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Future space exploration will inevitably require astronauts to have a higher

degree of autonomy in decision-making and contingency identification and resolu-

tion. Space robotics will eventually become a major aspect of this new challenge,

therefore the ability to access digital information will become crucial for mission

success. In order to give suited astronauts the ability to operate robots and ac-

cess all necessary information for nominal operations and contingencies, this thesis

proposes the introduction of In-Field-Of-View Head Mounted Display Systems in

current Extravehicular Activity Spacesuits. The system will be capable of feeding

task specific information on request, and through Augmented Reality technology,

recognize and overlay information on the real world for error checking and status

purposes. The system will increase the astronaut’s overall situational awareness

and nominal task accuracy, reducing execution time and human error risk. The aim

of this system is to relieve astronauts of trivial cognitive workload, by guiding and

checking on them in their operations. Secondary objectives of the system will be the

introduction of electronic checklists, and the ability to display the status of the suit



and surrounding systems as well as interaction capabilities. Features which could

be introduced are endless due the nature of the system, allowing extreme flexibility

and future evolution without major design changes. This work will focus on the

preliminary design of an experimental Head Mounted Display and its testing for

initial evaluation and comparison with existing information feed methods. The sys-

tem will also be integrated and tested in the University of Maryland Space Systems

Laboratory MX-2 experimental spacesuit analogue.
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Chapter 1

INTRODUCTION

Space exploration will be this century’s great adventure. Hopefully it will see

people walking once again on the Moon, perhaps living there, establishing outposts,

and roving the lunar surface in search for answers to the many scientific questions

that fill our minds. Perhaps it will also see people on Mars, in search of traces

of life. Many are the quests that await ahead, all with a common trace: human

presence. Scientists and engineers are today involved in defining these missions,

and addressing the technical difficulties and goals; in brief, setting the baseline for

tomorrow’s philosophy of space exploration.

1.1 Problem Statement

This thesis wishes to contribute to this effort by studying a visual information

display system that would increase astronaut’s overall situational awareness, grant

them a higher level of independence from mission control, and enable a more intuitive

and efficient human-robot interface. The above are just a small set of the possibilities

of what the introduction of an in-field-of-view digital display system could deliver.

The main reason for devoting attention to this subject lies in the shortcomings of

current mission planning and execution methodology and their requirements, which

will probably be inapplicable on a Lunar or Martian mission. The current mission

planning for EVA operations relies on two main aspects:

1.1.1 Training :

Astronauts are trained thoroughly in every detail of the mission they are going

to fly. They choreograph and rehearse the mission for several months before launch.

Training focuses mainly on nominal tasks, and problem diagnosis and resolution.

The knowledge acquired during this preparation phase will serve as a baseline for

the mission. Although this approach has been very successful in the past, it has

limitations that are intrinsic in human nature. While the reliability of astronaut’s

memory decreases as the information load increases, the affordable training du-

ration cannot increase without limit. Also the number of contingency scenarios,
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and therefore mission complexity, are related to the mission duration and number

of systems to be handled, making these new missions potentially more complex.

Also intrinsic in space flight is the reality that not all contingency scenarios can be

predicted. Training provides the astronauts the necessary skills and knowledge to

attempt the diagnosis and resolution of possible failures, and when this fails, astro-

nauts currently rely on mission control for procedures and instructions. In brief,

if the current training philosophy were to be applied in preparing for future plan-

etary missions, it would inevitably lead to a more generic training, leaving to the

astronauts the responsibility of making decisions on their own, possibly without the

necessary information, since communications might be prohibitively delayed.

1.1.2 Ground Communications :

Radio communications between astronauts and mission control, play an impor-

tant role in nominal scenarios for purposes of control and verification, but these com-

munications become crucial during contingencies, when they provide semi-realtime

aid to the astronauts. This means of assistance has been extensively used in the

past, and it is still the main (and almost only) external source of information for

the astronauts. Unfortunately, as missions move further from Earth, time delays

between astronauts and mission control will increase until the point where radio

communications will no longer be acceptable for this purpose. This could leave

the astronauts on their own for several minutes therefore they must be given the

means to indipendently acquire the necessary information to diagnose and resolve

contingencies rapidly.

1.2 Information Feed Methods :

During the Apollo missions, astronauts were equipped with a small book con-

taining checklists and task-specific information. This system revealed itself to be

very useful, although not optimal by alowing the astonauts to acess critical informa-

tion withouth relying on just their memory. Astronauts had to handle this booklet

from within their spacesuits, but mobility was restricted and searching for infor-

mation was difficult and time consuming. Also of note, the information provided

by this means was limited, and required the use of at least one hand. Astronauts

still use this method because it’s simple and reliable, although they prefer to talk
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to mission control for help. A full library is needed on current spacecraft to pro-

vide astronauts with all the relevant information, but Volume and Mass constraints

prohibit this from being available in book form to an astronaut in both EVA and

IVA. Expansion and flexibility of this system is also limited making it not the ideal

choice for future long duration missions. Despite all the drawbacks of this method,

it still finds application as a back-up system; therefore, the proposed systems are

not aimed at replacing the previous methods, but merely optimizing and expanding

them.

Today, we hardly see analogies between space flight and everyday life, but

interestingly, solutions to the problems above can be found in our daily behaviors.

In the last fifty years, we have seen the rapid evolution of computers and later

networks, which changed our approach to information research and availability as

possibilities have expanded. Today, we cannot imagine what it would be like to

conduct our everyday lives without a computer and the internet. Computers and

wireless technology enable us to access almost all of human knowledge from anywhere

in the globe, greatly enhancing our autonomy. Why not introduce the same concepts

into future space suits? First of all there are many technological challenges that need

to be addressed in order to allow us to introduce theese concepts in the space suit

environment. Another major difficulty lies in the the interfaces that can be used.

Electronics difficulties are intrinsic in the development of any space-rated system,

often the result of stringent limitations on dimensions and masses. Mobility is also

highly restricted, therefore interfaces such as keyboards and mice are inapplicable,

leading to the necessity of new solutions.

This work attempts to define the capabilities that an enabling system should

have, as well as define possible means to implement it using current off-the-shelf

technology and components. It will also attempt to define the strengths and weak-

nesses of two proposed systems, as well as hopefully justify the introduction of a

higher complexity system as compared to traditional methods of conveying infor-

mation, such as booklets. This study will eventually set the baseline for a more

detailed and focused development of future in-suit digital information displays and

implementable features, such as augmented reality.
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1.3 Proposed Systems Overview

1.3.1 Head-Up Display (HUD):

This system was the first to be developed, and it relies on an off-the-shelf

modified LCD screen (Specifications can be founf in Appendix A). Its purpose is to

deliver information to suited astronauts without obstructing their primary field of

view. The system is connected to a computer that manages the displayed content

and through which the astronaut interacts via voice commands. This system was

designed specifically for integration in the MX-2 spacesuit analogue for validation

and testing.

1.3.2 Head-Mounted Display (HMD):

This second system is an evolution of the HUD which allows the suited as-

tronaut to access information within their primary field-of-view with limited ob-

struction. The system is also designed to deliver all the HUD features, as well as

to recognize what the astronaut is looking at and overlay synthetic content on ob-

jects. The system is composed of several subsystems such as a head-mounted visor,

a webcam, and a head mount (”snoopy-cap”).

1.4 Thesis Structure

This thesis is divided into five chapters. The next chapter will focus on describ-

ing the previous work done in the matter of space suit information feed methods,

as well as augmented reality techniques. Chapter Three will describe the systems

design phase by initially defining and describing the requirements derived from the

previous chapter, and how they were met. Chapter Four will cover the testing of

the proposed systems, describing the methods and procedures, as well as the results

achieved. Finally, chapter Five will include my conclusions and proposed future

research in the matter. Appendices are provided, including code, data-sheets and

documentation.
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Chapter 2

BACKGROUND AND PREVIOUS WORK

2.1 Augmented Reality

Augmented Reality (AR) is a variation of Virtual Environments (VE), or Vir-

tual Reality (VR) as it is more commonly called. VE technologies completely im-

merse the user inside a synthetic environment. While immersed, the user cannot

see the real world around him. In contrast, AR allows the user to see the real

world, with virtual objects superimposed upon or composited with the real world.

Therefore, AR supplements reality, rather than completely replacing it.

Figure 2.1: Paul Milgram and Fumio Kishino: Virtuality Continuum

Figure 2.1 represents a concept in computer science that there is a continuous

scale ranging between the completely virtual,and the completely real. The reality-

virtuality continuum encompasses all possible variations and compositions of real

and virtual objects. The concept was first introduced by Paul Milgram. The area

between the two extremes, where both the real and the virtual are mixed, is the so-

called Mixed or Augmented reality. While immersed in an AR environment, it would

appear to the user that the virtual and real objects coexisted in the same space.

Figure 2.2 shows an example of what this might look like. The AR environment

includes real elements such as the astronaut, the rover and the background as well as

synthetic elements such as the 3-D map, suit and system status and video feed from

the rover camera. Although in this work AR will be referred to exclusively as visual

augmentation, it is important to understand that this concept can be extended to
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all the human senses [1].

Figure 2.2: Martian EVA concept with AR overlays. (courtesy of

NASA\Pat Rawlings, SAIC)

2.1.1 Definition

Some define AR in a way that requires the use of Head-Mounted Displays

(HMDs). To avoid limiting AR to specific technologies,AR systems are here defined

to have the following three characteristics:

• Combines real and virtual objects in a real environment;

• Runs interactively, and in real time;

• Registers (aligns) real and virtual objects with each other in the 3-D space.

This definition includes other technologies other than see-through HMDs such

as monitor–based interfaces, monocular systems, and various other combining tech-

nologies while retaining the essential components of AR [2].
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2.1.2 Augmented Reality Space Related Applications

2.1.2.1 Life Support Control and Comfort Control

Life support control and comfort control for the EMU are provided by the

chest-mounted DCM, which can interfere with the work area of the astronaut. Life

support information can be viewed by the EVA astronaut on the DCM or by support

personnel monitoring telemetered lifesupport data. Current limitations of the DCM

display make its presentation of life support data useful primarily for intermittent

status checks in which it is scrolled through the various parameters of interest or

for the investigation of alarms or warnings automatically generated by fault detec-

tion logic. Routine awareness of activity levels, thermal state, expendables status,

etc., is primarily maintained by support personnel and, to the extent that the EVA

astronaut’s involvement is required, communicated by voice link. Future EVA infor-

mation interfaces for life support control and comfort control are likely to maintain

dedicated controls for critical life support functions. Integration of life support sta-

tus information into improved information displays could reduce communications

chatter, and provide the capability for more autonomous operation in environments

with reduced real-time mission-control support (e.g., reduced local mission support

crewmembers and/or long time delays). This would provide astronauts with the

capability to monitor and manage their own work rates and to manage constraints

including thermal loads and consumables margins [13].

2.1.2.2 Mission and Task Planning

During current operations, astronauts participate in mission and task planning

as part of their training, but do not generally plan whole sequences of actions or tasks

on-orbit because of the extensive verification and validation required to develop a

viable EVA plan. Current operations can be described as an attempt to dance a

ballet. The goal of the EVA is to execute a predetermined, practiced plan, follow

rehearsed contingencies when necessary, and improvise only as absolutely required.

Future EVAs are likely to entail dramatically increased task uncertainty and an

increased number of potential contingencies, making current levels of preparation

impractical. EVA astronauts will take on a larger mission and task planning role

by making observations and measurements that will affect the remainder of their

EVA goals and objectives. One example might be the inspection of a failed piece of
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equipment external to the ISS; the remaining goals and objectives for the EVA could

depend strongly on a surface inspection or electrical measurements made by the

astronaut. During planetary exploration, a geologic traverse could be driven largely

by observations made earlier in the geologic traverse. Thus, information interfaces

should enable astronauts to acquire, record, analyze, and communicate the data

required to support mission and task planning. In addition, when more autonomous

operations are required, EVA information interfaces should enable astronauts to

perform their own mission and task planning to the extent required to maximize

the value of EVA within operational constraints. With one-way line-of-sight light-

travel-time delays of 4.5 to 21 minutes between Earth and Mars, EVA operations on

the Martian surface are likely to be autonomous or semi-autonomous. One might

imagine a geologist replanning the rest of their geologic traverse for the day based on

an important discovery. The geologist might use an information interface to specify

limited temporal, spatial, and other characteristics of their new planned traverse

and submit an EVA plan (analogous to a pilot filing a flight plan) after validating

that the new traverse meets all applicable flight rules including expected thermal

loads and consumables margins [13].

2.1.2.3 Localization and Situational Awareness

Localization and situational awareness continue to be a problem in micrograv-

ity EVA operations due to spatial disorientation (including inversion illusions), a

lack of direction cues, contrast challenges, and limited visibility (especially to the

rear of the spacesuit). While the same orientation challenges experienced in micro-

gravity are not encountered in partial gravity, the Apollo lunar surface astronauts

had difficulty with localization because of the undulating and self-similar nature of

the lunar surface. The EVA information interface should assist in localization by

providing cues to astronaut orientation and position relative to visible landmarks.

Likewise, information interfaces should enhance situational awareness by making

available to the astronaut basic status information (for example, time on EVA or

time on task), progress compared to plan, consumables, upcoming events (for ex-

ample, time to events like sun-up or sun-down), or other contextual information.

Visual displays could also highlight landmarks, keep-out zones, or other hazards,

and could illustrate the location and characteristics of other EVA events. Provid-

ing behind-the-back clearance sensing might also be useful to prevent astronauts
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from bumping into and potentially damaging objects that are behind them. Many

traditional localization techniques can be applied to planetary surface operations,

including identification of landmarks, observation of sun-angle, radiolocation, and

localization schemes like the global positioning system (GPS). Because localization

is likely to be such a routine activity during planetary surface exploration, EVA

information interfaces for localization should be highly automated. Localization

schemes can be built upon surface-based communications and networking infras-

tructure if a GPS-like localization scheme is not available. Information interfaces

for planetary exploration could use a traditional map view to illustrate topography,

landmarks, keep-out zones, locations of ongoing EVA events, and temporal events

such as comparing actual progress on a geologic traverse to the nominal planned

traverse. A visual display might serve as the EVA equivalent for planetary explo-

ration to today’s multi-function flight displays for pilots, integrating temporal and

spatial data into a single view [13].

2.1.2.4 Navigation

During microgravity operations, translation routes are learned during ground-

based training or via study prior to EVA. Nevertheless, translation can be disori-

enting over significant distances on large space structures. During Apollo lunar

surface exploration, navigation was hampered by a lack of landmarks, self-similarity

of the terrain, reduced line-of-sight distances, and visual challenges with some sun-

relative directions of travel [14] [15]. In addition, reliance on dead-reckoning naviga-

tion sharply reduced navigational accuracy until the deployment of the lunar rover.

During microgravity operations, visual display of preferred translation routes or

techniques could be used to assist astronauts while translating from site to site, for

example, during an unplanned EVA. Extensive surface data is likely to be available

for most, if not all, future planetary surface missions. An integrated display of these

data combined with aforementioned data such as landmarks, hazards, and keep-out

zones could provide a highly functional aid to navigation [13].

2.1.2.5 Task Execution

Task execution during extravehicular activity has been enhanced by continued

(but limited) improvement in mobility of spacesuit joints and gloves, standardization
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of mechanical interfaces, and evolution of a limited but powerful set of tools that

provide position and orientation control and mechanical advantage. Task execution

often includes one or more (and often many repetitions of) steps including physical

manipulation, measurement, recording, processing, communication and verification.

During Apollo, astronauts read out measurements from a gravimeter over their ra-

dios. LEO operations still utilize the same techniques when tightening a bolt, an

EVA astronaut will count out loud the number of cranks and degrees per crank

made while turning a torque wrench. EVA information interfaces should be devel-

oped that reduce the time and energy (mental and physical) required to execute

a task. Significantly improved data automation is required to achieve this goal by

improving the task efficiency or the efficiency with which task outcomes are commu-

nicated. Efficient task execution requires that EVA astronauts have access to accu-

rate task-related information, especially for complex tasks or for tasks for which an

astronaut has not recently trained. EVA information interfaces could deliver video,

text, and graphics, possibly acquired in real time over a wireless network, to the

astronauts. These information interfaces should also permit real-time collaboration

among members of the EVA team to support routine discussions, troubleshooting,

and contingency or emergency operations. Delivery or display of information could

be initiated by a remote operator on request by an EVA astronaut [7] in response to

voice commands, [9], or based on contextual data such as tool usage, position, ori-

entation, posture, or time. For example, an electronic torque wrench could measure

and wirelessly transmit the total number of degrees of rotation it has been turned

since being reset. Grasping or resetting the torque wrench could wirelessly activate

a torque-wrench display, and data from the device could be displayed on a visual

display in the space suit or viewed by support personnel. In the context of planetary

exploration, geographical information systems (GIS) may serve as a useful model for

automation of many of the components of task execution. Physical manipulations,

observations and measurements can be tied to contextual data (such as position,

time, etc.) and integrated into a virtual world model that can be subsequently an-

alyzed or communicated. Research should be devoted to enable activities that are

common during terrestrial field work such as imaging, note taking and sketching.

Interfaces for these activities may require some physical movement or may be based

on voice commands [13].
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2.1.2.6 EVA Human-Robot Interfaces:

The future EVA astronaut will not be without helping hands. Robotic systems

are currently used mainly to position astronauts in manned human-robotic on-orbit

operations, but will likely fulfill a multitude of functions in future EVA activity. In

fact recent work indicates that robots can successfully be employed together with

their human counterparts in complex operations like repairing the Hubble Space

Telescope [16]. The robots would be teleoperated from Earth, and perform simple

routine tasks like site preparation and cleanup, but also more dexterous tasks like

fastening bolts and supplying tools to the EVA astronaut. Teleoperated robots are

also being equipped with dexterous hands and immersive teleoperation interfaces,

that give them capabilities similar to those of EVA astronauts [17].

Some work has also been performed on allowing the EVA astronaut to take

direct control of robotic systems, including ESA’s EVA Man Machine Interface

(EMMI). This is a portable teleoperation interface designed for the European Robotic

Arm (ERA) aimed for use at the International Space Station (ISS). More work is

needed to assess the most suitable type of input device for teleoperation from an

EVA suit however.

A similar robotic presence is envisioned for potential lunar exploration. To

expand its capabilities, increase its safety, and augment its operations, the lunar

outpost will by necessity have to incorporate extensive use of robotic systems. Given

the short speed-of-light time delay from the Moon to the Earth (usually around a

minute), it makes little sense to have humans in a local habitat directing robots

when Earth-based support crew can perform most robotic control tasks just as well.

Getting human eyes, hands, and minds to the exploration or development sites will

involve learning to work efficiently and effectively in planetary surface EVA, in-

cluding direct interactions with supporting robotic systems. Certainly, the primary

operating mode of these robots will be autonomous, directed and monitored by the

local EVA crew. As tasks become more difficult or the robots encounter unplanned

conditions, the human/robot interaction will have to move from high-level supervi-

sory control (e.g., come here) to lower-level command structures (e.g., go to the right

of that rock, then back to the left) to full teleoperation (e.g., remote driving). The

most effective human to issue these commands is the human standing on the site; a

human in a pressure suit. They must receive disparate data in multiple forms, cog-

nitively process it while incorporating a knowledge base of objectives, procedures,
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and diagnostics, and issue commands ranging from high-level goal direction to spe-

cific motions of individual actuators. Thus, in future space operations spacesuits

will become portable command and control stations for the accompanying robotic

systems [12].

2.1.3 Augmented Reality Interfaces

A basic design decision in building an AR system is how to accomplish the

combining of real and virtual. Two basic choices are available: optical and video

technologies. Each has particular advantages and disadvantages. This section com-

pares the two and notes the tradeoffs.

2.1.3.1 Video Interfaces

Video see-through HMDs work by combining a closed-view HMD with one

or two head-mounted video cameras. The video cameras provide the user’s view

of the real world. Video from these cameras is combined with the graphic images

created by the scene generator, blending the real and virtual. The result is sent to

the monitors in front of the user’s eyes in the closed-view HMD. Figure 2.3 shows

a conceptual diagram of a video see-through HMD.

Video composition can be done in more than one way. A simple way is to use

chroma-keying, a technique used in many video special effects. The background of

the computer graphic images is set to a specific color, say green, which none of the

virtual objects use. Then the combining step replaces all green areas with the corre-

sponding parts from the video of the real world. This has the effect of superimposing

the virtual objects over the real world. A more sophisticated composition would use

depth information. If the system had depth information at each pixel for the real

world images, it could combine the real and virtual images by a pixel-by-pixel depth

comparison. This would allow real objects to cover virtual objects and vice-versa.

AR systems can also be built using monitor-based configurations, instead of HMDs.

Figure 2.4 shows how a monitor-based system might be built.

In this case, one or two video cameras view the environment. The cameras may

be static or mobile. In the mobile case, cameras mounted to a robot would move,

with their locations tracked. The video of the real world and the graphic images

generated by a scene generator are combined, just as in the video see-through HMD
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Figure 2.3: Video interface conceptual diagram. [1]

Figure 2.4: Monitor-Based video interface conceptual diagram. [1]

case, and displayed in a monitor in front of the user. The user does not wear the

display device. Optionally, the images may be displayed in stereo on the monitor,

which then requires the user to wear a pair of stereo glasses.
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2.1.3.2 Optical Interfaces

Optical see-through HMDs work by placing optical combiners in front of the

user’s eyes. These combiners are partially transmissive, so that the user can look di-

rectly through them to see the real world. The combiners are also partially reflective,

so that the user sees virtual images bounced off the combiners from head-mounted

monitors. This approach is similar in nature to Head-Up Displays (HUDs) com-

monly used in military aircraft, except that the combiners are attached to the head.

Figure 2.5 shows a conceptual diagram of an optical see-through HMD.

Figure 2.5: Optical see-through interface conceptual diagram. [1]

The optical combiners usually reduce the amount of light that the user sees

from the real world. Since the combiners act like half-silvered mirrors, they only

let in some of the light from the real world, so that they can reflect light from

the monitors into the user’s eyes. For example, the HMD used later in this study,

transmits about 30 percent of the incoming light from the real world. The level

of blending is a design parameter. More sophisticated combiners might vary the

level of contributions based upon the wavelength of light. For example, such a

combiner might be set to reflect all light of a certain wavelength and none at any

other wavelengths. This would be ideal with a monochrome monitor. Virtually

all the light from the monitor would be reflected into the user’s eyes, while almost
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all the light from the real world (except at the particular wavelength) would reach

the user’s eyes. However, most existing optical see-through HMDs do reduce the

amount of light from the real world, so they act like a pair of sunglasses when the

power is cut off.

2.1.3.3 Optical/Video Interface Comparison

Both optical and video technologies have their roles, and the choice of technol-

ogy depends on the application requirements. An optical approach has the following

advantages over a video approach:

1. Simplicity: Optical blending is simpler and cheaper than video blending. Op-

tical approaches have only one stream of video to worry about: the graphic

images. The real world is seen directly through the combiners, and that time

delay is generally a few nanoseconds. Video blending, on the other hand, must

deal with separate video streams for the real and virtual images. Both streams

have inherent delays in the tens of milliseconds. Digitizing video images usu-

ally adds at least one frame time of delay to the video stream, where a frame

time is how long it takes to completely update an image. A monitor that com-

pletely refreshes the screen at 60 Hz has a frame time of 16.67 ms. The two

streams of real and virtual images must be properly synchronized or temporal

distortion results. Also, optical see-through HMDs with narrow field-of-view

combiners offer views of the real world that have little distortion. Video cam-

eras almost always have some amount of distortion that must be compensated

for, along with any distortion from the optics in front of the display devices.

Since video requires cameras and combiners that optical approaches do not

need, video will probably be more expensive and complicated to build than

optical-based systems.

2. Resolution: Video blending limits the resolution of what the user sees, both

real and virtual, to the resolution of the display devices. Optical see-through

also shows the graphic images at the resolution of the display device, but

the user’s view of the real world is not degraded. Thus, video reduces the

resolution of the real world, while optical see-through does not.

3. Safety: Video see-through HMDs are essentially modified closed-view HMDs.

If the power is cut off, the user is effectively blind. This is a safety concern
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in some applications. In contrast, when power is removed from an optical

see-through HMD, the user still has a direct view of the real world. The HMD

then becomes a pair of heavy sunglasses, but the user can still see.

4. No eye offset: With video see-through, the user’s view of the real world is

provided by the video cameras. In essence, this puts his ”eyes” where the

video cameras are. In most configurations, the cameras are not located exactly

where the user’s eyes are, creating an offset between the cameras and the real

eyes. The distance separating the cameras may also not be exactly the same

as the user’s interpupillary distance (IPD). This difference between camera

locations and eye locations introduces displacements from what the user sees

compared to what he expects to see. For example, if the cameras are above the

user’s eyes, he will see the world from a vantage point slightly taller than he is

used to. Video see-through can avoid the eye offset problem through the use

of mirrors to create another set of optical paths that mimic the paths directly

into the user’s eyes. Using those paths, the cameras will see what the user’s

eyes would normally see without the HMD. However, this adds complexity to

the HMD design.

Offset is generally not a difficult design problem for optical see-through dis-

plays. While the user’s eye can rotate with respect to the position of the HMD,

the resulting errors are negligible. Using the eye’s center of rotation as the

viewpoint in the computer graphics model should eliminate any need for eye

tracking in an optical see-through HMD.

Video blending offers the following advantages over optical blending:

1. Flexibility in composition strategies: A basic problem with optical see-through

is that the virtual objects do not completely obscure the real world objects,

because the optical combiners allow light from both virtual and real sources.

Building an optical see-through HMD that can selectively shut out the light

from the real world is difficult. In a normal optical system, the objects are

designed to be in focus at only one point in the optical path: the user’s eye.

Any filter that would selectively block out light must be placed in the optical

path at a point where the image is in focus, which obviously cannot be the

user’s eye. Therefore, the optical system must have two places where the image

is in focus: at the user’s eye and the point of the hypothetical filter. This makes
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the optical design much more difficult and complex. No existing optical see-

through HMD blocks incoming light in this fashion. Thus, the virtual objects

appear ghost-like and semi-transparent. This damages the illusion of reality

because occlusion is one of the strongest depth cues.

In contrast, video see-through is far more flexible about how it merges the

real and virtual images. Since both the real and virtual are available in digital

form, video see-through compositors can, on a pixel-by-pixel basis, take the

real, or the virtual, or some blend between the two to simulate transparency.

Because of this flexibility, video see-through may ultimately produce more

compelling environments than optical see-through approaches.

2. Wide field-of-view: Distortions in optical systems are a function of the radial

distance away from the optical axis. The farther one looks away from the center

of the view, the larger the distortions get. A digitized image taken through

a distorted optical system can be undistorted by applying image processing

techniques to unwarp the image, provided that the optical distortion is well

characterized. This requires significant amounts of computation. It is harder

to build wide field-of-view displays with optical see-through techniques. Any

distortions of the user’s view of the real world must be corrected optically,

rather than digitally, because the system has no digitized image of the real

world to manipulate. Complex optics are expensive and add weight to the

HMD. Wide field-of-view systems are an exception to the general trend of

optical approaches being simpler and cheaper than video approaches.

3. Real and virtual view delays can be matched: Video offers an approach for

reducing or avoiding problems caused by temporal mismatches between the

real and virtual images. Optical see-through HMDs offer an almost instanta-

neous view of the real world but a delayed view of the virtual. This temporal

mismatch can cause problems. With video approaches, it is possible to delay

the video of the real world to match the delay from the virtual image stream.

4. Additional registration strategies: In optical see-through, the only information

the system has about the user’s head location comes from the head tracker.

Video blending provides another source of information: the digitized image of

the real scene. This digitized image means that video approaches can employ

additional registration strategies unavailable to optical approaches.
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5. Easier to match the brightness of real and virtual objects.

2.1.3.4 Image Focus and Contrast

Image focus can be a problem for both optical and video approaches. Ideally,

the virtual should match the real. In a video-based system, the combined virtual

and real image will be projected at the same distance by the monitor or HMD optics.

However, depending on the video camera’s depth-of-field and focus settings, parts

of the real world may not be in focus. In typical graphics software, everything is

rendered with a pinhole model, so all the graphic objects, regardless of distance, are

in focus. To overcome this, the graphics could be rendered to simulate a limited

depth-of-field, and the video camera might have an autofocus lens. In the optical

case, the virtual image is projected at some distance away from the user. This

distance may be adjustable, although it is often fixed. Therefore, while the real

objects are at varying distances from the user, the virtual objects are all projected

to the same distance. If the virtual and real distances are not matched for the

particular objects that the user is looking at, it may not be possible to clearly view

both simultaneously.

Contrast is another issue because of the large dynamic range in real environ-

ments and in what the human eye can detect. Ideally, the brightness of the real

and virtual objects should be appropriately matched. Unfortunately, in the worst

case scenario, this means the system must match a very large range of brightness

levels. The eye is a logarithmic detector, where the brightest light that it can han-

dle is about eleven orders of magnitude greater than the smallest, including both

dark-adapted and light-adapted eyes. In any one adaptation state, the eye can cover

about six orders of magnitude. Most display devices cannot come close to this level

of contrast. This is a particular problem with optical technologies, because the user

has a direct view of the real world. If the real environment is too bright, it will wash

out the virtual image. If the real environment is too dark, the virtual image will

wash out the real world. Contrast problems are not as severe with video, because

the video cameras themselves have limited dynamic response, and the view of both

the real and virtual is generated by the monitor, so everything must be clipped or

compressed into the monitor’s dynamic range.
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2.1.3.5 Portability

In almost all Virtual Environment systems, the user is not encouraged to walk

around much. Instead, the user navigates by ”flying” through the environment,

walking on a treadmill, or driving some mockup of a vehicle. Whatever the tech-

nology, the result is that the user stays in one place in the real world. On the

contrary space related AR applications, will need to support a user who will move

in a large environment. In space related applications, usually AR scenarios require

the user to be at the place where the task is to take place, Robot teleoperations

are an exception, but will be regarded as a simplified case of nominal EVA AR ap-

plications. Therefore, AR systems will place a premium on portability. The scene

generator, the HMD, and the tracking system must all be self-contained and capable

of surviving exposure to the environment.

2.1.3.6 Registration

One of the most basic problems currently limiting Augmented Reality appli-

cations is the registration problem. The objects in the real and virtual worlds must

be properly aligned with respect to each other, or the illusion that the two worlds

coexist will be compromised. Registration problems also exist in Virtual Environ-

ments, but they are not nearly as serious because they are harder to detect than in

Augmented Reality. Since the user only sees virtual objects in VE applications, reg-

istration errors result in visual-kinesthetic and visual-proprioceptive conflicts. Such

conflicts between different human senses may be a source of motion sickness. Be-

cause the kinesthetic and proprioceptive systems are much less sensitive than the

visual system, visual-kinesthetic and visual-proprioceptive conflicts are less notice-

able than visual-visual conflicts. For example, a user wearing a closed-view HMD

might hold up her real hand and see a virtual hand. This virtual hand should be

displayed exactly where she would see her real hand, if she were not wearing an

HMD. But if the virtual hand is wrong by five millimeters, she may not detect that

unless actively looking for such errors. The same error is much more obvious in a

see-through HMD, where the conflict is visual-visual. Furthermore, a phenomenon

known as visual capture makes it even more difficult to detect such registration

errors. Visual capture is the tendency of the brain to believe what it sees rather

than what it feels, hears, etc. That is, visual information tends to override all other
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senses.

Registration errors are difficult to adequately control because of the high ac-

curacy requirements and the numerous sources of error. These sources of error can

be divided into two types: static and dynamic. Static errors are the ones that cause

registration errors even when the user’s viewpoint and the objects in the environ-

ment remain completely still. Dynamic errors are the ones that have no effect until

either the viewpoint or the objects begin moving. For current HMD-based systems,

dynamic errors are by far the largest contributors to registration errors, but static

errors cannot be ignored either.

2.2 Vision Based Sensing Techniques

Registration based solely on the information from inertial tracking systems

is like building an ”open-loop” controller. The system has no feedback on how

closely the real and virtual actually match. Without feedback, it is difficult to

build a system that achieves perfect matches. However, video-based approaches can

use image processing or computer vision techniques to aid registration. Since video-

based AR systems have a digitized image of the real environment, it may be possible

to detect features in the environment and use those to enforce registration. They

call this a ”closed-loop” approach, since the digitized image provides a mechanism

for bringing feedback into the system. In some AR applications it is acceptable to

place fiducials in the environment. These fiducials may be LEDs (Light Emitting

Diodes) or special markers. The locations or patterns of the fiducials are assumed

to be known. Image processing detects the locations of the fiducials, then those are

used to make corrections that enforce proper registration. These routines assume

that one or more fiducials are visible at all times; without them, the registration

can fall apart. But when the fiducials are visible, the results can be accurate to one

pixel, which is as close as one can get with video techniques. Instead of fiducials,

template matching could be used to achieve registration. Template images of the

real objects are taken from a variety of viewpoints. These are used to search the

digitized image for the real object. Once that is found, a virtual wireframe can

be superimposed on the real object. Recent approaches in video-based matching

avoid the need for any calibration. Another approach could be extracting contours

from the video of the real world, then use optimization techniques to match the

contours of the rendered 3-D virtual object with the contour extracted from the
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video. Note that calibration-free approaches may not recover all the information

required to perform all potential AR tasks. For example, these two approaches

do not recover true depth information, which is useful when compositing the real

and the virtual. Techniques that use fiducials as the sole tracking source determine

the relative projective relationship between the objects in the environment and the

video camera. While this is enough to ensure registration, it does not provide all the

information one might need in some AR applications, such as the absolute (rather

than relative) locations of the objects and the camera. Absolute locations are needed

to include virtual and real objects that are not tracked by the video camera, such as

a 3-D pointer or other virtual objects not directly tied to real objects in the scene.

Additional sensors besides video cameras can aid registration. Laser rangefinders

can acquire an initial depth map of the real object in the environment. Given a

matching virtual model, the system can match the depth maps from the real and

virtual until they are properly aligned, and that provides the information needed

for registration.
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2.3 Previously Implemented Interfaces for Space Application

Current methods of information management in the space suit are largely

unchanged from those used during the Apollo lunar missions of 1969-1972. A small

booklet of emergency procedures (Figure 2.6 ) is mounted on the left arm of the

space suit.

Figure 2.6: Small booklet of emergency procedures mounted on the EMU

left arm. (courtesy of James Blair )

Control of radio communications and monitoring of space suit life support

functions is accomplished using the display and control module (DCM) on the front

of the suit, which includes a small alphanumeric display. The communications car-

rier assembly (CCA), a headset with redundant noisecanceling microphones, en-

22



ables hands-free voice communications. Intra-vehicular activity (IVA) astronauts or

ground personnel help choreograph EVA activities by communicating each step in

a task sequence over the radio to the EVA astronauts. Benefits of suit-accessible

hands-free information access and a visual information display were recognized by

NASA in the 1980s, when a voice activated computer system with a helmet mounted

display (HMD) was proposed for extravehicular activity [8] and a prototype system

was developed [9]. This system included a suitexternal HMD that achieved 320 by

220 resolution but suffered from high power consumption (45+ watts versus the

EMU total of 58 watts) and field-of-view obstructions. Three additional HMD de-

signs were subsequently developed but none of the four designs was considered for

implementation because of great increases in packaging required to incorporate each

design into the low profile helmet, protective visor, and solar visor subassemblies of

the EMU [10]. A prototype electronic cuff checklist (Figure 2.7 ) was later devel-

oped and flown during four Shuttle flights, but problems of glare, lack of contrast,

small font size, cold intolerance, and work envelope interference were noted [11] [7].

Subsequently some attention was devoted to IVA AR wireless visors [6] for

robot control and teleoperations, but technological implementation challenges lead

to the abandonment of the concept.

2.4 SSL In-House Software Suites

The Space Systems laboratory at the University of Marlyand has developed

several software suites in the past that allow communications, monitoring and con-

trol of the various systems developed. The MX-2 is equipped with an on board

computer (Mac-Mini) that allows the execution of these applications. The aim of

this section is to introduce these programs since the AR software implemented in

this research effort will be using them.

2.4.1 DMU: Data Management Unit and the HUB

The DMU allows us to acquire and convert analogue readings from all the

sensors in the MX-2 spacesuit analogue in digital data. These readings are funda-

mental for all operations since they allow the support team to monitor the subject

and the suit status at all times. The sensors in the suit primarily monitor pressures

of: suit, ambient, electronics box, emergency air supplies, and the pneumatic seal.
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Figure 2.7: NASAs electronic cuff checklist prototype using a liquid

crystal display and touch screen control interface. (courtesy of NASA )

The MX-2 is also equipped with a CO2 sensor and a heart rate monitor that help

assess the subject’s physical workload and health. The DMU in particular acquires

the voltage outputs from the sensors and then through the RCL passes the raw data

to the HUB that distributes it through the network. Both the DMU and the HUB

are run on the embedded computer in the MX-2.

2.4.2 CS: Control Station

The CS is the support team application for monitoring the MX-2 during oper-

ations. This application can be run on any machine that is on the SSL network. It

acquires the raw data from the HUB and converts the voltage readings in adequate

physical units of the quantity the specific sensor is reading. The support team uses

the CS to monitor that sensor readings are within nominal ranges. Experimental
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applications of the CS allow alternative in-suit CS data access to the test subject

through voice commands.

2.4.3 RCL: Ranger Communications Layer

The Ranger Communication Layer (RCL) function is to interface programs

enabling them to pass data to one another. The MX-2 System utilizes the RCL

to send and receive commands and data thought the SSL network. In particular

the MX-2 broadcasts the suit status parameters such as system pressures, subject’s

heart rate, CO2 readings, etc. MX-2 also transmits and receives voice-recognition

commands through this system. The AR software suite uses the RCL to commu-

nicate to the suit’s DMU and access all suit parameters and voice commands. The

use of the RCL will be fundamental in the future when the AR software suite will

be able to, for example access data stored on a server and respond to voice com-

mands. The possibilities are endless. RCL technology allows extreme flexibility in

future interfaces and AR features implementation without requiring fundamental

modifications or redesign of currently implemented software applications.
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2.5 ARToolkit

ARToolKit is a C and C++ language software library that lets programmers

easily develop Augmented Reality applications. Augmented Reality (AR) is the

overlay of virtual computer graphics images on the real world, and has many po-

tential applications in industrial and academic research. One of the most difficult

parts of developing an Augmented Reality application is precisely calculating the

user’s viewpoint in real time so that the virtual images are exactly aligned with

real world objects. ARToolKit uses computer vision techniques to calculate the real

camera position and orientation relative to marked cards, allowing the programmer

to overlay virtual objects onto these cards. The fast, precise tracking provided by

ARToolKit should enable the rapid development of many new and interesting AR

applications. ARToolKit includes features such as:

• Simple framework for creating real-time augmented reality applications

• Multiplatform library (Windows, Linux, Mac OS X, SGI)

• Overlays 3D virtual objects on real markers ( based on computer vision algo-

rithm)

• Multi platform video library with:

– Multiple input sources (USB, Firewire, capture card) supported

– Multiple format (RGB/YUV420P, YUV) supported

– Multiple camera tracking supported

– GUI initalizing interface

• Fast and cheap 6D marker tracking (real-time planar detection)

• Easy calibration routine

• Simple graphic library (based on GLUT)

• Fast rendering based on OpenGL

• 3D VRML support

• Simple and modular API (in C)
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• Other language supported (JAVA, Matlab)

• Complete set of samples and utilities

• OpenSource with GPL license for non-commercial usage

ARToolkit source: (http://www.hitl.washington.edu/artoolkit/) This collec-

tion of libraries is open source and is avaliable for free on the web.

2.5.1 Computer Vision Algorithm

ARToolKit is based on a basic corner detection approach with a fast pose

estimation algorithm. The ARToolKit tracking works as follows:

1. The camera captures video of the real world and sends it to the computer.

2. Software on the computer searches through each video frame for any square

shapes.

3. If a square is found, the software calculates the position of the camera relative

to the black square.

4. Once the position of the camera is known a computer graphics model is drawn

from that same position.

5. This model is drawn on top of the video of the real world and so appears stuck

on the square marker.

6. The final output is shown back on the display, so when the user looks through

the display they see graphics overlaid on the real world.

Figures 2.8 , 2.9 and 2.10 summarize these steps. ARToolKit is able to

perform this camera tracking in real time, ensuring that the virtual objects always

appear overlaid on the tracking markers.
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Figure 2.8: ARToolkit acquisition process

Figure 2.9: ARToolkit marker identification
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Figure 2.10: ARToolkit algorithm
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2.5.2 Limitations of AR Systems

There are some limitations to purely computer vision based AR systems. Nat-

urally the virtual objects will only appear when the tracking marks are in view. This

may limit the size or movement of the virtual objects. It also means that if users

cover up part of the pattern with their hands or other objects the virtual object will

disappear. There are also range issues. The larger the physical pattern the further

away the pattern can be detected and so the great volume the user can be tracked

in. Table 2.1 shows some typical maximum ranges for square markers of different

sizes. These results were gathered by making marker patterns of a range of different

sizes (length on a side), placing them perpendicular to the camera and moving the

camera back until the virtual objects on the squares disappeared.

Pattern Size (inches) Usable Maximum Distance (inches)

2.75 16

3.50 25

4.25 34

7.37 50

Table 2.1: Tracking range for different sized patterns

This range is also affected somewhat by pattern complexity. The simpler the

pattern the better. Patterns with large black and white regions (i.e. low frequency

patterns) are the most effective. Replacing the 4.25 inch square pattern used above,

with a pattern of the same size but much more complexity, reduced the tracking

range from 34 to 15 inches. Tracking is also affected by the marker orientation

relative to the camera. As the markers become more tilted and horizontal, less and

less of the center patterns are visible and so the recognition becomes more unreliable.

Finally, the tracking results are also affected by lighting conditions. Overhead lights

may create reflections and glare spots on a paper marker and so make it more

difficult to find the marker square. To reduce the glare, patterns can be made from

more non-reflective material. For example, by gluing black velvet fabric to a white

base.
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2.5.3 Benchmarks

In order to evaluate accuracy of the marker detection, detected position and

pose were recorded while the square marker with 80[mm] of side length was moved

in depth direction with some slants. Figure 2.11 shows errors of position. Figure

2.12 shows detected slant. This result shows that accuracy decreases the farther the

cards are from the camera [3].

Figure 2.11: Effective Range vs Pattern Size
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Figure 2.12: Tracking Offset Error vs Range

Figure 2.13: Tracking Offset Error vs Angle

2.6 Speed versus Accuracy Decisions in Task Performance

Previous studies adress that subject’s regulatory focus influences speed ver-

sus accuracy decisions in different tasks. According to the regulatory focus theory,
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promotion focus concerns with accomplishments and aspirations produce strategic

eagerness whereas prevention focus concerns with safety and responsibilities produce

strategic vigilance. It has been shown that faster performance and less accuracy in

simple tasks were achieved for participants with a chronic or situationally induced

promotion focus when compared to participants with prevention focus. It was also

shown that as participants move closer to the goal of completing the task, speed

increases and accuracy decreases for participants with a promotion focus, whereas

speed decreases and accuracy increases for participants with a prevention focus.

A promotion focus leads to faster proofreading compared to a pre- vention focus,

whereas a prevention focus leads to higher accuracy in finding more difficult errors

than a promotion focus. Through speed and searching for easy errors, promotion

focus subjects maximize proofreading performance.It is shown that speed/accuracy

(or quantity/quality) decisions are influenced by the strategic inclinations of partic-

ipants varying in regulatory focus rather than by a built-in trade-off[18]
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Chapter 3

HARDWARE AND SOFTWARE DEVELOPMENT

In this chapter the hardware development phase of the HUD, the HMD and

the digital pin-hole board will be described in detail. The main philosophy behind

the development, was the use of available off-the-shelf components which lead to

modifications and combinations of the previous. The first system is an LCD based

Head Up Display built for integration in the MX-2 spacesuit analogue of the Uni-

versity of Maryland’s Space Systems Laboratory. This HUD was very useful for the

development of the HMD beacuse initial experimentation identified important fea-

tures and details that needed to be considered in future designs. The second system

is based on a see through Head Mounted Display. This upgraded system has a dif-

ferent typology from the HUD but there are many common features. This chapter is

divided in three main sections respectively associated to each system. Each section

is then divided in subsections describing: requirements, system development, design

considerations, and software developed. Appendices will be referenced for hardware

specifications data sheets and software source code.
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3.1 HUD:

The first attempt made was to build a Head Up Display that would use an

LCD screen because of its partial transparency, small packaging and low power

requirements.An off the shelf LCD screen was selected for implementation. Due to

availability a 4” LUMIX LCM 480234GF-40CF screen was used. Specifications of

the LCD can be found in Appendix A.

Figure 3.1: HUD in the MX-2 Spaceuit Analogue (UMD SSL, 2008)

This simple and robust interface has been a great source of information for

developing increasingly complex applications of In-Suit Digital displays, The HUD

has undergone qualitative testing in the latest MX-2 operations, and rapidly demon-

strated that it could be a very useful, non critical interface. Although it is by far not

an optimal solution for displaying digital information, its testing has defined highly

desirable features that should be introduced in the future spacesuit environments.

3.1.1 Design Requirements

Design requirement for the system are as follows:
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• The system shall fit in the current MX-2 helmet assembly without interfering

with installed equipment and with the subject’s head workspace

• The system shall be non-critical for operations purposes.

• The system shall have small power requirements.

• The system must be located outside the subject’s main workspace field of view.

• The system must not be a source of electrical or mechanical hazard.

• Wires, connectors and casing shall allow easy removal and servicing.

• The system shall be integrated with the current MX-2 systems.
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3.1.2 System Development

Figure 3.2: HUD Assembly in the MX-2 Spaceuit Analogue (UMD SSL, 2008)

The initial purpose of the HUD was to enable the test subject in the suit to

have hands-free access specific task to information such as checklists and diagrams.

The system was developed by stripping down the original LCD screen. The back-

lamp was removed in order to clear the back of the screen, allowing the user to see

through it. The electronics that were originally mounted behind the back-lamp were

relocated on the side of the LCD and finally, the original mount was removed and

a new mount was designed and built. The mount is divided in three main sections:

• The electronics casing:

The electronics casing is an aluminum box divided in two halves. The bottom

half is rigidly connected to the L mount bracket through two screws and it is at-

tached to the top half by four screws. The top half is rigidly connected to the LCD

electronics by three pass-through screws. The electronics and the casing are not in

direct contact in order to avoid short circuit paths due to the metal casing, therefore

a separation layer was introduced between the two elements. The separation layer

37



is composed of two elements: An insulation layer and a vibration damping medium.

Insulation is achieved by coating the bottom of the electronics board with electric

insulation tape, while vibration damping is achieved through a 1/4 in thick soft foam

layer. The foam is then positioned between the board and the metal casing and it

is held in place by mechanical pressure induced by the three mounting pass-through

screws. The top half also incorporates the power and video-in connectors, an on/off

switch and the attachment points for the LCD frame mounts. The bottom half in-

cludes a pass-through hole for the video feed ribbon connector from the electronics

board to the LCD.

• The L mount bracket

The L mount bracket allows the HUD to be mounted inside the MX-2 helmet.

It is attached to the suit’s HUT (Hard Upper Torso) through the drinking bag

mount screw. Due to mount points availability the HUD had to occupy the drink

bag mount, therefore relocation of the previous was necessary. An additional drink

bag mount screw was introduced on the L mount bracket, allowing the system to

coexist with the drink bag. The mount is a curved L shaped aluminum beam, that

runs on the right side of the HUT helmet section with a velcro lip on the bottom.

The curvature of the beam is slightly bigger than the HUT’s allowing the mount to

be pressure fit in the HUT when the mount screw is tightened. A velcro lip was also

added to avoid accidental rotation of the mount and it anchors on the drink bag

bottom velcro restraint. The L mount bracket is then connected to the HUT and

required to be bent in order to locate it inside the helmet assembly. Although fairly

stiff, it could still allow the HUD to vibrate and impact on the helmet bubble. For

this reason, foam padding has been added on the back side of the mount in order

to dump such vibrations and provide adequate separation between the two.

• The LCD frame support

The LCD frame is composed of two U shaped aluminum beams in which the

LCD frame is pressure fit. These two beams are each connected through a single

screw to the top half of the electronics casing. The two beams are also bent inwards

in order to reduce the viewing angle of the screen, and to avoid impact of the LCD

edges on the helmet bubble.
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In order to satisfy design requirements, all hardware edges were rounded to

avoid accidental injury of the test subject. An element of concern was also a particu-

lar HUD failure scenario that induced the LCD to shatter. The LCD walls are made

of glass that due to the fragile nature of the material could induce small pieces of

collide with the test subject’s face potentially causing severe injury. On this matter

research was conducted to assess the risk involved in this scenario. After analyzing

the LCD screen it was noticed that the screen is coated with a plastic adhesive layer

that bonds the two sides of the screen avoiding fragment diffusion in the event of

a screen fracture. Power requirements were also satisfied since the nominal power

consumption of the original screen was estimated to be 5 W, which included the

electronics, LCD and backlamp. Since the backlamp was removed, we can safely

assess, although it was not measured, that power consumption has been reduced.

Figure 3.3: HUD Assembly in the MX-2 Spaceuit Analogue Closeup

(UMD SSL, 2008)

As part of the integration process, in order to connect the HUD to the electron-

ics in the MX-2 electronics box, a pass through connector was necessary. The first

pass through connector was designed to pass: Power (17.5V DC), video feed (NTSC
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composite), and also incorporated several signal channels cables for future interfaces.

The pass through connector is a hollow double side threaded plug in which the ca-

bles were passed and kept in place by filling the empty space with epoxy. The filling

was necessary since the pass through would connect two section of the suit which

have to be kept isolated due to different pressurization. The pass through mount is

located just below the communications. connector on the suit entry door assembly,

therefore the wires coming from the plug to the HUD had to be routed inside the

HUT in order to avoid interference with the test subject. The routing of the cables

was achieved through velcro pads that hold together and in place the wires while

they pass through the suit. Inside the electronics box the wires are connected as

follows: Power is attached to the main power line mammoth connector that feeds

17.5V DC, while the video signal is connected to the SVGA-to-Composite adapter

connected to the suit’s Mac-mini.

The system integrates in the MX-2 operations procedures easily since it just

requires to be turned on through the switch mounted on the back of the electronics

casing before the test subject gets in the suit, and it requires to be turned off once

operations are complete.
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3.1.3 Design Considerations

Qualitative testing of the system [12] revealed much useful information such

as:

Figure 3.4: HUD displaying text and font sizes.

• Color, Contrast and Pixelation:

During testing in the tank, it was noticed that there are several colors which

are practically unusable such as cyan, yellow and orange. In the original LCD

setup, the backlamp provided an homogeneous source of white light that increased

contrast on the LCD. Its removal induced a large reduction of contrast capabilities

therefore dim colors became indistinguishable. This result limits the capabilities of

the HUD especially when colors are required for task information such as checklists

that include wire color coding or video display. Also the low resolution of the screen

and the dimensions of it delivered a displayed image in which each pixel could be

distinguished. Images of diagrams that were displayed were poor in quality and

looked blurry.

• Proximity to the subject’s eyes
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Due to the relatively confined available space in the MX-2 helmet, the HUD had

to be positioned relatively close to the subject’s eyes (approximate distance: 10-12

cm, while a comfortable distance would be around 18-20 cm), making it hard to

focus on. Although the HUD was always readable by the subject, it was noticed

during testing that whenever information had to be accessed through the HUD the

subject would pull their head back to increase the distance. This comfort factor

cannot be disregarded for two main reasons: The first is that the MX-2 Helmet

is much larger than current spacesuit helmets therefore moving the head back is

an option for MX-2 operations but in general this cannot be guaranteed. Second,

reading the HUD would require the subject to re-focus on a very different distance,

but in this case also to change radically their focus of attention. This would cause

a temporary reduction in situational awareness, and would not satisfy the main

assumption behind this study.

• Transparency

Although the LCD screen is partially transparent (approximatley 10 � transparent),

during testing we noticed that the subjects would hardly try to look at objects

through the HUD. The main reasons lies in the fact that the LCD alters colors

and the sharpness of the objects behind it, making it very uncomfortable to look

through. Details are hidden and shapes are blurred. This effect was noticed early

in the development phase and it was the main rationale behind the introduction of

the ”out-of the main workspace field-of-view” requirement.

3.1.4 Software Development

Software wasn’t specifically designed for the HUD since it integrates in the

standard computer video output capabilities. However, applications that benefitted

from the HUD’s capabilities, were many. Just to mention a few: Voice recognition,

allowed to display multimedia content on the HUD on command, such as Checklists,

Data sheets, Diagrams, video streams, etc. The test subject was also able to access

the suit’s CS (Control Station), allowing them to know the real-time status of the

suit.
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3.2 HMD:

Figure 3.5: Final HMD assembly on Support (UMD SSL, 2008)

The HMD system was developed after the HUD in order to compensate on

some of the drawbacks of the first system such as: Poor transparency, uncomfortable

eye relief, limited color and contrast display capability. Also, research done in the

HUD development pointed to several very desirable features that we wanted to

implement in the new system including: Augmented Reality and in field-of-view

information display techniques. These new features required a different approach

on the system design. The monitor based interface approach was abandoned and

an optical see-through design was used instead. This approach required the use

of optical combiners and video input devices in a Head Mounted Display (HMD)

assembly.
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3.2.1 Design Requirements

Design requirements for the system are as follows:

• The system shall fit in the current MX-2 helmet assembly without interfering

with installed equipment and with the subject’s head workspace

• The system shall be non-critical for operations purposes.

• The system shall have small power requirements.

• The system shall be light weight and shall not induce discomfort to the subject.

• The system must not be a source of electrical or mechanical hazard.

• Wires, connectors and casing shall allow easy removal and servicing.

• The system shall be integrated with the current MX-2 systems.

• The system shall be as transparent as possible, and shall not compromise

operations that do not require the use of the specific system.

• The system shall be capable of recognizing and tracking targets for AR pur-

poses

3.2.2 System Development

Due to availability, a SONY Glasstron PLM-S600 HMD system was selected.

Additional information on the original system can be found in Appendix A. The

HMD was initially tested and it was noted that modification to the original system

was necessary. The first thing that was noted, was that the HMD was both AR

and VR capable. This was achieved through a secondary black and white LCD

mounted after the optical combiners that could be darkened or lightened by the user

through the HMD integrated control module. This flexible LCD was not necessary

for the application we were interested in and it also caused a reduction in the

transparency characteristics of the system. An additional layer meant to prevent

dust and mechanical damage to the HMD optics was also present and participated

in reducing transparency. While testing the HUD we understood the importance

of transparency therefore it was chosen to remove both layers. This resulted in a
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Figure 3.6: Final HMD assembly electronics and mount colseup (UMD SSL, 2008)

significant, although still not optimal increase in the transparency characteristics of

the system.

Further preliminary testing of the system also revealed that the original casing

of the HMD was designed to reduce glare on the optical combiners but as a draw-

back, it inhibited the peripheral vision of the subject. Due to our specific application,

we had to keep in mind comfort and claustrophobic effects of the HMD while worn

in a constrained environment such as the MX-2 spacesuit analogue. In order to

regain peripheral vision, the HMD assembly was removed. The system was also

separated from the integrated headphones and head restraint, therefore requiring the

development of a new mount. The new mount was designed to be fitted on the MX-2

comm. system assembly (snoopy-cap) and it is composed of an aluminum curved

beam and two support brackets. The support is then mounted on the snoopy-cap

through two screws positioned on the upper headphones assembly. The support was

intentionally left free to rotate on the snoopy-cap for personal adjustment reasons,

and it is kept in place by two adjustable velcro strips. Further modifications to the

HMD were necessary in order to implement a video input device. On this matter,

several solutions were developed. The first attempt , was to mount a webcam on

45



the HMD original casing, but due to the subsequent removal of the casing, it was

necessary to relocate it. Later, a small spider aluminum mount was built and rigidly

mounted to the webcam electronics. This mount was then attached to the HMD

assembly and it used the three legs to adjust the camera alignment. Unfortunately

the webcam used (GENERAL ELECTRIC EasyCam, further information can be

found in Appendix A) delivered very poor performance when connected to the Mac-

mini due to lack of specific drivers for this system. In the preliminary testing of

the camera, we were constrained to use a generic driver application (MACAM) for

Mac OS-X that didn’t enable us to use the full resolution of the webcam and refresh

rate. Although the system was functional, its performance was not sufficient for AR

related target tracking, therefore a new setup was necessary. The initial camera was

chosen due to availability and small packaging, but test results and bechmarks with

AR applications lead to the conclusion that a better and more compatible camera

had to be used. The final camera chosen was an APPLE i-sight firewire camera.

Although this second camera is larger, it delivered acceptable performance, and

included very useful features such as autofocus and compatibility with the OS-X

system. The i-Sight camera was then mounted to the HMD mount through two

velcro strips that enabled the user to align the camera with the HMD.

3.2.3 Design Considerations

Qualitative and quantitative testing of the system generated many interesting

considerations that will be useful in further development of the system, addressing

the specific points that will require more attention.

• HMD Resolution, interpupillary distance and focus distance

The HMD resolution was an item of concern since the early development and testing

of the system. Text was generally hard to read in normal font sizes. Increasing font

size increased readability of text at the price of reduced amount of text that could

be displayed. On the other hand, graphics lacked in detail and were far from being

realistic. Although resolution was an item of concern it was not the main constraint

of the system. Interpupillary distance on the other hand was noted to be a more

severe problem when combined with focusing distance and synthetic overlays of

objects at different distances. The HMD system relies on two separate micro LCD

screens that generate the synthetic image that is combined with the real world by
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the optical combiners. The two identical images are then projected in the user’s field

of view with a certain separation that allows the user to see a single, in-focus image

at about 5 feet of distance. The system is not designed to change the separation of

the two images, therefore if the user focuses at any depth other than 5 feet, they will

see two separate unfocused synthetic images overlaid on an in-focus view of the real

object of attention. This problem could be mitigated but not solved by introducing

independent control of the screens and stereoscopy techniques. This would allow the

user to see a single but not in-focus image. Variable focus of the synthetic image

would be a very desirable feature of future HMD systems although very difficult to

achieve, since it would require variable focus optics as well as recognition of what is

the focus depth of the user.

• HMD field of view, transparency and optical combiners induced distortions

Field of view is one of the major drawbacks of this specific system. The restricted

display area, does not allow to display wide objects or even small object in the

near field of view. This characteristic as it will be later seen will influence greatly

the testing results, and will require the user to orient their head in order to cover

wider objects of attention. The tunnel view effect also reduces the overall immersive

experience of the user, and feels unnatural so it also may induce claustrofobic effects.

These effects if combined with reduced transparency and induced distortions from

the optical combiners, require the user a significant adaptation time. During testing

it has been also noted that although the user might have adapted to the system, it

is highly suggested to limit the time of use to avoid the appearance of side effects.

• HMD Color Display

• Webcam Resolution, view angle, refresh rate and registration

Video input device performance revealed to be crucial for marker identification and

tracking. The higher the resolution of the device, the higher the probability to de-

tect a marker. Resolution also plays a role in the maximum distance at which a

marker could be detected, but on the other hand, one has to keep in mind that the

higher the resolution, the more time it will take the computer to process said images.

More important than resolution is refresh rate. The refresh rate of the camera is

the number of pictures that the camera is able to acquire in a second. Generally

this is limited to 30 fps on general use webcams that although sufficient for video
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acquisition and playback purposes, it is not for optical see-through AR applications.

The main reason behind this is that if a user is looking at a monitor that is dis-

playing a video, the user attention is devoted to the screen and the subject’s head

and eyes are not moving. Therefore although the eyes refresh rate is much higher

than the video/camera refresh rate, the subject doesn’t detect a disturbing delay

between frames since the video is and feels synthetic. When we introduce optical

see-through AR, the user’s mind is tricked to believe that the real and the synthetic

worlds coexist, therefore ambiguities in the two are greatly enhanced. As it will

be seen in the next chapter, during testing, the subjects were very disturbed by

the camera refresh rate since their head and eye movements were much faster than

the camera, which often resulted in delayed and non-registered synthetic images.

Another very important factor in cameras and HMDs is field of view. Current tech-

nology in HMDs and cameras do not allow acquisition and display of fields of view

comparable to the human eyes, this limitation induces an additional discrepancy

between what the user feels as the real and the synthetic world. Lastly, registration

of the HMD with the camera also demanded attention. In the setup that was used

in this study, the camera above the HMD had to be registered by the user each time.

the purpose of this procedure was to make sure that the camera was looking at the

same field of view that the subject was looking at through the HMD. This allowed

the virtual images and the real world to be aligned and overlaid. Unfortunately ideal

registration was often not achieved due to differences in the subjects eye distance

from the HMD, distance from the HMD and the board, etc. The reason behind this

was that, the HMD and the camera optics induce distortions in the viewed images

that are a function of distance from the object of attention and eye-HMD distance.

The HMD was initially calibrated for compensating such distortions under specific

circumstances, and although these effects were secondary if compared to the ones

previously described, they added not negligible discrepancies.

3.2.4 Software Development

The HMD system enabled the introduction of Augmented Reality technology,

therefore software had to be developed in order to recognize, and display registered

synthetic content. Several application were developed using ARToolkit as a starting

point. As described in the previous chapter, ARToolkit is a collection of C++

libraries that allow us to acquire an image from a video input device, analize it,
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and detect if any markers were present. Once a marker has been detected, we can

display 2D or 3D multimedia on the HMD overlayed with the marker. ARToolkit is

an extensive collection of functions, but only a few have been used in this specific

applications, including:

• Single marker detection and 3d VRML content display;

• Single marker detection and 2d or GL content display;

• Multiple marker detection and single 2d or GL content display:

In order to integrate the HMD with the MX-2 system, we also had to integrate

in our software the ability to access RCL data. This enables us to acquire suit

sensors information as well as enabling the user to access data from other systems

that broadcast data through this medium. This feature will probably enable in the

future the ability of the HMD to display robot status information, birds-eye views

of robot mounted cameras, and will increase the supervisory capability of the suited

astronaut. The code developed can be found in Appendix B where each application

is also described in detail.
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3.3 Digital Pin-Hole Board:

Figure 3.7: Digital Pin Hole Board (UMD SSL, 2008)

The digital pin hole board purpose is to provide a simple task for the test

subjects to execute, while allowing the investigator to record execution performance

an accuracy automatically. The board was designed to simulate a nominal repetitive

EVA task as removing screws from, for example, a plate on the ISS or HST. The sys-

tem allows variation of the information feed methodology allowing the investigator

to study the variations in performance and accuracy in a controlled environment.

3.3.1 Design Requirements

Design requirements are as follows:

• The system shall be capable of recording pin insertions times

• The system shall be capable of determining which pin was inserted in which

hole
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• the system shall record digital data and shall be compatible with MAC OS-X

systems

• The system shall not be a source of mechanical or electrical hazard

• The system shall easily be re-configurable

• The system shall allow task execution without increasing its complexity

3.3.2 System Development

The pin-hole board is based on a 45 x 25 x 12 cm wood tabled, on which 14

holes have been equally distributed in two separate rows. The two horizontal rows

are 15 cm apart. Each row has seven holes each 5 cm apart from the others. All

the holes have been trimmed to allow easier pin insertion. The board also includes

a cable pass through hole in the lower center side. Included in the system are seven

acrylic, hollow, cylindrical pins of dimensions 10 cm in length and 5 mm in diameter.

A cable is then passed through the pins. On the back of the board, two NI-DAQ USB

6008 cards are placed and connected as follows: Holes 1 through 4 are connected

to the analog channels ai0 through ai3 of the first card, while the remaining three

holes are connected to the second card. Unfortunately both cards had only 4 working

analog channels each, hence the two cards. The pin cables are then connected to

the 5V output port of the first A/D card through a voltage divider so that each pin

carries a different voltage. In conclusion, by applying different voltages to each pin,

and different channels on the A/D card to each hole, we can distinguish which pin

has been inserted where.

3.3.3 Design Considerations

• Cables tangling

For the board to record pin insertions, the pins needed to be connected to the

electronics on the back of the board. Connection was achieved through a single cable

attached to each pin. These cables tangled easily during task execution therefore

the task procedure was modified in order to reduce the chances of it affecting the

recorded data. Initially the procedure saw the user leaving the pins in the holes

once inserted. It was later assessed that the procedure could be changed without
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Figure 3.8: Digital Pin Hole Board Electronics (UMD SSL, 2008)

affecting the task by asking the subjects to insert and remove the pins in the holes

leaving the pins hanging on the bottom side of the board. Although not optimal

this procedure avoided: cables tangling during testing and marker occlusion. Future

implementations of the board could see a wire-less pin configuration that would

eliminate this problem.

• Holes clogging

Due to the brittle nature of wood, the extensive use of the board caused it to splinter

and clog the holes after several pin insertions. This phenomenon did not compromise

excessively the data acquisition process, although it required the holes to be cleaned

often. Holes were cleaned by blowing in the hole and removing the wood splinters

from within.

• Holes identification study

Preliminary testing of the system focused mainly on debugging the pin-hole board

software and hardware configuration as well as assessing an effective method of
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distinguishing pins and holes. Several configurations were tested where the pins

were identified by numbers and the holes by first letters, then shapes, and finally

colors. Results showed that letters and numbers were the most effective solution

since they provided an order reference to the subject, reducing the task complexity.

• Pins reconfiguration after each task

The board, required the subjects to reconfigure the pins after each trial. This task

was not timed during the experiment and it was necessary since the board has no

capability of determining the initial configuration of the pins.

3.3.4 Software Development

For testing purposes three specific software applications were developed for use

with this board. The applications enable us to acquire digital data from the board

such as, which pin was inserted where, and when it was inserted. The applications

also evaluate if the trials were executed correctly and return a log file that includes

all the experiment history. These applications are independent of the type ofthe pin

hole identification method used, as long as the reference file is formatted properly.

Further details on the specific applications can be found in Appendix B.
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Chapter 4

TESTING: Performance and Accuracy Impact on Simple

Unrehearsed Tasks

In the previous chapters, it has been seen that the introduction of digital

information displays would enable several interesting features for future EVA and

IVA. Intrinsic benefits aside, the point of interest of this study is to understand the

main features and characteristics of see-through HMDs on which future development

should focus in order to increase usability, user response, task performance and

accuracy. Unfortunately previous experience on these systems for this particular

application is very limited, therefore nothing could be assessed beforehand. In this

experiment a simple unrehearsed task was simulated by asking the subject to remove

a specific peg and insert it in a different hole on a digital pin-hole board. Similar

tasks (although not unrehearsed) can be seen on current EVAs. A good example

for this would be the future STS-125 mission, where astronauts will service the

Hubble Space Telescope and will have to remove several hundred screws and bolts

from the external panels of the telescope before being able to service the internal

systems. In the previous example, one could struggle to see similarities since the

described task, is rehearsed extensively and assisted through voice communication

with Mission Control. But what if a similar task had to be executed a few years

from now either on the Lunar or Martian surface or in orbit around Mars to repair

an unforeseen system failure? In this case, similarities are easier to see. Voice

communication would be impractical and it would be reasonable to assume that

the astronauts would not have rehearsed the task extensively beforehand. So given

the actual state of EVA systems, the following experiment was designed to compare

today’s information display systems (paper checklists) with an HMD based system

in two different configurations. Relevant aspects in the comparison will be task

execution performance and accuracy in the execution. The experiment was divided

in three sections in the attempt to isolate and identify these factors:

• Set a baseline. For this purpose, the first test (Paper Cards) was included in

order to measure: The time it takes a subject to find and focus on the deck of

cards; Find, read and understand a specific instruction; Focus on the board;
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Find the specific pin and hole, and finally execute the motory task.

• The second Test, was included in order to measure performance when the

subject was not required to find and focus on the deck of cards. This was

achieved by including an HMD system capable of displaying the task informa-

tion directly in the user’s field of view, while still allowing them to see through

it.

• Finally the third test, was designed in order to reduce or ideally eliminate

the subject’s cognitive processes as: Finding the instruction, reading and un-

derstanding it and identifying the pin and the hole. This was achieved by

displaying on the HMD a graphical overlay with lines connecting the pins and

the holes. In this case, the subject was not required to recognize or read

anything, the only thing that they would have to do is to follow the lines.

This experiment was designed to be a within subjects experiment indicating

that each subject would execute all three tests, in the same order. In each Test,

subjects would use one of the three sets of cards that were generated and the order

in which they would use the cards was randomized for each subject. The three sets

of cards were equivalent for statistical purposes. The cards and instruction sets will

be further described later in this chapter.

4.1 Experiment Hypothesis

The experiment’s purpose is to study performance and accuracy benefits if any,

resulting from the use of in-field-of-view information display system when executing

a simple unrehearsed task. Secondary goals are the identification of fundamental

HMD characteristics for future hardware development, as well as studiing the user

reponce to the system.

4.2 Experimental Protocol

4.2.1 Test Subject selection

Subjects will be adult students (over 18 years of age), faculty or staff from the

College of Engineering of the University of Maryland. The number of subjects in the

study will be between 10 and 15. The subjects will not be selected for race, ethnic
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origin, religion, or any social or economic qualifications. Ineligibility to the study

will be caused exclusively from physical impairment that is expected to reduce speed

and accuracy in movements. Subjects will be recruited formally through email. The

recruitment email will be sent exclusively to the SSL Faculty, Students and Staff.

Study participation will be completely voluntary. Subjects can withdraw from the

study at any time for any reason.

4.2.2 Method

4.2.2.1 Test 1: Paper Cards

In this first set of trials, the user will receive a small deck of cards, containing

the sequences of pin insertions to execute. The deck is made of regular paper and

contains 30 cards stapled together in the upper left corner. Each card contains a

random set of insertions that vary in number from card to card; from a minimum of

2 insertions to a maximum of 7. Each instruction is displayed as a number indicating

the pin identifier followed by an arrow and a letter indicating the hole identifier. In

the experiment, the subject will be asked to execute each sequence of insertions from

the first to the last in vertical order. Three separate decks named DeckA, DeckB and

DeckC were created in matlab by generating two random permutations of numbers

from 1 to 7 and ignoring the the last 0 to 5 numbers in each sequence. The number

of ignored digits, was random as well but the cards were generated in such a way

that the number of insertions per card was equally distributed in each deck. For this

reason, each deck contains a number of cards multiple of 6, containing as many 2

pin insertions cards as 3, 4, 5, 6 and 7 pin insertions per cards. The matlab code for

generating the cards can be found in Appendix B. Once the subject was introduced

to the cards, they were asked to run a minimum of 5 test trials to familiarize with

the system. For this practice trial a different set of cards from the one that would

be used for data acquisition was used, and performance data were not acquired.

Subjects were invited to execute as many familiarization trials as desired. During

the familiarization trials, the subject was taught how to execute each task. The

subject execution sequence can be summarized as follows:

• The subject was asked to position the deck facing downward on a flat surface

in the vicinity of the board. The deck could be positioned anywhere except

directly on the board. Notes on where each subject positioned the deck were
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taken for later comparison and analysis.

• During this experiment a computer was used for recording the subject’s per-

formance. Recording was triggered by the user in each trial by pressing the

“Enter” key on the keyboard on their side. The user could reposition the key-

board during the familiarization trials in order to maximize confort and ease

of use. A note on keyboard position was also taken for later comparison and

analysis

• The subject would then verify the pin’s initial configuration, then once ready

they would flip the deck and simultaneously press the “Enter” key on the

keyboard. This action would initiate the timer on the computer, and give

access to the trial information to the user.

• Once the deck is flipped, the subject was asked to execute as rapidly and

as accurately as possible each set of instructions displayed, starting from the

first to the last, by extracting the first indicated pin from the lower part of

the board, and inserting it in the upper part. Once the pin is inserted, the

computer would recognize the insertion, and return an audio feedback tone

indicating that the insertion was recorded.

• After the audio feedback tone is received by the user, they are asked to extract

the pin and let it hang from its wire on the lower part of the board.

• Once the first pin insertion is executed, the subject will repeat the insertion

sequence until all indicated pins have been inserted.

• After all the indicated pins have been inserted, the timer is stopped and the

subject is asked to reposition each pin in its relative hole and flip a page on

the deck, without looking, and reposition it face down on the chosen surface.

• Once again, when ready, the subject would repeat the sequence for at least 5

times during familiarization or until the last card in the deck during the real

test.

During the test, data was acquired and recorded on a computer in the form of

a log file containing the insertion times of each pin, as well as the pin and the hole

identifiers in which it was inserted. The log file also included an accuracy check, and
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returned for each insertion if it was executed correctly of not. Although the system

is able to distinguish between correct or incorrect insertions, the user is not made

aware of it. Due to the experimental setup, the subjects were also advised on what

to do in case they recognized a wrong insertion. To note is that in each trial, each

pin and hole could be used only once. The recording system would record a pin

insertion, and then disable further readings from the used hole, therefore if the user

misplaced a pin, and then attempted to insert a different pin in the same hole, they

would not receive any audio warning. In this case, the user was told to skim through

the instructions and find a unused hole and insert the pin there. For later analysis,

all the data was filtered beforehand by ignoring any data point corresponding to a

wrong insertion as well as datapoints larger in magnitude than the mean insertion

time for the entire trial plus or minus two standard deviations.

4.2.2.2 Test 2: HMD Virtual Cards

For this part of the experiment, the user was introduced to the HMD system

that would display virtual cards within the user field of view. The experiment setup

was identical to the previous except for the following details:

• The virtual cards were displayed on the HMD system color inverted as in white

text on a black background. The reason behind this choice lies in the HMD

display methodology. The HMD displays information by controlling two micro

LCD screens that filter the light coming from a small white backlamp. In order

to keep the screen transparent, we would have to send a black screen input

to the HMD. In this case, the micro LCD’s would filter all the light coming

from the backlamp and allow the user to see through the optical combiners.

Due to this technical detail, since in this part of the experiment we wanted to

allow the subjects to see both the instructions and the board, the information

display was triggered in order to maximize contrast between the virtual and

the real image, hence the inverted color cards.

• In this second test, due to software implementation difficulties, the user would

use two keyboards instead of one. The two keyboards would be controlling two

differnet computers, one on which the recording software is running and the

other where the cards are displayed and sent to the visor. In order to initiate

each task, the two keyboards were positioned one above the other and the user
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was asked to press simultaneously the “Enter” and the “right arrow” key on

the two keyboards. This would flip the card page and initiate recording.

4.2.2.3 Test 3: HMD Augmeted Reality Graphical Overlay

In the last part of the experiment, the subjects would use, once again, the HMD

system, and although the methodology behind the experiment execution remained

essentially the same as in the previous tests, the information display typology was

very different. Differences from the previous setups are as follows:

• The HMD will make use of the integrated camera to acquire visual information

on the subject’s field of view, it will then recognize, if visible, the fiducials on

the board, and overlay a synthetic image indicating which pin to insert where.

For the system to know where the board is, only one fiducial is necessary.

In this case three fiducial are used for redundancy and due to the fact that

the camera cannot see the entire board at once. The three fiducial allow the

system to recognize where the board is even if the user/camera can see only a

portion of it. Also to note is that multiple fiducials, if detected simultaneously,

increase the accuracy in the estimation of the board position. Instructions were

displayed in the form of a line connecting the pin to be moved and the hole

where it would have to be inserted. The HMD would also display indicators

for both the pins and holes in the form of circles.

• Since the HMD does not allow stereoscopic registration, in order to avoid

confusion to the user, subjects were asked which was their dominant eye and

they were asked to cover the optical combiner on the opposite eye with a small

post-it. This would prevent the user from seeing two different sets of lines

(instructions) due to the different focal distance between the HMD’s optical

combiners and the board.

• Since the HMD configuration and calibration was user dependant, each subject

was asked before commencing the familiarization trials, to calibrate the HMD’s

camera, by rotating it and registering the virtual overlay on the physical board.

Once this was achieved the familiarization test would begin.

• In this scenario, only one keyboard was used to start the timer, and although

the methodology was identical to the first test, in this case, the user would see
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only one instruction at a time. The HMD would display a single line at a time

and once an insertion was recognized the next line would appear. Once all

the trial insertions were executed, the image would freeze and the user would

reset the pins and press “enter” to continue.
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4.3 Experimental Results Analysis

In this section the data analysis will be described in detail. The general ap-

proach during this phase, was to initially validate the data statistically and then

study eventual trends or interesting features. qualitative data was also used in order

to determine the semantics behind the results. The experimental data was acquired

mainly in two ways:

• Questionnaires : Each test subject, was asked to fill in two questionnaires,

one before commencing the experiment and one at the end. In the first ques-

tionnaire, the subject, was asked to fill in his personal information, in order

to define the subject population that participated in the study. The second

questionnaire, on the other hand, was supposed to give the principal investi-

gator feedback on each setup. this data, combined with the performance and

accuracy measurements, allowed a much deeper understanding of the scenarios

that took place.

• Performance and Accuracy Data : Specific software was developed in order

to read from the digital pin-hole board the time at which each pin insertion

occurred. Times per each set were acquired between when the enter button on

the keyboard was pressed and when the first pin was inserted. After the first

insertion of the set, times were recorded between the previous and the next

insertion. The accuracy at which the times were acquired was in the order

of milliseconds, this was dictated by the accuracy of the computer’s internal

clock. Pin insertion accuracy was also recorded by appending, in a log file,

the pin and hole identifiers and the insertion time.

In the same log file, each insertion was identified by the following characteris-

tics:

– Insertion Time

– Pin #

– Hole #

– Accuracy in the form of “Right” or “Wrong” (this parameter was evalu-

ated by comparing the recoded pin and hole identifiers with the desired

ones.)
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– Difficulty from 1 - 7 (this parameter was evaluated by associating distance

that the pin had to be moved with a number from 1 to 7)

Other qualitative data was also acquired during the tests in the form of notes.

These notes were taken by the principal investigator, and they mainly focused on

the subject’s personal procedures, preference in the positioning of the equipment

and also relevant comments that were not included in the questionnaires.

4.3.1 Subjects Population

This experiment ideally would have had to be proposed to a population of as-

tronauts, but due to obvious difficulties in gathering such subjects, students within

the university’s department of Aerospace Engineering were chosen as a suitable ana-

logue. In total 11 subjects participated to the experiment, mostly male graduate

students. Interestingly, the female population in this experiment was comparable

in percentage to the astronaut core (20-30 % ). Within the eleven subjects, only

two had some previous experience with HMDs and it was mainly with VR systems

for gaming purposes. Previous experience was also very limited, therefore it was far

from being a representative parameter for defining a subgroup of subjects. This last

consideration was interesting since it pointed out that although the general popula-

tion is aware of the existence of these devices, they rarely have the opportunity to

use them, indicating that even in the everyday life, HMDs are not too popular. Pre-

vious experience, age range and reduced vision parameters can be seen as the main

differences between this and the ideal population. User preference also pointed out

that subjects could be divided in two significant subgroups: people who preferred

the physical cards and people who preferred the virtual cards on the HMD. As it

will be shown later on in the analysis section, this subgroup division is not plausible

and will be explained later. Lastly an important piece of information was given on

sideffects. From the questionnaires, it resulted that 8 subjects experienced either

headache, eye fatigue or in general disconfort while using the HMD. These sideffects

were described as mild and the subjects did not want to terminate the experiment

prematurely. Although there was no real trend between subjects preference and the

experience of sideffects, it was noted that these were common in subjects who had

difficulties adapting to the system. Further information on HMD adaptation was

gathered both through notes and through the last section of the second questionnaire
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which will be expanded later in the chapter.

The following table summarizes the above description and was acquired in the

first and part of the second questionnaire.

Subject Population and Setup Preferences.

Subjects 11

Age 21-27

Gender 8 Male, 3 Female

Uni. Affiliation 10 Grad, 1 Undergrad

Left/fight Handed 9 Right, 2 Left

Reduced Vision 7

Corrected Vision 7

Color blind 0

Reduced Arm Mobility 0

Previous HMD experience 2

Experienced Side Effects? 8

Preferred System

Setup 1 5

Setup 2 5

Setup 3 1
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4.3.2 Performance analysis

A preliminary view to the test results is given by the following graph that

shows the mean pin insertion time per subject for the three tests.
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Figure 4.1: Mean Execution Time per Subject per Test

As it can be seen clearly seen in the above graph, the differences in performance

are small between the first and second setups, while there is no doubt of statistical

difference betwen these two and the third. A second set of results, is the analysis

of the time trend of insertion times. The following graph shows, the time trend for

each subject, for each test.
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Figure 4.2: Test Subjects Data Slope Comparison

The previous graph was plotted in order to determine if there were any learning

or fatigue effects during the tests. This was achieved by calculating the mean slope

between data points and insertion order on the entire set of acquired data for each

test. As it can be seen, the slopes are all in the order of millisec/insertion #

From this plot, we can safely assess that learning or fatigue effects was negli-

gible. Overall the time increase or decrease due to these effects would not be more

than 0.1 sec over the entire duration of each test.

Performance were intially analyzed through SAS (Statistical Analysis Soft-

ware). This tool was used to determine if the data acquired in the three setups was

statistically relevant. SAS was setup to run ANOVA (Analysis of Variance) analysis

on a series of scenarios where different sets of data were fed with different statistical

models. SAS was used to acquire raw scattered data and return the probability of

that data to be dependant on certain parameters. The parameters to be analyzed

where defined in the statistical model. Two models have been used, a third order

model and a linear model. The reason why it was chosen to run these two models,

was to quantify the error that we would make when assuming that any eventual de-
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pendand variable was a linear function of time. In order to compare these models,

we had to compare the -2 Residual Log Like Parameter, which indicated the accu-

racy of fit between the model and the data. The assumption behind the comparison

is that the third order model, in general is more reliable, therefore if the -2 Residual

Log Like Parameter for the two models are comparable, it is reasonable to assume

the parameter in question to be a linear function of time. Several scenarios were fed

to SAS and results can be summarized as follows:
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• Generic Mixed Model SAS Input file:

filename resfile ’/homes/maxdc/SAS/DataSAS’;

*Read from file;

data subjects;

infile resfile DLM=’,’ FIRSTOBS=2;

input SubjectID PinPerTask Pin Hole Difficulty TestID Time Correct;

run;

*Create model;

proc mixed data=subjects;

class PinPerTask Difficulty TestID SubjectID;

model Time = PinPerTask—Difficulty—TestID ;

random SubjectID /subject=SubjectID;

run;

• SAS: ANOVA Mixed Model Analysis

The first model fed was:

Time = PinPerTask — Difficulty — TestID

The above syntax in SAS will return the dependency probability of all possible

combinations of the PinPerTask, Difficulty and TestID parameters. The analysis was

done on 7 different sets of data in order to compare the three test setups. First SAS

was input the complete data from all three setups, then the single tests and finally

the three combinations. Results are as follows:
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SAS: ANOVA Mixed Model Analysis Results

Parameter All Tests Test 1 Test 2 Test 3

Cov. SubjectID 0.1270 0.09969 0.1017 0.3264

PinPerTask 0.8482 0.6716 0.5451 0.0864

Difficulty ¡.0001 0.4736 0.0028 0.0007

PinPerTas*Difficulty 0.3197 0.9996 0.1410 0.7523

TestID ¡.0001 – – –

PinPerTask*TestID 0.0262 – – –

Difficulty*TestID 0.0532 – – –

PinPer*Diffic*TestID 0.9599 – – –

Parameter Test 1-2 Test 2-3 Test 1-3

Cov. SubjectID 0.0750 0.1491 0.1128

PinPerTask 0.4750 0.6647 0.7137

Difficulty 0.0159 ¡.0001 0.0156

PinPerTas*Difficulty 0.7685 0.1048 0.9921

TestID 0.1206 ¡.0001 ¡.0001

PinPerTask*TestID 0.8249 0.0383 0.1363

Difficulty*TestID 0.8513 0.1539 0.1272

PinPer*Diffic*TestID 0.9974 0.8840 0.9902

In the above tables, except for the Covariance between SubjectIDs, all the

numbers indicate wether the parameter was significant or not. In order to quantify

this, SAS examines the model by normalizing the dependant variable (time, from

1 to 0), then analyzes the dependencies of the model when each factor is assumed

to be 0. The result shown above is the normalized value of the dependant variable

when the relative term is 0. Therefore we can see that the smaller the term, the more

the model depends on said variable. The covariance parameter follows a different

trend, the bigger the parameter, the greater the differences between subjects. The

covariance in this case, is expressed in seconds.

In order to assess that a certain parameter is significant, we would have to

define a threshold below which the condition is verified. In this case, the threshold

will be a variable parameter, since the aim of this analysis is to identify possible

trends.

The first thing we see from the All Tests results is that there are only two

significant parameters to consider; the Difficulty and the the Test ID. This second

result was expected, since as seen from Graph 4.1 the three tests show significantly

different mean values per subject, at least between the first two tests and the third.

On the other side the fact that data is dependent on the difficulty parameter, al-

though expected, it was not visible form the previous summary graph. It was also
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interesting to see that the covariance between subjects is small (0.0127 sec ¡1% of

the mean) therefore we can safely asses that the considered population is consistent

and statistically significant.

The All Tests analyses did show some interesting results, but it just says that

there are differences between the three tests and not wether there are any differ-

ences between the tests, or within the tests. For this reason, separate analysis were

executed. From these we can say that the Difficulty parameter remains significant

at least for test 2 and 3 while it looses significance in test 1. What we can also

say is that it remains significant within the combinations of tests. As expected, we

can also see that differences between the first / second and the third are significant,

but differences between the first and the second can be assessed only within a 12 %

uncertainty.

Following the previous results, the Mean execution time per subject were plot-

ted versus the insertion difficulty. As SAS predicted an increasing trend is visible,

and appears to be somewhat linear.
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Figure 4.3: Mean Execution Time Vs Pin Insertion Difficulty
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• SAS: ANOVA Linear Model Analysis

As previously seen, all the other parameters, especially the higher order terms

seem to be negligible. This last point raises a question. Would it be possible to

consider the difficulty parameter as a linear function of time? In order to do so, the

following model was fed to SAS:

Time = PinPerTask Difficulty TestID

The above syntax in SAS will run the ANOVA analysis with a linear model

where only the first order interactions between parameters are considered. Three

cases were ran, corresponding to the single tests setups. The results we are interested

in comparing in this case are mainly the fit “goodness” parameter or as it is called

in SAS; the -2 Res Log Like. If the parameter from the previous and the one from

the model fall within a tolerance level usually defined as 5 % we can reasonably

assume the trend to be true.

Test Non-Linear Model Linear Model Difference (%)

Test 1 5992.8 6011.7 0.3 %

Test 2 4477.7 4479.2 0.03 %

Test 3 5475.5 5508.2 0.5 %

From the above results we can see that it is reasonable to assume the trend

linear, therefore it was evaluated and plotted in the following graph:
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Figure 4.4: Mean Execution Time Vs Pin Insertion Difficulty Slope Extrapolation

Although the apparent trend between the first and second tests, it is not

possible to adress any conclusions since the two curves are two close toghether

dening any possible distinction. Also the slope of the third setup is higher than

both the first and second, therefore it will never intersect the previous resulting in

poorer performance constantly. The same results are achieved if insead of plotting

the data with the difficulty parameter, we plot it with the actual distance that the

pin had to be moved. According to Fitt’s law we should see an exponential trend in

the insertion time when the distance increases. Unfortunatley the pin movements

were confined in a very small region, therefore there it was not possible to detect

such trend.
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Figure 4.5: Mean Execution Time Vs Pin Insertion Movement Distance
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Figure 4.6: Mean Execution Time Vs Pin Insertion Movement Distance

Linear Extrapolation

4.3.3 Error Analysis

A preliminary view to the error distribution is given in the following graph,

where errors are plotted as a function of insertion # for each test and each subject.
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Figure 4.7: Error Distribution over Time per Subject

The following graph on the other hand shows how the number of errors were

distributed when compared with the mean insertion time for each subject.

The following graphs show instead the error percentage in the three setups and

the insetion time at which they occourred. Each column indicates the percentage of

wrong insertions given the total number of insertions executed in a certain time.

As for the performance analysis, the Error analysis was executed in SAS and

returned the following results:
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Figure 4.8: Errors made vs Mean insertion time

• SAS: ANOVA Mixed Model Analysis

SAS: ANOVA Mixed Model Analysis Results

Parameter All Tests Test 1 Test 2 Test 3

Cov. SubjectID 0.000176 0.000232 0.000154 0.000269

PinPerTask 0.2887 0.0244 0.7367 0.4765

Difficulty 0.0176 0.0008 0.2099 0.1587

PinPerTas*Difficulty 0.0565 0.0116 0.0129 0.3764

TestID 0.0099 – – –

PinPerTask*TestID 0.2415 – – –

Difficulty*TestID 0.0219 – – –

PinPer*Diffic*TestID 0.0127 – – –
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Figure 4.9: Error Distribution over Time per Subject

Parameter Test 1-2 Test 2-3 Test 1-3

Cov. SubjectID 0.000154 0.000158 0.000163

PinPerTask 0.4811 0.3288 0.2091

Difficulty 0.0356 0.2119 0.0048

PinPerTas*Difficulty 0.0402 0.1284 0.1252

TestID 0.4870 0.0178 0.0669

PinPerTask*TestID 0.0528 0.8142 0.2212

Difficulty*TestID 0.0073 0.1316 0.2218

PinPer*Diffic*TestID 0.0092 0.2415 0.2675

The results above indicate that there is no real trend in the Error distribution

and therefore it is safe to assume that errors are random. The results also indicate

that subject’s variance on errors was negligible, therefore consolidating the hypoth-
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esis of a statistically significant population. The only relevant trend that one might

see was in the first test model where results seem to indicate that errors depended

on difficulty. This hypothesis was denied by looking at the raw data and assessing

that for test 1 only 15 errors were made. The very few samples, make the error

analysis very unreliable, and therefore results might indicate false trends.

• SAS: ANOVA Logistic Regression Model Analysis

Now the next question would be, what is the probability of an error occurring

in each test? In order to answer this question a Logistic Regression analysis was

executed in SAS.

• Generic Logistic Regression Model SAS Input file:

filename resfile ’/homes/maxdc/SAS/DataSAS’;

*Read from file;

data subjects;

infile resfile DLM=’,’ FIRSTOBS=2;

input SubjectID PinPerTask Pin Hole Difficulty TestID Time Correct;

run;

*Create model;

proc logistic data=subjects;

class Correct PinPerTask Difficulty TestID SubjectID;

model Correct = PinPerTask Difficulty TestID SubjectID ;

run;

The following analysis evaluated the odds of a error occurring for each of the

three tests:

Test Error Probability (%)

Test 1 0.5 %

Test 2 0.8 %

Test 3 1.3 %
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4.3.4 User Experience

User responses to the three setups can be summarized by the following tables:

Cards (Responce varies from 1 (disagree) to 5 (agree))

Mean responce Interpretation

Were the trials easy? 4.45 Trials were very easy

Were the cards hard to read? 1.82 Cards were easy to read

Did you have any difficulty distinguishing the pins? 1.36 Pins were easy to distinguish

Did you have any difficulty distinguishing the holes? 1.5 Holes were easy to distinguish

Were the feedback tones clear? 4.55 Tones were very clear

Were you satisfied with your performance? 4.18 Satisfied

From the above results we can see that in general subjects found the first test

to be very simple and intuitive. Overall they were satisfied with their performance.

From the experiment notes, it was interesting to note that all test subjects kept the

deck of cards on their dominant hand side. All test subjects kept the deck on the

table in front of them, except for one who kept it on his lap. It was interesting to

see that 60 % of the subjects occasionally, before the insertion of the pin, verified

the information on the card and then inserted the pin. This practice was not always

adopted but it seemed to happen more often thowards the end of the trial. Other

important notes were that in general subjects used only their dominant hand when

executing the task. Only 3 subjects used two hands but not all the time. It was

interesting to note also that subjects in general repeated outloud the instruction

they were executing.
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,

HMD (cards) (Responce varies from 1 (disagree) to 5 (agree))

Mean response Interpretation

Were the trials easy? 4.27 Trials were easy

Was the HMD hard to use? 2 HMD was easy to use

Did you have any difficulty distinguishing the pins? 1.73 Pins easy to distinguish

Did you have any difficulty distinguishing the holes? 1.55 Holes easy to distinguish

Was the HMD interface intuitive? 4.27 HMD Interface was intuitive

Did the HMD obstruct your view too much? 2.55 HMD somewhat obstructed FOV

Was the HMD comfortable? 2.83 HMD somewhat confortale

Did you experience any side effects? 2.36 Mild sideffects

Were sound warnings clear? 4.27 Tones were very clear

Were you satisfied with your performance? 4.18 Satisfied

, During this second trial, subjects found the task to be slightly harder than the

previous. Form the responses, this could be due to the different focal distance

between the virtual cards and the board. Some subjects found it very hard (or

impossible ) to focus at a virtual object in the visor, and decided to raise their head

positioning the virtual image outside their main workspace. By raising their head,

they saw that if no objects were located in close proximity they could focus on the

visor image. Apparently they found it unnatural to focus behind a real object that

was located directly in their main field of view. It is important to note also that in

general mild sideffects were experienced and possibly they were due to the unnatural

focusing exercise that was required. Generally sideffects faded once the HMD was

removed. No test subject asked to remove the HMD during the test although they

were asked several times.
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HMD (Graphical Overlay) (Responce varies from 1 (disagree) to 5 (agree))

Mean responce Interpretation

Were the trials easy? 3 Trials were moderately hard

Was the HMD hard to use? 3.82 HMD somewhat hard to use

Did you have any difficulty distinguishing the pins? 2.91 Pins neither hard nor easy to distinguish

Did you have any difficulty distinguishing the holes? 2.91 Holes neither hard nor easy to distinguish

Was the HMD interface intuitive? 3.73 Interface not too intuitive

Did the HMD obstruct your view too much? 2.73 HMD slightly obstructed FOV

Was the HMD comfortable? 2.73 HMD not very comfortable

Did you experience any side effects? 2.82 Mild sideffects

Were sound warnings clear? 4.36 Tones were very clear

Were you satisfied with your performance? 3.09 Neutral

In the last trial as the user responce assesses, subjects found the task to be

much more difficult. It is reasonable to assume that this was due to the HMD char-

acteristics more than on the semantics behind the test. In this scenario the user was

asked to cover one eye and this reduced their depth perception. Test subjects were

noticeably slower also due to difficulties in finding, grasping and inserting properly

the pins. There were also other aspects of the HMD setup which did not make it

optimal. First, the HMD field of view did not allow the subject to see the entire

board and second, the camera refresh rate didn’t allow smooth projections of the

graphical overlay. These factors plus the different focal distance between the graphic

overlay and the board, probably caused the evident performance deterioration.
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The final questionnaire also included two optional sections where test subjects

could note their impressions and comments. Comments are summarized below.

Features that you would like to see in future HMD’s:

• Fine adjustment of glasses

• Stereo vision

• Better camera mount for easy adjustment

• More confortable head mount

• Larger Field of View

• Image stabilization to reduce virtual image wobbling

• Faster resolution time

• Better registration

• Variable HMD focus distance

• Higher camera refresh rate

• Lighter system

• Less cables, possibly wireless system

General Comments:

• Consider bolting down the Pin-Hole Board

• Wireless pins would be better in the future

• HMD checklist with less jitter

• One subject preferred to look up into visor rather than have it overlay board (Test 2)

• One subject felt like he could perform additional mental tasks during test 3

• Subjects though that the board could be done better

• Holes happend to clog

• Cables happend to tangle
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

Augmented Reality and most of all see-through HMD technology captured

our attention in the first place due to their ability to give the user access to digital

information rapidly, easily and in confined spaces such as the spacesuit environment.

Future space missions will see astronauts on their own, facing complex challenges.

This scenario somewhat resembles our life here on Earth where everyday we face

new challenges that not necessarily we know how to tackle. This train of though

lead to the following question:“If I was on Mars and I had to execute an experiment

while on EVA or if I had to service a system, what would I ideally need or want?”

The answer today would probably be, first of all the tools required for the task,

and then a laptop with internet access so that if I don’t know or I don’t remember

something, I could look it up. As funny as it can sound, computers and access to a

database, have become the main source of information today. By then, the question

was defined. How do we give astronauts the ability to access information from a

computer while in a spacesuit?

The SSL at the University of Maryland was the perfect setup for answering

this question, and the MX-2 space suit analogue an extremely useful tool. Modern

spacesuits, are small, uncomfortable and do not give the astronaut too much hand

mobility, therefore simply giving them a laptop would not work. In the specific

case of the MX-2, a computer was already present in the suit’s PLSS, therefore the

challenge focused mainly on how to give access to it to the subject in the suit.

In the SSL research was made in terms of voice recognition, therefore the

user interaction part was being studied. On the other hand, the only output to

the subject was audio feedback, and it wasn’t nearly sufficient. The fist attempt

made was to introduce a PDA outside the suit that allowed the user to access video

feedback, followed by an internal Head Up Display. Both systems gave the subject in

the suit a better situational awareness and the ability to access digital information

such as checklists and diagrams. This first system, was meant to be unintrusive

and was positioned outside the user’s main field of view. Although very useful, the
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HUD was merely a substitute for a monitor. By this time bibliographical research

pointed out that if we could introduce an in-field-of-view display system, we would

have been able to not only do what we were achieving with the HUD, but also

introduce AR technology. AR would give us the ability to recognize objects and

display important information specific to the object of attention. This last feature

gave birth to a new concept as: If we can recognize objects and display information

within the users filed of view, we might also be able to relieve the user of some

mental workload. The HMD was the first attempt toward this concept. It was soon

seen that see-through HMDs were not the most wide spread and affordable systems,

therefore due to availability an old and rahter low performance HMD was found

and used in order to learn more on these systems. The poor performance of the

HMD rapidly pointed out a new set of questions. Undertanding and defining the

fundamental characteristics that would make HMD systems first of all, useful, then

efficient was paramount. Testing was necessary and the experiment basic concept

was born.

5.2 Conclusions

Many were the question we asked ourselves in this work. All of them found and

answer but most of the time answers lead to more questions. The first conclusion

drawn was that this work is by no means conclusive, and a lot of effort is still

necessary in order to deliver a functional and efficient AR HMD. All the phases in

this reseach were very useful in defining the problem in increasing detail and led to

understanding the fundamental parameters that could make an HMD system usable.

It is not possible to say at this point in time if the system would be more efficient

than current systems, but this hypothesis is not denied either.

The previous experimental data analysis could mislead the reader by assessing

that the HMD system didn’t deliver the expected performance, on the other side,

what should be leared from the results is that the HMD was not ready yet to be

compared with simpler systems. It is important to note that the experiment taught

us many things. First of all, it was possible to execute a simple task without any

prior knowledge and without asking the user to read or understand anything. This

was not happly accepted by the test subjects since it gave them an uncomfortable

feeling of not being in control of what they were asked to perform. This result tells

us that mental workload and user acceptance is not a linear function, and there is
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a point where if one reduces the mental workload too much, a task no matter how

simple, could become uncomfortable to execute and prone to errors. During the

HMD graphical overlay testing it was often seen that subjects tried to complicate

the task by trying to gather more information. Subjects counted the displayed holes

and pins and executed the derived instruction instead of just following the displayed

line.

Another important aspect of the experimental setup to keep in mind was that

the HMD delivered in general poor performance due to its intrinsic characteristics.

The HMD used is not able to display stereoscopic images at different focal distances

or separations, therefore the user had to continuously change focus depth to receive

the task information and they were forced to cover one eye and lose depth perception

to eliminate ambiguities in the displayed information (Test 3). Also, the HMD field

of view did not allow the user to see the entire board and required the subjects to

continuously move their head. This pointed out another problem with the setup

which was the camera refresh rate. The camera and the computer were not nearly

as fast as the human eyes and mind in re-recognizing an object and displaying the

new virtual image. The lag between the real and the synthetic worlds caused the

subjects to have to wait for the system to stabilize and this might have been one of

the reasons for a general overhead in the performance acquired. Lastly as it was seen

previously sideffects could not be ignored, but they could be reasonably reconducted

to the previously described flaws in the HMD. It is very possible that by using a

more efficient HMD, these sideffects, could at least be mitigated, if not eliminated.

In conclusion the third experimental setup was not comparable in difficulty

to the first two and some major modifications to the HMD systems will have to be

made in order to repeat the experiment and compare the results.

In regard to the first two scenarios, results showed that there is no significant

difference between the two setups. This result denied for the time beeing the ini-

tial hypothesis therefore we cannot assess any particular benefit in performance or

accuracy due to the use of in-field-of-view information displays.

This work allowed us to understand where to focus our attention, and assessed

that there is a very likely possibility of achieving a more efficient HMD system in

the near future.
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5.3 Future Reseach

5.3.1 Hardware Development

Hardware development of the HMD system will be fundamental for future

experimentation and should mainly focus on wider virtual displays that would allow

a more natural coexistence of the virtual and real worlds. Higher resolution and

contrast would increase the amount of information that could be displayed as well

as increasing the coexistence illusion. Very important will be the introduction of

stereoscopic capabilities and variable focus distance. This last features will possibly

reduce or eliminate sideffects and might increase the user performance dramatically.

It might be intersting to increase also the camera’s field of view and resolution

in order to improve target recognition but more important would be the camera

refresh rate. On this point it might be usefull to equip the system with an inertial

measurement unit which bandwidth would reduce the effects of the slow refresh rate

of the cameras. In this case the system would rely on the IMU for fast motion, and

it would recalibrate and register the virtual image through the cameras, which at

that point would not require a higher refresh rate. Lastly, the HMD and camera

mounting should be improved and should allow easier individual configuration of

the system as well as improve confort.

5.3.2 Software Development

Software development will play a major role in the future implementations of

the system. Many are the features that could be implemented, a few near term

objectives could be 3D interactive maps, video display and database acess. It will

be important also to improve the pattern recognition algorithm in order to minimize

the image processing time, and accuracy. It will also be fundamental to integrate

the AR software with the voice recognition suite. It might also be intersting to

introduce asynchronous stereo cameras on the HMD in order to increase the depth

perception of the system as well as its refresh rate. More research should also be

devoted in defining display modes that avoid cluttering of the visible workspace and

that increase the subject’s situational awareness.
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5.3.3 Experimental Research

Experimentation should be oriented mainly in the assessment of the user expe-

rience and their performance with the new HMD system. In the previous experiment

it was noted that the proposed task was possibly too simple, and it did not return a

lot of information regarding higher complexity tasks. It might be interesting to re-

peat the previous experiment with a much more complex task and see how subjects

respond. It is reasonable that the trends found in the previous analysis could be

very different if the task difficulty is increased, especially if the mean execution time

allowed the HMD overhead in performance to be negligible when compared to the

overall execution time. A possible experimental setup could be to ask the subjects

to disassemble, identify a fault and reassemble a system while receiving information

from a manual and from and HMD with graphical overlay. As long as the system is

compatible in dimensions with the HMD field of view, it might be very interesting

to see how performance and accuracy in the execution varies. The previous experi-

ment results could also be seen as an upped boundary in performance and accuracy,

therefore it will be interesting to study the ideal lower boundary. In order to do so,

Video interfaces could be used in order to mitigate the sideffects of optical inter-

faces. These would allow us eliminate the focal distance and stereoscopy problem.

In order to do so, a possible setup would see the subject’s executing a simple task

displayed on a computer monitor. The task in particular could be very similar to

the pin-hole task seen before, with the only difference that the entire setup would be

virtual. This would allow us to acquire accuracy, performance, as well as movement

trajectories, etc. In conclusion, although performance is a fundamental parameter,

for the specific application we are considering, more attention should be given in

finding a display interface that increases accuracy more than anthing else. For this

purpose future system developpment could include the integration of automatic er-

ror checking. This last point would open new study areas such as how to check for

errors and display the adeguate information.
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Appendix A

HARDWARE SPECIFICATIONS

A.1 LUMIX LCM 480234GF-40CF DATA SHEET
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A.2 SONY Glasstron PLM-S600

Features:

• Video Playback From any source with phono connections. Plug into a VCR,

DVD Player, Video Walkman or Camcorder using standard phono connections;

• 52” Virtual Viewing Glasstron reproduces the feel of viewing a 52” televisoin

at 6-1/2 feet; you’ll think you’re watching a large screen system;
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• HiFi Stereo Sound with 3 Modes Personal headphones deliver full stereo sound

and with surround sould you feel like you’re right in the action of your fa-

vorite movie. The AVLS (Auto Volume Limiter System) limits the sound that

escapes from the headphones, preventing you from disturbing others in the

earea;

• Adjustable Head Support System Using two adjustable straps you can cus-

tomize the fit of your Glasstron. Adjust the back strap for a snug front to

back feel and the suspender head piece for proper viewing. A step by step

menu system helps insure proper LCD screen alignment;

• Various Viewing Modes -See Through Mode: Allows for a variable degree of

viewing your picture, you can adjust how much of your outside environment

you let in or close out;
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- Screen Mode: Places your picture in the middle of the screen and surrounds

the picture with the outside environment;

- A/V Mute: Turns off the sound and picture, and lets in the outside environ-

ment;

• Color / Hue / Brightness Control;

• Indoor Outdor Use A custom three digit password is available for child protec-

tion (Glasstron PLM-100 is not recommended for children age 15 or younger).

• Resolution: 648 x 486 (NTSC);

• Transparency: 30/100;

Supplied Accessories:

• A/V Cable (mini-to-mini plug);

• A/VCable (mini-to-mini RCA pin);

• A/C Adapter;

• Soft Carry Case;

Optional Accessories:

• Lithium Ion Battery NP-F550, NP-F750, NP-F950

Weight:

• Headset: Approx. 12 oz;

• Control Unit: Approx. 4 oz .

Dimensions:

• 10 1/4” X 4 3/4” X 10 1/4”

(Source: http://www.acadia.org/competition-98/sites/integrus.com/html/

library/tech/www.sel.sony.com/SEL/consumer/ss5/home/camcorder/

camcorders8mmaccessories/ plm-100 specs.html)
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A.3 Apple iSight Camera

Manufacturer: Apple Inc.

Part number: M8817LL/C

Device Type: Web camera

Optical sensor size : 1/4 in

Weight: 2.3 oz

Optical sensor type: CCD

Type: Color

Audio Support: Yes

Lens Aperture: F/2.8

Video input features: Digital noise reduction

Focus Adjustment: Automatic

Min Focus Range: 2 in

Interfaces: IEEE 1394 (6 pin FireWire)
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A.4 GENERAL ELECTRIC EasyCam

Key Features:

• Interface Type: USB

• Video Capture Resolution: 640 x 480

• Digital Video Capture Speed: 30 frames per second

• Still Image Capture Resolution: 640 x 480

Other Features:

• Digital Zoom: 2x

• Color Depth: 24 Bit
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A.5 NATIONAL INSTRUMENTS USB-6008
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Appendix B

CODE

B.1 Experiment Software: DAQacq.cpp

This program, is responsible for acquiring data from the two NI-DAQ 6008

cards. It identifies pin insertions, and compares them with the reference file. It also

produces a log file that includes pin insertion times and whether the insertion was

wrong or right. the program was written in C++ and uses specific NI libraries and

drivers. This version is only Mac OS-X compatible.
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B.1.1 Code:
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B.2 Experiment Software: Multi.cpp

This application is an extension of DAQacq. It adds to all the previously

implemented features, the ability to recognize markers and overlay on the pin board

simple graphics. This application uses OpenGL functions to draw circles over the

pins and holes, and connects them with a thick white line. The position of the line

varies depending on which pin is to be inserted in which hole. As in the previous

application, the program acquires the necessary information through a reference file.

The marker recognition is done in such a way, that as long as the camera can see one

of the three markers, it will know where to register the overlay. This application is

MAC OS-X specific, and uses the ARtoolKit and NI libraries as well as NI specific

drivers.
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B.2.1 Code:
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B.3 Experiment Software: Card Generator.m

This application is meant to generate four files. It generates the reference Card

file that includes the total number of trials in the deck, the numbers of pin insertions

for each trial, and the specifics on which pin goes were. This files is read by the

two test applications and serves as a reference for determining if the insertion was

correct or wrong, and how to acquire the data. This function, also generates three

latex files that will later need to be compiled, and that will deliver a printable deck

of Cards, an HMD friendly version of the Deck, and a reference file that was used

in the preliminary testing to assess which hole was which. The code was written in

matlab as follows.
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B.3.1 Code:
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B.4 MX-2 Operations Software: MX-2-OPS.cpp

This application allows the user to access the suit status information through

the RCL, and display:

• Text

• 2D overlays

• 3D GL overlays

• 3D VRML overlays

Although still in the early development phase, this application is able to rec-

ognize multiple markers at the same time, display object centered text and window

centered text. It is also capable of displaying real time values read from the suit sen-

sors, etc. This application will be further developed in the future to accommodate

several other features as video playback capability and integration with the MX-2

speech recognition software. This C++ application uses many of the SSL libraries

and its specific for MAC OS-X.
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B.4.1 Code:
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Appendix C

Approved IRB
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