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Regulation of gene function can be achieved through a variety of mechanisms. 

In this dissertation, I present the genetic and molecular characterization of two genes 

involved in two distinct mechanisms of control. Each gene was initially identified by 

its functional role in sperm development in the model organism Caenorhabditis 

elegans. The first gene, uba-1, is an essential enzyme involved in protein turnover 

through ubiquitin-mediated proteolysis. A temperature-sensitive allele, (uba-1)it129ts, 

was isolated in a classical genetic screen for mutations that cause sperm-specific 

sterility. The second gene, spe-44, encodes a putative transcription factor. Its 

identification by microarray screening for sperm-enriched genes led to the cytological 

analysis of the deletion allele spe-44(ok1400), by reverse genetics approach. 

it129ts encodes a conditional allele of uba-1, the sole E1 ubiquitin-activating 

enzyme in C. elegans. E1 functions at the apex of the ubiquitin-mediated conjugation 

pathway, and its activity is necessary for all subsequent steps in the reaction. 



  

Ubiquitin is covalently conjugated to various target proteins. Poly-ubiquitination 

typically results in target protein degradation, which provides an essential mechanism 

for the dynamic control of protein levels. Homozygous mutants of uba-1(it129) 

manifest pleiotropic phenotypes, and include novel roles for ubiquitination in sperm 

fertility, control of body size, and sex-specific development. We propose a model 

whereby proteins normally targeted for proteasomal degradation instead persist in 

uba-1(it129ts) and impair critical cellular processes. 

 The second gene, spe-44, was identified as a putative sperm gene regulator in 

C. elegans based on its up-regulated expression during spermatogenesis and its 

significant sequence homology to the DNA-binding SAND domain. Genetic analysis 

of a deletion allele of spe-44(1400) has revealed its functional role during sperm 

development. Cytological analysis of spe-44(ok1400) showed developmental arrest of 

spermatocytes prior to spermatid differentiation. spe-44 mRNA is expressed in a 

narrow spatial and temporal window, just prior to spermatocyte differentiation, 

consistent with its functional role during spermatogenesis. Future study will be 

directed to find putative targets of spe-44 and the mechanisms that regulate gene 

expression using microarray analysis and yeast-one hybrid screens. These studies will 

help to understand transcriptional regulatory aspects of spermatogenesis in C. 

elegans. 
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Chapter 1 Regulation of gene expression in C. 

elegans development 

1.1 Introduction 

 Development of a multicellular eukaryotic organism occurs through growth and 

differentiation from a single cell, the zygote. During maturation it differentiates into 

many cell types, each with specifically allocated function. The diversity of cell types and 

the co-ordination of function are determined by the differential expression of genes 

within each cell type. Thus, proper development depends on the precise temporal and 

spatial control for the differential expression of thousands of genes.  

Each cell expresses only a subset of the genes from the genome. For example, 

muscle cells express about 7-10% (~1500) of the total genes (~19800) in C. elegans (Kim 

at al., 2001; Roy et al., 2002). Thus, at any given time, only a fraction of the genome is 

expressed in a cell. Because of the efforts of genome sequencing, we know the gene 

database for most of the eukaryotic model organisms. Yet, how the differential 

expression of these genes in individual cell types is regulated at a precise time and in 

response to environmental cues is still unclear. 

Significant amounts of research effort have been directed in the past few decades 

towards understanding the process of gene regulation. The expression begins when a 

gene is transcribed into mRNA, and ends when a functional protein product is no longer 

needed. The studies done so far reveal that the gene function is regulated at every 
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possible step i.e. transcription, post-transcription (e.g. splicing), translation, post-

translation (e.g. phosphorylation) and epigenetic (e.g. chromatin level).  

The first level of control for any gene to be transcribed is the chromatin structure, 

which determines the accessibility of the DNA at a particular locus for transcription 

initiation. Chromatin structure is determined by various post-translational modifications 

of histone proteins. For example, DNA methylation is one of these factors associated 

with transcription repression reviewed in (Miranda and Jones, 2007). 

Transcription regulation is one of the most extensively studied modes of 

regulation for gene expression. The regulation is achieved by one or more transcriptional 

activator or repressor proteins, which bind to the promoter region of the gene in a 

sequence-specific manner. The characteristic pattern of gene expression for a particular 

cell type is determined by a specific set of transcription factors contained in that cell. The 

activity of the transcription factor itself is controlled by co-factors and signaling 

molecules. How transcription is regulated will be discussed in more detail in the next 

section.  

Once a gene is transcribed into a pre-mRNA, it is processed by RNA splicing to 

remove the non-coding intronic sequences. In higher eukaryotic organisms, along with 

the introns, alternative exons can be selected preferentially leading to more than one 

splice variant of a transcript. About 10% of the genes in C. elegans undergo alternative 

splicing (Kim et al., 2007a). This process of alternative splicing provides a post-

transcriptional regulation for gene function. Different isoforms translated from the 

alternative splice variants can have tissue-specific or different sub-cellular localization, or 

varied kinetic performances.  
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A mature mRNA is regulated via untranslated regions (UTR) in the 3’ and 5’ 

regions called 3’UTR and 5’UTR, respectively. These UTRs play roles in the transport, 

localization, and stability of the mRNA. Significance of the spatial pattern of mRNA 

localization during development is well documented for Drosophila embryogenesis. 

Specific localization of mRNAs like Oskar, Vasa and Tudor is essential for the 

establishment of the primordial germ cells in the Drosophila embryo (reviewed in 

Williamson and Lehmann, 1996). AREs, AU-rich elements in the 3’ UTR, play a role in 

stabilizing the mRNAs through recruitment of RNA-binding proteins. This stabilization 

can be crucial for proper development; for example, differentiation of the nervous system 

in Drosophila is achieved by stabilizing the gene gcm (glial cells missing) (Soustelle et 

al., 2008). 

The sequences in the UTRs are also employed to regulate the initiation of 

translation from the mRNA. As mentioned earlier, Oskar mRNA is not translated unless 

it reaches the desired localization. Before its proper localization, translation is inhibited 

by Bruno protein, which binds to the Bruno response element in the 3’UTR of Oskar 

mRNA (Snee et al., 2008). The polyadenylated [poly(A)] tail at the 3’ end of mRNA is 

also known to control translation initiation of respective RNAs. Cytoplasmic 

polyadenylation element binding (CPEB) protein, which binds to Cytoplasmic 

Polyadenylation Element (CPE), can either repress translation by binding to inhibitors or 

can activate translation by extending the length of the poly(A) tail (Pique et al., 2008). 

CPEB has been shown to be essential in various processes like germ cell development 

(Setoyama et al., 2007), cell division (Luitjens et al., 2000) and synaptic plasticity 

(reviewed in Richter, 2007). Poly(A) tail length at the 3’ end of mRNA also controls the 
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stability of the transcript. Poly(A) tail longer than 30 As stabilizes mRNA by blocking 

the assembly of exonucleases involved in RNA degradation (Ford et al., 1997). The 

recently recognized world of small, non-coding RNAs reveal new dimensions for 

regulation of gene expression via RNA silencing and translation repression as reviewed 

by Kim, 2005.    

After translation, the protein itself is subjected to regulation of its function via 

various post-translational modifications. There are nearly 200 different types of post-

translational modifications of proteins known, which create one to two-fold diversity in 

the proteome compared to the genome of the organism (Walsh et al., 2005). Covalent 

modifications of the side chains in proteins by phosphorylation, acylation or 

glycosylation can regulate cellular localization and functional aspects (e.g. kinetic 

properties) of the proteins. For example, dual phosphorylation of MAP kinases increases 

their catalytic efficiency by 105-fold. Some of the post-translational modifications 

provide an ‘on’ or ‘off’ switch for the signal transduction cascade as in the classic 

example of the RAS signaling pathway involved in various functions during cellular 

development (reviewed by Campbell et al., 1998). RAS proteins belong to the 

superfamily of monomeric GTPases and are biologically active only when they have a 

farnesyl lipid modification. The lipid modification is required to anchor the protein in the 

membrane and to relay the switch to the downstream cascade of cytoplasmic kinases. 

To achieve precise spatio-temporal regulation of gene function, the duration for 

which a protein remains functional in the cellular system needs to be monitored. 

Inactivation of the protein product once it is no longer needed, is critical for proper 

development. A specific type of post-translational modification is devoted to degradation 
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of the protein after its function is fulfilled. Covalent conjugation of ubiquitin, a 76 amino 

acid peptide, to the target protein marks it for degradation via the 26S proteasome. The 

process of ubiquitination of the target protein itself is a highly regulated enzymatic 

cascade as discussed in detail in section 1.3. 

The regulation of gene function is further refined by the cross-talk between and 

within different modes of regulation. Understanding these events not only provides 

insights into fundamental mechanisms of gene function regulation, but also can lead to 

answers for curing various diseases caused by mis-regulation. The next sections will 

discuss transcriptional regulation and ubiquitin conjugation of proteins with respect to C. 

elegans development.  

1.2 Transcriptional regulation of gene expression 

 The importance of regulation of gene expression in controlling the developmental 

programs of an organism is well appreciated. The precise pattern of gene expression 

determines specific developmental decisions. During development, commitment to a 

specific fate followed by a determined differentiation program is achieved through an 

interdependent network of transcription factors. 

All genes require the basic transcriptional machinery known as general 

transcription factors (GTFs) and the spatio-temporal regulation of activation and/or 

repression of a gene is exerted through gene-specific factors. Eukaryotic GTF includes 

the RNA Polymerase II (Pol II), TBP (TATA-box binding protein) and TAFs (TBP 

associated factors). The role of TBP is to bind the core promoter, and TAFs assist TBP in 

this process (reviewed in Lee and Young, 1998).  
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Factors that relay the gene-specific signal to GTFs are called mediators. 

Generally, a specific mediator functions in a specific developmental pathway to 

coordinate gene-specific factors with GTFs. Mediator proteins are functionally and 

structurally conserved in eukaryotes and many of them have been identified in the C. 

elegans genome (Bourbon et al., 2004). For example, med-15 functions in association 

with sbp-1, a member of the SREBP (sterol regulatory element binding protein) family of 

transcription activators and it is required for fatty acid homeostasis in C. elegans (Yang et 

al., 2006). Thus, mediator proteins serve an important function of integrating the 

regulatory signal to the basic transcription machinery as they can interact with both GTFs 

and gene-specific transcription factors. 

The focus of this section will be on gene-specific transcriptional regulation. Many 

mutations have been studied so far which affect early development of invertebrates and 

metazoans. The majority of these mutations are encoded in transcription factors, 

emphasizing their importance in establishing cell commitment and pattern formation. C. 

elegans is a simple model system that has provided valuable insights into the field of 

transcription regulation. In C. elegans, 934 of the total ~ 20,000 genes encode putative 

transcription factors (TFs) (Reece-Hoyes et al., 2005). Recent progress in high-

throughput technologies like microarray analysis and yeast-one hybrid screening is 

helping to understand the intricate network of these transcription factors and their target 

genes in the specification of tissue differentiation (Dupuy et al., 2007; Vermeirssen et al., 

2007). 

 In C. elegans, transcription is silenced at the global level during oogenesis before 

oocytes begin maturation. Global silencing is achieved by regulating the phosphorylation 
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status of the carboxy-terminus domain (CTD) of the large subunit of RNA polymerase II 

(Seydoux and Braun, 2006; Walker et al., 2007). Oocyte maturation signals the release of 

transcriptional block, which aids rapid gene activation after fertilization in the zygote 

(Walker et. al., 2007). The transcriptional block occurs at a step after initiation but before 

transcription elongation. Transcription resumes in the zygote after fertilization at the 

four-cell stage during embryogenesis (Baugh et al., 2003; Seydoux and Fire, 1994). This 

transcription restart occurs only in the cells of the somatic lineage, while transcription in 

the germline lineage is delayed until the 100-cell stage (Martinho et al., 2004; Mello et 

al., 1996; Seydoux and Dunn, 1997). 

Extended transcriptional silencing in the germline lineage cells is maintained by 

the maternally supplied protein PIE-1 (Ghosh and Seydoux, 2008; Mello et al., 1996; 

Seydoux et al., 1996). PIE-1 encodes a putative RNA-binding protein with two CCCH 

zinc-finger motifs and has been shown to repress transcription in mammalian cell culture 

experiments (Batchelder et al., 1999). PIE-1 inhibits transcription by competing with P-

TEFb, a kinase subunit which phosporylates CTD, thus blocking transcriptional 

elongation (Zhang et al., 2003). pie-1 null mutation leads to embryonic lethality due to 

precocious release of transcription suppression in the germline cells, which as a result 

adopt the somatic fate (Mello et. al., 1996). When the embryo reaches the 100-cell stage, 

PIE-1 levels drop in germline cells (Mello et. al., 1996) due to the action of emb-4 via an 

unknown mechanism (Checchi and Kelly, 2006). Thus, the commitment of cell lineage 

for somatic or germline fate is determined by temporal regulation of the global 

transcription restart in the embryo. 
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1.2.1 Transcription networks for epidermal and muscle specification 

in C. elegans 

As mentioned earlier, high-throughput techniques like microarray and yeast-one 

hybrid make it easier to study gene expression at the global level and to decipher the link 

between specific transcription factors and the set of target genes. RNAi knockdown of 

genes in C. elegans provides an advantageous system to validate functional significance 

of these targets and transcription cascades in a context of fate determination or pattern 

formation. A recently published study that revealed a multi-step cascade of gene 

activation and the interplay between the networks of transcription factors in 

distinguishing the cell fate of C blastomere descendents in C. elegans development 

(Yanai et al., 2008), is a very good example of these high-throughput regulation analyses.  

 C. elegans embryogenesis and subsequent development is a characteristic 

example of invariant cell lineage with a fixed pattern of cell divisions and a fixed 

developmental program defined for every daughter cell (Sulston et al., 1983). Through a 

series of asymmetric cell divisions, a founder cell population with each cell specified for 

a distinct lineage is generated by the 8-cell stage in the embryo. As shown in Figure 1-1, 

the AB lineage produces hypodermis, neurons, anterior pharynx and other cell types; MS 

produces the somatic gonad, muscle, the majority of the pharynx, neurons and gland 

cells; E produces all intestine; C produces muscle, hypodermis and neurons; D produces 

muscle; and the P4 cell is the germ-line precursor (Gönczy and Rose, 2005). 

The C blastomere, which further differentiates into muscle, hypodermis and 

neuronal fates, is specified by the expression of pal-1, a caudal homeoprotein (Hunter 

and Kenyon, 1996). In the absence of maternal PAL-1 activity, the C blastomere does not  
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Figure 1-1: Specification of C lineage. 
The C blastomere is born at the eight-cell embryonic stage (A-D) and divides 

asymmetrically to produce muscle cells and epidermal cells (E). (Figure modified from 

Gönczy and Rose, 2005). 
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develop into these fates, while ectopic pal-1 translation causes other founder cells to 

produce muscle, epidermal and neuronal cells (Draper et al., 1996; Hunter and Kenyon, 

1996). Initial microarray analysis for pal-1 targets revealed 308 candidate targets (Baugh 

et al., 2005). Functional annotations of these targets indicated 13 putative transcription 

factors representing many families, including homeodomain, zinc-finger, GATA, MADS 

domain, bHLH and T-box proteins. So many diverse transcription factors amongst the 

targets of PAL-1 suggested that pal-1 controls a transcriptional regulatory network 

(Baugh et al., 2005). Further, RNAi followed by microarray analysis and reporter gene 

expression of pal-1 targets and putative transcription factors indicated two sub-networks 

of transcription regulators arranged in topological order (Yanai et. al., 2008). The 

interesting finding was that these two sub-networks compete with each other to specify 

either muscle or epidermal cell fate.  

 Epidermal cell fate is induced by elt-1, a GATA transcription factor necessary and 

sufficient for determining epidermal fate (Gilleard et al., 1999). Its expression is activated 

by pal-1 in the epidermal lineage of C blastomere (Baugh et al, 2005). elt-1 in turn 

activates expression of downstream transcription factors elt-3, lin-26 and nhr-25 (Baugh 

et al., 2005; Gilleard et al., 1999; Labouesse et al., 1996; Page et al., 1997). elt-1 itself is 

temporally regulated, as its expression peaks during the earlier stages of epidermal fate 

determination and is reduced later (Baugh et al., 2003). RNAi of elt-1 reduced target gene 

expression, consistent with the genetic studies, but RNAi of any of these three target 

genes elevated the expression of elt-1 and the rest of the targets (Yanai et. al., 2008). 

Thus, the target transcription factors impart a negative feedback on their common 

activator, generating a transcriptional network for epidermal fate determination. This 
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topology of expression suggests that epidermal specification occurs via a two-step 

process, with a negative feedback loop. 

 Unlike epidermal fate, muscle fate is specified by three transcription factors; hlh-

1, hnd-1 and unc-120 (Baugh et al., 2005; Fukushige et al., 2006). Out of 81 total body 

wall muscles, 32 are born from the C lineage, and the rest are born from the AB, MS and 

D lineages (Sulston et al., 1983).  hlh-1 is shown to be essential for muscle fate 

specification irrespective of the lineage (Krause et al., 1994). Its activation is regulated by 

different factors in distinct cell lineages and pal-1 regulates its activation only in C and D 

cell lineages.  

 The three transcription factors mentioned above, hlh-1, hnd-1 and unc-120, act 

redundantly in muscle specification based on genetic studies. They seem to activate each 

other’s expression as shown by RNAi (Yanai et. al. 2008). RNAi of hlh-1 reduces the 

expression of hnd-1 and unc-120. RNAi of hnd-1 or unc-120 reduces the expression of 

each other, but both increase the mRNA levels of hlh-1, indicating negative feedback 

loop similar to the one observed during epidermal fate determination.  

As summarized in Figure 1-2 these two networks of transcription regulators are 

initiated from the same cell lineage, yet specify a distinct cell fate. This distinction is 

achieved by antagonistic action of epidermal and muscle transcription networks on each 

other (Yanai et al., 2008). RNAi of any of the three muscle TFs resulted in increased 

expression of all four epidermal TFs, suggesting that the muscle network represses the 

epidermal network of transcription factors. Yeast-one hybrid analysis with the elt-1 

promoter showed that 10 out of 13 transcription factors bound the promoter, indicating 

that the muscle network of transcription factors directly 
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Figure 1-2: A Cartoon of the C lineage transcriptional network. 
PAL-1 initiates C blastomere development, inducing first elt-1 such that ELT-1 is present 

in all cells at the 4-cell (4C) stage embryo. At 8-cell (8C) stage, ELT-1 induces the 

second stage epidermal TFs and represses the muscle TF network. In the posterior 

daughter cell, ELT-1 expression is not maintained and all three muscle TFs are 

expressed, which suppress elt-1 expression (Modified from Yanai et al., 2008). 
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regulates elt-1 expression. Similar and reciprocal increase in the expression levels of 

muscle transcription factors was observed in elt-1 RNAi. During development, the C 

blastomere expresses muscle transcription factors and elt-1 expression in the epidermal 

daughter cell is essential to suppress the muscle fate (Yanai et. al., 2008). 

1.2.2 Transcription regulation in C. elegans sex determination 

 C. elegans exists as two naturally occurring sexes, hermaphrodite (with two 

copies of the X chromosome) and male (with one copy of the X chromosome).  The 

hermaphrodite is somatically female but produces male gametes (sperm) for a short 

period of time. Both sexes exhibit numerous sex-specific differences in the body plan. 

About 40% of male and 30% of hermaphrodite cells are sexually specialized and lead to 

extensive sexual dimorphism in C. elegans (Sulston and Horvitz, 1977). These sex-

specific differences are orchestrated by differential expression of genes throughout 

development, as identified by the microarray analysis of global expression levels in two 

sexes (Jiang et al., 2001). 

 The master regulator, TRA-1, defines the differential expression in a sex-specific 

manner. It encodes a GLI family transcription factor with zinc fingers and its mRNA is 

expressed at similar levels in both the sexes of C. elegans (Zarkower and Hodgkin, 

1992). Its function is required to initiate hermaphrodite fate and to suppress male fate in a 

tissue-specific manner. Differential accumulation of TRA-1 protein leads to distinct 

sexual fates as shown by Schvarzstein and Spence (2006). This differential accumulation 

of TRA-1 is achieved via sex-specific proteolysis regulated by intricate control of the 

sex-determination pathway, which is elaborated in the next section on ubiquitination 
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(Figure 1-6). In this section, I’ll discuss its function as a global transcriptional regulator 

in directing sexually dimorphic development in a tissue-specific manner (Summarized in 

Figure 1-3). 

The hermaphrodite-specific neurons (HSNs) are required for proper egg-laying 

behavior of hermaphrodites. They are born embryonically in both hermaphrodites and 

males but are retained only in hermaphrodites during the course of differentiation. The 

HSNs are not needed in males and undergo programmed cell death during embryonic 

development (Sulston and Horvitz 1977, Sulston 1983). The cell death is induced by pre-

apoptotic gene egl-1, which encodes a protein with a BH3 domain known as cell death 

activator (Conradt and Horvitz, 1998). egl-1 is directly repressed in hermaphrodites by 

TRA-1 (Conradt and Horvitz, 1999). As TRA-1 activity is reduced in males, egl-1 

repression is released, inducing male-specific cell death of HSNs.  

Another class of neurons that show sexually-dimorphic programmed cell death in 

C. elegans is the cephalic male neuron (CEM). The CEM neurons die during 

hermaphrodite embryogenesis but survive in males (Sulston et al., 1983). These neurons 

are essential for males to respond to the hermaphrodite pheromone (Chasnov et al., 

2007). Survival of CEMs in males is regulated by ceh-30, an anti-apoptotic Bar-

homeodomain transcription factor (Schwartz and Horvitz, 2007). Sex-specific expression 

of ceh-30 is directly regulated by TRA-1 as it represses ceh-30 in hermaphrodites thereby 

allowing CEM death (Schwartz and Horvitz, 2007). 

A homolog of DM domain transcription factors in C. elegans, MAB-3, promotes 

development of male-specific organs and male mating behavior (Shen and Hodgkin, 

1988; Yi et al., 2000). For example, in development of V rays, a sensory organ required 
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for male mating, mab-3 promotes activation of bHLH transcription factor lin-32 by 

preventing expression of the Hes family transcription factor ref-1 specifically in males 

(Ross et al., 2005). mab-3 is also required to suppress the vitellogenin gene vit-2 in male 

intestine. Thus, mab-3 primarily appears to function at the apex of the transcriptional 

regulatory cascade as a repressor during male specific development. mab-3 is a target of 

TRA-1 as TRA-1 inhibits mab-3 expression in hermaphrodites thus suppressing male-

specific development (Yi et al., 2000).  

Along with the somatic sexual fate, TRA-1 is also required for germline sexual 

fate determination. The male germline continues spermatogenesis throughout its life 

while the hermaphrodite germline temporarily produces male gametes during L4 larval 

stage. In somatic tissue, TRA-1 acts as female fate-inducing factor by suppressing male-

specific gene expression.  Genetic studies indicate that TRA-1 activity is essential in the 

germline for both oogenic and spermatogenic fate determination. So far, the only known 

direct target of TRA-1 in specifying the germline fate is fog-3 (Chen and Ellis, 2000). 

fog-3 encodes a Tob homolog, and along with fog-1 promotes spermatogenesis in both 

sexes. Both have been proposed to act as terminal regulators for sperm fate decision 

(Barton and Kimble, 1990; Ellis and Kimble, 1995). TRA-1 promotes oogenesis in adult 

hermaphrodites by transcriptional repression of fog-1 and fog-3 (Chen and Ellis, 2000; 

Jin et al., 2001; Lamont and Kimble, 2007). But TRA-1 also sustains continued 

spermatogenesis in males and in L4 stage hermaphrodites (Hodgkin, 1986; Hodgkin and 

Brenner, 1977; Kimble, 1988), most likely by positively regulating fog-3 under special  

 



    

  

 16 

 

Figure 1-3: Schematic representation of cell-specific regulation of sexual fate by 
TRA-1. 
TRA-1, a GLI family transcription factor, regulates sexually dimorphic development in a 

tissue-specific manner mainly by repressing male-specific target genes in the 

hermaphrodite soma.  
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circumstances (Chen & Ellis, 2000). No downstream targets of fog-3 and fog-1 are 

known as yet, and how these two genes bring about sperm differentiation is still an open 

question. In chapter III, I present the study of one of the putative transcription regulators 

that acts downstream of sperm-fate determination and is essential for sperm 

differentiation. 

Even though transcriptional regulatory activity of TRA-1 is well established, very 

few direct downstream targets of TRA-1 have been identified. Sex-specific microarray 

experiments done by Jiang et al., (2001) identified 1,651 genes enriched in males and 520 

genes enriched in hermaphrodites out of the total of 18,967 genes. These sex-regulated 

genes include 37 that encode putative transcription factors. Twenty-three of these 

mRNAs that encode sex-regulated transcription factors are enriched in hermaphrodites, 

and fourteen are enriched in males. Three of these 37 putative transcription factors are 

shown to be direct targets of TRA-1 (Jiang et. al., 2001). This set of 37 putative 

transcription factors could be direct or indirect targets of TRA-1 and could constitute the 

regulatory network that controls sexually dimorphic gene expression patterns, which 

needs to be studied further. 

1.3 Ubiquitin conjugation as gene regulatory mechanism 

Ubiquitin mediated degradation of TRA-1 has been identified recently as a critical 

mechanism for controlling its activity (see below). Ubiquitin, a 76 amino acid peptide, is 

conjugated to various proteins via a cascade of enzymatic reactions. Post-translational 

modification of proteins by ubiquitin conjugation regulates gene function mainly by 

controlling protein turnover mediated by a multisubunit 26S proteasomal complex 
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(Hershko and Ciechanover, 1998). More recently, ubiquitination has also been shown to 

regulate protein activity and their spatial sorting. Ubiquitin conjugation plays an essential 

role in cell fate determination and organismal development. Aberrant ubiquitin 

conjugation has been associated with various cell cycle defects, developmental diseases 

and neuropathologies (Ardley and Robinson, 2004; Nakayama and Nakayama, 2006). 

 Ubiquitin is translated as three different precursors: a polymeric head-to-tail 

concatemer (polyubiquitin) and two N-terminal fusion proteins with ribosomal 

polypeptides UbL40 and UbS27 (Nenoi et al., 2000). Although more variations of 

ubiquitin encoding exist (Catic and Ploegh, 2005), these three are the most conserved 

genes amongst phyla. Also, the number of polyubiquitin-encoding loci and the number of 

coding repeats found in the gene varies from species to species (Ozkaynak et al., 1984; 

Wiborg et al., 1985). 

The concentration of free ubiquitin moieties in the cell is of critical importance 

and is monitored by regulating transcription from the polyubiquitin gene and release of 

ubiquitin monomers after degradation of the polyubiquitin tag from the conjugated 

proteins. This ubiquitin homeostasis is essential for cell survival and proper function of 

the proteasome, as failure to do so can lead to defects from meiotic arrest (Okazaki et al., 

2000) to various diseases (Hanna et al., 2007).  

 The polyubiquitin gene produces the precursor polypeptide polyubiquitin. This 

unprocessed polyubiquitin chain has an additional amino acid residue at its C-terminus in 

the last ubiquitin moiety, which prevents its activation and hence conjugation to the target 

protein (Ozkaynak, et al., 1984). The polyubiquitin precursor is then processed by de-

ubiquitinating enzyme to release monomeric ubiquitins (Johnston et al., 1999). 
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Regulation at both the transcriptional step and the processing step can control the 

availability of free ubiquitin monomers, thus maintaining homeostasis.  

The monomeric ubiquitin has a Gly-Gly sequence at the C terminus, which then is 

activated by ubiquitin-activating enzyme. It is an ATP-dependent process carried out by 

the ubiquitin-activating enzyme (E1) in two steps: 1) adenylation of the C terminus of 

ubiquitin polypeptide through the hydrolysis of ATP, and 2) the transfer of this ubiquitin 

to a conserved cysteine residue within E1. As a result, ubiquitin gets covalently attached 

to the cysteine via a thioester linkage, generating ubiquityl-S-E1 (Haas and Rose, 1982).  

 The activated ubiquitin is then transferred to ubiquitin-conjugating enzyme, E2, 

via energy-neutral trans-esterification (Ciechanover et al., 1982; Pickart and Rose, 1985). 

The E2 enzyme then transfers the ubiquitin moiety to the substrate protein either directly 

or with an additional step of an E3 ubiquitin ligase, a process referred to as ubiquitination 

of the target protein.  Ubiquitination of the substrate leads to branched-protein conjugates 

in which the C-terminal glycine residue of ubiquitin is linked by an isopeptide bond to a 

specific internal lysine residue (acceptor lysine) (Ciechanover and Schwartz, 1989; 

Hershko, 1991; Reiss et al., 1989). Multiple rounds of this cascade of enzymatic reactions 

lead to a polyubiquitin tag on the target protein. The majority of substrates conjugated 

with ubiquitin are subjected to proteolysis via the 26S proteasome (reviewed in Hershko, 

1991; Jentsch, 1992; Rechsteiner, 1987). Thus, post-translational modification with 

ubiquitin mainly regulates half-life of the substrate protein.   

Ubiquitin has seven lysine residues - K6, K11, K27, K29, K33, K48 and K63. 

Polyubiquitin chains built up on distinct lysine linkages differ in their structural and 

functional information. Regioselectivity for specific lysine residue of ubiquitin as an 
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acceptor site for the first covalent attachment to a substrate depends on the ubiquitin-

conjugating enzyme, E3, and the nature of the substrate. K48 and K63 are the best-

characterized residues involved in polyubiquitylation (Haglund and Dikic, 2005). A 

polyubiquitin chain of at least four ubiquitin molecules at K48 is sufficient to target a 

conjugated substrate for proteasomal degradation (Thrower et al., 2000). In contrast, K63 

linkage is involved in non-proteolytic functions like regulation of cellular processes such 

as DNA repair, signal transduction, intracellular trafficking, and ribosomal biogenesis 

(Chan and Hill, 2001).  

Recently, novel non-canonical functions of K48 and K63 linkages have been 

discovered (reviewed in Li and Ye, 2008). Met4 activates expression of genes in the 

methionine biosynthetic pathway in S. cerevisiae. Its transcriptional activity is regulated 

by polyubiquitination via K48 but in non-proteolytic fashion (Kaiser et al., 2000). 

Similarly, canonically K63 linkage is involved in non-proteolytic functions, but it has also 

been implicated to target substrates for proteasomal degradation (Li and Ye, 2008). 

Unlike K48 and K63 linkages, which have been studied extensively, very little is 

known about the biological significance of other ubiquitin linkages. For example, Deltex, 

an E3 ligase involved in the Notch signalling pathway, itself gets polyubiquitinated by 

another E3 ligase, AIP4 via K29 likage and is then targeted for lysosomal degradation 

(Chastagner et al., 2006). AMPK-related kinases regulate cell polarity and proliferation. 

NUAK1 and MARK4 are members of this family and are regulated via K29/K33-linked 

polyubiquitin chains (Al-Hakim et al., 2008). Recent studies also report mixed ubiquitin 
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chains that contain more than one type of ubiquitin linkage within a single polymer (Ben-

Saadon et al., 2006; Kim et al., 2007b).  

 Apart from the polyubiquitin tag, the E1-E2-E3 enzymatic cascade also regulates 

monoubiquitination and multiple monoubiquitinations of the target protein. The addition 

of a single ubiquitin to a substrate is referred as monoubiquitination (Reveiwed in Hicke, 

2001). It plays a regulatory role in the endocytosis of plasma membrane proteins, DNA 

repair, histone modification and transcriptional regulation (Hicke, 2001). When multiple 

lysine residues in the substrate are conjugated to monoubiquitin moieties it is referred as 

multiple monoubiquitination (Haglund et al., 2003). 

1.3.1 Enzymes involved in ubiquitin-conjugation 

The enzymes involved in the ubiquitin-conjugation are described in detail from 

the bottom of the cascade. The substrate selectivity and type of ubiquitin linkage is 

determined by an E3 ubiquitin ligase. The E3s are a large, diverse group of proteins 

defined by different characteristic motifs. The majority of them can be grouped in two 

categories, the RING (really interesting new gene) class and the HECT (homologous to 

E6-associated protein C-terminus) class (reviewed in Jentsch et al. 1992). RING E3s 

function as mediators between E2 and the substrate. They interact with both 

simultaneously, bringing the substrate lysine in close proximity to the reactive ubiquitin-

E2 thioester bond and facilitating the transfer of the active ubiquitin. Thus, RING E3s 

work as adaptors and do not possess catalytic activity. These RING E3s can work as 

stand-alone adaptors like Mdm2 or in huge complexes like APC, the anaphase-promoting 

complex. HECT E3s have a catalytic function. The ubiquitin is first transferred from the  
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Figure 1-4: Schematic representation of ubiquitin-conjugation pathway.  
Ubiquitin-activating enzyme (E1) activates ubiquitin in ATP-dependent reaction. E1 

interacts with multiple ubiquitin-conjugation enzymes (E2s) to transfer the activated 

ubiquitin-thiolester. E2 can transfer the ubiquitin to multiple ubiquitin ligases (E3s) 

which then ubiquitinate specific target proteins.  
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E2 to an active-site cysteine in the conserved HECT domain of the E3. The thioester-

linked ubiquitin is then transferred to substrate from E3 (Scheffner et al., 1995). HECTs 

play important roles in disease-related pathways like TGF-β signaling and p53 regulation 

(reviewed in Kee and Huibregtse, 2007). 

Ubiquitin conjugation enzymes (UBCs) known as E2s, function at the 

intermediate step of the ubiquitination cascade, transferring activated ubiquitin from E1 

to either E3 or directly to a substrate with the help of an E3. Recent studies suggest that 

E2 interacts with E1 and E3 in mutually exclusive fashion, such that E1 must be 

dissociated after ubiquityl transfer before E2 can bind a specific E3 (Eletr et al., 2005; 

Huang et al., 2005). All known E2 enzymes have a conserved 16Kd UBC domain. This 

domain contains a centrally located cysteine residue essential for ubiquitin-thiolester 

formation (Sung et al., 1991). 

 The cascade of ubiquitin conjugation through a series of enzymes is driven by the 

differential affinities of the E1-E2 and E2-E3 enzymes towards each other in ubiquitin-

linked and ubiquitin-unlinked state. Ubiquitin-thioestered E1 has higher affinity for free 

E2. Once the E2 is coupled to ubiquitin, E1 looses its affinity for ubiquitin linked E2 

(Hershko et al., 1983; Pickart and Rose, 1985). Similar affinity variations have been 

demonstrated for E2-E3 interactions (Kawakami et al., 2001; Siepmann et al., 2003). 

Ubiquitin-dependent regulation of protein activity and degradation is an essential 

function of development and survival of an eukaryotic system. Vast numbers of substrate 

proteins are regulated by ubiquitin conjugation, and they are involved in diverse 

processes like DNA repair, cell cycle progression, transcriptional regulation, receptor-

mediated signaling pathways, and stress response (Petroski and Deshaies, 2005; 
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Weissman, 2001). The diversity is achieved by ubiquitin ligases with their remarkably 

specialized substrate recognition, and there are over 100 different E3s known in various 

eukaryotic systems (Hicke et al., 2005). E2s are encoded by relatively lower number of 

proteins; for example, the S. cerevisiae genome encodes 13 UBCs while the human 

genome contains 30 putative UBCs (Scheffner et al., 1998).  

1.3.2 Ubiquitin activating enzyme (E1), at the apex of the ubiquitin-

conjugation pathway 

In contrast to E3s and E2s, there is typically only one E1 protein, which serves the 

ubiquitin-activating function. Exceptions include an additional spermatogeneis-specific 

E1 in rodents, marsupials and human testis (Kay et al., 1991; Mitchell et al., 1992; Zhu et 

al., 2004) and multiple E1s encoded in plant genomes (Hatfield et al., 1997; Hatfield and 

Vierstra, 1992). The E1 enzyme contains signature motifs, two UBACT domains for 

ubiquitin activation and one or two Thif domains. The cysteine residue upstream of the 

UBACT domain is the most conserved residue as it is essential for covalent attachment of 

ubiquitin (Hatfield et al., 1992). Multiple forms of E1 protein have been detected in 

animals and plants (Cook and Chock, 1992; Hatfield et al., 1997). These different 

isoforms have been shown to vary in their post-translational modifications and sub-

cellular localization (Trausch et al., 1993). For example, the human E1 gene encodes two 

isoforms, E1a of 117KDa size and E1b of 110KDa size (Cook and Chock, 1992; Cook 

and Chock, 1995; Handley-Gearhart et al., 1994). Only the E1a isoform is shown to be 

dynamically phosophorylated in human cell lines (Stephen et al., 1996), and 

phosophorylated E1a isoform predominantly localizes in the nucleus during G2 phase of 
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cell cycle (Stephen et al., 1997). Quantitative distribution studies in the nucleus and the 

cytosol of HeLa cells suggested that the concentration of functional E1 (presumably the 

phosphorylated form) is the rate-limiting step for ubiquitin conjugation in the nucleus 

(Stephen et al., 1997).  

Although more than one isoform of E1 exists, there is essentially one functional 

E1 in the system. Thus, the complexity of ubiquitin conjugation realized at the level of 

E3 function narrows down to the single enzyme, E1, essential for ubiquitin activation. As 

the first enzyme in the pathway, E1 has the potential to regulate the rate of ubiquitin 

conjugation (Hatfield et al., 1990; Stephen et al., 1996). Blocking the E1 function can 

collapse the entire downstream ubiquitin conjugation cascade, as has been demonstrated 

in different species by various temperature-sensitive alleles of E1.  Genetic studies in the 

yeast S. cerevisiae have revealed that inactivation of the yeast E1 gene, Uba1, blocks 

most of the ubiquitin conjugation (Ghaboosi and Deshaies, 2007; McGrath et al., 1991; 

Swanson and Hochstrasser, 2000). Chapter II of this dissertation also reports that a 

hypomorphic allele of uba-1 in C. elegans dramatically reduces the amount of ubiquitin 

conjugates globally in total protein extracts (Kulkarni et al., 2008). 

Since functional aberrations in E1 activity affect all possible ubiquitin conjugation 

reactions, conditional mutations in E1 have turned out to be extremely useful in 

uncovering and understanding ubiquitin-dependent functions. Mammalian cell lines 

containing temperature-sensitive alleles of E1 have revealed its functional role in cell 

cycle progression and ubiquitin-mediated proteolysis (Ciechanover et al., 1984; 

Ciechanover et al., 1985; Finley et al., 1984; Kulka et al., 1988; Salvat et al., 2000). A 

conditional E1 mutant in S. cerevisiae has helped elucidate the mechanism of 
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polyubiquitin chain recognition by proteasomal components (Ghaboosi and Deshaies, 

2007).  Studies with weak and strong E1 alleles in Drosophila show opposing effects on 

cell survival, revealing complexities of the ubiquitin conjugation pathway ((Lee et al., 

2008). In that study, partial loss of ubiquitin conjugation caused by weak Uba1 alleles 

inhibited cell death, while strong Uba1 alleles showed high apoptotic activity. At the 

same time, the strong allele induced neighboring cell proliferation in non-autonomous 

manner due to failure to downregulate Notch signaling (Lee et al., 2008). 

1.3.3 Ubiquitin-like (Ubl) modifiers and cross-talk between ubiquitin 

and Ubl conjugation systems 

 Along with ubiquitin, there is family of ubiquitin-like modifiers (Ubls), which are 

conjugated to target proteins in a similar E1-E2-E3 conjugation cascade. A series of Ubls 

(e.g. SUMO, NEDD8, UCRP, FAT10, HUB, Fau, APG12, URM1, ISG15, Atg8) are 

emerging from recent studies. Some of them share sequence homology with ubiquitin but 

the majority of them have similar 3D topology, called the β-grasp fold (reviewed by 

Hochstrasser, 2000; Jentsch and Pyrowolakis, 2000; Kerscher et al., 2006). They function 

as critical regulators of distinct cellular processes like transcription, DNA repair, signal 

transduction, autophagy, and cell-cycle, but via non-proteolytic mechanisms except for 

FAT10 (Reviewed in Kerscher et al., 2006; Schwartz and Hochstrasser, 2003). 

 Each of these Ubls has a dedicated E1 and E2 for its activation and 

conjugation as reviewed in Kerscher et. al., (2006). So far it had been thought that 

conjugation of distinct Ubls occurs through parallel and non-identical enzymatic 

cascades. But in last few years, emerging cross-talk between the components of distinct 
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Ubl’s machinery is challenging this concept. For example, a common E2, UbcH8, is 

involved in conjugation of two distinct polypeptides; ISG15 and ubiquitin. The E1 

enzyme transfers ubiquitin onto UbcH8, whereas the Ube1L/E1ISG15 transfers ISG15 

onto UbcH8 (Zhao et al., 2004). Another example of crosstalk is Atg8 and Atg12, which 

are involved in autophagosome formation. Both share a single E1, Atg7, but each Ubl 

uses a distinct E2 (Ichimura et al., 2000). SUMO-1, 2, and 3 also share a common E1, a 

heterodimer of AOS1-UBA2 (Johnson, 2004). UBA6, an E1, ubiquitin-activating 

enzyme-like protein, is shown to activate both ubiquitin and FAT10 (Chiu et al., 2007). 

Even more interestingly, it transfers conjugated ubiquitin only to a specific subset of E2s, 

to Ubc5 and Ubc13 but not to Ubc3 and E2-25K (Chiu et al., 2007). Thus, ubiquitin-

activating enzyme is not the sole activator of ubiquitin and this finding increases the 

complexity of ubiquitin-mediated regulation.   

1.3.4 Ubiquitination in C. elegans development 

 As in other eukaryotic organisms, ubiquitin-mediated protein regulation plays 

important roles in multiple aspects of C. elegans development. Detailed lists of the 

known and putative components of the ubiquitin conjugation pathway are well 

summarized by Kipreos (2005) and by Jones et al., (2002). The C. elegans genome has 

two ubiquitin loci; ubq-1, a polyubiquitin locus (Graham et al., 1989), and ubq-2, which 

encodes ubiquitin fused to the L40 ribosomal large subunit protein (Jones and Candido, 

1993). The ubq-1 locus encodes 11 tandem repeats of ubiquitin as an 838 amino acid 

polypeptide. The genome encodes over 600 putative E3s, 22 E2s, three E2 variants 

without the critical catalytic cysteine, one E1, and four E1-like proteins. More than the 
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list of the factors, functional aspects of ubiquitin-conjugation pathway in C. elegans 

development will be discussed further. 

 Knock down by RNAi of uba-1, which encodes the sole E1 ubiquitin-activating 

enzyme, leads to severe phenotypes. The treated worms die earlier than wild type without 

producing any fertilized embryos (Jones et al., 2001). This emphasizes that ubiquitin 

conjugation is essential for progeny formation and functions through adult maintenance. 

The conditional allele of uba-1, reported in this dissertation, also points towards the same 

conclusion based on the various diverse roles uncovered in the mutant worms (chapter II 

and Kulkarni et al., 2008). 

 Only four of the 22 UBCs, let-70 (ubc-2), ubc-9, ubc-12 and ubc-14, play 

essential roles during early embryonic development as shown by RNAi experiments and 

by elevated expression in microarray experiments (Jones et al., 2001). Depletion of ubc-

20 by RNAi brings developmental arrest at the L3 larval stage, indicating its functional 

necessity during larval development (Jones et al., 2001).  RNAi depletion of the rest of 

the UBCs individually does not impair any aspect of C. elegans development (Jones et 

al., 2001).  This observation is most likely due to the fact that E3s can interact with more 

than one E2; thus, E2s could be serving redundant functions in specific developmental 

pathways. This notion is also implicated in yeast-two hybrid studies for interactions 

within the ubiquitin conjugation system of C. elegans (Gudgen et al., 2004). 

 Involvement of ubiquitin-mediated regulation in individual developmental aspects 

of C. elegans is dissected through studies of the terminal E3 ligases. Although not all 

predicted E3s have been studied at the genetic or biochemical level, a number of them are 

known to regulate various developmental roles, as reviewed in WormBook (Kipreos, 
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2005). Recent studies have uncovered E3s playing functional roles in aging (Li W et al., 

2007), synaptic signaling and plasticity (Schaefer and Rongo, 2006; Teng and Tang, 

2005), endoplasmic reticulum-associated degradation (Sasagawa et al., 2007), and sex 

determination (Jager et al., 2004; Starostina et al., 2007) in C. elegans. 

1.3.5 Ubiquitination role in polarity establishment in early embryo  

The role of ubiquitin-mediated degradation is evident from the first cell division 

of the zygote. The posterior cell generated after the first asymmetric division of the 

zygote is dedicated for germline, whereas the anterior cell specifies somatic fate. The 

asymmetry is determined and established by multiple protein and RNA factors. CCCH 

finger-encoding proteins, like PIE-1, POS-1 and MEX-1 bind RNA, and are known to 

segregate preferentially to the germline cell during the first cell division (Guedes and 

Priess, 1997; Tenenhaus et al., 1998). The restriction of these CCCH finger proteins to 

the germline lineage requires their degradation in somatic lineage cells. Degradation 

specifically in the somatic lineage is mediated by a zinc finger-interacting protein, ZIF-1 

(DeRenzo et al., 2003). ZIF-1 acts as a substrate recruitment factor and regulates PIE-1, 

POS-1 and MEX-1 degradation via CUL-2-containing E3 ligase (DeRenzo et al., 2003). 

The anaphase-promoting complex (APC), a multi-subunit E3 ligase, is involved in 

germline proliferation, cell cycle progression in early embryo, and formation of the 

hermaphrodite vulva and male tail of C. elegans (Shakes et al., 2003). Its role in the 

metaphase-to-anaphase transition of meiosis I in C. elegans is very well characterized. 

The APC has been shown to poly-ubiquitinate securin, the inhibitory partner of separase 

(Cohen-Fix et al., 1996; Funabiki et al., 1996). Once securin is degraded, separase is 
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relieved from the inhibition. Active separase then proteolytically cleaves cohesin, a 

protein that holds sister chromatids together, so that the sister chromatids can be pulled to 

opposing spindle poles (Buonomo et al., 2000; Nasmyth et al., 2000). Thus, the 

metaphase-to-anaphase transition is mediated by APC action. When any one of the 

subunits of APC is depleted either by RNAi or a genetic mutation, the affected embryos 

show a cell cycle block in metaphase of meiosis I or delayed progression through meiosis 

(Davis et al., 2002; Furuta et al., 2000; Golden et al., 2000; Kitagawa et al., 2002; Shakes 

et al., 2003). Sex determination of C. elegans is also regulated by ubiquitination as will 

be discussed in detail in the following section.  

1.4 Interplay between transcriptional regulation and ubiquitin-

mediated regulation 

 Gene function is regulated at multiple levels as discussed in the introduction. 

These modes of regulation do not function as stand-alone mechanisms, but they in turn 

regulate each other’s function to create an intricate network for controlling gene 

expression. For example, monoubiquitination of histone H2A is required for methylation 

of histone H3, which relieves transcriptional repression in that locus (Kim et al., 2008). 

This intricate connectivity of different regulatory modes makes the eukaryotic system 

able to respond to the finest changes in its intra- and extra-cellular environments. Recent 

studies reveal the interplay between ubiquitination and transcription in regulating various 

developmental aspects of C. elegans development.  
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1.4.1 Interplay during the development of an early embryo of C. 

elegans 

Spatial asymmetry in the early embryo of C. elegans is generated through 

interplay between ubiquitination and transcription. The single-celled C. elegans zygote 

divides asymmetrically to produce two blastomeres, each with distinct developmental 

potential. SKN-1, a transcription factor required for mesoendoderm specification, is one 

of the first proteins to be asymmetrically localized in the embryo (Bowerman et al., 1993; 

Bowerman et al., 1992). The protein accumulates in the posterior cell at 2-cell stage but 

not in the anterior sister cell. This asymmetry becomes more pronounced at the 4-cell 

stage. The protein is completely degraded from the embryo as it reaches the 8-cell stage 

(Bowerman et al., 1993). SKN-1 regulates the expression of mesoderm-determining 

genes like med-1 in the anterior EMS blastomere (Maduro et al., 2001; Tenlen et al., 

2006). efl-1, a transcription factor analogous to mammalian E2F, indirectly controls 

transcription of SKN-1. A HECT domain containing ubiquitin-ligase, EEL-1, targets 

SKN-1 for degradation in the posterior cell at 2-cell stage, thus controlling its persistence 

in very narrow spatial window. But, EFL-1 and EEL-1 together regulate the spatial and 

temporal expression pattern of SKN-1. Deletion of both of these factors eliminates SKN-

1 asymmetry at the 2 and 4-cell stages, and the protein can be detected until the 28-cell 

stage (Page et al., 2007).  

1.4.2 Interplay during sex determination of C. elegans 

 The sex determination program is one of the pathways well-studied at the 

molecular level. It integrates the ubiquitin-mediated regulation at TRA-1, the global 
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transcription regulator of sex-specific differentiation. C. elegans develops either as XX 

hermaphrodite or as XO male (Madl and Herman, 1979). The X-to-autosome (X:A) ratio 

determines the expression levels of transcription regulators such as sex-1 (a nuclear 

hormone receptor) and ceh-39 (a ONECUT homeodomain protein), which are encoded 

on the X chromosome (Gladden and Meyer, 2007), and a T-box transcription factor sea-1 

encoded on an autosome (Powell et al., 2005). These transcription factors together 

regulate the expression of the gene xol-1 (XO lethal) (Figure 1-5), which integrates two 

downstream pathways: dosage compensation and sex determination (Luz et al., 2003).  

xol-1 in-turn regulates the complex of transcription factors SDC (sdc-1, sdc-2, 

sdc-3), essential to repress her-1 expression in hermaphrodites (Perry et al., 1993; 

Zarkower, 2006). The her-1 gene encodes a secreted protein, which is a primary sex-

determining signal. It promotes male development by inhibiting the function of a 

transmembrane protein TRA-2 (Hunter and Wood, 1992). TRA-2, together with proteins 

FEM-1, 2 and 3, regulate the activity of TRA-1, the terminal transcription factor in the 

sex-determination cascade. TRA-1 then brings about sex-specific differentiation through 

downstream targets as discussed in the previous section (1.2.2).  

TRA-1 promotes female fate by suppressing transcription of male-specific genes 

in the hermaphrodite. TRA-1 is expressed in both the sexes and is primarily localized in 

the nucleus (Segal et al., 2001). But the overall TRA-1 levels are higher in 

hermaphrodites compared to males, implying that TRA-1 is regulated at the post-

translational level (Schvarzstein and Spence, 2006). Recent studies report that TRA-1 

protein is downregulated by a CUL-2-based E3 complex via ubiquitin-mediated  
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Figure 1-5: Sex-specific regulation of xol-1. 
xol-1 integrates both X and autosomal components to determine sexual fate. The 

molecular diagram indicates that CEH-39 and SEX-1 (nuclear hormone receptor) act to 

repress xol-1, whereas SEA-1 (T-box protein) functions to activate xol-1.  In XX worms, 

X-encoded factors out-compete to inactivate xol-1, but in XO animals, auotosomal 

factors outcompete to activate xol-1. The high level of XOL-1 protein present in XO 

animals then induces the male fate whereas the lower level of XOL-1 in XX animals 

permits the hermaphrodite fate (Adopted from Gladden et al., 2007). 
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proteolysis, and that the FEM proteins are in fact part of this E3 complex (Starostina et 

al., 2007). FEM-1 functions as the substrate-recognition subunit while FEM-2 and FEM-

3 function as cofactors for CUL-2 ubiquitin ligase activity. CUL-2 negatively regulates 

somatic TRA-1 levels in males and in L4-stage hermaphrodites to promote masculine fate 

in the soma and the germline, respectively (Starostina et al., 2007). FEM-1 and FEM-3 

proteins themselves are also indicated to be proteolytically degraded through the 

ubiquitin conjugation pathway. sel-10 (also known as egl-41) encodes a F-box protein 

that directly interacts with FEM-1 and FEM-3, targeting them for proteolytic degradation 

(Jager et al., 2004). The sex-determination pathway is illustrated in the following Figure 

1-6. 

The sex-determination cascade is regulated at each level though various 

mechanisms like translational regulation of tra-2 and fem mRNAs, receptor-mediated 

signaling via her-1 and tra-2, and stability of TRA-2 and TRA-1 proteins. As one can 

notice, tra-2 is subjected to complex and intricate regulation at all possible levels. TRA-2 

promotes female fate via TRA-1 activity. During L4 larval stage of hermaphrodite, TRA-

2 activity needs to be transiently suppressed to allow sperm development. This transient 

downregulation of TRA-2 depends on rpn-10, which encodes a ubiquitin-binding protein, 

and ufd-2, which encodes an E3 ubiquitin ligase (Shimada et al., 2006). Sexual fate of C. 

elegans is thus regulated by the interplay between transcription and ubiquitin-mediated 

regulation at multiple levels.  
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Figure 1-6: Illustration of sex determination pathway components. 
A) HER-1 is present only in males. It binds the transmembrane receptor TRA-2. TRA-2 

in turn interacts with the FEM complex, which together with CUL-2 ubiquitinates TRA-

1. The FEM proteins are also ubiquitnated by the F box protein SEL-10 (Modified from 
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Zarkower 2005). B) Left, in males, TRA-1 gets degraded due to polyubiquitination by 

FEM and CUL-2 complex. In the absence of TRA-1, genes promoting the male fate are 

expressed. Right, in hermaphrodites, TRA-1 degradation is inhibited; as a result, it can 

suppress the male genes promoting hermaphrodite fate. 
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  This dissertation reports the study of two genes involved in regulation of gene 

function in the context of C. elegans development. The first gene, uba-1, encodes the E1 

ubiquitin-activating enzyme, which is essential to initiate ubiquitination and hence to 

regulate protein turnover during C. elegans development. The second gene, spe-44, 

encodes a putative transcription factor that is required for the regulation of sperm-specific 

gene expression in C. elegans. 
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Chapter 2 E1 ubiquitin-activating enzyme UBA-1 

plays multiple roles throughout C. elegans 

development 

2.1 Abstract 

 Poly-ubiquitination of target proteins typically marks them for destruction via the 

proteasome, and provides an essential mechanism for the dynamic control of protein 

levels. The E1 ubiquitin-activating enzyme lies at the apex of the ubiquitination cascade 

and its activity is necessary for all subsequent steps in the reaction. We have isolated a 

temperature-sensitive mutation in the C. elegans uba-1 gene, which encodes the sole E1 

enzyme in this organism. Manipulation of UBA-1 activity at different developmental 

stages reveals a variety of functions for ubiquitination, including novel roles in sperm 

fertility, control of body size, and sex-specific development. Levels of ubiquitin 

conjugates are substantially reduced in the mutant, consistent with reduced E1 activity.  

The uba-1 mutation causes delays in meiotic progression in the early embryo, a process 

that is known to be regulated by ubiquitin-mediated proteolysis. The uba-1 mutation also 

demonstrates synthetic lethal interactions with alleles of the anaphase-promoting 

complex, an E3 ubiquitin ligase. The uba-1 mutation provides a sensitized genetic 

background for identifying new in vivo functions for downstream components of the 

ubiquitin enzyme cascade, and is one of the first conditional mutations reported for the 

essential E1 enzyme in a metazoan animal model. 
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2.2 Introduction 

Post-translational modification of proteins performs a critical role in regulating 

protein activity, and ubiquitin-mediated proteolysis has emerged as the key player in the 

control of protein turnover. Ubiquitin, a highly conserved small protein, is covalently 

attached to a target protein through an enzymatic cascade, and the assembly of a poly-

ubiquitin chain typically specifies that protein for rapid degradation via the 26S 

proteasome (Hershko and Ciechanover, 1998). Ubiquitin-mediated proteolysis thus 

provides an “off” switch for governing the spatial and temporal distribution of proteins 

that are no longer needed. This mode of regulation is essential for normal cellular 

processes (e.g., cell cycle progression and differentiation), and defects have been 

implicated in human diseases such as cancers and neurodegenerative disorders (Ardley 

and Robinson, 2004; Nakayama and Nakayama, 2006). 

Ubiquitination of target proteins can also regulate function by mechanisms other 

than proteasome-mediated degradation.  Mono-ubiquitination serves a signal for 

endocytosis and trafficking of various cell surface proteins, and is also implicated in 

histone and transcription factor regulation (Haglund and Dikic, 2005; Mukhopadhyay and 

Riezman, 2007; Schnell and Hicke, 2003).  The assembly of poly-ubiquitin chains can 

occur at different lysines within ubiquitin, which promotes different outcomes for the 

labeled protein.  Conjugation at lysine 48 typically leads to proteasomal degradation, 

while linkage through lysine 63 can modulate protein activities in processes as diverse as 

nuclear localization, DNA repair, or inclusion formation in neurodegenerative diseases 

(Chiu et al., 2006; Geetha et al., 2005; Lim et al., 2005). 
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A trio of enzymes mediates the attachment of ubiquitin to substrate protein: the 

E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin 

ligase (Hershko et al., 1983). Repeated cycles of ligation to the initial ubiquitin lead to 

poly-ubiquitination. Substrate specificity is conferred by the selective binding of 

individual E3 ligases to one or a few target proteins (Jackson et al., 2000). Eukaryotes 

typically possess a single gene encoding the E1-activating enzyme, tens of E2-

conjugating enzymes, and as many as several hundred E3 ligases. Some E3 ligases are 

themselves multi-subunit complexes, in which a substrate recognition subunit specifies 

the protein targeted for ubiquitination. 

In vivo roles for ubiquitination in organismal development have been determined 

primarily through the characterization of specific E3 ligases. In the nematode 

Caenorhabditis elegans, E3 ligases regulate processes as diverse as sex determination, 

cell cycle progression, and synaptic signaling (Burbea et al., 2002; Feng et al., 1999; Juo 

and Kaplan, 2004; Schaefer and Rongo, 2006; Starostina et al., 2007).  Studies of E2 

conjugating enzymes indicate interactions with multiple E3s, as their relative numbers 

would predict.  For example, inactivation of ubc-2 produces a broader range of 

phenotypes than inactivation of its known E3 partner apc-11 (Frazier et al., 2004). 

One of the best-characterized functions for ubiquitination and proteasomal 

degradation in C. elegans is the coordination of early events of embryogenesis 

(Bowerman and Kurz, 2006). The anaphase-promoting complex (APC) is a multi-subunit 

E3 ligase that is essential for completion of meiosis immediately after fertilization of the 

oocyte by the sperm (Davis et al., 2002; Golden et al., 2000).  Ubiquitin-mediated 

proteolysis also plays a role in the degradation of several proteins that are involved in 
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establishment of anterior-posterior (A-P) polarity in the early embryo. These proteins 

become asymmetrically localized at the first cell division, and failure to degrade these 

components correlates with developmental defects such as changes in cell fate 

specification and embryonic lethality. Formation of the A-P axis and progression of the 

embryonic cell cycle requires the activities of a class of E3 complexes known as Cullin-

RING ligases (Bosu and Kipreos, 2008; DeRenzo et al., 2003; Kemphues et al., 1986; 

Liu et al., 2004; Pintard et al., 2003; Sonneville and Gonczy, 2004; Xu et al., 2003). 

Mutations in components of the APC also affect A-P polarity, possibly as a consequence 

of defects in meiosis (Rappleye et al., 2002; Shakes et al., 2003). 

The E1 ubiquitin-activating enzyme lies at the apex of the enzymatic cascade, and 

manipulation of its activity might provide a crucial entry point for identifying the myriad 

roles performed by ubiquitin during development.  Temperature-sensitive alleles of E1 

have been identified in mammalian cell lines as cell cycle mutations that exhibit reduced 

ubiquitination and degradation of substrate proteins (Ciechanover et al., 1984; Finley et 

al., 1984).  Similarly, a temperature-sensitive allele of E1 in yeast dramatically reduces 

ubiquitin conjugation and also leads to cell cycle arrest (Ghaboosi and Deshaies, 2007).  

Conditional alleles have also been isolated in Drosophila in a screen for suppressors of 

hid-induced apoptosis during eye development (Lee et al., 2008).  Detailed 

characterization demonstrated the complexity of ubiquitin regulation in this system.  

Whereas weak alleles of the E1-encoding Uba1 gene block apoptosis, strong alleles 

promote cell cycle arrest and death.  Furthermore, these pro-apototic alleles promote non-

autonomous proliferation in adjacent cells via elevated levels of Notch signaling. 
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We report here the isolation of a temperature-sensitive mutation in the C. elegans 

uba-1 gene, which encodes the sole E1 enzyme in this organism.  Prior results for RNAi 

of uba-1 reported maternal sterility and embryonic lethality, with defects in meiotic 

progression (Jones et al., 2002; Kamath et al., 2003; Sonnichsen et al., 2005).  The uba-

1(it129) mutation recapitulates these phenotypes and also reveals several novel functions, 

including roles in sperm fertility, body size, and sex-specific development. The uba-

1(it129) mutation reduces in vivo levels of ubiquitin conjugates and causes a delay in 

meiotic progression in the early embryo, consistent with a reduction in E1 activity. The 

uba-1(it129) mutation also demonstrates synthetic lethal interactions with known 

components of the anaphase-promoting complex and, as such, provides a sensitized 

genetic background for identifying new in vivo functions for other components of the 

ubiquitin cascade. 

2.3 Materials and methods 

2.3.1 Genetics 

C. elegans strains were derived from the wild-type isolate N2 (Bristol) and 

contained one or more of the following mutations: uba-1(it129)IV, uba-1(ok1374)IV, 

dpy-20(e1282)IV, fem-1(hc17)IV, fem-3(q20)IV, him-5(e1490)V, mat-3(or180)III, fzy-

1(h1983)II, spe-26(it112), or chromosome IV deficiencies eDf19 or mDf7. A linked uba-

1(it129) dpy-20(e1282) double mutant strain was generated to facilitate discrimination of 

homozygous and heterozygous lines in some experiments. The integrated oma-1::GFP 

transgenic line was constructed by Reuyling Lin (Lin, 2003). Strains were maintained on 

nematode growth medium (NGM) plates seeded with E. coli strain OP50. Age-
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synchronized populations of embryos were obtained by sodium hypochlorite treatment of 

gravid hermaphrodites. Strains were maintained at 15˚C and shifted to 25˚C as indicated 

for phenotypic analysis. Genetic manipulations were carried out according to Brenner 

(Brenner, 1974). 

2.3.2 Microscopy 

Microscopy was performed with an Olympus BX51TF or Zeiss Axio Imager 

equipped with Nomarski DIC objectives and appropriate filter sets for fluorescent 

imaging and cooled CCD camera for image capture. Images were processed using the 

AxioVision (release 4.6) package and prepared for publication using Adobe Photoshop 

CS v. 9.0.2. Intact animals were typically mounted on 2% agarose pads for imaging. 

Body length was measured from captured images using ImageJ software v. 1.38. 

2.3.3 Sperm assays 

 Sperm morphology was assessed by dissection of gonads from adult 

hermaphrodites or males in SM medium (Shakes and Ward, 1989a). Nuclear DNA 

morphology was visualized by 4'-6-Diamidino-2-phenylindole (DAPI) staining of sperm 

from dissected gonads. In vitro activation of male spermatids was by treatment with 

monensin on poly-lysine-coated slides (Shakes and Ward, 1989a). Motility and 

localization of hermaphrodite sperm were determined in intact animals by fixation and 

staining with DAPI, then counting the number of sperm nuclei in the spermathecae and 

uterus. Sperm transfer was ascertained by vital staining of males (Hill and L'Hernault, 

2001) with the mitochondrial dye MitoTracker Red CMXRos (Molecular Probes), then 

mating to unstained hermaphrodites anesthetized with tricaine and tetramisole. After 12 
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or 24 h, fluorescently-labeled male sperm within the hermaphrodite reproductive tract 

were visualized by microscopy using rhodamine filters. Self-fertility of hermaphrodites 

was assessed by shifting individual L3 animals to 25˚C and counting the entire brood 

size. Cross-fertility of males was determined by mating with individual wild-type 

hermaphrodites or fem-1(hc17) females, then counting the number of male and 

hermaphrodite progeny produced by each animal after mating. 

2.3.4 Cloning and molecular analysis 

 The uba-1(it129) mutation was localized to chromosome IV between elt-1 and 

dpy-20 by three-factor crosses. Single nucleotide polymorphisms that affect restriction 

sites (snip-SNPs) were employed as physical mapping markers of individual uba-1(it129) 

dpy-20(e1282) recombinants with Hawaiian strain CB4856 (Wicks et al., 2001). 

Deficiency mapping was performed by complementation testing in uba-1(it129)/Df 

heterozygous strains. RNAi of candidate genes was performed by feeding (Timmons and 

Fire, 1998) and assessed by phenocopy of F1 embryonic lethality for treated adult 

hermaphrodites and by defects in adult tail morphology for treated L3 males. 

Complementation of the uba-1(ok1374) deletion allele was determined by generating 

it129/ok1374 heterozygous animals and performing temperature-shift assays as described 

for phenotypic characterization. Transformation rescue (Mello et al., 1991) was obtained 

by germ line microinjection of a 6.0 kb genomic fragment of the wild-type uba-1 gene 

mixed with plasmid pRF4, which contains the dominant roller marker rol-6(su1006), and 

linearized N2 genomic DNA at concentrations of 1, 50, and 100 µg/ml, respectively. 

Stable roller transgenic lines were generated from uba-1(it129) hermaphrodites 
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maintained at 15˚C, then rescue of sperm-specific sterility and embryonic lethality was 

scored after shifting to 25˚C. 

 The molecular lesion of the uba-1(it129) allele was identified by PCR 

amplification of the 6.0 Kb uba-1 genomic interval from mutant worms followed by 

sequence determination. In situ hybridization for uba-1 germ line expression was 

performed on dissected gonads following fixation (Lee and Schedl, 2005). Digoxigenin-

labeled, single-stranded sense and antisense probes were generated from a 1 kb cDNA 

fragment by linear amplification according to the manufacturer’s protocol (Roche, 

Indianapolis, IN). Following hybridization, probe detection was by colorimetric assay 

with alkaline phosphatase (AP) conjugated anti-digoxigenin antibodies and nitro blue 

tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) substrate. 

 Western blot analysis was performed on soluble worm lysates from age-

synchronized young adult hermaphrodites shifted to 25˚ as L2 larvae. Lysates were 

obtained by one freeze-thaw cycle, homogenization, and centrifugation for 10 minutes at 

10,000 RCF. Protein concentration of the soluble fraction was quantified by Bradford 

assay. 10 µg samples were fractionated by SDS-PAGE and transferred to PVDF 

membranes. Ubiquitin-conjugated proteins were detected by mouse anti-ubiquitin 

monoclonal antibody (1˚) followed by HRP-conjugated goat anti-mouse IgG polyclonal 

antibody (2˚; both Stressgen, Ann Arbor, MI). Duplicate gels were stained with Gelcode 

Blue (Pierce, Rockford, IL) to visualize total protein. 
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2.4 Results 

2.4.1 Phenotypic characterization 

 The temperature-sensitive it129 allele was isolated by Diane Shakes and, on the 

basis of sperm sterility and larval lethality, was provisionally designated as spe-32 (S. 

Ward, pers. comm.). We have determined that spe-32 is allelic to uba-1 (see below), the 

sole E1 ubiquitin-activating enzyme in C. elegans, and have adopted the latter gene name 

for the sake of clarity. Our detailed characterization of uba-1(it129) demonstrates a 

number of phenotypes, some of which are sex-specific, in addition to those mentioned 

above. 

Different phenotypes are manifested at different developmental stages 

(summarized in Table 1). To facilitate characterization, temperature-shift experiments 

were performed with age-synchronized populations of uba-1(it129) hermaphrodites. 

Adults shifted to the restrictive temperature produce dead embryos, and the number is 

equal to the number of progeny produced by wild-type animals at this temperature 

(Figure 1A). Embryonic arrest is heterogeneous, based on the variable morphology of the 

embryos and the broad range in the number of nuclei observed with DAPI staining 

(Figure 1B). Temperature shift at any stage of embryogenesis leads to normal hatching, 

but 100% of the resulting larvae die at the L2 stage (data not shown). Thus, the uba-1 

gene product is essential for both embryonic and larval development. 

Larvae that are shifted to the restrictive temperature at the L3 stage exhibit normal 
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Table 1. Summary of uba-1(it129) phenotypes 

Stage shifted Phenotype(s) 

Adult F1 embryonic lethality 

Paralysis (male only) 

Embryo Larval lethality 

L2/L3 larva Sperm-specific sterility 

Change in body size 

Tail defect (male only) 

Paralysis (male only) 

 

Table 2-1: Summary of uba-1(it129) phenotypes 
Divers phenotypes manifested by the temperature sensitive allele of uba-1 based on the 

life stage of the temperature shift. Every life stage of the mutant worms is affected by the 

temperature shift. 

 



    

  

 48 

somatic development. However, reproduction is adversely affected in the adult 

hermaphrodite. These sterile animals lay only unfertilized oocytes instead of embryos, 

but produce viable progeny when mated to wild type males, indicating that the sterility is 

sperm-specific (Figure 1C). Viability of these outcross progeny is high (96%), suggesting 

that oocyte development (which occurs subsequent to sperm production in the 

hermaphrodite) is largely unaffected by the mutation. Detailed characterization of the 

spermatogenesis defect (described below) indicates that these hermaphrodites produce 

appropriate numbers of morphologically normal sperm, but that the sperm are incapable 

of fertilization. 

All of the above phenotypes are fully recessive, as heterozygous hermaphrodites 

are indistinguishable from wild type. These phenotypes are largely though not completely 

rescued in uba-1(it129) homozygous animals at the permissive temperature. There is an 

increase in embryonic lethality as well as a decrease in the number of embryos produced 

(Figure 1A), which indicates that the uba-1(it129) gene product is not fully functional at 

15˚C. In addition, temperature causes a small but significant (p < 0.001 by Student’s t-

test) difference in body size between wild-type and uba-1(it129) adults (Figure 1D). 

When reared at 15˚C, uba-1(it129) hermaphrodites are 16% longer than wild type. The 

opposite phenotype is observed at 25˚C, with the uba-1(it129) mutants being 16% shorter 

than the wild type adults. 

In the course of generating heterozygous strains for phenotypic characterization, 

we observed strong maternal effect rescue of the early developmental defects. 

Homozygous uba-1(it129) progeny derived from +/uba-1(it129) hermaphrodites reared 

at the restrictive temperature exhibited little embryonic or larval lethality (Table 2).  
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Figure 2-1: Defects in uba-1 hermaphrodites.  
A) Number of viable and inviable progeny produced by wild type (WT) or uba-1(it129) 

hermaphrodites at 15˚C or 25˚C. Shown are mean values and standard deviations (N=6) 

of total progeny. B) DAPI staining of uba-1(it129) embryos from adults shifted to 25˚C. 

C) Sperm-specific sterility. Number of viable progeny produced at 25˚C by wild type or 

uba-1(it129) hermaphrodites, either unmated (self) or mated with wild-type males 

(cross). Shown are mean values and standard deviations (N=6) of progeny produced in 48 

h. D) Body length. Mean body length and standard deviations (N=20) of age-

synchronized adult hermaphrodites. 
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Table 2. Maternal and paternal rescue of lethality 

Rescue Hermaphrodite genotype Male genotype Lethality (predicted) 

Maternal uba-1(it129) / + none (self-fertile) 3.8%  (25%) 

Paternal uba-1(it129) / uba-1(it129) uba-1(it129) / + 7.2%   (50%) 

Data are from five (maternal) or six (paternal) hermaphrodites.  Mean total progeny 

numbers with s.d. are 123 ± 11 (maternal) and 73 ± 35 (paternal). 

Table 2-2: Maternal and paternal rescue of lethality 
The lethality in the homozygous progeny is rescued by the wild type copy of the uba-1 

gene from either parent. 
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Maternal rescue was not complete for all phenotypes; although the homozygous 

hermaphrodites developed normally into adulthood, sperm-specific sterility was still 

observed in these animals. We also tested for paternal rescue by mating uba-1(it129)/+ 

heterozygous males to uba-1(it129) homozygous hermaphrodites.  Again, embryonic and 

larval lethality (though not sperm sterility) were largely rescued (Table 2).  Because the 

presence of a single wild-type copy of uba-1 in either the hermaphrodite or male parent 

effectively suppresses embryonic and larval lethality in homozygous mutant progeny, it 

suggests that the maternal or paternal contribution of UBA-1 protein is sufficient to allow 

somatic development to proceed normally until adulthood. 

2.4.2 Male-specific phenotypes 

To facilitate the phenotypic characterization of males, we constructed a uba-

1(it129) him-5(e1490) strain [the him-5(e1490) mutation produces males via 

nondisjunction of the X chromosome] (Hodgkin et al., 1979). Temperature-shift 

experiments were performed with age-synchronized populations, and the same 

phenotypes were observed in males as above: embryonic and larval lethality and a 

reduction in body size (data not shown). Sperm-specific sterility of mutant males was 

assessed by crossing to fem-1(hc17) hermaphrodites, which lack sperm but produce 

oocytes that can be fertilized by mating. Experiments described below indicate that 

mating was successful but no cross-progeny were produced, demonstrating that male 

sperm are incapable of fertilization. Thus, the same array of defects are produced by the 

uba-1(it129) mutation in males and hermaphrodites. 
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We also observed additional phenotypes in uba-1(it129) males. The most 

conspicuous phenotype in the adult was constitutive protraction of the spicules (Figure 

2A, first vs. second panel). These structures are part of the reproductive apparatus of the 

male tail, and are normally extended only during insertion into the vulva for sperm 

transfer. A defect in spicule retraction was apparent in adult males at both the permissive 

and restrictive temperatures. Constitutively protracted spicules were observed in 

approximately one-third of uba-1(it129) males reared at 15˚C and nearly all of those 

reared at 25˚C. In some cases the spicules, gubernaculum, and surrounding tissues were 

everted, suggestive of structural defects in the integrity of the male reproductive tract as 

well. 

Additional abnormalities in the male copulatory apparatus were observed in 

animals reared at the restrictive temperature. The tail of the wild-type male possesses a 

cuticular fan containing nine pairs of sensory rays (Figure 2A, first panel), which are 

involved in mate detection and the behavioral responses necessary for locating the 

hermaphrodite vulva. The size of the fan is greatly diminished in uba-1(it129) 

homozygous males raised at 25˚C, which results in shortening of the tail tip and sensory 

rays as well (Figure 2A, third panel). The number of rays is not affected, and other male 

reproductive structures appear superficially normal by light microscopy. The shortened 

fan phenotype is semi-dominant: the fan expanse in heterozygous +/uba-1(it129) males is 

less than in wild-type but greater than in homozygous animals (data not shown). 

Therefore, proper formation of the male copulatory structures appears to be quite 

sensitive to the dosage of UBA-1 protein. 
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Figure 2-2: Defects in uba-1 males.  
A) Male tail defects. Shown are DIC photomicrographs of the male tail from wild type or 

uba-1(it129) animals grown at the indicated temperature. Bracket indicates the fan and 

sensory rays. Arrow indicates the spicules. B) Reproductive success of male mating. 

Graph indicates the mean number of male and hermaphrodite progeny produced by wild 

type hermaphrodites (N=6) mated to wild type or uba-1(it129) males grown at 15˚C. 

Only the first 500 progeny were counted for wild type. Matings combined one 

hermaphrodite with five males, or three hermaphrodites with 12 males (high #) for 24 h. 

Percent outcross is calculated by multiplying the number of male progeny by two, then 

dividing by the total number of progeny. C) Sperm transfer. Arrow indicates 

fluorescently-labeled sperm from wild type or uba-1(it129) males localized within the 

spermatheca of unlabeled hermaphrodites after mating. D-F, male-specific paralysis. D) 

Young adult uba-1(it129) male. Arrow indicates normal sinusoidal curve of tail. E) Older 
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adult uba-1(it129) male. Arrow indicates flaccid posture of tail. F) Dead uba-1(it129) 

male (arrow) and two uba-1(it129) hermaphrodites. 
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  The male tail structures are critical for mating behavior and sperm transfer, so 

aberrations in the fan or in spicule function might adversely affect male reproductive 

success. Sperm from wild-type males take precedence over hermaphrodite sperm such 

that only outcross progeny are produced until the male sperm are depleted, at which time 

the production of self progeny continues (Ward and Carrel, 1979). Male sperm produce 

male and hermaphrodite progeny in equal numbers, while hermaphrodite sperm produce 

exclusively hermaphrodite progeny. Therefore, the number of outcross progeny, an 

indicator of male reproductive success, can be readily calculated by determining the 

number of males produced. 

Reproductive success was ascertained for homozygous uba-1(it129) males grown 

at the permissive temperature. Some of these animals have protruding spicules, which 

might be predicted to impair sperm transfer. The fertility of uba-1(it129) hermaphrodites 

at 15˚C demonstrates that sperm function is normal at this temperature, so the production 

of outcross progeny was used as an indicator of successful mating. Mating to wild-type 

males produced males and hermaphrodites in the expected 1:1 ratio, indicating that all of 

the offspring in the measured time interval resulted from fertilization by male sperm 

(Figure 2B, WT). In contrast, mating with uba-1(it129) males produced an average of 

only 56 male vs. 236 hermaphrodite progeny (Figure 2B, uba-1), suggesting that the 

number of outcross progeny is reduced. The same data could be explained if the nullo-X 

sperm, which produce male progeny, are less competent for fertilization than the X-

bearing sperm that produce hermaphrodites. This explanation seems unlikely, because the 

percentage of male progeny is elevated if the density of males for mating is increased 

(Figure 2B, uba-1, high #). To eliminate conclusively this possibility, uba-1(it129) males 
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were mated to fem-1(hc17) adult hermaphrodites that lack sperm. Only outcross progeny 

are produced in this experiment and, although the numbers were low, males and 

hermaphrodites were observed in a ratio of 1:1 (data not shown). Therefore, the 

protruding spicule phenotype observed in uba-1(it129) males at the permissive 

temperature decreases the successful transfer of sperm for fertilization. 

Reproductive success was also characterized in the same manner for uba-1(it129) 

males shifted to the restrictive temperature at L3. No outcross progeny were observed 

from matings to either wild-type or fem-1(hc17) hermaphrodites. This failure might arise 

from the inability of sperm to fertilize the oocytes (as is true for hermaphrodite sperm at 

25˚C), or might be a consequence of the severe morphological defects in the male 

copulatory apparatus that occur at the restrictive temperature. A direct assessment of 

sperm transfer was performed to discriminate between the two possibilities. Males from 

him-5(e1490) strains that are wild-type or mutant for uba-1(it129) were raised at both 

15˚C and 25˚C, stained with a fluorescent dye, then mated to fem-1(hc17) hermaphrodites 

that lacked sperm. Wild-type males reared at either temperature and mutant males reared 

at 15˚C were successful in mating 50-70% of the time, as revealed by the presence of 

labeled sperm in the fem-1(hc17) hermaphrodites (Figure 2C, first two panels). In 

contrast, uba-1(it129) males raised at 25˚C successfully transferred sperm in only two out 

of 10 instances. Although the efficiency of mating is reduced at 25˚C, defects in the male 

copulatory structures arising from the uba-1(it129) mutation do not completely abrogate 

sperm transfer (Figure 2C, third panel). However, even those relatively rare successful 

matings do not give rise to outcross progeny, indicating that uba-1(it129) sperm from 

males are incapable of fertilization at the restrictive temperature. 
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An additional, sex-specific phenotype was observed in uba-1(it129) males: a late 

onset, progressive paralysis in two-thirds of the animals (Figure 2, D-F). The paralysis 

initiates at the posterior of the male and proceeds anteriorly as the worm ages, 

culminating in a completely paralyzed animal with a significantly shortened lifespan. 

Progressive paralysis is restricted to males, as uba-1(it129) hermaphrodites exhibit 

normal motility and lifespan (Figure 2F). The phenotype is not a consequence of aberrant 

somatic development but instead occurs post-developmentally, since delaying the 

temperature shift until adulthood still results in paralysis. Therefore, the uba-1 gene 

product is required for the maintenance of neuromuscular function in the adult male. 

2.4.3 Sperm-specific defect of uba-1 mutation 

Sperm development in C. elegans has been described in detail (Ward et al., 1981; 

Wolf et al., 1978), which allows the identification of specific cytological and functional 

defects in the developmental program that occur as a consequence of mutation.  Normal 

spermatogenesis initiates from a mitotically dividing population of germ line stem cells.  

Primary spermatocytes separate from a syncytial cytoplasmic core and undergo a 

coordinated program of meiosis and differentiation.  The two meiotic divisions give rise 

to four haploid spermatids with highly condensed nuclei.  These small round cells 

separate from a larger residual body, which contains components not needed for 

subsequent steps in development.  Activation by an extracellular signal converts the 

immotile spermatids into mature crawling spermatozoa capable of fertilization, and 

several compounds that promote activation in vitro have been identified (Nelson and 

Ward, 1980; Shakes and Ward, 1989a; Ward et al., 1983).  Activation in hermaphrodites 
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occurs in the spermatheca, where the mature spermatozoa are stored.  Activation of male 

spermatids occurs at the time of insemination, and the male spermatozoa crawl from the 

uterus into the spermatheca.  Fertilization takes place within the spermatheca as the 

oocyte squeezes into this chamber of hermaphrodite reproductive tract, and the newly 

formed zygote then passes into the uterus.  Most of the spermatozoa are dislodged and 

must crawl back into the spermatheca to await the next oocyte. 

Sperm-specific sterility caused by the uba-1(it129) mutation was characterized in 

greater detail, beginning with the early events leading to spermatid formation.  DAPI 

staining of L4 and young adult hermaphrodites and males revealed no differences in 

meiotic progression, the number of sperm produced, or (for hermaphrodites) their initial 

localization to the spermathecae (Figure 3, A-B and data not shown). Activation of 

spermatids was normal in vivo and in vitro and produced crawling spermatozoa with no 

discernible defect in pseudopod movement or cell motility (Figure 3C).  Since motility 

and localization appear normal and yet no zygotes are formed, the uba-1(it129) mutation 

produces mature spermatozoa that are nonetheless incapable of fertilization. 

 A secondary defect in sperm function was detected later in adult hermaphrodites. 

Spermatozoa are displaced from the spermatheca into the uterus by each passing oocyte, 

and must return to the spermatheca and await the next egg. Fertilization efficiency is 

essentially 100% in wild type animals, with nearly every sperm being utilized for 

reproduction (Ward and Carrel, 1979). Thus, the number of sperm in the spermatheca 

decreases in concordance with an increase in the number of progeny produced. Because 

uba-1(it129) spermatozoa are motile but incapable of fertilization, one might predict that 

numbers within the spermatheca would remain high throughout oocyte production. 
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Instead, the opposite phenomenon was observed, as sperm counts declined more rapidly 

in uba-1(it129) hermaphrodites than in wild type (Figure 3B). Furthermore, significant 

numbers of spermatozoa were detected in the uterus instead of the spermatheca (Figure 

3A, uba-1). These cells are swept from the spermatheca by the unfertilized oocyte but are 

unable to return, and instead are expelled through the vulva when oocytes are deposited. 

Thus, although sperm motility and localization initially appear normal, these processes 

are clearly impaired in older animals. This observation may indicate a defect in the 

maintenance of sperm quality over time, which adversely impacts either motility or 

sperm-spermatheca interaction. 
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Figure 2-3: Sperm defects.  
A) Sperm localization in the hermaphrodite reproductive tract. Wild type and uba-

1(it129) adults at 25˚C were fixed and stained with DAPI to count sperm nuclei. 

Arrowheads, location of spermathecae; small arrows, sperm displaced into the uterus. B) 

Summary of sperm localization data. Shown are mean values and standard deviations per 

hermaphrodite (N=6). T0, before egg-laying commences; T1, after 1-2 ovulations; T2, 8 

h post-T1; T3, 8 h post-T2. C) In vitro activation. Spermatids from wild type and uba-

1(it129) males at 25˚C were activated with monensin. Arrow indicates pseudopod of 

crawling spermatozoon. 
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2.4.4 Identification of it129 as uba-1 

The identity of the it129 allele was determined through a combination of genetic 

and physical mapping strategies (Figure 4A). Three-factor crosses placed this allele on 

chromosome IV between elt-1 and dpy-20 (F. Fell and S. Ward, pers. comm., and our 

own results; mapping data available at www.wormbase.org). Single nucleotide 

polymorphisms that overlap restriction sites (snip-SNPs) were analyzed in recombinant 

lines (Wicks et al., 2001). Strains containing the deficiency eDf19 or mDf7 failed to 

complement it129, further limiting its position to the overlapping 310 kb interval. A total 

of 80 candidate genes within the interval were available from a large-scale RNAi feeding 

library (Kamath et al., 2003). All were tested for the ability to replicate two of the it129 

phenotypes: F1 embryonic lethality of treated adult hermaphrodites, and tail deformation 

in adult males treated as larvae. Only one of the plasmids tested reproduced both 

phenotypes. That plasmid contains a fragment of the gene encoding the ubiquitin-

activating enzyme E1, which in C. elegans is known as uba-1. 

Complementation tests confirmed that it129 is an allele of uba-1. The Gene 

Knockout Consortium (http://celeganskoconsortium.omrf.org) has generated a deletion 

allele, uba-1(ok1374), that removes much of the third and fourth exons and is predicted to 

be a null mutation (Figure 4B). Mutants homozygous for uba-1(ok1374) exhibit 

embryonic lethality or early larval arrest, so ok1374/it129 animals were obtained from 

crosses at the permissive temperature to allow recovery of viable lines. Complementation 

between the two alleles was tested by temperature shift at various developmental stages 

as described above. The identical phenotypes reported for it129 homozygotes were 

observed for ok1374/it129 double heterozygotes: embryonic lethality, larval lethality, 
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sperm-specific sterility, defects in male tail formation, and male-specific progressive 

paralysis (Figure 4C, and data not shown). Thus, ok1374 and it129 fail to complement 

each other and are both alleles of uba-1. 

The ok1374 deletion is a putative null allele, while the it129 mutation is probably 

hypomorphic (i.e., reduction of function; see Discussion). Therefore, we sought to 

ascertain whether it129/ok1374 heterozygotes were more adversely affected than it129 

homozygotes. Most of the phenotypes observed in the it129 homozygous animals are 

highly penetrant, making enhancement difficult to detect. However, data from the 

complementation assay for sperm-specific sterility strongly suggest a more severe defect 

in it129/ok1374 animals. Cross-fertilization of sterile it129 homozygous hermaphrodites 

by wild type males yields progeny with high viability (96%; see Figure 1C).  In contrast, 

cross-fertilization of sterile it129/ok1374 hermaphrodites produces embryos with very 

low viability (6%; Figure 4C).  Furthermore, the same data demonstrate that the number 

of fertilized embryos is significantly lower for it129/ok1374 heterozygotes than it129 

homozygotes (10 vs. 48, respectively).  Sperm are normally the limiting gamete for 

fertilization in C. elegans, but these results suggest that oocyte production might be 

defective in it129/ok1374 hermaphrodites.  Therefore, we examined the gonads of these 

strains directly by DAPI staining. 

Germ cell development in C. elegans proceeds distally to proximally within the 

gonad, and is most readily distinguishable by changes in nuclear morphology (Hirsh et 

al., 1976).  In hermaphrodites, the proximal arm of the wild-type adult gonad contains a 
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Figure 2-4:Cloning and complementation.   
A) Schematic of cloning strategy.  Shown at top is the interval of chromosome IV from 

elt-1 to dpy-20.  Line two indicates the position of snip-SNPs identified in recombinant 

lines from N2 uba-1(it129) dpy-20(e1282) crossed with Hawaiian strain CB4856.  The 

next two lines indicate the endpoints and overlapping regions of chromosomal 

deficiencies eDf19 and mDf7, which failed to complement uba-1(it129).  Eighty genes 
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within the 0.31 Mb overlap were screened by RNAi feeding for two uba-1(it129) 

phenotypes: embryonic lethality and male tail defects.  B) Predicted gene structure of 

uba-1. Shown are position of the Pro1024Ser missense mutation identified in the it129 

allele and extent of the deleted region of the ok1374 allele. C) Complementation data for 

it129/ok1374 heterozygotes. Assay conditions for F1 embryonic lethality (N = 6 

hermaphrodites), larval lethality (minimum 500 embryos), and sperm-specific sterility (N 

= 10 hermaphrodites) were identical to those used to characterize it129 homozyogotes; 

see Figure 1 and accompanying text. D) Germ line defects in it129/ok1374 

heterozyogotes. Germ line nuclei were visualized by DAPI staining of fixed adult 

animals. The distal tip (DT) of the gonad is indicated for orientation. Top row shows a 

single gonad arm from (left to right) an it129 homozygous hermaphrodite, it129/ok1374 

heterozygous hermaphrodite, it129 homozygous male, and it129/ok1374 heterozygous 

male. Bottom row shows a high-magnification image of the boxed region of the proximal 

gonad. Arrows, oocyte nuclei in diakinesis. 
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row of individual oocytes whose nuclei are arrested at diakinesis of meiosis I. Our 

analysis indicates that the germ lines of it129 homozygotes are similar to wild type 

hermaphrodites, and the proximal gonad contains morphologically normal oocytes whose 

six diakinetic bivalents are easily seen (Figure 4D, top and bottom left panels). In 

contrast, the germ lines of it129/ok1374 animals show an increased population of germ 

cells and a concommitant reduction in the number of oocytes in the proximal arm of the 

gonad.  This defect in oogenesis is variable; some germ lines appear largely normal, 

while in other examples oocytes are absent and have been completely supplanted by an 

excess number of germ cells (as in Figure 4D, top and bottom second panels).  A similar 

phenotype has been reported for mutations in a number of genes that govern the 

proliferation vs. meiosis decision, such as glp-1 (Berry et al., 1997). 

In addition, we also observed a spermatogenesis defect in the germ line of males.  

Wild-type adult males accumulate large numbers of highly condensed spermatid nuclei 

within the seminal vesicle.  The it129 homozygous males likewise contain an abundance 

of compact spermatid nuclei (Figure 4D, top and bottom third panels). However, the 

seminal vesicle of it129/ok1374 males contain relatively few nuclei that also appear 

larger or less condensed than spermatid nuclei (Figure 4D, rightmost top and bottom 

panels).  In both hermaphrodites and males, the mitotic and pachytene regions of the 

germ line in the distal gonad appear normal (albeit occasionally reduced in size).  These 

results suggest that the differentiation of gametes in both sexes is impaired in the 

it129/ok1374 heterozygous mutants, but with opposite effects depending upon the type of 

gamete: males possess fewer spermatids than normal, while hermaphrodites contain an 

excess of germ cell nuclei rather than oocytes.  Gamete-specific differences in 
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proliferation and differentiation have been reported previously. For example, loss of gld-

1 causes germ line overproliferation only in hermaphrodites undergoing oogenesis 

(Francis et al., 1995), while loss of puf-8 causes overproliferation only in sperm-

producing germ lines (Subramanian et al., 2003). 

Transgene rescue of it129 with the wild type uba-1 gene further confirmed its 

identification. Initial attempts at rescue by germ line microinjection indicated that worms 

might be exquisitely sensitive to the dosage of this gene. Control injections with the rol-6 

marker (Mello et al., 1991) produced numerous F1 rolling progeny with stable 

transmission in subsequent generations. In contrast, coinjection of uba-1 with rol-6 at 

typical concentrations resulted in low brood sizes with very few F1 rollers and no stably 

transmitting lines, suggestive of transgene toxicity. To reduce the gene dosage, the 

concentration of uba-1 DNA was decreased relative to rol-6 and genomic N2 DNA was 

also included in the injections. At the lowest concentration tested, four of sixteen stably 

transmitting lines exhibited partial rescue of both sperm-specific sterility and embryonic 

lethality at the restrictive temperature. Therefore, the wild type uba-1 transgene is able to 

complement the it129 mutation. 

 Expression of a uba-1::GFP reporter transgene has been reported in a variety of 

somatic tissues but not the germ line (McKay et al., 2004), although a functional role for 

UBA-1 in this tissue is indicated by the mutant phenotype. Transgenes are often silenced 

within the germ line, so in situ hybridization was employed to detect transcription of the 

endogenous uba-1 gene within the gonad. Abundant expression was detected in germ 

cells that had initiated meiosis in wild type hermaphrodites (during sperm and oocyte 

production) and males (Figure 5). Signal intensity appeared to be higher during oocyte 
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production; this observation was confirmed by comparing fem-1(hc17) hermaphrodites, 

which make only oocytes, to fem-3(q23) hermaphrodites, which make only sperm. Peak 

expression occurs at pachytene of the first meiotic division, is absent immediately 

afterwards, and is detected again in late oogenesis. This pattern is more apparent in the 

fem-1(hc17) gonad, which is from an older adult than the wild type hermaphrodite. 

Sequence determination of the uba-1 coding region from the it129-bearing strain 

revealed the molecular lesion. A single nucleotide substitution was detected that converts 

the proline at position 1024 to serine (Pro1024Ser, Figure 4B). The complete structure of 

E1 ubiquitin-activating enzyme has not yet been determined, but X-ray crystal structures 

of the activating enzymes for ubiquitin-like proteins SUMO and NEDD8 are available 

(Lois and Lima, 2005; Walden et al., 2003). The proline residue that is mutated in uba-

1(it129) maps near the active site where the ubiquitin moiety is predicted to be covalently 

attached to the E1 protein. On the basis of the structural data, the Pro1024Ser mutation 

might be expected to alter catalytic activity of the enzyme. 
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Figure 2-5: In situ hybridization of gonads.  
Panels on the left show the uba-1 expression pattern in dissected gonads. Panels on the 

right show nuclear morphology by DAPI staining. From top to bottom, gonads are from 

adult hermaphrodites during oogenesis, adult males during spermatogenesis, fem-1(hc17) 

adult hermaphrodites that produce only oocytes, and fem-3(q23) adult hermaphrodites 

that make only sperm. At least 20 gonads were examined for each genotype or sex. DT, 

distal tip of gonad; P, pachytene region. 
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2.4.5 In vivo defects in ubiquitination and embryogenesis 

The uba-1 gene encodes the only known E1 ubiquitin-activating enzyme in C. 

elegans, so a defect in its activity is predicted to impair subsequent steps in the enzymatic 

cascade and cause an overall decrease in the level of ubiquitination on substrate proteins.  

We tested this hypothesis directly by using ubiquitin-specific antibodies to assess the 

amount of ubiquitination in worm protein lysates.  To control for variations in 

ubiquitination activity at different stages of development, we extracted protein from age-

synchronized young adult hermaphrodites shifted as L3 larvae.  Since these uba-1(it129) 

animals are infertile due to sperm-specific sterility, we included as an additional control a 

strain containing spe-26(it112) (a temperature-sensitive, sperm-specific sterile mutation).  

Western blots show a significant reduction in the amount of ubiquitin signal in uba-

1(it129) protein extracts compared to wild-type and spe-26(it112) controls (Figure 6).  

Note that the level of ubiquitin in the high molecular weight region of the blot is 

particularly diminished, presumably reflecting a substantial reduction in the amount of 

poly-ubiquitinated substrates.  Therefore, the uba-1(it129) mutation exhibits an in vivo 

decrease in protein ubiquitination. 

Reduced ubiquitination is predicted to adversely impact proteasomal degradation 

of target proteins. Well-characterized roles for ubiquitin-mediated proteolysis in C. 

elegans occur during the early events of embryogenesis. The anaphase-promoting 

complex (APC) is an E3 ligase that is required for degradation of the meiotic inhibitor 

securin (Kitagawa et al., 2002). Complete loss of APC activity results in metaphase arrest 

of the one-celled embryo (Golden et al., 2000). 
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Figure 2-6: Western blot for ubiquitin.  
Panel on the left (anti-Ub) shows the overall level of ubiquitin conjugates from wild-type, 

spe-26(it112), or uba-1(it129) young adult hermaphrodites. Equal amounts of soluble 

protein extracts were detected with ubiquitin-specific monoclonal antibody.  Panel on the 

right (Coomassie) shows the same extracts stained for total protein.  Size standards (MW) 

are indicated to the far right. 
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  The uba-1(it129) mutation does not produce the one-celled arrest caused by loss 

of APC activity, but instead mimics the multicellular embryonic lethality resulting from 

reduced APC function. This phenotype is produced by hypomorphic mutations in APC 

components or by synthetic interactions between some pairs of temperature-sensitive 

alleles (i.e., each single mutation has no effect at the permissive temperature, whereas the 

combination of both mutations causes maternal embryonic lethality) (Shakes et al., 2003). 

Since UBA-1 and APC function in the same enzymatic cascade, mutations in both might 

likewise exhibit a synthetic interaction. Therefore, we tested the uba-1(it129) allele in 

combination with APC components. Double mutants of uba-1(it129) with either the APC 

subunit mat-3(or180) (Golden et al., 2000) or the APC activator fzy-1(h1983) (Kitagawa 

et al., 2002) resulted in maternal embryonic lethality at the permissive temperature (Table 

3).  

 Early embryogenesis was examined in uba-1(it129) adult hermaphrodites shifted 

to 25˚ for defects in meiotic progression or A-P polarity in the first cell division. An oma-

1::GFP transgene was used to allow visualization of embryonic polarity (Lin, 2003). In 

wild-type hermaphrodites, OMA-1::GFP protein is evenly distributed throughout the 

cytosol and excluded from the intact pronuclei of the one-celled embryo. Our 

observations at 25˚C indicate that the protein is also concentrated on the sperm centrioles 

and mitotic spindle. Ubiquitin-mediated proteolysis at the first cell division degrades the 

bulk of OMA-1::GFP. The protein is absent in the anterior (A) cell of the two-celled 
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Table 3. Synthetic interactions between double mutants 

Genotype + mat-3(or180) fzy-1(h1983) 

+ WT WT WT 

uba-1(it129) WT Mel Mel 

WT, wild type; Mel, maternal embryonic lethality.  Data are from a 

minimum of ten hermaphrodites for each genotype reared at the 

permissive temperature of 15˚C. 

Table 2-3: Synthetic interactions between double mutants 
Worms double heterozygous for uba-1 and weak alleles of APC mutants show synthetic 

maternal embryonic lethality at permissive temperature.   
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embryo, and the remaining OMA-1::GFP becomes associated with P granules in the 

posterior (P) cell. In uba-1(it129) animals, the pattern of OMA-1::GFP in one-celled 

embryos is indistinguishable from wild-type. OMA-1::GFP degradation during the first 

cell division is likewise identical, and the protein persists only in the P cell. However, 

progression of the zygote through the first division is slower than normal for uba-1(it129) 

embryos. The delayed progression leads to an increase in the number of one-celled 

embryos within the uterus, which is easily visualized by the presence of OMA-1::GFP 

(Figure 7A). Wild-type hermaphrodites typically contain a single one-celled embryo in 

each arm of the gonad; in contrast, uba-1(it129) mutants possess an average of three one-

celled embryos per gonad arm (Figure 7B). In addition, 35% of the uba-1(it129) 

hermaphrodites contained a crushed zygote within the uterus. Formation of the rigid 

eggshell is completed late in meiosis, so these crushed zygotes might be either an indirect 

consequence of the observed meiotic delay or indicate a structural requirement for 

ubiquitination in the embryo immediately following fertilization. 

 The delay in progression through the first embryonic division was examined in 

greater detail. Upon fertilization, the oocyte nucleus completes the first and second 

meiotic divisions. The oocyte and sperm pronuclei meet and fuse, then undergo the first 

mitotic division. The percentage of embryos observed at each of these stages (meiosis, 

pronuclear migration and fusion, and mitosis) was determined for wild-type and uba-

1(it129) animals. The fraction of one-celled embryos in the meiotic and pronuclear stages 

was equivalent in wild type, but approximately two-fold higher in the meiotic stage for 

uba-1(it129) embryos (Figure 7C), suggesting that meiosis is acutely sensitive to UBA-1. 
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Figure 2-7: OMA-1::GFP expression.  
A) Adult hermaphrodites expressing the oma-1::GFP integrated transgene. Shown are 

examples of wild type and uba-1(it129) animals that contain one and four one-celled 

embryos, respectively. B) Frequency of one-celled embryos in the uterus. The number of 

one-celled embryos per gonad arm were counted for wild type (N=40) and uba-1(it129) 

(N=34) hermaphrodites. C) Distribution of one-celled embryos in the meiotic, pronuclear, 

and mitotic stages of development, as visualized by OMA-1::GFP. 
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Despite this significantly skewed distribution (p < 0.001 by Pearson’s chi-square test), 

there were no gross defects in nuclear or cellular morphology or OMA-1::GFP 

distribution as embryonic development progressed. 

2.5 Discussion 

We report here the isolation and characterization of a temperature-sensitive 

mutation of the uba-1 gene, which encodes the E1 ubiquitin-activating enzyme of C. 

elegans. Activation by E1 is the first step in the enzymatic pathway that leads to the 

conjugation of ubiquitin to target proteins. Manipulation of E1 activity by temperature 

shift provides a mechanism for identifying the many roles for ubiquitination throughout 

development. Effects of the uba-1(it129) mutation are manifested at both the organismal 

(i.e., embryonic and larval lethality, reduction in body size) and cellular (sperm-specific 

sterility) levels, and also result in sex-specific differences of developmental (formation of 

the male copulatory apparatus) and post-developmental (late-onset male paralysis) 

processes. The uba-1(it129) mutation causes a substantial reduction of in vivo levels of 

ubiquitin-conjugated substrates, exhibits synthetic embryonic lethality with components 

of the anaphase promoting complex (an E3 ubiquitin ligase), and produces delays in early 

embryonic events known to be regulated by ubiquitin-mediated proteolysis. 

Taken together, the data indicate that the uba-1(it129) mutation results in a 

temperature-sensitive reduction in its ubiquitin-activating enzymatic activity.  Since the 

uba-1 gene product is the only E1 enzyme in C. elegans, a reduction in its activity is 

predicted to negatively impact the function of E2 and E3 enzymes globally. This 

reduction would extend the half-life of proteins normally targeted for the proteasome, as 
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well as altering the localization and/or activities of other ubiquitin-conjugated substrates. 

Some of these downstream pathways will be more or less sensitive to a reduction in E1 

activity, but the result will be a decrease in the rate of ubiquitination for a wide variety of 

substrate proteins. In support of this model, Western blotting with anti-ubiquitin 

antibodies demonstrated an overall reduction in ubiquitin labeling of extracts from the 

uba-1(it129) mutant strain (Figure 6).  Also, structural data from related E1 enzymes 

predict that the Pro1024Ser mutation in uba-1(it129) might alter its catalytic activity. 

Finally, the model is consistent with our results in the candidate gene screen (in which 

reduced levels of UBA-1 by RNAi reproduced both the embryonic lethality and male tail 

defects) as well as the phenocopy of APC hypomorphic alleles rather than strong loss-of-

function mutations (i.e., multicellular vs. one-celled embryonic arrest). 

An alternative hypothesis, that the uba-1(it129) mutation blocks only one or a few 

E2/E3 pathways, is less likely.  The observed reduction of in vivo ubiquitination in the 

mutant would require that the bulk of ubiquitin conjugation be mediated by one or a few 

E3 ligases; however, the hundreds of E3s that are present in C. elegans argue against this 

model.  Furthermore, the range of phenotypes produced by the uba-1 mutation is much 

broader than those reported for inactivation of any single E2 or E3 enzyme (Kipreos ET, 

2005), consistent with its participation in multiple E2/E3 pathways.  We clearly 

demonstrate genetic interactions between uba-1(it129) and one E3 pathway, the APC, via 

synthetic embryonic lethality with mat-3 or fzy-1 alleles.  However, the sperm-specific 

fertilization defect appears to involve a different E3 pathway. This phenotype is not 

observed in APC mutants but has been reported for mutations in spe-16, which has 
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recently been determined to encode an E3 ubiquitin ligase homolog (Steve L’Hernault, 

personal communication). 

Some effects of the uba-1 mutation can be interpreted in light of the variety of 

phenotypes that arise from the loss of individual E2 or E3 activities. For example, 

embryonic and larval lethality have been reported for a number of E2 and E3 homologs 

in large-scale RNAi screens (Jones et al., 2002; Kamath et al., 2003; Sonnichsen et al., 

2005). However, the majority of these genes have not been further characterized and, 

absent additional knowledge of which proteins are substrates for particular E2 and E3 

enzymes, it’s difficult to speculate on the molecular mechanisms responsible for the 

observed lethality. 

In other instances, the uba-1 mutant phenotype suggests a previously unidentified 

role for ubiquitination. Body size in C. elegans is governed by a canonical TGF-ß signal 

transduction pathway that initiates with the DBL-1 ligand (Savage et al., 1996; Suzuki et 

al., 1999). Components of the TGF-ß pathway in other organisms are known to be 

regulated by ubiquitin conjugation (Itoh and ten Dijke, 2007). Different ubiquitin 

modifications produce antagonistic effects on signal transduction: mono-ubiquitination of 

Co-Smad stabilizes the protein and promotes signaling, while poly-ubiquitination of R-

Smad leads to its proteasomal degradation and down-regulation of signaling. Given the 

effects of the uba-1 mutation on C. elegans body size, it seems likely that components of 

the DBL-1/TFG-ß pathway are similarly regulated by ubiquitin. 

The sperm-specific sterility of uba-1(it129), coupled with the recent identification 

of spe-16 as an E3 ubiquitin ligase homolog (Steve L’Hernault, personal 

communication), indicate a previously uncharacterized role for ubiquitin in C. elegans 
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spermatogenesis. Ubiquitination is known to be essential for sperm function in a wide 

variety of organisms, and roles in mammalian spermatogenesis include regulation of the 

meiotic cell cycle, histone modification and chromatin remodeling, protein sorting during 

sperm differentiation, and quality control for defective sperm (Baarends et al., 1999a; 

Guardavaccaro et al., 2003; Morokuma et al., 2007; Sutovsky et al., 2001). In C. elegans, 

early events like meiosis appear unaffected by the uba-1(it129) mutation, suggesting that 

the infertility of these morphologically normal spermatozoa is due to a later defect in 

sperm development. In a manner analogous to mammalian sperm, ubiquitination in C. 

elegans might function in protein sorting as the spermatids divide from the residual body. 

Errors in this process are known to adversely affect sperm function: mutation of spe-15, 

which encodes a myosin homolog, impairs the asymmetric segregation of proteins during 

spermatid budding and causes sperm-specific sterility (Kelleher et al., 2000). 

Alternatively, ubiquitination might promote proteasomal degradation of a protein that 

inhibits fertilization, and decreased activity of UBA-1 would lead to inappropriate 

persistence of the proposed inhibitor. Spermatid activation and downstream events occur 

in the absence of new protein synthesis, so degradation of pre-existing component(s) is a 

plausible mechanism of regulation. Another possibility is that uba-1(it129) infertility 

might reflect a role for ubiquitin-mediated proteolysis in the sperm-oocyte interaction. 

Fertilization in ascidians is mediated by an extracellular enzyme from sperm that 

conjugates ubiquitin to a sperm receptor on the egg surface, leading to its degradation via 

the proteasome (Sawada et al., 2002). Ongoing analysis is designed to determine if one 

(or more) of these hypotheses is correct. 
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Multiple E3 ligases are involved in formation of the reproductive structures of the 

male tail, so the defects observed in uba-1 mutant males might arise from impairment of 

one or more known ubiquitination pathways. Mutation of mat-1, which encodes the 

CDC27 subunit of the APC, causes a diminution in the size of the fan and sensory rays 

similar to the defect produced by uba-1(it129) (Shakes et al., 2003). The heterochronic 

gene lin-41, which encodes a homolog of the RING finger subclass of E3 ligases, is also 

required for proper formation of the male tail. A decrease in LIN-41 function causes 

precocious retraction of the male tail so that the fan and rays are reduced or absent (Del 

Rio-Albrechtsen et al., 2006; Slack et al., 2000). The DBL-1/TGF-ß pathway (mentioned 

above) that determines body size also plays a role in formation of the spicules (Baird and 

Ellazar, 1999), and might be implicated in the protruding spicule phenotype of uba-

1(it129) males. 

The late-onset paralysis and associated lethality produced by the uba-1(it129) 

mutation is unusual in two regards: it is sex-specific, affecting only males, and can be 

induced after all somatic development is complete. There are few reports of such post-

developmental phenotypes for C. elegans, and this property suggests a defect in the 

maintenance of neuronal and/or muscle function rather than its establishment. Roles for 

ubiquitination in C. elegans neuromuscular activity have been reported previously. 

Multiple E2 conjugating enzymes have been implicated in polyglutamine protein 

aggregation in muscle (Howard et al., 2007). E3 ligase complexes that have been 

demonstrated to affect either muscle or neuronal function include CHN-1/UDF-2, APC, 

KEL-8/CUL-3, SCF/FSN-1/RPM-1, SCF/LIN-23, and SCF/SEL-10 (Ding et al., 2007; 

Hoppe et al., 2004; Juo and Kaplan, 2004; Liao et al., 2004; Mehta et al., 2004; Schaefer 
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and Rongo, 2006). However, the paralysis of uba-1(it129) males is distinct from the more 

subtle neuromuscular defects reported for other ubiquitin pathway components such as 

APC (decreased duration of forward movement) or KEL-8/CUL-3 (changes in nose touch 

response and spontaneous reversal frequency) (Juo and Kaplan, 2004; Schaefer and 

Rongo, 2006).  Furthermore, functional roles for all of these enzymes have been 

demonstrated in hermaphrodites, so the sex-specific ubiquitination that is responsible for 

male paralysis remains to be elucidated. 

Why are male-specific processes, including the fertility defect of the male gamete 

(i.e., sperm), so acutely sensitive to the level of UBA-1 activity? One intriguing 

possibility involves the recently discovered role for ubiquitin-mediated proteolysis in the 

sex determination pathway. The TRA-1 transcription factor is the critical regulator of 

somatic and germ line sex determination and acts primarily as an inhibitor of male sexual 

fate (Hodgkin, 1987). Three FEM proteins negatively regulate TRA-1 activity and 

thereby promote male cell fates, including sperm development in hermaphrodites 

(Hansen and Pilgrim, 1999). Starostina et al. (Starostina et al., 2007) demonstrate that the 

FEM proteins form an E3 ubiquitin ligase complex with CUL-2 that binds to and 

promotes proteasome-dependent degradation of TRA-1. Impairment of UBA-1 function 

by mutation would be predicted to decrease activity of the FEM/CUL-2 E3 complex, 

leading to an increase in TRA-1 levels that would inhibit male developmental processes. 

This weakly feminizing effect might act synergistically with one or more of the E3 

pathways described above. If this hypothesis is correct, then some of the sex-specific 

defects of the uba-1 mutation might be suppressed by a decrease in TRA-1 activity. 
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The observation of synthetic embryonic lethality between uba-1(it129) and 

mutations in components of the APC suggests a powerful approach for identifying new 

functions for downstream components of the ubiquitin pathway. A number of E2 and E3 

homologs exhibit detectable phenotypes in genome-scale RNAi screens, but the majority 

are indistinguishable from wild type (Jones et al., 2002; Kamath et al., 2003). One 

possible explanation is that many of these enzymes are functionally redundant, and that 

the determination of their roles will require inactivation of multiple E2s or E3s. 

Alternatively, in some instances the reduction of E2 or E3 levels by RNAi might be 

insufficient to disrupt function. However, the uba-1 mutation provides a sensitized 

genetic background for detecting decreased activity of downstream enzymes. Reanalysis 

by RNAi screening of the E2 and E3 homologs in the uba-1 mutant strain is likely to 

reveal novel functions for a number of those genes whose roles are currently unknown. 
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Chapter 3 spe-44, a putative transcription regulator 

of sperm gene expression 

3.1 Introduction 

 Development of an organism is achieved through cellular differentiation into 

specialized cell types. How cells differentiate and develop into specific cell types is a 

fundamental question in developmental biology, and an important wealth of work has 

already been done to understand this phenomenon (Lewis et. al., 1998).  The cell type is 

determined by the specific set of genes that govern the process towards the terminal 

differentiation stage. The expression of genes is precisely regulated in a spatial and 

temporal manner to restrict the ‘message’ passed on to the cell, which then gets 

determined to be of specific fate. As discussed in Chapter 1, transcriptional control is one 

of the modes for regulating gene expression in a cell-specific context. Studying the 

transcriptional control of gene expression can help understand how cells control a 

particular order of gene expression in spatial and temporal context. 

 Spermatogenesis in Caenorhabditis elegans provides a good model system to 

study stem cell differentiation and cell fate specification. The germline in C. elegans 

changes its fate during hermaphrodite development. The proliferative germline initially 

differentiates into sperm, but later in life the fate switches to oocyte. The spermatogenic 

germline goes through series of changes at the single cell level that are morphologically 

dramatic yet at the same time essentially similar to universal processes such as 

asymmetric cell division and signal transduction. Studying the transcriptional regulation 



    

  

 83 

of the genes necessary for sperm differentiation and development can give insights about 

the fundamental mechanisms of cellular differentiation and development in a complex 

eukaryotic system. 

3.1.1 Sperm development in C. elegans 

The process of development of the haploid spermatozoon from undifferentiated 

germline nuclei is referred to as spermatogenesis (Figure 3-1). The germline nuclei divide 

meiotically, generating four haploid spermatids plus a residual body that contains 

components not needed for subsequent steps of development. The residual body 

eventually gets degraded or absorbed. The spermatid differentiates from a single 

spherical cell into a motile spermatozoan through the process of activation or 

spermiogenesis. The terminally differentiated spermatozoon in C. elegans is an 

asymmetric cell with an amoeboid pseudopod for motility instead of a flagellum (Ward et 

al., 1981).. 

Although sperm development is essentially the same in both hermaphrodites and 

males, there are three major differences. First, spermatozoa in males are larger in size 

compared to hermaphrodite spermatozoa, which gives them a competitive advantage 

during mating (LaMunyon and Ward, 1998).  Second, the male germline continues to 

differentiate into spermatids, whereas the hermaphrodite germline switches to oogenesis 

at the onset of adulthood. The third difference is in the storage form and timing of 

activation for the spermatids (Figure 3-3). The spermatids are stored in the proximal 

region of the gonad in hermaphrodites and get activated after being transferred to the 

spermatheca. In males, spermatids are stored in the seminal vesicle and spermiogenesis
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Figure 3-1: Sperm development in wild type worm.  
Schematic diagram of stages during sperm development in C. elegans. The process of 

sperm development is referred to as spermatogenesis and the activation of spermatids into 

spermatozoa is called spermiogenesis. (Modified from L’Hernault, 2005) 
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occurs in the hermaphrodite uterus after mating (Ward et al., 1983). 

During sperm development, germline differentiation proceeds from the distal to 

proximal region of the gonad, so that the spatial distribution reflects temporal stages of 

development (Figure 3-2). In the distal region of the gonad, the germline proliferates 

mitotically. It goes through a transition zone (Figure 3-2B) and enters the meiotic cycle 

(Figure 3-2C). Nuclei in distinct phases of meiotic prophase I can be observed with their 

characteristic chromosomal patterns. Crescent-shaped nuclei (Figure 3-2B) are 

transitioning from mitosis to meiosis, while chromosomes in pachytene stage form a 

“bowl of spaghetti” as shown in Figure 3-2C. Nuclei are held together in a cytoplasmic 

core called the rachis until this point (Hirsh and Vanderslice, 1976). As the nuclei 

progress through meiosis, they start budding off from the rachis as primary 

spermatocytes. As the primary spermatocytes complete meiosis I, the 4N nuclei condense 

giving a characteristic pattern of the paired file of nuclei (arrows in Figure 3-2) in the 

proximal gonad. 

After meiosis I, primary spermtocytes can either enter meiosis II directly without 

going through cytokinesis or separate into two secondary spermatocytes, each with a 2N 

nucleus (Ward et al., 1981).  Meiosis II produces 4 haploid nuclei from one primary 

spermatocyte or 2 haploid nuclei from a secondary spermatocyte. These haploid nuclei 

bud off in an asymmetric cytokinesis event as round spermatids from a central anucleate 

mass of cytoplasm called the residual body (Figure 3-1). 
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Figure 3-2: Progression of germline differentiation in the gonad during 
spermatogenesis.  
(A) The distal tip of the gonad with mitotic nuclei progress further into meiotic cycle (C) 

at the gonad bent through the transition zone (B). The proximal region of the gonad 

illustrated the characteristic pattern of the primary spermatocyte nuclei in paired file. 

Spermatocytes complete the meiotic division budding off four haploid condensed sperm 

nuclei (D).  
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Terminally differentiated spermatids contain a haploid nucleus, many mitochondria, and 

fibrous body-membranous organelles (FB-MOs) described in detail in Ward et al., (1981) 

and Wolf et al., (1978). Components like ribosomes, tubulin and actin are left behind in 

the residual body, which is degraded or reabsorbed (Figure 3-1) (Machaca et al., 1996).  

The spermatids are stored in the spermathecae within proximal region of the 

gonad in hermaphrodites and in the seminal vesicle of males as shown in Figure 3-3. 

Spermiogenesis, activation of spermatids into motile spermatozoa, occurs after mating for 

male sperm (Ward et al., 1983) and after entering the spermathecae for hermaphrodite 

sperm. The entire process of spermiogenesis is initiated and completed without any new 

protein synthesis. The in vivo signal for sperm activation is not yet known, but spermatid 

can be activated in vitro using chemical agents that elevate the pH of sperm cytoplasm, 

e.g. the ionophore monensin or the weak base triethanolamine (Argon and Ward, 1980; 

Ward et al., 1983).  

The pseudopod is essential for motility in C. elegans sperm. Motility is achieved 

by continuous polymerization and depolymerization of the major sperm protein (MSP) in 

the pseudopod region (Roberts and Ward, 1982; Ward and Klass, 1982). MSP is 

synthesized very early as the primary spermatocytes cellularize and then MSP polymers 

are stored in the FB-MOs as spermatocytes mature into spermatids. FB-MOs and MSP 

go though dynamic spatial redistribution as the sperm cell differentiates into the motile 

spermatozoon (details in Roberts et al., 1986). 
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Figure 3-3: Germline distribution and morphology of hermaphrodite and male 
gonad.  
Two armed gonad from hermaphrodite (top) and single armed male gonad (bottom) 

showing the distribution of germline. In hermaphrodites, spermatozoa are stored in 

spermathecae (sp) on each side of the uterus, while in males, spermatids are stored in the 

seminal vesicle in the proximal gonad (PG). DG: Distal gonad. Image adopted from 

Schedl et al., (1997). 
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  The pseudopod is also required to maintain adherence to the spermathecal wall 

(Shakes and Ward, 1989; Ward and Carrel, 1979). As the mature oocyte enters the 

spermatheca, the spermatozoa release themselves from the wall and one of them fertilizes 

the oocyte (Ward and Carrel, 1979). The sperm are swept out of the spermatheca as the 

egg passes through the spermatheca and they need to crawl back with the help of 

pseudopod to position themselves again in the spermathecal wall invasions. 

3.1.2 Mutational analysis of spermatogenesis in C. elegans 

 The hermaphroditic system of reproduction in C. elegans makes it easy to isolate 

and study spermatogenesis-defective (Spe) mutations. The Spe mutation can be 

maintained by mating sperm-sterile hermaphrodites to wild type males. The combination 

of genetics of C. elegans and cytological analysis of sperm development offers an easy 

tool to track the functional role of these Spe mutations in spermatogenesis.  

 Microarray analysis has been used to identify the genes expressed in fem-1(h17) 

hermaphrodites, which produce only oocytes, and fem-3(q20) hermaphrodites, which 

produce only sperm. Comparison of these two expression sets revealed 1343 genes 

enriched during spermatogenesis (Reinke et al., 2004, described in detail in the result 

section). Approximately sixty of these genes have been genetically characterized within 

the last two decades, but only half of them have been identified at the molecular level. 

These mutations are generally categorized in three types (Figure 3-4). The spe-8 class 

affects spermiogenesis in hermaphrodites only ans comprises of 4 genes. The spe-9 class, 

which affects sperm-oocyte interaction and thereby fertilization, comprises seven genes 
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and most of them encode transmembrane proteins (Chatterjee et al., 2005; Kroft et al., 

2005; Singson et al., 1999; Xu and Sternberg, 2003).  

The third class of mutations affects various stages of the development and leads to 

aberrant sperm. This class has helped to elucidate the spermatogenesis pathway based on 

their arrest points as explained in Figure 3-4. A few mutations like cpb-1 and wee-1.3 

affect more general functions like translation or cell cycle control and arrest 

spermatogenesis during early stages of development (Lamitina and L'Hernault, 2002; 

Luitjens et al., 2000). Mutations that affect asymmetric distribution of components like 

spe-26 and spe-15 cause developmental arrest before completion of meiosis (L'Hernault 

et al., 1988; Varkey et al., 1995). One subset of this class produces ‘terminal 

spermatocyte’ arrest. These mutations impair FB-MO morphogenesis (e.g. spe-4, spe-5) 

affecting either spermiogenesis or maturation into spermatids (L'Hernault and Arduengo, 

1992; P. Hartley and S.W. L’Hernault, unpublished results). This subclass is discussed in 

more detail in the discussion section. 
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Figure 3-4: Schematic representation of mutations at their respective arrest points 

during spermatogeneis.  

The diagram is taken from L’Hernault 2005. It shows the spatial positioning where the 

specified gene product is required based on their mutational analysis.    
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3.1.3 Putative transcriptional regulators expressed during 

spermatogenesis 

Gene ontology annotation for the genes from the microarray analysis of germline-

enriched genes (Reinke et. al., 2004) revealed about 4% of the sperm-enriched genes with 

predicted nucleic acid-binding domain. Only ten of those show significant homology to 

known DNA-binding domains (Table 3-1). These ten are important candidates to study 

gene expression regulation during spermatogenesis.  

One of these ten is an established GATA transcription factor (Gilleard and 

McGhee, 2001; Page et al., 1997). elt-1, which encodes this GATA transcription factor, is 

well studied for its role in specifying hypodermal cell fate during embryogenesis (Smith 

et al., 2005). Mutant phenotypes during embryogenesis and further development have 

been characterized using genetic mutations and RNAi studies. The microarray 

experiment revealed up-regulation of this gene in during spermatogenesis, suggesting a 

novel function for ELT-1 during sperm development. ELT-1’s role as a transcription 

regulator was confirmed when it was identified as a DNA-binding factor for a sperm-

specific promoter sequence in yeast-one hybrid analysis (Smith HE, unpublished). In situ 

hybridization confirmed its expression in the spermatogenic germline (refer to 

Appendices).  

We requested deletion alleles for the remaining nine putative transcription factors 

from C. elegans Knockout Consortium. The deletion allele for C25G4.4 was the first one 

to be available for study. This chapter will present genetic and cytological analysis of 

C25G4.4. The  
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Gene Homology Domain Identity 
ceh-1 Slouch homeodomain 81% 
elt-1 GATA binding protein GATA3 zinc finger 44% 

nhr-43 retinoic acid receptor RRG1 zinc finger 26% 
C17H12.9 hepatocyte nuclear factor HNF6 homeodomain 67% 
C25G4.4 glucocorticoid modulatory element binding 

GMEB 
SAND 
domain 

37% 

C44F1.2 glucocorticoid modulatory element binding 
GMEB 

SAND 
domain 

41% 

F44D6.2 PRK1 associated protein AWP1 zinc finger 36% 
F56F3.4 PRK1 associated protein AWP1 zinc finger 38% 
F26F4.8 shavenbaby-ovo zinc finger 28% 
T20H4.2 Kruppel associated box KRAB zinc finger 30% 

 

Table 3-1: Putative sperm-gene regulators in C. elegans genome 
Predicted transcription factors form the genome which show differential expression in the 

spermatogenic  germline of C. elegans. 
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predicted protein sequence of C25G4.4 contains a SAND domain, a recently identified 

DNA-binding domain (Bottomley et al., 2001). According to the microarray data, it is 

expressed at two-fold higher level in spermatogenic germline than in oogenic germline 

(Reinke et al., 2000). In situ hybridization revealed specific spatial and temporal 

expression of the gene immediately prior to sperm production. Genetic analysis of a 

deletion allele of C25G4.4 has revealed its functional role during sperm development as 

indicated by the Spe phenotype, hence now it is called spe-44. Cytological analysis of 

this deletion allele of C25G4.4 showed a ‘terminal spermatocyte’ phenotype similar to 

the one observed in spe-4, spe-5, spe-26 and spe-39 mutations. Each of these genes has a 

distinct function in the spermatogenesis pathway, yet they produce the same mutant 

phenotype. If C25G4.4 is necessary for the expression of one or more of these genes and 

loss of C25G4.4 would lead to loss of expression of the downstream gene(s). This could 

be a possible explanation for the similar phenotype observed in these mutants. Thus, 

these genes could be the downstream targets of the putative transcription factor encoded 

by C25G4.4, functioning in the same regulatory cascade. The detailed analysis of the 

deletion allele of spe-44 using cell biological and genetic tools and its functional role 

during sperm development is presented in this chapter.     

3.2 Materials and Methods 

3.2.1 Strains 

C. elegans var. Bristol, N2 strain, was used as wild type. The strains used in this 

study were obtained from Caenorhabditis Genetics Center (CGC), unless otherwise 

mentioned. The alleles used were dpy-20(e1282)IV, fem-1(hc17)IV (Nelson, 1978), fem-
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3(q20)IV, him-5(e1490)V (Hodgkin et. al., 1979). The deletion allele ok1400 of C25G4.4 

was obtained from C. elegans Knockout Consortium 

(http://celeganskoconsortium.omrf.org) as a heterozygous strain. The deletion strain has 

been assigned the name spe-44 following the CGC nomenclature standards. The spe-

44(ok1400) dpy-20(e1282)IV homozygous strain was created in the lab. Heterozygous 

strains of spe-44(ok1400)IV  and spe-44(ok1400) dpy-20(e1282)IV over rearrangement 

nT1 were created in the lab. This rearrangement is a translocation of chromosome IV and 

V that also contains an integrated transgene qls51 with the green fluorescent protein 

(GFP). All strains were maintained on NGM plates seeded with E. coli (OP50) at 

permissive temperature of 150C unless otherwise mentioned. Genetic manipulations were 

carried out according to Brenner (1974). 

3.2.2 Single Worm PCR 

Individual heterozygous and homozygous spe-44(ok1400) and spe-

44(ok1400)dpy-20(e1282) hermaphrodites were isolated based on the sterility phenotype 

at adulthood. Multiplex single-worm PCR was performed on 6 replicate samples of each 

genotype using the primers as diagramed in Figure 3-5. 

For each reaction, a single worm was picked in a 2.5µl drop of worm lysis buffer 

(50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2, 0.45% NP-40, 0.45% Tween 20, 

0.01% gelatin and 60  µg/ml proteinase K) in the cap of 0.5µl PCR tube. The tube was 

spun briefly and frozen at -800C at least for 10 minutes. Before setting up the PCR, the 
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  Primer 343                CCA GTA TTA CGT TGT GAC GAG 

  Primer 502                GAT GGA GCA TTC ACA TAA TTT C 

  Primer 364                TCA CGG TTT TAT TCG GAT TG 

    2000bp amplicon 

    700bp amplicon 

    500bp amplicon 

Figure 3-5: Cartoon of the primers used to detect C25G4.4 deletion.  
Schematic diagram of the primers used to detect the deletion in spe-44(ok1400) strain 

compared to wild type worms. 

WT 

 

C25G4.4     1.5 kb deletion 
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worm was lysed at 650C for 1 hr 15 minutes and then at 950C for 15 minutes. After lysis, 

each tube was added with the multiplex PCR mix (with additional 1.5 mM MgCl2) with 

primers 343, 502 and 364. The PCR was run at 37 cycles of 940C for 30 sec, 550C for 30 

sec, 720C for 2 min with final extension of 3 minutes at 720C. 

3.2.3 Worm microscopy 

DIC microscopy was performed on staged worms and dissected gonads. The samples 

were mounted on 2% agar pads in M9 buffer (22 mM KH2PO4; 42 mM Na2HPO4, 85.5 

mM NaCl, 1 mM MgSO4). Nuclear morphology was visualized using DAPI stain. 

Worms were fixed in a series of 30%-65%-95% ethanol at 650C followed by acetone and 

then incubated with 100ng/ml DAPI in 1X phosphate buffered saline (PBS) (1.8 mM 

KH2PO4; 10 mM Na2HPO4; 137 mM NaCl; 2.7 mM KCl, pH 7.4) in the dark for 20-30 

minutes. Dissected gonads were incubated in the dark with 100ng/ml DAPI in 1X PBT 

(PBS-Tween 20 0.1%) for 5-15 minutes. Images were taken with appropriate filters using 

Ziess AxioCam HRc and processed using software AxioVision Rel 4.6. 

3.2.4 RNAi for C25G4.4 

RNAi construct (TF1) was generated by cloning a 637bp region amplified from 

wild type genomic DNA into pPD129.36 between inverted T7 promoters using HinDIII 

and XbaI sites. The primers used were CCC AAG CTT ATG TTC GGT GGA GAC GTG 

and GC TCT AGA TCG TAG AAG TCG ATG GTC. The clone was then transformed in 

E. coli strain HT115.  

Synchronized populations of N2 (wild type) hermaphrodites were grown until L2-

L3. Sets of 20 hermaphrodites shifted to NGM + isopropyl-beta-D-thiogalactopyranoside 
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(IPTG) + ampicillin plates expressing spe-44 RNAi construct or control (pPD129.36 in 

HT115 strain) in triplicate. The worms were maintained on RNAi plates until late 

adulthood and then were examined for unfertilized oocytes or sterility. Secondary spe-44 

RNAi was performed in the same manner on the F1 progeny from treated P0 

hermaphrodites.  

3.2.5 In situ hybridization 

fem-3(q20) and fem-1(hc17) worm populations were bleached and hatched on 

NGM plate overnight at 150C. The hatched L1 larvae were shifted to NGM plates with 

food at 250C until appropriate stages. fem-3(q20) hermaphrodites produce only sperm 

while fem-1(hc17) produce only oocytes at 250C 

3.2.5.1 Worm dissections 

Synchronized populations of worm strains were obtained at L3, L4 and adult 

stages. The worms were collected in PBS with 0.25 mM leavamisole. 200-300 worms 

were dissected with a 20-gauge needle to extrude the gonad arms and then collected in 

sterile 3ml glass culture tube with the conical bottom.   

3.2.5.2 ssDNA probe synthesis  

spe-44 cDNA was amplified (1.3 kb fragment) from the clone pHS589B using 

anti-sense primer HES-539 (ACG ATC TTC TTT CTC CGA AG) and sense primer 

HES-540 (CTT TCT ATT ATC ATC ATT ATC CGC). Using this cDNA as a template, 

single-strand DNA was linearly amplified using either 3’ anti-sense or 5’ sense primer 

with a Digoxigenin (DIG) labeled mix according to the manufacturer’s protocol (Roche). 

Amplified ssDNA was run on a denaturing agarose gel to confirm the single band and 
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size. ssDNA was then precipitated with 0.2M NaCl and ethanol and resuspended in 250µl 

hybridization buffer. The probe was boiled for 1hr and stored at –200C until use. 

The probe concentration was determined by dot-blotting on a nitrocellulose 

membrane along with a marker of known concentration. The probe was detected using 

colorimetric assay with alkaline phosphatase (AP) conjugated anti-DIG antibody and 

nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) called 

NBT/BCIP substrate by comparing the dot intensity to the control fragment. Both the 

sense and anti-sense probes were at 4ng/µl concentration. Prior to use, each probe was 

diluted 1:2 with the hybridization buffer and boiled for 5 minutes.  

3.2.5.3 Gonad fixation and hybridization  

This process was carried out according to the protocol by Min-Ho Lee and Tim 

Schedl (http://www.wormbook.org/toc_wormmethods.html) with minor modifications. 

After fixation, the gonads were treated with proteinase K for 1hr at the concentration of 

100 µg/ml in PBT. Hybridization with the DIG-labeled ssDNA probe (150 pg/µl) was 

carried out at 480C for 36 hrs. Subsequent washes were also carried out at 480C. After 

blocking with bovine serum albumin (BSA), the DIG probe was detected by colorimetric 

assay of AP-conjugated anti-DIG antibody with NBT/BCIP substrate. Finally, gonads 

were mounted on an agar pad in PBS with 100 ng/ml 4'-6-Diamidino-2-phenylindole 

(DAPI) and the images were taken with Ziess AxioCam HRc and processed using 

software AxioVision Rel 4.6. 
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3.2.6 Western analysis 

Homozygous and heterozygous spe-44(1400)dpy-20(e1282) adult males were 

maintained on food without hermaphrodites for 24 hrs. 50 adult males of each genotype 

were washed with 1X PBS and resuspended in 20 µl homogenization buffer with 1 µl of 

1M DTT and 1 µl of protease inhibitor mix. The pellet was stored frozen at -800C. 

Immediately prior to SDS-PAGE, the pellet was boiled with equal volume of 2X sample 

buffer for 10 min. Equal volumes of the supernatants were loaded on the 10% SDS-

PAGE gel after spinning at 6000 g for 10 minutes. 

After running, the gel was equilibrated with 1X transfer buffer (25 mM Tris-HCl, 

0.2 M Glycine) without methanol. The nylon membrane was activated in 100% methanol, 

washed with water and equilibrated with 1X transfer buffer for 20 minutes. The gel and 

the membrane were sandwiched between 2 sheets of 3MM Whatman papers soaked in 

1X transfer buffer. The entire assembly was sandwiched in a cassette between 2 sponges 

soaked in 1X transfer buffer and the cassette was immersed in an electroblot tank 

containing 1.5 liters of 1X transfer buffer keeping the membrane towards the anode side. 

The transfer was carried out at 100V for 60 minutes. After transfer, the membrane was 

blocked in 5% milk (nonfat powdered milk) in TBST (20 mM Tris pH 8, 150 mM NaCl, 

0.05% Tween-20) for 1hr at room temperature. The membrane was washed in TBST for 

3 times at 15 minutes interval. It was then incubated overnight at 40C with polyclonal 

anti-MSP (a gift from Dr. David Greenstein, Kosinski et al., 2005) at 1:2000 dilution in 

5% milk-TBST. The next morning, the membrane was washed and then incubated with 

horseradish peroxidase-conjugated anti-rabbit IgG (Pierce) 1:25000 diluted in 5% milk-

TBST for 1 hr at room temperature. The membrane was washed 3 times with TBST and 
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then developed using Supersignal substrate (Pierce). The membrane was exposed to X-

ray film in the dark for 1 to 40 minutes. The film was developed using AFP imaging 

system. 

3.2.7 Microinjection rescue 

 Genomic region of 6449bp of spe-44 amplified from N2 genomic DNA was 

cloned in pHS584 using SOEing PCR (Horton et al.1990). The primers used were HES-

502+515 (GAT GGA GCA TTC ACA TAA TTT C and AAA AGG ATC CTT CGT 

CTA AAA AAC TCT ATT TTA AAG) and HES-364+516 (TCA CGG TTT TAT TCG 

GAT TG and AAA ACG GCC GTG AAA TTG TTA TGA AGT AAA TAT ATA TTT). 

Heterozygous spe-44(ok1400)dpy-20(e1282) worms were microinjected with a mixture 

of purified pHS584 and pRF4 plasmid with rol-6(su1006) at concentrations of 4 and 200 

µg/ml, respectively . Standard microinjection protocol (Mello et al., 1991) was followed. 

Stable roller transgenic lines were obtained by maintaining the injected worms at 150C. 

The rescue of sterility was scored by maintaining individual L3 dumpy roller 

hermaphrodite from F4 generation to a separate plate.  
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3.3 Results 

Reinke et.al. (2004) performed microarray analysis to identify genes expressed 

specifically during spermatogenesis or oogenesis by comparing transcriptional profiles in 

fem-3(q20)IV and  fem-1(hc17)IV strains. These mutations are both temperature-sensitive: 

the gain-of-function allele q20 of fem-3 causes only sperm production in the 

hermaphrodite germline (Barton et al., 1987) and loss-of-function allele hc17 of fem-1 

causes only oocyte production in the hermaphrodite germline (Nelson et al., 1978). Out 

of 18,010 total genes on the microarray, 4245 genes showed differential expression 

between fem-3(q20) and fem-1(hc17) with 2 to 71 fold difference in the expression levels. 

Out of those genes, 1343 were overexpressed in fem-3(q20) compared to fem-1(hc17) and 

702 showed significant enrichment in spermatogenic germline over oogenic germline 

(http://wormgermline.yale.edu).   

Out of these 702 genes, 10 showed significant homology to reported DNA-binding 

domains based on the BLAST searches of NCBI nonredundant protein database, 

indicating their potential role in regulating gene expression specifically during sperm 

development. C25G4.4 is one of the genes that shows upregulation (2.215 fold) in fem-

3(q20) worms compared to fem-1(hc17) and also 3.7 fold upregulation in wild type 

worms at L4 stage (when the worm germline is spermatogenic) compared to glp-4(bn2) 

which lack germ cells (Beanan and Strome, 1992). C25G4.4 is predicted to encode a 424-

amino acid protein with a region from 65 to 150th amino acid homologous to the SAND 

domain  (Figure 3-6). The SAND domain is a recently identified DNA-binding domain 

with KDWK conserved motif essential for DNA binding (Bottomley et. al., 2001). Strong 
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homology (37% identity to the SAND domain in GMEB protein with e-value of 1.2e-12) 

to this DNA-binding domain and overexpression in sperm-producing worms suggest that 

C25G4.4 is a putative regulator of sperm gene expression.   

3.3.1 C25G4.4 RNAi produces no phenotype 

To determine if C25G4.4 indeed plays a role during sperm development, RNAi 

was performed on wild type L2 larvae by feeding at 150C. Individual worms were 

maintained until late adulthood on the RNAi plates expressing C25G4.4 dsRNA or 

control RNAi with vector alone. Adult hermaphrodites were scored for the presence of 

unfertilized oocytes on the plates. This experiment was performed in triplicates with 20 

individual worms in each. In all of these triplicate runs, all the adult hermaphrodites laid 

healthy brood and in normal numbers. None of the hermaphrodites laid any unfertilized 

oocytes during the first 4 days of the progeny-laying period.     

In C. elegans, sperm-specific genes are particularly resistant to RNAi for 

unknown reasons. There are at least 11 genes on chromosome I known to play a 

functional role during spermatogenesis (L'Hernault et al., 1988). A large-scale RNAi 

feeding screen for genes on chromosome I, including all 11 known SPE genes, did not 

show any sperm-specific sterility (Fraser et al., 2000). Because of similar resistance to 

RNAi, it is possible that C25G4.4 RNAi did not reveal any sperm-specific fertility 

defects.  
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Figure 3-6: Alignment of SAND domain from homologous proteins. 

Protein sequence alignment of pfam SAND domain with the SAND domain encoded in 

C25G4.4, DEAF-1 and GMEB proteins. The red box indicated the four most conserved 

residues, KDWK of the SAND domain.   
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3.3.2 Deletion in C25G4.4 causes sperm-specific sterility 

We requested a deletion allele of C25G4.4 from the C. elegans Gene Knockout 

Consortium. The allele ok1400 was created by the Knockout Consortium by 

trimethylpsoralen treatment with UV-crosslinking to induce deletion mutations and the 

mutation was identified by PCR screening using gene-specific primers (Barstead R.J. 

2000). The allele contains a 1577bp deletion leaving only 150bp in the first exon and 

71bp in the last exon and is predicted to encode a null mutation.  

The strain carrying the ok1400 deletion segregated worms that lay only 

unfertilized oocytes. These sterile hermaphrodites were able to produce viable progeny 

after mating with wild type males, which confirmed that the sterility is sperm-specific. 

The sterile hermaphrodites were backcrossed to N2 males a total of 6 times, selecting for 

sterile hermaphrodites each generation to eliminate other mutations from the genome. 

Heterozygous hermaphrodites were indistinguishable from wild type and segregated 

24.6% sterile hermaphrodites of the total progeny further indicating that the allele is 

recessive. Single worm PCR was performed on the sterile and fertile hermaphrodites with 

multiplex PCR using a primer set external to the deleted region and one primer within the 

deleted region as shown in Figure 3-5. When the wild type copy of C25G4.4 is present in 

the worm, the primer sets would amplify two products of 2kb and 700bp. In a multiplex 

PCR, the shorter amplicon takes precedence and the 2kb product is never observed. A 

heterozygous worm, carrying a wild type copy and a deletion copy of C25G4.4 would 

give two products of 700bp and 500bp. A worm homozygous for the deletion would 

amplify only a 500bp product as shown in Figure 3-7.         
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In every reaction, the sterile hermaphrodites amplified only the 500bp product 

(Figure 3-7, Lane 1-6) demonstrating that these hermaphrodites were homozygous for the 

C25G4.4 deletion. Fertile hermaphrodites amplified either only 700bp (lane 7) or both 

700 and 500bp products (lane 8-10) being either wild type or heterozygous for the 

deletion, respectively. Thus, sperm-specific sterility always segregated with homozygous 

deletion allele ok1400 and is tightly linked to the C25G4.4 locus. Therefore, C25G4.4 

was provisionally named spe-44 according to the Caenorhabditis Genetics Center (CGC) 

nomenclature standards. 

3.3.3 Balancer and marker linked strains for spe-44 

 For easy screening of sterile spe-44(ok1400) worms, the mutation was linked 

with the phenotypic marker, dpy-20(e1282). The strain spe-44(ok1400 dpy-20(e1282)IV 

was created by crossing sterile spe-44(ok1400) hermaphrodites with dpy-20(e1282) males 

and then screening for sterile, dumpy recombinants. Mating these recombinants to wild 

type yield heterozygous spe-44(ok1400) dpy-20(e1282) hermaphrodites that segregate 

one quarter sterile-dumpy progeny as expected.  

A balancer strain was created to maintain a population of homozygous sterile 

worms. spe-44(ok1400) was balanced over nT1, a translocation of chromosome IV and 

V, which has an integrated qls51 transgene. The transgene expresses GFP in the pharynx 

of the worms carrying the nT1 chromosome. Since worms homozygous for the  
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Figure 3-7: ok1400 deletion is linked with sperm-specific sterility.  
Multiplex PCR amplicons from sterile worms (Lanes 1-6) and fertile worms (Lanes 7-

10). All the sterile worms show only 500bp amplicon while the rest amplify both, 700 

and 500bp products (except lane-7). 
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translocation cannot survive, a population of heterozygous spe-44(ok1400)/nT1 worms 

with glowing pharynx and homozygous spe-44(ok1400) worms with non-glowing 

pharynx is maintained.  Segregation of total progeny of spe-44(ok1400)/nT1 and spe-

44(ok1400) dpy-20(e1282)/nT1 balanced lines at 150C and 250C was tested. Proportion of 

homozygous spe-44(ok1400) or spe-44(ok1400) dpy-20(e1282) to heterozygous over nT1 

in the F1 progeny was 1:2 as expected, but no dead embryos for homozygous nT1 were 

observed in both the strains tested. 

3.3.4 Sperm-specific defect 

 In C. elegans, more than 60 mutations have been reported to affect 

spermatogenesis, which could be broadly categorized into developmental and functional 

defects. To determine which stage during sperm development is affected by the spe-

44(ok1400) deletion, microscopic analysis was performed. Both wild type and 

heterozygous hermaphrodites showed normal sperm in their spermathecae (Figure 3-8A). 

To our surprise, the spermathecae of homozygous worms were without any sperm, as 

shown in Figure 3-8B.   

There could be two possible explanations for the lack of sperm in the 

spermathecae of homozygous spe-44(ok1400) hermaphrodites. One possibility is that the 

germline in mutant worms never initiate sperm fate as observed for fem-1 loss of function 

allele hc17 (Nance et al., 1999). The other possibility is that the sperm development is 

defective in spe-44(ok1400) worms and as a result they get swept out of spermathecae as 

the hermaphrodites reach adulthood.  
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Figure 3-8: Adult hermaphrodite spermatheca.  
Wild type (A) and homozygous spe-44(ok1400) (B) spermathecae. Arrow indicates 

mature spermatozoa and arrowhead indicates absence of spermatozoa. (100X 

magnification).  
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The hermaphrodite germline initiates sperm development during the L4 larval 

stage. To determine if homozygous spe-44(ok1400) worms initiate spermatogenesis or 

not, hermaphrodites were examined at the L4 larval stage. In heterozygous spe-44/+ 

hermaphrodites, the germline contains a mixture of spermatocytes and differentiated 

spermatids in the most proximal region of the gonad (circle in Figure 3-9A). 

Spermatocytes also were observed in the homozygous spe-44(ok1400) hermaphrodites, 

but no spermatids were present. Even after the germline had switched to oocyte 

differentiation in these worms, only spermatocyte like cells were observed in the 

proximal-most part of the gonad Figure 3-9B.  These spermatocyte-like cells are referred 

to as ‘terminal spermatocytes’ hereafter. Microscopic analysis of homozygous spe-

44(ok1400) adult males also showed similar terminal spermatocytes in the germline with 

no differentiated spermatids. 

3.3.5 Sperm development is arrested in meiosis 

The spe-44(ok1400) mutant germline does not form functional spermatids. 

Cytological analysis of the germline was performed to check the developmental 

progression of the germline through spermatogenesis. Young adult hermaphrodite and 

adult male gonads were dissected and observed under DIC microscopy. Wild type gonads 

showed typical spermatids (arrows Figure 3-10, A-B) whereas spe-44 gonads contained 

cells of spermatocyte size but no spermatids were observed (Figure 3-10, C-D). Some of 

the spermatocytes from the adult male gonad had a clover-leaf like structure (Figure 

3-10D, inset), indicating that some of the cells attempted to divide. 
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Figure 3-9: Proximal region of L4 hermaphrodite gonad.  
DIC micrograph showing mature spermatids in wild type (A) and spermatocyte-like cells 

in spe-44 (B) proximal region of the gonad. (100X magnification). 

  



    

  

 112 

 

Figure 3-10: DIC micrograph of dissected gonads.  
Dissected gonad from wild type hermaphrodite (A) and male (B) with spermatids (arrow) 

at the proximal region. The proximal region of the spe-44 dissected gonads (C and D) 

show only spermatocyte like “terminal spermatocytes” (arrowheads) in the proximal 

region instead of mature spermatids. The inset in panel D shows one of the rare events 

when terminal spermatocyte attempts to divide.  
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  DAPI staining of these dissected gonads revealed that the terminal spermatocytes 

typically contained 4 condensed nuclei (Figure 3-11, C-D). The morphology of the 

condensed nuclei within the cell is very similar to the nuclear morphology of mature wild 

type spermatids (Figure 3-11B). The presence of 4 condensed nuclei within the cell 

indicates that the spermatocyte completed karyokinesis during both meiosis I and II. 

However, the spermatids never separate from the residual body, although some do initiate 

the attempt (Figure 3-10D, inset). Thus, the spe-44 mutant fails at cytokinesis, and sperm 

development in both male and hermaphrodite germlines arrests as a terminal 

spermatocyte just prior to the separation of haploid spermatids. Earlier progression of the 

germline through pachytene until the primary spermatocyte stage appears normal in spe-

44 worms (Figure 3-12) compared to the wild type germline (Figure 3-2A). 

The motile pseudopod is necessary for maintaining localization to the 

spermatheca. As sperm development is not completed in the spe-44 hermaphrodites, 

crawling spermatozoa are never formed and the terminal spermatocytes get swept away 

from the spermatheca with the passing oocytes (Figure 3-13). This phenomenon leads to 

empty spermathecea as the hermaphrodite reaches adulthood as shown in Figure 3-8B. 
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Figure 3-11: spe-44 terminal spermatocytes with 4 condensed nuclei.  
Isolated wild type sperm (A) showing single nucleus each (B). Terminal spermatocytes 

from spe-44 male gonads (C) showing four condensed nuclei within the cell (D). 40X 

magnification. 
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Figure 3-12: Early meiotic progression of spe-44 germline.  
Dissected gonad of spe-44 adult male stained with DAPI shows normal ‘bowl of 

spaghetti’ pattern of pachytene nuclei and condensed nuclei of primary spermatocytes. 

(100X magnfication) 
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Figure 3-13: Spermatocyte sweep from the spe-44 young hermaphrodites.  
Lower panel shows the oocyte (arrowhead) sweeping terminal spermatocyte cell mass 

(outlined area) out from the vulval opening (arrow).   
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3.3.6 Spermatogenic fate is determined in spe-44(ok1400) germline 

 As a putative transcription regulator of sperm gene expression, it is possible that 

spe-44 plays a functional role during differentiation of the germline or alternatively, in 

determining the fate of the early germline (L3 stage) to be spermatogenic. If the second 

explanation is correct, the spermatocyte-like cells observed in the proximal gonad of the 

L4 hermaphrodites could be cells undergoing meiosis without a specific fate determined. 

In wild type hermaphrodites, proximal germline cells are already determined to be sperm 

by the L4 larval stage. One of the first prominent sperm-specific genes to be expressed is 

the major sperm protein (MSP). The protein can be detected early in primary 

spermatocytes with anti-MSP monoclonal antibody. MSP is expressed solely during 

sperm development; for example, MSP is not detected in fem-1 loss-of function mutants 

where the germline is always oogenic (Nance et al., 1999).  

Western analysis with anti-MSP antibody on total protein extract from spe-44/nT1 

and spe-44 adult males showed expression in both the worm strains (Figure 3-14). The 

total signal intensity in the protein extract from spe-44 worms is reduced compared to 

heterozygous spe-44/nT1 worms. As the germline in spe-44 does not form terminally 

differentiated spermatids, the total number of cells with sperm fate is reduced compared 

to the heterozygous strain. This could lead to reduced signal in Western analysis. 

Nevertheless, the fate of the spe-44 germline is already determined to be spermatogenic 

since MSP is expressed. 
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Figure 3-14: Western analysis of spe-44 males with Anti-MSP. 
MSP is expressed in both spe-44/nT1 (lane 2) and spe-44 (lane 1) males. In vitro 

expressed MSP with before and after induction was run as a control (data not shown). 
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3.3.7 spe-44 is expressed in pachytene germline 

 Spermatogenesis is arrested as terminal spermatocytes in spe-44 mutant worms. 

According to the hypothesis proposed in the Introduction section, SPE-44 is a putative 

transcription regulator of sperm gene expression. The observed arrest could be due to 

reduced or absent expression of downstream targets of spe-44, or inappropriate 

expression if SPE-44 acts as a repressor.  If this hypothesis is true, spe-44 itself should be 

expressed earlier in the germline during a narrow window of development.  

 spe-44 mRNA expression was tested by in situ hybridization with a spe-44 cDNA 

probe on dissected gonads. Gonads from L3, L4 and young adult hermaphrodites of fem-

3(q20) (which make only sperm) and fem-1(hc17) (which make only oocytes) worms 

were fixed and hybridized with the probe. fem-3(q20) gonads from the L3 stage of 

development show a very strong hybridization signal in the early meiotic germline. The 

average signal intensity observed in the similar meiotic region in L4 germline is reduced 

compared to L3 average intensity (Figure 3-15, A-B). The signal is altogether lost in the 

young adult germline (Figure 3-15C). None of the germlines of fem-1(hc17) worms show 

any hybridization signal (Figure 3-15,D-F). Thus, the oogenic germline does not express 

spe-44 during any developmental stages, consistent with the microarray data from Reinke 

et al. (2004). 

Higher magnification images of the germline with DAPI show the hybridization 

signal overlaps nuclei with the “bowl of spaghetti” pattern, which is characteristic of 

condensed chromosomes within the pachytene stage of prophase I of 
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Figure 3-15: In situ hybridization on dissected gonads with spe-44 anti-sense probe.  
fem-3(q20) gonads in L3 (A), L4 (B) and adult (C) stage with successively reduced 

hybridization signal (black arrows). fem-1(hc17) L3 (D), L4 (E) and adult (F) gonad with 

no hybridization signal. 
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Figure 3-16: Spatial pattern of spe-44 expression in the fem-3 adult germ line with 

respect to cell cycle stage.  

The DIC image on the left shows the spe-44 mRNA expression (arrow) and the right 

panel is a corresponding DAPI image showing nuclear pattern. The expression is 

exclusively in pachytene stage of meiosis I. 
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meiosis I (Figure 3-16). The signal appears as soon as the germline enters meiosis and is 

expressed in a very brief window during meiosis, temporally and spatially just prior to 

the specification of spermatogenesis. Although spe-44 is expressed in the pachytene 

zone, its function is not necessary until later stages of meiosis, as indicated from the 

morphological defect. 

 

3.3.7.1 Microinjection rescue of spe-44 sperm sterility 

 The wild type spe-44 gene was cloned with approximately 1kb upstream and 

700bp downstream sequence. The construct along with the rol-6 marker was injected in 

heterozygous spe-44(ok1400)dpy-20(e1282)/+ hermaphrodites. Dumpy and rolling 

worms were picked as transgenic and were screened for fertile hermaphrodites as a 

rescue of Spe. Two out of seven stably transmitted lines partially rescued the spe-

44(ok1400) linked sterility, with the total viable progeny count of 62 ± 19 and 50 ± 35, 

respectively.   

3.4 Discussion 

C25G4.4 was identified as a putative transcription regulator based on its homology 

to known transcription factors, and had been shown to be up-regulated during 

spermatogenesis in C. elegans (Reinke et al. 2000). The deletion allele of the gene 

showed the Spe phenotype and hence the gene C25G4.4 was named spe-44. Detailed 

cytological analysis revealed that sperm development is initiated in spe-44 mutant worms 

but arrests as terminal spermatocytes. The gene is expressed in a very specific spatial and 

temporal pattern immediately prior to sperm production.  
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 C25G4.4 was classified as a putative transcription factor based on its homology 

with proteins containing the SAND domain. In C25G4.4, the domain encompasses amino 

acids 65-150 and shows 37% identity with the SAND domain in other proteins. Speckled 

protein 100KDa (Sp100), AIRE-1 (AutoImmune Regulatory-1), NucP41/75 and DEAF-1 

(Deformed Epidermal Autoregulatory Factor-1) are the founding members that share the 

SAND domain. Several proteins that contain this 80 amino acid long SAND domain with 

the conserved KDWK core sequence are associated with various diseases. AIRE-1 is an 

autoimmune regulator type 1 protein that when mutated causes various autoimmune 

syndromes (Gibson et al., 1998; Park et al., 2003). The speckled protein family encodes 

components of nuclear bodies, which are linked with neurodegenerative disease and acute 

promyelocytic leukemia (Bloch et al., 1996; Hodges et al., 1998). One of the proteins of 

this family, Sp110, has been proposed to function as a nuclear hormone receptor 

transcriptional co-activator (Bloch et al., 2000). 

 Although the SAND domain does not show any considerable homology to known 

DNA-binding motifs, its ability to bind to specific DNA sequences and to regulate 

transcription is well established. The SAND domain in the proteins DEAF-1 (Gross and 

McGinnis, 1996), NUDR (Nuclear DEAF-1 Related) (Huggenvik et al., 1998), and 

GMEB (Glucocorticoid Modulatory Element Binding) (Christensen et al., 1999) have 

been proposed to mediate DNA binding in a sequence-specific manner. The SAND 

domain of NUDR has been shown to specifically bind to TTCG repeats (Michelson et. 

al., 1998 and Bottomley et. al., 2001), the SAND domain of GMEB binds ACGT core 

sequence (Surdo et al., 2003) and AIRE-1 binds ATTGGTTA or TTATTA motifs 

(Kumar et al., 2001). The SAND domain in NUDR and DEAF-1 bind to the TTCG 
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signature sequence as a monomer in vitro (Bottomley et. al., 2001). It is interesting to 

note here that the same domain in different proteins shows different binding specificities 

towards the nucleotide sequence.  

Three-dimentional structure of the SAND domain has been resolved for Sp100 

using NMR (Bottomley et. al., 2001) and for GMEB with X-ray crystallography (Surdo 

et. al., 2003). It reveals a novel fold for DNA binding (Wojciak and Clubb, 2001). 

Known DNA-binding domains contain helix-loop-helix or similar motifs, whereas the 

SAND domain consists of highly conserved positively charged α-helix with KDWK 

motif and β-strands. The motif KDWK is essential for DNA binding and single amino 

acid mutations in the motif abolish DNA binding in vitro (Bottomley et. al., 2001, Surdo 

et. al., 2003). Any mutation in the motif alone eliminates NUDR-dependent 

transcriptional repression in vivo (Bottomley et. al., 2001). 

Based on the known role of the SAND domain in transcription regulation, it is 

highly likely that SPE-44 plays a similar role in C. elegans. Expression of spe-44 is 

restricted to the germline just prior to the onset of sperm production, suggesting a 

regulatory role in sperm-specific gene expression. Northern blot analysis of rat NUDR 

also shows high expression in testicular tissue, specifically in spermatocyte cells 

(Huggenvik et. al., 1998). Human homolog of NUDR contains a bipartite Nuclear 

Localization Signal (NLS) as shown in the Figure 3-17, and mutation of the initial 

residues of the signal sequence eliminates the nuclear localization of hNUDR 

(Huggenvik et. al., 1998). spe-44 is also predicted to contain a monopartite NLS (based 

on the prediction program MultiLoc; Nair et al., 2003), which maps to the exact same  
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Figure 3-17: CLUSTALW 2.0.5 multiple sequence alignment.  
SPE-44 sequence aligned with its homolog hNUDR, which also shows testicular 

expression in rat testis. The aqua box is the core sequence of SAND domain. The black 

arrows show the essential amino acids for nuclear localization. 
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location as that of NUDR (Figure 3-17, arrows), indicating SPE-44 to be a putative 

nuclear protein. Further, the study presented in this chapter strengthens the hypothesis 

that spe-44 is a putative transcription regulator of sperm-specific genes. 

Hermaphrodites carrying homozygous deletion allele of C25G4.4 lay unfertilized 

oocytes giving a classic SPE phenotype; hence the gene assignment, spe-44. Cytological 

analysis of these homozygous worms shows that loss of spe-44 causes arrest of gamete 

development during spermatogenesis. Germline proliferation during spermatogenesis is 

normal until primary spermatocytes are formed. Arrest is observed at the cytokinesis step 

during meiosis and it specifies the precise window during sperm development where spe-

44 function is essential. Primary spermatocytes initiate meiosis and complete 

karyokinesis giving four condensed nuclei within the cell (the ‘terminal spermatocyte’ 

phenotype). Cytokinesis is either never initiated or not completed in these terminal 

spermatocytes. In contrast, the oogenic germline is completely unaffected by the loss of 

spe-44. Thus, spe-44 seems to be essential during spermatid formation but not for 

oogenic development of the germline. 

spe-44 is expressed in the spermatogenic germline just prior to the time when 

germline starts differentiating into sperm. Germline fate to spermiogenesis is determined 

prior to the expression of spe-44, as complete loss of spe-44 does not affect MSP 

expression, a sperm-specific protein. In situ hybridization shows strong and uniform 

expression of spe-44 in the pachytene zone during the L3 larval stage when the 

spermatogenic germline transits from the transition zone and enters meiosis. The 

expression of spe-44 occurs in very restricted spatial context and it is also temporally 

transient. L4 germlines show reduced spe-44 expression and by adulthood, expression 
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disappeared completely. Rat NUDR also showed a similar pattern of expression that was 

limited to spermatocyte cells and disappeared in later stages of development (Huggenvik 

et. al., 1998). Thus, spe-44 is not essential for sperm fate determination or initiation of 

meiosis but is required for differentiation of the spermatogenic germline into spermatids.  

As mentioned earlier, similar arrest as terminal spermatocytes is observed in five 

other Spe mutations; spe-4, spe-5, spe-39, spe-26 and cpb-1. The first three proteins are 

required for the FB-MO morphogenesis and their loss of function affects the asymmetric 

distribution of FB-MO components during completion of meiosis. spe-4 encodes a 

membrane protein that is a member of the presenilin family implicated in Alzheimer’s 

disease onset (L'Hernault and Arduengo, 1992). Null alleles of spe-4 lead to terminal 

spermatocyte phenotype due to the defective asymmetric partitioning of the FB-MO 

organelles. spe-5 encodes an ortholog of subunit B of the cytoplasmic (V1) domain of 

vacuolar proton-translocating ATPase and mutations in spe-5 lead to missegregation of 

tubulin at the end of the meiotic division leading to terminal spermatocyte arrest 

(Machaca et. al. 1997). spe-39 mutants produce terminal spermatocytes that lack MOs; 

this gene encodes a cytoplasmic protein of unknown homology (Zhu and L'Hernault, 

2003).  

It is also possible that completion of the asymmetric distribution of cellular 

components is essential for initiation of cytokinesis after karyokinesis and the lack 

thereof results in the arrest of cytokinesis. As observed in spe-26, a kelch homolog in C. 

elegans, null mutation disrupts the segregation of various components like actin and also 

arrests the spermatocytes with multiple condensed nuclei (Varkey et. al., 1995). 
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cpb-1, which encodes a cytoplasmic polyadenylation element binding protein 

(CPEB), has a more general functional role and is involved in translational control of 

sperm-specific genes (Luitjens et. al., 2000). The cpb-1 mutation causes development to 

stall at the primary spermatocyte stage and they never complete the meiotic divisions, in 

contrast to the previously described Spe mutations. 

All of these five mutant terminal spermatocytes look morphologically similar 

(Figure 3-18) to the terminal spermatocytes observed in spe-44. Although their 

mechanistic action is required at the same spatial and temporal context, there is no 

correlation in the molecular nature of these gene products and in their modes of action. It 

is very tempting to speculate that one or more of these genes could be downstream targets 

that are transcriptionally regulated through spe-44. If this hypothesis is true, the 

expression of these downstream targets should occur spatially and temporally after spe-

44 expression. The microarray data does show that spe-4, spe-5, spe-26 and cpb-1 are up-

regulated specifically during spermatogenesis (Reinke et. al., 2000). The spatial pattern 

of expression is known for three of these five targets. spe-39 was shown to be expressed 

throughout the germline (Zhu et. al., 2003), while spe-26 mRNA is expressed in 

spermatocytes and the earlier spermatogonial cells as well (Varkey et. al., 1995). 

According to their spatial context, spe-39 seems to be expressed earlier than spe-44 and is 

less likely to be a downstream target of spe-44, while spe-26 could be a potential target of 

spe-44. 

On the other hand, cpb-1 mRNA is expressed in both the spermatogenic and 

oogenic germline. During spermatogenesis, it is expressed just distal to the developing 

spermatids as the immunohistochemistry data suggests (Luitjens et al., 2000). In the  
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Figure 3-18: SPE mutations with terminal spermatocyte phenotype. 

Wild type primary spermatocyte with single nucleus (left) and with four budding 

spermatids (right) showing DAPI stained nuclei. Compared to the aberrations caused by 

cpb-1, spe-26, spe4, spe-5 and spe-39 mutations (Luitjens et al., 2000, Varkey et al., 

1995, Arduengo et. al., 1998, Machacha et. al., 1997, Zhu et. al., 1997). 
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germline context, this region immediately follows the pachytene zone where spe-44 is 

expressed. Therefore, it is possible for cpb-1 to be differentially regulated by spe-44 with 

or without co-factors during spermatogenesis. cpb-1 protein controls the translation of the 

target mRNAs by binding to the poly(A+) tail of specific mRNAs. The downstream 

targets of cpb-1 in the spermatogenic germline are not known. Translation of spe-44 itself 

could very well be regulated by cpb-1 and thereby lead to the terminal spermatocyte 

phenotype. It will be interesting to see if either gene is regulating the other.  

The spatial expression pattern in the germline for the remaining 2 genes, spe-4 

and spe-5 is not yet known. Quantitative RT-PCR experiments are ongoing to determine 

their expression levels in the spe-44(1400) background to validate if indeed their 

expression is regulated via spe-44.  

SPE-44 is a potential transcription factor to regulate sperm-gene expression. In 

that case, it is likely to be regulating more than these five genes. The limitation of the 

current work is that not all the targets of SPE-44 are identified. The putative targets of 

spe-44 could be uncovered by performing microarray expression analysis on the 

homozygous spe-44(ok1400) and compare the data set with microarray data of fem-

3(q20) enriched genes. The genes enriched in fem-3 but missing or downregulated (or up-

regulated) in spe-44 background would be the strong candidates for spe-44 mediated 

regulation, either directly or indirectly.  

This data set of putative targets could be used for promoter analysis to predict the 

putative binding site for spe-44. The nucleotide sequence present commonly in the 

promoter region of most or all of the putative targets is likely to be a binding site for 

SPE-44. This putative binding site could be validated with gel retardation assays. An 
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alternative approach to find the putative binding sites is CHIP-Chip assay.  This approach 

would need a strong antibody to pull down SPE-44 along with its bound DNA from the 

nuclear extracts of the spermatogenic germline. 

The putative binding sites of SPE-44 could be validated in vivo using reporter 

assays and transgenic rescue experiments. As mentioned in the introduction, about 60 of 

the sperm-specific genes have been studied in some detail. If any of these genes are 

revealed to be putative targets of spe-44, those could be employed for in vivo validation 

of results. For example, transgenic rescue of sterility of spe-26 mutants has been 

demonstrated. The putative promoter of spe-26 could be mutated to see if it can 

recapitulate the rescue of sterility caused by spe-26 after microinjection. This complete 

study will definitely provide insights about transcriptional regulatory aspects of 

spermatogenesis in C. elegans. 
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Chapter 4 Discussion 

Cellular differentiation into specialized cell types during development is brought 

about by temporal and spatial regulation of gene expression. Understanding the 

complexities of gene regulation is key to understanding the development of an organism.  

As many examples of diseases arise due to mis-regulation of gene expression, studying 

the underlining mechanisms of gene regulation also helps to uncover the disease 

principles and can lead towards the cure. 

In C. elegans, spermatogenesis; the differentiation of a unicellular sperm from a 

constitutively proliferating germline, provides a good model system to study cell 

differentiation in a developmental context. This dissertation presents the study of 

mutations in two distinct genes isolated from screens for spermatogenesis-defective 

mutations. Both were initially believed to represent alleles of putative transcription 

factors and thereby thought to control sperm differentiation or a part of the process.  

The first allele studied, uba-1(it129), was predicted to be an allele of the 

transcription factor elt-1 based on the similar phenotypes and map position (refer to 

Appendices Section A2). elt-1, a GATA transcription factor, was known to be expressed 

and to play a role during spermatogenesis. Detailed genetic analysis and mapping proved 

it129 to be an allele of the ubiquitin-activating enzyme (E1) and not a transcription 

factor. Analysis of uba-1(it129) led to the discovery of a novel role for ubiquitination in 

sperm development and function. It also revealed the role of ubiquitin conjugation in 

various developmental processes of C. elegans as described in Chapter II. 
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Ubiquitination has been implicated in various roles during spermatogenesis in 

mammals, including humans (Baarends et al., 1999). The ubiquitin system is intricately 

linked with DNA repair, regulation of meiotic chromatin, mitochondrial degradation and 

sperm quality control (Reviewed in Baarends et al., 2000). Mouse and human 

spermatogonia have been shown to express spermatogenesis-specific E1 isoforms (Kay 

GF 1991, Mitchell MJ 1992, Zhu H. et al. 2004). The mouse spermatogenesis-specific E1 

isoform Ube1y is encoded on the Y chromosome, and deletion of the Ubel1y leads to 

spermatogenic failure despite expression of Ube1x isoform (Odorisio et al., 1996). The 

proposed reason for an additional E1-encoding gene devoted for sperm development is 

that it serves to increase UBE1 production at a time of high demand (Odorisio et al., 

1996). 

Although a role for ubiquitination during spermatogenesis is already indicated, 

the uba-1(it129) allele in C. elegans does not correspond precisely with any of the earlier 

reported roles for E1. Meiotic progression through spermatogenesis is normal and 

morphologically normal sperm develop in the mutant worms. These uba-1(it129) mutant 

sperm are sterile as they are incapable of fertilizing oocytes. Recent evidence from sea 

urchin experiments indicate a role for the ubiquitin-proteasome pathway for penetration 

through the vitelline layer of the oocyte by the acrosome-reacted spermatozoon (Sawada 

et al., 2002; Yokota and Sawada, 2007). Drug-induced inhibition of the 26S proteasome 

inhibited fertilization in these experiments. It is possible that the uba-1(it129) mutation 

impairs sperm-oocyte interaction because of reduced ubiquitination of surface proteins 

involved in mediating the interaction. It will be interesting to investigate the profile of 

ubquitin-tagged protein conjugates in wild type and uba-1(it129) sperm. A differential 
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profile could lead us to the proteins involved in sperm-oocyte interactions and help us to 

understand the ever-complex fertilization phenomenon.  

 The uba-1(it129) mutation affects sperm function during the sperm-oocyte 

interaction but does not lead to any meiotic aberrations during sperm development as 

observed for mutations in ubiquitin-conjugation system in other model organisms. One 

other aspect of C. elegans development where ubiquitin conjugation has been implicated 

to be essential is meiotic progression after fertilization and further embryo development. 

Many different mutations in the anaphase-promoting complex (APC), a multi-subunit E3 

ligase complex led to this discovery. Severe mutations of the APC components lead to 

metaphase arrest (Mat phenotype) during the first meiotic division in the fertilized oocyte 

(refer to Chapter II). As the ubiquitin-activating enzyme (E1) works upstream of the APC 

complex, one would expect that impairment of E1 function would lead to a similar 

phenotype. Instead, uba-1(it129) was shown to slow down the meiotic progression rather 

than arresting it as the Mat phenotype (chapter II, Figure 7). This evidence leads to the 

conclusion that uba-1(it129) is a hypomorph of E1. Some of the other phenotypes 

manifested by the same allele show drastic aberrations in distinct developmental 

pathways like larval lethality and male paralysis. Why does a single point mutation in E1 

enzyme lead to such diversity in the severity of the defects?  

The vast number of E2 and E3s functioning downstream of E1 increase the 

complexity of the ubiquitin conjugation system. Distinct E3 complexes have been 

implicated in separate developmental pathways. The interaction between distinct E2-E3 

complexes and E1 enzyme could differ in the their respective affinities. As a result, it is 

possible that different subsets of E2-E3 complexes bind differently to the E1 mutation. 
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Similar mechanisms are implicated for mutually excusive cell cycle arrest phenotypes 

manifested by distinct point mutations of E1 in human cell lines (Ayusawa et al., 1992; 

Jentsch et al., 1991; Zacksenhaus et al., 1990) and antagonistic effects on cell growth 

caused by distinct mutations in Drosophila E1 (Lee et al., 2008).  

 Recent progress in our understanding of ubiquitin conjugation has revealed 

increasing complexity of the system as E1-like enzymes known to activate Ubls have 

been shown to activate ubiquitin as well (Chiu et al., 2007). There are four known 

ubiquitin-activating enzyme-like proteins predicted in the C.elegans genome, but with the 

emergence of novel ubiquitin-like peptides and their respective E1-like enzymes, it is not 

unlikely to find more E1-like enzymes encoded in the genome. If similar cross-activity of 

E1-like enzymes as reported in other organisms exists in C. elegans as well, impairment 

of E1 enzyme itself would not affect the entire ubiquitin-conjugation as severely as one 

would speculate. 

Concentration of free ubiquitin in the cell is critical for cell survival and proper 

function of the proteasome. How the concentration of free ubiquitin is maintained at 

appropriate levels (i.e., how ubiquitin homeostasis is maintained) is still not understood. 

Transcriptional and translational control of the polyubiquitin gene, the rate of free 

ubiquitin activation, and the rate of deubiquitination from the target proteins all 

coordinately contribute towards ubiquitin homeostasis. For example, the levels of cellular 

ubiquitin regulate the cellular abundance of proteasome-associated deubiquitinating 

enzyme Ubp6; under the conditions of ubiquitin depletion, Ubp6 levels increase (Hanna 

et al., 2003). In the absence of Ubp6, the half-life of ubiquitin is dramatically reduced and 

the cells become deficient in free ubiquitin levels (Chernova et al., 2003; Hanna et al., 
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2003; Leggett et al., 2002). Ubiquitin-activating enzyme also regulates the free ubiquitin 

by controlling the rate of activation. In the mammalian cell line containing ts85 mutation 

in E1, de novo synthesis of ubiquitin is reduced indicating some feedback mechanism for 

ubiquitin expression (Finley et al., 1984). 

Any deviation from homeostasis is realized as a stress by the cell, which then 

responds to this stress by altering proteasome subunit composition (Hanna and Finley, 

2007). Ubiquitin-dependent upregulation of Ubp6 results in greater loading of 

proteasomes with Ubp6, presumably resulting in greater efficiency of ubiquitin recycling 

at the proteasome (Hanna et al., 2003). Opposite to this scenario of ubiquitin depletion, 

functional impairment of ubiquitin-activating enzyme would lead to increase in the free 

ubiquitin pool, which also could lead to alteration in the subunit composition of the 

proteasome. The altered composition of proteasome might change its selectivity for 

particular E3 complexes and their target proteins, which could lead to inhibition of 

degradation in a selective manner. Thus, it is possible that the reduced activity of E1 

enzyme in the uba-1(it129) mutant worms alters ubiquitin homeostasis. Some of the 

defects observed during development of uba-1(it129) mutant worms might be manifested 

as an indirect effect of the E1 mutation. The differential severity of the phenotypes could 

reflect the extent of deviation in the proteasomal subunit composition. It will be 

interesting to monitor the free ubiquitin pool at different developmental stages in wild 

type and mutant worms and also compare the 26S proteasome composition at those 

respective stages. 

The second mutant studied is a deletion allele of a putative transcription factor 

with a SAND domain, spe-44. It is required for sperm differentiation, as the deletion 
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arrests spermatogenesis during cytokinesis after completion of meiotic karyokinesis. This 

terminal spermatocyte phenotype manifested by the spe-44 deletion has also been 

reported for five different spe genes as discussed in Chapter III. None of these five genes 

encode a transcription factor. spe-44 and these genes could be part of the same regulatory 

cascade as depletion of any of the genes leads to the arrest at the same developmental 

point during sperm differentiation. The expression of one or more of these genes could 

very well be regulated by spe-44, along with additional putative targets for spe-44. 

Microarray expression analysis in the spe-44 deletion background would reveal the 

network of players involved in post-meiotic differentiation of C. elegans sperm.   

How spe-44 itself is regulated is an important question. The expression analysis 

showed transient expression of spe-44 during the spermatogenic phase of the germline in 

a very narrow spatial window (Figure 3-14 and 3-15). To achieve this transient spatio-

temporal expression, spe-44 has to be under tight regulatory control. 

microRNAs (miRNAs) could be regulating the depletion of spe-44 mRNA 

observed in the late meiotic spermatogenic germline. miRNAs are single-stranded RNA 

molecules with approximately 21 or 22 nucleotides. They encode  sequences 

complementary to the sites in the 3' untranslated region (UTR) of their target mRNAs. 

They function as inhibitory regulators of mRNAs either by decreasing target messenger 

RNA levels or by directly inhibiting their translation (Reviewed by Boyd, 2008). 

miRNAs are also proposed to destabilize the target mRNA via deadenylation of the poly-

A tail (Standart and Jackson, 2007; Wu L et. al., 2006). Registry of annotated miRNA 

targets predicts three miRNAs (cel-miR-34, cel-miR-251 and cel-miR-272) with 

complimentary sequence in the spe-44 5’ UTR (http://microrna.sanger.ac.uk/cgi-
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bin/targets/v5/detail_view.pl?transcript_id=C25G4.4). The rapid depletion of spe-44 

mRNA observed in the germline at pachytene exit could be brought about by one or more 

of these miRNAs, although further investigation is necessary to validate these 

predictions. 

Spermatogenic fate in the male and hermaphrodite germline is determined by fog-

3, a member of Tob family of transcription cofactors, in conjunction with fog-1, which is 

a homolog of the cytoplasmic polyadenylation element binding protein (Chen P et al., 

2000, Luitjens et al., 2000, Jin et al., 2001). Sperm fate determination is under direct 

control of the sex-determination pathway transcription factor TRA-1, as both fog-1 and 

fog-3 promoters contain multiple TRA-1 binding sites (Chen and Ellis, 2000; Jin et al., 

2001) and fog-3 expression has been experimentally shown to be under direct control of 

TRA-1 (Chen P et al., 2000).  

FOG-1 protein is expressed from early L3 through the mid-L4 larval stage and 

disappears from spermatogenic precursors prior to expression of an early sperm-

differentiation marker, SP56 (Lamont and Kimble, 2007). The extent and duration of fog-

1 directly determines the total number of sperm in the hermaphrodite germline (Lamont 

and Kimble, 2007). FOG-1 encodes a CPEB homolog, which binds to regulatory 

elements in the 3’ untranslated region of target mRNAs and can either activate or repress 

their translation as demonstrated for Xenopus homolog (Richter, 2000). It could function 

as a sperm specification factor by initiating the expression of transcription factors such as 

spe-44 and elt-1, which are essential for further differentiation of the sperm. It will be 

interesting to search for CPEB binding regulatory elements (CPEs) in spe-44 UTRs.  
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Along with the expression initiation, suppression of the expression of spe-44 after 

mid-L4 stage and post-pachytene germline has to be regulated. According the mRNA 

expression analysis, spe-44 expression ceases during mid-L4 stage, when the germline 

switches the fate from spermatogenesis to oogenesis. During the fate switch, sperm-fate-

determining factors like fog-1 and fog-3 are also downregulated. If spe-44 is under direct 

or indirect control of these factors, one would expect that spe-44 expression also will go 

down at the same time. Another possibility is that, as the germline switches the fate to 

oogenesis, transcription regulators needed for further specification and differentiation 

will be expressed in the meiotic germline. Analogous to antagonistic actions between the 

sub-networks of transcription factors in C-blastomere lineage specifications (Refer to 

Chapter I; section X), these oogenic transcription regulators could continuously shut 

down the expression of spe-44 and other sperm-specific regulators. 

A few details of the two ends of the regulatory cascade from determination of 

sperm fate till differentiation of functional spermatozoa have been characterized. As 

explained earlier, fog-3 and fog-1 are known factors required to specify the sperm fate. 

Many different genes have been identified at the end of the cascade, which play a role in 

sperm activation and functional aspects of spermatozoa (as reviewed in L’Hernault, 

2005). The link between these two ends of the pathway is still missing. The transcription 

factors revealed from the microarray experiments (Reinke et al., 2004) are potential 

factors to initiate the expression of the downstream effectors and themselves could be 

under fog-3 and fog-1 control, either directly or indirectly. The experiments proposed 

above to understand the regulation of spe-44 expression and the downstream targets of 

SPE-44 could provide insights for this missing link.  
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Chapter 5 Appendices 

5.1 Western analysis of uba-1(it129) worms to detect ubiquitin-

activating enzyme expression and ubiquitination of 

proteins.  

5.1.1 Introduction 

uba-1 encodes ubiquitin-activating enzyme (E1) in C. elegans (refer to Chapter 

II). It is the first enzyme in ubiquitin-conjugation pathway, which leads to poly-

ubiquitination of target proteins. The allele it129ts encodes a point mutation in uba-1. The 

mutant protein is functional at permissive temperature, but at the restrictive temperature 

the mutation renders various developmental defects in C. elegans. To detect if the E1 

protein levels are altered at the restrictive temperature, I performed Western analysis 

using anti-E1 antibody. Wild type uba-1 cDNA was cloned in protein expression vector 

pET28a and in vitro protein induction was attempted to purify E1 protein to use as a 

positive control in the Western analysis. 

Various developmental defects observed in it129ts mutant worms like embryonic 

lethality, sperm-specific sterility, male tail aberrations are more likely to be affected 

through independent E3 ubiquitin-ligases (please refer to chapter II discussion section). 

Since the E1 function is essential at the apex of the ubiquitin-conjugation function i.e. 

prior to all the E3 action, various defects in it129ts allele could be due to overall reduction 

in ubiquitin-conjugation. To test this hypothesis, I performed Western analysis with anti-

ubiquitin antibody on total protein extracts from wild type and uba-1(it129ts)worms. 
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Ubiquitination levels in sperm protein extracts were also analyzed by anti-ubiquitin 

Western as it129ts mutation affects sperm function. 

SP56 antibody was generated in Dr. Samuel Ward’s lab against total sperm 

isolated from wild type C. elegans males (Ward et al., 1986). It was shown to recognize 

multiple bands up to 8 from total sperm protein extracts. Our speculation is that this 

antibody could be recognizing ubiquitin epitope from the sperm proteins. The staining 

pattern of this SP56 antibody was compared with anti-ubiquitin staining pattern for total 

sperm protein. The hybridoma culture supernatant of the SP56 antibody was a generous 

gift of Dr. Steven L'Hernault.  

The methods and results for all these Western experiments are discussed in the 

following sections.  

5.1.2 uba-1 cDNA cloning and in vitro protein induction. 

5.1.2.1 Methods 

uba-1 cDNA was PCR amplified from cDNA pool extracted from fem-1(hc17) 

and fem-3(q20) worms. 3342 bp fragment was amplified using sense primer with NheI 

site CTAGCTAGCATGACTACCATCCTTGAG and anti-sense primer with BamHI site 

CGCGGATCCTTAGAAAGAGTAGCG. The fragment was cloned into pET28a 

between NheI and BamHI. Selected clones were sequenced to confirm the correct coding 

sequence. The plasmid clone was transformed in E. coli; strain BL21(DE3). The 

expressed protein is predicted to be 1113 amino acids from the uba-1 cDNA plus 19 

amino acids from vector including 6 histidines. The approximate size of the expressed 

protein is 126 KDa.  
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One colony of pET28a:uba-1cDNA was grown in LB-kanamycin overnight 

culture at 370C. Culture was diluted to OD600nm=0.05 and split in two batches of 

triplicates of 5 ml. One batch was grown at 370C and second was at room temperature. 

Both the batches were induced with 0.5 mM, 1 mM and 2 mM IPTG at OD600nm=0.5. 

Samples were collected as 300 µl before induction (T0) and at 1 hour after induction (T1) 

and then 100 µl at every 3 hours (T2 to T6). Final sample of 100 µl was collected after 

overnight induction.  

Collected samples were pelleted at 5000 g and the pellet was boiled with 50 µl 1X 

sample buffer (100 mM Tris-HCl, pH 6.8, 2% Sodium Dodecyl Sulfate (SDS), 20% 

Glycerol, 0.2% Bromophenol Blue, 2–10% β-mercaptoethanol). 20 µl of each sample was 

loaded on 4-20% SDS-PAGE gel along with NEB broad-range protein marker (P7702; 2-

212 KDa). 

5.1.2.2 Results 

Wild type uba-1 was expressed from pET28a bacterial vector (Novagen) for in 

vitro purification. Induction of a protein of molecular weight of 126 KDa was observed 

within 1 hour when induced with 2 mM IPTG and grown at 370C and in all the overnight 

grown cultures at room temperature with 0.5 mM, 1 mM and 2 mM IPTG. Protein band 

at 126 KDa was absent in uninduced (T0) samples. Refer to Figure 5-1.  
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Figure 5-1: Coomassie gel with crude protein extract from bacterial pellet 
expressing Ce-UBA-1.  
Lanes 1-4, bacterial protein extracts induced with 2 mM IPTG at 0 hr (lane 1), 1 hr (lane 

2), 6 hr (lane 3) and overnight induction point. Lanes 3-7, bacterial extracts after 

overnight induction with 0.5 mM, 1 mM and 2 mM IPTG. Lane M is the protein marker 

indicated with the size standards on the right. The arrow indicates the induced E1 protein 

at approximately 126 KDa size. 
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Although the E1 protein band of expected size was observed after IPTG 

induction, the expression level needs to be improved to be able to purify E1. Trials are 

ongoing currently to improve the expression using different growth media. Since the pure 

protein was not obtained, it was not included in the following Western analysis. Instead, 

total cell extract from a human cancer cell line was included as a positive control.  

5.1.3 Western blot analysis with anti-E1 (ubiquitin-activating enzyme) 

antibody. 

5.1.3.1 Methods 

5.1.3.1.1 Total protein preparation from adult worms  

Synchronized populations of worm strains were raised at appropriate temperature 

(150C or 250C) in 25cm peptone plates with NA22 bacteria. Worms were washed with 

M9 and pelleted in a tight pellet of 100µl in homogenization buffer (15 mM Hepes 

pH7.5, 10 mM KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM EGTA, 44 mM Sucrose) 

with 1µl of 1M DTT and 3µl of protease inhibitor mix (1 µg Pepstatin, 1 µg Leupeptin, 4  

µg Aproteinin and 10 µM MG132-26S proteasome inhibitor). The pellet was frozen at -

800. The pellet was homogenized before it was completely thawed using handheld 

homogenizer with additional 1 µl of 1M DTT and 3 µl of protease inhibitor mix for about 

40 seconds until it was thick slurry. The slurry was boiled for 10 minutes with equal 

volume of 2X sample buffer (4%SDS, 100 mM Tris-Cl pH 6.8, 20% glycerol). Then it 

was passed through 26G syringe for 2-3 times and centrifuged at 10,000 g for 10 minutes. 
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The supernatant was stored at -800C. Samples were loaded with 1 µl of 1M DTT and 1 µl 

of 10X Bromo-phenol blue solution.  

5.1.3.1.2 Total protein preparation from isolated sperm 

This protocol was adopted from the one developed in Dr. Ward’s lab (Klass, M.R 

et al. 1981). Large synchronized populations of worms enriched for males (Him strain) 

were grown till young adulthood at appropriate temperature. Worms were rinsed with M9 

buffer twice and left in 5 ml volume of M9 buffer. These worms were passed through 

sterilized 35 µm mesh screens into 15 cm containing M9 for about 30 minutes. The males 

being smaller in diameter pass through the mesh. The flowthrough with males was 

concentrated by centrifugation at 2000 rpm with 2 minutes spin. The males were grown 

for additional 24 hours on bacteria to maximize sperm production.  

  Purified males were rinsed three times in PSM (10 mg/ml polyvinylpyrrolidone, 45 

mM choline chloride, 25 mM KCl, 10 mM HEPES (K), pH 7.3, 0.1% glucose, 1 mM 

MgSO4, 1 µg/µl leupeptin, 1 µg/µl pepstatin A, 5 µg/µl aprotinin). A plain, sterile 

microscope slide was placed into 10 cm glass petri dish (sterile) and up to 500 µl male 

suspension was dispensed onto the slide. The slurry was chopped with sterile razor blade 

for five minutes, using slicing motion. The slide and the razor were rinsed with 5 ml of 

PSM into 15 ml centrifuge tube. The volume was dispensed onto the surface of sterile 

10µm screen and rinsed twice with 5 to 10 ml PSM. 10 ml aliquots of the flow through 

were carefully underlaid with 3 ml 10% (v/v) Percoll in PSM in 15 ml centrifuge tubes 

with Pasteur pipette. The interface was gently mixed by stirring the pipette tip. The tubes 

were centrifuged at 500 g for 10 minutes and supernatant was aspirated gently. The 
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sperm pellet was resuspended in 2 ml PSM and was washed twice at 750 g for 3 minutes. 

Total sperm present in the solution were counted using hematocytometer. The pellet was 

either frozen at -800C or resuspended in 1X SDS sample buffer to give 5 µg/µl total 

protein concentration (3 x 107 sperm ≡ 480 µg of protein). 

5.1.3.1.3 Total protein isolation from human cell line ChaGo-K-1 (ATCC# 

HTB-168) 

Total protein from human lung cancer cell line was isolated to use as positive 

control for the Anti-E1 Western. One flask of confluent culture was a generous gift from 

Dr. Turko, it washed with 2ml of 1X PBS containing protease inhibitor mix. 1 ml volume 

was sonicated 3 times at 40% with smallest tip using Branson Sonifier-450. The sample 

was centrifuged at 120K g for 3 minutes at 40C. The supernatant and the pellet were 

frozen at -800C. 150 µl supernatant was used to precipitate protein using 

chloroform/methanol precipitation method. Protein concentration was 0.57 µg/µl as 

estimated by Bradford method. 

5.1.3.1.4 Western Transfer 

After running the SDS-PAGE gel for protein separation, the gel was equilibrated 

with 1X transfer buffer (25 mM Tris, 192 mM Glycine, 0.1% SDS) with 20% methanol. 

PVDF membrane was activated in 100% methanol, washed with water and was 

equilibrated with 1X transfer buffer for 20 minutes. The gel and the PVDF membrane 

were sandwiched between 2 sheets of 3MM Whatman papers soaked in 1X transfer 

buffer. The entire assembly was sandwiched in a cassette between 2 sponges soaked in 
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1X transfer buffer and the cassette was immersed in the Hoefer tank containing 1.5 liters 

of 1X transfer buffer keeping the PVDF membrane towards the anode side. The transfer 

was carried out at 100V for 70 minutes. After transfer, the membrane was blocked in 5% 

milk (nonfat powdered milk) in TBST (20 mM Tris pH 8, 150 mM NaCl, 0.05% Tween-

20) for 1hr at room temperature. The membrane was washed in TBST for 3 times at 15 

minutes interval. It was then incubated overnight at 40C with mouse monoclonal Anti-E1 

(Sigma #E3152) at 1:500 dilution in 5% milk-TBST. The next morning, the membrane 

was washed and then incubated with HRP conjugated Anti-mouse IgG1 (Stressgen # 

SAB-100) 1:2000 diluted in 5% milk-TBST for 1 hr at room temperature. The membrane 

was washed 3 times with TBST and then developed using PIERCE Supersignal substrate 

(# 34077). It was then exposed to X-ray film in the dark for 1 to 40 minutes. The film 

was developed using AFP imaging system. 

5.1.3.2 Results 

5.1.3.2.1 uba-1 protein expression in wild type and it129ts worms.  

To determine if expression level of E1 was affected by the it129ts mutation, 

Western analysis was performed on total protein extracts of wild type and mutant males 

raised at 250C. Human ubiquitin-activating enzyme (E1) was detected at appropriate 

117KDa position on the blot (Figure 5-2). Although the predicted size of C. elegans 

ubiquitin-activating enzyme (E1) is 124 KDa, multiple bands were observed in worm 

protein samples at 100 KDa, 150 KDa and between 150 KDa and 250 KDa. The band 

sizes observed above 120 KDa could be isoforms of worm E1 as shown for E1 from 

mammalian system (Cook and Chock, 1992). The Expressed  
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Figure 5-2: Western analysis of total protein from wild type and uba-1(it129ts) 
worms with Anti-E1.  

10% SDS-PAGE gel was run with the following protein extracts. Lane 1) 0.6 µl Cha-Go 

cell extract, 2) 10 µg of extract from fem-1(hc17) adult hermaphrodites (produce only 

oocytes), 3) 10 µg of extract from fem-3(q20) adult hermaphrodites (produce only 

sperm), 4) 10 µg of extract from him-5(e1490) and uba-1(it129ts)him-5(e1490) adult 

males grown at 250C and M) the protein marker Biorad # 161-0373 (15-250 KDa) as 

indicated on the right side. 
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 Sequence Tag (EST) database for C. elegans gene annotations also predicts six different 

transcripts from the uba-1 gene. The protein extracts from adult male worms show a 

difference in the band size at around 150 KDa and 250 KDa compared to adult 

hermaphrodite protein extracts indicating differential transcripts or post-translational 

modifications of E1 in males and hermaphrodites. 

Confirmatory experiments like MS-MS analysis need to be to done to conclude 

the identity the protein bands recognized by anti-E1 antibody to be E1. If the protein 

bands recognized are indeed of E1, the protein expression level is elevated in it129ts 

males compared to wild type males, whereas mutant hermaphrodites show equivalent 

expression of UBA-1. This could possibly be the cause for sever sex-specific phenotypes 

manifested in uba-1(it129ts) males.  

5.1.3.2.2 uba-1 protein expression in wild type sperm. 

 uba-1(it129ts) worms produced morphologically normal but functionally 

impaired sperm (refer to chapter II). To detect if E1 is expressed in sperm tissue as well, 

Anti-E1 Western was performed on the total protein extracted from isolated sperm. The 

sperm protein extract, even at 30 µg concentration, did not show any distinct E1 band at 

expected size (Figure 5-3). There is a faint band in between size standard 150KDa and 

250KDa in 6 µl sample lane. Either E1 is not expressed in sperm cells or not to the level 

enough to detect within the limits of Western analysis. The extraneous bands detected at 

37 KDa and 70 KDa could be non-specific or degradation products of E1.  
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Figure 5-3: Western analysis of total protein from isolated sperm for E1.  
10% SDS-PAGE gel was run with the following samples. Lanes 1-4, Western blot with 

anti-E1 antibody (1:500 dilution) exposed for 45 minutes. Lane 1-3) 5 µg; 20  µg; 30  µg 

of sperm protein sample isolated from him-5(e1490) adult males grown at 250C. Lane 4) 

0.6 µl Cha-Go cell protein extract. Lane M) The protein marker Biorad # 161-0373 (10-

250KDa). Lanes 5) Coomassie stained gel with 20 µg of total sperm protein from him-

5(e1490) adult males. 
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Spermatids are formed during spermatogenesis by asymmetric distribution of the 

components between four haploid spermatids and a residual body. The components non-

essential for spermiogeneis and sperm function are packaged in the residual body. It is 

possible that the proteins are loaded in the budding spermatids as ubiquitinated form, so 

that E1 does not need to be packaged in the spermatids. In such scenario, we would not 

detect any E1 in the Western analysis of total sperm protein. 

5.1.4  Western analysis to detect ubiquitination levels in wild type 

and it129ts mutant worms. 

5.1.4.1 Methods 

All the procedures were carried out as described in the section 5.1.3.1. Blocked 

PVDF membrane was incubated overnight at 40C with mouse monoclonal Anti-Ubiquitin 

(Stressgen # SPA-203) at 1:500 dilution in 5% milk-TBST. The secondary antibody used 

was HRP conjugated Anti-mouse IgG1 (Stressgen # SAB-100) at 1:2000 dilution in 5% 

milk-TBST.  

5.1.4.2 Results 

5.1.4.2.1 Anti-ubiquitin Western on serial protein concentrations to 

determine the sensitivity of the antibody. 

Serial concentrations of protein extracts from different tissues were tested with 

anti-ubiquitin antibody. Ubiquitin-conjugation as polyubiquitin or monoubiquitin tag is 

an essential post-translational modification of proteins. The list of proteins regulated by 

this modification is ever increasing. Multiple protein bands were detected from both the 
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sperm and fem-3 adult worm samples indicating multiple ubiquitinated proteins as 

expected (Figure 5-4). 

Ubiquitin is expressed as a precursor polyubiquitin peptide from the 

polyubiquitin. The C. elegans genome has one polyubiquitin locus, ubq-1 (Graham et al., 

1989). It encodes 11 tandem repeats of ubiquitin as an 838 amino acid peptide (Gonczy et 

al., 2000; Piano et al., 2000). Protein band detected at around 75 KDa could be an 

unprocessed protein product from the poly-ubiquitin gene. 

5.1.4.2.2 Comparative analysis of ubiquitination levels between wild type and 

it129ts worms. 

This Western analysis was performed to compare the status of ubiquitination of 

proteins in uba-1(it129ts) mutant, which is predicted to encode a functionally impaired 

ubiquitin-activating enzyme, with wild type worms. Multiple proteins were recognized as 

ubiquitinated on the blot in all of the protein samples (Figure 5-5). The sperm protein and 

adult mixed population for hermaphrodites and males protein extract from uba-1(it129ts) 

genetic background do show reduced signal compared to wild type protein extract. This 

could be a direct result of reduced ubiquitination. The ubiquitination signal in adult uba-

1(it129ts) males is either not reduced dramatically or the blot is overexposed to make any 

statement. Although there are few differences in the band pattern observed compared to 

him-5(e1490) males.  
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Figure 5-4: Standardization of Western analysis with anti-ubiquitin antibody.  

10% SDS-PAGE gel was run with the following samples. 5 µl; 10 µl; 20 µl Cha-Go cell 

protein extract, 30 µg; 20 µg; 6 µg of protein extract from him-5(e1490) male sperm, 20  

µg; 10 µg; 5 µg of protein extract from fem-3(q20) adult hermaphrodites producing only 

sperm and the protein marker (Lane-M) Biorad # 161-0373 (10-250KDa).  
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Figure 5-5: Western analysis with anti-ubiquitin antibody on protein extracts from 
adult worms and isolated sperm.  
10% SDS-PAGE gel was run with 10 µl Cha-Go cell protein extract (lane-8), 15 µg of 

him-5(e1490) sperm protein (lane 2) and uba-1(it129ts)him-5(e1490) sperm protein (lane 

3), 5 µl of total protein isolated from him-5(e1490) (lane 4) and uba-1(it129ts)him-

5(e1490) adult males (lane 5) grown at 250C, 5 µl of total protein isolated from N2 (lane 

6) and uba-1(it129ts) (lane 7) adult populations containing hermaphrodites and males 

both and the protein marker Biorad # 161-0373 (lane M). The blot was exposed for 2 

minutes. 
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5.1.5 Western blot analysis with SP56 antibody 

5.1.5.1 Methods 

10% SDS-PAGE gel was run with the following samples at 25mA for 90 minutes. 

Triplicates of 6µl sperm protein sample (conc. 5 µg/µl) isolated from him-5(e1490) and 

the protein marker Biorad # 161-0373 (10-250KDa). Western analysis was performed as 

described in section 5.1.3.1 with 1:10, 1:100 and 1:200 dilutions of SP56 antibody in 5% 

milk-TBST. 

5.1.5.2 Results 

Monoclonal antibody SP56, recognizes 8 sperm-specific epitopes (Figure 5-6).  It is 

very unusual for any anti-body to recognize more than one epitope, but SP56 has been 

shown to recognize a post-translational modification of the subset of sperm proteins 

(Ward et al. 1986). We speculate this post-translational modification to be poly- or mono- 

ubiquitination of sperm proteins. But the signal pattern observed here for SP56 does not 

overlap with the pattern observed in anti-ubiquitin Western analysis of the same sperm 

protein extract (Compare Figure 5-6 with Figure 5-5, lane 2). Based on the band pattern, 

it is less likely that SP56 recognizes the ubiquitin epitope. 
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Figure 5-6: Western analysis with SP56 antibody on sperm protein extract.  
25 µg of total sperm protein from him-5(e1490) adult males blotted with 1:200 (lane 1) 

and 1:100 (lane 2) dilution of SP56 antibody. 
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5.2 Genetic interaction between elt-1(zu180) and uba-1(it129ts) 

5.2.1 Introduction 

In C. elegans, elt-1 encodes a GATA transcription factor. It has been shown to 

play an essential role during embryogenesis to specify hypodermal fate and also for the 

maintenance of hypodermal seam cells in later life (Smith et al., 2005). The allele zu180, 

whose molecular nature is not known, leads to embryonic lethality when homozygous. 

Various novel phenotypes were observed in worms treated with elt-1 RNAi apart from 

the embryonic lethality (Smith J.A. et. al. 2005). L1/L2 larvae hatched from RNAi treated 

embryos die as lumpy-dumpy larvae. Treated P0 hermaphrodites burst their vulva in 

adulthood. Overexpression of elt-1 in transgenic animals makes hermaphrodites 

hypermotile and eventually leads to paralysis.  

All these phenotypes overlap with the range of phenotypes observed with it129ts 

(refer to chapter II). Also, based on elt-1 RNAi on wild type males as described in section 

5.2.2, treated males showed similar tail aberrations as seen in homozygous it129ts males. 

On the genetic map of C. elegans, both the alleles it129ts and elt-1(zu180) are placed very 

close to each other on chromosome IV.  Prior to the identification of it129ts as an allele of 

uba-1, this data led to the speculation that it129ts could be a temperature-sensitive allele 

of elt-1 and phenocopies the stage-specific RNAi phenotypes of elt-1.  

I performed non-complementation analysis to test the allelism of it129ts with elt-1 

using the zu180 allele. The elt-1 mutation did complement all of the phenotypes of 

it129ts, indicating that allele it129ts is encoded in a different gene than elt-1. During the 

course of this study, genetic interaction between these two alleles was observed. The next 
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few sections will discuss the nature of the genetic interaction, novel observations made 

for zu180 allele and elt-1 mRNA expression in the germline.  

5.2.2 elt-1 RNAi on early larval males leads to developmental defects 

in their tail organs.  

5.2.2.1 Methods 

RNAi construct (pHS482) was generated by cloning an elt-1 cDNA fragment into 

pPD129.36 between inverted T7 promoters using BamHI and XhoI sites. The cDNA was 

amplified from fem-3 cDNA pool using primers HES-209 

(AAAGGATCCAGGAAAACATGGACTACG) and HES-210 

(AAAGTCGACGGAATGTTTGAAATGAG). The clone was then transformed in E. coli 

strain HT115.  

Synchronized populations of N2 (wild type) hermaphrodites and males were 

grown until L2-L3. Sets of 20 hermaphrodites or males were shifted to NGM plates 

expressing elt-1 RNAi construct or control HT115 strain in triplicates. The worms were 

maintained on RNAi plates until late adulthood and the worms were examined for the 

phenotypes. 

5.2.2.2 Results 

elt-1 RNAi on hermaphrodites reproduced all the previously reported phenotypes 

like F1 embryonic lethality, lumpy-dumpy F1 larvae and vulval bursting in P0 (treated) 

hermaphrodites (Smith et al., 2005). None of these phenotypes were observed in the 

hermaphrodites treated with control RNAi, confirming the specificity of elt-1 RNAi.    
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elt-1 RNAi was performed on males to check for possible novel phenotypes. The 

males treated with elt-1 RNAi did show aberrations in the tail development. The tail tip, 

cuticular fan and the sensory rays are reduced in size compared to wild type male tail at 

the equivalent life stage as shown in Figure 5-7. The posterior body portion in elt-1 RNAi 

treated males show an increased number of vacuoles compared to control-treated wild 

type males. Thus, loss of elt-1 in males affects the same organs of the tail as in it129ts, 

although the severity of the defect is different.    
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Figure 5-7: Comparison of male tail structures between wild type and elt-1 RNAi 
treated wild type males.  
The tail of elt-1 RNAi treated male shows reduced cuticular fan and no sensory rays as 

compared to the wild type tail. 
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5.2.3 elt-1 (zu180) homozygous strain behaves differently at 150C and 

250C. 

The allele zu180 is maintained as balanced lines in strains JJ398 (unc-24(e138) 

daf-14(m77)/elt-1(zu180) dpy-20(e1282) IV) and JJ1129 (elt-1(zu180) unc-43(e408)/unc-

24(e138) dpy-20(e1282) IV). Both the strains produce reduced proportion of homozygous 

elt-1 progeny. The reduction in the proportion is severe at 250C than at 150C (Table 5-1). 

At 250C, though, both the strains only lay 6-13 dead embryos per 147 average total 

progeny (4-9%). Proportion of the surviving F1 progeny is not altered in case of both the 

strains. This indicates that the higher temperature has some effect on the quality of the 

oocytes and/or sperm carrying elt-1(zu180) allele, making the homozygous elt-1 embryos 

disappear from the pool of the F1 progeny. 
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Strain JJ1129: elt-1unc-43/unc-24daf-14 

Observed selfed progeny Expected 
150C 250C 

elt-1unc-43 (dead 
eggs) 

 
25% 

28±1.2 
(14%) 

6±4.2 
(4%) 

Parental (wild type)  
50% 

131±24.6 
(65%) 

88±21.7 
(62%) 

unc-24daf-14  
25% 

43±5.1 
(21%) 

39±9.6 
(27%) 

Total progeny  202±14.2 143±22.5 

Table 5-1: Proportion of genotypes in the F1 progeny from the strain carrying elt-

1(zu180). 

Strains carrying elt-1(zu180) allele show anomalous bevavior at 250C. The heterozygous 

strains throw only 4% dead embryos insead of 25% (expected) of total progeny, 

representing homozygous elt-1(zu180) worms. 
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5.2.4 in situ hybridization to check elt-1 mRNA expression  pattern in 

sperm producing germline. 

5.2.4.1 Methods 

N2 hermaphrodites and males, fem-3(q20) and fem-1(hc17) worm populations 

were bleached and hatched on NGM plates overnight at 150C. The hatched L1 larvae 

were shifted to NGM plates with food at 250C until the appropriate stage. fem-3(q20) 

hermaphrodites produce only sperm while fem-1(hc17) produce only oocytes at 250C 

5.2.4.1.1 Worm dissections 

Synchronized populations of worm strains were obtained at L4 or adult stage. The 

worms were collected in PBS with 0.25 mM leavamisole. About 200-300 worms were 

dissected with a 20-gauge needle to extrude the gonad arms and then collected in sterile 

3ml glass culture tube with the conical bottom.   

5.2.4.1.2 ssDNA probe synthesis  

elt-1 cDNA was amplified (1.3 kb fragment) from the clone pHS482 using anti-

sense primer HES-395 (AAAAAGCTTGTCGACGGAATGTCTTGAAATGAGGAG) 

and sense primer HES-398 (AAAAAGCTTCTCGAGCAGGAAAACATGGACTACG). 

Using this cDNA as a template, single stand was linearly amplified using either 3’ anti-

sense or 5’ sense primer with a DIG-labeled mix according to the instructions given in 

PCR DIG probe synthesis kit (Roche, Cat. No.  11636090910). Amplified ssDNA was 

run on a denaturing agarose gel to confirm the size and presence of a single band. ssDNA 
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was then precipitated with 0.2 M NaCl and ethanol and resuspended in 250 µl 

hybridization buffer. The probe was boiled for 1hr and stored at –200C until use. 

The probe concentration was determined by dot-blotting on to a nitrocellulose 

membrane along with a marker of known concentration. The probe was detected using 

colorimetric assay with alkaline phosphatase-conjugated anti-DIG antibody and 

NBT/BCIP substrate. 1:5000 dilution of both the sense and anti-sense probes showed 

equivalent staining as 10 pg of a control DIG labeled fragment. Prior to use, each probe 

was diluted 1:2 with the hybridization buffer and boiled for 5 minutes.  

5.2.4.1.3 Gonad fixation and hybridization:  

In situ hybridization was carried out according to the protocol by Min-Ho Lee and 

Tim Schedl (http://www.wormbook.org/toc_wormmethods.html) with minor 

modifications. After fixation, the gonads were treated with Proteinase K for 1hr at the 

concentration of 100 µg/ml of PBT. Hybridization with the DIG labeled ssDNA probe 

was carried out at 480C for 36 hrs. Subsequent washes were also carried out at 480C. 

After blocking with BSA, the DIG probe was detected by colorimetric assay; Alkaline 

Phosphatase conjugated anti-DIG antibody and NBT/BCIP substrate. The gonads were 

incubated overnight at 40C with 1:2500 diluted Alkaline Phosphatase conjugated to anti-

DIG antibody and the staining was done at room temperature for 2 hrs with NBT/BCIP 

and 100 ng DAPI in staining solution. Finally, gonads were mounted on an agar pad in 

PBS with 100 ng DAPI and the images were taken with Olympus BX51 microscope at 

40X under DIC and DAPI filter.  
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5.2.4.2 Results 

About 5% of the elt-1 RNAi treated L2/L3 hermaphrodites lay unfertilized 

oocytes after reaching adulthood. Unfertilized oocytes is a characteristic of the Spe 

(Sperm-specific sterility) phenotype in C. elegans. Also, elt-1 is reported to be 

overexpressed in the sperm-producing germline (Reinke et al., 2000). This information 

points towards a sperm-specific role of elt-1. If it does play functional role in 

spermatogenesis, it should be expressed in the germline during sperm development.  

Based on the signal pattern of the DIG-labeled anti-sense probe, elt-1 is indeed 

expressed in the meiotic region of spermatogenic germline (Figure 5-8). fem-3(q20) 

hermaphrodites produce sperm throughout their life and express elt-1 in meiotic germline 

at both L4 and adult stages. fem-1(hc17) adult hermaphrodites, which produce only 

oocytes, did not show any expression in the meiotic germline.  N2 hermaphrodites during 

L4 larval stage and N2 males also show elt-1 expression in the meiotic region of the 

gonad (data not shown). The oocytes and sperm show non-specific staining with both 

sense and anti-sense probes. 
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Figure 5-8: In situ hybridization to detect elt-1 expression in the germlines  

DIC images of the gonads showing anti-sense and sense elt-1 probe hybridization at 40X 

magnification in fem-1 and fem-3 dissected gonads. Anti-sense probe showed signal only 

in the fem-3 gonads (top left) during sperm differentiation phase. 
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5.2.5 Complementation test between elt-1(zu180) and it129ts. 

5.2.5.1 Methods 

The complementation analysis was done between two alleles, elt-1(zu180) and 

it129ts, as described in the following figure (Figure 5-9). 

 

 

 

 

 

 

 

 
 
Figure 5-9: Strategy used to generate heterozygous elt-1(zu180) over (it129ts) worms. 

it129ts dpy-20             elt-1 unc-43                              P0s crossed at L3 at 150C 

it129ts dpy-20                dpy-20 

  

 
F1:  it129ts dpy-20                 it129ts dpy-20                       F1s shifted to 250C as L3s 

elt-1 unc-43                         dpy-20 

      WT                                     DPY 
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5.2.5.2 Results 

F1 progeny from the cross as described in Figure 5-9 is expected to give 50% 

wild type and 50% dumpy worms. Both wild type and dumpy worms were observed in 

the progeny with 1:1 ratio of hermaphrodites to males. All of the heterozygous it129ts/elt-

1(zu180) tested (20 hermaphrodites from each cross) laid viable progeny. Both the alleles 

complement each other for embryonic lethality and sperm-specific sterility. Thus, it129ts 

is not an allele of elt-1(zu180). As described in chapter II, it129ts allele encodes a point 

mutation in uba-1 (ubiquitin-activating enzyme) gene.  

25% of the total progeny from the cross (Figure 5-9) was recorded as dead 

embryos. A few of the non-dumpy F1 hermaphrodites which are heterozygous for both, 

it129ts and elt-1(zu180) alleles, showed partial male like tail development (“intersex” 

phenotype as it will be referred to hereafter) as shown in Figure 5-10. The ‘intersex’ 

phenotype is observed at low penetrance but persists in the hermaphrodites throughout 

their life.  Thus, elt-1 and it129ts show genetic interaction in the double heterozygous 

condition. Additional experiments were undertaken to further characterize the interaction. 

5.2.6 elt-1 RNAi or wild type elt-1 genomic region microinjection in 

uba-1(it129ts) hermaphrodites leads to ‘intersex’ phenotype. 

5.2.6.1 Methods 

elt-1 RNAi was performed on it129ts L2 hermaphrodites grown at 150C as 

described in 5.2.2.1 and the adult hermaphrodites were scored for ‘intersex’ phenotype. 

The elt-1 gene was also introduced into uba-1(it129ts) strain by micro-injection.  
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Genomic region of 10Kb ecoding elt-1 gene was PCR amplified from wild type genomic 

DNA and was purified by precipitating with potassium acetate and ethanol. Injection mix 

was prepared with 100 ng elt-1 PCR DNA, 450 ng of EcoRI digested pRF4 (rol-6 

transgenic marker) and 200 ng of PuvII digested wild type genomic DNA to the final 

concentration of 156 ng/µl. The mix was injected in homozygous it129ts hermaphrodites. 

The hermaphrodites and the progeny were maintained at 150C. Transgenic lines were 

isolated based on the roller phenotype conferred by rol-6 marker. 

5.2.6.2 Results 

By performing elt-1 RNAi on it129ts worms at 250C, elt-1 activity was reduced in 

the uba-1 mutant background where both (uba-1 and elt-1) the gene functions are 

reduced. The intersex phenotype was reproduced in the F1 hermaphrodites at low 

frequency. About 2 in 30 hermaphrodites had intersex tail. The tail retraction persisted 

throughout the life as seen in the double heterozygous it129ts/elt-1(zu180) 

hermaphrodites.  

More frequent (10 in 30 transgenic worms) but transient intersex phenotype was 

observed in it129ts transgenic hermaphrodites expressing elt-1 transgene. It is possible 

that overexpression of elt-1 mRNA in the transgenic lines is leading to co-suppression of 

elt-1 (Ketting and Plasterk, 2000). During co-suppression, overexpressed transcript of the 

gene from the transgene leads to (as speculated, small RNAs mediated) degradation of 

itself along with the native transcript from the homologous gene. As a result, the  
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Figure 5-10: Intersex phenotype in transgenic uba-1(it129ts) hermaphrodites 

carrying elt-1 transgene. 

Arow indicates the male like developing tale in the hermaprhodite soma of L3 stage. The 

intersex tale is transient as normal hermaphrodite tale appears by adulthood (top left of 

the image). 
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stransgenic lines have reduced or no expression of elt-1 in it129ts mutant background, 

creating similar phenotype as observed in it129ts/ elt-1 double heterozygotes. It is also 

likely that ELT-1 itself is targeted for ubiquitin-mediated degradation, which is inhibited 

in the uba-1 mutant background leading to observed abnormalities. 

Male tail is specialized organ for copulatory functions performed by the male. 

The development of the tail is acheived by the retraction of the cells in the tail region of 

the male during L4 larval stage. This retraction does not occur in hermaphrodites as a 

result the hermaphrodite tail develops with a tapering end. In ‘intersex’ hermaphrodites 

where expression of both the genes; elt-1 and uba-1 is reduced, the tail retraction is 

possibly activated in hermaphrodites during larval stages giving rise to L4 male tail 

structure. Where as, in the transgenic worms, co-suppression could occur transiently 

leading to transient ‘intersex’ phenotype. 
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