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Most of today’s software users interact with the software through a graphical

user interface (GUI), which is a representative of the broader class of event-driven

software (EDS). As the correctness of the GUI is necessary to ensure the correctness

of the overall software, its quality assurance (QA) is becoming increasingly impor-

tant. During software testing, an important QA technique, test cases are created

and executed on the software. For GUIs, test cases are modeled as sequences of

user input events. Because each possible sequence of user events may potentially

be a test case and because today’s GUIs offer enormous flexibility to end users,

in principle, GUI testing requires a prohibitively large number of test cases. Any

practical test case generation technique must sample the vast GUI input space. Ex-

isting techniques are either extremely resource intensive or do not adequately model

complex GUI behaviors, thereby limiting fault detection.

This research develops new models, algorithms, and metrics for automated

GUI test case generation. A novel aspect of this work is its use of software run-

time information collected as feedback during GUI test case execution, and used



to generate additional test cases that model complex GUI behaviors. One set of

empirical studies show that the feedback-directed technique significantly improves

upon existing techniques and helps to identify serious problems in fielded GUIs.

Another set of studies conducted on in-house software applications show that the

test suites generated by the new technique outperform their coverage equivalent

counterparts in terms of fault detection.

Although the focus of this work is on the GUI domain, the techniques de-

veloped are general and are applicable to the broader class of EDS. In fact, this

work has already had an impact on research and practice of testing other EDS. In

particular, the work has been extended by other researchers to test web applications.
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Chapter 1

Introduction

1.1 Motivation

As computers and embedded devices play an increasingly important role aid-

ing end users, researchers, and businesses in today’s inter-networked world, several

classes of event-driven software (EDS) applications are becoming ubiquitous. Com-

mon examples include graphical user interfaces (GUIs), web applications, network

protocols, embedded software, software components, and device drivers [35]. An

EDS takes internal/external events (e.g., commands, messages) as input (e.g., from

users, other applications), changes its state, and sometimes outputs an event se-

quence [39]. An EDS is typically implemented as a collection of event handlers

designed to respond to individual events. Nowadays, EDS is gaining popularity be-

cause of the advantages this “event-handler architecture” offers to both developers

and users. From the developer’s point of view, the event handlers may be created

and maintained fairly independently; hence, complex system may be built using

these loosely coupled pieces of code. In interconnected/distributed systems, event

handlers may also be distributed, migrated, and updated independently. From the

user’s point of view, EDS offers many degrees of usage freedom. For example, in

GUIs, users may choose to perform a given task by inputing GUI events (mouse

clicks, selections, typing in text-fields) in many different ways in terms of their type,
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number and execution order.

Quality assurance (QA) is becoming increasingly important for EDS as its

correctness may affect the quality of the entire system in which the EDS operates.

Software testing is a popular QA technique employed during software development

and deployment to help improve its quality. During software testing, test cases

are created and executed on the software. One way to test an EDS is to execute

each event individually and observe its outcome, thereby testing each event handler

in isolation. However, the execution outcome of an event handler may depend on

its internal state, the state of other entities (objects, event handlers) and/or the

external environment. Its execution may lead to a change in its own state or that

of other entities. Moreover, the outcome of an event’s execution may vary based

on the sequence of preceding events seen thus far. Consequently, in EDS testing,

each event needs to be tested in different states. EDS testing therefore involves

generating and executing sequences of events.

The event-driven nature of EDS creates several challenges for testing. One

important challenge stems from the enormous space of possible event interactions

with the EDS. Because each possible event sequence may potentially be a test case,

EDS testing, in principle, may require a prohibitively large number of test cases.

Practical EDS testing techniques attempt to sample the vast input space of all pos-

sible sequences with the goal of detecting faults; for effective testing, it is important

to sample this space carefully.

This research develops new models, algorithms, and metrics for automated

EDS test case generation. To provide focus, this research studies one sub-class of
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EDS, i.e., GUIs, which have became very popular as more and more software uses

them as front-ends. Specifically, the GUIs that are studied in this research react

to discrete events performed only by a single user and the events are deterministic,

i.e., their outcomes are completely predictable.

The remainder of this chapter introduces GUIs, GUI testing, existing GUI

testing techniques, and presents an overview of the models, test case generation

techniques, and processes developed in this research.

1.2 What is a GUI?

A GUI is a front-end to underlying “business logic.” It allows an end user to

perform complex tasks via familiar visual cues by executing events on GUI widgets.

Typical examples of widgets include checkboxes, buttons, and text-fields with asso-

ciated events: uncheck-checkbox, click-on-button and type-in-text-field. The GUI

responds to the events by invoking corresponding event handlers, performing com-

putation in the underlying code and presenting returned results, e.g., by changing

the appearance of some GUI widgets. In today’s typical software applications, GUI

code makes up 45-60% of overall application code [37].

As outlined above, the GUI provides a user-friendly middle layer between

a software user and the underlying system, and it manages communication back

and forth from each side. Because the GUI is often the only communication channel

between a user and the underlying system, incorrect execution of the GUI may affect

the execution of the underlying code. For example, data values passed incorrectly
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from the GUI to the underlying software may lead to failures.

1.3 Significance of GUI Testing

Due to the increasing popularity of the object-oriented programming paradigm,

code for GUI event handlers and underlying business logic code is usually imple-

mented in different packages, modules and classes; third-party event handlers (from

libraries and/or open-source) are often incorporated into the code. Much of this

code is integrated together at the GUI level. In fact, most of the modules interact

with each other only through the GUI, as can be demonstrated via an example from

a fielded GUI application called FreeMind (used later in Chapter 4) presented in

Figure 1.1. The top half of this figure shows part of the GUI layer and the bottom

half shows some of the code. Two windows and partial code are shown. The left

window is the main window, where the event e1 represents clicking the menu item

New to create a new “mind map.” The event handler for e1 is NewMapAction; prefer-

ences (e.g., font size) of the new mind map are obtained from a Properties object

initialized from a file at application startup. The right-side window, invoked using

event e2, is the Preferences window, in which a user may set some fields of the

Properties object and save them for future use using e3. The handlers for these

events are implemented in the OptionPanel class; the method buildPanel handles

e2 and the method saveButtonClicked handles e3. It is important to note that the

NewMapAction and OptionPanel classes interact with one another only via the GUI

when a user performs e2 followed by e3 and then e1; no other interaction is evident
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FreeMind

Main Window

Preferences

Window

e1 e2

e3

public void NewMapAction(

   Controller c, Properties p){

  …

  int fontSize = Integer.parseInt(

     p.getProperty(

     “defaultfontsize”));

  …

}

fontSize : int …

Class: NewMapAction

setProperty()

Class: OptionPanel

names : Array

p : Properties

…

  public void buildPanel()

 {  …

    for(int i=0; i<names.length; i++){

      f=new StringProperty(names[i]));

      controls[i]=f;

    }

   …

  }

  public Properties saveButtonClicked()

 { …

    for(int i=0; i<names.length; i++){

      p.setProperty(names[i],

         controls[i].getValue());

    }

    return p;

  }

  …

getProperty()

public String getProperty(String key)

{…}

public Object setProperty(String key,

String value)

{…}

Class: Properties

buckets : HashMapNode[]

(A) (B)

e1: Click New Menu Item
e2: Click Preference Menu Item

e3: Click Save Button

New

Save

Preferences

Figure 1.1: Event Handlers Interact through GUI
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at the code level.

Conventional testing of this FreeMind code may be done in two ways. The first

is unit testing, in which each class/method is tested individually. Unit testing by its

very nature is unable to test interactions between the classes. Any interactions are

typically masked by using mock stubs during unit testing. The second, integration

testing, tests multiple classes/methods together. During integration testing, a tester

manually identifies sets of classes and methods that need to be tested together, e.g.,

if they share a variable/object or invoke one another. However, it is difficult, in

general, to determine which classes to test together. The class interactions may be

indirect and there may be no obvious sharing of objects; the use of multi-language

implementation, callbacks for event handlers, virtual function calls, and reflection in

GUIs also makes it difficult to identify good candidates for integration testing. For

example, the interactions between the classes in Figure 1.1 cannot be determined

by simply examining the code.

Testing GUI-based software at the GUI level, in terms of sequences of events,

has the advantage of exposing the software’s work-flows, i.e., as allowable sequences

of events that may be executed on the software. In the example of Figure 1.1, the

following fault was detected by GUI testing: a user opens the Preferences win-

dow by performing e2, incorrectly inputs a text string (instead of an integer) in the

Default Font Size text-field and saves the preference value in the Properties

object by executing e3. Later, the user tries to create a new mind map and per-

forms e1. While obtaining the current mind map preference setting, the handler

for e1 incorrectly assumes that the value for the Default Font Size property is
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an integer; invocation of the Integer.parseInt method on the non-integer value

causes a failure. This example illustrates that while event handlers for GUIs are

implemented as a collection of objects with no apparent interactions at the code

level, the GUI layer helps to expose these interactions; hence GUI testing may be

viewed as integration testing of this code.

1.4 The GUI Input Space Explosion Problem

This research focuses on a type of GUI testing that advocates generating event

sequences and executing them as test cases on the GUI. The execution of a test case

< e1; e2; · · · ; en > may be visualized as starting in a GUI run-time state S0, and

transitioning through S1, S2, · · ·, Sn where Si is the GUI state obtained after the

execution of event ei.
1 An instance of this visualization is shown in Figure 1.2. The

circles represent GUI run-time states and directed edges represent event execution.

The number next to each node indicates the number of events that may be performed

in that state. The GUI starts in state S0; a number of events (in fact 77 for the

FreeMind application) may be performed in S0 on the GUI, each resulting in a

(potentially) new state. Subsequent events performed in any of these states will

drive the GUI into new states or return to one of the existing states. In general,

because states may be repeated, the tree structure shown in Figure 1.2 may be a

directed graph. As the numbers next to each node indicate, the branching factor for

GUI states is enormous, leading to a very large state space. This growth is typical

1The term “GUI state” will later (Chapter 3) be defined in terms of the GUI’s constituent

widgets.
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S0

S0S0S5683

S5741

S2 S201

S133

S76

S77

S1
File

About

Paste

icons

Open

Help

Copy

Insert

OK

Cut

Flag

Cancel

77

17

1

77

81

77

11389

90

Figure 1.2: Example of Events and States in GUI Testing

for non-trivial GUIs; the number of event sequences grows exponentially with length.

Each existing GUI testing technique attempts to expose failures (i.e., erro-

neous run-time states) given limited testing resources. In terms of Figure 1.2, each

technique attempts to traverse, via sequences of events, states of the GUI. The next

section presents an overview of some popular techniques used for GUI testing.

1.5 Existing GUI Testing Techniques

Several GUI testing techniques have been proposed by researchers; some have

been implemented as tools and adopted by practitioners. All these techniques auto-

mate some aspects of GUI testing as shown in Table 1.1, including model creation

(for those based on model-based testing), test case generation, test oracle2 gen-

2A test oracle is used to determine whether or not a software executed correctly for a test case.
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eration, test execution, and regression testing (rerunning selective test cases after

software modifications). Although the nature and type of test cases may vary across

techniques, all of them explore the GUI’s state space via sequences of GUI events,

attempting to expose faults.

Technique
Model Test Case Test Oracle Test Regression

Creation Generation Generation Execution Testing

Unit Testing N/A
√

Capture/Replay Tools N/A
√

FSM model
√ √

AI planning
√

Genetic Algorithm
√

Graph Model
√ √ √ √ √

Table 1.1: Automation (marked with
√

) in Existing GUI Testing Techniques

Unit Testing: Unit testing tools such as JFCUnit, Abbot, Pounder and Jemmy

Module [1] are used to manually create unit test cases for GUIs. A unit test case

consists of method calls to an instance of the class under test. Assertions are inserted

in the test cases to determine whether the classes/methods executed correctly. The

test cases are automatically executed on the GUI under test. Assertion violations

are reported as failures. The parts of the GUI state space explored depends largely

on the nature of the test cases.

Capture/replay Tools: Because manual coding of test cases can be tedious, a

popular alternative “captures” sequences of events that testers perform manually

on the GUI. Hence this technique treats a test case as a sequence of input events.

These test cases can be “replayed” automatically on the GUI [24]. Tools used for

this “capture” and “replay” are called capture/replay tools. As was the case with

unit testing, the test case creation is manual (in terms of the event sequence) and
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the tools facilitate only the execution of test cases. The “goodness” of the test cases

depends on the tester’s ability to obtain fault-exposing sequences.

FSM Models: Model-based techniques have been used to automate GUI test case

generation and (sometimes) test oracle creation. Several are based on finite state

machine (FSM) models [49, 52]. With these models, GUI test cases may be auto-

matically generated to cover the defined states. However, because these models are

manually created by the tester, they end up being too small and thus too simplis-

tic to model complex GUI behaviors. Therefore, the fault-detection effectiveness of

generated test cases from these models is also limited.

AI Planning: Another technique, based on AI planning, models the infinite state

space of a GUI and hence does not suffer from the “simplistic” model of states

[38]. A description of the GUI is manually created by a tester; this description is

in the form of planning operators, which model the preconditions and effects (post-

conditions) of each GUI event. Test cases are automatically generated from tasks

(pairs of initial and goal states) by invoking a planner, which searches for a path

from the initial state to the goal state. However, the quality of the test cases is

determined by the choice of tasks. Moreover, the manual operator definition and

task selection may be expensive for large GUIs.

Genetic Algorithm: Another search technique, based on genetic algorithms, has

been used for GUI testing [28]. The main focus of the work is to automatically

generate test cases that mimic novice users. The approach requires that a tester

first generate an initial event sequence manually; then genetic algorithms are used

to generate “similar” sequences resembling the way a novice user would use the
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application. A manually defined fitness function directs test case generation.

Graph Models: Techniques based on graph models of the GUI’s structure have

recently been developed with the goal of minimizing manual work for testing. These

techniques leverage a standard reverse engineering technique [36] to semi-automatically

create the structural graph model. The most successful graph models that have been

used for GUI test case generation include Event Flow Graphs (EFG) [34, 37] and

Event Interaction Graphs (EIG) [40]. The nodes in these graphs represent GUI

events; the edges represent different types of structural relationships between pairs

of events. These structural relationships are based on the physical structure of the

GUIs; short test cases are automatically generated, each covering an edge in the

graph.

Summary: In summary, the most promising automated GUI testing technique

developed thus far is based on the structural graph model of the GUI. However, it

suffers from three major weaknesses. First, because it is restricted in its encoding of

the GUI structure, it represents all possible executable paths in the GUI; generating

and executing long test cases, i.e., in terms of number of events, is impractical due to

exponential growth. Second, because the graph models are not always accurate, they

yield many unexecutable sequences. Finally, it uses a simplistic bounded depth-first

traversal algorithm to generate 2-way covering test cases – all possible sequences of

length two, i.e., testing only 2-way interaction between GUI event pairs. Using this

algorithm for longer test cases, i.e., testing multi-way interaction, is impractical.

These weaknesses have resulted in limited application and adoption of the existing
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techniques.

1.6 Feedback-Directed GUI Test Case Generation

Each of these weaknesses is addressed in this research to develop new models,

algorithms, and metrics, and combined into a new technique for automated GUI test

case generation. The novel features of this technique are that it utilizes software

run-time information as feedback to annotate important interactions between GUI

events and helps to target testing to only these interacting event sets, improves

the accuracy of the GUI’s structural model, and explores the use of combinatorial

techniques to generate test cases.

The technique is fully automatic. As the scale and complexity of modern

software increases, testers are less willing to spend time creating and maintaining

models; they are more likely to adopt a turn-key solution. The technique does

not require source code analysis. Most of today’s GUIs are created using widgets

from libraries or third-party components; source code for these components is rarely

available. Dependency on source code will severely limit the applicability of the

technique. The technique is based on GUI models that are able to abstract man-

ageable important parts of the input space so as to be able to generate long event

sequences. For example, as discussed earlier in Section 1.5, the GUI structure alone

is not sufficient. The technique is able to better address the GUI space space explo-

sion problem and better sample the input space.

As mentioned earlier, the new technique is based on feedback from the execu-
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tion of available test cases. The key motivation behind this idea is that run-time

behavior of events helps to automatically determine whether an event influences an-

other’s execution; these interacting events are good candidates for testing together

in longer sequences. For example, the interacting events Cut, Copy, Paste and Select

All should be carefully tested together rather than with other non-interacting events

such as Open User Manual. The feedback (run-time information) is in the form of

the set of run-time widget properties.

This research uses the feedback in two ways. First, it identifies event semantic

interaction (ESI) relations between pairs of GUI events (i.e., one event influences

another) and augments the EIG model by annotating it with these relationships.

The annotated model is called the Event Semantic Interaction Graph (ESIG). Nodes

in the ESIG represent GUI events involved in an ESI relationship and edges rep-

resent the corresponding ESI relationships. A graph-traversal algorithm is used to

generate multi-way test cases from the ESIG model. These test cases test multi-way

interactions among GUI events that are ESI related.

The second approach developed to use the ESI relationships is to alternate

GUI test case generation and execution. This approach is called ALT. In ALT,

GUI test cases are generated in batches, by leveraging GUI run-time information

from a previously run batch and obtaining new ESI relationships between events

sequences and events to obtain the next batch. Each successive batch consists

of “longer” test cases that expand the state space to be explored, yet prune the

“unimportant” states. The “alternating” nature of ALT also allows it to enhance the

next batch by leveraging certain relationships (e.g., one enables the other) between
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Figure 1.3: Overview of the Test Case Generation Process

GUI events that are revealed only at run-time and non-trivial to infer statically.

This “anytime technique” continues iteratively, generating and executing additional

test cases until resources are exhausted or testing goals have been met. The newly

generated test cases are stronger than 2-way; generating these multi-way test cases

is feasible because the underlying model is much smaller (in terms of event sequence)

compared to the EIG model.

The new test case generation technique is summarized as a high-level process

in Figure 1.3. The ovals in the figure represent activities, rectangles represent the

resulting outputs from the activities which in turn are inputs for subsequent ones,

and arrows show the direction of the work/data flow. As discussed earlier, the

central feature of this process is the execution feedback (in the form of GUI run-time

information) collection and analysis (loop). The process starts (in the Initialization

phase) by generating and executing a seed suite on the GUI application under test;
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the test cases in this suite are generated by using the existing structural GUI graph

model. During the execution, GUI run-time information is recorded corresponding

to each GUI event in each test case. This information is analyzed (in the Feedback

Analysis phase) to determine the semantic interaction relationships between GUI

events. The structural model, augmented with these relationships (in the Enriching

Input Space phase) is used to selectively generate additional test cases that target

only those new relationships and test multi-way GUI event interaction. The newly

generated test cases are executed on the GUI (in the Enriching State Space

phase) to collect additional run-time information, search for new ESI relationships

and refine the model and obtain more test cases. This process continues to loop,

generating new test cases that exercise newly discovered ESI relationships, until no

new relationships are obtained, no more test cases are generated, testing goals have

been met, or resources are exhausted.

Several studies of this new feedback-directed model-based test case generation

technique have been conducted on two sets of GUI-based open-source software.

The results demonstrate that the technique is able to significantly improve existing

techniques and help identify/report serious problems in the open-source applications.

When reported, these problems were fixed by the developers of the applications

in subsequent versions. Finally, a new combinatorial interaction-based test case

generation algorithm has also been explored.
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1.7 Structure of the Dissertation

The next chapter presents an overview of the existing GUI testing techniques.

The basic concepts of feedback, ESI relationships and their identification are de-

scribed in Chapter 3. Chapter 4 presents and evaluates the ESIG-based test case

generation approach. Chapter 5 presents the ALT approach. A preliminary explo-

ration of combinatorial techniques for GUI test case generation is given in Chapter 6.

Finally, Chapter 7 concludes with a discussion of broader impacts of the new tech-

nique.
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Chapter 2

Background and Related Work

This is the first work that utilizes run-time information as feedback for model-

based GUI test case generation. However, run-time information has previously been

employed for various aspects of test automation, and model-based testing has been

applied to conventional software as well as EDS. This chapter presents an overview

of related research in the areas of model-based and EDS testing, GUI test case

generation, and the use of execution feedback for test generation.

2.1 Model-Based Testing

Model-Based testing automates some aspect of software testing by employing a

model of the software. The model is an abstraction of the software’s behavior from a

particular perspective (e.g., software states, configuration, values of variables, etc.);

it may be at different levels of abstraction, such as abstract states, GUI states, in-

ternal variable states, or path predicates. Models may be derived from a formal

specification of the software or reverse engineered by observing the software’s exe-

cution behavior. They may be described using various languages and mathematical

objects.

State Machine Models: The most popular models that have been used in

software testing are state machine models. They model the software’s behavior in
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terms of its abstract or concrete states; they are typically represented using state-

transition diagrams. Several types of state machine models have been used for

software testing, such as Finite State Machine Models (FSM) [4, 19, 25, 3], UML

Diagram-based Models [33] and Markov Chains [27, 54].

For example, Microsoft researchers [4] modeled the control flow of an object-

oriented software under test as an FSM and described it using the Abstract State Ma-

chine Language (AsmL research.microsoft.com/fse/asml). A traversal engine

(part of Spec Explorer, a tool for advanced model-based specification and confor-

mance testing), used the resulting finite state machine to produce behavioral tests to

cover all explored transitions. Hong et al. also used FSMs for unit testing of classes

in object-oriented programs; they used FSMs to model interactions between class

data members and member functions [25]. The FSMs, called class state machines

(CSM), were then transformed into class flow graphs (CFG); test case generation

was done by selecting test cases according to the locations of definitions and uses

of variables in the CFG. In other reported research, Farchi et al. used FSM models

to test implementations of the POSIX standard and Java exception handling [19].

Both state machine models were created from the software specifications and rep-

resented using the GOTCHA Definition Language (GDL). The GOTCHA-TCBean

test generator was then used to automatically explore the state space from the model

and generate an abstract test suite.

Various extensions of FSMs have also been used for testing. These extensions

use variables to represent context in addition to states; the goal is to limit the total

number of states by using an orthogonal mechanism, in the form of explicit variables,
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to select state transitions. For example, an extended finite state machine (EFSM)

is used by a tool called TestMaster [3] to generate test cases by traversing all paths

from the start state to the exit state.

Because test cases for EDS are sequences of events, most practitioners and re-

searchers have found it natural to use state machine models for testing EDS systems

[12, 29, 32, 42]. The EDS is modeled in terms of states; events form the transitions

between states. Algorithms traverse these machine models to generate sequences

of events. For example, Campbell et al. have applied state machine models to test

object-oriented reactive systems [12]. Object states were modeled in terms of in-

stance variable values. Transitions were obtained from method invocations. Test

cases were sequences of method calls and were generated by traversing the model.

Table-based Models: Table-based models define software behavior in the form

of tables relating model elements such as system modes, conditions, events, and

terms. These tables are then used as the basis for test case generation. The table-

based modeling approach SCR, which is an abbreviation of software cost reduction,

has been used for security functional testing [6] and Mars Polar Lander software to

identify faults [7].

Grammars: Production grammars have been used to test large, complex and

safety-critical software systems; a popular example is the Java Virtual Machine [50].

These grammars are collections of non-terminal to terminal mappings that resemble

regular parsing grammars. A production grammar produces a program (i.e., a set

of terminals, or tokens) starting from a high-level description (i.e., a set of non-

terminals). The composition of the generated programs models the restrictions
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placed on the software by the production grammar.

Summary: The above model-based testing techniques rely heavily on the manual

or semi-manual construction of the abstract model. Consequently, they are prone to

errors. Moreover, any change to the software requires reconstruction of the model,

which is typically cumbersome and time consuming.

2.2 GUI Test Case Generation

Several techniques have been developed for GUI test case generation. All of

them use a model of the software and algorithms to generate test cases from the

model.

State-Based Techniques: Finite State Machines (FSM) have been used to model

GUIs [52, 5]. A GUI’s state is represented in terms of its windows and widgets; each

event triggers a transition in the FSM. A path in the FSM represents a test case.

Due to the large number of possible states and transitions in modern GUIs, FSMs

have scaling problems. Several attempts have been made to handle the scalability

issue. For example, Belli [5] used an algorithm to convert FSM into equivalent

regular expressions. The regular expressions were used to efficiently generate event

sequences. Shehady et al. [49] proposed variable finite state machine (VFSM), which

augmented a normal FSM with a number of global variables that can assume a finite

number of values during the execution of a test case sequence. The value of each

variable is used to determine the next state and output in response to an event.
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Each transition may modify values of these variables.

As mentioned in Section 1.5, AI planning has been used to manage the state-

space explosion by eliminating the need for explicit states. AI planning models

the infinite state space of a GUI and hence does not suffer from the “simplistic”

model of states [38]. A description of the GUI is manually created by a tester; this

description is in the form of planning operators, which model the preconditions and

effects (post-conditions) of each GUI event. Test cases are automatically generated

from tasks (pairs of initial and goal states) by invoking a planner which searches for

a path from the initial state to the goal state. However, the quality of the test cases

is determined by the choice of tasks. Moreover, the manual operator definition and

task selection may be expensive for large GUIs.

Genetic Algorithm: Test cases have been generated using genetic algorithms to

mimic novice users [28]. The approach uses an expert to generate an initial event

sequence manually and then uses genetic algorithm techniques to generate longer

sequences. The assumption is that experts take a direct path when solving a problem

via the GUI, whereas novice users take longer, indirect paths. Although useful for

generating multiple test cases, the technique relies on an expert to generate the

initial test case. The final test suite depends largely on the paths taken by the

expert user. The idea of using a task and generating an initial test case may be

better handled by using planning, because multiple test cases may be generated

automatically according to some predetermined coverage criterion.

Directed Graph Models: In order to reduce manual work, several new system-

atic techniques based on graph models of the GUI have recently been developed.
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The most successful graph models that have been used for GUI test case generation

include Event Flow Graphs (EFG) [37] and Event Interaction Graphs (EIG) [40].

The EFG model [37] was the first GUI model used to fully automate GUI test-

ing. It can be constructed semi-automatically using a reverse engineering technique

called GUI Ripping [36]. The GUI Ripper automatically traverse a GUI under test

and extracts the hierarchical structure of the GUI and events that may be performed

on the GUI. The result of this process is the EFG. An EFG is a directed graph in

which nodes represent GUI events and edges represent the follows relationship. An

edge from node nx to ny means that the event represented by ny may be performed

immediately after the event represented by node nx. Therefore, an EFG models

all possible event sequences that may be executed on a GUI. GUI test cases, i.e.,

sequences of events, correspond to paths in the EFG. A bounded depth-first graph

traversal algorithm was used to generate test cases from an EFG.

The EIG model was derived from the EFG to improve the overall test process

[40]. It was based on the observation that the code for certain types of events

(e.g., events that open pull-down menus) is straightforward and usually generated

automatically by visual GUI-building tools. This code does not interact with code

for other events; hence, one can expect that very few errors are revealed by executing

interactions between these events. In contrast to the EFG, the EIG contains only

certain types of events, and hence is more compact.

For both EFG and EIG, test cases are systematically generated to satisfy var-

ious types of adequacy criteria. One criterion (called the event-interaction criterion

[40]) requires each edge in an EIG to be covered by at least one test case; test cases
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(called smoke tests) are generated by picking the two events on each edge and using

a shortest-path algorithm to reach these events from the application’s main window.

Such techniques are automated and the algorithms always produce the same test

suites, making the results repeatable.

Summary: FSM model and genetic algorithm-based GUI testing suffer from the

problem of manual creation of the model, i.e., state machine and fitness function

respectively. The primary problem with the GUI graph models is that the number of

event sequences grows exponentially with length. Hence, the existing graph-model-

based GUI test case generation algorithms have only been able to generate test cases

that cover all edges in the graph models, i.e., they test 2-way interactions between

GUI events. Experiments have shown that some GUI faults can only be detected

by test cases with more complex event interactions [40].

2.3 Execution Feedback for Test Case Generation

Execution feedback refers to information obtained dynamically during software

execution. It has been used to guide automatic test case/test suite generation. This

is called dynamic test case generation and was originally proposed by Miller and

Spooner [43]. In their technique, software source code is instrumented to obtain

execution feedback. The overall test case generation process starts by executing on

an initial test case, which may be a test suite or a single test case. The execution

feedback is collected and analyzed. The results are used to evaluate the “closeness”
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of the previous execution to the desired outcome; the model used to generate test

cases is then modified accordingly and a new test case is generated. This loop stops

when the “closeness” evaluation is satisfied according to some criterion.

Various types of execution feedback, models, and algorithms have been used for

test case generation. For example, branch predicate evaluations along an execution

path has been used with a gradient descent approach [30, 21, 22] and a chaining

approach [20], condition-decision coverage has been used with genetic search [41],

and object states have been used with a hybrid approach [58].

Branch Predicate Evaluations: Branch predicate evaluation refers to the flow

of control during an execution. It has been used with the gradient descent approach

to compute an input, i.e., test case, that will execute a given path in the program [30,

21, 22]. It has also been used with the chaining approach to generate a test case that

covers a selected statement [20]. The branch predicate evaluations, which encode

control flow information, are collected during software execution on an initial test

case. The generation of the test case is modeled as an object function minimization

or optimization problem. The evaluation results are applied to gradually adjust

the current test case so that it gets closer and closer to the desired test case. One

disadvantage of these approaches is that they can get stuck in a local minima during

test case generation.

Object Properties: Xie and Notkin have developed a feedback-based framework

that uses object states to generate new test cases [58]. This framework integrates

two techniques: (1) specification-based test generation and (2) dynamic specification

inferences for test case generation. This integration provides value considerably
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beyond what the separate methods can provide alone.

Specification-based test generation is based on formal specifications, which ex-

press the desired behavior of a program. However, because formal specifications are

difficult to obtain, dynamic specification inference attempts to infer specifications,

in the form of operational abstractions, automatically from software execution. The

discovered operational abstractions consist of object properties that hold for all the

observed executions; these object properties are used to indicate the deficiency of

test cases.

The test case generation process starts from an existing test suite. Through

executions of these test cases, object states (values of variables and parameters,

and return values) are recorded at the entry and exit of method executions. Based

on the collected traces and a set of pre-defined axiom-pattern templates, equality

patterns are searched to create operational abstractions. By removing or relaxing

inferred preconditions on parameter values in the operational abstractions, both le-

gal and illegal test cases are generated. The newly generated test cases are executed.

Because they were generated by relaxing inferred preconditions, some of these test

cases may cause an uncaught runtime exception. The other, non-crashing test cases

are used to obtain new operational abstractions, which are again used to generate

additional test cases.

Method-call Sequences: Pacheco et al. [44] have improved random unit test

generation by incorporating feedback obtained from executing test inputs as they

are created. They build inputs incrementally by randomly selecting a method call

to apply and finding arguments from among previously-constructed inputs. The
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key idea of their work is that they build upon a legal sequence of method calls,

each of whose intermediate objects is sensible and none of whose methods throw

an exception indicating a problem. As soon as an input is built, it is executed and

checked against a set of contracts and filters. The result of the execution determines

whether the input is redundant, illegal, contract-violating, or useful for generating

more inputs. The technique outputs a test suite consisting of unit tests for the

classes under test. Passing tests can be used to ensure that code contracts are

preserved across program changes; failing tests (that violate one or more contract)

point to potential errors that should be corrected.

Similarly, Boyapati et al. employ a feedback-based technique to obtain all

non-isomorphic inputs (test cases) for a method [8]. A programmer develops (1)

a “guided test generation engine” that outputs test cases to explore the method’s

input space and (2) a predicate from the method’s preconditions to check the validity

of the generated input. This technique prunes a large portion of the input space by

monitoring the execution of the predicate on an initial test suite, guiding the engine

and yielding a suite of all non-isomorphic inputs.

Code Coverage Reports: All other techniques in this category instrument ele-

ments (lines, branches, etc.) of the program code, execute an initial test case/suite,

obtain a coverage report that contains the outcomes of conditional statements, and

use automated techniques to generate better test cases. The techniques differ in

their goals (e.g., cover a specific program path, satisfy condition-decision coverage,

cover a specific statement) and their test case generation algorithms. For example,

Miller et al. [43] use code coverage and decision outcomes to generate floating-point
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test data.

Genetic algorithms have also been used to automatically generate test suites

that satisfy the condition-decision adequacy criterion [41]. Condition-decision cri-

terion requires that each condition in the program be true for at least one test case

and false for at least one test case. A fitness function is defined for each branch. An

initial test suite is obtained and executed. The fitness functions are used to evaluate

the “goodness” of each test case. If a test case covers a new condition-decision, it

is considered to be “more fit.” The test cases in the gene pool evolve to obtain a

new generation of test cases. The process stops when a desired level of fitness is

obtained.

Summary: All the above execution feedback-based techniques have been used for

a specific type of test case, that is, numerical data values. The feedback (in the form

of branch predicate evaluations, condition-decision coverage, and object states) is

used to perturb these numerical values in order to improve overall coverage. These

techniques are not directly applicable to GUI testing because a GUI test case is a

sequence of events. There is no clear notion of perturbing the test case to improve

coverage.

Although the techniques discussed in this chapter are not directly applicable

to feedback-directed GUI test case generation, many of the underlying concepts

are used in this research. For example, execution feedback is used to generate

GUI test cases, the EIG model is used to generate the original seed suite, and

traversal techniques from model-based testing are used to cover nodes and edges in
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the annotated GUI model.
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Chapter 3

Event Semantic Interaction Relationship

The cornerstone of this research is the event semantic interaction (ESI) rela-

tionship that is obtained from feedback of test case execution. This chapter lays

the foundation for the ESI relationship by formally defining it. It first presents

preliminary GUI concepts needed to understand the ESI relationship.

3.1 GUI Preliminaries

In this research, a GUI is defined as a set W of widgets (e.g., buttons, text-

fields); each widget w ∈ W has a set Pw of properties (e.g., color, size, font). At

any time instant, each property p ∈ Pw has a unique value (e.g., red, bold, 16pt);

each value is evaluated using a function from the set of the widget’s properties to

the set of values Vp. With this GUI definition, the GUI’s run-time state is defined

as follows:

Definition: The GUI run-time state S at any time instant is a set of triples (w, p, v),

where w ∈ W, p ∈ Pw and v ∈ Vp. 2

Figure 3.1 shows the partial GUI run-time state of the main window of a

simple GUI application “Radio Button Demo.” The figure shows several widgets,

their properties and values. The set of properties for each widget may be different

as may the set of values for each property. A special set of GUI run-time states SI
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Widgets:{RadioButton1, TextField1, Button1, Panel, …}

Properties:{Content, Selected, Caption, Enabled,

         Visible, Color, Weight, Height, …}

State = {

(RadioButton1, Enabled, TRUE),

(RadioButton1, Selected, TRUE),

...

(Button1, Caption, “Create Shape”),

(Button1, Visible, TRUE),

(Button1, Enable, TRUE),

...

(TextField1, Content, EMPTY),

(TextField1, Weight, 0.55),

(TextField1, Height, 0.2),

…

(Panel1, Caption, “Rendered Shape”),

(Panel1, Color, “#cccccc”),

...

}

(a) (b)

w1

w3

w7

w5

w8

w2

w4

w6

Figure 3.1: (a) Radio Button Demo GUI, (b) its Partial State

is called the valid initial state set for a particular GUI if the GUI may be in any

state Si ∈ SI when it is first invoked.

The GUI run-time state is not static; events e1, e2, . . . , en performed on the

GUI change its run-time state and hence are modeled as functions that transform

one state of the GUI to another. The function notation Sj = ex(Si) denotes that Sj

is the state resulting from the execution of event ex in state Si. If state S0 ∈ SI is

the initial state of the GUI, then e1(S0) is the GUI run-time state after performing

e1, e2(S0) is the GUI run-time state after performing e2, and e2(e1(S0)) is the GUI

run-time state after performing the event sequence < e1; e2 >.

GUIs contain two types of windows: (1) modal windows1 (e.g., FileOpen,

Print) that, once invoked, monopolize the GUI interaction, restricting the focus

1Standard GUI terminology, e.g., see http://java.sun.com/products/jlf/ed2/book/HIG.Dialog

s.html.
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of the user to the range of events within the window until explicitly terminated

(e.g., using Ok, Cancel), and (2) modeless windows (e.g., Find/Replace) that do

not restrict the user’s focus. If, during an execution of the GUI, modal window Mx

is used to open another modal window My, then Mx is called the parent of My for

that execution.

A GUI contains several types of events. Termination events close modal win-

dows. Other structural events are used to open and close menus, modeless windows

and modal windows. The remaining events, called system-interaction events, do not

manipulate the structure of the GUI.

3.2 ESI Relationships

The main idea behind the event semantic interaction relationship is that events

influence one another’s execution. Because each event is executed using its corre-

sponding event handler, one could hypothesize that all events whose event handlers

interact in terms of code elements (e.g., share variables, exchange messages, share

data) should be tested together. For example, consider the event handlers for the

events e2 and e6 shown in Figure 3.2. The events corresponds to widget w2 and w6

in the “Radio Button Demo” GUI. As these event handlers interact via the variable

currentShape, the events e2 and e6 should be tested together. However, because

the handlers for e2 and e3 do not interact, these events need not be tested together.

A variety of static program-analysis techniques may be employed to iden-

tify such interactions [48]; they can certainly be used successfully in this example.
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e2:: click radio button Square

public void SquareAction (java.awt.event.ActionEvent evt) {
currentShape = SHAPE SQUARE;
if (created) {

imagePanel.setShape(currentShape);
imagePanel.repaint();

}
}

e3:: click radio button Color

public void ColorAction(java.awt.event.MouseEvent evt) {
colorText.setEditable(true);
currentColor = getColor();
if (created) {

imagePanel.setFillColor(currentColor);
imagePanel.repaint();

}
}

e6:: click button Create Shape

public void CreateAction(java.awt.event.ActionEvent evt) {
if (color.isSelected()) {

currentColor = getColor();
}
imagePanel.setFillColor(currentColor);
imagePanel.setShape(currentShape);
imagePanel.repaint();
created = true;

}

Figure 3.2: Example Event Handlers
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However, the limitations of static analysis in the presence of multi-language GUI

implementations, callbacks for event handlers, virtual function calls, reflection, and

multi-threading are well known [48]. Also, because most GUI applications employ a

large number of library elements (e.g., Java Swing), source code may not be available

for parts of the GUI.

This research avoids static analysis; instead it approximates the identification

of interactions between event handlers by analyzing feedback from the run-time state

of the GUI on an initial test suite. As discussed in Section 1.5, it is quite practical

to generate a test suite (containing short test cases) from the structural model;

this suite is a good candidate to use as a starting point to collect the feedback.

The remaining question is: what dynamic GUI run-time behavior constitutes event

interaction?

Informally, event ex interacts with event ey, if, when executed together in a

sequence < ex; ey >, they produce a GUI run-time state that is, in some sense,

different from the two states that would be obtained had ex and ey been executed in

isolation. Consider the example shown in Figure 3.3. The top-left shows the initial

state (S0) of the “Radio Button Demo” application. After an event e2 (event handler

shown in Figure 3.2) is executed, the GUI changes its state to the one shown in the

top-right (e2(S0)). In this state, the Square radio button is selected. Starting from

S0, one can execute another event (e6) and obtain the state shown in the bottom-

left (e6(S0)); a circle is created by clicking the Create Shape button. If, however,

the sequence < e2; e6 > is executed in S0, a new state (e6(e2(S0))), shown in the

bottom-right is obtained; a square has been created. This execution is equivalent to
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Figure 3.3: Execution of Events e2 and e6

the execution of event e6 in the state e2(S0). According to the intuition presented

in the beginning of this paragraph, because the sequence < e2; e6 > produces a GUI

state that is different from the two states that would be obtained had e2 and e6

been executed in isolation, event e2 interacts with event e6, and should be tested

together to check for interaction problems. The event handlers for e2 and e6 also

show this. They share the variables created and currentShape; e6 sets created

to TRUE and influences e2’s flow of control; e2 sets currentShape to a square, which

e6 uses as a parameter to setShape(); hence it’s not surprising that they interact.

As for e2 and e3, although they also share the variable created, they both only use

it without modifying the variable. If the method calls do not modify it as a side

effect, there is no information transition between the two events; they need not be

tested together.

The usage of “different from” above is somewhat misleading. It seems to

suggest that checking state non-equivalence would be sufficient to identify interact-
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ing events, i.e., by using a predicate P such as (e2(S0) 6= e6(e2(S0))) ∨ (e6(S0) 6=

e6(e2(S0))). However, this is not the case. Consider an example of two non-

interacting events, ex and ey, which toggle the states of two independent check-

box widgets 2x and 2y, respectively. Starting in a state S0 = {2x, 2y}, i.e.,

both boxes unchecked, each event would “check” its corresponding checkbox, i.e.,

ex(S0) = {2�x, 2y}, ey(S0) = {2x, 2�y}, and ey(ex(S0)) = {2�x, 2�y}. Even though

P would evaluate to TRUE for this example, events ex and ey are non-interacting

and need not be tested together. In order to avoid this confusion, the notion of

interacting events needs to be formalized.

3.3 Formalizing the ESI Relationships

It turns out that the example illustrated in Figure 3.3 is just one case of how

the GUI state may be used to pinpoint interactions between event handlers – there

are many more. This research provides a starting point by identifying a total of

twelve cases. They are presented because they were encountered numerous times in

previous work on GUI testing. These cases are not exhaustive and new cases may

be added, as needed, in the future. The twelve cases will describe (as evaluative

predicates) situations in which events e1 and e2 interact, i.e., the combined effect

of e1 and e2 is different from the effect of the individual events e1 and e2. In these

cases, if e1 and e2 are system-interaction events in modeless windows; this situation

will be called Context 1.

35



e
1

e
2

<e
1; e2 

>

W

WW

W

Figure 3.4: Case 1: e1: Check Fill with color; e2: Check Apply to all

Case 1: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, s.t.

2 ((v 6= v′) ∧ ((w, p, v) ∈ {S0 ∩ e1(S0) ∩

e2(S0)}) ∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at least one widget w with property

p with initial value v (hence the triple (w, p, v) is in S0), which is not affected by

the individual events e1 or e2 (the triple is also in e1(S0) and e2(S0)); however, it is

modified when the sequence < e1; e2 > is executed, i.e., the value of w’s property p

changes from v to v′.

Figure 3.4 gives an example of Case 1. This is a “GUI Demo” application with

several widgets. The Fill with color checkbox fills the currently selected shape

(highlighted with a deep grey border) with the chosen color determined by the radio

buttons White and Blue. Checkbox Fill with pattern determines whether to fill

the selected shape with a pattern. Checking Apply to all sets all shapes in the

right panel with the same color and pattern.

For the purpose of Case 1, e1 is Check Fill with color and e2 is Check

2Notation for “such that.”

36



e
1

e
2

<e
1; e2 

>

W

WW

W

Figure 3.5: Case 2: e1: Click radio button Blue; e2: Check Fill with color

Apply to all. The initial state has the rectangle widget selected and color is set to

white. The square widget (marked with W) is not modified by e1 or e2 individually;

however, the event sequence < e1; e2 > fills the square with the white color. Hence

Case 1 is applicable here and e1 is ESI related to e2 because e1 influences e2 and

their combination modifies the previously unmodified widget W.

Case 2: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, v

′′ ∈ Vp, s.t. ((v 6= v′) ∧ (v′ 6= v′′) ∧

((w, p, v) ∈ {S0 ∩ e1(S0)}) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p, v′′) ∈ e2(e1(S0)))); there

is at least one widget w with property p that has an initial value v, which is not

modified by the event e1; it is modified by e2; however, it is modified differently by

the sequence < e1; e2 >.

An example of Case 2 using the “GUI Demo” application is given in Figure 3.5,

where e1 now represents Click radio button Blue and e2 is Check Fill with color.

The initial state has the rectangle selected and color is set to white. Individually, in

this initial state, event e1 sets the current color to blue; event e2 fills the rectangle
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Figure 3.6: Case 3: e1: Click radio button Blue; e2: Check Fill with pattern

with the white color. However, executing < e1; e2 > now fills the rectangle with the

color blue. Case 2 applies here as e1 influences e2 execution; the widget (marked

with W) is not modified by e1; it is modified by e2; however, it is modified differently

by the sequence < e1; e2 >.

A variation of Case 2 is called Case 2.1, in which the roles of e1 and e2 are

exchanged with the combined sequence < e1; e2 > remaining the same.

Case 3: ∃w ∈ W, p ∈ Pw, v ∈ Vp, v
′ ∈ Vp, v

′′ ∈ Vp, v̄ ∈ Vp, s.t. ((v 6= v′) ∧ (v 6= v′′) ∧

(v′′ 6= v̄) ∧ ((w, p, v) ∈ S0) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈ e2(S0)) ∧ ((w, p, v̄) ∈

e2(e1(S0)))); there is at least one widget w with property p that has an initial value

v, which is modified by individual events e1 and e2; however, it is modified differently

by the sequence < e1; e2 >.

Figure 3.6 shows one example of this case using the “GUI Demo” application.

In this example, the initial state has Fill with color checked, white is set to be

the current color and the rectangle is selected. Event e1 here is Click radio button
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Figure 3.7: Case 4: e1: Uncheck Read-only; e2: Click button Insert

Blue and e2 is Check Fill with pattern that fills the current shape with a pattern.

Events e1 and e2 modify the rectangle individually; however, executing < e1; e2 >

now modifies the rectangle differently. Therefore, e1 influences e2, i.e., resulting

different modification of the existing widget (marked with W), and Case 3 applies.

The first three cases handle widgets that persist across the three states being

considered, i.e., e1(S0), e2(S0), and e2(e1(S0)). In many cases, event execution

“creates” new widgets, e.g., by opening menus; the next cases handle newly created

widgets.

Case 4: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. (((w, p̄, v̄) /∈ S0) ∧

((w, p̄, v̄) /∈ e1(S0)) ∧ ((w, p̄, v̄) /∈ e2(S0)) ∧ ((w, p, v) ∈ e2(e1(S0)))); there is at least

one new widget w with property p and value v in state e2(e1(S0)), i.e., it is created

by event sequence < e1; e2 >; but it does not exist in state S0 and could not be

created by either e1 or e2 individually, i.e., no triple involving widget w exists in
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Figure 3.8: Case 5.1: e1: Input row number; e2: Click button Set Row

any of the states S0, e1(S0) and e2(S0).

The example using “GUI Demo 1” for this case is shown in Figure 3.7. In

this application, checking Read-only forbids inserting text into the bottom panel;

checking Select All selects all the widgets in the bottom panel. Clicking button

Insert creates a text-field for inputing text, and clicking button Cut removes the

current selection (either text-field in the panel or text in text-field). To illustrate

Case 4, assume that the initial state has Read-only checked and an empty bottom

panel. Event e1 unchecks Read-only and e2 clicks the button Insert. It is clear

that e2 cannot insert the text-field into the bottom panel with Read-only checked.

However, when executing < e1; e2 >, e1 first removes the read-only restriction to the

panel, and then e2 creates a text-field. Hence, e1 influences e2 by making it create

a new widget (marked with W) previously non-existent in the initial state; Case 4

is applicable here.

Case 5: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. ((v 6= v′) ∧

40



((w, p̄, v̄) /∈ S0)∧ ((w, p, v) ∈ e1(S0))∧ ((w, p̄, v̄) /∈ e2(S0))∧ ((w, p, v′) ∈ e2(e1(S0))));

there is at least one widget w that does not exist in the initial state S0; it is created

by e1 with property p and value v; e2 does not create w. However, w is created

differently when the sequence < e1; e2 > is executed, i.e., the value of w’s property

p is now v′ (not v).

A variation of Case 5 is called Case 5.1 in which the roles of e1 and e2 are

exchanged and the combined sequence < e1; e2 > remains the same. Figure 3.8

shows an example for Case 5.1. The “GUI Demo 2” application is used in this

example. It is used to create a table with a given number of rows and columns. One

can input the desired number of rows and columns in the text-fields labeled as #

of Rows and # of Columns. By clicking either the button Set Row or Set Column,

a table with the specified number of rows and columns is created in the bottom

panel; or if a table already exists in the panel, the number of rows and columns are

changed to the given numbers.

For Case 5.1, the initial state has the row and column number both set to 2

and an empty bottom panel. In this initial state, event e1 inputs 1 into the text-

field to set the number of rows; e2 clicks the button Set Row and creates a new

table widget with two rows. However, when executing < e1; e2 >, a table with only

one row is created. Therefore, e1 influences e2 and modifies its creation of the new

widget, i.e., the table (marked with W); Case 5.1 is applicable here.

Case 6: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, v
′′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. ((v′ 6=

v′′) ∧ ((w, p̄, v̄) /∈ S0) ∧ ((w, p, v) ∈ e1(S0)) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p, v′′) ∈

e2(e1(S0)))); there is at least one new widget w that does not exist in state S0;
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Figure 3.9: Case 6: e1: Click button Set Row; e2: Click button Set Column

but w is created by e1 and e2 individually. However, it is created by the sequence

< e1; e2 > with a different value v′′ for property p.

This case is also demonstrated using the “GUI Demo 2” application in Fig-

ure 3.9. In this example, the initial state has row and column number set to 2 and

an empty bottom panel. Event e1 clicks the button Set Row and e2 clicks the button

Set Column. Event e1 individually creates a new table with one column and two

rows; event e2 creates a one-row and two-column table. Executing < e1; e2 > creates

a table with two rows and two columns. Hence, e1 influence e2, i.e., resulting in

different creation of new widget (marked with W), and Case 6 is applicable here.

Event execution may also “remove” existing widgets from a GUI, e.g., by

cutting selected components. The next three cases handle removed widgets.

Case 7: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, v
′′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. (((w, p, v) ∈

S0)∧ ((w, p, v′) ∈ e1(S0))∧ ((w, p, v′′) ∈ e2(S0))∧ ((w, p̄, v̄) /∈ e2(e1(S0)))); there is at
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Figure 3.10: Case 7: e1: Check Select All; e2: Click button Cut

least one widget w that exists in the initial state S0 with property p and value v; it

is not removed by e1 and e2 individually. However, it is removed when the sequence

< e1; e2 > is executed.

Case 7 is illustrated via an example using “GUI Demo 1” application in Fig-

ure 3.10. In this example, the initial state has all checkboxes unchecked and a

text-field with text Hello World in the bottom panel. Event e1 checks Select All

and selects the text in the text-field; e2 clicks the button Cut. They individually

do not remove the text-field in the bottom panel. However, executing < e1; e2 >

results in an empty bottom panel. Therefore, e1’s selection of widgets influences e2

and enables it to remove an existing widget (marked with W); Case 7 is applicable

here.

Case 8: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. (((w, p̄, v̄) /∈ S0) ∧

((w, p, v) ∈ e1(S0)) ∧ ((w, p̄, v̄) /∈ e2(S0)) ∧ ((w, p̄, v̄) /∈ e2(e1(S0)))); there is at least

one widget w that does not exist in the initial state S0; it is created by e1 with
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Figure 3.11: Case 8: e1: Click button Insert; e2: Click button Cut

property p and value v; e2 does not create w individually. However, it is removed

when the sequence < e1; e2 > is executed.

Case 8 is demonstrated using “GUI Demo 1” in Figure 3.11. The initial state

in this example has all checkboxes unchecked and an empty bottom panel. Event

e1 is Click button Insert; e2 is Click button Cut. Event e1 inserts a text-field into

the bottom panel; e2 removes selected items in the panel if there are any. However,

executing < e1; e2 > first inserts the text-field (selected at the time of creation) by

e1, then e2 removes the text-field. Therefore, e1 influences e2, i.e., e2 removes widget

(marked with W) newly created by e1, and Case 8 is applicable here.

A variation of Case 8 is called Case 8.1 in which the roles of e1 and e2 are

exchanged and the combined sequence < e1; e2 > remains the same. Figure 3.12

shows an example illustrating Case 8.1. In this example, the initial state has

unchecked checkboxs and an empty panel. Event e1 is Check Read-only and e2 is

Click button Insert. Event e2 creates a text-field widget in the panel. However,
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Figure 3.12: Case 8.1: e1: Check Read-only; e2: Click button Insert

executing < e1; e2 > does nothing to the panel because e1 first sets the panel to

read-only; e2 cannot create a new text-field. Hence, e1 influences e2’s creation of

the new widget (marked with W; Case 8.1 is applicable here.

Case 9: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. (((w, p̄, v̄) /∈

S0) ∧ ((w, p, v) ∈ e1(S0)) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p̄, v̄) /∈ e2(e1(S0)))); there is

at least one new widget w that does not exist in state S0; but it is created by e1

with property p and value v, and by e2 with property p and value v′ individually.

However, it is removed by the sequence < e1; e2 >, i.e., no triple involving widget

w is in state e2(e1(S0)).

The next two cases describe interactions in which existing widgets are removed

by individual events, but are re-created by the sequence < e1; e2 >.

Case 10: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, ∃v′′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈

Vp, s.t. (((w, p, v) ∈ S0) ∧ ((w, p̄, v̄) /∈ e2(S0)) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈
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Figure 3.13: Case 10: e1: Click button New Layer; e2: Click button Remove Layer

e2(e1(S0)))); there is at least one widget w that exists in the initial state S0 with

property p and value v; it is removed by e2; it is modified by e1 with property p and

value v′. However, it is re-created when the sequence < e1; e2 > is executed, i.e.,

the triple (w, p, v′′) is in state e2(e1(S0)).

The example shown in Figure 3.13 demonstrates Case 10. The application

used here is “GUI Demo 3.” In this application, clicking button New Layer creates

a radio button labeled with a layer number in the bottom panel. Clicking button

Remove Layer removes the radio button labeled with the highest layer number.

The example has the initial state with a created Layer 1 in the panel. Event e1

clicks button New Layer and creates Layer 2; e2 clicks button Remove Layer and

removes the existing Layer 1. However, when executing < e1; e2 >, e2 now removes

the newly created Layer 2 instead of the original Layer 1. Hence, e1 influences e2,

i.e., keeping the widget (marked with W) that would have been removed. Case 10

captures this scenario.

46



A variation of Case 10 is called Case 10.1 in which the roles of e1 and e2 are

exchanged and the combined sequence < e1; e2 > remains the same.

Case 11: ∃w ∈ W, ∃p ∈ Pw, ∃v ∈ Vp, ∃v′ ∈ Vp, ∀p̄ ∈ Pw, ∀v̄ ∈ Vp, s.t. (((w, p, v) ∈

S0)∧ ((w, p̄, v̄) /∈ e1(S0))∧ ((w, p̄, v̄) /∈ e2(S0))∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at

least one widget w that exists in the initial state S0 with property p and value v; it

is removed by e1 and e2 individually. However, it is re-created when the sequence

< e1; e2 > is executed, i.e., the triple (w, p, v′) is in state e2(e1(S0)).

Finally, a common occurrence of event interaction in GUIs is enabling/dis-

abling widgets, which may be modeled as the widget’s ENABLED property being set

to TRUE or FALSE.

Case 12: ∃w ∈ W, ENABLED ∈ Pw, TRUE ∈ VENABLED, FALSE ∈ VENABLED, s.t. (((w, ENAB−

LED, FALSE) ∈ S0)∧((w, ENABLED, TRUE) ∈ e1(S0))∧EXEC(e2, w)); there exists at least

one widget w that was disabled in S0 but enabled by e1. Event e2 is performed on

w, represented by a predicate EXEC(e2, w).

Modal windows create special situations for Cases 1 through 12 due to the

presence of termination events. User actions in these windows do not cause imme-

diate state changes; they typically take effect after a termination event has been

executed, leading to contexts 2, 3 and 4.

Context 2: If both e1 and e2 are associated with widgets that are contained in

one modal window with termination event TERM, then the definitions of e1(S0) ,

e2(S0), and e2(e1(S0)) are modified as follows: e1(S0) is the state of the GUI after
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the execution of the event sequence < e1; TERM >, e2(S0) is the state of the GUI after

the execution of the event sequence < e2; TERM >, and e2(e1(S0)) is the state of the

GUI after the execution of the event sequence < e1; e2; TERM >. All the predicates

defined in Cases 1 through 12 apply, using these modified definitions, for e1 and e2

in the same modal window.

Context 3: If e1 is associated with a widget contained in a modal window with

termination event TERM, and e2 is associated with a widget contained in the modal

window’s parent window (i.e., the window that was used to open the modal win-

dow) then e1(S0) is the state of the GUI after the execution of the event sequence

< e1; TERM >, e2(S0) is the state of the GUI after the execution of the event e2,

and e2(e1(S0)) is the state of the GUI after the execution of the event sequence

< e1; TERM; e2 >. All the predicates defined in Cases 1 through 12 apply.

Context 4: If e1 is associated with a widget contained in a modal window with ter-

mination event TERM1, and e2 is associated with a widget contained in another modal

window with termination event TERM2 (i.e., the window that is derived through an-

other path from the main window) then e1(S0) is the state of the GUI after the

execution of the event sequence < e1; TERM1 >, e2(S0) is the state of the GUI after

the execution of the event sequence < e2; TERM2 >, and e2(e1(S0)) is the state of the

GUI after the execution of the event sequence < e1; TERM1; R; e2; TERM2 >, where R

is the sequence of events needed to open the modal window containing e2. All the

predicates defined in Cases 1 through 12 apply.

There is an Event Semantic Interaction (ESI) relationship between two events
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e1 and e2 if and only if at least one of the predicates in Cases 1 through 12 evaluates

to TRUE; this relationship is written as e1
n(m)−→ e2, where the number n is one of the

case numbers 1 through 12; m is the context number. If multiple cases apply, then

one of the case numbers is used. Due to the specific ordering of the events in the

sequence < e1; e2 >, the ESI relationship is not symmetric.

3.4 Summary

In this chapter, the concept of GUI execution feedback, i.e., GUI run-time

information was defined in terms of the GUI run-time state. The ESI relationships

were described and formalized using 12 predicates. Because the run-time state is

defined as a set, and the usual set operations (set equivalence, intersection, union,

etc.) are used in the ESI identification predicates, all cases can be evaluated auto-

matically.

The EIG-based test cases may be used as the basis for the predicate evalua-

tion. With the needed GUI run-time state information collected during test cases

execution, the predicates are evaluated for each pair of system-interaction events

that are either (1) directly connected by an edge in the EIG (Context 1) or (2) con-

nected by a path that does not contain any intermediate system-interaction events

(Context 2, 3 and 4). If one of the predicates evaluates to TRUE, the two events are

ESI-related.

In the next two chapters, two approaches utilizing the ESI relationships for test

case generation are described and studied. The first one is presented in Chapter 4,
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which uses the ESI relationships obtained from the initial run-time information to

generate new test cases. The second approach, presented in Chapter 5, alternates

test case generation and execution. New ESI relationships are obtained from previ-

ously generated test cases and used to generate new test cases.
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Chapter 4

ESIG-Based Test Case Generation

The first feedback-directed test case generation approach follows directly from

the earlier EIG-based approach. Instead of generating test cases from the entire

EIG, certain EIG edges are annotated with ESI relationships, and test cases are

generated only from these annotated edges. The sub-graph containing only the

annotated edges and associated nodes is called the event semantic interaction graph

(ESIG). The ESIG contains nodes that represent events; a directed edge from node

nx to ny shows that there is an ESI relationship from the event represented by nx

to the event represented by ny. Multi-way interaction test cases are generated from

the ESIG model using a graph-traversal algorithm.

w1 -
w2

�	

w3 -
w4@I

w5 -

w6 - w7�

w8�

Figure 4.1: A Simple GUI Application
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4.1 Overview of the ESIG-Based Test Case Generation Process

The test case generation steps used in this technique are now presented using

the simple “Radio Button Demo” GUI introduced in Section 3.1 (Figure 4.1). The

GUI contains seven widgets labeled w1 through w7 on which a user can perform

corresponding events e1 through e7. The application’s functionality is very straight-

forward – the initial state has Circle and None selected; the text-field corresponding

to w5 is empty; and the Rendered Shape area (widget w8) is empty. Event e6 cre-

ates a shape in the Rendered Shape area according to current settings of w1 . . . w5;

event e7 resets the entire software to its initial state.

The other events behave as follows. Event e1 sets the shape to a circle; if there

is already a square in the Rendered Shape area, then it is immediately changed to a

circle. Event e2 is similar to e1, except that it changes the shape to a square. Event

e3 enables the text-field w5, allowing the user to enter a custom fill-color, which is

immediately reflected in the shape being displayed (if there is a shape there). Event

e4 reverts back to the initial state.

The GUI of this application is simple, yet quite flexible. The numbers of 1-,

2-, 3-, 4-, and 5-way event sequences (and hence possible test cases) that may be

executed in the initial state of the GUI are 6 (remember that e5 is initially disabled),

37, 230, 1491, and 9641, respectively. This is clearly too large a number to test on

such a small GUI.

The ESIG-based test case generation process has the following steps:

(1) Obtain the EIG. As mentioned in Section 2.2, this is done via automated reverse
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Figure 4.2: EIG of “Radio Button Demo” GUI

engineering techniques [36]. Because of current limitations of the reverse engineer-

ing process, it is unable to automatically infer the (enable) relationship between e3

and e5; hence the EIG is a fully connected directed graph with seven nodes, cor-

responding to the seven events. Figure 4.2 shows the obtained EIG for this simple

GUI.

(2) Generate and execute the 2-way covering test suite. This suite consists of all

2-way covering test cases, which are obtained by simply enumerating each pair of

system-interaction events that are either (1) directly connected by an edge in the

EIG (Context 1) or (2) connected by a path that does not contain any intermediate

system-interaction events (Context 2, 3 and 4). Each of these sequences is executed

in the software’s initial state. As expected, none of the sequences starting with e5

executed. However, the sequence < e3; e5 > executed successfully, indicating that

e3 enables e5.

Also, the entire state of the GUI is captured after each event for each test

case. This includes all the properties of all the GUI’s widgets. Here, the discussion
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is restricted to the state of interest for this example, which includes the state of each

radio button, i.e., selected/not-selected and the contents of Rendered Shape area.

This part of the state is used to compute the ESI relationships.

(3) Compute ESI relationships. The ESI relationship between two events is based

on the ability of an event to influence another event’s execution, as captured in the

GUI’s state. As described in Section 3.2, e2 influences e6. Event e6 alone from the

initial state renders a circle in the Rendered Shape area. However, executing e2

before e6 changes the behavior of e6, yielding a square instead. This “interaction” is

captured by the ESI predicate Case 5.1 (described in Section 3.3) and represented

as e2
5.1(1)−→ e6.

Another interesting relation in this example is e6
5(1)−→ e2. In the default initial

state, e6 creates a circle. However, the sequence < e6; e2 > yields a square because

e2 changes the shape. The predicate in the set used to compute this relation is

Case 5 described in Section 3.3. This interaction is due to the variables created

and currentShape shared between the code of e6 and e2.

Another ESI relationship is obtained from Case 12 (described in Section 3.3)

that addresses the “enable relationship.” This predicate applies because widget w5

is disabled in the initial state but enabled by e3.

In summary, the three relations found in this step are: e2
5.1(1)−→ e6, e6

5(1)−→ e2,

and e3
12(1)−→ e5.

(4) Create ESIG and generate multi-way test cases. The three ESI relationships

obtained from the previous step are used to annotate the EIG, which yields the

ESIG shown in Figure 4.3. Generating all possible test cases of length 3 returns two
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Figure 4.3: Annotated EIG and ESIG for “Radio Button Demo” GUI

test cases < e2; e6; e2 > and < e6; e2; e6 >.

This simple example demonstrates the ESIG-based test case generation process.

All the tools needed for this process were implemented in a GUI testing framework

called GUITAR. The test case generation algorithm, called GenTestCases, was also

implemented. In summary, this graph-based test case generation takes a directed

graph as input and outputs all paths of a specified length. For example, all paths

of length 2 contain 2 events; they are simply the edges. The paths of length 3 are

obtained by outputing all pairs of adjacent edges. The effectiveness of the ESIG-

based test cases is evaluated next.

4.2 Study 1 of ESIG-Based Approach: Evaluating the ESIG-Based

Approach on Fielded Applications

Study 1 was conducted to evaluate the fault detection of ESIG-based test

case generation. The test oracle, i.e., a mechanism that determines whether a GUI
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executed correctly for a test case, used in this study is that a GUI is considered

to have passed a test case if it did not “crash” (terminate unexpectedly or throw

an uncaught exception) during the test case’s execution; otherwise it failed. Such

crashes may be detected automatically by the script used to execute the test cases.

The EIG and ESIG, and their respective test cases may also be obtained automati-

cally. Hence, the entire end-to-end feedback-directed GUI testing process for “crash

testing” could be executed without human intervention. Note that, in the Study 2

discussed in next session, the work is extended by employing a more powerful test

oracle to detect additional failures.

A Run-Time State Analyzer and an Annotator have been implemented and

integrated into the GUITAR testing framework. Implementation of the crash test-

ing process included setting up a database for text-field values. Because the overall

process needed to be fully automatic, a database containing one instance for each

of the text types in the set {negative number, real number, long file name, empty

string, special characters, zero, existing file name, non-existent file name} was used.

Note that if a text-field is encountered in the GUI, one instance for each text type

is tried in succession by GenTestCases.

Finally, because nodes in the EIG and ESIG do not represent events to open

or close menus, or open windows, the sequences obtained from these models may

not be executable. At execution time, other events needed to reach the events are

automatically generated, yielding an executable test case [40]. To allow a clean

application exit, a test case is also automatically augmented by GenTestCases with

associated termination events that close all open modal windows before the test case
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terminates.

4.2.1 Research Questions

The crash testing process provided a starting point to evaluate the ESIG-

generated test cases. The following questions needed to be answered to determine

the usefulness of the overall feedback-directed process:

C4Q1: How many test cases are required to test 2-way interactions in an EIG?

How does this number grow for 3-, 4-, ..., n-way interactions?

C4Q2: In how many ESI relationships does a given event participate? How many

test cases are required to test 2-way interactions in an ESIG? How does this number

grow for 3-, 4-, ..., n-way interactions?

C4Q3: How do the ESIG- and EIG-generated test suites compare in terms of fault-

detection effectiveness? Do the former detect faults that were not detected by the

latter?

4.2.2 Process and Results

To answer the above questions while minimizing threats to external validity,

this study was conducted using four extremely popular GUI-based open-source soft-

ware (OSS) applications downloaded from SourceForge. The fully-automatic crash

testing process was executed on them and the cause (i.e., the fault) of each crash in

the source code was determined. The process of the study is as follows:

STEP 1: Selection of subject applications. Four popular GUI-based OSS
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(FreeMind 0.8.0, GanttProject 2.0.1, jEdit 4.2, OmegaT 1.7.3) were downloaded

from SourceForge. These applications have been used in previous experiments [55].

1. FreeMind1, which is a mind-mapping2 software written in Java. It has an

all-time activity of 99.72%.

2. GanttProject3, which is a project scheduling application written in Java

and featuring Gantt chart, resource management, calendaring, import/export (MS

Project, HTML, PDF, spreadsheets). It has an all-time activity of 98.12%.

3. jEdit4, which is a programmer’s text editor written in Java. It uses the

Swing toolkit for the GUI and can be configured as a powerful IDE. When tested,

it had an all-time activity of 99.95%.

4. OmegaT5, which is a multi-platform Computer Assisted Translation tool

with fuzzy matching, translation memory, keyword search and glossaries. It has an

all-time activity of 99.80%.

The characteristics of these OSS are showed in Table 4.1.

Subjects Windows Widgets LOC Classes Methods

FreeMind 30 611 13,463 765 3114

GanttProject 18 326 22,711 840 5189

jEdit 27 498 48,444 829 5582

OmegaT 18 228 22,708 274 1522

TOTAL 93 1663 107,326 2798 15,407

Table 4.1: Subject Applications for Study 1

All of the above applications were chosen due to their popularity, active com-

1http://sourceforge.net/projects/freemind
2http://en.wikipedia.org/wiki/Mind map
3http://sourceforge.net/projects/ganttproject
4http://sourceforge.net/projects/jedit
5http://sourceforge.net/projects/omegaT
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munity of developers, and high all-time activity. Due to their popularity, these

applications have undergone quality assurance before release. To further eliminate

“obvious” bugs, a static analysis tool called FindBugs [26] was executed on all the

applications; after the study, it was verified that none of the reported bugs were

detected by FindBugs.

STEP 2: Generation of EIGs & seed test suites. The EIGs of all subject

applications were obtained using reverse engineering. To address C4Q1 above, the

number of test cases required to test 2-, 3-, 4-, and 5-way interactions was computed.

The result for each application is shown as a solid line in Figure 4.4 (the y-axis in

all these plots is a logarithmic scale). The plot shows that the number of test cases

grows exponentially with the number of interactions. The number quickly becomes

unmanageable for more than 2- and 3-way interactions. In this study, only 2-way

interactions were tested by the seed test suites. The seed test suites contained

309,136, 84,681, 204,304 and 38,809 test cases for FreeMind, GanttProject, jEdit

and OmegaT, respectively.

STEP 3: Execution of the seed test suite. The entire seed suite executed

without any human intervention. 50 machines were used to run the test cases

in parellel, each running Linux at 2GHz with 1GHz of RAM. The seed test suite

executed in 1293.54, 294.68, 662.53 and 143.39 hours on FreeMind, GanttProject,

jEdit and OmegaT, respectively. In all, 40,509, 1,330, 10,062, and 2,775 test cases

caused crashes; these crashes were caused by 7, 8, 7 and 4 faults (as defined earlier)

for FreeMind, GanttProject, jEdit and OmegaT, respectively. The GUI’s run-time

state was recorded during test execution. All faults were fixed in the applications
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Figure 4.4: Test Case Space Growth

to avoid the masking of other faults that need longer test cases to detect.

STEP 4: Generation of the ESIG. The above feedback was used to obtain the

ESIs for each application. To address C4Q2, the total number ESI relationships

found is summarized in Table 4.2, and the number of ESI relationships in which each

event participates is shown in Figure 4.5. Each event in the GUI has been assigned

a unique integer ID; all event IDs are shown on the x-axis. The y-axis shows the

number of ESI relationships in which each event participates.

The result shows that certain events (around 25%) dominate the ESI relation-

ship in GUIs. Manual examination of these “dominant” events revealed that the

nature of the subject applications – most have a single dominant object (mind map,

project schedule, editor panel, translation window) that is the focus of most events

– is such that several key events influence a large number of other events. In future
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Subject Application 2-way Suites

FreeMind 614

GanttProject 710

jEdit 591

OmegaT 469

Table 4.2: ESI relationships
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Figure 4.5: ESI Distribution in OSS

work, a classification of these dominant events may be created. Moreover, several

events participate in very few or no ESI relations. These events include parts of the

Help menu that have no interaction with other application events, and windowing

events such as scrolling for which no developer-written code exists.

The ESIs were used to obtain the ESIGs and, subsequently, additional test

cases. The number of test cases required to test 2-, 3-, 4-, and 5-way interactions

using an ESIG is shown, for each application, as a dotted line in Figure 4.4. This

result shows that the growth of the ESIG-generated test cases appears manageable

for 3-, 4-, or even (given sufficient resources) 5-way interactions. For example, for

3-way interaction, it is in fact reduced from the EIG by 99.99%. In this study, for

FreeMind, 3-way test cases were generated from its ESIG; jEdit had 3- and 4-way
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ESIG-test cases; GanttProject and OmegaT, due to the relatively small scale of

their ESIGs, had all 3-, 4- and 5-way ESIG test cases generated. Table 4.3 shows

the total number of test cases for these interactions (a “-” indicates that there is no

such entry).

Subjects 3-way 4-way 5-way Total

FreeMind 10,208 - - 10,208

GanttProject 3070 14,742 27,933 45,745

jEdit 7572 84,488 - 92,060

OmegaT 2335 8935 42,859 54,129

Table 4.3: Multi-way Interaction Test Cases of ESIG

STEP 5: Execution of the test cases. To address C4Q3, all the newly-

generated test cases were executed. The execution took 58.784, 240.368, 400.915

and 171.81 hours on FreeMind, GanttProject, jEdit and OmegaT, respectively, and

lasted for several days on the 50-machine cluster. In all, 156, 115, 15, and 0 test cases

caused crashes; they were caused by 2, 3, 2 and 0 faults for FreeMind, GanttProject,

jEdit and OmegaT, respectively. These faults had not been detected by the 2-way

test cases. The result summarized in Figure 4.6 shows that the ESIG-based test

cases help to detect additional faults.

4.2.3 Discussion

This study demonstrated that test suites for multi-way GUI event interactions

are able to detect additional faults compared to 2-way interactions. In earlier work,

it has been shown that 2-way interactions yield high code coverage, while multi-

way interactions cover little additional code [37]. The additional fault-detection
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effectiveness of multi-way interactions is due to the execution of combinations of

events in different execution orders. Also, this study did not use the newly-generated

test cases in its seed suite to generate additional test cases; the extension is explored

and its benefits demonstrated in Chapter 5.

Several lessons were learned from this study. First, the developers of the

applications felt that the crashes revealed important faults in the code. Several

crashes were reported on each application’s bug-reporting site. In response, some

of them have already been fixed in subsequent releases of the applications. For

example, Bugs #1536224 6, #1536229 7, and #1536205 8, (SourceForge-assigned

numbers) have been fixed by the developers of FreeMind.

Second, the study provided evidence that the intuition behind using the GUI’s

run-time state to find sets of interacting events was useful. Upon closer examination,

6http://sourceforge.net/tracker/?func=detail&atid=107118&aid=1536224&group id=7118
7http://sourceforge.net/tracker/?func=detail&atid=107118&aid=1536229&group id=7118
8http://sourceforge.net/tracker/?func=detail&atid=107118&aid=1536205&group id=7118
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several test cases that caused crashes had executed events that shared some code

elements. The first evidence of the usefulness of the state-based feedback approach

was apparent even with the seed test suite.

Bug#1536205 of FreeMind was detected using a test case from the seed suite.

It caused a NullPointerException when reverting back from a newly created Free-

Mind map to its previously saved version. The test case contained two system-

interaction events: e1 – Create a new FreeMind map, and e2 – Revert. FreeMind

starts with a default map; event e1 creates a new map with one node; event e2

reverts the map back to the previously saved version. These events are related us-

ing predicate Case 2 (described in Section 3.3), i.e., e1
2(1)−→ e2. When executed

together, they modify the map object; executed individually, e2 does not change the

state, as there is no saved map.

The crash occurred because the event handlers of e1 and e2, contained in the

NewMapAction.class and RevertAction.class, respectively, improperly handled

the map object’s instance variable file used to keep track of the file corresponding

to the map. A new map object, created by e1 has no associated file; the variable file

remains null. A subsequent Revert event invokes createRevertXmlAction(file)

that in turn invokes file.getAbsolutePath(). With file being null, a Null-

PointerException is thrown.

This example reinforced the intuition linking the run-time state resulting from

the execution of events to interactions among event-handler code. The ESIG test

cases were more interesting and provided additional insights. The remainder of this

section describes the ESIG test cases in detail and the causes of the crashes they
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detected.

Crash 1: One test case, which executed an event in a modal window followed by

the window’s termination event, then two events in another modal window followed

by that window’s termination event, caused a ConnectException in GanttProject;

the sequence was attempting to export the current project and publish it on an

FTP server. The test case contained five events: e1 – Set FTP server URL, e2 –

Save settings, e3 – Choose export file type, e4 – Choose to publish on FTP server

and e5 – Export and publish project. Event e1 is a system-interaction event in a

modal window titled Settings; e2 is a termination event in the same window; e3

and e4 are system-interaction event in another modal window titled Export and e5

is a termination event in that window. The relationships between the events are

e1
1(3)−→ e3

2.1(2)−→ e4. Setting an incorrect FTP server URL with e1 and saving it with

e2, exporting the current project to a Raster Image file (for e3) and choosing to

publish it on an FTP server at the same time (e4), causes e5 to try to publish the

project on the FTP server with a incorrect URL, resulting in a crash.

The crash occurred because the event handlers for e1, e2, e3, e4, and e5, con-

tained in NetworkOptionPageProvider.class, SettingsDialog.class, ExportC-

hooserPage.class, ExportChooserPage.class, and ExportFinalizationJobIm-

p.class, respectively, made different assumptions about the FTP server URL.

Event e5, performed by clicking OK in the Export window, exports the current

project into a file and publishes it on an FTP server. During publishing, it obtains

the FTP server settings, including the URL, which it (incorrectly) assumes to be

a valid address. An invocation of openConnection on the invalid URL causes the
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crash.

Lessons Learned: This example demonstrated that event handlers interact in

complex ways. Because event handlers may have been developed by different pro-

grammers, they may have made incorrect assumptions about the validity of shared

objects, leading to integration problems. Moreover, Context 3 (described in Sec-

tion 3.3), which handles interactions among events contained in multiple windows,

is extremely useful because achieving the combined effect of events in a modal win-

dow requires the execution of the window’s termination event.

Crash 2: An event sequence that executed across two cascading (one opened by the

other) modal windows, followed by the parent modal window’s termination event,

caused a NullPointerException in GanttProject. The sequence tried to change the

type of a file to be imported after it had selected the name of the file from a list.

Developers of the software had expected that users would select the type first, and

then select the file name. The sequence contained five events: e1 – Choose import

file type T1, e2 – Choose import file, e3 – Click OK to close FileChooser window,

e4 – Choose import file type T2, e5 – Click OK to close import file window. Events

e1 and e4 are system-interaction events in a modal window titled Import; event e5

is the window’s termination event. Event e2 is a system-interaction event in the

FileChooser modal window; event e3 is the window’s termination event. Note that

another event is used after e1 to open the FileChooser window; it is not shown

here because it is not a part of the EIG. The relationships between the events are

e1
3(2)−→ e2

3(2)−→ e4. The test case selects a file type (e1) and the file name (e2), but then
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changes the type (e4) without changing the file name. Executing the termination

event results in a crash.

The crash was caused because the event handlers of the events e1, e2, e3,

e4, and e5 contained in ImporterChooserPage.class, FileChooserPage.class,

JFileChooser.closeWindow(), ImporterChooserPage.class, and ImportFileW-

izardImpl.onOkPressed(), respectively, failed to keep track of the relationship

among a file’s name, its type, and the file suffix in the name. GanttProject records

the import file’s type in myProject and its name in myState. ImportFileWizardIm-

pl.onOkPressed() examines the selected type and assumes that the file name will

have the correct suffix. If, however, the filename does not have the assumed suffix,

an object Open remains null. Execution of Open.load(file) results in a Null-

PointerException.

Lessons Learned: This example reinforced the original motivation for developing

new techniques for model-based GUI testing. Developers often cannot predict how

users will use the software. They typically test the software for a small number of

obvious, predictable use cases. Developers need to use automated techniques to test

their software for a larger number of unpredictable event sequences.

Summary: The above crashes (and the ones not presented here) illustrated several

important points: (1) The event handlers for events are typically implemented in

multiple classes. Static analysis that is limited to intra-class analysis fails to reveal

problems with interacting events. (2) With the increasing flexibility of new user

interfaces, programmers must take steps to ensure that their software works correctly
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for a large input space. They should check the validity of objects whenever possible

before use; text fields in particular should be restricted to the smallest input domains

possible. For example, an autosave-frequency text-field in jEdit caused a crash after

a negative number was entered. The developers had simply checked whether the

length of the entered text was non-zero, which is clearly inadequate. (3) Most of

the test cases that revealed the crashes did not add to the code coverage (statement

and edge) of the seed test suite. They were able to detect the faults because of the

permutations of events that were executed on the GUI.

4.3 Study 2 of ESIG-Based Approach: Digging Deeper via Seeded

Faults and In-House Applications

The previous study raised some important questions. One fundamental ques-

tion that comes to mind pertains to the cause(s) of the added effectiveness, i.e.,

Is the added effectiveness an incidental side-effect of the events, event interactions,

and lines-of-code that the ESI test cases cover and their length; or is it really due to

targeted testing of the identified ESI relationships? The empirical study presented in

this section is designed specifically to address the question of how the fault-detection

effectiveness of the suite obtained by the feedback-directed technique compares to

that of other “similar” suites, where similarity is quantified in terms of statement

coverage, event coverage, edge coverage, and size (number of test cases).

This question were answered by selecting four pre-tested GUI-based applica-

tions, and generating and executing 2-way EIG-based and 3-way ESIG-based test
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suites on them. Additional test suites are generated that are similar to the ESIG-

based suite in terms of the aforementioned characteristics and are at least 3-way

interacting, and their fault-detection effectiveness is compared. Fault-detection ef-

fectiveness is measured on a per-test-suite basis in terms of the number of faults

detected. The faults were studied, pinpointing reasons for why some of them re-

mained undetected by the new technique.

4.3.1 Preparing the Subject Applications and Test Oracles

Four open-source applications, called the TerpOffice suite, consisting of Paint,

Present, SpreadSheet and Word, have been selected for the study.9 Table 4.4 shows

key metrics for TerpOffice. These applications are selected very carefully for a num-

ber of reasons. In particular, to minimize threats to external validity, the selected

applications are non-trivial, consisting of several GUI windows and widgets. For

reasons described later, artificial faults were seeded in the applications – this re-

quired access to source code, bug reports, and a CVS development history. To avoid

(the often difficult) distinction between GUI code and underlying “business logic,”

GUI-intensive applications were selected, i.e., most of the source-code implemented

the GUI. Finally, the tools implemented for this research, in particular for reverse

engineering, are well-tuned for the Java Swing widget library – the applications had

to be implemented in Java with a GUI front-end based on Swing components. As

is the case with all empirical studies, the choice of subject applications introduces

9Detailed specifications, requirements documents, source code CVS history, bug reports, and

developers’ names are available at http://www.cs.umd.edu/users/atif/TerpOffice/.
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some significant threats to external validity of the results; these (and other) threats

are noted in Chapter 7.

Subjects Windows Widgets LOC Classes Methods

Paint 16 301 11,803 330 1,253

Present 11 322 10,847 292 2,057

SpreadSheet 9 176 5,381 135 746

Word 26 617 9,917 197 1,380

TOTAL 62 1,416 38,398 954 5,436

Table 4.4: TerpOffice Applications

For the purpose of this study, a GUI fault is a mismatch, detected by a test

oracle, between the “ideal” (or expected) and actual GUI states. Hence, to detect

faults, a description of ideal GUI execution state is needed. This description is used

by test oracles to detect faults in the subject applications. There are several ways to

create this description. First is to manually create a formal GUI specification and

use it to automatically create test oracles. Second is to use a capture/replay tool

to manually develop assertions corresponding to test oracles and use the assertions

as oracles to test other versions of the subject applications. Third is to develop the

test oracle from a “golden” version of the subject application and use the oracle to

test other versions of the application. The first two approaches are extremely labor

intensive because they require the development of a formal specification and the use

of manual capture/replay tools; the third approach can be performed automatically

and has been used in this study.

Several faults were seeded in each application. However, in order to avoid fault

interaction and to simplify the mapping of application failure to underlying fault,

multiple versions of each application were created; each version was seeded with
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exactly one fault. Hence, a test case detects a fault i if there is a mismatch between

version i (i.e., the version that was created by seeding fault i) and the original.

The process used for fault seeding was similar to the one used in earlier work

[40, 57]. Details are not replicated here. In summary, during fault seeding, 12

classes of known faults were identified, and several instances of each fault class were

artificially introduced into the subject program source code statements that were

covered by the 2-way test cases, thereby ensuring that these statements were part

of executable code. Care was taken so that the artificially seeded faults were similar

to faults that naturally occur in real programs due to mistakes made by developers.

The faults were seeded “fairly,” i.e., an adequate number of instances of each fault

type were seeded. Several graduate students were employed to seed faults in each

subject application; they created 263, 265, 234, and 244 faulty versions for Paint,

Present, SpreadSheet, and Word, respectively.

4.3.2 Generating and Executing the ESIG-Based Test Suite

The reverse engineering process was used to obtain the EIGs for the original

versions of each application. The sizes of the EIGs, in terms of nodes and edges, are

shown in Table 4.5. These numbers are important as they determine the number of

generated test cases and their growth in number as test-case length increases.

The EIGs were then used to generate all possible 2-way test cases. The num-

bers generated were exactly equal to the number of edges in the EIGs – it was

quite feasible to execute such numbers of test cases in little more than a day on the
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Paint Present SpreadSheet Word

#EIG Nodes 300 321 175 616

#EIG Edges 21,391 32,299 6,782 28,538

#ESIG Nodes 102 50 45 75

#ESIG Edges 233 233 197 204

Table 4.5: ESIG vs. EIG Sizes

Paint Present SpreadSheet Word

Total Faults 263 265 234 244

2-way EIG-detected Faults 147 139 139 183

3-way ESIG-detected Faults (only new faults) 47 52 39 36

Table 4.6: ESIG vs. EIG Fault Detection

50-machine cluster. The test cases were executed on their corresponding “correct”

applications; the GUI state was collected and stored.

While new software versions were being obtained (via fault seeding as discussed

in Section 4.3.1), the 2-way EIG-based test suites and GUI state were used to obtain

all possible 3-way ESIG covering test cases. The sizes of the ESIGs are shown in

Table 4.5. The table shows that the ESIGs are much smaller than the corresponding

EIGs. Due to the small number of nodes and edges, the number of 3-way covering

test cases was 2531, 2080, 2069, and 2345 for Paint, Present, SpreadSheet, and

Word, respectively.

The 2-way EIG- and 3-way ESIG-based test cases were then executed on the

fault-seeded versions of the applications. The number of faults detected is shown in

Table 4.6. Note that the last row reports the number of “new” faults detected by

the ESIG suite. This table shows that ESIG-based suites are able to detect a large

number of faults missed by the EIG.
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4.3.3 Developing “Similar” Suites

As mentioned earlier, this study required the development of several new test

suites. To minimize threats to validity, the suites needed to satisfy a number of

requirements, discussed next.

Previous studies have shown that statement, event, and EIG-edge coverage,

and size (number of test cases) play an important role in the fault-detection effec-

tiveness of a test suite [56]. For example, a small test suite that covers few lines of

code is more likely detect fewer faults than another larger suite that covers many

more lines. To allow fair comparison of fault-detection effectiveness, test suites that

have the same statement, event, and edge coverage, and size (number of test cases)

as that of ESIG-based test suites are needed.

Previous studies have also shown that long test cases (number of EIG events)

fare better than short ones in terms of the number of faults that they detect [60]. To

ensure that the new suites do not have any unfair disadvantage, all their test cases

have at least 3 EIG events (note that all the ESIG test cases have only 3 ESIG/EIG

events).

Because the above criteria (same statement, event, and edge coverage, and

size) may be met by a large number of test suites (with varying fault-detection

effectiveness), the process of generating different suites and comparing them to the

ESIG-based suites needed to be repeated several times. In this study, 700 test suites

were generated per application and their fault-detection effectiveness was compared

to that of the ESIG suite.
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GUI test cases are expensive to execute (e.g., delay for timing, etc) – each test

case can take up to 2 minutes to execute (on average, each requires 30 seconds).

The 700 suites each for Paint, Present, SpreadSheet, and Word, contained 1,054,064,

860,324, 850,808, and 974,235 test cases, respectively. Each of these 3,739,431 test

cases, needed to be run on each fault-seeded version, would have taken several years

on the available 50-machine cluster, an impractical task. Other researchers, who

have also encountered similar issues of practicality, have circumvented this problem

by creating a test pool consisting of a large number of test cases that can be executed

in a reasonable amount of time [9]. Each test case in the pool is executed only once

and its execution attributes e.g., time to execute and faults detected are recorded.

Multiple test suites are created by carefully selecting test cases from this pool. Their

execution is “simulated” by combining the attributes of constituent test cases using

appropriate functions (e.g., set union for faults detected). This research will also

employ the test pool approach to create a large number of test suites. Note that

the test-pool-based approach introduced some threats to validity, which are noted

in Chapter 7.

Finally, to avoid introducing any human bias when generating these test cases,

a randomized guided mechanical process was used. A related approach was employed

by Rothermel et al. [47] to create sequences of commands to test command-based

software. In their approach, each command was executed in isolation and test cases

were “assembled” by concatenating commands together in different permutations.

Because GUI events (commands) enable/disable each other, most arbitrary permu-

tations result in unexecutable sequences. Hence, the EIG model was used to obtain
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only executable sequences.

Test cases were generated in batches of increasing lengths, measured in terms

of the number of EIG events. It was required that each EIG edge be covered by

at least N test cases of a particular batch. Moreover, each fault-seeded statement

was covered by at least M test cases of the overall pool. The test case generation

process started by generating (using a process described in the next paragraph) the

batch of length-3 test cases until each EIG edge was covered by at least N test cases;

they were all executed and their statement coverage was evaluated; the next (and

all subsequent) batch was generated ONLY IF each fault-seeded statement was not

yet covered by at least M test cases.

The process of generating each batch of length i test cases begins by initializing

a frequency variable for each EIG edge to zero. Then for each event in the EIG,

form a list of all outgoing edges; select the edge that has the lowest frequency,

breaking ties via random selection. Follow the selected edge to its destination event;

repeat the frequency-based selection and follow-the-edge process until the desired

length is obtained; go to the next EIG event. Stop when all EIG events have been

covered and all frequency ≥ N .

The above algorithm was guaranteed to stop because all faults had been seeded

in lines that were executable by the 2-way test cases; the count for each statement

would ultimately reach M and stop. Finally, all the ESIG-based test cases were

added to the pool.

In this study, N = 10 and M = 15. This choice was dictated by the availability

of resources. As described earlier, all the test cases needed to be executed on the
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fault-seeded versions of their respective application. Even with the 50-machines

cluster running the test cases in parallel, the entire process took over four months.

The total number of test cases per application is shown in Column 2 of Ta-

ble 4.7. The length distribution of the test cases is shown as a histogram in Fig-

ure 4.7. As expected, longer test cases were able to cover more EIG edges than the

short ones; hence fewer long test cases were needed to satisfy the coverage require-

ments.

After all the runs had completed, several matrices per application were ob-

tained: (1) the fault matrix, which summarized the faults detected per test case

and (2) for each coverage criterion (event, edge, statement), a coverage matrix,

which summarized the coverage elements covered per test case.

This test pool was then used to obtain coverage-adequate suites. For example,

event-adequate suites were obtained by maintaining sets of test cases that covered

each ESIG event. Test cases were selected without replacement from each set and

duplicates eliminated, ensuring that each event was covered by the resulting suite. A

similar process was used for edge and statement coverage. The process was repeated

100 times to yield 100 suites. The average size of the suites is shown in Columns

3–5 of Table 4.7.

Finally, TR was constructed using random selection without replacement en-

suring that the final size of TR was the same as that of the ESIG suite. A total

of 100 such suites per application were obtained. Similarly, each of the suites TE ,

TI , TS were augmented with additional test cases, selected without replacement at

random from the pool to yield TR+E , TR+I , TR+S , respectively. The sizes of all these
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Figure 4.7: Histograms of Test Case Lengths in Pool

suites, as expected, was equal to the size of the ESIG suite.

Note that the fault-detection effectiveness of each test suite can be obtained

directly from the fault matrix of the test pool without rerunning the test cases. The

results are shown in Figure 4.8 as distributions. The box-plots provide a concise

display of each distribution, each consisting of 100 data points. The line inside

each box marks the median value. The edges of the box mark the first and third

quartiles. The whiskers extend from the quartiles and cover 90% of the distribution;

outliers are shown as points beyond the whiskers. Visual inspection of the plots
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Test Pool TE TI TS TR, TR+E

Event Edge Stmt. TR+I , TR+S

Paint 119,583 103 190 123.64 2531

Present 231,680 50 264 18.24 2080

SpreadSheet 191,966 45 173 14.08 2069

Word 192,042 84 248 30.35 2345

Table 4.7: Test Pool and Average-Suite Sizes

shows that the fault-detection effectiveness of the ESIG-generated test suite (shown

as an asterisk) is better than that of individual similar-coverage and similar-sized

suites.

A single sample t-test was used to test for the significance of the difference

between the observed fault-detection of the ESIG suite and the mean of each distri-

bution. The null hypothesis is that the two values are not significantly different; the

alternate hypothesis is that they are significantly different. Note that a separate test

is needed per (mean of each distribution, fault-detection of the ESIG suite value)

pair. The resulting p-values were all more than 0.99. Hence the null hypothesis was

rejected and the alternate hypothesis was accepted; there is a significant difference

between fault-detection of the ESIG suite and the mean fault-detection of each of

the “similar” suites. Test cases that make up ESIG suite are better at detecting

faults compared to test cases that cover essentially the same events, edges, and

statements. This result helps to answer the primary question raised in this study.

4.3.4 Discussion

Now the details of why the ESIG-based test suites were able to detect more

faults than other test suites is presented. Specifically three related issues are going
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Figure 4.8: Fault Detection Distribution

to be considered: reachability, manifestation, and number of test cases. Note that

the first two issues are related to the RELAY model [46, 51] of how a fault causes a

failure on the execution of some test. Reachability is defined as the coverage of the

statement in which a fault was seeded, and manifestation as the fault leading to a

failure so that the GUI-based test oracle could detect it. As observed in [46], both

are necessary conditions for fault detection. The data in Figure 4.8 indicates that the

ESIG-based test suites were able to outperform their coverage-adequate equivalent

counterparts. Hence, they must have been more successful than their counterparts
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at the combination of reachability and manifestation of several faults. This behavior

is due to the nature of the ESI relationship, which is based on observed GUI state,

and hence the software’s output. Executing test cases that focus only on ESI events

increases the likelihood that a fault will be revealed on the GUI, and hence detected

by the GUI-based test oracle. Although this behavior is not attempted in great

detail here (indeed this is a direction for future research), some quantitative data

is presented to show evidence of this phenomenon by studying the test cases in the

pool.

Figure 4.9 shows data of the number of test cases that cover a fault-seeded

statement, and the number of test cases in the pool that detect it. The figure is

divided into four parts, one for each subject application. Each part is a 3-column

table (long tables are wrapped); Column 1 is the seeded fault number, corresponding

to a statement in which the fault was seeded; Column 2 is the number of test cases

that detected the fault; Column 3 is the number of test cases that did not detect the

fault even though they executed the fault-seeded statement; the fault number entry

is shaded if at least one ESI test case detected it. For example, the statement that

contained Fault 21 of Paint was executed by a total of 856 test cases, of which 11

detected it; the fault was detected by at least one ESI test case. On the other hand,

Fault 127 of Paint was not detected by any ESI test case; it was however detected by

42 of the total 42+267 test cases. Hence, a statement-coverage adequate test suite

would have a probability of 42
42+267

of detecting this fault (assuming that faults are

independent). The data in Figure 4.9 is in fact sorted by this probability, showing the

“hardness” of the fault for statement-coverage adequate test suites. This data helps
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158 1 1247 248 3 115 214 1 262 94 45 479 226 12 1130 156 126 2336
159 1 1173 255 3 115 215 21 4242 157 46 484 232 13 1048 209 68 1238

65 3 721 256 3 115 212 4 520 222 46 484 33 172 13445 157 131 2331
36 4 869 261 3 115 33 2 259 218 91 912 34 179 13438 158 130 2146
52 5 830 262 3 115 73 4 257 127 48 476 163 129 9679 88 4 65
64 5 772 42 10 381 61 6 255 177 49 481 233 14 1037 93 4 65
33 6 856 47 21 762 34 6 250 102 44 431 164 133 9675 210 74 1185
34 7 843 46 10 359 30 7 254 151 19 169 218 35 2429 211 74 1185
90 6 722 93 21 748 62 7 254 106 50 425 180 67 4512 212 70 1072

179 1 120 98 21 730 71 7 250 57 26 207 15 25 1681 155 167 2295
180 1 118 68 21 729 72 7 250 58 30 230 200 25 1681 159 175 2101
246 1 117 54 11 379 80 7 249 59 30 230 214 37 2427 102 5 57
249 1 117 45 12 383 32 8 253 105 54 411 220 37 2427 30 7 75
191 1 116 30 4 127 36 8 248 154 133 862 160 69 4510 66 6 63
192 1 116 31 4 127 38 8 248 198 107 601 161 70 4509 67 6 63

89 7 773 43 12 373 162 8 247 197 115 593 133 12 772 79 6 63
211 1 110 67 23 707 192 9 258 199 118 590 182 71 4508 80 6 63
212 1 110 124 3 89 216 10 282 182 45 217 230 17 1053 83 6 63

50 10 934 97 27 771 56 8 225 196 124 584 47 2 123 101 6 56
101 24 2206 41 15 402 29 9 252 76 46 215 48 2 123 91 7 62
102 23 2093 87 5 127 161 131 3119 115 96 428 17 28 1678 76 7 55

85 8 720 73 28 703 40 25 580 89 103 421 28 311 18223 103 7 55
22 9 796 72 31 744 8 177 4086 48 53 210 231 19 1051 81 8 61
77 9 735 44 15 339 167 121 2780 47 54 209 8 57 3150 85 8 61
57 4 311 86 11 180 66 11 250 99 98 377 208 77 4224 25 10 72
21 11 845 14 1 15 75 11 250 159 682 2479 192 83 4496 29 10 72
51 13 874 120 15 220 166 138 3112 55 58 205 234 19 1025 114 12 72
56 5 331 32 10 122 194 23 517 152 715 2446 32 19 1010 57 11 58
19 13 850 253 9 109 165 139 3111 123 106 357 39 87 4481 97 11 58
20 14 891 119 19 216 178 12 260 118 60 202 210 82 4219 116 14 70

177 2 125 259 11 107 185 12 255 122 63 199 2 206 10485 117 17 65
96 12 711 59 33 314 43 27 568 211 169 355 54 393 19389 118 20 64
55 6 354 58 36 337 6 198 4065 224 168 209 209 89 4212 120 21 62

100 12 704 123 25 207 5 177 3630 93 301 223 221 67 3140 121 21 62
247 2 116 128 39 270 9 206 4057 90 310 214 20 36 1670 160 54 153
250 2 116 127 42 267 7 208 4055 202 313 211 204 69 3138 115 27 57
260 2 116 134 853 3273 41 30 575 117 314 210 211 93 4208 119 30 54

76 14 781 178 28 99 85 220 4043 201 322 202 41 34 1512 32 76 100
26 2 108 229 28 98 12 223 4040 203 332 192 38 105 4463 6 122 129
18 18 920 200 357 372 16 32 573 200 333 191 191 74 3100 24 56 28
66 15 764 136 747 446 78 228 4035 147 933 325 45 3 122 122 60 24
69 14 688 137 557 260 187 29 508 148 936 322 130 20 786
37 17 834 104 26 439 5 84 3123
74 16 755 17 34 571 53 53 1916
75 15 707 229 75 1216 224 10 300
92 15 698 221 32 498 37 20 576
71 15 696 96 32 492 55 68 1074
99 17 769 137 15 229 225 201 3006

125 2 90 153 267 3996 56 76 1066
126 2 90 95 33 491 36 44 569

84 17 762 184 35 495 44 17 164
48 16 717 52 18 245 18 237 1469
80 16 714 227 37 490 229 738 404
94 16 705 111 37 487 30 745 397
83 16 704 186 37 487 228 746 396
82 17 743 150 13 168 42 1030 516
79 17 719 82 39 491 43 1030 516
88 1 42 158 39 491 31 746 362
81 16 664 226 39 491 132 615 191
70 18 746 225 41 489 131 618 188
91 18 738 128 41 483 78 546 157

251 2 82 156 57 668 79 546 157
252 2 82 220 42 488 75 1155 330

17 24 978 108 38 437 136 1161 324
78 19 762 176 44 486 135 614 170
95 19 761 219 84 919 134 615 169

245 3 115 79 45 485 76 1088 296
77 544 137

SpreadSheetPaint Present Word

Figure 4.9: Test Cases Covered Faulty Statements and Their Fault Detection.
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better interpret the results of Figure 4.8. First, the ESI test suites did detect many

of the seeded faults. Second, they did better than TS because they detected many of

the “hard” faults (this was most apparent in Paint and SpreadSheet). Third, some

faults were detected by many of the test cases that executed the statement. For

example, Fault 136 in Paint was detected by 747 of the total (747+446) test cases

that executed the statement in which it was seeded. The fault was seeded in the

handler of a termination event that closes the Attributes window and applies the

attributes (if any have changed) to the current image on the main canvas. The seeded

fault caused the image size to be computed incorrectly, resulting in an incorrectly

sized image whenever at least one attribute in the Attributes window is modified

by the user. Because there are many permutations of modifying the attributes, a

large number of test cases are able to detect this fault (12 in the ESIG test suite

and 735 in the rest of the test pool). In general, statement coverage adequate test

suites do really well for these types of faults that can be triggered in many different

ways.

Fourth, several faults were detected by very few test cases. Fault 34 of Paint

is an example. This fault flips the conditional statement in an event handler of a

type of curve tool. The condition is to check whether the curve tool is currently

selected; if yes, then the curve stroke is set according to the selected line type for

the curve tool. Due to the fault, the curve stroke is incorrectly set, resulting in

an incorrect image to be drawn on the main canvas only when the event sequence:

< Select CurveTool ; Select Line Type; Draw On Canvas > is executed. If the first

two events are not executed, then Draw On Canvas does not trigger the fault even
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if the statement containing the seeded fault is executed. Hence, although there are

many test cases that cover the faulty statement (850), only 7 test cases in the test

pool detected the fault. One of them is the ESI test case; ESI-relationships were

found between the three events. In general, statement coverage adequate test suites

do not do well for faults that are executed by many event sequences but manifest

as failures in very few cases.

The size of a suite seems to play a very important role in fault-detection.

Indeed, the TR test suites, which were the same size as the ESIG-based suites, did

better (in most cases) than their coverage-adequate counterparts. This behavior is

probably an artifact of the density of the fault matrices. A large number of test

cases are successful at detecting many “easy” faults. Even if test cases are selected

at random, given adequate numbers, they will be able to detect a large number

of these easy faults. For example, given 192,042 test cases in the pool for Word

and the size of TR being 2345, the probability that Fault 24, which is detected by

more than 84 test cases in the pool, is detected by at least one test case in TS is

0.49 – this is quite high. In Figure 4.10, the probability that a random suite of its

corresponding ESI-suite size would detect a particular fault is shown. This data

shows that many of these difficult faults are detected by at least one ESIG-based

test case, improving their fault-detection effectiveness. Moreover, 16 faults in Word

have a detection probability of more than 0.25. This number is much larger for the

other three applications, helping to understand why TR and the other suites that

included randomly selected test cases did so well.

Finally, to examine why some of the faults were not detected, each fault was
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158 0.0212 41 0.2745 214 0.0090 156 0.4020 47 0.0214 88 0.0480
159 0.0212 44 0.2745 33 0.0179 157 0.4073 48 0.0214 93 0.0480
179 0.0212 120 0.2745 73 0.0354 222 0.4179 45 0.0320 102 0.0596
180 0.0212 74 0.2899 212 0.0354 218 0.4335 224 0.1027 66 0.0711
246 0.0212 48 0.2899 34 0.0527 127 0.4916 226 0.1219 67 0.0711
249 0.0212 80 0.2899 61 0.0527 177 0.5313 133 0.1219 79 0.0711
191 0.0212 94 0.2899 30 0.0612 102 0.5599 232 0.1314 80 0.0711
192 0.0212 83 0.2899 62 0.0612 151 0.5793 233 0.1408 83 0.0711
211 0.0212 81 0.2899 71 0.0612 106 0.5869 230 0.1683 101 0.0711
212 0.0212 37 0.3049 72 0.0612 57 0.6051 44 0.1683 30 0.0824

88 0.0212 99 0.3049 80 0.0612 58 0.6156 231 0.1861 91 0.0824
14 0.0212 84 0.3049 32 0.0696 59 0.6191 234 0.1861 76 0.0824

177 0.0419 82 0.3049 36 0.0696 105 0.6456 32 0.1861 103 0.0824
247 0.0419 79 0.3049 38 0.0696 154 0.6551 130 0.1949 81 0.0936
250 0.0419 18 0.3196 56 0.0696 198 0.6643 37 0.1949 85 0.0936
260 0.0419 70 0.3196 162 0.0696 197 0.6733 15 0.2373 25 0.1156

26 0.0419 91 0.3196 29 0.0780 199 0.6933 200 0.2373 29 0.1156
125 0.0419 78 0.3340 192 0.0780 182 0.6987 17 0.2617 57 0.1264
126 0.0419 95 0.3340 216 0.0862 196 0.7120 41 0.3082 97 0.1264
251 0.0419 119 0.3340 66 0.0944 76 0.7146 218 0.3157 114 0.1371
252 0.0419 47 0.3619 75 0.0944 115 0.7803 20 0.3230 116 0.1580

65 0.0622 93 0.3619 178 0.1026 89 0.7823 214 0.3303 117 0.1885
245 0.0622 98 0.3619 185 0.1026 48 0.7975 220 0.3303 118 0.2179
248 0.0622 68 0.3619 150 0.1106 47 0.7975 36 0.3793 120 0.2274
255 0.0622 102 0.3886 137 0.1265 99 0.8324 53 0.4370 121 0.2274
256 0.0622 67 0.3886 52 0.1498 159 0.8441 8 0.4609 115 0.2823
261 0.0622 101 0.4016 151 0.1575 55 0.8469 180 0.5162 119 0.3083
262 0.0622 17 0.4016 215 0.1725 152 0.8626 221 0.5162 160 0.4850
124 0.0622 123 0.4143 194 0.1873 123 0.8663 55 0.5215 24 0.4975

36 0.0820 97 0.4388 40 0.2019 118 0.8722 160 0.5266 122 0.5216
57 0.0820 73 0.4507 57 0.2090 122 0.9101 204 0.5266 209 0.5664
30 0.0820 178 0.4507 104 0.2090 211 0.9339 161 0.5317 212 0.5769
31 0.0820 229 0.4507 43 0.2161 224 0.9390 182 0.5368 210 0.5972
52 0.1014 72 0.4848 187 0.2301 93 0.9407 191 0.5516 211 0.5972
64 0.1014 59 0.5064 41 0.2371 90 0.9412 56 0.5612 32 0.6070
56 0.1014 58 0.5371 58 0.2371 202 0.9453 208 0.5659 6 0.7767
87 0.1014 128 0.5659 59 0.2371 117 0.9500 210 0.5888 156 0.7874
33 0.1205 127 0.5929 16 0.2507 201 0.9505 192 0.5933 158 0.7976
90 0.1205 200 0.9995 96 0.2507 203 0.9979 5 0.5977 157 0.8001
55 0.1205 137 1.0000 221 0.2507 200 0.9984 39 0.6105 155 0.8716
34 0.1391 136 1.0000 95 0.2574 147 0.9998 209 0.6189 159 0.8836
89 0.1391 134 1.0000 17 0.2641 148 0.9998 211 0.6351
85 0.1573 184 0.2707 38 0.6796
22 0.1751 111 0.2837 163 0.7530
77 0.1751 186 0.2837 164 0.7635

253 0.1751 227 0.2837 33 0.8451
50 0.1926 108 0.2902 34 0.8564
42 0.1926 82 0.2965 225 0.8869
46 0.1926 158 0.2965 2 0.8928
32 0.1926 226 0.2965 18 0.9235
21 0.2097 128 0.3091 28 0.9657
54 0.2097 225 0.3091 54 0.9859
86 0.2097 220 0.3153 77 0.9973

259 0.2097 102 0.3276 78 0.9973
96 0.2264 176 0.3276 79 0.9973

100 0.2264 79 0.3336 135 0.9987
45 0.2264 94 0.3336 132 0.9987
43 0.2264 182 0.3336 134 0.9987
51 0.2428 76 0.3396 131 0.9988
19 0.2428 157 0.3396 229 0.9997
20 0.2588 222 0.3396 30 0.9997
76 0.2588 127 0.3514 228 0.9997
69 0.2588 177 0.3572 31 0.9997
66 0.2745 106 0.3630 42 1.0000
75 0.2745 48 0.3800 43 1.0000
92 0.2745 47 0.3856 76 1.0000
71 0.2745 105 0.3856 75 1.0000

136 1.0000

Paint Present SpreadSheet Word

Figure 4.10: Probability of Detecting Faults by Random Test Cases.
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Ignored Widget Non-GUI Longer Masked Crash Total

Properties Failure Sequence Error

Paint 0 0 1 6 0 7
Present 13 0 4 0 0 17

SpreadSheet 9 2 8 5 3 27
Word 5 0 4 11 0 20

Table 4.8: Undetected Faults Classification

manually examined. It is determined that:

1. several of the faults were in fact manifested as failures on the GUI but the test

oracle was not capable of examining these parts of the GUI,

2. very few faults caused failures in non-GUI output,

3. several of the undetected faults require even longer sequences,

4. the effect of several faults was masked by the event handler code even before

the test oracle could detect it,

5. some faults crashed their corresponding fault-seeded version.

The numbers of these faults are shown in Table 4.8. The large number of

“Ignored Widget Properties” shows the need to improve the test oracles for future

work.

This controlled study showed that the automatically identified ESI relation-

ships between events generate test suites that detect more faults than their code-,

event-, and event-interaction-coverage equivalent counterparts. Moreover, several of

the missed faults remained undetected because of limitations with the automated

GUI-based test oracle, and others required even longer sequences.

85



4.4 Summary

This chapter presented the feedback-directed ESIG-based approach to gener-

ate test cases that test multi-way interactions among GUI events. It was based

on analysis of feedback obtained from the run-time state during initial seed suite

execution. The approach was studied via two independent studies on eight GUI ap-

plications. The results of the first study showed that the test cases generated using

feedback were useful at detecting serious and relevant faults in the applications. The

second study related the effectiveness of the ESIG-based test suite and compared

it to the EIG-based suites. It also showed that the added effectiveness of the ESIG

suite is due to targeted testing of the identified ESI relationships, not an incidental

side-effect of the size of the suite, nor the additional events and code that it covers.

However, as one can see from the studies, although better than the exhaustive

approach and EIG-based approach, the number of test cases required for the ESIG-

based technique also grows exponentially with the length for most applications,

making it difficult to test 5-way and above interactions. Another observation from

the studies is that there are certain number of unexecutable test cases in the seed

suite generated from the EIG (shown in Table 4.9). Careful examination reveals

that many unexecutable seed suite test cases are due to disabled widget that could

not be executed.

These two weaknesses are addressed in the next chapter by a new approach

that significantly improves upon the ESIG-based approach by generating test cases

“in batches.” The first batch consists of all possible 2-way covering test cases,
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Length FreeMind GanttProject jEdit OmegaT

2-way 45,026 46,848 24,194 7318

Table 4.9: Unexecutable Test Cases

generated automatically using the existing EIG model of the GUI. This batch is

executed and the observed execution behavior of the GUI, captured in the form

of widgets and their properties, is used to selectively extend some of the 2-way

test cases to 3-way test cases via the ESI relations. The new 3-way test cases are

subsequently executed, GUI execution behavior is analyzed, and some are extended

to 4-way test cases, and so on. In general, the new “alternating approach” (called

ALT) executes and analyzes i-way covering test cases, identifying sets of events

that interact in interesting ways with one another (and hence should be tested

together), and generates (i+1)-way covering test cases for members of each set.

Hence ALT generates “longer” test cases that expand the state space to be explored,

yet pruning the “unimportant” states. A side-effect of the batch-style nature of this

new approach is that certain aspects of GUI test cases that are revealed only at

run-time and impossible to infer statically, e.g., infeasible test cases, are also used

to enhance the next batch.
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Chapter 5

Alternating Test Case Generation and Execution

This chapter presents ALT, the second feedback-directed test case generation

approach. It generates GUI test cases in batches, by leveraging GUI run-time in-

formation from a previously run batch to obtain the next batch. Each successive

batch consists of “longer” test cases that expand the GUI state space to be explored,

yet prune the “unimportant” states. The “alternating” nature of ALT allows it to

enhance the next batch by leveraging ESI relationships and enable-disable relation-

ships between GUI events that are revealed only at run-time and non-trivial to infer

statically.

An overview of ALT is first presented through the “Radio Button Demo” GUI

example that was used to illustrate the ESIG-based approach earlier. Then, the ALT

test case generation algorithm is discussed followed by an empirical study.

5.1 Overview of ALT

The first three steps of applying ALT for GUI testing are as same as those

used in the ESIG-based technique described in Section 4.1. Recall that (1), the

EIG model of the GUI is created, (2) 2-way covering test cases are generated and

executed, and (3) ESI relationships between event pairs are identified automatically.

Three relations that were found earlier are: e2
5.1(1)−→ e6, e6

5(1)−→ e2, and e3
12(1)−→ e5.
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The subsequent steps (starting at step #4) of ALT are as follows:

(4)Generate 3-way test cases. The first two ESI relationships are used to extend

two of the 2-way covering test cases < e2; e6 > and < e6; e2 > to < e2; e6; e2 > and

< e6; e2; e6 >, respectively. This is due to the nature of these particular relationships

– the ending event in one ESI relationship is the starting event in the other. In this

example, e2
5.1(1)−→ e6 and e6

5(1)−→ e2 are connected by e6, and e6
5(1)−→ e2 and e2

5.1(1)−→ e6

are connected by e2, therefore, they are used to generate 3-way test cases.

ALT uses the “enabling” ESI relationship e3
12(1)−→ e5 to augment all the 2-way

covering test cases that started with e5 but remained unexecutable earlier. The

new 3-way test cases are obtained by appending a prefix < e3 > to all the 2-way

covering test cases that start with e5, thereby yielding: < e3; e5; e1 >, < e3; e5; e2 >,

< e3; e5; e3 >, < e3; e5; e4 >, < e3; e5; e5 >, < e3; e5; e6 >, and < e3; e5; e7 >.

These test cases give a tester an opportunity to observe the effect of e5, previously

unexecuted, on other all events that can potentially follow e5.

(5) Execute the new 3-way test cases, obtain new ESI relations, and generate 4-way

test cases. All the GUI states after each event are recorded. This step computes new

ESI relations by splitting each 3-way covering test case < ex; ey; ez > into two parts:

< ex; ey > and ez; the former is conceptually treated as a single macro event EX and

used as input to the existing predicates; the resulting ESI relation is now between

EX (which is really the event sequence < ex; ey >) and event ez. The “splitting”

of the test case is designed in the above fashion very carefully so that the EX part

would already have been executed in the earlier batch, thereby requiring no new

execution.
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Consider the event sequence < e3; e5; e6 >. This is rewritten as < EX ; e6 >,

with EX being < e3; e5 >; the semantics of EX can be imagined as “enter a custom

color in an enabled text-field w5”; the ESI predicates are applied. So, EX influences

e6. Event e6 alone from the initial state renders an empty circle in the Rendered

Shape area. However, executing EX before e6 changes its behavior, yielding a filled

circle instead. Hence, predicate Case 5.1 (described in Section 3.3) applies; <

e3; e5 >
5.1(1)−→ e6.

Because < e3; e5 >
5.1(1)−→ e6 and e6

5(1)−→ e2 (as computed earlier), < e3; e5; e6 >

is extended to the 4-way test case < e3; e5; e6; e2 >.

None of the other 3-way test cases are extended because the predicates do not

apply.

(6) Execute the new 4-way test cases, obtain new ESI relations, and generate 5-way

test cases. The sole 4-way test case < e3; e5; e6; e2 > is rewritten as < EX ; e2 >;

hence the semantics of EX are now “enter a custom fill color and create the shape.”

Note that due to the nature of the splitting, EX has already been executed earlier;

hence its resulting state is already available for analysis.

It is determined that < e3; e5; e6 >
5(1)−→ e2. And as it is already known that

e2
5.1(1)−→ e6, only one 5-way covering test case is generated < e3; e5; e6; e2; e6 >.

(7) Execute the new 5-way test case, obtain new ESI relations, and generate 6-way

covering test cases. No new ESI relations are found; hence ALT terminates.

In all, 37 two-way, 9 three-way, 1 four-way, and 1 five-way test cases were

generated in this example.

Let’s informally examine how the 48 test cases executed the code of the simple
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1 RBExample : : C i r c l eAct i on ( ActionEvent evt ) {
2 2�222 currentShape = SHAPE CIRCLE ;
3 2�222 i f ( c r ea ted ) {
4 2�222 imagePanel . setShape ( currentShape ) ;
5 2�222 imagePanel . r epa in t ( ) ; } }

e1’s Event Handler

1 RBExample : : SquareAction ( ActionEvent evt ) {
2 2�2�2�2� currentShape = SHAPE SQUARE;
3 2�2�2�2� i f ( c r ea ted ) {
4 2�2�2�2� imagePanel . setShape ( currentShape ) ;
5 2�2�2�2� imagePanel . r epa in t ( ) ; } }

e2’s Event Handler

1 RBExample : : ColorAction ( ActionEvent evt ) {
2 2�2�2�2� co lo rText . s e tEd i t ab l e ( true ) ;
3 2�2�2�2� cur rentCo lor = getCo lor ( ) ;
4 2�2�2�2� i f ( c r ea ted ) {
5 2�222 imagePanel . s e tF i l l C o l o r ( cur rentCo lor ) ;
6 2�222 imagePanel . r epa in t ( ) ; } }

e3’s Event Handler

1 RBExample : : NoneAction ( ActionEvent evt ) {
2 2�222 co lo rText . s e tEd i t ab l e ( f a l s e ) ;
3 2�222 cur rentCo lor = COLORNONE;
4 2�222 i f ( c r ea ted ) {
5 2�222 imagePanel . s e tF i l l C o l o r ( cur rentCo lor ) ;
6 2�222 imagePanel . r epa in t ( ) ; } }

e4’s Event Handler

1 RBExample : : CreateAction ( ActionEvent evt ) {
2 2�2�2�2� i f ( c o l o r . i s S e l e c t e d ( ) ) {
3 2�2�2�2� cur rentCo lor = getCo lor ( ) ; }
4 2�2�2�2� imagePanel . s e tF i l l C o l o r ( cur rentCo lor ) ;
5 2�2�2�2� imagePanel . setShape ( currentShape ) ;
6 2�2�2�2� imagePanel . r epa in t ( ) ;
7 2�2�2�2� c r ea ted = true ; }

e6’s Event Handler

Figure 5.1: Some Source Code for the “Radio Button Demo” GUI - Part 1.
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1 RBExample : : ResetAction ( ActionEvent evt ) {
2 2�222 square . s e t S e l e c t e d ( true ) ;
3 2�222 none . s e t S e l e c t e d ( true ) ;
4 2�222 co lo rText . setText ( ‘ ‘ black ’ ’ ) ;
5 2�222 co lo rText . s e tEd i t ab l e ( f a l s e ) ;
6 2�222 currentShape = SHAPE NONE;
7 2�222 imagePanel . setShape ( currentShape ) ;
8 2�222 cur rentCo lor = COLORNONE;
9 2�222 imagePanel . s e tF i l l C o l o r ( cur rentCo lor ) ;

10 2�222 imagePanel . r epa in t ( ) ; }

e7’s Event Handler

1 ImagePanel : : paintComponent ( Graphics g ) {
2 2�2�2�2� c l e a r ( g ) ;
3 2�2�2�2� Graphics2D g2d = ( Graphics2D ) g ;
4 2�2�2�2� i f ( currentShape == SHAPE CIRCLE) {
5 2�2�2�2 i f ( cur rentCo lor == COLORNONE) {
6 2�2�22 g2d . s e tPa in t ( Color . b lack ) ;
7 2�2�22 g2d . draw( c i r c l e ) ; }
8 2�2�2�2� e l s e {
9 2�2�2�2� g2d . s e tPa in t ( cur rentCo lor ) ;

10 2�2�2�2� g2d . f i l l ( c i r c l e ) ; } }
11 2�2�2�2� e l s e i f ( currentShape == SHAPE SQUARE) {
12 2�2�2�2 i f ( cur rentCo lor == COLORNONE) {
13 2�2�22 g2d . s e tPa in t ( Color . b lack ) ;
14 2�2�22 g2d . draw( square ) ; }
15 222�2� e l s e {
16 222�2� g2d . s e tPa in t ( cur rentCo lor ) ;
17 222�2� g2d . f i l l ( square ) ; } } }
18 ImagePanel : s e tF i l l C o l o r ( i n t inputCo lor ) {
19 2�2�2�2� switch ( inputCo lor ) {
20 22�2�2� case COLOR BLACK:
21 22�2�2� cur rentCo lor=Color . b lack ;
22 22�2�2� break ;
23 22�2�2� case COLOR RED:
24 22�2�2� cur rentCo lor=Color . red ;
25 22�2�2� break ;
26 22�2�2� case COLOR GREEN:
27 22�2�2� cur rentCo lor=Color . green ;
28 22�2�2� break ;
29 2�2�2�2� de f au l t :
30 2�2�2�2� cur rentCo lor=Color . gray ; } }

The ImagePanel Class

Figure 5.2: Some Source Code for the “Radio Button Demo” GUI - Part 2.
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application. Figure 5.1 and 5.2 show the event-handler code as well as some helper

methods. The event handlers of e2, e3 and e6 have been shown in Section 3.2;

more are given here with statement coverage information. The statement coverage

is summarized as a vector of 4 checkboxes 2�2�2�2� associated with each statement.

The first box is checked if any of the 2-way test cases executed the corresponding

line of code; similarly, the second box is for 3-way test cases; third for 4-way, and

fourth for 5-way test cases. For example, in the ImagePanel class code, lines 16 and

17 were executed only by 4- and 5-way test cases.

There are several points to note about the code and statement coverage. First,

each event has a programmer-defined event handler (w5, which requires no custom

functionality, is the exception). Second, the code is implemented in two classes

RBExample and ImagePanel – any code-based analysis must account for interac-

tions across classes. As shown in the previous chapter, several failures are due to

incorrect interactions across classes. Third, event handlers interact either directly or

indirectly by using shared variables (e.g., currentShape, created, currentColor)

or via method calls (e.g., setFillColor()). Detecting such interactions at the

code level, especially across classes, is non-trivial. Fourth, while many statements

are covered by all types of test cases (e.g., Lines 2-4 in the ImagePanel class are

executed by 2-, 3-, 4-, and 5-way test cases), a few statements that are guarded by

a series of conditional statements are executed by very few test cases (e.g., Lines 16

and 17 in the ImagePanel class are executed by the sole 4-way and 5-way test case

but was missed by the other 46 test cases.) Finally, although not evident by state-

ment coverage, the 4- and 5-way test cases are able to exercise several combinations
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of control-flow that are only partially covered by the 2- and 3-way test cases.

The above discussion of code coverage is in no way meant to be a formal

analysis of the code-covering ability of the ALT test cases. However, it helps to

highlight some important aspects of GUI testing that may be investigated in future

research.

5.2 The ALT Algorithm

The steps of ALT are now formalized by presenting an algorithm. Intuitively,

the algorithm takes an i-way covering test suite as input, in which each test case

is fully executable, splits each of its i-way covering test cases < e1; e2; . . . ; ei > into

two parts: (1) a macro event EX = < e1; e2; . . . ; ei−1 > and (2) the last event ei.

If EX and ei are related via an ESI relationship, then for each event ex that ei is

ESI related to, a new (i+1)-way covering test case < e1; e2; . . . ; ei; ex > is added

to the suite. An extra step handles previously unexecuted events. This approach

preserves the property of the earlier ESIG-based test cases that each pair of adjacent

events are related via an ESI relation. It imposes a stronger condition that each

preceding sequence starting from the first event is also ESI-related to its subsequent

event. Moreover, the alternating approach allows the detection of new ESI relations

between newly generated sequences and newly enabled events.

Several helper functions are assumed to be available: (1) FindState(S0, Ei)

that returns the state of the GUI after event sequence Ei has been executed on

it, starting in state S0, (2) isRelated(S0, S1, S2, S3) that returns TRUE if at least
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PROCEDURE::ALT(Ti){
//Ti is the i-way covering test suite.

//Ti+1 is the output (i + 1)-way covering test suite.

S0= GUI’s Initial state; Ti+1 = φ; 1

foreach test case tc ∈ Ti do 2

EX = SubSequence(tc, 1, Length(tc)-1); 3

ej = Last(tc); 4

S1 = FindState(S0, EX); 5

S2 = FindState(S0, < ej >); 6

S3 = FindState(S0, tc); 7

if isRelated(S0, S1, S2, S3) 8

foreach ex ∈ pairESI(ej) do 9

newtc = < EX ; ej ; ex >; 10

Ti+1 = Union(Ti+1, newtc); 11

if wasNeverExecuted[ej] 12

foreach ex ∈ pairEIG(ej) do 13

newtc = < EX ; ej ; ex >; 14

Ti+1 = Union(Ti+1, newtc); 15

wasNeverExecuted[ej] = FALSE 16

return Ti+1; 17

}

Figure 5.3: The ALT Algorithm

one of the ESI predicates evaluates to TRUE, (3) pairESI(ei) that returns the set

of all events that are ESI-related to ei, (4) pairEIG(ei) that returns the set of all

events that have an incoming edge from ei in the EIG, (5) Last(tc) that returns

the last event in test case tc, (6) SubSequence(tc, first, last) returns a subsequence

of tc starting at first and ending at last, (7) Length(tc) returns the number of

events in tc, and (8) Union(Ti, tc) adds tc to Ti avoiding duplicates. Also, an array

wasNeverExecuted, indexed by each event, is set to TRUE if the event was disabled

in the GUI’s initial state S0; otherwise it is set to FALSE.

The algorithm is shown in Figure 5.3. It takes the i-way test suite (Ti) as input

and returns the (i+1)-way test suite. Each test case is broken into two parts (lines

3–4). If the first “Length(testcase) − 1” events (EX) of the test case yield a state
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that is related via the ESI relationship (determined by the isRelated predicate),

to its last event (ej) (Line 8), then this test case is a good candidate for extension

by a new event with all events to which it is ESI related (Lines 9–11). If the last

event (ej) has never been executed before but is made executable by EX , then it

is re-executed to compute new ESI relations (Lines 12–15). The output is the new

i+1-way covering test suite.

The algorithm is invoked for T2, which is obtained from the EIG. Each subse-

quent invocation with an i-way covering test suite (Ti) as input yields the (i+1)-way

covering suite (Ti+1). Testing can be stopped once the testing goals have been met

(or the testing team runs out of resources) or ALT returns an empty test suite. This

can be if BOTH of the following happen:

1. no new ESI relations are found (i.e., isRelated(S0, S1, S2, S3) returns FALSE on

Line 8) or ej is not ESI-related to any other event (i.e., pairESI(ej) returns

an empty set in Line 9).

2. ej has already been executed in an earlier batch or was enabled in S0.

This algorithm is fairly conservative in the number of test cases that it gen-

erates. Lines 8-9 provide a strict condition to test case extension, i.e., not only

must EX by ESI-related to ej , event ej must also be ESI-related to at least one or

more events, i.e., pairESI(ej) returns a non-empty set. Moreover, it is observed

in the experiments that most events have been executed by the second iteration of

the algorithm; hence, Lines 12–15 are rarely executed beyond T3. Because ALT is

intended to be one of many algorithms that a tester should have in the “testing
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tool-box,” having fewer test cases from ALT would help a test designer to conserve

resources that may be redirected to other testing techniques, thereby yielding a

“healthy” mix of test cases from several techniques.

One final point to note is the use of the function FindState(S0, Ei). This

function maintains a lookup-table to return its output; the table is populated during

test case execution; it is important that all entries exist. Entries corresponding to

the three invocations of this function on Lines 5–7 are guaranteed to exist – for the

invocation on Line 5, EX was executed in a previous batch, for Line 6, ej is a single

event, whose resulting state was stored during the execution of the 2-way test cases,

for Line 7, tc was executed in the current batch.

5.3 Empirical Study of ALT Approach

The test cases obtained from the ALT algorithm can be generated and executed

automatically on the GUI. As done earlier in Section 4.2, the fully automatic “crash

testing” was applied in this study.

5.3.1 Research Questions

This process provided a starting point for a feasibility study to evaluate the

ALT test cases and compare them to the ESIG-generated test cases. The following

questions needed to be answered to determine the usefulness of the overall feedback-

directed process:

C5Q1: How many test cases does ALT generate? How does this number compare
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to the EIG- and ESIG-based approaches?

C5Q2: How many faults are detected by ALT? Of the faults detected in this study,

which are detected by ALT and which by the ESIG-based approach? Why does one

approach detect a particular fault whereas the other one misses it?

5.3.2 Process and Results

This study was conducted using the same four GUI-based OSS applications

used in Study 1 described in Section 4.2. The fully-automatic crash testing process

was executed on them and the cause (i.e., the fault) of each crash in the source code

was determined. More specifically, the following process was used for this study:

1. Choose software subjects with GUI front-ends.

2. Generate and execute the 2-way covering test suite.

3. Obtain the ESI relationships.

4. Generate new test suite using the algorithm of Figure 5.3. If the test suite is

empty then stop; else execute it and report crashes. Repeat until ALT returns

an empty test suite.

Step 1, 2 and 3 in the process have already been completed as part of the

study reported in Section 4.2. Subsequent steps are described:

STEP 4: Execution of ALT algorithm. The initial set of ESI relations was used

to obtain the 3-way test cases. The number of test cases is shown in Table 5.2. Note

that the number for EIG and ESIG have been shown in Figure 4.4 in the logarithmic

format. Here detailed numbers are given for clearer comparison. These test cases
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Subject i-way Suites

Application 2 3 4 5 6

FreeMind 614 204 86 3 -

GanttProject 710 617 109 63 1

jEdit 591 419 54 38 -

OmegaT 469 310 11 - -

Table 5.1: ESI relationships

were executed and the algorithm was invoked again. This process continued until

ALT returned an empty test suite. Table 5.1 shows the number of ESI relations

obtained from each of the i-way suites, for i = 2 . . . 6 (the data for 2-way test suites

has been shown in Table 4.2). For example, only one ESI relation was obtained from

the 6-way suite of GanttProject. A “-” indicates that there is no such an entry. As

the numbers show, the ESI relations decrease with each iteration, thereby helping

to terminate the ALT algorithm. This differed across applications: the experiment

went as high as 7-way covering test cases for GanttProject and 4-way covering test

cases for OmegaT. From these results, one can see that the total number of EIG-

generated test cases is simply too large (so large that they are represented using the

“exponent” notation to fit in the table). The 3-way ESIG-generated test suites are

manageable; 4-way and beyond becomes quite large. The parenthesized ESIG entries

are shown for comparison only – it was infeasible to execute such large numbers of

test cases; the others were generated and executed. On the other hand, the ALT

approach generates a reasonable number of test cases that goes down with each test

suite iteration. This helps to answer C5Q1.

Both ALT and the ESIG-approach were successful at detecting faults in the

applications, except OmegaT (only 2 faults were detected by the 2-way covering test
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i-way Suites

3 4 5 6 7

FreeMind

EIG 1.72e8 9.56e10 5.31e13 2.95e16 1.64e19

ESIG 10,208 (122, 426) (1, 690, 861) (21, 857, 767) (353,090,927)

ALT 10,208 2821 11 2 -

GanttProject

EIG 4.94e6 7.17e9 2.09e12 6.07e14 1.77e17

ESIG 3070 14,742 27,933 (63, 994) (125, 362)

ALT 3070 2229 226 34 4

jEdit

EIG 9.17e7 4.14e10 1.87e13 8.42e15 3.80e18

ESIG 7572 84,488 (1, 024, 424) (10, 225, 602) (105,931,205)

ALT 7572 1258 738 171 -

OmegaT

EIG 7.65e6 1.51e9 2.97e11 5.85e13 1.15e16

ESIG 2335 8935 42,859 (219, 415) (1, 135, 743)

ALT 2335 1440 - - -

Table 5.2: Test Cases Generation

cases for this application). These results are shown in Table 5.3. Each detected fault

is shown as a checkbox 2�, which is checked if the fault was detected; otherwise it is

unchecked. To allow easy comparison, the checkbox vector is shown (for the same

faults in the same order) for both ALT and ESIG. For example, faults 1, 2, and 3

in GanntProject were detected by both ESIG and ALT. Faults 4 and 5 were not

detected by ESIG; they were however detected by ALT, fault 4 by the 3-way test

suite and fault 5 by a 5-way covering suite. Clearly, ALT detected all the faults that

ESIG detected and some more using many fewer test cases. This helps to partly

answer C5Q2.

Now more details are provided for faults 4 and 5 of GanttProject, and Fault

3 of jEdit. These faults were not detected by the ESIG-based approach because

several events required a complex chain of enabling events, which could only be
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Subject
Technique

i-way test suite

Application 3 4 5

FreeMind
ESIG 2�2� - -

ALT 2�2� - -

GanttProject
ESIG 2�2�2�2 - 2

ALT 2�2�2�2� - 2�

jEdit
ESIG 2�2� 2 -

ALT 2�2� 2� -

OmegaT
ESIG - - -

ALT - - -

Table 5.3: Fault Detection

detected by alternating between test execution and generation.

Fault 4 in GanttProject results in a NumberFormatException. It is detected

by a 3-way test case <e1: Create new task; e2: Set general task property; e3: Set non-

integer value in task duration>. Event e3 causes GanttProject to crash because it ex-

pects an integer to be entered for the duration text-field in the task property window.

However, if a non-integer value is set, GanttProject redraws the task shown in its

schedule panel; the method getLength() invokes Integer.parseInt(durationFi-

eld1.getText().trim()) which throws a NumberFormatException.

In the GUI, event e1 enables e2, and the sequence < e1; e2 > enables e3. During

ALT test case generation, none of the 2-way test cases that started with e2 and e3

executed; however, the test case < e1; e2 > executed, indicating that e1 enables e2.

Lines 12–14 of the algorithm used this information to extend all 2-way covering test

cases that contained e2 by appending the prefix e1 to them; one important test case

was < e1; e2; e3 >.

In the first iteration of ALT, all 2-way covering test cases that started with

e3 remained unexecuted. Moreover, < e2; e3 > was also unexecuted. Hence, by this
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iteration, ALT did not know how to execute e3. In the second iteration, once the

above-generated 3-way covering test case < e1; e2; e3 > was executed, it was used to

determine that < e1; e2 > enables e3. Lines 12–14 used this information to obtain

new test cases for the third iteration.

The above 3-way test case was the shortest and only sequence needed to reveal

this fault starting in state S0; none of the 2- and other 3-way test case could have

detected it.

Fault 5 in GanttProject results in a NullPointerException. It is detected by a

5-way covering test case <e1: Create new task; e4: Custom columns; e5: Add columns

(with a name); e6: Select newly created column in column table; e7: Delete column>.

Once again, the enabling relationship is complex – e1 enables e4, < e1; e4 > enabled

e5, < e1; e4; e5 > enables e6 and e7. One important thing to note is that it cannot

be detected by any other 5-way or lower test case.

Fault 3 in jEdit results in a NullPointerException. It is detected by the 4-way

covering test case < e1: Download QuickNotepad plugin; e2: Select QuickNotepad

plugin; e3: Install QuickNotepad plugin; e4: Choose QuickNotePad file>. After

installing the QuickNotepad plugin, jEdit allows the user to open a file by entering

its path in a text-field. The user is free to enter any string in this text-field, including

an incorrect path or the name of a non-existing file. Hence, when opening a non-

existing file in QuickNodePad (e4), the NullPointerException is thrown. In this test

case, e1 enables e2, < e1; e2 > enabled e3; hence the < e1; e2; e3 > part of the test case

was generated by Lines 12–14 of the ALT algorithm. Finally, < e1, e2, e3 >
5(2)−→ e4;

Lines 8–11 of the ALT algorithm add the event e4. In this example, it is clear that
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the combination of the enabling and ESI parts of ALT was important to obtain the

test case.

5.3.3 Discussion

This study demonstrated that ALT test cases are able to detect all the ESIG-

detected faults, as well as some additional faults, using fewer test cases. Among

the three faults that were discussed, one important thing to know is that the test

cases that detected them were the shortest sequences needed to reveal the faults.

Moreover, the ESIG-based approach could not detect them because of its inability

to handle disabled events. An alternative algorithm, based on a random walk of the

EIG, would have a very low probability of generating the fault-revealing test cases,

for example, 1
4.94e6

probability for Fault 4 of GanttProject. (Recall that the total

number of 3-way sequences from the EIG is 4.94e6 for GanttProject.)

The event handlers in the fault-revealing test cases were distributed across

multiple classes. For example, for GanttProject, e1 was in the NewTaskAction class;

{e2, e3, e4} were in GanttDialogProperties; {e5, e6, e7} were in GanttTreeTable.

Similarly, for jEdit, e1 was in the PluginManager class, {e2, e3} in PluginList, and

e4 in BeanShell. As mentioned earlier, interactions across classes are difficult to

infer statically; the run-time-state-based techniques are agnostic to how the event

handlers are distributed.
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5.4 Summary

This chapter presented the second feedback-directed test case generation ap-

proach that generates multi-way covering test cases by alternating generation and

execution. It is based on analysis of the run-time state of GUI widgets obtained from

a previous test batch to obtain a new batch; the process cycles through test case

generation, execution, and analysis. The existing 2-way covering test cases are used

as a starting point for GUI state collection. Subsequently-generated-and-executed

test cases are used for the analysis, iteratively yielding additional test cases; no extra

test cases are needed. The approach was demonstrated via an empirical study on

four OSS applications. The results of the study showed that the test cases generated

using the GUI state were useful at detecting serious faults in the applications; the

alternating nature of the technique helped to detect complex enabling relationships

between events.
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Chapter 6

Exploration of Covering Array Sampling-Based Test Case Generation

As mentioned earlier, the graph-traversal-based test case generation algorithm

GenTestCases was used for the EIG and ESIG-based approaches. The algorithm is

straightforward; all possible paths of a specific length are generated from the graph

model. As seen in Chapter 4 and Chapter 5, for the EIG model, it was practical to

generate 2-way test cases. For the ESIG model, multi-way test cases up to length 5

were generated; longer test cases were impractical. To improve this situation, this

chapter explores a new GUI test case generation technique that reduces the number

of test cases, yet provides the desired t-way (e.g., t=2, 3, 4, 5) coverage.

A naive approach to achieve this goal is to generate longer sequences of test

cases by simply concatenating shorter sequences together. This will reduce the

number of test cases (in the case of using length-nine sequences, one might reduce

the number of test cases of a 3-way covering by one third), but it may cause other

unintended problems. There are three primary technical challenges that must be

overcome. First, as events execute differently in different states, the same event,

ei, found in two different locations in a sequence may behave differently depending

on which sequence of events has previously been executed. If concatenating shorter

sequences together, it is no longer guaranteed that all of the original t-way sequences

behave independently; their behavior depends on their start state. The consequence
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is that not all t-way events from a given state may be tested. This will reduce the

observed t-way coverage. Second, when combining sequences, it must be considered

that GUI events have complex dependencies (e.g., one enables/disables another)

and strict structural constraints (e.g., the event Printer Properties in the Print

window can be executed only after the Print window is open), one cannot simply

concatenate different sequences together to obtain a single executable test case.

Third, one should not enforce a restriction on sequence lengths, such that they must

be a multiple of the covering strength. For instance, if testing 3-way coverings, it

should still be possible to test sequences of length seven or eight. Concatenation

makes this impossible.

The ideas from combinatorial interaction testing [14, 15] are borrowed and

covering arrays [15] are leveraged to develop a new automated technique for gener-

ating GUI test cases. The key motivation behind using covering arrays is to generate

longer sequences that are systematically sampled at a particular coverage strength.

The use of covering arrays (described in Section 6.1) solves the first and third tech-

nical challenges; the original t-way coverage is maintained, and any length sequence

greater than t can be used. Furthermore additional coverage is gained by testing all

t-way sequences from a variety of start states. Covering arrays ensure that a given

2-, 3-, 4-, or t-way relationship is maintained between GUI events in all possible

combinations of t-locations in the sequence. This forces a balance in the sample

of longer sequences. Traditionally, covering arrays have been used to minimize the

number of test cases needed to test a software unit while maintaining the coverage

of a given number of interactions between parameters or configurations [15]. They
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have not, to date, been effectively used for sequences which maintain state.

In order to use covering arrays effectively, and to avoid the issue raised by

the second technical challenge, the EIG model is used to eliminate the need for

ordering relationships between GUI events. This model, along with other inputs,

is then used to obtain the covering arrays, which guarantee that given 2-, 3-, 4-,

..., t-way interaction relationships are maintained between GUI events. The rows

of the arrays are mapped back to the GUI’s original input space, in which ordering

relationships are reinserted and used to generate test cases.

6.1 Background on Covering Arrays

A covering array (written as CA(N ; t, k, v)) is an N × k array on v symbols

with the property that every N × t sub-array contains all ordered subsets of size

t of the v symbols at least once [15]. In other words, any subset of t-columns

of this array will contain all t-combinations of the symbols. This definition of a

covering array is used to define the GUI event sequences. 1 To see how this can be

applied to GUI event sequences, suppose the test sequence length is four and each

location in this sequence can contain exactly one of three events (Clear Canvas,

Draw Circle, Refresh) as is shown in Figure 6.1. Testing all combinations of these

sequences requires 81 test cases. One can instead sample this system, including all

1A more general definition for a covering array, a mixed level covering array can be defined that

does not use a single v, but instead allows each location in the array to have a different number of

symbols. This type of array is not necessary for the problem, because there are the same number

of events in each of the k positions.
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Events: {Clear Canvas, Draw Circle, Refresh}

2-way covering

1. <Clear Canvas, Clear Canvas>

2. <Clear Canvas, Draw Circle>

3. <Clear Canvas, Refresh>

4. <Draw Circle, Draw Circle>

5. <Draw Circle, Refresh>

6. <Draw Circle, Clear Canvas>

7. <Refresh, Refresh>

8. <Refresh, Clear Canvas>

9. <Refresh, Draw Circle>

Covering Array: CA(9;2,4,3)

Clear CanvasRefreshDraw CircleRefresh

RefreshClear CanvasRefreshRefresh

Draw CircleDraw CircleClear CanvasRefresh

Clear CanvasDraw CircleRefreshDraw Circle

Draw CircleClear CanvasDraw CircleDraw Circle

RefreshRefreshClear CanvasDraw Circle

RefreshDraw CircleDraw CircleClear Canvas

Draw CircleRefreshRefreshClear Canvas

Clear CanvasClear CanvasClear CanvasClear Canvas

Figure 6.1: 2-way Covering and Covering Array

sequences of shorter size, perhaps two. This sequence is modeled as a CA(N ; 2, 4, 3)

(lower portion of Figure 6.1). The strength of given sample is determined by t. For

instance, t is set to 2 in the example and all pairs of events between all four locations

are included. If examining any two columns of the covering array, one can find all

nine combinations of event sequences at least once. In this example there are 54

event sequences of length two which consider the sequence location. This can be

compared with testing only the nine event sequences which would be used in the

prior generation technique for a 2-cover (see top portion of Figure 6.1)
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The number of test cases required for the t-way property is N . In the example,

a CA(9; 2, 4, 3) can be generated. Because the primary cost of running the test case

is the setup cost, many more event sequences are covered for almost the same cost as

the 2-way cover. In general there is no guarantee that the size of N will be the same

as a shorter sequence, but it will grow logarithmically in k rather than exponentially

as does the number of all possible sequences of length k [14].

Covering arrays have been used extensively to test input parameters of pro-

grams [10, 14, 18] as well as to test system configurations [31, 59]. Other uses of

covering array sampling have been suggested, such as testing software product line

families [16] and databases [13]. A special type of a covering array (an orthogonal

array) developed from Latin squares has been previously used to define GUI test

cases by White [53]. However, this work used covering arrays in a stateless manner

to define subsets of the input parameter combinations. Bryce et al. used cover-

ing arrays to test a flight guidance system also modeled with state variables [11].

However, in this study only event sequences of length one were considered. In this

technique, covering arrays are used to sample long event sequences, where events

must consider state (determined by location in sequence and all prior events).

There are many tools and algorithms for constructing covering arrays. Because

a covering array simply states that it must cover each t-set at least once, finding a

minimal set of test sequences with the covering array property is an optimization

problem. Given the constraints that all of the t-sets must be covered, the aim is

to find the minimal number of sequences for which this property will hold. There

are both mathematical constructions for covering arrays [23], as well as computa-
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tional techniques that include both greedy [14] and meta-heuristic search [15]. For

the purposes of the feasibility studies, one of the meta-heuristic search techniques,

simulated annealing, is used because it provides the additional flexibility of feeding

in “already covered” t-sets, building covering arrays of any size t, and generally

(compared to other computational tools) produces covering arrays of comparable or

smaller size.

6.2 Covering Array-Based Test Case Generation

The new technique explored in this chapter samples long event sequences from

given event groups systematically and contains required t-way coverage. The event

sequences are executed, and in the cases where this criterion fails, the feedback on

the failed test sequences are obtained to help re-generate new sequences for testing.

Unlike the feedback of GUI run-time information used earlier for ESI relationship

identification, the feedback here is about the execution, such as the successfully

executed partial event sequences and its event interaction coverage information.

The technique uses a 7-step process; each of the steps is described next.

(1) Generate GUI EIG. This step is the same as in the two test case generation

approaches presented earlier in Chapter 4 and Chapter 5. Details are not repeated

here.

(2) Partition GUI Events. From the ESIG-based approach, one observation is that

the ESIG may constitute multiple disjoint sub-graphs. Each sub-graph contains

GUI events that are functionally related to each other. The studies also showed
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that the events in each sub-graph need to be tested more thoroughly (more faults

were detected by longer test cases involving these events). Therefore, once the

EIG has been generated, events are partitioned into functionally related units. The

events within each unit constitute the events for a single model that is used to

generate test sequences. Events that are not contained within the same group are

not tested together. This part of the process is currently done manually from domain

knowledge that can be used to determine which events are likely to be included in

similar functionality. In future work, this process may be automated through the

use of historical data on similar domains or ESI relationships. The output is a model

that lists the specific event groups as well as the number of events per group.

(3) Identify Constraints. This step creates the abstract event model. Once the event

graphs and groups have been identified, constraints are specified on events such that

the generated event sequences are executable. This is necessary because some events

may not be executable without a set of prior set-up events or must occur only after

another event has been fired. The abstract constraint model creates aggregate events

for these. For instance, from the example events in Figure 6.1, the Draw Circle event

may require that an event Set Ink Color occurs first. Although this event may not

have been of interest in the original EIG graph, it is needed to reach the event Draw

Circle and the new aggregate event has these two events concatenated together.

This is retained as a single abstract event Draw Circle in the model. The output of

this phase is the full set of aggregate events which can be expanded in later steps

into test sequences. This ends the modeling stage of the test case generation.

(4) Generate Covering Array Sample. There are four inputs to this step of the
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process. The first is k, which determines the length of the abstract sequences (i.e.,

those that may need the insertion of other events to become executable). The second

is the number of abstract events per location, v, with a list of the v abstract events

that are to be tested. The third is the strength of the desired covering array, t.

Finally, a set of already covered interaction t-sets is optionally passed as an input.

The need for this optional parameter is explained later. Using these parameters

a covering array is generated using one of the known covering array generation

algorithms. The covering array contains N rows of abstract events. These are

passed to the next phase for translation into executable test cases. The bottom

portion of Figure 6.1 is an example of the output for this stage.

(5) Generate Executable Test Cases. The input to this step is the covering array.

The abstract event sequences from step (3) are expanded in this step to generate

executable test cases. Returning to the example, the second row of the covering array

has 4 abstract events. In order to execute this, the last event Draw Circle must be

expanded to make these events into executable calls. The executable test vector is

now <Clear Canvas; Refresh; Refresh; Set Ink Color; Draw Circle>. Furthermore,

the test vector are transfered to actual calls to given program by translating them

into a scripting language for the replay tool used to execute test case. The output

of this step is a set of actual test cases.

(6) Execute Test Cases. The test cases are executed. During this stage data is

collected via the automated oracle to determine which test cases detect faults. These

are sent to output as an error report. Unexecutable test cases (those that fail

to execute successfully because they specify an invalid event sequence) are also
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recorded. The location in the sequence is recorded as well. The output of this stage

is an error report, as well as a list of which test cases failed to execute to completion.

In the scenario described above, if the last test case fails after Draw Circle , it is

recorded as a fail and the failing location would be 4.

(7) Determine Missing Coverage. The input to this step is the set of test cases and

the last successfully executed location in each test case. This data is analyzed to

produce a list of covered t-sets. The algorithm that performs this task enumerates

all of the covered t-sets in each row using the last passed location as its stopping

point.

The output of this stage is fed back into the covering array generation (Step

(4)) as the last optional parameter, mentioned above. This parameter is used to re-

generate a covering array sample that covers the previously untested combinations.

For instance, if during the execution of the covering array shown in Figure 6.1, the

last test sequence fails to execute after the second event, all pairs of events tested

by all sequences prior to this are covered, as well as the pair of events Refresh, Draw

Circle in location 1, 2. There are four other event combinations that were not tested

in this test (i.e., Refresh, Refresh in location 1, 3, Refresh, Clear Canvas in location

1, 4, etc.) Steps (5), (6), and (7) are then repeated for the new test cases. This

iterative process continues as many times as is needed to either complete the desired

coverage, or until no more faults are found.

The iterative process is also summarized in Figure 6.2. There are seven primary

steps in this process, four of which occur inside of the feedback loop. Given the

automated test process and complex interactions between events, it is not always
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(1) Generate GUI

Event Graph

(2) Partition

GUI Events

(4) Generate Covering Array Sample

(6) Run Test Cases
(5) Generate Executable

 Tests
(7) Determine Missing

Coverage

Feedback Loop

Output Fault

Report

(3) Identify Constraints

Figure 6.2: Test Generation Process Using Covering Array Sampling

possible to predict these failures ahead of time. Therefore, after executing test

cases, additional test sequences are needed to be re-generated to satisfy the coverage

decided upon in earlier steps of this process.

6.3 Feasibility Study of the Covering Array-Based Approach

A feasibility study was conducted to determine the effectiveness of covering

array sampling for GUI testing on faults that can only be detected by long event

sequences. This is compared with the previous EIG-based technique, i.e., testing

all possible 2-way coverings for shorter sequences. Effectiveness of the test suites

is measured both in terms of the cost to generate and to run, as well as through

fault-detection effectiveness.

6.3.1 Research Questions

More specifically, the study was designed to address the following two research

questions:
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C6Q1: How does the fault-detection effectiveness of t-way covering array

sampling compare with that of the same and stronger t-way coverage on shorter

sequences?

C6Q2: Is there a cost difference in generating and running covering array

samples for long sequences, and generating and running a larger number of shorter

t-way sequences?

6.3.2 Study Subject

For this study, Paint in TerpOffice suite was used. Note that it was also used in

Study 2 for the ESIG-based approach (described in Section 4.3). Moreover, the same

type of test oracle was used in this study, together with the fault-seeded versions of

Paint.

Because this study is concerned primarily with the fault-detection effectiveness

of event sequences longer than two in order to detect faults that can only be detected

by longer event sequences, only the seeded faults which were not detected by the

existing 2-way covering EIG test cases were used in this study. Of the original 263

seeded faults, 115 fall into this category.

6.3.3 Process

All the components in the algorithm addressed in Section 6.2 have been im-

plemented in an automated testing procedure. Next, the details for each step of the

process that are specific to the study are described.
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Figure 6.3: Classification of GUI Events in Paint

STEP 1: Create EIG model. The previously obtained EIG model for Paint

was used here. Recall that the EIG contains system-interaction events (those that

interact with the underlying system rather than manipulate the GUI’s structure)

and termination events (those that close windows) [40]. Other structural events,

such as those used to open windows and open menus, are omitted from the EIG to

improve efficiency. In order to avoid ordering relationships between events due to

GUI structure, only system-interaction events were used for covering arrays. Some

of the other events may be inserted back into the final event sequences in STEP 5

if they are needed to reach particular system-interaction events.

Figure 6.3 shows the number of the different event types. One can see that

a large number (226) of the GUI events fall under the system-interaction category.

All of these events are used for test case generation.

STEP 2: Partition the GUI events. This step was done manually and took two

hours to complete. The partitions for the system-interaction events are shown in

Figure 6.4. The six partitions represent events related to different functionality. The
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Figure 6.4: Partition of System-Interaction Events in Paint

numbers of events in each of the first five groups are also shown in Table 6.1. The

six groups identified are as follows: (1) Group 1: Tool management. This includes

events such as selecting the Line Tool and dragging the mouse on the canvas; (2)

Group 2: Image settings. The events in this group make up the events that affect

the size and style of images such as Choose Background Color and Stretch the Image

to Size; (3) Group 3: Clipboard operation. This includes events such as Copy and

Paste; (4) Group 4: Layer manipulation. This includes events such as Add a New

Layer and Move to Front Layer; (5) Group 5: File operation, which includes events

related to the filesystem such as Open File and Save Current Image File; and (6)

Group 6: Other functionality. Events in this partition are relatively independent of

each other. They include events to scroll the canvas, or events for which functionality

has already been represented by other system-interaction events in other partitions.

For example, in window Open, there are many system-interaction events used to

navigate to the file that will be opened, such as Choose Directory and Up one Level.
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This can also be done using the Input File Name to text-field event. When the

text-field event is given a complete file name together with its absolute path, there

is no need to perform other events related to file searching in this window.

STEP 3: Identify constraints. In this step, the events from each group were ex-

amined, and the additional sequences of events needed to make the longer sequences

executable were determined. For example, in Group 1, the event Select All is per-

formed by clicking the corresponding menu item. However, the menu item will not

be ready for clicking until it has first been opened in the Edit menu. Another

example is seen in Group 2. The events to set image properties are in different

windows. The path between these events, which includes events to close the first

window and events to open the second window, must be added to the final event

sequences to make test cases executable.

STEP 4: Generate long test cases using covering array sampling. The

study focuses on the first five groups, because events within each group are func-

tionally related. Covering array samples are constructed for each of these groups

independently. Different coverage criteria have been chosen for each group based

on the number of events. Through previous studies, it has been determined that

abstract sequences of length 10 are about the maximum length sequences that run

without failure. Therefore, the sequence length has been fixed at ten for this study.

Each of the 10 locations in the event sequence can contain any one of the events from

this group. This follows the model shown in Figure 6.1. The strength (t) for each

covering array is determined using a heuristic that generates the highest covering

array strength, for each group, that is complete in a single overnight test run. This
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number is approximately 20,000. For instance, in Group 1, there are 27 unique

events; therefore, the highest sampling strength would be two because a covering

array built for t=3 will exceed the 20,000 test cut-off. But in Group 5, there are

only six events, so covering arrays of strength t=4 are able to be generated.

Table 6.1 provides data on the covering array sampling for each group. The

#Events row shows the total number of events in each group, the Event Space

row, shows the number of sequences that would be required to cover all 10-way

combinations of the group. The CA row gives the covering array definition that was

used for each group and the #Test Cases row provides the number of test cases in

the final covering array sample generated. The covering arrays were created using

a simulated annealing program [15]. The user CPU generation times on a Dual 2.7

GHz PowerPC G5 and 1.5 GB of RAM running Mac OS X, are shown in Table 6.3

as Build CA. The times vary from .73 hours to 6.6 hours. Group 3 and 4 have the

same covering array parameters, therefore only a single covering array was generated

and mapped to each of the appropriate groups. For this reason, the time for Group

4 is shown in parentheses.

Groups Description #Events Event Space CA #Test Cases (N)
1 Tool Mgt. 27 2710 CA(N ; 2, 10, 27) 1055
2 Image Settings 35 3510 CA(N ; 2, 10, 35) 1783
3 Clipboard Ops. 11 1110 CA(N ; 3, 10, 11) 2870
4 Layer Manip. 11 1110 CA(N ; 3, 10, 11) 2870
5 File Ops. 6 610 CA(N ; 4, 10, 6) 3428

Table 6.1: Test Cases Generated by Covering Array Algorithm

STEP 5: Generate executable event sequences. Each test case is mapped

back to executable event sequences through the abstract event model identified
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in step three. An example of generating test cases from Group 1 follows. One

possible test sequence from the covering array is the vector of abstract events:

<81;98;102;260;231;235;81;103;229;102>. The behavior of Paint while executing

this test case follows. First it reverts the previous action by clicking the Undo

(event #81). Then, it enlarges the size by performing the Large (event #98) and

sets the Draw Opaque (event #102) on the image. Next, it selects Northeast (event

#260) in the Emboss window. To reach this event, corresponding open window

events are added before it. It rotates the image 270 degrees (event #231). Note,

this event is in the Flip/Rotate window. To reach it, termination events to close the

Emboss window and open window events for Flip/Rotate window must be inserted

before this event. After that, it Stretches the image to a certain size (event #235).

Again, this event is in a different Stretch/Skew window and necessary reaching

events need are inserted. Finally, it Cancels the last operation (event #81), sets the

image Brightness (event #103), rotates the image by 90 degrees (event #229) and

sets the Draw Opaque (event #102) image again. The final length of the executable

sequence is 21.

In summary, the necessary non-system interaction events and termination

events which are used to reach the first events in each test case or which reside

on the path between two system-interaction events in the test case are added to

transform the generated test cases to executable event sequences. The actual test

case execution file is an XML file containing the events and required parameters.

Table 6.2 shows the distribution of the actual event numbers in the generated long

test cases. As can be seen, all of the test cases in Group 1 have actual event lengths
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Actual Length 1 2 3 4 5

10-19 1055 0 2739 2851 0

20-29 0 335 131 19 264

30-39 0 1405 0 0 2637

≥ 40 0 43 0 0 527

Table 6.2: Event Sequence Length Distribution

less than 20, while Group 5 has over 500 sequences that are longer than 40 events

in length.

STEP 6: Execute test sequences. The test cases are executed on the original

version of Paint. The validity of test cases are identified and the execution time

is recorded. Table 6.3 shows number of successfully executed test cases for each

group and their execution time in hours. The time is broken down into the time to

obtain oracle information and the time spent in verification. To gather oracles for

the experiments, all test cases are run on the original, non-faulty version of Paint.

This collects the expected GUI run-time states as each test executes.

Groups 1 2 3 4 5 Tot

#Success 1055 1774 2010 1321 13 6173

Percent t-way Cov. 100 99.9 88.7 67.3 1.8 NA

Build CA (h) .73 1.2 2.9 (2.9) 6.6 14.3

Oracle Collect(h) 3.3 12.4 16.3 8.5 9.6 50.2

Verific.(h) 52.4 530.5 225.4 44.3 1.8 854.4

Table 6.3: Test Case Execution

The verification phases takes longer to finish than the oracle phase. This is

because test cases are run on multiple versions of the program. It has been deter-

mined through code coverage analysis during the oracle run which test sequences

potentially traverse more than one fault. For these test cases, they were ran on

multiple versions of the program, each containing only one of the potential faults.
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This prevents interactions that might cause missing a fault, however, it requires

additional execution time.

A slight further time degradation is seen in the verification stage, because the

tool used to run GUI test cases in GUITAR is configured so that if the execution

of a test case is stuck, the executer waits for the maximum allowable execution time

before exiting. This time is proportional to the actual number of events (Table 6.2),

which may exceed the abstract test length of 10. The test cases were executed on

the 50-machine cluster used in previous studies.

STEP 7: Regenerate test cases to cover missing event interactions. In

the first two groups almost all test cases executed successfully to completion, i.e.,

nearly 100 percent coverage modeled by the covering array is achieved. In the

last three groups, however, there are failed test sequences that required a return

to STEP 4 in the feedback loop (Generate Covering Array Sample). For groups

three and four, covering arrays were re-generated by identifying which of the 3-sets

were already tested These were passed back into the covering array algorithm as an

optional argument. This was not applied to the second group during the feasibility

study because only 9 test cases failed providing almost 100 percent of interaction

coverage. In a real test scenario, one would, however, re-generate to be sure that

there are no missed interaction t-sets. In the last group, Group Five, one can see

that there was a very strict ordering requirement between GUI events. This may

be related to the large number of additional events needed for reachability. In this

set of test sequences, only a small set of the test cases ran to completion. It can be

seen that only 1.8% of the 4-way coverage was achieved. Because the probability of
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Group 3 4 Total

#Regenerate Test Cases 881 1536 2417

#Success 298 222 520

Percent Accum. t-way Cov. 96.1 77.7 NA

Build CA (h) .99 2.9 3.9

Oracle Collection (h) 6.3 3.8 10.1

Verification(h) 28.1 5.5 33.6

Table 6.4: Regenerated Test Cases

generating new valid test cases was very low, no more sequences were re-generated

for this partition. Future work may involve further constraints and better abstract

models to avoid these types of problems.

Table 6.4 shows the lengths of the sequences and achieved accumulated cov-

erage after re-generating and running more sequences as well as the additional run

times in hours. In both of these cases, it is unable to achieve 100 percent coverage

after 2 iterations of testing. Because the second set of test sequences in Group

3 and 4 did not uncover any new faults, the feedback loop and re-generate of test

sequences terminated.

Control Group: As a control group, another test suite T (orig) that uses the

EIG algorithm to generate longer test cases of complete t-way coverage was run.

It includes two separate test suites T (same) and T (stronger). T (same) includes

test cases with the corresponding t-way coverage for each group as the T (cov). For

T (stronger), due to the enormous number of test cases that is generated for each

group in full t-way coverage, test cases that were only one-way longer than the

coverage criteria used in the covering array sampling generation was generated. For

instance, in Group 2, T (stronger) is a 3-cover (all 3-sequences) and for Group 3
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Groups 1 2 3 4 5

Length (t-way) 3 3 4 4 5

#Test Cases 19,683 42,875 14,641 14,641 7776

#Success 19,682 42,806 13,157 11,321 281

Percent t-way Cov. 99.9 99.8 89.9 77.3 3.6

Oracle Collect(h) 39.1 136.6 46.5 32.7 31.3

Total Hours in Oracle Collection = 348.4

Verific.(h) 253.3 1911.4 425.4 142.1 25.9

Total Hours in Verification = 2758.0

Table 6.5: T (stronger) Test Case Execution Time

T (stronger) is a 4-cover. Table 6.5 shows the length of the T (stronger) test cases

for each group as well as the number of test cases.

6.3.4 Results

This section discusses the results in finding faults using the covering array

sampling process as they relate to the two research questions.

C6Q1. Table 6.6 shows the fault-detection effectiveness for the covering ar-

rays, sequences, T (cov), using both the original arrays (T1) and regenerated arrays

(T2), vs. two sets of T (orig) test sequences, T (same) and T (stronger). Fault-

detection effectiveness is measured as the number of unique faults detected divided

by the total number (115). One can see that the number of faults detected by T (cov)

is much higher than that detected by the T (stronger). The fault-detection effective-

ness increased by 17%. For all groups, the covering array-based test cases detected

the same or more faults using a much smaller number of test cases. T (same) had a

very poor fault-detection effectiveness so it is not included in further analysis. Fig-

ure 6.5 shows the cumulative fault coverage by test case for T (cov) vs. T (stronger).
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The x-axis shows the number of the test case, while the y-axis shows the number of

new faults detected by each successive test case. Although the default order of the

covering arrays (or generated T (stronger)) arrays was used, this data seems to be

compelling. Even if the T (stronger) test cases are re-ordered to improve their early

fault detection, in order to obtain complete coverage, 99,616 test cases (vs.14,423)

must be run. At the end of this time, there are 20 faults that T (orig) did not

uncover. On the other hand, the covering array test cases, detect the same number

of faults as T (orig) after only 145 test cases and reach their maximum fault finding

after only 9,570 test cases.

Figure 6.6 shows similar data but only for Group 1 because this is the group

that uncovers the most faults. Figure 6.7 shows the density of test cases that are

able to detect each individual fault in Group 1. The x-axis lists each of the 69

faults that are found by the covering array sample. The y-axis is the count of test

cases that find the specific fault. Although there are several cases where T (stronger)

(lighter bar) shows a higher density of test cases detecting a particular fault, this is

not the case for the majority of faults even though T (stronger) has more than 18

times the number of test cases.

Test Suite
T (orig) T (cov)

T (same) T (stronger) T1 T2

Group 1 0 49 69 NA

Group 2 0 4 4 NA

Group 3 6 8 8 8

Group 4 0 0 0 0

Group 5 0 5 5 NA

Total(unique) 6 62 82

% of Detection 5.22% 53.91% 71.3%

Table 6.6: Fault-Detection Effectiveness
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Figure 6.5: Total Cumulative Fault Coverage

C6Q 2. Figures 6.5 and 6.6 show the additional number of test cases that

must be run for T (stronger). However this isn’t a direct measure of test execution

time. The execution time tables (Tables 6.3, 6.4, 6.5) which show execution time

in hours clearly indicate that the execution of the covering array test cases saves

considerable time. Although individual test cases in T (cov) contain more events

(i.e., they are longer), the overriding factor is the size of the test suite. For each test

case, time must be spent starting up the Java Virtual Machine, initializing states,

etc. The execution times are compared for collecting the oracles, because in this case

the program is run a single time. The total time across all covering arrays (including

the re-generation steps) is 78.5 hours while the time to run T (stronger) with no

re-generation took 348.4 hours, more than four times as long. In days, the covering
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Figure 6.6: Cumulative Fault Coverage in Group 1
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array test execution took just under 3.5 days, while T (stronger) took over 14 days to

run. There is some non-trivial time required to construct the covering arrays. These

times are shown in Tables 6.3 and 6.4. The overall generation (and re-generation)

time for the covering arrays required 18.2 user CPU hours hours although 2.9 hours

of this is “artificial” because only a single covering array requiring 2.9 hours of CPU

user time was generated and used for both Group 3 and 4. The time required to

manually partition the events into groups (2 hours in this study) must be done for

both the T (cov) and T (orig) methods.

6.3.5 Discussion

The results obtained in the feasibility study are encouraging. They show that

using t-way covering array sampling on longer sequences of events improves fault

detection over shorter (t+1)-way coverings. In addition there is a large cost savings

in terms of reducing the cost of test execution. In this section some insights that

are obtained from this feasibility study are discussed, which provide direction for

making this testing method applicable to a wider range of GUI applications.

Fault Finding Analysis: To understand why the longer covering array-based

test cases detected more faults, faults that were detected only by the covering array

samples were analyzed. One set of faults (86, 87, 88) were detected by several test

cases in the covering array sample but never detected by the T (orig) test suite.

These faults are all found in the handler for the event Select Eraser Tool which

corresponds to the method eraserActionPerformed. The faults incorrectly change
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an “==” to an “!=” in three different conditions in this handler to check curZoom,

a property that decides what type of cursor is to be used for the eraser tool. If

curZoom == zoom2, for example, the eraser cursor’s size will be set to one size,

but when curZoom == zoom1, it will be set to a different size. When the condition

results are incorrectly returned, and the eraser tool is used, different results will

occur. One of the test cases from the covering array sample in Group 1 which

detects this fault contains the following abstract event sequence: <Text Tool, Line

Tool, Fill with Color, Select Double Zoom, Eraser Tool, Fill with Color, Line Tool,

Move Mouse in Canvas, Show Tool Bar, Ellipse Tool > Because no 3-way covering

test cases from T (stronger) in Group 1 detected these faults, detection requires

more than three events. First the test case must reach the faulty statements in the

code. Two actual events are needed for this: 1) Select a Zoom tool ( There are four

possibilities which correspond to zoom1, zoom2, zoom3, zoom4 for curZoom in the

code.); 2) Select Eraser Tool. The order of these two events can not be changed.

Simply reaching this code is not enough for detection, however. The faulty behavior

needs to show itself in the GUI for detection. In this case, an image is needed where

the Eraser Tool can be applied, and the wrong eraser will wipe out a different part

of the image. By checking the resulting image on the canvas, one can detect the

fault. Here, at least two more events are needed: one for setting up an image and

the other for using the eraser tool (Fill with Color and Move Mouse in Canvas in

the test case). Therefore, the shortest sequence that can detect this fault would be a

length-four sequence. In the experiments, the GUI is started with no image (a white

canvas). In the detecting test case the Fill with Color event fills the empty canvas
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with the default color, which is black. After selecting the Eraser Tool, it moves the

mouse on the canvas with the eraser tool, and a black area will be removed (turned

white). As the type (therefore the size) of eraser is incorrectly set by the fault, the

resulting image is different from the expected one and the test case detects the fault.

Unexecutable Sequences: It has been seen that some of the test suites did

not run to completion. For this reason, the feedback loop to allow test re-generation

was added. However, for some groups, there are simply too many ordering con-

straints to make even re-generation feasible. Group 5 is an example of this. In

both types of test suites more than 96% of the test cases failed to execute to comple-

tion. One need is to develop better methods of detecting and defining temporal type

constraints which can then be enforced when building the covering array sequences.

Recent work on incorporating constraints into constructing covering array samples

may be useful for making this step feasible [17].

Cost of the Process: In the current feasibility study, a simulated annealing

algorithm was used to construct the test cases. This algorithm often takes longer

than other types of construction methods, although it often produces smaller cover-

ing arrays [15]. A cost-benefit equation to determine which algorithm is to be used

for covering array construction should be added to the process. Sometimes the time

to generate the covering arrays may be tolerated in the overall testing time, but

other times this may be a bottleneck and faster generation techniques that create

more test sequences may be desired. In the feasibility study the covering array con-

struction time added a 30% overhead. Strategies that may help to reduce these costs

include parallelism in covering array construction and maintenance of repositories
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of covering arrays for the common GUI parameters. For instance, in this study,

two groups have identical parameters and therefore the (real) cost was reduced by

almost three hours. Another cost savings may be found in the manual partitioning

of groups (STEP 2). This may not scale as programs get larger. This process may

be automated using ESI relationship identification used in ESIG-based approach to

keep the cost of the partitioning step reasonable in future work.

6.4 Summary

This chapter explored a new technique to generate longer GUI test cases than

previously generated from graph-traversal-based approaches that guarantee certain

event interaction coverage. The technique uses covering arrays to generate long

event sequences that are systematically sampled at a particular coverage strength.

This technique is novel in its use of covering arrays to sample sequences for state-

based, event-driven systems, an abstraction of the GUI that enables efficient use of

covering arrays. The feasibility study demonstrated that the new technique greatly

reduced the number of test cases. At the same time, it was able to detect faults

that were previously undetected by shorter test cases.
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Chapter 7

Conclusions and Broader Impacts

This research developed a new automated, feedback-directed model-based GUI

test case generation technique. In this technique, the novel concept of event seman-

tic interaction (ESI) relationships was introduced, and identification of the ESI

relationships among GUI events was formalized using predicate evaluation on GUI

execution feedback (GUI run-time state). The ESI relationships were used to direct

GUI multi-way test case generation. Two feedback-directed test case generation

approaches were developed.

In the ESIG-based approach, ESI relationships are computed from EIG 2-way

covering test cases. The ESIG is created by annotating EIG edges with these ESI

relationships, and a graph-traversal algorithm is used to obtain multi-way test cases

involving only ESI-related GUI events. The ALT approach alternates test case

generation and execution. As in the ESIG-based approach, test case generation

begins with a seed test suite of EIG 2-way covering test cases. New test cases are

generated in batches, where in each batch 1) more ESI relationships (i.e., between

event sequences and events) are computed from test cases generated in the previous

batch; 2) the new ESI relationships are used to generate one-step-longer test cases;

3) new enable-disable relationships among events are identified and used to generate

test cases involving previously disabled and unexecutable events.
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Empirical studies demonstrated that test cases generated from both of the

feedback-directed test case generation approaches significantly improved the fault-

detection effectiveness of GUI testing. These approaches were able to detect previ-

ously undetected faults with reasonable cost in terms of number of test cases.

Finally, a covering array-based test case generation technique was explored

to generate test cases. It generates long test cases that systematically sample the

input space with a particular event interaction coverage strength. A feasibility study

shows that the covering array test cases improve fault-detection effectiveness with

small number of longer test cases compared to shorter ones.

As is the case with all empirical studies, the studies in this research are sub-

ject to threats to validity. First is the selection of subject applications and their

characteristics. Eight Java applications in two sets have been used in the studies.

Although they have different types of GUIs, this does not reflect the wide spectrum

of possible GUIs that are available today. Moreover, the applications are extremely

GUI-intensive, i.e., most of the code is written for the GUI. The results may vary

for applications that have a complex back-end, are not developed using the object-

oriented paradigm, or have non-deterministic behavior. Second, the use of the test

pool approach in Study 2 of the ESIG-based approach (described in Section 4.3)

was due to practical limitations. It is expected that the repetition of the same test

case across multiple test suites will have an impact on some of the results. Third,

the algorithms used to create test cases ensures that each event (the first event in

the test case) is executed in a known initial state; the choice of this state may have

an effect on the results.
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Fourth, the Java API allow the extraction of only 12 properties of each widget;

only these properties were used for obtaining the ESI relationship via GUI state;

widgets may have additional properties that are not exposed by the API. Hence,

the set of ESI relationships may be incomplete. Fifth, two approaches were used to

generate test cases – ESIG-based graph-traversal approach and ALT. Other tech-

niques (e.g., using capture/replay tools and programming the test cases manually)

may produce different types of test cases, which may show different execution be-

havior. Sixth, a threat is related to the measurement of fault-detection effectiveness

in Study 2 described in Section 4.3; each fault was seeded and activated individu-

ally. Note that multiple faults seeded and activated simultaneously can lead to more

complex scenarios that include fault masking, thereby affecting the measurement of

fault-detection effectiveness.

7.1 Contributions

The feedback-directed GUI test case generation technique makes the following

contributions:

• The idea of using feedback-directed test case generation for GUI testing was

presented.

• The ESI relationship was formalized using predicates on GUI run-time state.

• Two automated GUI test case generation approaches were developed using

the feedback-directed technique.
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• A covering array-based test case generation technique was explored.

7.2 Broader Impacts

This research has presented several exciting opportunities for future research.

The following research directions may be explored:

Better understand of the ESI relationship. The studies in this research

showed that ESI relationships helped to generate test cases that improved fault-

detection effectiveness in GUI testing. It is hypothesized that this improvement

is caused by the linking of events that, in some sense, are functionally related;

executing them together causes the revelation of problems due to shared objects.

Therefore, as discussed in Section 5.1, a better understanding of the subtle nature

of the ESI relationship may further improve test case generation.

Classify GUI events. Study 1 in Chapter 4 showed that certain events in

the GUIs dominate the ESI relationship. These events may need further study and

classification to help identify the core part of the GUI’s functionality and group

events that may need to be tested with more complex test cases.

Simplify ESI identification predicates. Four contexts were identified,

each with twelve cases of ESI relationships. In the future, these contexts and cases

may be simplified and, if possible, combined. The current special treatment of

termination events, which led to an additional three contexts, may be revised. One

possibility is the revision of the EIG model; the elimination of all termination events

from this model may be explored. This revision may also lead to the definition of
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new, fundamentally different cases for the ESI relationship.

Refine ESI identification. Several events are ESI-related because of mul-

tiple predicates. Currently predicates are not “counted” for each relation; in the

future, “strengths” to ESI relations may be assigned based on how many predicates

are TRUE for each pair of events.

Enrich execution feedback. The feedback currently obtained at run time

is in the form of GUI widgets. Mechanisms like reflection in modern programming

languages may be used to obtain additional feedback from non-GUI objects. The

definition of state, in terms of a set of objects with properties and values, is general;

it may be applied to any executing object. Some of the twelve cases may be adapted

for non-GUI objects. The run-time state information is currently collected using the

Java Swing API for standard Swing widgets. Future work may incorporate a cus-

tomized API for application-specific widgets into feedback collection and analysis.

Another straightforward way to enhance the feedback is to instrument the software

for code coverage and run-time invariant collection. This feedback may be used to

generate new types of test cases.

Combine dynamic analysis and static analysis. The analysis summa-

rized in Section 4.2 led to a deeper understanding of the relationship between real

GUI events and the underlying code in fielded GUI applications. This may lead to

new techniques that combine dynamic analysis of the GUI and static analysis of

the event handler code. For example, the code for related events may be given to a

static-analysis engine that could examine the code for possible interactions that are

only apparent at the code level, e.g., data-flow relationships.
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Apply the feedback-directed technique to other applications. Some

of the challenges of GUI testing are also relevant to testing of web applications and

object-oriented software. One way to test these classes of software is to generate

test cases that are sequences of events (e.g., web user actions or method calls). The

technique developed in this research has already been used by other researchers to

prune the space of all possible event interactions to be tested for Ajax-based web

applications [2]. Similar extensions may be explored for object-oriented software.
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