the purpose of studying the generalized

absolute stability is to reduce the conservativeness in stability conditions. There-

fore, the usage of QLFs or PWQLFs will render meaningless the generalization that

allows for asymmetric sector bounds. In other words, QLFs and PWQLFs are not

suited for determining the generalized absolute stability. In comparison, PWLLFs

are generally not symmetric with respect to the origin of the state space. Futher-

more, usage of PWLLFs often results in stability conditions that are easier to verify

numerically. For these two reasons, PWLLFs will be employed in this chapter to

find sufficient conditions for the generalized absolute stability.

In [43], Molchanov and Piatnitskii proved that a piecewise quadratic Lyapunov

function exists if and only if the system (5.1) with a symmetric sector bound is

absolutely stable. This work laid a ground for the search of piecewise quadratic

Lyapunov functions in the classical absolute stability problem. Inspired by the

arguments in [43], the following results are established and proved for a system (5.1)

with asymmetric sector bounds. In a similar manner, these results lay a theoretical

ground for the search of piecewise linear Lyapunov functions in the generalized

absolute stability problem.

In Lyapunov’s direct method, the derivative of the Lyapunov function is im-

portant. In our study here, however, the Lyapunov functions are piecewise linear

and may not be differentiable although continuous. Furthermore, the nonlinear
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system may be piecewise smooth. Therefore the following modifications are made

to Lyapunov’s direct method. These modifications are also needed of one utilizes

multiple Lyapunov functions other than PWLLFs for the study of piecewise smooth

systems.

1. For a smooth system ẋ = f(x), replace the study of the derivative V̇ (x) =<

grad V (x), f(x) > by the study of the one-sided derivative in the direction of

the vector field y = f(x) :

∂V (x)

∂t
|~y , lim

t→0+
t−1[V (x + ty)− V (x)] (5.5)

Here < ., . > denotes the inner product of two vectors.

2. For a system ẋ = f(x) where f(x) is piecewise smooth, replace the condition

V̇ (x) < 0 by the condition

w(x) = max
y∈F (x)

∂V (x)

∂t
|~y < 0 (5.6)

Here F (x) is the set of all possible vector field y. In the following, w(x) will

sometimes be referred to as ”derivative” of the Lyapunov function V (x).

With these modifications, we can state and prove the following theorem re-

garding the existence of a quasi-quadratic Lyapunov function for a system that is

absolutely stable.

Theorem 5.1 If the system (5.1) with an asymmetric sector bound is globally

absolutely stable, it is necessary and sufficient that there exists a Lyapunov function

V (x) of quasi-quadratic form

V (x) = x′L(x)x, L′(x) = L(x) = L(τx), x 6= 0, τ > 0; V (0) = 0 (5.7)
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whose ”derivative” satisfies the inequality

w(x) = max
y∈F (x)

∂V (x)

∂t
|~y ≤ −γ‖x‖2 (5.8)

for any x ∈ Rn. Furthermore, this Lyapunov function is strictly convex in Rn.

Proof. First we prove the sufficiency. Since V (x) is strictly convex in x, for any

x 6= 0 and τ ∈ (0, 1), we have V (τx) < τV (x). From (5.7), we have V (τx) =

τ 2x′L(τx)x = τ 2V (x). Therefore τ(1− τ)V (x) > 0. Hence V (x) > 0 for any x 6= 0

and V (0) = 0. It is easily verified that V (x) → ∞ as ‖x‖ → ∞. Therefore the

original system is absolutely stable.

Proof for the necessity is more involved and will be provided in the following.

For construction of the Lyapunov function, the following definition is intro-

duced:

S(x0, T ) = max
u∈U

‖xu(x0, T )‖2 = max
u∈U

‖φu(T )x0‖2 = ‖φu∗(T )x0‖2 (5.9)

where xu(x0, t) = φu(t)x0 is a solution of the system (5.3) for x(0) = x0 and u(t) ∈ U .

Here φu(t) is the fundamental matrix of (5.3) corresponding to a choice of u(t)

from the admissible set U ; u∗ denotes the optimal choice of u(t) that achieves the

maximum.

The function S(x0, T ) is continuous in x0 and T due to the continuity of the

function xu(x0, t) in x0 and t. Moreover the function S(x0, T ) is strictly convex in

x0. The strict convexity can be proved in two steps. First, the function xu(x0, T )

corresponding to an arbitrary choice of u(t) is strictly convex in x0 for any fixed

T ≥ 0, since the Hessian matrix is positive definite. Second, the maximum function

of convex functions is convex [12].
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At each point x0 ∈ <n, a Lyapunov function is constructed as:

V (x0) =

∫ T1

0

S(x0, ξ)dξ (5.10)

with T1 > α−1 ln β ≥ 0. Here the quantities α and β are defined in (5.17). The

lower bound on the choice of T1 will become clear later in this proof.

With the construction formula (5.10), it is clear that the function V (x) is

strictly convex in <n. From (5.9) and (5.10), we have V (0) = 0 and

V (x0) = x′0(
∫ T1

0

φ′(x0, ξ)φ(x0, ξ)dξ)x0 = x′0L(x0)x0 (5.11)

with L′(x0) = L(x0).

Through the state transformation of x → τx, it can be shown S(τx0, T ) =

τ 2S(x0, T ) for 0 < τ < ∞. Therefore V (τx0) = τ 2V (x0), and hence

V (x) = x′L(x)x = x′L(τx)x (5.12)

for x 6= 0 and τ > 0. Consequently the function V (x) defined by (5.10) can be

written in the form (5.7).

To prove the inequality (5.8), it is noted that for any x0 and y = Ax0+bλc′x0 ∈

F (x0), we have

∂V (x0)

∂t
|~y , lim

t→+0

V (x0 + ty)− V (x0)

t
= lim

t→+0

V (x0 + ty + o(h))− V (x0)

t

= lim
t→+0

V (xλ(x0, t))− V (x0)

t
(5.13)

Here the remainder o(t) is taken so that x0 + ty + o(t) = xλ(x0, t), and xλ(x0, t) is

a solution of system (5.3) for u(t) ≡ λ = const ∈ U . On substituting (5.10), we

obtain

V (xλ(x0, t))− V (x0)

t
=

∫ T1

0
S(xλ(x0, t), ξ)dξ − ∫ T1

0
S(x0, ξ)dξ

t
(5.14)
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for t > 0.

It is noted that the function S(x0, T ) as defined in (5.9) can be written in an

equivalent form

S(x0, T ) = max
x∈Xu(x0,T )

‖x‖2 (5.15)

where Xu(x0, T ) = {xu(x0, T ), u ∈ U} is a reachable set of system (5.3) from the

initial point x0 during a time interval T ≥ 0. From the definition of the reachable set,

it is clear that Xu(xλ(x0, h), ξ) ⊂ Xu(x0, t + ξ) for any ξ ≥ 0 and S(xλ(x0, h), ξ) ≤

S(x0, t + ξ). By using this inequality and (5.14), we obtain for t > 0:

V (xλ(x0, t))− V (x0)

t
≤

∫ T1

0
S(x0, t + ξ)dξ − ∫ T1

0
S(x0, ξ)dξ

t

=

∫ T1+t

T1
S(x0, ξ)dξ − ∫ t

0
S(x0, ξ)dξ

t
(5.16)

Since the uniform stability of the system (5.3) with an arbitrary u(t) in the

admissible set U is also exponentially stable [30], we have the following bound for

the solutions of (5.3):

‖xu(x0, t)‖ ≤ β‖x0‖−αt, t ≥ 0 (5.17)

where the numbers α > 0 and β ≥ 1 do not depend on u(t) ∈ U . From (5.9) and

(5.17), it follows that

S(x0, T ) ≤ β2‖x0‖2e−2αT , T ≥ 0 (5.18)

On substituting (5.16) into (5.13), we obtain the inequality

w(x0) = max
y∈F (x0)

∂V (x0)

∂t
|~y ≤ lim

t→+0

∫ T1+t

T1
S(x0, ξ)dξ − ∫ t

0
S(x0, ξ)dξ

t

= S(x0, T1)− S(x0, 0) ≤ −{1− β2e−2αT1}‖x0‖2 (5.19)
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The arbitrary choice of x0 ∈ <n yields (5.8) for γ = 1− β2exp(−2αT1) > 0 and the

necessity is proved.

Based on Theorem 5.1, next we give a result on the existence of a piecewise

linear Lyapunov function for a system that is absolutely stable with asymmetric

sector bounds.

Theorem 5.2 The system (5.1) with an asymmetric sector bound is absolutely

stable if and only if there exists a piecewise linear Lyapunov function

V (x) = max
1≤v≤M

< lv, x > (5.20)

where for any x ∈ Rn, the following conditions are satisfied

V (x) ≥ 0

w(x) = max
y∈F (x)

∂V (x)

∂t
|~y ≤ −γ‖x‖2 (5.21)

rank‖l1, l2, ..., lM‖ = n < M

Proof. The sufficiency is easily established from Lyapunov’s direct method. In the

following the necessity will be proved.

Denote the Lyapunov function in (5.7) as V1(x) and one of its level sets as

Π = {x : V1(x) = 1}, that is, V1(x) = x′L(x)x = 1. At each point x0 ∈ Π, we

choose a vector z(x0) 6= 0 from the subdifferential ∂V1(x) of the function V1(x).

From Theorem 5.1, if the system (5.1) with asymmetric sector bounds is absolutely

stable,

w(x0) = max
y∈F (x0)

∂V1(x0)

∂t
|~y = max

y∈F (x0)
max

x∈∂V1(x0)
< z(x0), y >≤ −γ‖x0‖2 ≤ −∆0 (5.22)
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For any x0 ∈ Π, there exists a number d(x0) > 0 such that

max
x∈Γ(x0)

max
y∈F (x)

< z(x0), y >≤ −0.5∆0 (5.23)

for any x belonging to the set Γ(x0) = {x : V1(x) ≤ 1, 0 ≤< z(x0), x − x0 >

+d(x0)‖z(x0)‖}. Here 0 < d(x0) < D(x0) with D(x0) = ‖z(x0)‖−1 < z(x0), x0 > to

include 0 and exclude x0 in the set Γ(x0).

At each point x0 ∈ Π, the set Q(x0) = {x ∈ Π :< z(x0), x−x0 > +d(x0)‖z(x0)‖ >

0} specifies an open neighborhood of this point on the manifold Π. Likewise

{Q(x0), x0 ∈ Π} specifies an infinite covering of Π. As the manifold Π is compact,

there exists a finite covering defined by a finite set of points xs
0 ∈ Π(s = 1, 2, ..., M)

from Borel-Lebesgue theorem [53].

Consider a polyhedral set K specified by a set of inequalities

< z(xv
0), x− xv

0 > +‖z(xv
0)‖d(xv

0) ≤ 0, v = 1, 2, ..., M (5.24)

The set K is nonempty, since x = 0 will be its interior point by the condition

d(xv
0) < D(xv

0), v=1,...,M. The set K is also convex and closed. Moreover the set K

is contained in the set {x : V1(x) < 1}. Otherwise, there exists a point a ∈ K with

V1(a) ≥ 1. Since K is convex and 0 ∈ K, we have the point b = a/
√

V1(a) ∈ K.

On the other hand, b ∈ Π and therefore this point is covered by at least one of

the neighborhoods Q(xv
0), v = 1, 2, ..., M . This leads to contradiction with b ∈ K

according to the definition of K.

The surface of the polyhedron K can be regarded as a level surface Π1 = {x :

V (x) = 1} if the following column vectors lv are chosen in (5.20)

lv = z(xv
0)‖z(xv

0)‖−1[D(xv
0)− d(xv

0)]
−1, v = 1, 2, ..., M (5.25)
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Here the vectors lv must satisfy the third condition in (5.21), since otherwise the

level surface of the function V (x) is not bounded.

The derivative of the function (5.20) can be written as

∂V (x)

∂t
|~y = max

v∈R(x)
{< lv, y >} (5.26)

where R(x) = {v : V (x) =< lv, x >, 1 ≤ v ≤ M}. Therefore for any x ∈ Π1 and any

v ∈ R(x) we have the equation < lv, x >= 1. Since the surface of the polyhedron K

coincides with the set Π1, it is true that x ∈ Γ(xv
0). We hence have the inequality

w(x) = max
y∈F (x)

∂V (x)

∂t
|~y ≤ −0.5∆0{ max

v∈R(x)
[‖z(xv

0)‖(D(xv
0)− d(xv

0))]}−1 ≤ ∆1 < 0

(5.27)

Since V (τx) = τV (x) and F (τx) = τF (x) for 0 ≤ τ < ∞, it follows that for

any x ∈ <n, w(x) ≤ −∆1V (x) ≤ −∆1λ1‖x‖ where the quantity λ1 is:

λ1 = min
y∈S={x:‖x‖=1}

V (y) (5.28)

5.3 Construction of Piecewise Linear Lyapunov Functions (PWLLF)

Theorem 5.2 proves the existence of a piecewise linear Lyapunov function

(PWLLF) for a system that is absolutely stable with an asymmetric sector bound.

Therefore for an absolutely stable system, it is always possible to prove the absolute

stability by finding a PWLLF. The following lemma provides a method to construct

PWLLFs.
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Lemma 5.1 If there exists a set of vectors lv ∈ <n, v = 1, 2, ..., M and a set of

scalars uij > 0, wij > 0 with i, j = 1, 2, ...,M so that the following conditions hold,

the system (5.1) is absolutely stable with the Lyapunov function of the form (5.20).

0 = (li)T A +
M∑

j=1,j 6=i

uij(l
i − lj)T

0 = (li)T −
M∑

j=1,j 6=i

wij(l
i − lj)T (5.29)

Proof. By using the so-called S-procedure, if the conditions (5.29) hold, the condi-

tions (5.21) are satisfied. Thus this lemma is proved by applying Theorem 5.2.

The scalars uij, wij in Lemma 5.1 can be assumed to be certain values first.

Then the PWLLF can be found through linear programming tools. However, with M

increasing, there will be many such scalars. As a result, search for the PWLLFs with

this approach can be numerically expensive. To reduce the numerical complexity,

the state space <n of the system is first divided into a set of polytopic regions and

then the PWLLFs may be found by using linear programming tools.

As a preparation for the new approach that will be stated in Theorem 5.3, here

we give two definitions. Suppose the state space <n is divided into M polyhedral

regions, which are denoted as Xi, i = 1, 2, ..., M . A matrix Ei is called the polyhedral

cell bound associated with Xi if it satisfies

Eix º 0 for x ∈ Xi (5.30)

Here Â and º means elementwise relationship. A matrix Fi is a continuity matrix

for cell Xi if

Fix = Fjx for x ∈ Xi ∩Xj (5.31)
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Theorem 5.3 Let {Xi, i = 1, 2, ..., M} be a polyhedral partition of the state

space with continuity matrices Fi satisfying (5.31), and cell bounds Ei satisfying

(5.30). If there exists a vectors t and nonnegative vectors ui Â 0, vi Â 0, wi Â 0 so

that the following conditions hold for i = 1, 2, ..., M , the system (5.1) is absolutely

stable.

li = F T
i t

0 = lTi − wiEi

0 = lTi A + uiEi (5.32)

0 = lTi (A + bk) + viEi

Proof. Let V (x) = lix for Eix ≤ 0 and thus V (0) = 0. The first equality in (5.32)

ensures that the Lyapunov function V (x) is continuous. The second equality leads

to V (x) > 0 for any x 6= 0. When the last two equalities are satisfied, there is V̇ < 0

for any x 6= 0 for any nonlinearity bound in the asymmetric sectors. Furthermore,

from the construction of the Lyapunov function, we have V (x) → ∞ as x → ∞.

Therefore this theorem is proved.

5.4 Computational Issues

To make use of Theorem 5.3 to find PWLLFs, one needs to determine the

partition of the state space and therefore the matrices Ei, i = 1, 2, ..., M . Then

based on the chosen partition, one needs to specify the matrices Fi, i = 1, 2, ..., M

to ensure continuity of the PWLLF.

In order to determine the global absolute stability of a system, we introduce
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the hyperplane partition - partition the state space into convex polyhedra cells with

a number of hyperplanes. Assume these hyperplanes are represented as

∂Hj = {x ∈ <n|aT
j (x− x0) = 0}, j = 1, ..., NHP (5.33)

Here NHP is the number of hyperplanes that are used for partition. We call the

matrix a = (a1 a2 ... aNHP
) the partition matrix. The partitioned cells are therefore

Ci = {x : Eix º 0}, i = 1, ...,M (5.34)

where the matrix Ei can be derived from the vectors aj of the hyperplanes (5.33).

To specify the continuity matrices Fi, i = 1, ...,M , a point xi is arbitrarily

chosen inside the polyhedral cell Ci and we let

Fixi = max {aT xi, 0} (5.35)

where the function max is operated elementwise. In other words, the rth row of the

matrix Fi is equivalent to aT
r if aT

r xi > 0 and zero otherwise. It is noted that this

selection of continuity matrices is not unique. We adopt this selection due to its

simplicity. In the next section it is shown that this particular selection is adequate

for finding PWLLFs in the absolute stability problem.

The application of Theorem 5.3 involves many details such as the definitions

that are introduced in the above. In order to understand these details better, one

will find it very helpful to read Section 7.2, in which several application examples

are presented.
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Chapter 6

Supercavitating Vehicles

Supercavitating vehicles are a type of underwater vehicles capable of traveling at

an ultra-high speed of over 230mph. In this chapter, we will focus on the dynamics,

control and bifurcation of the motions of supercavitating vehicles, with a particular

interest in applying the classical absolute stability results to stabilize the dive-plane

motion of the supercavitating vehicles with robustness to modeling errors in the

major source of nonlinearities – planing force.

In the sequel, the physics behind the supercavitation phenomenon is briefly

explained in Section 6.1. In Section 6.2, the dive-plane model of a supercavitating

vehicle is introduced. In Section 6.3, dynamics in the dive plane for a set of system

parameters are studied. In Section 6.4, the challenges in stabilization, control and

maneuvering of supercavitating vehicles are summarized. In Section 6.5, two robust

control schemes are proposed for stabilization of supercavitating vehicles. In Section

6.6, an optimization technique is introduced to deal with the actuator saturation

(in magnitude) problem - a great challenge in practical control of supercavitating

vehicles. Finally the study of dynamics and stability of supercavitating vehicles is

extended to address the change of some important system parameters during the

vehicle motion; bifurcations in the vehicle system are elaborated and a dynamic
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feedback control scheme is proposed to modify the bifurcation behavior.

6.1 Supercavitation

Cavitation is the physical phenomenon of bubble formation in a liquid subject

to local pressure variations. According to Bernoulli’s principle in fluid dynamics, the

pressure of a fluid drops due to its high speed. When the pressure drops below the

vapor pressure of the water, vaporization occurs typically resulting in small bubbles

of water vapor. In order to generate and sustain a large bubble or cavity, artificial

ventilation is often used in which some chemical actions inside the underwater vehicle

are involved. The cavitation number σ, which is used to characterize the extent of

cavitation, is defined as

σ =
p∞ − pc

0.5ρV 2
(6.1)

where ρ is the fluid density, V is the vehicle velocity, p∞ and pc are respectively the

ambient pressure and the cavity pressure.

Supercavitation, which is an extreme form of cavitation in which a single bub-

ble envelops the moving vehicle almost completely (see Figure 6.1), corresponds

to very small values of the cavitation number. For a long time, researchers and

engineers regarded cavitation as an undesirable physical phenomenon that is detri-

mental to underwater vehicles or ships, because cavitation causes a great deal of

noise, vibration and damages to components such as propellers. However, in the

application of supercavitating vehicles, cavitation is certainly a desirable behavior.

Due to the reduced drag forces associated with a supercavitating vehicle, dramatic
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increases can be realized in the speed of supercavitating vehicle [31]. Bundled with

the benefit of making possible an ultra high underwater speed, in supercavitation

complicated cavity dynamics are involved, the underwater vehicle experiences strong

nonlinear forces, and the system dynamics present new challenges for stabilization

and controlled maneuvering of the vehicle.

Figure 6.1: A supercavitating vehicle with surrounding envelope.

6.2 Dive-Plane Model

Following the work [16], a four-state model is chosen to study dive-plane dy-

namics and control of the system shown in Figure 6.1. The forward velocity V is

assumed to be constant and the four states of this model are z (the depth at which

the vehicle is located), w (the vertical speed of the vehicle), θ (the pitch angle), and

q (the pitch rate). This system has two control inputs, namely, the cavitator deflec-

tion angle δc and the elevator deflection angle δe. The model takes into account the

nonlinear planing force, which is descriptive of the nonlinear interaction between

the vehicle and the cavity, and a simplified description of the cavity dynamics. The
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governing equations can be determined in a body-fixed reference frame as




ż

ẇ

θ̇

q̇




=




0 1 −V 0

0 a22 0 a24

0 0 0 1

0 a42 0 a44







z

w

θ

q




+




0 0

b21 b22

0 0

b41 b42







δe

δc


 +




0

c2

0

0




(6.2)

+




0

d2

0

d4




(−V 2[1− (
Rc −R

h′R + Rc −R
)
2

]
1 + h′

1 + 2h′
α)

The term c2 and the last term in Eq. (6.2) correspond respectively to the gravity

and the planing force. Rc is the cavity radius and R is the supercavitating vehicle

radius. The coefficients aij, bij, and dij are functions of system parameters. The

immersion depth h′ and the angle of attack α in the planing force calculation are

given by

h′ =





0 Rc−R
R

> L|w|
RV

L|w|
RV

− Rc−R
R

otherwise

(6.3)

α =





w−Ṙc

V
w
V

> 0

w+Ṙc

V
otherwise

(6.4)
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In Eq. (6.3) and (6.4), L is the vehicle length and Ṙc < 0 is the cavity radius

contraction rate. The coefficients and other quantities above in Eqs. (6.2-6.4) take

the forms given in Eq. (6.5). Here, n is the fin effectiveness ratio with respect to the

cavitator, m is the density ratio of the vehicle to water, g is the gravity acceleration,

Cx0 is the cavitator lift force coefficient, and Rn is the cavitator radius.

a22 =
CV T

m
(
−1− n

L
)S +

17

36
nL

a24 = V TS(C
−n

m
+

7

9
)− V T (C

−n

m
+

17

36
)
17

36
L2

a42 =
CV T

m
(
17

36
− 11n

36
)

a44 =
−11CV TnL

36m

b21 =
CV 2Tn

m
(
−S

L
+

17L

36
), b22 =

−CV 2TS

mL

b41 =
−11CV 2Tn

36m
, b42 =

17CV 2T

36m
(6.5)

c2 = g, d2 =
T

m
(
−17L

36
+

S

L
), d4 =

11T

36m

S =
11

60
R2 +

133L2

405
, T =

1

7S/9− 289L2/1296

Cx = Cx0(1 + σ), C = 0.5Cx
Rn

2

R2

Rc = Rn

√
0.82

1 + σ

σ
K2, K1 =

L

Rn(1.92
σ
− 3)

− 1

K2 =

√
1− (1− 4.5σ

1 + σ
)K1

40/17

Ṙc =
−20

17
(0.821+σ

σ
)0.5V (1− 4.5σ

1+σ
)(K1)

23/17

K2(
1.92
σ
− 3)

The four-dimensional dive-plane model (6.2) is written in a compact form as

ẋ = Ax + Bu + DFp (6.6)

with x = [z w θ q]T and u = [δe δc]
T . Here x, u, Fp stands for the state, the control
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input and the planing force respectively.

The model equations described here are different from those presented in [16],

since the same sign convention is used for the cavitator and fin inputs. The planing

force is the only nonlinearity considered in this work. Additional details regarding

this model can be found in references [16] and [37].

6.3 System Dynamics

Results obtained for a representative set of system parameter values are pre-

sented and discussed in this section. The specific set of parameter values considered

is as follows:

g = 9.81m/s2,m = 2, Rn = 0.0191m,R = 0.0508m,L = 1.8m,V = 75m/s,

σ = 0.03, n = 0.5, Cx0 = 0.82. (6.7)

6.3.1 Time-Domain Simulations

The responses of the uncontrolled system were found to be unstable. Responses

of the controlled system are studied for the feedback law given by Eq. (6.8) and the

results are presented in Figure 6.2. As shown in this figure, the controlled system

exhibits bounded motions, which happen to be stable periodic motions.

δc = −k21z − k23θ − k24q = 15z − 30θ − 0.3q

δe = 0 (6.8)
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Figure 6.2: Motions initiated from trivial initial conditions in the controlled case.

6.3.2 Equilibrium Point Analysis
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Figure 6.3: Planing force versus the vertical speed w.

A graph of the planing force is shown in Figure 6.3. This nonlinearity depends

only on the vertical speed w. Based on the w-value, the state space can be divided

into two regions; that is, the no-tail-slap region (−wth < w < wth) and the tail-slap

region (|w| > wth), where wth is the positive value of w at the transition point in

Figure 6.3. In the no-tail-slap region, the planing force is absent and the system is

linear. The uncontrolled system has no equilibria in either region. The closed-loop

system with the control given by Eq. (6.8) has the following numerically determined

equilibrium point:
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(z̄, w̄, θ̄, q̄) = (0.04545, 1.6703, 0.0224, 0) (6.9)

The Jacobian matrix associated with this equilibrium point has unstable eigen-

values, and the DC offsets of the different states shown in Figure 6.2 correspond to

this unstable equilibrium point.

6.3.3 Limit Cycle Prediction

To examine the limit cycle motions shown in Figure 6.2, the describing function

method (DFM) [30] is used. Through numerical calculations based on this method,

it is determined that the system has a stable limit cycle with vertical speed

w(t) = 1.626 + 0.12238 cos(277t) (6.10)

The DC offset of 1.626 m/s is in agreement with the DC offset of 1.619 m/s

determined through time-domain simulations (see Figure 2). In addition, the AC

amplitude of 0.12238 m/s and the oscillation frequency of 277 rad/s are close to the

respective values (0.2 m/s and 232 rad/s) obtained through the simulations. The

differences are attributed to the presence of higher order harmonics; it is assumed

that the first harmonic is dominant in using the DFM. A projection of the system

trajectory obtained from the time-domain simulation is shown in Figure 6.4.
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6.4 Challenges in Stabilization and Control

Supercavitation presents a lot of challenges for the design of control systems

to stabilize and navigate the motion of supercavitating vehicles. Below we list some

challenges from the perspective of control system design.

1. Model Uncertainty

Supercavitation involves very complicated physics between three phases: solid

phase of the vehicle body and control surfaces (including the cavitators in the front,

and rudders/elevators in the rear), liquid phase of water, gaseous phase of cavity.

Particularly, the hydrodynamic forces in supercavitation are hard to model accu-

rately. Among these forces, the planing force is a strong nonlinearity and has a

large effect on the dynamics of supercavitating vehicles. To date, the planing force

formula is not accurate and this leads to a great deal of model uncertainty.

2. Large Disturbance

During the motion of supercavitating vehicles, large disturbances are involved.
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This, to a large extent, is due to the cavity dynamics and the interaction between

different phases.

3. Actuator Saturation

The control surfaces of supercavitating vehicles are cavitators in the front

of the vehicle and the fins (rudders and elevators) in the rear. Due to physical

constraints and other considerations, the cavitator deflection angle and the fin de-

flection angle have upper limits and will saturate at certain levels. The effect of

actuator saturation has to be taken into consideration for the purpose of designing

a high-performance control system.

4. Inner-Outer Loop Interaction

Here the inner-loop control system corresponds to the control system that is

designed to stabilize the motion of the underwater vehicle. In comparison, the outer-

loop control system corresponds to the control system that is designed to guide and

navigate the motion of the underwater vehicle. Although this work focuses on inner-

loop control systems, some considerations from the outer-loop control system have

to be addressed in the inner loop control system design. For example, the outer-loop

control system will specify an operating point for the inner-loop control system. This

operating point in many cases may be regarded as the desired equilibrium point for

the closed-loop system including the inner-loop control system.

5. System Parameter Variation

Important system parameters such as the cavitation number σ varies during

the motion of a supercavitating vehicle. This leads to a variety of bifurcation be-

haviors, as detailed in the reference [38]. Tools of bifurcation controls, including the
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Figure 6.5: Motions initiated from trivial initial conditions in the uncontrolled case.

washout filter based dynamic feedback control, are provided to avoid undesirable

bifurcation behaviors and achieve desired bifurcation behaviors during the entire

motion of supercavitating vehicles.

6.5 Control System Design

In this section, two control schemes are presented. For purposes of control

system design, the specific set of parameter values (6.7) is considered.

As elaborated in the preceding section, the form of the governing equations

is complicated and does not lend itself to a direct analysis. To explore the system

dynamics, as a first step, numerical simulations are carried out in the time domain.

The system without any control inputs, also referred to as the uncontrolled or open-

loop system, exhibits unstable oscillatory motions [37] that grow quite rapidly for

various initial conditions. In Figure 6.5, the results are shown for the case in which

the motion is initiated from the trivial initial condition; that is, x = 0 at t = 0.
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The control objective for the supercavitating vehicles is to design an inner-

loop controller to stabilize the dive-plane dynamics of the vehicle at an equilibrium

point, or at a limit cycle surrounding this point, if the former goal is not attainable.

The desired equilibrium point is determined by the outer-loop guidance controller

of the supercavitating vehicle, and this is not addressed here.

The forward speed V is controlled by the engine thrust. In this work it is

assumed that the forward speed V and therefore the cavitation number s are constant

during the time interval of interest. During the transitional period when the vehicle

has not been accelerated to the constant speed V , the supercavity may not have

formed and part of the vehicle body may be surrounded by one or several air bubbles

called partial cavities. Correspondingly, modeling details including the planing force

formula need to be modified. However, to date, analytical models are not available

yet for partial cavities. Therefore, in the current work we will focus on the time

interval when the vehicle is already at a forward speed V .

As illustrated in Figure 6.3, the planing force is absent in the dead zone and

the system is linear in this region. Local stability of the equilibrium point in the

dead zone can be easily enforced by using linear state feedback. However, large

perturbations drive the system out of the dead zone and the tail-slap phenomenon

develops as shown in the simulations of the open-loop system. The planing force

grows quickly in magnitude when the supercavitating vehicle is driven out of the

cavity by large perturbations. Compared to other forces (e.g., the gravity) in the

system, the planing force is strong in magnitude even when only a small portion

of the vehicle is submerged in water. This strong nonlinearity can easily drive the
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system dynamics to instability. Therefore, the planing force nonlinearity presents

a special challenge for control design. In the following, various feedback control

schemes are examined for meeting the control objective. The key issue is to evaluate

the effectiveness of linear/switching control schemes in the nonlinear system.

6.5.1 Linear Feedback Control

Here, nonlinear system tools, including the circle criterion and the describing

function method, are used to design linear feedback control and analyze the closed-

loop system. The circle criterion is usually used to judge the absolute stability of

a system with a class of nonlinearity that lies within some sectors. It makes sense

to apply the circle criterion to the supercavitating vehicle model with a particular

nonlinearity for the following reasons:

• the considered nonlinearity satisfies the sector condition and, although conser-

vative, absolute stability as determined by using the circle criterion guarantees

the stability of the system

• the determination of this nonlinearity is prone to modeling errors, and one way

to represent these modeling errors is to assume that the true nonlinearity is

close to the nominally assumed nonlinearity in the sense of the sector condition

(2.1).

The procedures of Section 2.1.2 are used to judge the absolute stability of the

equilibrium point of the system and estimate its region of attraction (ROA).
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In the control designs in the sequel, the following are assumed: i) all four states

are measurable, and ii) the desired equilibrium point is given by xeq = [zd, 0, θd, qd].

After redefining the state variables in (6.11), the supercavitating vehicle model (6.6)

is rewritten as shown in (6.12).

x̃ = x− xeq (6.11)

˙̃x = Ax̃ + Bu + (C + Axeq) + DFp (6.12)

The first term of the control law

u = −(BT B)−1BT (C + Axeq) + v (6.13)

cancels the constant term of the vector field in (6.12) including the gravity term C

and the term determined by the desired equilibrium point. This results in the closed

loop system (6.14) with a linear state feedback (6.15):

˙̃x = Ax̃ + Bv + DFp (6.14)

v = −Kf x̃ (6.15)

The stability of the origin depends on selection of the matrix Kf in (6.15). For

example, if Kf is designed such that the poles associated with Â = A − BKf are

placed at -20, -30, -40, and -50 (referred to as Controller A1 in the sequel), then the

origin in the system (6.14) is regionally absolutely stable. By using the Lyapunov

method in Section 2.1.2, the ROA ΩA1 can be estimated to be (6.16) with y0 = 1.98
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Figure 6.6: ROA estimation using the circle criterion. (Controller A1)

and β1 = 55, where y0 and β1 are as indicated in Figure 6.6.

ΩI1 = {x ∈ <4|V (x) = xT PA1x ≤ 25.94}

PA1 =




2652 −89 −13496 −206

−89 33 507 9

−13496 507 68853 1056

−206 9 1056 16




(6.16)

If Kf is designed such that the poles associated with Â = A−BKf are placed

farther from the imaginary axis at -40, -60, -80, and -100 (referred to as Controller

A2 in the sequel), then the origin in the system (6.14) is rendered globally absolute

stable. This can be verified by the circle criterion as illustrated in Figure 6.7. More

details about the circle criterion can be found in Section ??.

Representative simulation results with this controller are shown in Figure 6.8.

It is noted that this initial condition places the vehicle outside the dead zone for the

planing force. It is noted that the control effort is strong and may lead to actuator
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(Controller A2)

saturation. This issue is addressed later in Section 6.6.

6.5.2 Switching Control

Next, switching control schemes are introduced to improve system performance

in terms of the region of attraction and magnitude of the control effort.

The system (6.14) is recalled; for convenience, the tilde symbol is dropped and

the equation of motion is repeated here:

ẋ = Ax + Bv + DFp (6.17)

A switching control structure is described as follows:

v = −Kfx− (BT B)−1BT Df(w)

f(w) =





kc(w − wth) if w > wth

0 if |w| ≤ wth

kc(w + wth) if w < −wth

(6.18)
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where wth is the dead zone boundary for the planing force illustrated in Figure 6.3

and kc is a constant to be selected. The first term in the control v can be viewed as

equivalent to the linear feedback control designed in the previous subsection. The

second term modifies the nonlinearity Fp. This becomes clear on substituting the

switching control scheme in (6.18) into the system model (6.17):

ẋ = (A−BKf )x + D(Fp − f(w)) (6.19)

For comparison, it is noted that the closed-loop system with linear feedback control

given in Section 6.5.1 is described by

ẋ = (A−BKf )x + D(Fp) (6.20)

When one compares these two closed-loop systems, it can be seen that the system

with the switching control scheme is similar to that with linear feedback except for

the added term f(w), which modifies the nonlinearity. As illustrated in Figure 6.9,

the original nonlinearity Fp shown with a bold line is transformed to the nonlinearity

Fp − f(w) illustrated by a dotted line. Therefore, the switching control ”weakens”

the nonlinearity. With the same choice of Kf , this results in a larger region of

attraction. Equivalently, less control effort is required to achieve the same region of

attraction.

For example, if kc = 150 and Kf is designed such that the poles associated

with Â = A − BKf are placed at -20, -30, -40, and -50 (referred to as Controller

B1 in the sequel), then the origin of system (6.14) is regionally absolute stable with

a larger region of attraction that that of the system with the linear controller A1.

97



w

-y0-y0
’

y0 y0
’

slope= 1

Fp

Figure 6.9: Switching Control Design

Representative simulation results with this switching controller are shown in Figure

6.10.

6.6 Actuator Saturation

In practice, a strong control effort can lead to actuator saturation. Actuator

saturation deteriorates control system performance and even results in instability

that sometimes accounts for devastating accidents. For example, the well-known

Chernobyl nuclear disaster is believed to be the result of actuator saturation in the

control system. [57] In the foregoing section, two control schemes have been elabo-

rated and shown to be effective for the nonlinear system representing the dynamics

of a supercavitating vehicle. It is shown that with appropriate selection of the

feedback coefficients, these feedback controllers can globally stabilize the nonlinear

system to a desired equilibrium point. However, the strong control effort required

could lead to actuator saturation. In other words, actuator saturation may limit the
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Figure 6.10: Motions initiated from [z, w, θ, q] = [0, 3, 0, 0] with the switching con-

troller B1 and control effort. By comparison, the system with the linear controller

A1 is stabilized to a large-magnitude limit cycle when initiated from the same point.
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Figure 6.11: Compensator to deal with the actuator saturation problem.

performance of the linear feedback controllers considered in the previous section.

In this section, an optimization problem is formulated to achieve the best

possible control performance while maintaining a control effort within the actuator

limits. This method is based on the work of Soroush and Valluri [55].

As shown in Figure 6.11, a two-step design procedure is proposed for con-

trolling the supercavitating system considering the actuation constraints. First,

unlimited actuation is assumed and the controller v is designed. Subsequently, a

compensator G(·) is sought to achieve best possible performance subject to the

actuation limits ulow ≤ u ≤ uhigh.

The first step can be implemented by using the control design methods of

Section 6.5. The second step is equivalent to finding G(·) to minimize the difference

between desired outputs (with unlimited actuation) and actual outputs (with limited

actuation). This is formulated as the optimization problem

φ(G) =
m∑

l=1

pl[

∫ t+T

t

|yl(τ)− y∗l (τ)|dτ ]2 (6.21)

where the objective function is minimized subject to ulow,i ≤ ui ≤ uhigh,i. Here, m is

number of outputs, pl is the weight associated with the output yl, T is the prediction

horizon, yl is the actual output with u = G(v), and y∗l is the desired output with
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u = v. From another point of view, the optimal solution G(·) coordinates between

different control inputs to achieve a control performance that is closest to that in

the absence of actuation limits.

In the supercavitating vehicle system, there are two control inputs and m = 2.

Let y = [z θ]T and the number of inputs and outputs be the same. In this case,

the optimization problem is equivalent to a quadratic programming problem and an

iterative algorithm is employed to find the solution. More details can be found in

the reference [55].

This optimization technique can be applied together with the control schemes

in Section 6.5 to reduce the adverse effect of actuation limits on the control perfor-

mance. As an example, assume |δe| ≤ 20 degrees and |δc| ≤ 20 degrees. In this case,

the control performance of Controller A2 is greatly deteriorated and the system

becomes unstable without a compensator (Figure 6.12(a)). With the compensator,

however, the system is stable even if the initial condition is quite far from the dead

zone (Figure 6.12(b)).

6.7 Bifurcations in Supercavitating Vehicles

Thus far, all studies on the dynamics and control of supercavitating vehicles

focus on a particular choice of the system parameters such as the cavitation num-

ber σ, the vehicle forward speed V , the vehicle geometry, and the cavitator radius.

There has been limited published work on the bifurcation behavior of supercav-

itating vehicles. A detailed study on the bifurcation behavior of supercavitating
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Figure 6.12: Motions with the linear controller A2. (a) initiated from [z, w, θ, q] =

[0, 2, 0, 0] and (b) initiated from [z, w, θ, q] = [0, 6, 0, 0]. The dead zone boundary is

at wth = 1.64m/s.
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vehicles is important for three main reasons. First, after a supercavitating vehicle is

launched, the vehicle forward speed V increases until a specified nominal value that

is associated with a stable supercavity is reached. In some cases, after the vehicle

runs within the supercavity for a while, the vehicle slows down, or equivalently, the

forward speed V is decreased. It is of practical importance to study the change of

vehicle dynamics as the forward speed V is varied. Second, different steady state

solutions such as equilibrium points and limit cycles have been discovered in su-

percavitating vehicles [37]. It is of interest to determine the possible steady state

motions and how these solutions evolve, as some important system parameters are

varied. Third, bifurcation control tools may help one to modify the bifurcation be-

havior and achieve desired steady state solutions within specified parameter ranges.

In this section, steady state solutions of dive-plane models and their bifurca-

tions are studied with respect to the cavitation number σ as the bifurcation param-

eter. Different steady solutions are explored and it is examined as to how these

solutions evolve as the cavitation number is varied. The cavitation number σ is cho-

sen as the bifurcation parameter, since it is a function of the vehicle forward speed

V and it characterizes the extent of cavitation. From definition (6.1), it is clear that

σ is proportional to 1
V 2 . On the other hand, a small cavitation number σ indicates

a large cavity. The shape and size of a supercavity determines the magnitude and

direction of the planing force, a strong nonlinear interaction between the vehicle aft

body and the cavity wall. Through the planing force, the cavitation number has a

direct impact on the vehicle dynamics.

It is noted that bifurcation studies of ships and some underwater vehicle sys-
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tems have been carried out in the literature. For example, Spyrou and Thompson

[56] provided a review of studies on nonlinear ship dynamics involving bifurcation

analysis. Papoulias [48] studied the bifurcations of a marine vehicle system. The

system model is smooth and focus of this work is on the horizontal plane dynamics.

By contrast, the supercavitating vehicle model considered here is nonsmooth and

focus of the current work is on the dive plane dynamics, which is more complicated.

In addition to bifurcation analysis, control of bifurcations is also examined here.

In order to determine a valid range of the cavitation number that would be

physically meaningful, analysis is needed, as discussed next.

6.7.1 Range of the Cavitation Number

In previous studies ([16, 37]), the cavitation has been chosen as σ = 0.03.

The model given by Eqs. (6.2)-(6.4) is valid only for cases with supercavitation.

However, a large cavitation number corresponds to the no-cavity case or a partial-

cavity case. On the other hand, a very small cavitation number is not practical due

to the physical constraints, such as the vehicle speed. Furthermore, the assumptions

made in deriving and simplifying the cavity model lead to additional constraints on

the cavitation number. An inspection of the cavity model (see Eq. (6.5)) reveals

the following three constraints on the cavitation number:

1. K1 > 0 ⇒ σ > 0.0198

2. 1− (1− 4.5σ
1+σ

)K1
40/17 ⇒ σ < 0.0398

3. Rc > R ⇒ σ < 0.0368
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The expressions of the cavity radius Rc at the transom or the planing section,

and its derivative in Eq. (6.5) are simplified forms that follow from Logvinovich’s

cavity model [40]. The first constraint follows directly from the assumption

L > Rn(
1.92

σ
− 3) (6.22)

made during the simplification; this can be determined from the definition of the

constant K1. The second constraint is enforced to ensure that the cavity radius

expression of Logvinovich’s model has a real value at the vehicle’s transom. The

third constraint allows for the cavity to have a larger radius than the vehicle body

at the transom. Hence, based on this discussion, the simplified cavity model is

applicable only when the cavitation number falls within the interval [0.0198, 0.0368].

6.7.2 Bifurcation Results

Due to the complicated form of the nonsmoothness of the system, it is not

feasible to analytically determine the fixed points and periodic solutions of the given

dynamic system, and the bifurcations of these solutions. Hence, one has to resort

to numerical bifurcation analysis tools. The control law given by Eq. (6.8) is used

in the bifurcation study.

In Figure 6.13, the bifurcation diagrams obtained during quasi-static forward

and reverse sweeps of the cavitation number are shown. For equilibrium-point so-

lutions, the vertical speed w is plotted against the cavitation number. For non-

equilibrium solutions such as periodic orbits and chaotic orbits, the vertical speed

w on the chosen Poincaré section is plotted against the cavitation number. This
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Figure 6.13: Bifurcation diagram of the supercavitating vehicle system for 0.020 <

σ < 0.035. a) forward sweep of σ and b) reverse sweep of σ. The dead zone is below

the boundary line.
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Figure 6.14: Steady state solutions for different σ. From left to right: σ = 0.024

(stable equilibrium point), σ = 0.0242475 (limit cycle out of the dead zone), σ =

0.0242477 (grazing limit cycle), and σ = 0.025 (limit cycle with tailslap). The dead

zone is below the straight line.

section is Σ0 = {x = [z w θ q] ∈ <4 : q = 0, q̇ > 0}. The forward sweep and

reverse sweep bifurcation diagrams turn out to be the same except in the interval

0.0333 < σ < 0.0341. The nonsmooth dive-plane model exhibits a rich variety of

nonsmoooth and smooth bifurcation behaviors and this is elaborated next.

For low cavitation numbers in the range 0.0200 < σ < 0.0242, the system

trajectories are attracted to a stable equilibrium point with w > wth. For this

equilibrium point, the vehicle afterbody is out of the cavity (immersed in water) and

the planing force is nontrivial. In other words, these stable equilibrium points are

supported by the cavitator force in the front and the planing force in the rear end. As

σ is increased, a supercritical Hopf bifurcation occurs around σ = 0.02424745. The

stable equilibrium points become unstable and a branch of stable limit cycles is born

around the equilibrium points. For each point of these stable limit cycles, w > wth.
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Figure 6.15: Bifurcation diagram: 0.0324 < σ < 0.0329
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Figure 6.16: Period-doubling route to chaos: 0.03410 < σ < 0.03411
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Figure 6.17: Transient Chaotic Motion at σ = 0.0341076: the state trajectory

experiences a transient chaotic motion in the inner zone and it is ultimately attracted

to the stable periodic solution. The dashed line is the switching boundary.
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In steady state, the rear end of the supercavitating vehicle is out of the cavity all the

time. As σ is slightly increased, a grazing event occurs when the limit cycle grazes

the switching boundary Σ1 = {x : w − wth = 0}. Beyond this critical value of σ,

the planing force varies periodically. The vehicle afterbody moves into and out of

the cavity alternatively, which is called the tailslap phenomenon. Starting from an

equilibrium point supported by the planing force, the tailslap can be understood as

a result of a Hopf bifurcation followed by a grazing event. This process is illustrated

in Figure 6.14.

As the cavitation number σ is further increased, a period-doubling bifurcation

occurs at σ = 0.03178. It is followed by a sequence of period-doubling bifurcations

that leads to a chaotic motion at σ∞ = 0.03252, as shown in Figure 6.15; this figure

is a magnification of Figure 6.13 in the range 0.030 < σ < 0.035.

As σ is increased beyond 0.0325, a rich variety of bifurcation behavior is dis-

covered. At σ = 0.03253, three chaotic bands merge into one large chaotic attractor.

This behavior is called a chaotic attractor merging crisis in [46]. At σ = 0.032614,

there is a sudden transformation from a chaotic attractor to a period-3 orbit. Then,

another chaotic attractor is developed at σ = 0.03272 through a period-doubling bi-

furcation route. After that, a reverse period-doubling bifurcation sequence is found

to start at σ = 0.03278. The sudden emergence of a branch of fixed points in Fig-

ure 6.15 at σ = 0.03265 does not correspond to any bifurcation as it is due to the

collision of the limit cycle with the Poincaré section Σ0.

As one increases σ further, at σ = 0.03288, a jump is identified from one

branch of limit cycles to another branch of limit cycles. This is a result of a cyclic-
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Figure 6.18: Bifurcation diagram with kp = −3

fold bifurcation at σ = 0.032882129; this event is confirmed by calculating the

Floquet multipliers by using the shooting method [46].

As σ is further increased, a jump occurs at σ = 0.03411, which can be seen

from Figure 6.13 (a). A numerical simulation with higher resolution in σ (Figure

6.16) shows that the period-2 orbit at σ = 0.03410 experiences a period-doubling

bifurcation sequence and results in a chaotic attractor. The chaotic attractor then

collides with an unstable periodic solution within its basin of attraction at σ =

0.0341076 and results in the jump at σ = 0.03411. This type of sudden annihilation

of chaos is referred to as exterior chaotic crisis in the literature (e.g., [46]. The

results shown in Figure 6.17 support this statement, through the signature behavior

of the exterior chaotic crisis – a transient chaotic motion followed by a periodic

steady state motion.

In the reverse sweep bifurcation diagram shown in Figure 6.13 (bottom), a
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jump is found at σ = 0.03335. Calculation of Floquet multipliers confirms the

occurrence of a cyclic-fold bifurcation at σ = 0.0333541, which explains the jump in

the bifurcation diagram. Similar bifurcation behaviors are also found in the intervals

0.03252 < σ < 0.03261 and 0.03272 < σ < 0.03278. For example, the steady-state

solution jumps from a chaotic attractor to a period-5 orbit at σ = 0.03256174

(exterior chaotic crisis); at σ = 0.032568, a chaotic attractor is developed through

a period-doubling bifurcation route; and several chaotic bands merge into a larger

one (chaotic attractor merging crisis) at σ = 0.032574.

6.7.3 Bifurcation Control

Typically, in bifurcation control (e.g., [1]), the uncontrolled system exhibits a

bifurcation that one seeks to delay or suppress by choosing an appropriate feedback

control law.

Here, the bifurcation diagrams shown in Section 6.7 pertain to a certain choice

of feedback law given by Eq. (6.8). As shown in the previous section, bifurcations

leading to steady-state solutions (limit cycles and chaotic attractors) other than

equilibrium points are found. As the cavitation number σ is increased, the system

experiences a supercritical Hopf bifurcation followed by a grazing event. Beyond

the grazing event, the steady-state solutions intersect the switching boundaries and

tailslap phenomenon occurs.

From a physical standpoint, the tailslap behavior in the supercavitating vehicle

is usually harmful. In this section, it is aimed to eliminate the tailslap behavior by
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using appropriate bifurcation control tools.

The bifurcation study in the previous section shows that the tailslap is the

result of a Hopf bifurcation followed by a grazing event. This suggests that the

occurrence of the tailslap behavior (associated with limit-cycle or chaotic motions)

can be controlled by delaying or suppressing the onset of the Hopf bifurcation so

that the vehicle system is attracted to equilibrium points for all cavitation number

values within a desired range. To achieve this goal, dynamic feedback laws aided by

washout filters are investigated. It is noted that the Hopf bifurcations in the under-

water vehicle system is supercritical and it is sought to preserve this supercriticality

while delaying the onset.

The dynamic feedback aided by washout filters is an effective tool to control the

onset of Hopf bifurcations [61]. With this type of dynamic feedback, the equilibrium

points of the original system are preserved. A washout filter aided feedback control

law with measurement of the pitch rate q is described in Eq. (6.23), where p is the

state variable in the washout filter, d ∈ (0, 1) is a constant, and kp is the dynamic

feedback coefficient. The four-dimensional dive-plane model shown in Eq. (6.2) is

expanded to a five-dimensional system.

ṗ = q − dp (6.23)

δc = kp(q − dp) (6.24)

The onset of the Hopf bifurcation can be modified by choosing the dynamic feedback

coefficient kp. With kp = −3, the Hopf bifurcation is delayed to σ = 0.03483. The

bifurcation diagram in this case is shown in Figure 6.18. Here peak values are used to
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Figure 6.19: Location of the Hopf bifurcation points as the dynamic feedback coef-

ficient kp is varied.

represent the periodic orbits. For almost the entire range of σ (0.020 < σ < 0.03483),

the vehicle system is stabilized to equilibrium points out of the dead zone and

the tailslap behavior is eliminated. The critical σ values at the Hopf bifurcation

points are plotted against the dynamic feedback coefficient kp in Figure 6.19. For

kp < −8, the Hopf bifurcation is delayed to be out of the physically meaningful

parameter range 0.020 < σ < 0.036. For any meaningful σ value, there are no

periodic orbits and the system is stabilized to equilibrium points. For kp > 0.08,

the Hopf bifurcation location is pushed out of the physically meaningful parameter

range. For any meaningful σ value, the system is stabilized to limit cycles.
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Chapter 7

Application of Generalized Absolute Stability Results

In Chapter 4 and Chapter 5, conditions are derived for the generalized absolute

stability of second-order systems and finite-order systems respectively. The derived

conditions for second-order systems can be easily checked by algebraic computations

and simple numerical integrations. In comparison, the derived conditions for a

general finite-order system require some amount of numerical effort. It is numerically

inexpensive, however, because the conditions are formulated as a linear programming

problem which can be numerically solved in an efficient manner. In this chapter, the

application of the theoretical results in Chapter 4 and Chapter 5 will be illustrated

by a few examples that include the supercavitating vehicle model in the previous

chapter.

In the sequel, the theoretical results derived in Chapter 4, together with the

backstepping control approach, are applied to the supercavitating vehicle system

in Section 7.1. In Section 7.2, the theoretical results are applied to three different

systems: one second-order system, one third-order system, and the fourth-order

supercavitating vehicle model.
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7.1 Application of The Results on Second-Order Systems

In this section, the theoretical results derived in Chapter 4 are employed to

robustly stabilize the dive-plane motion of supercavitating vehicles that are intro-

duced in the previous chapter. Here the control objective is to design an inner-loop

controller to achieve stability at a desired equilibrium point with robustness to the

modeling error in the planing force.

Recall that the dive-plane model of supercavitating vehicles is of the fourth

order. Due to the special structure of the vector field of the model, the backstepping

control approach may be employed to reduce the fourth-order control problem to a

second-order one. Through the supercavitating vehicle example, it is also illustrated

that the generalization of the classical absolute stability concept helps to reduce the

conservativeness in the controller design.

For convenience, the four-dimensional dive-plane model (6.6) in the previous

chapter is rewritten here

ẋ = Ax + Bu + DFp (7.1)

with x = [z w θ q]T and u = [δe δc]
T . It is reminded that x, u, Fp stand for the states,

the control inputs and the planing force, respectively. Additional details regarding

this model can be found in the previous chapter.

In consideration of the guidance and navigation control or the outer-loop

control, the desired equilibrium point for stability control or the inner-loop con-

trol is generally not at the origin. Denote the desired equilibrium point as xeq =

[zd, wd, θd, qd]. After redefining the state variables in (7.2) and letting u = ũ +
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(BT B)−1BT Axeq, the supercavitating vehicle model (6.6) is rewritten as shown in

(7.3).

x̃ = x− xeq (7.2)

˙̃x = Ax̃ + Bũ + DF̃p (7.3)

From here onwards, the tilde symbol is dropped for simplicity and the system

is rewritten as

ż = w − V θ

θ̇ = q


ẇ

q̇


 = A2




w

q


 + B2




δe

δc


 + D2Fp (7.4)

where A2 =




a22 a24

a42 a44


, B2 =




b21 b22

b41 b42


, and D2 =




d2

d4


. Here the

nonlinearity Fp is not symmetric with respect to the origin any more, as is shown

in Figure 7.1.

It is noted that the nonlinear term Fp does not appear in the right hand side

of ż and θ̇ and backstepping control is applied to reduce the fourth-order control

problem to a second-order one. The steps involved are as follows:

1. The state variables w and q are treated as two control inputs. Let MV =


0 −V

0 0


, MK =




0 0

k1 k2


, and




w

q


 = MK




z

θ


. The first two equa-
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Figure 7.1: Planing force versus the vertical speed w.

tions in (7.4) then become:




ż

θ̇


 = (MV + MK)




z

θ


 (7.5)

Then, the state variables z and θ are stabilized to the origin if and only if k1 and k2

are chosen so that the matrix MK + MV is Hurwitz.

2. Let



ŵ

q̂


 =




w

q


−MK




z

θ



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Then 


˙̂w

˙̂q


 = A2




w

q


 + B2




δe

δc


 + D2Fp

−MK{MV




z

θ


 +




w

q


}

= A2




ŵ

q̂


 + B2




δ̂e

δ̂c


 + D2Fp (7.6)

where 


δe

δc


 =




δ̂e

δ̂c


 +




δe0

δc0




and 


δe0

δc0


 = B−1

2 {MKMV




z

θ


 + MK




w

q




−A2MK




z

θ


} (7.7)

Therefore, the control problem of the fourth-order system (7.4) is reduced to

the control problem of the second-order system (7.6). For this second-order system,

suppose a linear feedback control is chosen as



δ̂e

δ̂c


 =




k11 k12

k21 k22







ŵ

q̂


 = K2




ŵ

q̂


 (7.8)

and the system becomes



˙̂x

˙̂y


 =




â11 â12

â21 â22







x̂

ŷ


 +




b1

b2


 FNL(t, x̂− gŷ) (7.9)
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where x̂ = ŵ, ŷ = q̂, b1 = −d2, b2 = −d4, g = 0 and

â11 = a22 + b21k11 + b22k21, â12 = a24 + b21k12 + b22k22

â21 = a42 + b41k11 + b42k21, â22 = a44 + b41k12 + b42k22 (7.10)

After the state transformation



x

y


 =

1

η




b2 −b1

b2â11 − b1â21 b2â12 − b1â22







x̂

ŷ


 (7.11)

with η = b1b2(â22 − â11) + b2
1â21 − b2

2â12, this system is in the form (3.6) and α =

−â11 − â22, β = â11â22 − â12â21, a = −b2â12 + b1â22, b = −b1.

Returning to the fourth-order system (7.4), the total control effort is




δe

δc


 = K2




w

q


−K2MK




z

θ


 +

B−1
2 {MKMV




z

θ


 + MK




w

q


− A2MK




z

θ


} (7.12)

= (K2 + B−1
2 MK)




w

q


 + (−K2MK + B−1

2 MKMV −B−1
2 A2MK)




z

θ




The feedback coefficients ki with i = 1, 2 (in Step 1) can be designed by the

pole placement method. To design the feedback coefficients kij with i, j = 1, 2 (in

Step 2), the necessary and sufficient conditions given in Section 4.4 are utilized.

In the case of wd = 0.5wth, the nonlinearity F̃p is bound in the asymmetric sector

(0, 31.8, 17.5). Based on Condition 4 in Theorem 2, we can choose a set of feedback
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Figure 7.2: Motions initiated from [z, w, θ, q] = [0, 3, 0, 0] with the backstepping

controller.

coefficients to ensure global stability of the nonlinear system:

K2 =




10 5.95

0.9 0.24


 (7.13)

Further, we choose k1 = 4.267, k2 = −36 to place the poles of the matrix

MK + MV at -16 and -20. Representative simulation results obtained with this

controller are shown in Figure 7.2:

It is interesting to compare this result with that associated with classical ab-

solute stability with symmetric sector conditions. From Theorem 3.2 of this work,

which is first derived by Leonov [35], the choice of feedback matrix K2 in (7.13)

would lead to a closed-loop system that is not globally absolutely stable with the

symmetric sector boundary (0, 31.8). The advantage of the absolute stability theory

with asymmetric sector conditions, which is developed in the current work for planar

systems, is then clear–it reduces conservativeness in designing control schemes to

stabilize a nonlinear system.
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7.2 Application of The Results on General Finite-Order Systems

In this section, the theoretical results derived in Chapter 5 are employed to

robustly stabilize nonlinear systems. To illustrate the application of these theoretical

results better, a second-order system and a third-order system are addressed first,

followed by the fourth-order supercavitating vehicle system.

7.2.1 A Second-Order System

It is noted that for second-order systems, there is no need to apply the results

on general finite-order systems because the conditions derived in Chapter 4 are

easier to check, and these conditions are not only sufficient but also necessary. Here

a second-order system is used as an example purely in order to illustrate the steps in

the applications of the theoretical results in Chapter 5. Here we look at one system

of the form (5.1) with

x = [x1 x2]
′, A =



−5.21 −4

−2.47 −2


 , b = [3 21]′, c = [1 0]′ (7.14)

In this system, the nonlinearity FNL(.) is bound in the asymmetric sector (0, k1, k2)

with k1 = 0.07 and k2 = 2.57.

The state space is partitioned into the cells Ωi, i = 1, 2, ..., 8, as illustrated in

Figure 7.3. Correspondingly, the partition matrix a, which is defined in Section 5.4,

is determined as

a =




1 1 0 1

0 −1 1 1


 (7.15)
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It is straightforward to identify the constraint matrices Ei, i = 1, 2, ..., 8:

E1 =




0 1

1 −1


 , E2 =



−1 1

1 0


 , E3 =



−1 0

1 1


 ,

E4 =



−1 −1

0 1


 , E5 =




0 −1

−1 1


 , E6 =




1 −1

−1 0


 ,

E7 =




1 0

−1 −1


 , E8 =




1 1

0 −1


 (7.16)

By employing the approach in (5.35), the continuity matrices are chosen as:

F1 =




1 0

1 −1

0 1

1 1




, F2 =




1 0

0 0

0 1

1 1




, F3 =




0 0

0 0

0 1

1 1




,

F4 =




0 0

0 0

0 1

0 0




, F5 =




0 0

0 0

0 0

0 0




, F6 =




0 0

1 −1

0 0

0 0




,

F7 =




1 0

1 −1

0 0

0 0




, F8 =




1 0

1 −1

0 0

1 1




(7.17)

Therefore, based on using Theorem 5.3, a linear programming problem is for-

mulated. By solving this numerical problem efficiently, we claim that this system is
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x2

x1

Ω1

Ω2Ω3

Ω4

Ω5

Ω6 Ω7

Ω8

o

x1-x2=0
x1+x2=0

Figure 7.3: Illustration of the regions for piecewise linear Lyapunov functions.

absolutely stable with the Lyapunov function as follows.

V (x) = lTi x if x ∈ Ωi

ÃL = (l1 l2 l3 l4 l5 l6 l7 l8) (7.18)

=




4993 4751 −5e−4 −650 −650 −407 4343 4993

−242 1.1e−3 1.1e−3 −650 −10939 −11181 −11181 −10532




Since the system (7.14) is of the second-order, we may confirm the absolute

stability by using the necessary and sufficient conditions in Theorems 4.3 - 4.5.

It can be verified that, after applying the state transformation in the Appendix,

Condition 4 of Theorem 4.4 is satisfied.

For the system (7.14), if we replace k1 = 0.07 by k1 = 0.13, a PWLLF is not

found. However, the system is indeed absolutely stable by using the same Theorem

in the previous chapter. This is not surprising as Theorem 5.3 gives sufficient con-

ditions only. A finer partition of the state space may be needed to find a PWLLF

in this case.
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Figure 7.4: Illustration of the regions for piecewise linear Lyapunov functions.

7.2.2 A Third-Order System

Here we look at one system of the form (5.1) with x = [x1 x2 x3]
′. The

nonlinearity FNL(.) is bounded in the asymmetric sector (0, k1, k2) with k1 = 0.1

and k2 = 0.5, and

A =




−9 −5 0

−2 −2 0

−4 −5 −2




, b = [26 21 2]′, c = [1 0 0]′ (7.19)

First we divide the state space <3 into the regions Ωi, i = 1, 2, ..., 16, as shown

in Figure 7.4.

A linear programming problem can then be formulated and solved according to

Theorem 5.3. Thus we claim that this system is absolutely stable with the Lyapunov
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function as follows.

V (x) = lTi x if x ∈ Ωi

ÃL′ = (l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16)
′ (7.20)

=




4.045 −1.916 0.122

1.808 0.321 0.122

−0.052 0.321 0.122

−0.246 0.127 0.122

−0.246 −9.892 0.122

1.991 −12.129 0.122

3.851 −12.129 0.122

4.045 −11.935 0.122

4.045 −1.916 0.030

1.808 0.321 0.030

−0.052 0.321 0.030

−0.246 0.127 0.030

−0.246 −9.892 0.030

1.991 −12.129 0.030

3.851 −12.129 0.030

4.045 −11.935 0.030




It is noted that the system is not absolutely stable with the symmetric sector

bound (0, k2), as the matrix A+k2bc
′ is not Hurwitz. This system example illustrates

the difference between the classical absolute stability and the generalized absolute

stability with an asymmetric sector bound.
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7.2.3 The Fourth-order Supercavitating Vehicle System

Recall that in Section 7.1, the four-dimensional supercavitating vehicle system

is robustly stabilized by using the backstepping control approach and the theoretical

results that are derived in Chapter 4. In this section, the four-dimensional vehicle

system is robustly stabilized by directly applying the theoretical results derived in

Chapter 5.

For the same reason as that in Section 7.1, the desired equilibrium point is

denoted as xeq = [zd, wd, θd, qd]. After redefining the state variables in (7.2) and

letting u = ũ + (BT B)−1BT Axeq, the supercavitating vehicle model is rewritten in

(7.3). On selecting the control as a linear feedback ũ = K4x̃ where K4 ∈ <2×4, the

system becomes:

˙̃x = Ax̃ + BK4x̃ + DF̃p = (A + BK4)x̃ + DF̃p (7.21)

Returning to the original system (7.1), the total control effort is



δe

δc


 = (BT B)−1BT Axeq + K4(x− xeq)

In the following the theoretical results derived in Chapter 5 will be employed

to find the feedback matrix K4 to robustly stabilize the system. In the case of

wd = 0.5wth, the nonlinearity F̃p is bound in the asymmetric sector (0, 31.8, 17.5).

First we divide the state space <4 into the regions Ωi, i = 1, 2, ..., 16, as shown

in Figure 7.5. The state variables (x1, x2, x3, x4) correspond to (w, z, θ, q). A repre-

sentative example of these regions is:

Ω1 = {(x1, x2, x3, x4)|x2 ≥ 0, x1 − x2 ≥ 0} (7.22)
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Figure 7.5: State space division for piecewise linear Lyapunov functions.

According to Theorem 5.3, a linear programming problem can then be for-

mulated and solved . Thus we claim that this system is absolutely stable with the

Lyapunov function as follows.

V (x) = lTi x if x ∈ Ωi (7.23)

ÃL′ = (l1 l2 l3... l64)
′ (7.24)

One choice of the feedback matrix is found to be:

K4 =




40.4 −78.1 29.4 −62.3

−88.9 21.7 58.4 20.3


 (7.25)

Representative simulation results obtained with this controller are shown in

Figure 7.6.
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128



Chapter 8

Conclusions and Suggestions for Future Work

8.1 Conclusions

The work in this dissertation has addressed generalized absolute stability for

systems with asymmetrically bounded nonlinearities, as well as nonlinear analysis

and control of a basic model of the dive-plane dynamics of supercavitating vehi-

cles. The theoretical results in this work are applicable to a wide class of piecewise

smooth systems including systems with back-lash, dead zones, and time-varying

nonlinearities. The main contributions of the dissertation include:

1. Leonov’s result and Margaliot and Langholz’s result on classical absolute sta-

bility of planar systems are carefully examined. Some mistakes in the original

works are corrected. Furthermore, the two seemingly-different results on ab-

solute stability are proved to be equivalent. The worst case switching law

(WCSL) in Margaliot and Langholz’s work is found to result in the piecewise

linear system that is used to compare the vector field of the nonlinear system

in Leonov’s work.
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2. Asymmetric sector conditions are introduced for generalized absolute stabil-

ity. Classical symmetric sector conditions can be regarded as a special case

of asymmetric sector conditions. By allowing asymmetric sector conditions,

the applicability of the absolute stability theory is extended to a more general

type of nonlinear systems. Compared with the classical symmetric sector con-

ditions, the asymmetric sector conditions bind more tightly a general unknown

nonlinearity, which in general can be asymmetric in nature. In this way, the

conservativeness of conditions for the absolute stability may be reduced.

3. For second-order systems, necessary and sufficient conditions are derived for

generalized absolute stability. These conditions are easy to check. For a

general finite-order system, it is proved that there exists a quasi-quadratic

Lyapunov function and also a piecewise linear Lyapunov function if and only

if the system is absolutely stable with an asymmetric sector bound. Further-

more, sufficient conditions are derived for the generalized absolute stability

based on piecewise linear Lyapunov functions. The sufficient condition can be

easily verified by using linear programming optimization tools. Different sys-

tem examples including the supercavitating vehicle are used to illustrate the

application of these theoretical findings in stabilization of piecewise smooth

systems.
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4. Dynamics, control and bifurcation analysis of the dive-plane motion of a super-

cavitating vehicle have been studied. By using the existing and new theoretical

results on classical and generalized absolute stability, control schemes such as

linear feedback, switching feedback, and backstepping control are designed

to robustly stabilize the dive-plane motion. It is shown through nonlinear

analysis and time domain simulations that these three control schemes are

effective in stabilizing the nonlinear supercavitating vehicle model at a de-

sired equilibrium point with either a large or global region of attraction. Due

to the application of the absolute stability results, these results are robust

to the considered sector-bound which models the uncertainty in the planing

force. Furthermore, it is shown that through a numerically computed optimal

compensator, the adverse effect of the actuation limits on closed-loop system

performance can be minimized and the controllers can perform satisfactorily

within a region much larger than the dead zone of the nonlinear planing force.

8.2 Suggested Future Work

In the following a list of suggested future work is given:

1. In this work, the focus is on global absolute stability. It would be interesting

to obtain analogous conditions for regional absolute stability for systems with
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nonlinearities that lie in asymmetric sectors. For second-order systems, a new

approach will probably be needed to achieve such conditions. For high-order

systems, the approach in this work utilizing piecewise linear Lyapunov func-

tions may remain applicable, albeit possibly with some needed modifications.

2. In many engineering systems, more than one important nonlinearity is present.

Therefore it is of importance to study the generalized absolute stability for sys-

tems with multiple nonlinearities. The results are expected to be of help for

many engineering problems, including stabilization and control of the full-DOF

motion of supercavitating vehicles.

3. In comparison with the numerous investigations focused on continuous-time

dynamical systems, less attention has been paid to discrete-time systems. It

would be of interest to derive necessary and sufficient conditions for the gen-

eralized absolute stability of discrete-time systems because a large number of

engineering (and economic) systems are modeled using difference equations or

can be transformed to discrete-time systems.

4. Stabilization and control of supercavitating vehicles is a very challenging prac-

tical problem. More work is needed to address challenges such as actuator rate

saturation, kinematic nonlinearities, cavity dynamics, and hydrodynamical ef-
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fects associated with a partial cavity.
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Chapter A

Appendix

A.1 State Transformation for The Study of Absolute Stability

In this section, we introduce the details of the state transformation that is used

to transform the general form (3.10) to the particular form (3.6). This is possible if

only the system is controllable. This state transformation is employed in the study

of the classical absolute stability in Chapter 3 and in the study of the generalized

absolute stability for second-order systems in Chapter 4.

For convenience, the system of the general form (3.10) is rewritten as




˙̂x

˙̂y


 =




â11 â12

â21 â22







x̂

ŷ


 +




b1

b2


 FNL(t, x̂− gŷ) (A.1)

.

After the state transformation



x

y


 =

1

η




b2 −b1

b2â11 − b1â21 b2â12 − b1â22







x̂

ŷ


 (A.2)

with η = b1b2(â22− â11)+b2
1â21−b2

2â12, the system is transformed into the particular

form:

ẋ = y

ẏ = −αy − βx− FNL(t, ay + bx) (A.3)
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with a = −b2â12 + b1â22 + g(b1â21 − b2â11) and b = −b1 + gb2. Here −α, β is

respectively the trace and determinant of the linear matrix in (A.1).
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