
This is a repository copy of Large scale multi-output multi-class classification using
Gaussian processes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197957/

Version: Published Version

Article:

Ma, C. orcid.org/0000-0002-8534-4720 and Álvarez, M.A. (2023) Large scale multi-output
multi-class classification using Gaussian processes. Machine Learning, 112. pp. 1077-
1106. ISSN 0885-6125

https://doi.org/10.1007/s10994-022-06289-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

Machine Learning (2023) 112:1077–1106

https://doi.org/10.1007/s10994-022-06289-3

1 3

Large scale multi‑output multi‑class classification using
Gaussian processes

Chunchao Ma1 · Mauricio A. Álvarez2

Received: 16 July 2021 / Revised: 16 November 2022 / Accepted: 24 November 2022 /

Published online: 8 February 2023

© The Author(s) 2023

Abstract

Multi-output Gaussian processes (MOGPs) can help to improve predictive performance for
some output variables, by leveraging the correlation with other output variables. In this
paper, our main motivation is to use multiple-output Gaussian processes to exploit correla-
tions between outputs where each output is a multi-class classification problem. MOGPs
have been mostly used for multi-output regression. There are some existing works that
use MOGPs for other types of outputs, e.g., multi-output binary classification. However,
MOGPs for multi-class classification has been less studied. The reason is twofold: 1) when
using a softmax function, it is not clear how to scale it beyond the case of a few outputs;
2) most common type of data in multi-class classification problems consists of image data,
and MOGPs are not specifically designed to image data. We thus propose a new MOGPs
model called Multi-output Gaussian Processes with Augment & Reduce (MOGPs-AR) that
can deal with large scale classification and downsized image input data. Large scale clas-
sification is achieved by subsampling both training data sets and classes in each output
whereas downsized image input data is handled by incorporating a convolutional kernel
into the new model. We show empirically that our proposed model outperforms single-out-
put Gaussian processes in terms of different performance metrics and multi-output Gauss-
ian processes in terms of scalability, both in synthetic and in real classification problems.
We include an example with the Ommiglot dataset where we showcase the properties of
our model.

Keywords Gaussian processes · Multi-output Gaussian processes · Image data ·
Classification · Transfer learning

Editor: Willem Waegeman.

 * Chunchao Ma
 cma15@sheffield.ac.uk

 Mauricio A. Álvarez
 mauricio.alvarezlopez@manchester.ac.uk

1 Department of Computer Science, University of Sheffield, Sheffield, UK
2 Department of Computer Science, University of Manchester, Manchester, UK

http://orcid.org/0000-0002-8534-4720
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06289-3&domain=pdf

1078 Machine Learning (2023) 112:1077–1106

1 3

1 Introduction

Multi-output Gaussian processes (MOGPs), a generalisation of Gaussian processes (GPs),
exploit dependencies among outputs to improve joint prediction performances (Bonilla
et al., 2008; Álvarez et al., 2012; Dahl & Bonilla, 2019; Nguyen et al., 2018; Wistuba et al.,
2018; Alvarez, 2011). For example, in a sensor network, prediction of missing signals from
some sensors may be done by exploiting dependencies with signals obtained from nearby
sensors (Osborne et al., 2008).

Our main purpose in this paper is to use MOGPs to study the problem of multiple out-
puts where each output is a multi-class classification problem. The setting considered here
goes beyond multi-label classification since we allow each output to potentially have its
own inputs moving into the multi-task setting.

MOGPs have mainly been used for multi-output regression to predict continuous
variables (Bonilla et al., 2008; Álvarez et al., 2012; Dai et al., 2017). In this setting, the
assumption is that each output follows a Gaussian likelihood and the mean of the Gaussian
likelihood is given by one output of the MOGP. Due to the properties of the Gaussian dis-
tribution, Bayesian inference is tractable in this case.

Beyond the muti-output regression problem, there is some research on other types of
outputs in MOGPs. For example, Skolidis and Sanguinetti (2011) use MOGPs to model
a setting where each output corresponds to a binary classification problem. Each binary
outcome is modelled using a probit likelihood. The MOGP corresponds to the so called
intrinsic coregionalisation model (ICM) (Bonilla et al., 2008). Since Bayesian inference
is intractable in this model, the authors approximate posterior distributions using expecta-
tion-propagation and variational Bayes.

Several research works have addressed the case of multi-class classification using GPs.
Previous works have used the softmax likelihood (Williams & Rasmussen, 2006; Kim &
Ghahramani, 2006; Galy-Fajou et al., 2020), the multinomial probit likelihood function
(Girolami & Rogers, 2006), the step function (Hernández-Lobato et al., 2011). Recently,
Liu et al. (2019) can use all the above likelihoods through additive noise terms. The param-
eters in these likelihood functions are assumed to follow independent Gaussian processes.
Another strand of works generalise this setting by allowing correlated Gaussian processes
for the latent parameters of the likelihood functions, typically using MOGPs. Both Dez-
fouli and Bonilla (2015) and Chai (2012) use an ICM for a single-output multi-class clas-
sification problem modelled through a multinomial logistic likelihood, i.e. the softmax
likelihood. In terms of Bayesian inference, Chai (2012) proposes a variational sparse
approximation for the posterior distribution, and based on scalable automated variational
inference, Dezfouli and Bonilla (2015) approximates the posterior distribution by a mixture
of Gaussians. Moreno-Muñoz et al. (2018) build a heterogeneous multi-output Gaussian
process, where each output has its own likelihood, through a linear model of coregionali-
sation (LMC) (Álvarez et al., 2012). Moreno-Muñoz et al. (2018) use an stochastic vari-
ational approach for Bayesian inference.

The approaches for single-output multi-class classification described above are restricted
to the case where the number of classes is small. They scale poorly when the number of
classes go beyond a few tens. Scalability is also poorly handled by the more general model
of Moreno-Muñoz et al. (2018) for the multi-output multi-class classification case, where
once again, problems that go beyond a few tens of classes are out of reach.

Our main contribution in this paper is that we introduce a new extension of multi-output
GPs able to handle large scale multi-output multi-class classification problems, typically

1079Machine Learning (2023) 112:1077–1106

1 3

in the range of hundreds and even thousands of classes. We achieve scalability by subsam-
pling both training input data and classes in each output, by using stochastic variational
inference (Hensman et al., 2013; Moreno-Muñoz et al., 2018), and by choosing a softmax
likelihood function via Gumbel noise error for all outputs. We refer to this model as Multi-

output Gaussian Processes with Augment & Reduce (MOGPs-AR).
We also enable our MOGPs-AR to allow downsized images as input data. To efficiently

deal with downsized images, we employ convolutional kernels (Van der Wilk et al., 2017),
computing the entries of the kernel matrices using kernels over patches of the images and
integrating these kernels within a MOGP. Since our model is able to capture both intra-
and inter-output dependencies, it also provides a means to perform transfer learning in the
multi-task setting. We show an example of this multi-task learning ability of our model in
the Ommiglot dataset. To the best of our knowledge, this is the first time that a multi-task
multi-class Gaussian process model is used over such dataset.

2 Related work

As we mentioned early, the multi-class classification problem has been mainly stud-
ied using single-output GPs (Williams & Rasmussen, 2006; Kim & Ghahramani, 2006;
Hernández-Lobato et al., 2011; Girolami & Rogers, 2006; Liu et al., 2019). The model
introduced in this paper, MOGPs-AR, uses the softmax likelihood through additive noise
errors, which is the same as Liu et al. (2019). However, MOGPs-AR solves multiple out-
puts problems together while the model in Liu et al. (2019), like all single-output GPs,
only solves single output problems. Regarding single output problems, MOGPs-AR can
also improve prediction using a correlation between all latent parameter functions whereas
single-output GPs cannot capture the correlation.

The works more relevant to ours are Chai (2012); Dezfouli and Bonilla (2015); Skolidis
and Sanguinetti (2011); Moreno-Muñoz et al. (2018). Both Chai (2012) and Dezfouli and
Bonilla (2015) can only handle a single output multi-class classification problem even if
they use MOGPs. Nevertheless, our model can tackle multiple outputs where each output
is a multi-class classification problem. Skolidis and Sanguinetti (2011) only solve multi-
output binary classification problems, which is different to ours. Compared with Sko-
lidis and Sanguinetti (2011), our inference method is also suited to large scale data sets.
Moreno-Muñoz et al. (2018) can tackle multi-output multi-class classification problems
and develop a similar stochastic variational inference method as us. However, we are dif-
ferent to Moreno-Muñoz et al. (2018) since we can cope with a large number of classes by
subsampling classes and also can deal with downsized images through convolutional ker-
nels (Van der Wilk et al., 2017).

The work by Panos et al. (2021) is much related to us since we use a similar subsam-
pling method. Panos et al. (2021) extend a semiparametric latent model, a special case of
LMC, to address the multi-label problem by using sigmoidal/Bernoulli likelihood for each
latent parameter function. Panos et al. (2021) can doubly subsample data points and classes
to reduce computational complexity based on stochastic variational inference, which is
analogous to us. However, we are different in other aspects. First, we solve multi-class clas-
sification problems using the softmax likelihood instead of multi-label problems using sig-
moidal/Bernoulli likelihood. Further, we can apply a convolutional kernel to handle down-
sized image data. Finally, our model can deal with multi-output problems instead of only
tackling single output problems.

1080 Machine Learning (2023) 112:1077–1106

1 3

3 Methodology

In this section, we will derive the MOGPs-AR model. We first develop the LMC model with
a convolutional kernel. We then define the softmax likelihood through augmenting noise data.
We finally describe stochastic variational inference and the approximated predictive distribu-
tion for our model.

We assume there are D different outputs (Table 1 shows the description of our notation).
The vector y ∈ RD groups all the D different outputs:

where x ∈ R
v . Each output yd(x) ∈ {1, ..., Cd}(Cd ≥ 2 and d ∈ {1, ..., D}) is a categori-

cal variable and C
d
 is the number of classes in the d-th output. Like Moreno-Muñoz et al.

(2018), we also assume that those outputs are conditionally independent given parameters
�(x) =

[

𝜃1(x), 𝜃2(x),⋯ , 𝜃
D
(x)

]⊤

 , where �(x) is defined by latent parameter functions:

where C =

∑D

d=1
C

d
 and f c

d
(x) is c-th latent parameter function in the d-th output evaluated

at x . We then obtain:

(1)y(x) =
[

y1(x), y2(x),⋯ , yD(x)
]⊤

,

(2)f(x) =

[

f 1

1
(x), f 2

1
(x),⋯ f

C1

1
(x), f 1

2
(x), f 2

2
(x),⋯ , f

CD

D
(x)

]⊤

∈ R
C×1

,

(3)p(y(x)|�(x)) = p(y(x)|f(x))

(4)=

D∏

d=1

p
(
yd(x)|�d(x)

)

Table 1 Nomenclature

Notation Description

v dimension of the input space

D number of outputs

N number of data points per output

C number of classes for all outputs C =

∑D

d=1
C

d
 where D ≥ 1

M number of inducing points or inducing patches

Q number of latent functions u
q
(x)

u
q
(x) q-th latent function evaluated at x

ui
q
(x) i-th sample of u

q
(x) drawn independent and identically distributed

Rq number of latent functions ui
q
(x)

f c
d
(x) c-th latent parameter function in the d-th output evaluated at x

kq(x, x
�) Gaussian process covariance function of u

q
(x)

kf c
d

f c′

d′

(

x, x
′
)

covariance between latent functions f c
d
(x) and f c�

d� (x
�)

K
f
c

d
f
c′

d′
covariance matrix with entries given by kf c

d
f c′

d′

(

xn, xm

)

 with x
n
, x

m
∈ X

1081Machine Learning (2023) 112:1077–1106

1 3

where �fd(x) =

[

f 1

d
(x),⋯ , f

Cd

d
(x)

]⊤

∈ R
Cd×1 is a group of latent parameter functions defin-

ing the parameters in �
d
(x).

3.1 Combining with convolutional kernel

We use the linear model of coregionalisation (LMC) and combine it with the convolutional
kernel. The LMC is a popular model in MOGPs, where each output is expressed as a linear
combination of a collection of Gaussian processes (Álvarez et al., 2012). The convolutional
kernel (Van der Wilk et al., 2017) can effectively exploit features in images.

We construct a convolutional structure for mutually independent latent functions
U =

{

uq(x)
}Q

q=1
 where u

q
 follows a Gaussian process, Q is the number of the latent func-

tions and each latent parameter function f c
d
(x) is a linear combination of the latent func-

tions U . Here, we assume x ∈ R
W×H is an image data point that has a v = W × H size

where W and H are the width and height of the image separately. We also assume x[p] is the
p

th patch of x with patches of size E = w × h where w and h are the width and height of
each patch, respectively.

After dividing an image into patches, we get a total of P = (W − w + 1) × (H − h + 1)
patches. We begin with a patch response function uq

(

x
[p]
)

∶ R
w×h

→ R , which maps
a patch of size E = w × h to a real number in R . Then we add a weight for each patch
response function and get a latent function uq(x) ∶ R

W×H
→ R , where u

q
(x) is the sum of

all patch responses with weights: u
q
(x) =

∑

p
w

p
u

q

�

x
[p]
�

 . Each function u
q
 is drawn from an

independent GP prior: uq(⋅) ∼ GP
(

0, kq(⋅, ⋅)
)

 , where kq(⋅, ⋅) can be any kernel function. In
this paper, we use the radial basis function kernel with automatic relevance determination
(RBF-ARD) (Williams & Rasmussen, 2006):

where x[p]
j

 is the j-th dimension of x[p] , �2

ard
 is a variance parameter and lj is the length scale

for the j-th input dimension. Therefore kq(⋅, ⋅) is RBF-ARD. When all length scales are
the same, the kernel is called radial basis function kernel (RBF) (Lawrence & Hyvärinen,
2005). Hence, each f c

d
(x) is defined as

where ai
d,c,q

∈ R can be considered as a weight on U and we assume {�q}
Q

q=1
 are the hyper-

parameters for {kq(⋅, ⋅)}
Q

q=1
 , with �

q
 being the hyperparameters for the kernel kq(⋅, ⋅) . Rq

represents the number of latent functions ui
q
(x) that are sampled independently and identi-

cally from the Gaussian processes uq(⋅) ∼ GP
(

0, kq(⋅, ⋅)
)

 . The difference between the con-
volutional kernel model and a more classic kernel, e.g., RBF, is that we use the convolu-
tional structure term

∑P

p=1
wpui

q
(x[p]) instead of solely ui

q
(x) , where Fig. 1 shows an example

of two images and how they are handled through the convolutional kernel. With q = 1, ..., Q

(5)=

D∏

d=1

p

(
yd(x)|̃fd(x)

)
,

(6)kard

�
x
[p], x

[p�]
�
= �

2
ard

exp

⎛
⎜⎜⎜⎝
−

1

2

E�
j=1

�
x
[p]

j
− x

[p�]

j

�2

l2
j

⎞
⎟⎟⎟⎠
,

(7)f c
d
(x) =

Q
∑

q=1

Rq
∑

i=1

ai
d,c,q

ui
q
(x) =

Q
∑

q=1

Rq
∑

i=1

ai
d,c,q

(P
∑

p=1

wpui
q
(x[p])

)

,

1082 Machine Learning (2023) 112:1077–1106

1 3

and i = 1, ..., Rq , the function ui
q
(x) have a zero mean and covariance cov

[

ui
q
(x), ui�

q�
(x�)

]

 =
∑P

p=1

∑P

p�=1
wpwp�kq

�

x
[p], x

�[p�]
�

 if i = i
� and q = q

� . Let the mean function of f c
d
(x) be zero

and the cross-covariance function of f c
d
(x) be

Because ui
q
(⋅) is independently and identically drawn from u

q
(⋅) and U(⋅) are mutually

independent

where bq

(d,c),(c� ,c�)
=
∑Rq

i=1
ai

d,c,q
ai

d�,c� ,q
 . For simplicity in the presentation, we assume that all

outputs yd(x) have a collection of the same input vectors X =

{

x
n

}N

n=1
∈ R

N×v . Our model
also works for each output with a different input data set. For notation simplicity, we define

(8)kf c
d

f c�

d�

(

x, x
�
)

= cov

[

f c
d
(x), f c�

d�

(

x
�
)]

(9)= cov

⎡
⎢⎢⎣

Q�
q=1

Rq�
i=1

ai
d,c,q

ui
q
(x),

Q�
q�=1

Rq�
i�=1

ai�

d�,c� ,q�
ui�

q�
(��)

⎤
⎥⎥⎦

(10)=

Q
∑

q=1

Q
∑

q�=1

Rq
∑

i=1

Rq
∑

i�=1

ai
d,c,q

ai�

d� ,c� ,q�
cov

[

ui�

q
(x), ui�

q�
(��)

]

.

(11)kf c
d

f c�

d�

(

x, x
�
)

=

Q
∑

q=1

b
q

(d,c),(d� ,c�)

[

P
∑

p=1

P
∑

p�=1

wpwp�kq

(

x
[p]

, x
�[p�]

)

]

,

Fig. 1 An example of two images for the convolutional kernel inputs. The two images are two characters in
the Ojibwe alphabet (please see Sect. 4.4.1 for more detail). We consider two characters as two classes. The
two images are one data point for each class separately. Left: The whole image is considered as an input
data point x and the blue grid represents the p-th patch x[p] . Right: The whole image is considered as an
input data point x′ and the blue grid represents the p′-th patch x�[p

�] (Color figure online)

1083Machine Learning (2023) 112:1077–1106

1 3

The prior distribution of f is given by f ∼ N(0, K) , where K is a block-wise matrix based

on
{

K
f
c

d
f
c�

d�

}D,D,C
d
,C

d�

d=1,d�=1,c=1,c�=1

 as each block and K
f
c

d
f
c′

d′

 has entries computed using kf c
d

f c′

d′

(

xn, xm

)

with x
n
, x

m
∈ X . K can be formulated as a sum of Kronecker products

K =

∑Q

q=1
AqA

⊤

q
⊗ Kq =

∑Q

q=1
Bq ⊗ Kq as well, where Aq ∈ R

C×Rq and B
q
 have entries

{

ai
d,c,q

}D,Cd ,Rq

d=1,c=1,i=1

 and
{

b
q

(d,c),(d�,c�)

}D,D,Cd ,Cd�

d=1,d�=1,c=1,c�=1

 , respectively. Kq ∈ R
N×N has entries

computed using
∑P

p=1

∑P

p�=1
wpwp�kq

�

x
[p]
n , x

[p�]
m

�

 for x
n
, x

m
∈ X . Each matrix Bq ∈ R

C×C is

known as a coregionalisation matrix and it controls the correlation between each latent
parameter function.

3.2 Augmenting model by noise data

In this section, we generalise the model in the last subsection to cope with the multi-output
multi-class classification problem using the softmax likelihood. We derive a softmax likeli-
hood function through Gumbel noise error for a generic output y

d
.

We take the d-th output yd(x) with the latent parameter function �fd(x) =

[

f 1

d
(x),⋯ , f

Cd

d
(x)

]⊤

 .

We first add a Gumbel noise error to each of latent parameter functions f̃
d
(x) to get a new vector

function h
d
(x) =

{

h
c

d
(x)

}C
d

c=1
 for each of the classes in the d-th output. We thus obtain:

where �c

d,i
 is the i-th i.i.d. Gumbel noise error for class c in the d-th output. We define

h
d
(x

i
) =

(

h
1

d

(

x
i

)

,⋯ , h
Cd

d

(

x
i

)

)⊤

∈ R
Cd×1 . We then employ the internal step likelihood (Liu

et al., 2019):

where H(z) = 1 when z > 0 ; otherwise, H(z) = 0 ; yd

(

xi

)

 is i-th point in d-th output. By
integrating h

d
(x

i
) out, we get

(12)f
c

d
=

[

f c
d

(

x1

)

,⋯ , f c
d

(

xN

)]⊤

∈ R
N×1

(13)�f
d
=

[

(

f
1

d

)⊤
,⋯ ,

(

f
C

d

d

)⊤
]⊤

∈ R
C

d
N×1

(14)f =

[

f̃
⊤

1
,⋯ ,�f

⊤

D

]⊤

∈ R
CN×1

(15)hc
d
(x) = f c

d
(x) + �

c
d,i

,

(16)yd(x) = argmax
c

hc
d
(x),

(17)p
(
yd

(
xi

)
|hd(xi)

)
=

∏

c≠yd(xi)

H
(

h
yd(xi)
d

(
xi

)
− hc

d

(
xi

))

(18)=
∏

c≠yd(xi)

H

(

f
yd(xi)
d

(

xi

)

+ �

yd(xi)
d,i

− f c
d

(

xi

)

− �
c
d,i

)

,

1084 Machine Learning (2023) 112:1077–1106

1 3

where �G and ΦG are the probability density function and the cumulative distribution
function of the Gumbel distribution, respectively. (NB: We drop out the c in �c

d,i
 for con-

venience since all the �c

d,i
 are from the same Gumbel error distribution). Now, we assume

the Gumbel error �
d,i ∼ �G(�d,i|0, 1) so we obtain �G(�d,i

) = exp
(

−�
d,i

− e
−�

d,i

)

 and
ΦG(�d,i

) = exp (−e
−�

d,i) . From expression (20), we recover a softmax likelihood (Liu et al.,
2019; Ruiz et al., 2018):

The softmax likelihood is a common likelihood used in multi-class classification with
Gaussian processes (Williams & Rasmussen, 2006). As we mentioned in expression (5), all
outputs are conditional independent given the corresponding latent parameter functions so
each output has its own likelihood expression (20).

3.3 Scalable variational inference

We have derived the LMC model with a convolutional kernel and used the softmax likeli-
hood. However, there exists a computational challenge if there are a very large number of
classes and training instances in each output. We thus use scalable variational inference
to reduce the computational complexity by the techniques of inducing patches and sub-
sampling, where we refer our model to Multi-output Gaussian Processes with Augment

& Reduce (MOGPs-AR). Inducing patches can ease the computational complexity of the
inversion of a kernel matrix from O

(

N
3
)

 to O
(

NM
2
)

 , where N is the number of data points
per output and M is the number of inducing patches (M ≪ N). Subsampling reduces the
computational complexity of our model using a subset of both training data and classes for
each output during hyperparameters and parameters optimisation.

3.3.1 Inducing patches for MOGPs‑AR

We assume we use image data sets in this section. We define the inducing patches (Van der
Wilk et al., 2017) at the latent functions U . If our input data sets are not image data sets,
we use inducing points (Hensman et al., 2013). The difference between the inducing points
and the inducing patches is the dimension size. The dimensions of the inducing points are
the same as the input data, whereas the dimensions of the inducing patches match the patch
of the images.

We first define a group of M inducing patches (Van der Wilk et al., 2017)
Z =

{

z
m

}M

m=1
∈ R

M×E for each latent function u
q
 . We then obtain

uq =

[

uq

(

z1

)

,⋯ , uq

(

zM

)]⊤

 evaluated at Z . All latent functions U =
{

uq(x)
}Q

q=1
 have differ-

(19)p

(
yd

(
xi

)
|̃fd(xi)

)
=∫ p

(
yd

(
xi

)
|hd(xi)

)
p

(
hd(xi)|̃fd(xi)

)
dhd(xi)

(20)=� �G

(

�d,i

)
∏

c≠yd(xi)

ΦG

(

�d,i + f
yd(xi)
d

(

xi

)

− f c
d

(

xi

)

)

d�d,i,

(21)p

�
yd

�
xi

�
�̃fd(xi)

�
=

exp
�

f
yd(xi)
d

�
xi

��

∑Cd

c=1
exp

�
f c
d

�
xi

�� .

1085Machine Learning (2023) 112:1077–1106

1 3

ent inducing patches and u =

[

u
⊤

1
,⋯ , u

⊤

Q

]⊤

∈ R
QM×1 . Since the latent functions U are

mutually independent, the distribution p(u) factorises as p(u) =
∏Q

q=1
p
�

uq

�

 , with
u

q
∼ N

(

0, K
q

)

 , where Kq ∈ R
M×M has entries given by kq

(

zi, zj

)

 with zi, zj ∈ Z . The latent
parameter functions fc

d
 are conditionally independent given u . We therefore obtain the con-

ditional distribution p(f|u):

where K
uu

∈ R
QM×QM is a block-diagonal matrix based on K

q
 as each block.

Based on Moreno-Muñoz et al. (2018); Liu et al. (2019), we obtain the lower bound L
for log p(y):

where

where q
(

u
q

)

= N

(

u
q
∣ �

u
q

, S
u

q

)

 and we refer
{

�
uq

, S
uq

}Q

q=1

 as the variational hyperparam-

eters that need to be optimised. Further, we get (see the Appendix A for detail):

(22)p(f|u) =
D∏

d=1

Cd∏

c=1

p
(
f
c

d
|u
)

(23)=

D∏

d=1

C
d∏

c=1

N

(
f
c

d

|||
K

f
c

d
u
K

−1

uu
u, K

f
c

d
f
c

d

− K
f
c

d
u
K

−1

uu
K

⊤

f
c

d
u

)
,

(24)log p(y) = log∫ ∫ ∫ p(y, �, f, u)dfd�du

(25)= log∫ ∫ ∫
p(y, �, f, u)q(f, u, �)

q(f, u, �)
dfd�du

(26)≥ � � � q(f, u, �)log
p(y, �, f, u)

q(f, u, �)
dfd�du

(27)= ∫ ∫ ∫ q(�|f, u)q(f, u)log
p(y, �, f, u)

q(�|f, u)q(f, u)
dfd�du

(28)= L,

q(f, u) = p(f ∣ u)q(u) =

D
∏

d=1

Cd
∏

c=1

p
(

f
c

d
∣ u

)

Q
∏

q=1

q
(

uq

)

,

(29)L =

D∑

d

N∑

i

⟨
log p

(
yd

(
xi

)
|̃fd(xi), �d,i

)⟩

q

(
f̃d(xi)

)
q

(
�d,i |̃fd(xi)

)

(30)−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
−

D�

i=d

N�

i=1

KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��
,

1086 Machine Learning (2023) 112:1077–1106

1 3

where q
(
�d,i |̃fd(xi)

)
 approximates the posterior p

(
�d,i|yd

(
xi

)
, f̃d(xi)

)
:

p
(

�d,i

)

 is a probability density function of the standard Gumbel distribution. q

(

f̃d(xi)

)

approximates the marginal posterior for f̃
d
(x

i
):

where �
u
=

[

�
⊤

u1

,⋯ ,�⊤

uQ

]⊤

 and S
u
 is a block diagonal matrix with blocks given as S

u
q

 .

After calculation (NB: detail is in the Appendix A), we obtain:

where

where �f c
d
(xi) and �f c

d
(xi) are the mean and variance of q

(

f c
d

(

xi

))

 , respectively.

3.3.2 Reducing computational complexity by subsampling

To reduce the computational complexity of our model, we use only a subset of the data
observations and a subset of the classes to estimate the parameters and hyperparameters.
The optimal parameters and hyperparameters are chosen by maximising an unbiased esti-
mator of L (37), where the unbiased estimator is obtained through a subset of both training
data points and classes in each output.

In our model, the hyperparameters are Z ,
{

ac,q

}C,Q

c=1,q=1
 , {�q}

Q

q=1
 , {wp}

P
p=1

 and the varia-

tional parameters are
{

�
uq

, S
uq

}Q

q=1

 for {q
(

uq

)

}
q=Q

q=1
 . We refer all those parameters as Θ . To

(31)p

(
�d,i|yd

(
xi

)
, f̃d(xi)

)
∝ p

(
yd

(
xi

)
|̃fd(xi), �d,i

)
p
(
�d,i

)
,

(32)p

(
yd

(
xi

)
|̃fd(xi), �d,i

)
=

∏

c≠yd(xi)

ΦG

(
�d,i + f

yd(xi)
d

(
xi

)
− f c

d

(
xi

))
,

(33)=
∏

c≠yd(xi)

exp

(

−e−�d,i−f
yd(xi)
d (xi)+f c

d (xi)
)

.

(34)q

(
f̃d(xi)

)
=∫ p

(
f̃d(xi)|u

)
q(u)du

(35)= N

(
f̃
d
(x

i
)|K

f̃
d
(x

i
)u

K
−1

u u
�

u
,

(36)K�f
d
(x

i
)�f

d
(x

i
)
+ K�f

d
(x

i
)u

K
−1

u u

(

S
u
− K

u u

)

K
−1

u u
K

⊤

�f
d
(x

i
)u

)

,

(37)L = −

D�

d=1

N�

i=1

log
�
Pd,i + 1

�
−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
,

(38)Pd,i = exp

(

�
f

yd(xi)
d

(xi)

2
− �

f
yd(xi)
d

(xi)

)

∑

c≠yd(xi)

exp

(

�f c
d
(xi)

2
+ �f c

d
(xi)

)

,

1087Machine Learning (2023) 112:1077–1106

1 3

obtain the optimal values of the parameters Θ , we use gradient descent to maximise L with
respect to Θ:

where, for notation simplicity, we define

We then estimate ∇
Θ
L by randomly sampling a subset of data points

B = {b1, ..., b|B|} ⊆ {x1,… , x
N
} of size |B| and a subset of classes S = {s1, ..., s|S|}

⊆ {1,… , Cd}�{yd(x)} with size |S| (“\” means {yd(x)} is excluded from {1,… , C
d
}) for

each multi-class classification output:

∇
Θ
L̃ is an unbiased estimator for ∇

Θ
L where the computational complexity of MOGPs-AR

is dominated by optimising the parameters through maximising L.
Our sampling strategy is in Algorithm 1. The computational complexity of MOGPs-AR

mainly depends on the inversion of K
u u

 with complexity O(QM3) and products like K
f̃u

with complexity O

(
D|S||B|QM2

)
 ; If we do not use the subsampling of classes, we have to

calculate products like K
fu

 with a cost of O
(
C|B|QM2

)
 , where the notations are defined as

below:

(39)∇ΘL = − ∇Θ

D�

d=1

N�

i=1

log
�
Pd,i + 1

�
− ∇Θ

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��

(40)= − ∇Θ

D�
d=1

N�
i=1

log

⎛⎜⎜⎝

⎛⎜⎜⎝
�yd(xi)

�
c≠yd(xi)

�d,c(xi)

⎞⎟⎟⎠
+ 1

⎞⎟⎟⎠

(41)− ∇
Θ

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
,

(42)�yd(xi) = exp

(

�
f

yd(xi)
d

(xi)

2
− �

f
yd(xi)
d

(xi)

)

,

(43)�d,c(xi)
= exp

(

�f c
d
(xi)

2
+ �f c

d
(xi)

)

.

(44)∇ΘL̃ = − ∇Θ

D∑

d=1

∑

xi∈B

N

|B|
log

(
Cd − 1

|S|

(
�yd(xi)

∑

c∈S

�d,c(xi)

)
+ 1

)

(45)− ∇
Θ

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
.

(46)�f =

[
f̃
⊤

1,B
,⋯ ,�f

⊤

D,B

]⊤
∈ R

D|S||B|×1

1088 Machine Learning (2023) 112:1077–1106

1 3

We notice D|S| ≪ C (C =

∑D

d=1
C

d
) so MOGPs-AR alleviates the computational complex-

ity of the product K
f̃u

 from O
(
C|B|QM2

)
 to O

(
D|S||B|QM2

)
.

3.4 Prediction

In this subsection, we derive the predictive distribution of MOGPs-AR. Considering a
new test input x

∗
 in the d-th output, we assume p(u|y) ≈ q(u) and approximate the pre-

dictive distribution p
(

yd

(

x
∗

))

 by

where q

�

f̃d

�

x∗

�

�

= ∫ p

�

f̃d

�

x∗

�

∣ u

�

q(u)du =
∏Cd

c=1
q
�

f c
d

�

x∗

��

 . The approximated latent

parameter functions q
(

f̃d

(

x
∗

)

)

 are mutually independent, so we obtain

(47)f =

[
f
⊤

1,B
,⋯ , f

⊤

D,B

]⊤
∈ R

C|B|×1

(48)�f
d,B =

[
f
S1

d,B
,⋯ , f

S|S|
d,B

]⊤
∈ R

|S||B|×1

(49)f
d,B =

[
f
1

d,B
,⋯ , f

C
d

d,B

]⊤
∈ R

C
d
|B|×1

(50)f
c

d,B
=

[
f c
d

(
b1

)
,⋯ , f c

d

(
b|B|

)]⊤
∈ R

|B|×1

(51)p
(
yd

(
x∗
)
|y
)
≈ ∫ p

(
yd

(
x∗

)
∣ f̃d

(
x∗

))
q

(
f̃d

(
x∗
))

d̃fd

(
x∗

)
,

(52)p
(
yd

(
x∗
)
|y
)
≈ ∫ p

(
yd

(
x∗
)
∣ f̃d

(
x∗
))

q

(
f̃d

(
x∗

))
d̃fd

(
x∗

)

(53)
= ∫

exp
�

f
yd(x∗)
d

�

x∗

�

�

∑Cd

c=1
exp

�

f c
d

�

x∗

��

Cd
�

c=1

N

�

f c
d

�

x∗

�

∣ �c
fd

�

x∗

�

, �c
fd

�

x∗

�

�

d̃fd

�

x∗

�

.

1089Machine Learning (2023) 112:1077–1106

1 3

We can use Monte Carlo to approximate the integral in the same way as Liu et al. (2019).

4 Experiments

In this section, we evaluate MOGPs-AR in various data sets. We apply MOGPs-AR in a
synthetic data set to show its scalability in the number of classes compared to multi-output
Gaussian processes. We also compare MOGPs-AR to other models in different real data sets.
Further, to test MOGPs-AR the capacity in dealing with an image data set, we compare the
performance of a convolutional kernel and RBF-ARD in our model.

Baselines. We compare the MOGPs-AR with the following two single-output and one
multi-output Gaussian process models: 1) A Gaussian process for multi-class classification
model (G-M), an independent Gaussian process using the softmax likelihood. 2) A Gaussian
process multi-class classification with additive noise model (G-A), an independent Gaussian
process using the softmax likelihood via Gumbel noise. 3) A multi-output Gaussian process
model for multi-class classification problems (MG-M), a standard linear model of coregion-
alisation for MOGPs using the softmax likelihood. For all the different models in this paper,
we use RBF-ARD, unless otherwise stated. For all models, we use traditional inducing points
(Hensman et al., 2013) unless mentioned otherwise. All models are trained using the Adam
optimiser with 0.01 learning rate and trained by 4000 iterations (Kingma & Ba, 2014). We
use the same 80% training and 20% validation data set to choose the optimal number Q of
latent functions U , where we optimise again all hyperparameters during cross-validation, for
MOGPs-AR and MG-M.

Evaluation Metrics. There are three different evaluation metrics in this paper:

where �
true

 and �prediction are sets of true and predicted pairs (input data point, class)
separately (e.g., �true,n =

(

xn, ytrue,n

)

 where x
n
 is the n-th input data point and ytrue,n is the

(54)Precision-Weighted =
1

∑
l∈�

���
l
true

��

�

l∈�

���
�

l
true

���
P
�
�

l
prediction

,�l
true

�
,

(55)Recall-Weighted =
1

∑
l∈�

���
l
true

��

�

l∈�

���
�

l
true

���
R
�
�

l
prediction

,�l
true

�
,

(56)F1-Weighted =
1

∑
l∈�

���
l
true

��

�

l∈�

���
�

l
true

���
F1

�
�

l
prediction

,�l
true

�
,

(57)P(�l
prediction

,�
l
true

) =
|�l

prediction
∩�

l
true

|

|�l
prediction

|
,

(58)R(�l
prediction

,�
l
true

) =
|�l

prediction
∩�

l
true

|

|�l
true|

,

(59)F1(�
l
prediction

,�
l
true

) = 2

P(�l
prediction

,�l
true

) × R(�l
prediction

,�l
true

)

P(�l
prediction

,�l
true) + R(�l

prediction
,�l

true)
,

1090 Machine Learning (2023) 112:1077–1106

1 3

corresponding class for x
n
 . The �l

true
 and �l

prediction
 are subsets of �

true
 and �prediction sepa-

rately (e.g., �l

true
= {

(

xn, ytrue,n

)

 ∈ 𝕆true ∣ ytrue,n = l, n ∈ ℕ}). The � and ℕ are the sets of
classes and input data points, respectively. The formulas use P(�l

prediction
,�l

true
) = 0 or

R(�l
prediction

,�l
true

) = 0 if �l
prediction

= � or �l

true
= �.

The synthetic data experiment was performed on a Dell PowerEdge C6320 with an Intel
Xeon E5-2630 v3 at 2.40 GHz and 64GB of RAM. All real data experiments were per-
formed on a PowerEdge R740XD Server with NVIDIA Tesla v100 32GB GDDR.1

4.1 Synthetic data

In this subsection, we compare the performance of MOGPs-AR with MG-M on synthetic
data where we generate a single output classification synthetic data set.2 We create a 20
class data set by assigning a cluster of 100 points normally distributed, where each data
point has five features, to each class. In total, there are 2000 samples. Since the synthetic
data has 20 classes, we refer to it as S-20. We use 20 classes to compare MOGPs-AR with
MG-M in terms of scalability. MOGPs-AR and MG-M use the same parameter setting (see
Table 3) exclude that MOGPs-AR used a different number of subset classes.

We compare MOGPs-AR with MG-M in terms of training time and Recall-Weighted per-
formance. Figure 2 shows the mean training time for MOGPs-AR is less than MG-M in five
folds cross-validation. This is because the computational complexity of MOGPs-AR is less than
MG-M. As we mentioned in 3.3.2, compared to MG-M, MOGPs-AR reduce the computational
complexity of the product K

f̃u
 from O

(
C|B|QM2

)
 to O

(
D|S||B|QM2

)
 where D|S| ≪ C . Fig-

ure 2 empirically shows the mean training time of MOGPs-AR (1) with 596s is nearly one-
sixth of MG-M with 3641s. The mean training time in MOGPs-AR increases as the number
of |S

d
| increases but it is still less than MG-M. While MOGPs-AR has less training time than

MG-M, it has a similar performance in Recall-Weighted with MG-M for S-20. Even if we use
a small subset of classes, e.g., five classes, MOGPs-AR also has a close performance to MG-M
(see Fig. 2 right panel). The Recall-Weighted of MOGPs-AR slightly increases as the number

Fig. 2 Left: The training time in MG-M and MOGPs-AR model in S-20 (MOGPs-AR(5) means that
MOGPs-AR with a subset of classes Sd ⊆ {1,… , Cd}�{yd(x)} with size |S

d
| = 5 (|S| = |S

d
| + 1) and we

use yd(x) and C
d
 for notation consistency but here is only one output); Right: The Recall weight between

MG-M and MOGPs-AR with different number of samples (e.g., 5 means |S
d
| = 5)

1 All codes are available online at https:// github. com/ Chunc haoPe ter/ MOGPs- AR.
2 This data is generated from scikit-learn (Pedregosa et al., 2011)

https://github.com/ChunchaoPeter/MOGPs-AR

1091Machine Learning (2023) 112:1077–1106

1 3

of samples increase. Further, we notice that MOGPs-AR (17) has a better performance than
MG-M. In theory, MOGPs-AR should have the same performance as MG-M. However, we
can not perform convex optimisation for both MG-M and MOGPs-AR, so MOGPs-AR may
outperform MG-M in various performance metrics in practice.

4.2 Single‑output GP classification: four real data sets

We will use the following four real data sets to test the performance of the different GP
classifiers: 1) Balance (Dua & Graff, 2017) is a data set for the results of psychology
experiments. There are 625 data points with four discrete variables: Left-Weight, Left-
Distance, Right-Weight and Right-Distance. The value of all four discrete variables ranges
from one to five. The data set consists of three classes: the balance scale tipped to the right
(R), tipped to the left (L) or be balanced (B). 2) CANE9 (Dua & Graff, 2017) contains
1080 documents of free text business descriptions of Brazilian companies. Those docu-
ments are divided into nine different categories. Each document has 856 integer variables
(word frequency). 3) Mediamill (Snoek et al., 2006) is a multi-label data set for generic
video indexing. To apply multi-classification, we only maintained one label, which is the
first label to appear, for each data point. Further, we only use part of this data set since the
original data set is highly imbalanced. We then obtain the number of data points for each
class ranged from 31 to 545. In total, we have 6689 data points with 120 numeric features
and 35 classes. 4) Bibtex data set (Katakis et al., 2008) is also a multi-label data that con-
tains 7395 Bibtex entries with 1836 variables. Similarly, we only maintained one label,
which is the first label to appear, obtaining 148 classes.

In all three performance measures, MOGPs-AR outperforms G-A and G-M on all four
data sets (see Figure. 3). This is because MOGPs-AR can use each of latent parameter
functions f , which is a linear combination of latent functions U , to predict each class.
The underlying function of the latent functions U and B

q
 can transfer knowledge between

each class in the same output. However, G-A and G-M only have independent Gaussian
processes that can not capture the similarity between each class. Further, Fig. 3 indicates
that using a small subset of classes (e.g., MOGPs-AR(1) or MOGPs-AR(5)), MOGPs-AR
obtains a similar result as MG-M for Balance, CANE9, Mediamill data sets as we have
discussed as in 4.1.

Compared with single output Gaussian processes, MOGPs-AR can achieve around
10% improvement in terms of three performance metrics on Balance and CANE9 data
set (Fig. 3 upper panel). The optimal number (Q) of latent functions U is two and nine
for the Balance and CANE9 data sets separately. Those latent functions share the knowl-
edge between each class and help to improve the performance. There is also a connection
between single output and multi-output Gaussian processes. Considering an extreme case,
we assume there is only one class, Q=1 and B

q
 = 1, MOGPs-AR and MG-M have the same

structure as G-A and G-M in theory, respectively.
Regarding both Mediallmill (35 classes) and Bibtex (148 classes), MOGPs-AR has excel-

lent performance compared to the single-output Gaussian processes and MG-M. For the Medi-
amill dataset, based on capturing dependency between each class, MOGPs-AR is nearly 6
times better than G-A and 4 times better than G-M in terms of F1-Weighted, where the mean of
F1-Weighted is 0.04 for G-A, 0.08 for G-M and 0.25 for MOGPs-AR. Further, we cannot apply
MG-M in the Bibtex data set since it is not able to compute K

fu
 (out of memory). However,

MOGPs-AR scales well since it only uses a subset of classes (MOGPs-AR (20)) for prediction.

1092 Machine Learning (2023) 112:1077–1106

1 3

4.3 Multi‑output GPs classifications: UJIIndoorLoc

To compare the performance of MOGPs-AR in multi-output multi-class classification
problems, we apply MOGPs-AR to UJIIndoorLoc Data Set (Torres-Sospedra et al., 2014).
There are 21048 instances that rely on WIFI fingerprint for three buildings of Universitat
Jaume I where Building I and Building II have four floors respectively and Building III
has five floors. Each instance has 520 features based on signal strength intensity. We ran-
domly sample 200 data points from each floor so there are 800 data points for Building I
and Building II respectively and 1000 data points for Building III. Further, we standardise
the data set for each Building. We make predictions for each floor depending on the 520
features. Since there are three buildings of Universitat Jaume I, we assume there is a strong
correlation between each building. We regard each building as each output and different
floors as different classes in our model. The UJIIndoorLoc is considered as a multi-out-
put multi-class classification problem. In this experiment and following, we do not apply
the MG-M model due to its computational complexity. MOGPs-AR can be an alternative
model for MG-M so we only consider MOGPs-AR and two single output GP models.

Figure 4 shows that MOGPs-AR outperforms single-output Gaussian processes in both
Building I, II and III in all three performance measures. For example, MOGPs-AR can achieve
around 50% improvement in terms of Recall-Weighted on Building I compared with single
output Gaussian processes. The reason is that MOGPs-AR can capture dependencies of intra-
and inter- three buildings. The dependencies can help improve the prediction for all buildings.

Fig. 3 Performance in cross-validation (mean ± standard deviation) in Balance, CANE9 and Mediamill
data sets. a Balance Data Results; b CANE9 Data Results; c Mediamill Data Results; d Bibtex Data Results

1093Machine Learning (2023) 112:1077–1106

1 3

The single-output Gaussian processes cannot use the dependency so the single output Gauss-
ian process does not perform well in UJIIndoorLoc.

To investigate the correlation between intra- and inter output, we create a global absolute

coregionalisation matrix. First, we create absolute coregionalisation matrices
{

B
abs
q

}Q

q=1

 ,

where Babs
q

∈ R
C×C , by taking the absolute value of each entry in B

q
 . Second, we obtain the

mean of those absolute coregionalisation matrices: B =
1

Q

∑Q

q=1
B

abs
q

 and B ∈ R
C×C . Since

we are performing K-fold cross-validation, we have K different mean absolute coregionalisa-

tion matrices:
{

B

i
}K

i=1

 , where B

i

∈ R
C×C refers to the mean absolute coregionalisation

matrices during the i-th fold cross-validation. Further, we calculate the mean of
{

B

i
}K

i=1

 for

all K-fold cross-validation so B̃ ∈ R
C×C

=
1

K

∑K

i=1
B

i

:

where
(

B̃
)

i,j
∈ R

Ci×Cj indicates the correlations for all latent parameter functions between
i-th output and j-th output. At the end, in order to find the correlation for outputs indepen-
dently, we calculate a scalar B̃i,j =

1

CiCj

∑

m

∑

n

�

�

B̃
�

i,j

�

m,n
 , which represents dependence

between i-th output and j output. We therefore define a global absolute coregionalisation
matrix (GACM ∈ R

D×D) as the following:

(60)B̃ =

⎡
⎢⎢⎢⎢⎣

�
B̃
�

1,1
…

�
B̃
�

1,D�
B̃
�

2,1
…

�
B̃
�

2,D

⋮ ⋱ ⋮�
B̃
�

D,1
…

�
B̃
�

D,D

⎤
⎥⎥⎥⎥⎦

,

Fig. 4 Performance in cross-validation (mean ± standard deviation)

1094 Machine Learning (2023) 112:1077–1106

1 3

Figure 5a shows the correlation between each building captured by our model. We can
notice there is a strong correlation between the different buildings. Building I and Building
II have a relatively strong correlation compared to Building I and Building III, Building II
and Building III. Building II has the strongest intra-output correlation while Building III
has the smallest intra-output correlation among those three buildings.

4.4 Multi‑output GPs classifications: Omniglot‑dataset

We apply MOGPs-AR to Omniglot image data set (Lake et al., 2015). The Omniglot
data set includes 1623 various handwritten characters from 50 distinct alphabets. Each
of the 1623 characters was drawn by 20 different people (the total number of images is
32460). Although traditional MOGPs are not specifically designed to deal with image data,
MOGPs-AR can handle image data by incorporating a convolutional kernel (Van der Wilk
et al., 2017). The size of each image is 105 × 105 pixels. To help speeding up the computa-
tion and reducing the computational complexity in the covolutional kernel, we resize the
images from 105 × 105 to 20 × 20 as Santoro et al. (2016) did. We regard each alphabet
as an output in our model. Each alphabet has different characters which are considered as
different classes. Therefore, we consider the Omniglot data set as multi-output multi-class
classification problems.

4.4.1 Ojibwe and blackfoot alphabets

To compare the performance of MOGPs-AR in multi-output multi-class classification
problems and image input data, we first consider Ojibwe and Blackfoot alphabets as two
different multi-class classification problems (see Fig. 6). Since the two alphabets are from
Canadian Aboriginal Syllabics, we assume there is a strong correlation between them. Our

(61)GACM =

⎡
⎢
⎢
⎢
⎣

B̃1,1 … B̃1,D

B̃2,1 … B̃2,D

⋮ ⋱ ⋮

B̃
D,1 … B̃

D,D

⎤
⎥
⎥
⎥
⎦

.

Fig. 5 Global absolute coregionalisation matrix. a The global absolute coregionalisation matrix of UJIIn-
doorLoc data set. b The global absolute coregionalisation matrix of Ojibwe and Blackfoot alphabets

1095Machine Learning (2023) 112:1077–1106

1 3

model can capture the correlation through joint modelling of the two alphabets to improve
predictive performance for each multi-class classification problem. There are 14 differ-
ent characters in each output so there are 14 classes, and each class has 20 data points.
We compare both the RBF-ARD kernel and the convolutional kernel. Table 4 shows the
parameter setting in Omniglot data set.

In Fig. 7 we show that MOGPs-AR outperforms single-output Gaussian processes
in both alphabets in terms of the convolutional kernel or RBF-ARD. The reason is that
MOGPs-AR can capture the dependency between the two alphabets. The dependency can
help improve the prediction for both alphabets. The single output Gaussian processes can-
not use the dependency so the single output Gaussian process with either the convolutional
kernel or RBF-ARD does not perform well in both Ojibwe and Blackfoot. The size of the
mini-batch is too small that has also a negative influence on the single output Gaussian
processes (Fig. 8). Especially, the values of the three performance metrics are closed to
0.05 for G-A with the convolutional kernel on Ojibwe.

Since both alphabets are from Canadian Aboriginal Syllabic we expect they have a
strong correlation. Figure 5b indeed shows there is a similar global correlation between
intra- and inter- output for both alphabets, which indicates that our model has the capacity
of capturing the underline correlation among those correlated data sets.

Fig. 6 Both the Ojibwe and the Blackfoot alphabets have 14 characters each. We show two data points for
each character

Fig. 7 Image: Performance in cross-validation (mean ± standard deviation). We compare both RBF-ARD
and the convolutional kernel for all the model

1096 Machine Learning (2023) 112:1077–1106

1 3

MOGPs-AR with the convolutional kernel outperforms MOGPs-AR with RBF-ARD in
both alphabets in terms of three performance metrics (see Fig. 7). For example, MOGPs-
AR improves the Recall-Weighted from 0.468 to 0.714 by changing RBF-ARD to the con-
volutional kernel on the Blackfoot alphabet. Moreover, we also combine G-M and G-A
with the convolutional kernel and they also have stronger performance compared with
RBF-ARD. In particular, G-M with the convolutional kernel obtains 0.5858 compared with
0.0857 using RBF-ARD in terms of Recall-Weighted on the Blackfoot alphabet. The per-
formance of G-M with the convolutional kernel (0.5858) is better than MOGPs-AR with
RBF-ARD (0.468) on the Blackfoot alphabet. The reason is that the convolutional kernel is
more effectively capturing image-level features than the RBF-ARD kernel.

To investigate the effects of mini-batch size, we set up another experiment. We train
again the exact same models with the parameters initialised in the same way as the experi-
ment above but using different mini-batch sizes (e.g., 50, 70, 90). Since the convolution
kernel provided better results in the previous experiments, we only show the results using
the convolution kernel and the Recall-Weighted performance measure for both alphabets.
Figure 8 shows that the size of the mini-batch has more influence on single output Gauss-
ian processes than MOGPs-AR. A small size number for the mini-batch, e.g., 50, has a
negative impact on G-M and G-A. However, MOGPs-AR has a slight increase in perfor-
mance or keeps a similar result with the mini-batch size increasing. G-A and G-M improve
the performance as the mini-batch size grows up from 50 to 90. When the size of the mini-
batch is 90, G-M has a similar performance with MOGPs-AR. However, when we consider
the mini-batch of size 50, MOGPs-AR still can get good performance compared to single
GPs.

4.4.2 All alphabets

In our final experiment, we apply MOGPs-AR in 50 alphabets in the original data set.
There are 50 outputs with different number of classes in each output (for more details on
the number of classes in each output see Table 2). The total number of classes in the 50
outputs are 1623. We follow Lake et al. (2015) and split the 50 alphabets into two sets: a
background set and an evaluation set, where the background set has 30 alphabets (with a

Fig. 8 Recall-Weighted Performance in cross-validation (mean ± standard deviation)

1097Machine Learning (2023) 112:1077–1106

1 3

total of 964 classes) and the evaluation set has 20 alphabets (with a total of 659 classes).
In order to apply MOGPs-AR in all 50 alphabets, we use a mini-batch size of nine data
points for each output to train our model. The small mini-batch size has a negative impact
on G-M and G-A so we only apply MOGPs-AR in this experiments. We apply MOGPs-AR
for three different sets of alphabets: all alphabets, the Background alphabets and the Evalu-
ation alphabets.

In Fig. 9, we empirically (50 different outputs and a total of 1623 classes of image
data) show that MOGPs-AR has better scalability than traditional multi-output Gauss-
ian processes. MOGPs-AR reduces the computational complexity by subsampling both
training data points and classes in each output. Figure 9 also indicates that MOGPs-AR
obtains good performance even if we choose a small size of mini-batch (nine) and only a
small number of classes (one) in each output since it captures both intra- and inter-output
correlation.

In most predictions, our model trained with the data of all alphabets could outperform
one trained with the data of part of the alphabets. For example, our model trained using all

Fig. 9 Performance in cross-validation in Evaluation alphabets (Left) and Background alphabets (Right).
In the both Figures, each circle is the mean of Recall-Weighted; the error bar is the standard deviation of
Recall-Weighted

1098 Machine Learning (2023) 112:1077–1106

1 3

alphabets improves the Recall-Weighted from 0.6096 to 0.6692 for the Aurek alphabet, com-
pared with one using evaluation alphabets for training. The extra alphabets can help our model
improve its performance.

However, there are exceptions to the scenario in the last paragraph. For example, for the
Syriac (Estrangelo) alphabet, the values of the Recall-Weighted 0.5174 is less than 0.5283
where only use background alphabets for training our model. One likely reason is that our
model assumes a correlation with all alphabets. However, the correlation with those alphabets
may not exist or the correlation may hinder the predictive performance.

5 Conclusion

In this paper, we have introduced MOGPs-AR, a novel framework that allows the use of multi-
output Gaussian processes for multi-output multi-class classification. MOGPs-AR can tackle
large scale data sets and a large number of classes in each output. Further, when combined
with the convolutional kernel, it is suited for downsized image data.

We experimentally show that MOGPs-AR has a similar result to MG-M that is a linear
model of coregionalization and uses a similar stochastic variational inference method as us.
However, the training time of MOGPs-AR is less than MG-M. Experimental results in various
data sets also indicate that MOGPs-AR significantly improves the performance compared to
single output Gaussian processes.

MOGPs-AR has good performance in extreme classification using a softmax function
which is only suited to each instance associated with a single class. Because of the softmax
function, MOGPs-AR can not deal with a multi-label problem where each data point belongs
to multiple classes. It would be an interesting work for future research if we can generalise
MOGPs-AR for the multi-label problem that has a strong correlation with extreme classifica-
tion problems.

A practical application of Gaussian process models to realistic image recognition tasks is
still an open research problem. For example, in terms of accuracy performance in a realistic
RGB set CIFAR-10 (Krizhevsky & Hinton, 2009), the accuracy performance of Gaussian pro-
cesses (Van der Wilk et al., 2017; Blomqvist et al., 2019) is not as high as the state-of-the-art
like deep learning. A potential extension would be to consider integrating the structural prop-
erties of deep learning architectures into our model by using deep kernel learning (Wilson
et al., 2016).

Appendix A Complete derivation of the lower bound L

To compute the derivation of the lower bound L , we begin with the following:

(62)L =

⟨

log
p(y, f, u, �)

q(f, u, �)

⟩

q(f,u,�)

(63)=∫ ∫ ∫ q(�|f)p(f|u)q(u)log
p(y|f, u, �)p(u)p(�)

q(�|f)q(u)
dfd�du

1099Machine Learning (2023) 112:1077–1106

1 3

where q(f, u, �) = p(f|u)q(u)q(�|f) . We assume q(f) ≈ p(f ∣ y) so we obtain

The above function means the latent parameter functions are mutually independent in q(f) .
Then, we obtain:

(64)=∫ ∫ ∫
D∏

d=1

N∏

i=1

q(�d,i |̃fd(xi))

Cd∏

c=1

p(fc

d
|u)

Q∏

q=1

q(uq)

(65)× log

∏D

d=1

∏N

i=1
p

�
yd

�
xi

�
∣ f̃d(xi), �d,i

�∏Q

q=1
p
�
uq

�∏D

d=1

∏N

i=1
p(�d,i)

∏D

d=1

∏N

i=1
q(�d,i �̃fd(xi))

∏Q

q=1
q
�
uq

�

(66)dfd�du

(67)=∫ ∫ ∫
D∏

d=1

N∏

i=1

q(�d,i |̃fd(xi))

Cd∏

c=1

p(fc

d
|u)

Q∏

q=1

q(uq)

(68)× log

D
∏

d=1

N
∏

i=1

p

(

yd

(

xi

)

∣ f̃d(xi), �d,i

)

dfd�du

(69)−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
−

D�

i=d

N�

i=1

KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��
,

(70)q(f) ≈ p(f ∣ y)

(71)= ∫ p(f ∣ u)q(u)du

(72)= ∫
D
∏

d=1

Cd
∏

c=1

p
(

f
c

d
∣ u

)

Q
∏

q=1

q
(

uq

)

du

(73)=

D
∏

d=1

Cd
∏

c=1

Eq(u)

{

p

(

f
c

d
∣
{

uq

}Q

q=1

)}

(74)=

D
∏

d=1

q

(

f̃d

)

=

D
∏

d=1

Cd
∏

c=1

q
(

f
c

d

)

=

N
∏

i=1

D
∏

d=1

Cd
∏

c=1

q(f c
d

(

xi

)

)

(75)L =∫ ∫
D∏

d=1

N∏

i=1

q(�d,i |̃fd(xi))q(f)log

D∏

d=1

N∏

i=1

p

(
yd

(
xi

)
∣ f̃d(xi), �d,i

)
dfd�

1100 Machine Learning (2023) 112:1077–1106

1 3

The q

(
�d,i |̃fd(xi)

)
 approximates the posterior p

(
�d,i|yd

(
xi

)
, f̃d(xi)

)
 (similar to Liu et al.

(2019)):

where �
∗
d,i

= 1 +
∑

c≠yi
e

f c
d
(xi)−f

yd (xi)
d

(xi) =
∑Cd

c=1
e

f c
d
(xi)−f

yd (xi)
d

(xi). The optimal p

(
�d,i|yd

(
xi

)
, f̃d(xi)

)

does have exact analytic form. However, L will be intractable by using an analytic form.
We thus take a more general distribution q

(
�d,i |̃fd(xi)

)
= Gumbel

(
�d,i| log �d,i, 1

)
 , which

satisfies 𝜃
d,i > 1 , also including the optimal distribution. Then the L is:

We first consider the inner expectation in the double-expectation term in L:

(76)−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
−

D�

i=d

N�

i=1

KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��

(77)=

D∑

d

N∑

i

⟨
log p

(
yd

(
xi

)
|̃fd(xi), �d,i

)⟩

q

(
f̃d(xi)

)
q

(
�d,i |̃fd(xi)

)

(78)−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
−

D�

i=d

N�

i=1

KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��

(79)p

(
�d,i|yd

(
xi

)
, f̃d(xi)

)
∝ p

(
yd

(
xi

)
|̃fd(xi), �d,i

)
p
(
�d,i

)

(80)= �G

(

�d,i

)
∏

c≠yd(xi)

ΦG

(

�d,i + f
yd(xi)
d

(

xi

)

− f c
d

(

xi

)

)

(81)= exp

⎛
⎜⎜⎝
−�d,i −

⎛
⎜⎜⎝
1 +

�
c≠yd(xi)

ef c
d (xi)−f

yd(xi)
d (xi)

⎞
⎟⎟⎠
e−�d,i

⎞
⎟⎟⎠

(82)
c

=Gumbel
(
�

d,i| log �∗
d,i

, 1
)

(83)L =

D∑

d

N∑

i

⟨
log p

(
yd

(
xi

)
|̃fd(xi), �d,i

)⟩

q

(
f̃d(xi)

)
q

(
�d,i |̃fd(xi)

)

(84)−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
−

D�

i=d

N�

i=1

KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��
.

(85)

⟨
log p

(
yd

(
xi

)
|̃fd(xi), �d,i

)⟩

q

(
�d,i |̃fd(xi)

)

1101Machine Learning (2023) 112:1077–1106

1 3

where u = e
−�

d,i . We second consider the outside expectation. Because of

we take expression 91 and expression 90 to obtain

Calculating the KL divergence
∑D

i=d

∑N

i=1
KL

�
q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��
 term, we have

Then, the closed-form L is reorganized as,

(86)=
∑

c≠yd(xi)
�

+∞

−∞

q

(
�d,i |̃fd(xi)

)
logΦG

(
�d,i + f

yd(xi)
d

(
xi

)
− f c

d

(
xi

))
d�d,i

(87)= −
∑

c≠yd(xi)
�

+∞

−∞

e

(

−(�d,i−log �d,i)−e
−(�d,i−log �d,i)

)

(88)e
−

(

�d,i+f
yd(xi)
d (xi)−f c

d (xi)
)

d�d,i

(89)=
∑

c≠yd(xi)

�d,ie
f c
d (xi)−f

yd(xi)
d (xi)

(1 + �d,iu)e
−�d,iu

�
2

d,i

|||||||

+∞

0

(90)= −
1

�d,i

∑

c≠yi

ef c
d (xi)−f

yd(xi)
d (xi),

(91)q

(
f̃d(xi)

)
=

Cd∏

c=1

q
(
f c
d

(
xi

))
=

Cd∏

c=1

N

(
f c
d

(
xi

)
|�f c

d
(xi), �f c

d
(xi)

)
,

(92)

⟨
log p

(
yd

(
xi

)
|̃fd(xi), �d,i

)⟩

q

(
f̃d(xi)

)
q

(
�d,i |̃fd(xi)

)

(93)= −
1

�d,i
∫ e−f

yd(xi)
d (xi)q

(

f
yd(xi)
d

(

xi

)

)

df
yd(xi)
d

(

xi

)

(94)×
∑

c≠yd(xi)
� ef c

d (xi)q
(

f c
d

(

xi

))

df c
d

(

xi

)

(95)

= −
1

�d,i

exp

(

�
f

yd(xi)
d

(xi)

2
− �

f
yd(xi)
d

(xi)

)

∑

c≠yd(xi)

exp

(

�f c
d
(xi)

2
+ �f c

d
(xi)

)

(96)
D�

i=d

N�

i=1

KL
�

q

�
�d,i �̃fd(xi)

�
‖p

�
�d,i

��
=

D�

i=d

N�

i=1

�
log �d,i +

1

�d,i

− 1

�
.

1102 Machine Learning (2023) 112:1077–1106

1 3

where Pd,i = exp

�

�
f
yd(xi)
d

(xi)

2
− �

f
yd(xi)
d

(xi)

�

∑

c≠yd(xi)
exp

�

�f c
d
(xi)

2
+ �f c

d
(xi)

�

 . To get a tight

bound, we derivative L with respect to �
d,i

,

We thus obtain the optimal value �∗
d,i

= P
d,i + 1. After substitution of �

d,i
 by �∗

d,i
 , there is

Appendix B Omniglot data

Table 2 shows the number of data points and classes for each alphabet in the Omniglot data
set. The columns of Background set and Evaluation set have shown 30 and 20 alphabets
separately.

L =

D�

d=1

N�

i=1

�
−

1

�d,i

Pd,i − log �d,i −
1

�d,i

+ 1

�
−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��
,

(97)
�L

��
d,i

=

D
∑

d=1

N
∑

i=1

1

�
2

d,i

(

P
d,i + 1

)

−
1

�
d,i

= 0

(98)L = −

D�

d=1

N�

i=1

log
�
Pd,i + 1

�
−

Q�

q=1

KL
�
q
�
uq

�
‖p

�
uq

��

1103Machine Learning (2023) 112:1077–1106

1 3

Appendix C Parameters setting

Tables 3 and 4 show the parameters setting in non-image data set and Omniglot data set
respectively.

Table 2 Omniglot Data

Omniglot-evaluation N
data

classes Omniglot-background N
data

classes

Angelic 400 20 Alphabet-of-the-Magi 400 20

Atemayar-Qelisayer 520 26 Anglo-Saxon-Futhorc 580 29

Atlantean 520 26 Arcadian 520 26

Aurek-Besh 520 26 Armenian 820 41

Avesta 520 26 Asomtavruli-(Georgian) 800 40

Ge-ez 520 26 Balinese 480 24

Glagolitic 900 45 Bengali 920 46

Gurmukhi 900 45 Blackfoot (Canadian-
 Aboriginal-Syllabics)

280 14

Kannada 820 41 Braille 520 26

Keble 520 26 Burmese-(Myanmar) 680 34

Malayalam 940 47 Cyrillic 660 33

Manipuri 800 40 Early-Aramaic 440 22

Mongolian 600 30 Futurama 520 26

 Old-Church-Slavonic
 (Cyrillic)

900 45 Grantha 860 43

Oriya 920 46 Greek 480 24

Sylheti 560 28 Gujarati 960 48

Syriac-(Serto) 460 23 Hebrew 440 22

Tengwar 500 25 Inuktitut-(Canadian-
 Aboriginal-Syllabics)

320 16

Tibetan 840 42 Japanese-(hiragana) 1040 52

ULOG 520 26 Japanese-(katakana) 940 47

Korean 800 40

Latin 520 26

Malay-(Jawi-Arabic) 800 40

Mkhedruli-(Georgian) 820 41

N-Ko 660 33

 Ojibwe-(Canadian-
 Aboriginal-Syllabics)

280 14

Sanskrit 840 42

Syriac-(Estrangelo) 460 23

Tagalog 340 17

Tifinagh 1100 55

1104 Machine Learning (2023) 112:1077–1106

1 3

Acknowledgements Chunchao Ma would like to thank Chao Han, Yan Ge, Shuo Zhou and Lawrence
Schobs for their feedback on the initial draft of the manuscript. Chunchao Ma also would like to thank
Senee Kitimoon for his help in refactoring the code in GPflow.

Author Contributions (Please see submission guidelines for the format) Chunchao Ma was in charge of
writing the code, performing the experimental evaluations and writing the first draft of the manuscript.

Table 3 Setting and parameters
of different GP models in
non-image data sets. All the
models for all data sets use 100
inducing variables and 200
mini-batch sizes. “# of Folds”
indicates the number of folds for
cross-validation. “Q” refers to
the optimal number Q of latent
functions U

Data set Model Q # of Folds

S-20 MOGPs-AR [5, 10, 15, 20] 5

S-20 MG-M [5, 10, 15, 20] 5

Balance MOGPs-AR (1) [1, 2, 3] 5

Balance MG-M [1, 2, 3] 5

Balance G-A None 5

Balance G-M None 5

CANE MOGPs-AR (5) [6, 9] 5

CANE MG-M [6, 9] 5

CANE G-A None 5

CANE G-M None 5

Mediamill MOGPs-AR (5) [10, 15, 20] 5

Mediamill MG-M [10, 15, 20] 5

Mediamill G-A None 5

Mediamill G-M None 5

Bibtex MOGPs-AR (20) [5, 10, 15, 20] 3

Bibtex G-A None 3

Bibtex G-M None 3

UJIIndoorLoc MOGPs-AR (2) [4, 8, 12] 3

UJIIndoorLoc G-A None 3

UJIIndoorLoc G-M None 3

Table 4 Setting and parameters of different GP models in Omniglot. There are three cross-validation for
all models and the optimal number Q ∈ [10, 15, 20] of latent functions U for MOGPs-AR. “M” indicates
the number of inducing variables or inducing patches; “B” refers to the size of mini-batch. “Con-K” means
convolutional kernel

Data set Model Kernel patch-size M B

Ojibwe & Blackfoot MOGP-AR (1) Con-K 3 * 3 100 50/70/90

Ojibwe & Blackfoot G-A Con-K 3 * 3 100 50/70/90

Ojibwe & Blackfoot G-M Con-K 3 * 3 100 50/70/90

Ojibwe & Blackfoot MOGP-AR (1) RBF-ARD None 40 50/70/90

Ojibwe & Blackfoot G-A RBF-ARD None 40 50/70/90

Ojibwe & Blackfoot G-M RBF-ARD None 40 50/70/90

All alphabets MOGP-AR (1) Con-K 8 * 8 200 9

Background alphabets MOGP-AR (1) Con-K 8 * 8 200 9

Evaluation alphabets MOGP-AR (1) Con-K 8 * 8 200 9

1105Machine Learning (2023) 112:1077–1106

1 3

Mauricio Álvarez supervised the development of the research and provided feedback at all the stages of the
process including editing the final manuscript. Chunchao Ma and Mauricio Álvarez contributed equally to
the conception of the main research ideas developed in the manuscript.

Funding Mauricio A. Álvarez has been financed by the EPSRC Research Projects EP/R034303/1, EP/
T00343X/2, EP/V029045/1, and the Wellcome Trust project 217068/Z/19/Z.

Data availability Our code is publicly available in the repository https:// github. com/ Chunc haoPe ter/
MOGPs- AR. All real data sets are available online at https:// github. com/ Chunc haoPe ter/ MOGPs- AR/ tree/
main/ Data_ set. The code of the synthetic data set (S-20) is available online at https:// github. com/ Chunc
haoPe ter/ MOGPs- AR/ blob/ main/ Exper iment_ demo/ Single- output- multi- class- class ifica tions/S- 20dat aset/
MOGP- S20. py.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval and Consent to participate The authors declare that this research did not require Ethics
approval or Consent to participate since it does not concern human participants or human or animal datasets.

Consent for publication The authors of this manuscript consent to its publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alvarez, M.A. (2011). Convolved Gaussian process priors for multivariate regression with applications
to dynamical systems. In PhD thesis, The University of Manchester (United Kingdom).

Álvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued functions: A
review. Foundations and Trends in Machine Learning, 4(3), 195–266.

Blomqvist, K., Kaski, S., & Heinonen, M. (2019). Deep convolutional gaussian processes. Joint euro-

pean conference on machine learning and knowledge discovery in databases (pp. 582–597). Cham:
Springer.

Bonilla, E. V., Chai, K. M., & Williams, C. (2008). Multi-task Gaussian process prediction. Advances in

neural information processing systems (pp. 153–160). New York: PMLR.
Chai, K. M. A. (2012). Variational multinomial logit Gaussian process. The Journal of Machine Learning

Research, 13, 1745–1808.
Dahl, A., & Bonilla, E. V. (2019). Grouped Gaussian processes for solar power prediction. Machine Learn-

ing, 108(8–9), 1287–1306.
Dai, Z., Álvarez, M.A., & Lawrence, N.D (2017). Efficient modeling of latent information in supervised

learning using Gaussian processes. arXiv preprint arXiv: 1705. 09862
Dezfouli, A., & Bonilla, E. V. (2015). Scalable inference for Gaussian process models with black-box likeli-

hoods. Advances in Neural Information Processing Systems, 28, 1414–1422.
Dua, D., & Graff, C. (2017). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
Galy-Fajou, T., Wenzel, F., Donner, C., & Opper, M. (2020). Multi-class Gaussian process classification

made conjugate: Efficient inference via data augmentation. Uncertainty in artificial intelligence (pp.
755–765). New York: PMLR.

Girolami, M., & Rogers, S. (2006). Variational bayesian multinomial probit regression with gaussian pro-
cess priors. Neural Computation, 18(8), 1790–1817.

https://github.com/ChunchaoPeter/MOGPs-AR
https://github.com/ChunchaoPeter/MOGPs-AR
https://github.com/ChunchaoPeter/MOGPs-AR/tree/main/Data_set
https://github.com/ChunchaoPeter/MOGPs-AR/tree/main/Data_set
https://github.com/ChunchaoPeter/MOGPs-AR/blob/main/Experiment_demo/Single-output-multi-class-classifications/S-20dataset/MOGP-S20.py
https://github.com/ChunchaoPeter/MOGPs-AR/blob/main/Experiment_demo/Single-output-multi-class-classifications/S-20dataset/MOGP-S20.py
https://github.com/ChunchaoPeter/MOGPs-AR/blob/main/Experiment_demo/Single-output-multi-class-classifications/S-20dataset/MOGP-S20.py
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.09862
http://archive.ics.uci.edu/ml

1106 Machine Learning (2023) 112:1077–1106

1 3

Hensman, J., Fusi, N., & Lawrence, N.D. (2013). Gaussian processes for big data. arXiv preprint arXiv:
1309. 6835

Hernández-Lobato, D., Hernández-lobato, J., & Dupont, P. (2011). Robust multi-class Gaussian process
classification. Advances in Neural Information Processing Systems, 24, 280–288.

Katakis, I., Tsoumakas, G., & Vlahavas, I. (2008). Multilabel text classification for automated tag sugges-
tion. In Proceedings of the ECML/PKDD, (pp. 5). Citeseer.

Kim, H. C., & Ghahramani, Z. (2006). Bayesian Gaussian process classification with the EM-EP algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1948–1959.

Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.
6980

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Citeseer:
Technical report.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through proba-
bilistic program induction. Science, 350(6266), 1332–1338.

Lawrence, N., & Hyvärinen, A. (2005). Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of Machine Learning Research, 6(11), 1783–1816.

Liu, H., Ong, Y.S., Yu, Z., Cai, J., & Shen, X. (2019). Scalable Gaussian process classification with additive
noise for various likelihoods. arXiv preprint arXiv: 1909. 06541

Moreno-Muñoz, P., Artés, A., & Álvarez, M. (2018). Heterogeneous multi-output Gaussian process predic-
tion. Advances in neural information processing systems (pp. 6712–6721). New York: PMLR.

Nguyen, T. N. A., Bouzerdoum, A., & Phung, S. L. (2018). Stochastic variational hierarchical mixture of
sparse Gaussian processes for regression. Machine Learning, 107(12), 1947–1986.

Osborne, M.A., Roberts, S.J., Rogers, A., Ramchurn, S.D., & Jennings, N.R. (2008). Towards real-time
information processing of sensor network data using computationally efficient multi-output gaussian
processes. In 2008 International Conference on information processing in sensor networks (ipsn 2008),
(pp. 109–120). IEEE.

Panos, A., Dellaportas, P., & Titsias, M. (2021). Large scale multi-label learning using gaussian processes.
Machine Learning. https:// doi. org/ 10. 1007/ s10994- 021- 05952-5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

Ruiz, F.J., Titsias, M.K., Dieng, A.B., & Blei, D.M. (2018). Augment and reduce: Stochastic inference for
large categorical distributions. arXiv preprint arXiv: 1802. 04220

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). Meta-learning with memory-
augmented neural networks. In International conference on machine learning, (pp. 1842–1850).

Skolidis, G., & Sanguinetti, G. (2011). Bayesian multitask classification with Gaussian process priors. IEEE

Transactions on Neural Networks. https:// doi. org/ 10. 1109/ TNN. 2011. 21685 68.
Snoek, C.G., Worring, M., Van Gemert, J.C., Geusebroek, J.M., & Smeulders, A.W. (2006). The challenge

problem for automated detection of 101 semantic concepts in multimedia. In Proceedings of the 14th
ACM international conference on Multimedia, (pp. 421–430).

Torres-Sospedra, J., Montoliu R, Martínez-Usó A, Avariento JP, Arnau TJ, Benedito-Bordonau M, Huerta J
(2014) Ujiindoorloc: A new multi-building and multi-floor database for wlan fingerprint-based indoor
localization problems. In 2014 international conference on indoor positioning and indoor navigation
(IPIN), (pp. 261–270). IEEE.

Van der Wilk, M., Rasmussen, C. E., & Hensman, J. (2017). Convolutional Gaussian processes. Advances in

neural information processing systems (pp. 2849–2858). New York: PMLR.
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2). MA: MIT

press Cambridge.
Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. Artificial intelligence

and statistics (pp. 370–378). New York: PMLR.
Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2018). Scalable Gaussian process-based transfer surro-

gates for hyperparameter optimization. Machine Learning, 107(1), 43–78.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1309.6835
http://arxiv.org/abs/1309.6835
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1909.06541
https://doi.org/10.1007/s10994-021-05952-5
http://arxiv.org/abs/1802.04220
https://doi.org/10.1109/TNN.2011.2168568

	Large scale multi-output multi-class classification using Gaussian processes
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Combining with convolutional kernel
	3.2 Augmenting model by noise data
	3.3 Scalable variational inference
	3.3.1 Inducing patches for MOGPs-AR
	3.3.2 Reducing computational complexity by subsampling

	3.4 Prediction

	4 Experiments
	4.1 Synthetic data
	4.2 Single-output GP classification: four real data sets
	4.3 Multi-output GPs classifications: UJIIndoorLoc
	4.4 Multi-output GPs classifications: Omniglot-dataset
	4.4.1 Ojibwe and blackfoot alphabets
	4.4.2 All alphabets

	5 Conclusion
	Appendix A Complete derivation of the lower bound
	Appendix B Omniglot data
	Appendix C Parameters setting
	Acknowledgements
	References

