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With the end of exponential performance improvements in sequential comput-

ers, parallel computers, dubbed “chip multiprocessor”, “multicore”, or “manycore”,

has been introduced. Unfortunately, programming current parallel computers tends

to be far more difficult than programming sequential computers. The Parallel Ran-

dom Access Model (PRAM) is known to be an easy-to-program parallel computer

model and has been widely used by theorists to develop parallel algorithms because

it abstracts away architecture details and allows algorithm designers to focus on

critical issues. The eXplicit Multi-Threading (XMT) PRAM-On-Chip project seeks

to build an easy-to-program on-chip parallel processor by supporting a PRAM-like

programming (performance) model. This dissertation focuses on the design, study

of the micro-architecture of the XMT processor as well as performance optimization.

The main contributions are:(1) Presented a scalable micro-architecture of the

XMT based on high level description of the architecture. (2) Designed a synthe-

sizable Verilog HDL (hardware design language) description of XMT, which lead



to the first commitment to the silicon of the XMT processor, a 75 MHz XMT

FPGA computer. With the same design, we expect to see the first XMT ASIC

processor using IBM 90nm technology. (3) Proposed and implemented some ar-

chitecture upgrades to the XMT: (i)value broadcasting, (ii)hardware/software co-

managed prefetch buffers and (iii) hardware/software co-managed read-only buffers.

(4) Quantitatively studied the performance of XMT using non-trivial application

kernels with the 75 MHz XMT FPGA computer, in addition, the performance of

a 800MHz XMT processor is projected. (5) The choice of not having local private

caches in the XMT architecture is studied by comparing current architecture with

an alternative one that includes conventional coherent private caches.
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Chapter 1

Introduction

Micro-processor performance has been improved continuously over the past

decades, primarily because an increasing number of faster transistors are available

on-chip, thanks to the development of the semiconductor industry. Processors can

operate at a higher clock rate with faster transistors and more transistors enabled

designers to implement various optimizations in hardware, namely targeting extrac-

tion of instruction level parallelism (ILP) in hardware, parallelizing execution of

serial code.

However, the extensive power consumption in high density chips became a

new challenge for further improvement of processor performance with the traditional

techniques. For example, clock rates increase with shrinking transistor sizes, but

since faster clocks are the major contributor to the increasing power consumption,

they are unlikely to increase as they used to.

On top of that, ILP has reached its diminishing return stage. As the finest-

grain parallelism, ILP techniques attempt to exploit parallelism among instructions

in serial programs. To increase the amount of parallelism, researchers have studied

a variety of techniques such as: dynamic scheduling, multi-instruction issue, branch

prediction, and register renaming. However, the parallelism available in a serial

program is inherently limited [49, 39].
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The new trend in processor industry is turning to multi-core processors, as the

name indicates, consisting of multiple processor cores in a single chip. These pro-

cessors are also referred to as CMPs (chip multi-processor). This is a natural choice

since it is no longer cost effective to improve the performance of a single core due to

design complexity, increased power consumption and diminishing performance in-

crease. In a typical multi-core processor, cores are quite independent of each other

since their sharing are limited to lower levels of a memory hierarchy. These multi-

core processors are used in the symmetric multi-processor (SMP) systems and each

core is scheduled by an operating system (OS) independently.

The XMT (explicit multi-threading) platform attempts to take advantage of

the fast-growing number of transistors available on a chip in a different way from

simply replicating advanced serial processor cores as in the CMP. The XMT pro-

cessor is designed to support thread level parallelism using thread-aware hardware,

targeting shortened single task completion time. More importantly, XMT is a paral-

lel algorithmic architecture that efficiently executes PRAM (parallel random access

machine/model) algorithms.

1.1 Parallel Computing

Although On-chip parallel computing is relatively new, parallel computing

based on multiple processors(chips) have been around for many decades [2, 3].

Shared memory and message passing are the two main parallel programming mod-

els. In a shared memory parallel computer architecture, multiple processors share
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the same memory address space and the communication between processors is done

through the shared memory implicitly. Programmers do not need to know the phys-

ical location of the data. Message passing is an explicit communication method,

since processors have to exchange messages to communicate with each other. Gen-

erally, it is believed that programming in shared memory is easier than in message

passing. With hardware and software support, the combination of shared memory

and message passing can be implemented[37, 14].

Communication bandwidth and latency are among the most important mea-

surements of any parallel computer system. Until recently, all parallel computers

were built from multiple chips and communications between processors had to cross

chip boundary and rely on an off-chip interconnection network. The communication

overhead in such a system is very expensive due to the long latencies and low band-

width. Caches are used in multiprocessors to reduce the latencies, but it has also

introduced the coherence problem, resulting from possible multiple copies of a single

memory location. Bus snooping and directory based protocols are used to address

the cache coherence problem. Bus snooping is simple but it is limited to a small

scale of the parallel computer due to the limited bus bandwidth. The directory base

cache coherence protocol is scalable, but it needs extra storage space for directories

and its hardware implementation is very complicated. It is well known that cache

coherence protocols are inefficient for some data access patterns, typically those

using extremely fine-grained parallelism. As a result, caches in parallel computers

are not as effective as in uniprocessors in providing low-latency, high-bandwidth

memory accesses for certain types of programs.
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Programming in parallel computing is quite challenging [5]. First, it is difficult

to develop a correct parallel program, because of asynchronous events and potential

deadlocks from many possible execution paths. It is more difficult for programmers

to reason about a multithreaded program than a single-thread program. Second, it

is difficult to develop a high performance parallel program, since programmers need

to know the details of the targeted parallel computer. The communication overhead

in parallel computing is quite difficult to estimate. Indeed, the challenges of parallel

programming has been preventing it from broad application for many decades.

1.2 What is PRAM?

The abstract model for serial computing is RAM (Random Access Machine/-

Model) and PRAM (Parallel Random Access Machine/Model) is its counterpart in

parallel computing. The main assumption of the PRAM is that the latency for an

arbitrary number of memory accesses is the same as for one access. PRAM was

extensively used in 1980s and 1990s for the theorists to develop and study parallel

algorithms for various applications. With PRAM, algorithm designers can concen-

trate on the problem itself and they are freed from dealing with the details of a

specific architecture. However, because of the abstraction, PRAM underestimates

the communication overhead that is not negligible in real multi-chip parallel com-

puters. In 1993, Culler et al. published a paper [13] that pointed out that PRAM

is an oversimplified model and proposed a new parallel machine model. From the

mid-1990s, PRAM was deemed useless and research about PRAM faltered because
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most researchers abandoned it.

Researchers have tried to approximate the theoretical performance of the

PRAM using multi-chip parallel computing, like NYU-Ultracomputer [20] in the

1980s and the SB-PRAM [6, 16, 38] in the 1990s. However, the paper [13] and the

later book [14] explain why the high latency, and even more importantly the limited

bandwidth among the processors, make it hard to accomplish.

The XMT PRAM-On-Chip project at the University of Maryland is based on

the observation that the fast growing number of transistors will make it possible

to build a PRAM on a single chip. When multiple cores reside on the same chip,

they can be connected with a very high-bandwidth, low-latency network, and the

communication overhead among them can be significantly reduced compared to

the multi-chip parallel computers. Before we jump into the the details of the XMT,

representative CMPs will be reviewed, since both CMP [24, 23] and XMT are single-

chip multi-threaded architecture.

1.3 Chip Multi-Processor(CMP))

The first example of CMP, a dual-core processor, was introduced by IBM [28]

and now both Intel and AMD deliver quad-core processors. As the name indicates,

two or four processors are placed on one chip. The cores in these chips are rather

independent and powerful, while they share some chip-wide resources such as a

lower-level cache. OS considers these cores as independent processors when assigning

a thread or process to them. A CMP system can improve overall throughput of a

5



chip and execute parallel programs like in SMP, but it also has similar programming

challenges as SMP.

Recent research[32, 4] on CMP shows that a heterogeneous architecture per-

forms better than a homogeneous one under the same power and area constraints.

The advanced serial processors typically apply many microarchitecture optimization

techniques to achieve a better single-thread performance, e.g. out-of-order execu-

tion, branch prediction, and pipelining. These techniques generally are not cost ef-

fective in terms of performance-per-transistor and performance-per-watt. The hard-

ware support of fine-grained parallelism is a desirable feature for future multi-core

processors [30].

The CELL[26, 52] processor designed by Sony, Toshiba and IBM is an architec-

ture that is radically different from conventional multi-core processors. The CELL

uses a high performance PowerPC core that controls eight relatively simple SIMD

cores, called Synergistic Processing Elements (SPE). The processor is designed for

the Sony PS3 game console, but it is also considered to be a good building block

of high performance scientific computing solutions[52]. Each SPE in CELL has its

own local storage and the data transfers from local storage to the global storage

need to be taken care of by the programmer explicitly, which makes programming

for CELL quite challenging.

The Niagara processor[17, 29] from SUN is a multi-core multi-threaded proces-

sor, which is targeted for server applications. The latest generation of Niagara 2 has

8 cores and each core can execute up to 8 threads. The threads are switched to uti-

lize processors better by hiding latencies from cache miss, branch misprediction and
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exceptions. The power consumption per thread is extremely low, slightly more than

2 Watts per thread. The processor is designed to achieve better throughput with

less power consumption, but it is not designed for shortening single task completion

time as XMT.

Tile-based architectures, such as MITs Raw [43], Stanfords Smart Memories

[33] and UT-Austins TRIPS [41], also expect to scale to high levels of parallelism.

The XMT, unlike Raw, Smart Memories and TRIPS, provides hardware support

for efficient load balancing and better support for a shared-memory model, both of

which are critical for many irregular applications.

Amdahl’s law states that the overall speedup a parallel program can provide

is limited by the serial portion of the program. Therefore it is reasonable to use

a more powerful processor for the serial portion while using many simple in-order

RISC processors for parallel execution, which are efficient both in power and area. In

the XMT system, we propose to have one powerful MTCU(Master Thread Control

Unit) for the serial part, which applies various optimizations for single-thread execu-

tion, and have as many as 1024 relatively simple, in-order execution TCUs (Thread

Control Units) for the parallel part to achieve better overall area and power utiliza-

tion. It is also possible for an XMT processor to have multiple MTCUs to support

multiple OS threads, where the parallel processors are dynamically assigned to the

MTCUs.

Although both CMP and XMT are trying to take advantage of an increasing

number of transistors and high on-chip communication bandwidth available, the

XMT architecture addresses the long standing challenge: programmability. It does
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so by natively supporting thread level parallelism in hardware, specifically support-

ing fine-grained parallelism from PRAM algorithms.

1.4 eXplicit Multi-Threading (XMT)

The XMT project attempts to design an architecture that executes PRAM-

style programs efficiently by taking advantage of the low-latency and high-bandwidth

communication network available on a single chip. Load balancing that needs to be

carefully handled in other parallel computers is naturally achieved in the XMT by

a dynamic task assigning scheme. The programming model of the XMT is simple,

and there are plenty of PRAM algorithms available which are easy to implement on

the XMT. The multi-operand prefix-sum operation, a special instruction introduced

in XMT, further lowers the latency of the synchronization among multiple threads

and reduces the overhead of generating new threads.

1.4.1 Background review

Early papers on the XMT presented the fine-grained programming model,

architectural features and some initial performance results [48, 36, 15, 11, 34, 35,

46, 45, 44].

XMT Programming Model

The programming model underlying the XMT framework is the SPMD (Single

Program Multiple Data) programming model that has two executing modes: serial
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Spawn Join Spawn Join

Figure 1.1: Serial and parallel execution modes

and parallel. The spawn and join, instructions specify the beginning and end of a

parallel section (executed in parallel), respectively. See figure 1.1.

An arbitrary number of virtual threads, initiated by a spawn and terminated

by a join, share the same code. The memory access model of the XMT processor

is a hybrid of so-called arbitrary CRCW (Concurrent Read Concurrent Write) and

QRQW (Queue Read Queue Write) [18]. The arbitrary CRCW aspect dictates

that concurrent writes to the same memory location result in one arbitrary write

committing. No assumption needs to be made beforehand about which will succeed.

An algorithm designed with this property in mind permits each thread to progress at

its own speed from its initiating spawn to its terminating join, without ever having

to wait for other threads; that is, no thread busy-waits for another thread. We call

this “independence of order semantics” (IOS).

An advantage of using this easier to implement SPMD model is that it is

also an extension of the classical PRAM model, for which a vast body of parallel

algorithms is available in the literature [25, 27]. The programming model also in-

corporates the prefix-sum statement. The prefix-sum operates on a base variable,

B, and an increment variable, R. The result of a prefix-sum (similar to an atomic

fetch-and-increment [20]) is that B gets the value B + R, while the return value is
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the initial value of B. The primitive is especially useful when several threads simulta-

neously perform a prefix-sum against a common base, because multiple prefix-sum

operations can be combined by the hardware to form a very fast multi-operand

prefix-sum operation. Because each prefix-sum is atomic, each thread will receive a

different return value. This way, the parallel prefix-sum command can be used for

implementing efficient and scalable inter-thread synchronization, by arbitrating an

ordering between the threads.

The XMT Architecture

Perhaps the most important distinguishing characteristics of an XMT architec-

ture are low-overhead mechanisms for the management of parallelism. New elements

not present in standard microprocessor design are introduced for the purpose of

supporting the parallel programming model. The XMT programming model allows

programmers to specify an arbitrary degree of parallelism in their code. Clearly,

real hardware has finite execution resources, so in general all threads cannot exe-

cute simultaneously. In an XMT machine, a thread control unit (TCU) executes an

individual virtual thread. Upon termination of a virtual thread, the TCU performs

a prefix-sum operation in order to receive a new (virtual) thread ID. The TCU will

then execute the thread with that new ID. All TCUs repeat the process until all

the virtual threads have been completed. A Master Thread Control Unit (MTCU)

orchestrates the TCUs. Figure 1.2 illustrates this: (i) through a comparison with

the von Neumann stored program and program counter apparatus (1.2 (a)), and (ii)
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through a snippet of the program of a TCU (1.2 (b)).

 

spawn 1000000 

join 

… 

           (a) Program counter + stored program                                                     (b) TCU program snippet 

$ := TCU-ID 

 
Use PS to get 

new $ 
 

Execute 
Thread $ 

Done 

Start 

Is $ > n ?  

No 

Yes 

Von Neumann(1946--??) 

Virtual 

PC 

Hardware 

PC 

XMT 
Virtual 

PC1 
PC1000000 

 

Hardware 

PC 

When MPC hits spawn, it broadcasts 
1000000 and the spawn-join code 
interval to the TCUs 

PC1 

 
PC1000 

 

MPC 

Figure 1.2: XMT execution model

We begin with Figure 1.2 (a). Its upper part, entitled “von Neumann (1946–

??),” illustrates the program counter apparatus in serial machines, which has dom-

inated general-purpose computing since 1946; it is not yet clear whether and when

its reign will end. The right hand side (of the upper part of Figure 1.2 (a)) depicts

the hardware apparatus, where one command at a time is brought to the program

counter. The left hand side (of the upper part of Figure 1.2 (a)) demonstrates how

the programmer is often educated to think about this apparatus–“the virtual out-

look”. Here the program counter is the one to move; it moves from one location of

the memory to another, perhaps like a “book analogy”, where the finger of a reader

advances from one line of the book to another. The fact that this von Neumann

apparatus has survived orders of magnitude improvements in speed since the 1940s

makes it a remarkable “Darwinistic success story”. For this reason we sought to

11



upgrade, rather than replace in a disruptive manner, this successful apparatus.

The lower part of Figure 1.2 (a), entitled “XMT”, illustrates the new appa-

ratus. The left hand side (of the lower part of Figure 1.2 (a)) depicts the virtual

description. There is still one computer program as in the von Neumann appara-

tus. In the above book analogy, one finger (marked as PC, for program counter)

moves from one line of the book to another, until it reaches a special command

called spawn. The spawn command specifies a number of “threads” which can be

performed in parallel. Since we discuss now the virtual side, any number of threads

can be specified. Figure 1.2 (a) mentions 1,000,000 threads. The virtual threads,

initiated by a spawn and terminated by a join, share the same code. At run-time,

different threads may have different lengths, based on individual control flow deci-

sions. The programmer’s understanding will be that each of the threads can progress

(guided by one finger per thread) from the spawn command to a subsequent join

command at its own speed. At the join, the thread expires. Once all the virtual

threads expire, the finger marked PC continues. The main difference in the hard-

ware description on the right-hand-side (of the lower part of Figure 1.2 (a)), is that

the number of program counters is fixed (the figure mentions 1,000), and does not

change as a function of the spawn command at hand. The program counter of the

MTCU (denoted MPC) executes the serial code, prior to the spawn command. The

program counter of the MTCU executes a spawn command and then broadcasts the

following instructions until a join instruction to the other program counters. The

program counters start by executing the first 1,000 among the 1,000,000 threads,

one thread each. When a program counter completes its thread, it starts executing
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one of the yet-to-be-executed threads. This is done until all of the 1,000,000 threads

finish.

Figure 1.2 (b) illustrates the program of a TCU. Suppose that n = 1,000,000

threads are to be executed as a result of a spawn command. The figure assumes

that n and the SPMD code were broadcast to all TCUs. TCU i starts by executing

the respective virtual thread i, but only if i is not larger than n. Upon finishing the

execution of a virtual thread, the TCU uses a prefix-sum computation to obtain the

ID of the next virtual thread it should execute, and proceeds to execute it if that ID

is not larger than n. Note that the only communication among TCUs is through the

prefix-sum computation. An extension of the architecture that allows some nesting

of spawn commands (using an sspawn command, noted later) is not reviewed here.

Expected Performance of XMT

Previous papers on XMT have presented simulation results of the performance

of the XMT. The work reported in [48] is the speedup of several parallel algorithms

based on hand-coded assembly programs (see table 1.1). The DAGs problem aims

to find the longest path leading to each vertex in the directed acyclic graphs. Integer

sorting uses bin-sort iterations to sort an array. List ranking finds for each element

in the list its total distance from the end of the list, given that each element has

a pointer pointing to its successor. Detailed information about these problems and

algorithms can be found in [48].

The XMTC compiler made it possible to evaluate the performance of the XMT
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Table 1.1: Empirical performance result

Number of TCUs

Problem Input Size 20 50 100 200 500 1000

DAGs graph4 4.17 7.59 10.71 13.78 16.45 17.72

graph6 5.79 14.02 26.69 43.97 100.46 159.69

Integer sort 5 · 103 3.61 7.71 13.21 21.84 40.15 60.88

List ranking 103 2.68 5.29 7.83 12.81 23.47 32.49

5 · 103 3.09 7.62 14.89 28.53 63.30 106.6

on more complex applications. Figure 1.3 shows the speedup results reported in [34].

The XMT showed good performance on applications which have either small

input size or exhibit irregular behavior, for which traditional parallel computing

cannot employ a simple static scheme because of potential high load-imbalance or

communication overhead. From previous work[48, 36, 34, 35], the speedup of the

XMT is about one magnitude order lower than the hardware cost, which is much

better than multiprocessor parallel computing[48].

XMT speedups exceeding 100-fold for a standard VHDL gate-level simulation

benchmark suite relative to serial were reported in [22].
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In summary, the results above demonstrate that XMT
programs are able to obtain good speedups. Programs that
achieve lower speedups do so usually as a result of one of
the following: 1) The program doesn’ t perform a lot of
computation (a small problem size was used); 2) The
parallel algorithm involves a lot of work compared to the
serial one; 3) An extremely fine-grained parallelism is
used.  The last case suffers from the overheads that are
involved in creating a thread.  These overheads are
generally very low, but become significant in very fine-
grained programs. The next section discusses this issue in
more detail, and presents an optimization designed to
overcome this problem, allowing efficient fine-grained
programming.

6.2 Thread overhead and coarsening

Setting up a parallel region and managing the threads
incur an overhead. We can break down this cost to the
following different elements:

�  Spawn Setup: setting up the environment,
broadcasting data.

�  TCU-Init: initializing the TCUs context.
	  Thread Overhead: emulating threads on each TCU -

obtain a thread ID and verify that it is less than the
spawn size.


  Load Imbalance: idling at the end of a spawn until all
threads complete, then transitioning back to serial
mode.

We examined the costs that the different kinds of
overheads incur. We observed several trends. 1) overheads
are generally very low. In particular, even for very small
problem sizes, and very fine-grained parallelism – the
system obtains good speedups, which are further improved
by our optimizations. 2) Setting up the parallel region is a
cheap operation. The Spawn Setup and TCU-Init
overheads are in general negligible, and remain low under
increasing problem sizes and increasing number of TCUs.
As a result, programs that involve lots of spawns and joins
still perform well. 3) The most dominant overhead is the
one charged to thread creation. We therefore concentrate
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Figure 3: Speedups on XMT simulator

Figure 1.3: Speedups on XMT simulator

1.4.2 Overview of Thesis

This dissertation presents the first hardware implementation of the XMT ar-

chitecture, which is extended from the high level description and software simulator

of the XMT architecture presented in early papers. The performance of the XMT

architecture is also studied with an FPGA-based prototype [51, 50].

Following this introduction, the XMT architecture is presented. The compo-

nents of the XMT processor, transitions between parallel and serial modes, instruc-

tion and value broadcasting, software/hardware co-managed prefetch buffer, and

the read-only buffer are explained in detail. The overview of the XMT framework is
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also discussed in this chapter for better understanding of a broad concept of XMT.

In chapter 3, the performance of the XMT processor is studied from differ-

ent aspects with the XMT FPGA prototype. The execution time of a parallel

implementation over the best serial program in the prototype is reported. The

absolute execution time (wall-clock time) is compared with a commodity 2.6GHz

AMD Opteron processor. The performance of an envisioned XMT ASIC 800MHz

processor is projected using the XMT FPGA prototype as a cycle-accurate emulator

by slowing down the DRAM.

In chapter 4, the choice of not having coherent private caches is studied. An

imaginary system that includes conventional coherent private caches is simulated

and its performance is compared to the preferred default configuration: XMT with-

out coherent private caches. The two systems are compared in execution time, traffic

in the interconnection network, and average latency for read operations. The simu-

lation results suggest that coherent private caches do not have an advantage in the

context of the XMT system, which is designed to support fine-grained, PRAM-based

algorithms efficiently.

Chapter 5 concludes this thesis by summarizing the results from this study

and briefly discusses the future work towards a complete XMT processor.

The description of the Verilog model of the two XMT prototypes: ASIC and

FPGA versions are presented in the appendices. Following an overview of the XMT

Verilog model, each chapter of the appendices describes a component of the XMT

in great detail. Since the XMT processor is still under development, the description

of modules is only valid for the current snapshot. The XMT ASIC prototype is
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discussed as the default, and the differences between ASIC and FPGA versions are

presented in the last chapter of the appendices.
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Chapter 2

Architecture of the XMT Processor

In this chapter, the micro-architecture of the XMT will be presented in great

detail.

2.1 Micro-architecture of the XMT Processor

2.1.1 Overview

The XMT processor includes a MTCU (Master Thread Control Unit), clusters

comprising of TCUs (Thread Control Units) and functional units, an interconnection

network, shared on-chip cache modules, memory controllers (MC), a global register

file (GRF) and a prefix-sum unit.

Figure 2.1 depicts the block diagram of the XMT processor. The MTCU

executes the serial portion of the program and clusters of TCUs execute the parallel

sections. MTCU and clusters of TCUs access shared memory space through an

interconnection network. The memory space is partitioned into multiple memory

modules, which can be independently accessed. The prefix-sum unit can execute

common base prefix-sum operations from multiple TCUs in a unit time, which will

provide low overhead for extremely fine-grained parallelism.
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Figure 2.1: Block diagram of the XMT processor

2.1.2 Master TCU

The master TCU is the only TCU active in serial mode. Similar to advanced

serial microprocessors, the master TCU can incorporate standard techniques related

to ILP, such as branch prediction, out-of-order execution, and register renaming.

The main difference between the MTCU and a serial microprocessor is its support

of special XMT instructions such as spawn and join. When the XMT processor

switches to parallel mode, the MTCU broadcasts the instructions in the parallel

section to all clusters where they are copied to a local instruction buffer and later

fetched by TCUs inside clusters. After all instructions in the parallel section have

been broadcast, the MTCU waits for TCUs to finish the execution of the parallel

section.

The Master TCU has its own cache, L0, that is only active during serial mode
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and applies write-through. Whenever the local cache in MTCU is written, the

shared cache is also updated with the new value. When the XMT processor enters

parallel mode, the Master TCU discards its local cache. The overhead of the flushing

L0 cache is trivial since write-through mechanism is chosen. The MTCU will have

compulsory misses when XMT switches back to serial mode, but it can be solved

by advanced hardware/software prefetch. The other option is to apply a hardware

cache coherence protocol between shared cache modules and MTCU local cache. If

a memory location cached in MTCU local cache is updated by a TCU, it can either

update or invalidate the cache line in the MTCU local cache. When XMT operates

in serial mode, L0 cache is the first level cache of the MTCU and multiple shared

memory modules provide the lower level of the memory hierarchy (similar to a serial

processor). With this memory hierarchy, the MTCU mainly relies on L0 in serial

mode, instead of shared caches.

2.1.3 TCUs and Clusters

A TCU can execute a thread in parallel mode. TCUs have their own local reg-

isters and they incorporate simple in-order pipelines including fetch, decode, exe-

cute/memory access and write-back stages. The TCUs have a very simple structure

and do not aggressively pursue maximum performance. Given the limited chip area,

the overall performance of the XMT is likely better when it has more simple TCUs

rather than fewer, but more advanced, TCUs because of the well-known diminishing
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return of many ILP techniques. However, XMT does not prevent TCUs from intro-

ducing any advanced techniques, since the TLP (Thread Level Parallelism), which

XMT is taking advantage of, is orthogonal to that. A TCU is an in-order processor

that only issues a new instruction when the previous instruction has been executed,

so there is only one instruction from a TCU being executed by functional units at

any moment. A cluster is a group of 16 TCUs and accompanying functional units.

TCUs share some functional units with several other TCUs in the same cluster; this

is similar to an SMT (Simultaneous Multi-Threading) processor. For complicated

and time-consuming operations, such as multiplication and division, multiple TCUs

are assigned to one functional unit. Some simple functional units are not shared,
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because the overhead of sharing is comparable with that of replicating them and it

may be intensively used by TCUs. If several TCUs assigned to a functional unit try

to access it, proper arbitration is used to queue all requests. Each cluster has one

load/store port to the interconnection network, which is shared by all TCUs inside

the cluster. Prefix-sum requests from TCUs are combined in the cluster and sent to

the prefix-sum unit. Figure 2.2 shows the block diagram of the cluster.

2.1.4 Prefix Sum Unit and Global Register File

ps R,B, an individual prefix-sum, indicates the following atomic operations.

R <= B, R will get the old value of B.

B <= B + R, B will get the sum of B and R.

B is called base register

A series of individual prefix-sum instructions, ps R0, B, ps R1, B · · ·, will result

in

B <= B + R0 + R1 + R2 + · · ·

R0 <= B

R1 <= B + R0

R2 <= B + R0 + R1

...

In XMT, the common base prefix-sum instructions from different threads can

be executed by the prefix-sum unit simultaneously. In this case, the result of the

22



execution of these prefix-sum instructions are the same as executed in serial mode at

an arbitrary order, but the execution will take a constant time on XMT, regardless

of how many threads participate. Due to the hardware implementation challenges,

the incremental values are limited to 0 or 1. There is no limit on the base register

and the result of a ps operations is 32-bit value. This hardware implemented multi-

operands prefix-sum operation can be used in efficient inter-thread synchronization

by arbitrating an ordering between threads.

TCUs send 1 bit input for a ps operation request and get the prefix-sum results

in local registers. The prefix-sum unit is based on binary tree implementation. After

the prefix-sum unit finishes calculation, each TCU gets its own value (prefix-sum

of inputs with initial value of 0 in base register) and the base value broadcast from

the prefix sum unit; then, the final results are the sum of these two numbers which

is calculated locally by TCUs. The registers in GRF are used for base registers of

the prefix-sum operations. The master TCU can access these registers directly, but

regular TCUs can only access them through a prefix-sum operation. There is only

one prefix-sum unit, but the global register file has multiple registers, so a proper

sharing mechanism is needed. At any cycle, the inputs of the prefix-sum unit will

handle only one base register. Requests to other base registers have to wait their

turn. The base register number for a particular clock cycle is determined by the

requests from all TCUs. Each TCU has multi-bit output, where each bit represents

a base register, and assert 1 at a proper bit when there is a request for a ps operation.

In other words, there is a decoder for the ps operation. The bit-wise logic OR of

all these outputs of the decoders from TCUs are used to determine the next base
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register. The base registers are chosen in a round-robin fashion among those who

actually have a request. This may introduce some delays in the beginning of a

prefix-sum operation for a new base register, but not for the following operations.

2.1.5 Memory Modules and Hashing

To provide better bandwidth, XMT uses multiple memory modules, which

operate independently. Clusters and memory modules are connected by an inter-

connection network. The memory address space is evenly divided among these

memory modules. The shared caches are used for instructions only by the MTCU,

not for TCUs, since the instructions for TCUs are broadcast by the MTCU and

buffered in the instruction buffer. Within each memory module, the order of oper-

ations to the same location is preserved and a store operation can be acknowledged

as soon as the cache module accepts the request, regardless if it results in a cache

hit or miss. Each memory module also has an adder to support a fetch-and-add

operation for any value of increment, unlike the ps instruction that can only sup-

port a binary input, 0 or 1. Resembling the NYU-Ultracomputer fetch-and-add,

the prefix-sum-to-memory (psm) instruction is executed on cache modules and they

are executed one after the other (in contrast to the ps instruction that processes

requests concurrently).

The memory space is divided evenly among memory modules. Each memory

request will be dispatched from a cluster to one of those memory modules. In our
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Figure 2.3: Physical address calculation with hashing

implementation, we assumed that the address is 32 bits and cache line is 32 bytes,

which is the base element of mapping. One possible implementation of the allocation

of memory addresses to memory modules is outlined below. Some bit fields of the

address can be used to determine the cache module, such as the Module(L) (L

means logical address) field consisting of bits 5 through 10 (4:0 is used as offset

inside a cache line), as shown in figure 2.3. Bits 5 through 10 are chosen to have

the smallest granuality, a cache line, in distributing to different cache modules. But

then code exhibiting certain regularities could result in an imbalance among the

number of accesses to different memory modules. The basic idea that has been

used in the literature for coping with such imbalance is to employ the concept of

hashing. This thesis does not claim that the problem of how best to use hashing for
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reducing imbalance, as well as for achieving the best overall performance, has been

resolved. We only present a straw man solution for this fundamental problem, as we

plan to thoroughly investigate it in the future. For a group of addresses that share

the same upper field with different Module(L), a 1-to-1 mapping is used to map

the natural module index (Module(L)) to the module index (Module(P), P means

physical address), as in figure 2.3, so that they are always distributed to 64 memory

modules. The hashed value is used to choose different 1-to-1 maps for different

groups. Note that there are 64! 1-to-1 mappings of the set 0,1,· · ·,63 onto itself.

2.1.6 Interconnection Network

Since an efficient interconnection network is so important to the XMT pro-

cessor, we decided to custom design it and study its performance carefully. The

behavioral description was incorporated into the current verilog HDL description to

allow simulation of applications. The network has uniform delays for any source-

destination pairs and it is designed to have zero interference between traffic for

different destinations unless the network is heavily loaded or extremely unbalanced.

More detailed description of the interconnection network appears in [8, 9, 7, 10].

2.2 Program Execution Flow

2.2.1 SPMD Programming Model

The XMT uses fine-grained SPMD (Single Program Multiple Data) program-

ming model. The actual performance model is a hybrid of so-called arbitrary CRCW
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(Concurrent Read, Concurrent Write) and QRQW (Queue-Read, Queue-Write) [18].

XMT program starts with serial mode and it changes to parallel mode when a spawn

instruction is executed. The spawn instruction carries two parameters: low and

high, meaning the parallel thread id ranges between low and high inclusively. After

all parallel threads finish, the MTCU executes join instruction and the processor

changes back to serial mode. See figure 1.1 on page 9. When the spawn instruction is

executed, the low and high are copied to global registers, GR-LOW and GR-HIGH

respectively. GR-LOW is used as the base of prefix-sum operation, that assigns new

thread IDs to the new available TCUs. GR-HIGH is used to store the upper bound

of the valid thread ID and TCUs can generate a new thread during parallel mode

by increasing GR-HIGH through sspawn, a prefix-sum operation to GR-HIGH with

incremental value of one.

2.2.2 Parallel and Serial Mode Switch

The one important difference between the XMT and CMP is who manages

the parallel threads. In CMP, normally the the OS (Operating System) is aware

of the existence of the parallel threads and OS is responsible for the scheduling

of the threads on the available processors. In the XMT, the parallel threads are

not OS threads. All parallel threads are managed by hardware, this includes TCU

assignment, termination of threads and completion of all parallel threads.

The change from serial to parallel mode is simpler than the reverse. When

the MTCU encounters a spawn instruction, it initializes both GR-LOW and GR-
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HIGH and the XMT processor enters parallel mode. The MTCU also starts the

broadcasting of instructions in the parallel section through the instruction bus at

the beginning of parallel mode.

The transition from parallel to serial mode is more involved because of the

sspawn instruction that can increase the GR-HIGH dynamically (see figure 2.4. The

sspawn instruction is a prefix-sum operation with GR-HIGH as the base register and

incremental value of one (1). The differences between spawn and sspawn instructions

are listed in table 2.1.

spawn

sspawn

Parallel sections without 

sspawn instruction

Parallel section with 

sspawn instruction

not executed sspawn instruction

executed  sspawn instruction

new thread generated 

by sspawn instruction

Figure 2.4: Single Spawn (sspawn). A parallel thread can generate a new thread

by increasing GR-HIGH. The figure shows that not all threads executed the sspawn

instruction in a parallel section because of different execution paths

When the XMT processor enters parallel mode, GR-LOW and GR-HIGH,

two designated global registers, are loaded with the low and high bounds of thread

IDs and the value of GR-HIGH is broadcast to all TCUs. The spawn instruction

prompts the master TCU to broadcast the instructions between the spawn and join
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Table 2.1: Comparison between spawn and sspawn instruction

spawn sspawn

executed by MTCU TCU

executed in serial mode parallel mode

number of generated threads any 1

instructions and then wait for completion of the parallel execution. Clusters, groups

of TCUs, are activated by broadcasting the instructions (link ① in Figure 2.5). The

broadcasted instructions are saved to local instruction buffers at clusters. Such

broadcasting is more efficient than having the TCUs fetch instructions from main

memory and load the memory system with intensive read requests. However, the

number of instructions that can be stored in the instruction buffers is limited and

TCUs have to fetch instructions from shared caches through the interconnection

network for larger parallel sections.

A TCU executes one virtual thread at a time. TCU i starts by executing virtual

thread i (its natural ID). When the number of virtual threads exceed the number of

TCUs in the XMT processor, a TCU may serially execute multiple threads. A TCU

obtains a new virtual thread whenever it finishes executing the previous one. Unlike

the assignment of the virtual thread IDs to the TCUs for the first virtual thread

they execute, more effort is needed for later ID assignments. This is done using

dedicated prefix-sum hardware with GR-LOW as the base. Upon reaching a join
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Figure 2.5: Transitions between serial and parallel modes with sspawn

instruction, a TCU gets a new virtual thread ID from the ps operation and jumps

to the beginning of the parallel section. The TCU either enters an idle state when

its allocated ID exceeds GR-HIGH (namely, it is beyond the scope of the current

spawn command), or executes the parallel section with the valid thread ID.

It is possible that an allocated thread ID that exceeds GR-HIGH at a certain

point of time becomes valid later, after GR-HIGH increases. To handle this case,

TCUs in idle state will keep comparing its ID with GR-HIGH. If the ID becomes

valid due to an sspawn in another TCU, the TCU will execute the virtual thread

immediately. The MTCU is capable of detecting when all TCUs are in their idle

state by checking the logic AND of all idle flags as this will signal that the execution

of the current parallel section has been completed. Then the MTCU would change

execution mode back to serial mode and continue (link ② in Figure 2.5). The Master
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TCU resets all clusters after it changes back to serial mode (link ③ in Figure 2.5).

2.2.3 Observation on Synchronization Needs of Nested Spawn (ss-

pawn) Implementation

In the current XMT processor model, nesting of parallel sections is allowed

through the use of a sspawn instruction. The basic mechanism of increasing the

number of virtual threads that need to be executed by a prefix-sum to register GR-

HIGH was noted before. But, should the programmer use nested spawn commands,

and have the compiler translate them to sspawn commands, or use sspawn commands

directly? This question is beyond the scope of the thesis. However, regardless of how

this question is resolved, proper management of the sspawn instruction is necessary

to prevent potential explosion in the number of new virtual threads (and possibly

the memory that will be needed for storing initialization data). Quite a few studies,

including Leiserson’s MIT Cilk project [12], have considered ways for coping with the

memory explosion possibility, and we do not have anything new to add to it. Below,

we chose to highlight one new subtle observation with respect to the initialization

data. The observation appears to be fundamental and could be of wider interest

beyond just the XMT platform.

An attractive feature of XMT is its so-called independence of order semantics

(IOS). While applicable in different ways to different levels of abstraction, IOS means

that a parallel thread can advance to the end of a parallel section (i.e., until it reaches

a join command) without ever needing to wait for any other thread. In general,
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IOS greatly reduces (though it does not always completely eliminate, as the new

observation below shows) busy-wait (or spin-wait) between parallel threads. (As an

example for IOS, consider use of a ps command to GR-HIGH by a thread executing

a sspawn command. The relevant point is that this parent thread needs only wait for

the feedback from the ps functional units but not on any other thread.) However,

the observation presented below will lead to the conclusion that the introduction

of sspawn instruction makes some synchronization between the parent thread and

child thread inevitable.

The busy-wait inevitability observation: Suppose that the parent thread is

responsible for: (i) initializing input data for the child thread, and (ii) declaring it

(through an sspawn command). Then the child thread must busy-wait at least once

on its parent thread.

To understand the observation, note that the parent thread first gets an ID for

the child thread only when it gets its result from the ps functional unit that updates

GR-HIGH. Only after the parent thread has the ID it can store initialization data

(or even just a pointer to such data) for the SPMD-type program of the child

thread. Recall that SPMD programs can distinguish between threads only based on

their IDs. However, without imposing synchronization on the child thread, nothing

can prevent the child thread from getting started before parent thread has finished

initializing data. After understanding the problem, the solution is not difficult. The

child thread simply needs to wait for a signal from the parent thread that it finished

storing initialization data.
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2.3 Features of the XMT Processor Memory Hierarchy

2.3.1 Overview

A cache system is very important for any processor design including the XMT

processor. As a part of multi-level memory hierarchy, the cache plays a very im-

portant role in mitigating the speed mismatch between the processor and off-chip

memory. Most importantly, the cache system can take advantage of: (1) spacial

locality and (2) temporal locality. Although there are some limitations on the cache

[26], the cache system is still an essential part for better performance of processors.

The XMT processor uses caches as part of the memory hierarchy, but also adopted

other types of storage components, which will be explained in this section.

As described in chapter 1, each core in most multi-core processors has a private

L1 cache, but a certain lower-level (L2 or L3) cache is shared by all cores in the

chip. As a result, a cache coherence protocol is needed for such a system. The two

popular cache coherence protocols are bus-snooping and directory-based protocol.

It is widely believed that bus-snooping will not scale well beyond 4 or 8 cores.

Directory-based cache coherent protocols scale up much better, but the overhead

increases with the number of processors and it becomes very expensive for certain

cases, like false cache line sharing. When there is false cache line sharing, which

occurs when two or more processors write to different words in the same cache line,

the cache line needs to be transferred back and forth between those processors.

The XMT processor is designed for fine-grained parallelism and it is supposed

to have many more TCUs than that of current multi-core processors. After careful
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evaluation and comparison (see chapter 4), we concluded that the XMT will not

have local caches. Instead, it will only rely on shared caches. In section 2.1, it

is stated that the TCUs and shared caches are connected by a high-performance

interconnection network. Because there is no local cache for TCUs, each and every

memory access needs to make a round trip to a cache module through the intercon-

nection network, if no special optimization is applied. The concept of the length

of sequence of the round trip to memory (LSRTM) [47] accounts for the effects of

the long memory access latency in the performance of an algorithm. To alleviate

long memory access latency, the following features are incorporated in the XMT

architecture: (1) value broadcasting, (2) release consistency, (3) hardware/software

co-managed prefetch buffers per TCU, and (4) hardware/software co-managed read-

only buffer per cluster. These four improvements will be discussed in this section.

These features, together with compiler optimizations, enable the XMT to perform

at least as good as an alternative XMT architecture that incorporates cluster-level

private caches with a directory-based cache coherence protocol, as shown in chapter

4.

2.3.2 Value Broadcasting

Consider the following implementation problem in a parallel algorithm. Sup-

pose that all, or nearly all, threads of a parallel section of an XMT program use a

certain variable. Without giving special attention to this case, each thread needs

to read the variable through the interconnection network. Furthermore, the read
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requests will be queued at the same memory module and handled one at a time,

significantly increasing the implementation overhead of the parallel algorithm. Sup-

pose further that the variable can be determined at run time and it does not change

during this particular parallel section. The broadcasting mechanism reduces the

execution time of such concurrent reads. To broadcast a parameter to all parallel

threads, the compiler moves the lw instruction to the serial section and two broad-

casting instructions, broadh and broadl are inserted to the original place of the lw

instruction in parallel section. (See ① in figure 2.6.)
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Figure 2.6: Broadcasting a value to virtual threads

When the MTCU broadcasts instructions, the broadh and broadl instructions are

replaced by lui and ori instructions respectively. A 32-bit immediate value can

be encoded in the lui and ori instructions and a register can be loaded with the
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immediate value. The MTCU composes the lui instruction using the value (upper

16 bits) of the MTCU register, which was loaded with the parameter by the lw

instruction in serial mode. Similar transformation happens from broadl instruction

to ori instruction. (See ② in figure.) Because both lui and ori can only carry 16

bits, two instructions are needed to update a 32-bit register.

2.3.3 Release Memory Consistency

The memory consistency model in a shared memory programming model de-

fines how the memory system will appear to the programmer [1]. Informally, the

ordering of memory accesses needs to be specified. In XMT, memory accesses by

different TCUs are not subject to any ordering requirements because of IOS. Only

the serial order within a thread needs to be kept. Non-blocking stores, with intro-

duction of the store buffer, are used in uniprocessor systems to reduce the execution

time of a store operation. In such a system, the latest value is used for instruc-

tions that follow by checking the store buffer before sending a load request to the

memory system. In the XMT processor, this technique may not be applicable, since

a read request may come from a different TCU rather than the TCU that wrote

the location. If we use non-blocking stores, due to the unpredictable latency of

the interconnection network for different source-destination pairs, store operations

from a TCU may get delayed and result in an incorrect outcome. For example, in

the program in Figure 2.7 (a fragment from tree-add program), two threads store

a value to a different variable and then perform a ps operation with respect to a
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common base, B, which gives an ordering of two threads. The later one (that gets

1 in L after the ps operation), will add the two variables, x and y, which were writ-

ten by the 2 threads earlier. A programmer expects that the later thread will read

updated values for both variables, x and y. However, because the latency in the

interconnection network depends on source and destination, if non-blocking stores

are used, the old value may be read incorrectly. The possible values for z after the

execution are 3, 4 or 7. To prevent this behavior, which is incorrect since it does

not match the memory consistency model of the XMT system, a fence instruction,

which blocks the TCU execution until all stores are committed to the shared cache,

can be placed before the ps operation.

 
 

 

Thread 1: 
store  4 to x 
M 
ps  L,B  
If L= = 1, z=x+y; 

Thread 2: 
store  3 to y 
M 
ps  L,B  
If L= = 1, z=x+y; 

Initially L=1, B=0, x=0, y = 0 

Figure 2.7: Illustration of the need for a blocking store

However, if no virtual thread reads the location after a thread writes to it during

parallel mode, it is safe to use a non-blocking store without a fence instruction
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to improve performance of the XMT. Note that even for non-blocking stores, it is

necessary that they all commit to the shared cache modules when an XMT processor

switches the execution mode between parallel and serial modes. Otherwise, the

interconnection network needs to be flushed prior to the switch. This is managed

at the cluster level. A cluster records the number of the non-blocking store requests

sent to the memory modules and also counts the acknowledgements received for

non-blocking stores. A cluster flags itself as idle only when these two numbers are

equal and all TCUs inside are in the idle state.

The XMT compiler is responsible for the insertion of the fence instruction.

Whenever there is a synchronization between threads, for example, parent and child

threads, the fence instruction needs to be inserted in the proper location. In ad-

dition to non-blocking stores, the XMT architecture also supports blocking stores,

which prevent a TCU from advancing to the next instruction until it receives the

acknowledgement. The blocking store instruction is functionally equivalent to a

non-blocking store followed by a fence instruction. The basic solution for the com-

piler is to use blocking stores as default and only replace them with non-blocking

stores, with or without a fence instruction, when it is possible.

2.3.4 Prefetch Buffer

Because there is no local cache in XMT, each and every memory access is

supposed to make a round trip to shared cache through the interconnection network.

This would be very expensive if the TCU stalls for this long latency operation. If a
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TCU can prefetch the value in advance, then when the actual read occurs, the value

will be available immediately. Prefetch operations are essentially non-blocking reads,

in the sense that the TCUs can execute other instructions while the non-blocking

read operations are served by the interconnection network and memory hierarchy.

Each TCU has a small number (4 in the XMT FPGA prototype) of prefetch

buffers. Each buffer keeps an address and value pair. Each buffer also stores the

status of the buffer to track the pending requests. When a TCU sends a prefetch

request, it only sends the address of the memory location without specifying the

destination register, since the value will not be written into a register. Later, when

the TCU sends a normal read request, the prefetch unit will check if any prefetch

buffer matches the address of the request. If one of the prefetch buffers matches

the request, the TCU will get the value immediately if the value is available in

the buffer. Otherwise, the request will be blocked until the value is delivered by

the interconnection network. The prefetch buffer will be cleared when the XMT

processor changes the execution mode to serial.

The prefetch instructions are inserted by the compiler. Instruction scheduling

is a typical compiler optimization and it can be used for prefetch instruction inser-

tion. Prefetch operations can also be used in loops by simply prefetching values for

iterations ahead.

39



2.3.5 Read-only Buffer in Cluster

The TCUs in a cluster share one load/store port, which is connected to the

interconnection network. When multiple TCUs try to read the same memory loca-

tion, it is desirable to send only one request to the interconnection network. This

will reduce load on both the interconnection network and the shared cache. One

possible solution would be relying on the arbitration logic for the load/store port,

that compares the address and combines requests if possible. The limitation of this

method is that the arbitration logic is complicated because address comparison and

keeping track of combinations is needed. The other limitation of relying on the

arbitration logic is that it can only combine requests when they are sent at the same

time or within a very short period of the time, so that they are presented to the

arbitration logic at the same cycle.

Our solution to the problem is relying on both hardware and software. In

hardware, each cluster has a read-only buffer, where the addresses and values are

stored. The addressing of the buffer uses index and tag fields as they are used in

a typical cache system, except that the read-only buffer keeps a tag per word and

not per cache line. There are two different read operations, depending on whether

the value can be stored in the read-only buffer, for sharing. In the individual read

operation, the read-only buffer will not be updated when the value is returned by

the shared cache, while the shared read operation results in an update. The compiler

is responsible for choosing between individual and shared read instructions, based

on whether the read is shared among the TCUs.
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Before forwarding a read (either shared or individual) request to the intercon-

nection network, the read-only buffer is first checked to find the value. If the value

is found in the buffer, the result is sent back to TCU and no request is sent out

to the cache system. If the value is not available, but a request for that memory

location has been sent out as a shared read request, the read-only buffer stores the

requestor’s TCU ID for that shared read request. Again, no request needs to be

sent to the cache system. If the read-only buffer does not have the value available

and no shared read request has been sent out for the particular memory location,

the shared read request will be sent out to the interconnection network and mark

the location’s status as pending.

With hardware and software co-design, the TCUs can share read operations

more effectively. The read requests do not need to be issued within a limited time

as the other solution requires. The arbitration network does not need to provide

combination functionality, that would result in a complicated design in terms of

both logic and area. The read-only buffer also provides a limited temporary locality

feature as cache does, because the address and data pair will be available until they

are cleared by replacement data or when the XMT processor changes the execution

mode to serial.

2.4 Macro-architecture of the XMT Processor

The whole is greater than the sum of the parts. XMT as a broad concept

covers the transition from how to program, to compiler optimization, and finally
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hardware implementation. This dissertation focuses on the last component, hard-

ware implementation, but brief descriptions of the other components are included

for completeness.

The book chapter [47] presented how to develop an efficient XMT program

from concept to implementation. Figure 2.8 shows the proposed methodology. As

shown in the figure (1 → 2 → 3), a PRAM program can be developed from a high-

level work-depth description through a middle node, work-depth model. An XMT

program need to take path (1 → 2 → 4 → 5) or (1 → 4 → 5), in case a shortcut is

possible.

1

design
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Problem

High−level Work−Depth
Description

to PRAM" methodology

proposed "parallel thinking
to PRAM−on−chip program" methodology

original "parallel thinking

Legend:
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"How to think in parallel"
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Figure 1: Proposed Methodology for Developing PRAM-On-Chip Programs in view of the Work-Depth
Paradigm for Developing PRAM algorithms.

Depth methodology for advancing from concept to a PRAM algorithm; namely, the sequence of models
1 → 2 → 3 in the figure illustrates progression from a high-level description to a PRAM algorithm. For
developing a PRAM-on-chip implementation, we propose following the sequence of models 1→ 2→ 4→ 5:
given a specific problem, an algorithm design stage will produce a High-Level description of the parallel
algorithm; this informal description is fleshed out as a sequence of steps each comprising a set of concurrent
operations. In a first draft, the set of concurrent operations can be implicitly defined. See the BFS example in
Section 2.2.1. This first draft is refined to a sequence of steps each comprising now a sequence of concurrent
operations. Such formal Work-Depth description fully spells out how to advance in a given step, whose
sequence of concurrent operations include j operations indexed by integers from 1 to j, from each index
i where 1 ≤ i ≤ j, to an operation. The programming effort amounts to translating this description into
a single-program multiple-data (SPMD) program using a high-level PRAM-on-chip programming language.
From this SPMD program, a compiler will transform and reorganize the code to achieve the best performance
in the target PRAM-on-chip execution model. As a PRAM-on-chip programmer gains experience, he/she
will be able to skip box 2 (the Work-Depth model) and directly advance from box 1 (high-Level Work-Depth
description) to box 4 (high-level PRAM-on-chip program). We also demonstrate some instances where it
may be advantageous to skip box 2 because of some features of the programming model (such as some ability
to handle nesting of parallelism). In Figure 1 this shortcut is depicted by the arrow 1 → 4. Much of the
current paper is devoted to presenting the methodology and demonstrating it. We start with elaborating on
each model.

2.1 PRAM Model

PRAM (for Parallel Random Access Machine, or Model) augments the standard serial model of computation,
known as RAM [AU94], with parallelism. A PRAM consists of p synchronous processors and a global
shared memory accessible in unit time from each of the processors. The only mean of inter-processor
communication is through the shared memory. Different conventions exist regarding concurrent access to the
memory, including: (i) exclusive-read exclusive-write (EREW) under which simultaneous access to the same
memory location for read or write purposes are forbidden, (ii) concurrent-read exclusive-write (CREW),
which allows concurrent reads but not writes, and (iii) concurrent-read concurrent-write (CRCW) where
both are permitted, and a convention regarding how concurrent writes are resolved is specified. One of these
conventions, Arbitrary CRCW, stipulates that concurrent writes into a common memory location result in
an arbitrary processor, among those attempting to write, succeeding, but it is not known in advance which

4

Figure 2.8: Proposed methodology for developing PRAM-On-Chip programs in view

of the work-depth paradigm for developing PRAM algorithms
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2.4.1 Development of PRAM-On-Chip (XMT) Program

2.4.1.1 Work-depth Model

Introduced in [42], the work-depth model has been widely used in designing

and reasoning about PRAM algorithms. Depth is the number of steps an algo-

rithm takes, assuming unlimited hardware is available, and work is the number of

operations performed in overall parallel steps.

High-Level Work-Depth (HLWD) description A HLWD description consists

of a sequence of parallel rounds, each round being a set of any number of

operations that can be performed concurrently. A HLWD description is an

informal algorithmic description that needs to be translated to a more concrete

work-depth model.

Work-Depth model In the Work-Depth model an algorithm is described in terms

of successive time steps, where the concurrent operations in a time step form

a sequence; each element in the sequence is indexed from 1 to the number

of operations in the step. The Work-Depth model is formally equivalent to

the PRAM. For example, a work-depth algorithm with T (n) depth (or time)

and W (n) work runs on a p-processor PRAM in at most T (n) + bW (n)
p
c time

steps. The work-depth model does not allow nesting of parallelism to remain

unresolved.
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2.4.1.2 PRAM-On-Chip (XMT) Programming Model

The PRAM-On-Chip programming model needs to solve two problems prop-

erly. (i) Programmability: given an algorithm in the HLWD or Work-Depth models,

the programmer’s effort in producing a program should be minimized; and (ii) Imple-

mentability: effective compiler translation of the program into the XMT execution

model should be feasible.

The XMT processor uses a fine-grained SPMD (Single Program Multiple Data)

programming model and it has two executing modes: serial and parallel. The two

instructions, spawn and join, specify the beginning and end of a parallel section

(executed in parallel), respectively. Any number of parallel threads can be declared

by two integer values: low and high, which means that the thread IDs range be-

tween low and high, and all threads can be executed concurrently. Two important

primitives in the XMT programming model are described below.

Prefix-sum operation The prefix-sum (ps) is essentially a multi-operand fetch-

and-add operation. The primitive is especially useful when several threads

simultaneously perform a ps against a common base, which will take a con-

stant time regardless how many threads are joining the operation. When each

of incremental variables have value 1, all threads will receive different return

values, which can be used for (i) load balancing (threads assignment to pro-

cessors), and (ii) inter-thread synchronization.

Nested parallelism A parallel thread can generate a new thread. The support of

nested parallelism allows XMT programmers to take a shortcut from 1 to 4 in
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figure 2.8, instead of having a full stop at 2.

An XMT-C program example is shown below. XMT-C, which is used as the main

performance programming language for XMT, is an extension of the standard C

language. As an example, simple XMT-C code for the so-called “compaction prob-

lem” is shown below. Given an array A of size n, and a binary array B of size n,

the compaction problem is to compact all elements in A[i] for which B[i] is 1 into

an array D, where order in D does not matter.

psBaseReg x =0;

spawn (0 ,n−1){

i n t e ;

e = 1 ;

i f (B[ $ ] ) = = 1){

ps ( e , x ) ;

D[ e ] = A[ $ ] ;

}

}

First, in serial mode, the global register x is declared and initialized to 0. Then the

spawn instruction activates parallel mode where there are n threads in the range 0

to n − 1. $ is the thread ID and, if the corresponding value in array B is 1, the

thread will do a prefix-sum operation to the global register x and then move the

data in A[$] to D[e]. The threads which copy A[$] to D[e], will get a unique value
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from e by doing a prefix-sum operation on x with value 1.

2.4.1.3 PRAM-On-Chip (XMT) Execution Model

With the XMT execution model, the execution time of an algorithm can be

analyzed. Advanced programmers may want to know about the XMT execution

model to optimize their code from a high level. However, the XMT execution model

is primarily used by the compiler as a guidance of optimizing. In the execution

model, a program could include: (i) Prefetch instructions to bring data from the

lower memory hierarchy levels either into the shared caches or into the prefetch

buffers located at the TCUs; (ii) Value broadcastng: some values needed by all, or

nearly all, TCUs are broadcast to all threads; (iii) Thread clustering: combining

shorter virtual threads into a longer thread; and (iv) If the programming model

allows nested parallelism, the compiler will use the mechanisms supported by the

architecture to implement or emulate it.

A formula for estimating execution time based on these extensions is provided.

The depth of an application in the XMT execution model includes the following

three quantities: (i) Computation Depth, given by the number of operations that

have to be performed sequentially, either by a thread or while in serial mode. (ii)

Length of Sequence of Round-Trips to Memory (or LSRTM) which represents the

number of cycles on the critical path spent by execution units waiting for data

from memory. For example, a read request or prefix-sum instruction from a TCU

usually causes a round-trip to memory (or RTM). Memory writes, in general, proceed
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without waiting for acknowledgments, thus not being counted as round-trips, but

the end of a parallel section implies one RTM used to flush all the data still in

the interconnection network to the memory. (iii) Queuing delay (or QD) which is

caused by concurrent requests to the same memory location; the response time is

proportional to the size of the queue.

We can now define the XMT “execution depth” and “execution time”. XMT

execution depth represents the time spent on the “critical path” (that is, the time

assuming unlimited amount of hardware) and is the sum of the computation depth,

LSRTM, and QD on the critical path. Assuming that a round-trip to memory takes

R cycles:

Execution Depth = Computation Depth + LSRTM ×R+ QD (2.1)

The equation does not count the overhead of queueing of virtual threads on the

TCUs when the number of virtual threads exceeds the number of TCUs and also

suppresses the overhead of starting new threads. For the full description of XMT

execution model, see [47].

2.4.2 XMT Compiler

Another key component of the XMT framework, the compiler is responsible

for taking advantage of features in XMT architecture. Most of the items listed below

are ongoing research projects in the XMT group.
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2.4.2.1 Optimization in Shortening LSRTM

Prefetching TCUs in the XMT processor have private prefetch buffers and the

compiler can take advantage of them by inserting prefetch instructions. For

read operations in a loop, a prefetch instruction for the next iteration can be

inserted for each read operation. For other read operations, prefetch instruc-

tions are inserted as soon as the addresses are available.

Using Read-only Buffers The per-cluster read-only buffers provides two func-

tions: (i) Combine read requests to the same location from TCUs in the

same cluster and reduce load in the interconnection network and shared cache

modules; (ii) Provide temporal locality for read-only memory accesses. Dur-

ing compiler optimization, normal read instructions are replaced with XMT-

specific read instructions that make use of the read-only buffers, if the value

can be guaranteed not to change during the current parallel mode. It is also

possible that programmers can help the compiler to find these memory loca-

tions, by using a keyword, constant, in variable definitions.

Value Broadcasting The current compiler is able to identify the variables that

need to be broadcast and replace the read instructions with broadcast instruc-

tions.

Release Consistency There are two types of store instructions in the XMT ISA:

blocking and non-blocking. Blocking store instructions block the TCU from

advancing to the next instruction until it gets an acknowledgement from the
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cache module. The blocking store makes sure all other TCUs will see the

new value before the next instruction is executed. On the other hand, the

non-blocking store will advance to the next instruction as soon as the request

is accepted by the interconnection network. The XMT ISA includes a fence

instruction, sflush (store flush), that blocks the TCU until all previous non-

blocking stores have been committed to shared caches. The blocking store

instruction is functionally equivalent to a non-blocking store instruction fol-

lowed by a sflush instruction.

The compiler is responsible for selecting the proper store instructions based

on the synchronization requirement of programs. One possible optimization

is to use non-blocking store instructions and insert sflush instructions when

necessary.

2.4.2.2 Nested Parallel Sections

Some PRAM algorithms can be expressed with greater clarity and conciseness

if nested parallelism is supported. The XMT architecture has the capability of

increasing the number of threads within parallel mode with sspawn and this can be

used for implementing nested parallelism in the compiler.

The sspawn can generate one new thread at a time, but multiple threads

can execute sspawn simultaneously and generate multiple new threads. When a

parallel thread needs to generate multiple threads, a binary tree mode can be used

to expedite the process. Assume that a thread i needs to generate n new threads,
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then it will execute a sspawn instruction which generates a child thread j. After

this, n − 1 needs to be generated and this can be shared by the parent thread (i)

and child thread (j). Now, thread i and j will both need to generate n−1
2

. This

process continues until all n new threads are generated. During this process, proper

initialization is needed. See section 2.2.3.

It is also possible to introduce a kspawn instruction that generates k threads

at a time instead of one from sspawn.

2.4.2.3 Clustering Threads

The XMT programming model allows programmers to declare any number of

threads in parallel mode, however, as explained earlier, this will result in serialization

in a limited number of TCUs in hardware. In case the number of threads, N , is

much larger than the number of TCUs, p, it is possible to group a few original

threads to a new longer thread and reduce the number of total threads. We call

this thread clustering. Thread clustering has a few advantages: (i) By having longer

threads, the compiler can pipeline memory accesses and overlap latencies. This can

reduce the penalty of round trips to memory (RTMs) and queueing delays (QDs)

from serialization in short threads. (ii) Although the XMT is very efficient in thread

handling, there is some overhead for starting a new thread. Less threads will result

in reduced overhead in execution.

Clustering without Nested Spawns Suppose the program has N threads

and N � p, where p is the number of TCUs available in the XMT processor. A
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simple way of clustering threads is grouping them into N
c

threads, where c is a

function of p. In trivial cases, c = p.

Clustering for single-spawn and k-spawn When the number of threads is

changing in parallel mode, dynamic scheduling can be introduced for clustering. The

number of threads in the queue waiting for TCUs can be obtained at run time and

this information can be used to determine whether a new thread will be generated

or not. If the queue of waiting threads is too long, a thread can simply execute the

child thread, which would be generated after it finishes the current thread. In the

opposite case, when there are idling TCUs, the current thread can generate a child

thread and let it share the load.
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Chapter 3

XMT FPGA Prototype and Performance Evaluation

A 4-cluster 64-TCU XMT prototype system was built with 3 Xilinx FPGA

chips. With the prototype system, we can evaluate the architecture by running

heavier programs with large inputs. The prototype system is about 11-12K times

faster than the XMT architecture simulator. In this chapter, the details of the

prototype system are presented and then 8 kernels, which are used as benchmarks,

are described. At the end, the performance results are presented and analyzed.

3.1 Specifications of the XMT FPGA Prototype

The XMT FPGA prototype system is built on a FPGA development board

purchased from a third party and it uses 2 Xilinx Virtex-4 LX200 and 1 Xilinx

Virtex-4 FX100. The board can be plugged into a PCI slot of a computer and

communicates with the host computer through the PCI interface.

3.1.1 Partitioning the XMT Processor

Unlike an Application-Specific Integrated Circuit (ASIC), a Field Programmable

Gate Array(FPGA) provides programmable logic and interconnects, which is very

important for prototyping and logic verification, since potential mistakes can be

fixed easily. The other advantage of FPGA prototyping is the low cost compared
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to an ASIC counterpart. However, the disadvantage of the FPGA implementation

is slow clock speed and low logic density. The research results show that FPGA

implementation is 3 to 4 times slower and takes 21 to 40 times the area of an ASIC

implementation [31]. Because of the low logic density, 3 FPGAs are needed to im-

plement a 64-TCU XMT processor, but it is reasonable that a much bigger XMT

processor can be fit into a single chip if an ASIC chip is designed.

Figure 3.1 shows the partitioning of the 64-TCU XMT prototype. One should

note that FPGA A and B (V4LX200) have twice the logic cells of FPGA C (V4FX100).

FPGA A includes a master TCU, prefix sum unit, two clusters (32 TCUs), global

register file and PCI logic blocks. FPGA B implements the interconnection net-

work, eight cache modules, memory controller and one cluster (16 TCUs). The

interconnection network provides all-to-all, full duplex communication between 4

clusters and 8 cache modules. The master TCU shares an interconnection network

port with cluster 0 and the PCI interface shares a port with cluster 1. Each cache

module is 32KB and all of them communicate with off-chip SDRAM through the

only DDR2 memory controller. FPGA C implements only one cluster (16 TCUs).

3.1.2 Specification of the XMT FPGA Prototype

The master TCU has 8KB of local data cache, which applies a direct map,

write-through policy. The hit access time is one cycle, meaning that a stream of

read operations can be serviced at a rate of one read per cycle, when they result in

cache hits. If a read operation turns out to be a cache miss in the MTCU local cache
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Figure 3.1: Partitioning of the XMT processor for 3 FPGAs

(mcache), but a cache hit in the shared cache, then the access time is 25 cycles. The

decomposition of the 25 cycles are shown on figure 3.2. The delay on crossing FPGA

boundaries is different for each direction. This is due to the different behavior of

each recipient. When read requests are ready to be sent to interconnection network

from a cluster, it is possible that the buffer in the interconnection network is full and

cannot accept new packets. In this case, the cluster should hold the request until

the interconnection network is ready to receive packets. So, a simple handshaking is

necessary. However, when the response comes from cache module through intercon-

nection network, it is guaranteed to be accepted by the MTCU and clusters because
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Figure 3.2: Decomposition of MTCU cache miss penalty

they are designed to process the response immediately all the time. When a response

arrives at the mcache, the address of the operation needs to be retrieved using the

response ID, then the value is updated to the mcache. This explains why it takes

two cycles (cycle 23 and 24). The number of cycles for traveling the interconnection

network is log2(#Cluster ×#Cache) = log2(4× 8) = 5.

There are 8 parallel cache modules in the FPGA prototype computer, which is

twice of the number of clusters in the prototype. With the same number of clusters

and cache modules, the cache system may not be able to match the throughput of

the clusters, when cache misses are considered. By having two cache modules per

cluster, the overall throughput of the cache modules are more likely to match that of

clusters. As noted in above figure, the cache hit access time is 3 cycles: tag access,

data access and result buffer update. The shared cache modules are designed with

throughput as the first priority. These cache modules are non-blocking, meaning

each of them can hold up to 64 pending cache misses accessing eight different cache
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lines.

When a shared cache access turns out to be a miss, the data will be fetched

from SDRAM. The latency of accessing SDRAM is not deterministic, and depends

on the status of the SDRAM. The eight cache modules share one SDRAM channel,

so the latency will increase when multiple requests are sent to the memory controller

from different cache modules simultaneously. It is always desirable to have a low

latency, high throughput memory controller, but it is quite difficult to achieve both.

Like the shared cache, the memory controller is designed with overall throughput

as its first priority.

SDRAM chips have multiple banks that can operate in parallel to increase the

data transfer rate. Each cache module is mapped to a SDRAM bank. Recall that

each cache module can send requests for up to eight different cache lines, so the

memory controller has 8 buffers for these different requests. SDRAM access latency

and throughput is highly dependent on the order of the requests[40]. The memory

controller in XMT FPGA prototype tries to reorder the requests from different

banks as well as within a bank. Figure 3.3 shows the miss penalty decomposition

when there is no contention. The miss penalty is 30 cycles. During cycles 5-7 the

memory controller will choose among the eight possible requests, selecting the one

that is best for throughput. Eight SDRAM banks share one command channel, so

any SDRAM command needs to pass a 3-cycle arbitration tree (cycle 8-10, 12-14).

It will take one more cycle to confirm that the ACT command has been sent (cycle

11). Then two cycles, 15 and 16, are used for SDRAM column access delay. The

SDRAM data transfer rate is twice the SDRAM clock rate and quadruple that of
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the XMT FPGA prototype, so a burst length of 4 becomes 1 cycle in the XMT

clock domain. Synchronization and buffering take another 3 cycles (18-20). After

the data is transferred back to the shared cache, it will get the address from the ID

(cycle 21) and then update the cache in 8 consecutive cycles(22-29). Finally, the

results will be sent back to the cluster in cycle 30.

 

MC requestor buffer(1) 

Read/write arbitration(1) 

Find the best request of the bank(3) 

ACT DRAM command(4) 

READ command (3) 

DRAM CL(2) 

update cacheline(9) 

result ready(1) 

3 4 7 14 16 20 29 30 11 

synchronization /buffering (3) 

17 

data transfer(1) 

cache access(miss) (2) 

2 

Figure 3.3: Decomposition of shared cache miss penalty

As shown in figure 3.3, multiple requests from the same bank can be over-

lapped. SDRAM command cycles (8-14) cannot be overlapped with other SDRAM

command cycles from the same bank, which means that a bank can serve one request

per seven cycles and use one cycle (17) of data bus. Considering there are 8 cache

modules (or banks), it is possible to utilize the data bus to its maximum. How-

ever, SDRAM refresh and read/write change also reduce the data bus utilization. It

should be noted that the 30 cycles shown in figure 3.3 is a relatively optimistic es-

timate, since it does not include any delays caused by contention from other banks.

The ACT SDRAM command cycles can be waived if the SDRAM status permits
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and then the miss penalty can be 26 as the best case. For the worst case, the cache

miss service time can be hundreds of cycles.

The number of cycles needed for a prefix-sum operation varies between 10 and

25, depending on the number of global registers used in the program. Recall that,

the prefix sum unit is used for ps operation for the 8 global registers, but at any

given cycle it can only be used for one particular global register, the active base

register. On the other hand, a TCU can send a ps request for any of the 8 global

registers, a pending base register. When a TCU executes a ps instruction, it waits

until the active base register matches the pending base register. The prefix-sum

unit monitors pending base registers from all TCUs and switches the active base

register among those pending base registers. If only one global register is used in

the program and the active base register of the prefix-sum unit matches that global

register, a ps operation will take only 10 cycles (figure 3.4 (b)). If the active base

register does not match the pending base register from a TCU, the TCU has to

wait until the prefix sum unit switches the active base register to the pending base

register and this procedure takes up to 15 cycles (figure 3.4 (a)). The average number

of clock cycles for ps operations increases with the number of global registers used

simultaneously by a program.

Most ALU instructions and data movement instructions take only one cycle.

The branch instruction takes only one cycle for a branch not taken and four cycles

for a branch taken, which needs to flush the pipeline. The shift instruction takes

two cycles, this is only for the FPGA implementation and can be reduced to one

cycle in an ASIC implementation. More detailed specification of the XMT FPGA
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Figure 3.4: Prefix-sum operation

prototype system is listed in table 3.1.

3.1.3 Envisioned XMT Processor

The XMT FPGA prototype is a scaled-down version of an envisioned XMT

processor [48, 36, 51], which is shown in figure 3.5. We aspire to have in the not-

too-far future an XMT processor that has 1024 TCUs grouped into 64 clusters and

64 (or 128) on-chip memory modules. Each memory module consists of two levels

of caches and memory access ports are shared by multiple L2 cache modules. The

MTCU has local instruction and data caches for better backwards compatibility

with serial programs.
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Table 3.1: Specifications of the XMT FPGA prototype

Clock rate 75MHz

Number of TCU clusters 4

Number of TCU per cluster 16

Memory size 1GB DDR2

Number of shared cache modules 8

Size of each shared cache module 32KB

SDRAM. data rate 2.4GB/s

MTCU local cache 8KB

MTCU memory access local hit 1 cycle

MTCU memory access local miss, shared cache hit 25 cycle

TCU shared cache access hit 30 cycles

Shared cache miss penalty 26∼hundreds of cycles

TCU ps operation 10∼25 cycles

MTCU,TCU ALU operation 1 cycles

MTCU,TCU SHIFT operation 2 cycles

MTCU,TCU BRANCH penalty 4 cycles

MTCU multiplication 6 cycles

MTCU division 36 cycles

TCU multiplication, division sharing overhead 4 cycles

Number of multiplication/division units per cluster 1

Number of ALU,BRANCH,SHIFT units per cluster 16
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Figure 3.5: An envisioned XMT processor

3.2 Benchmarks

As a prototype, the XMT FPGA computer is not a full system, and the number

of applications we can test on it is quite limited. First, it does not support floating

point operations and as a result, many real applications and benchmarks, such as

SPLASH, are out of consideration. The other limitation of the prototype is that

the parallel section cannot have any function calls, because TCUs do not have

instruction caches and the size of the instruction buffer is quite limited. And most

importantly, the prototype system is not ready for an OS. These limitations are

only for this version of prototype and will be eliminated in the future, when we can

test the system with a broader set of applications. With the above limitations, the

following eight kernel benchmarks are chosen to test the performance of the XMT

FPGA prototype. Fortunately, with these integer programs, we are able to test the
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performance of the memory system, which is the most interesting part of the XMT

architecture. The eight benchmarks consist of a variety of memory access patterns

including regular (mmul, conv and add), irregular (BFS, DAG and BST) and a

combination of these two (qsort and compaction).

3.2.1 Matrix Multiplication (mmul)

Problem description: Given two integer matrices X and Y, calculate matrix Z, the

product of X and Y.

Algorithm: Assign a thread for each row of Z.

3.2.2 Quick Sort (qsort)

Problem description: Given an unsorted integer array X, sort the array X in an

ascending order.

Algorithm: The parallel quicksort[25] used in the experiment has two phases : (1)

the input array is partitioned using dual storage. Namely, rather than copying

values in place, copying is done into a separate array to facilitate greater

parallelism. partitioning continues until the number of blocks exceeds the

number of TCUs in the system; (2) each block is sorted by a thread, which is

dynamically assigned to a TCU.
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3.2.3 Breadth-First Search (BFS)

Breadth-first search in parallel: Given a connected, undirected graph G(V,E)

and a vertex s∈V, the breadth-first search (BFS) method visits vertices in the fol-

lowing order: First, visit s, then visit (in some order) all the vertices w∈V, where

the edge (s,w)∈E; denote the set of these vertices by V1, and the singleton set con-

sisting of s by V0; in general, Vi is the subset of vertices of V which are adjacent to a

vertex in Vi−1 and have not been visited before (i.e., they are not in any of the sets

V0, V1, ..., Vi−1). Each set Vi is called a layer of G and i is the level of any vertex v,

v∈ Vi.

The following arrays are given as the input of the BFS problem. Let m be the

number of edges and n be the number of vertices.

• edges[2m][2]: the start and end vertex for each edge, in the ascending order of

starting vertex ID. Each edge is recorded twice as two directions.

• vertices[n]: the index in the edges array where the edges for each vertex begins.

• degrees[n]: the degree of each vertex.

The parallel BFS algorithm solves the problem layer by layer. By tracing all

edges from the starting vertex, the V1 set can be found. Now assuming that in layer

k set Vk is known, we can find set Vk+1 in parallel. For each vertex in Vk, a thread

is assigned and each thread can generate more threads if the vertex has many edges

to check. The thread checks if the end point is not visited, in which case the end

vertex will be added to set Vk+1. Note that the prefix-sum operation is used in

63



two places: (1) determine which thread discovered a vertex in Vk+1. (2) make sure

multiple threads can add vertices to set Vk+1 simultaneously.

3.2.4 Finding Longest Path in DAG (DAG)

Given a directed acyclic graph (DAG), for each vertex in the graph, find the

longest path from a source to the vertex. The following arrays are given as the

input of the DAG problem. Let m be the number of edges and n be the number of

vertices.

• inDegree[n]: the number of edges ending with each vertex.

• outDegree[n]: the number of edges starting with each vertex

• outEdges[m][2]: the start and end vertices for each edge, in ascending order of

starting vertex ID.

• outVertices[n]: the index in the outEdges array where the edges for each vertex

begins.

The parallel algorithm works as described below. Each vertex has a variable,

current longest path, keeping the longest path among the visited incoming edges,

which is initialized to 0.

1. Scan the inDegree array and collect all vertices whose inDegree is 0 into Vdone,

and the longest path for these vertices are 0.

2. Spawn thread for each vertex in Vdone and each thread will handle all outgoing

edges from the vertex.
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3. If an outDegree of a vertex is high, then it may spawn a new thread and share

the load among parent and child threads.

4. Each thread calculates the path length to the end vertex with this particular

edge and updates current longest path with the maximum of current and new

one.

5. When a thread found it has visted the last incoming edges of a vertex, the

longest path to the vertex is known and it generates a new thread for that

vertex.

6. When all threads finish, the longest path is calculated for all vertices.

3.2.5 Array Summation (add)

Problem description: Given an integer array X, calculate the sum of all its elements.

Algorithm: Using coarse-grained parallelism, divide the input array into m sub ar-

rays, where m is the number of total TCUs in the XMT processor (that is 64

for the prototype). Each TCU calculates the sum of the sub arrays and we

then serially add them to get the sum of the input array.

3.2.6 Array Compaction (comp)

Problem description: Given an array A = A(1), . . . ,A(n) of (any kind of) elements

and another array B = B(1), . . . ,B(n) of bits (each valued zero or one).

The compaction problem is to find a one-to-one mapping from the subset of
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elements of A(i), for which B(i) = 1, 1 ≤ i ≤ n, to the sequence (1, 2, . . . ,

s), where s is the (a priori unknown) number of ones in B. In our testing, we

generated a new array C, which consists of A(i), for which B(i)=1. The order

of the elements in array A is not preserved.

Algorithm: This is an extremely fine-grained algorithm. A thread handles one ele-

ment in A(i) by copying A(i) to array C if B(i) =1. The prefix sum operation

is used for finding a destination index in array C, to let multiple threads copy

into C simultaneously.

3.2.7 Convolution (conv)

Problem description: Given a two dimensional image array of X (n×n), and another

filter array of F(m×m), this problem uses a dot product to generate a filtered

array Y. For element X(i,j), where 1 ≤ i, j ≤ n−m+1, the filtering operations

add the dot product of filter array F and sub array of X, X(i:i+m-1,j:j+m-1)

to X(i,j).

Algorithm: The algorithm is straightforward. Spawn a thread for each row in

X(i:i+m-1,j:j+m-1) to X(i,j), where 1 ≤ i, j ≤ n − m + 1. The work com-

plexity of the algorithm is O(n2 ·m2).

3.2.8 Binary Tree Search (BST)

Problem description: Given a balanced binary search tree (BST) and a set of keys,

search the keys in the BST. The BST has the following properties.
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• The left subtree of a node contains only values less than the node’s value.

• The right subtree of a node contains only values larger than the node’s

value.

Algorithm: Spawn a thread for each key and search the BST in parallel. Each thread

starts from the root; if the key is equal to the root, the key is found, otherwise

the search continues based on the comparison result. If the key is less than

the root, the search continues on the left subtree of the root, otherwise the

right subtree is searched. The search continues until the value is found in the

tree or a leaf of the tree is reached.

3.3 Performance Analysis

The eight benchmark kernels were executed on the XMT FPGA computer and

cycle counts, as well as other performance data, were collected. In this section, we

report our results and examine different aspects of the system.

3.3.1 Speedup relative to Serial Execution on MTCU and AMD Opteron

For each of the eight benchmarks described in section 3.2, two different input

sizes are tested. The program sizes are listed in figure 3.2. (L) represents large data

size and (S) represents small data size. In the table, The last two columns are the

memory space used by programs, which is collected from the compiler output.

Both serial and parallel versions of the eight benchmarks are executed on the

FPGA system. The speedup of parallel versus serial is shown in figure 3.6. The
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Table 3.2: Input size of the benchmarks

Application input size memory usage

parallel serial

mmul (L) 2000x2000 48MB 48MB

mmul (S) 128x128 192KB 192KB

qsort (L) 20 million 360MB 200MB

qsort (S) 100 thousand 1.8MB 1MB

BFS (L) V=1M, E=10M 220MB 100MB

BFS (S) V=100K, E=1M 21.6MB 9.6MB

DAG (L) V=1M, E=17M 368MB 160MB

DAG (S) V=50K, E=600K 13.4MB 6.0MB

add (L) 50 million 200MB 200MB

add (S) 3 million 12MB 12MB

comp (L) 20 million 208MB 208MB

comp (S) 2 million 20.8MB 20.8MB

BST (L) 16.8M nodes, 512K keys 205MB 205MB

BST (S) 2.1M nodes, 16K key 25.3MB 25.3MB

conv (L) image:1000x1000, filter:32x32 8MB 8MB

conv (S) image:200x200, filter:16x16 320KB 320KB
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upper bound of the speedup is 64, since a maximum of 64 threads are active for the

parallel program.
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Figure 3.6: Speedups of the benchmarks (parallel Vs. serial in XMT)

Overall, the speedups shown in figure 3.6 are quite good. It should be noted

that the MTCU is a 4-stage, single-issue, in-order execution processor, which is

similar to one of the TCUs in the cluster. In this sense the speedup may be more

appropriately be described as the efficiency of parallelism. The primary difference

between the MTCU and TCU is in memory access. The MTCU has an 8KB local

cache, and the cache hit latency is one (no bubble in the pipeline). Although TCUs

have four prefetch buffers and can use a cluster-wide read-only buffer, they often
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need to make a round trip to the shared cache to access memory.

Two computational benchmarks, mmul and conv, achieved the maximum

speedup. This is because these programs are highly CPU-bound and both have very

regular memory access patterns, which make it easy to take advantage of software

prefetch commands in XMT. Considering that there are only four multiplier/dividers

in the chip, the speedups are very impressive.

On the other hand, the qsort, add and comp benchmarks, which are memory-

bound programs, showed moderate speedup of 18.3∼30.6. Note that, while the

FPGA computer has 64 TCUs, they are grouped into 4 clusters, and all 16 TCUs

inside a cluster share one load/store port of the cluster. On the cache side, there

are 8 shared cache modules, so on average, 8 TCUs share one cache module. More

importantly, the FPGA computer has only one off-chip SDRAM channel shared

by all 8 on-chip cache modules. For the memory bound applications, these shared

resources can be saturated and prevent us from getting higher speedup numbers.

The two graph related applications, BFS and DAG, are fine-grained and their

memory access pattern is irregular. XMT FPGA has speedups of 16.4∼23.3 for

these two benchmarks. Note that these two programs are known to be very difficult

to parallelize in the traditional coarse-grained parallel computers. Irregular memory

access patterns reult in low cache hit rates in the shared cache and low speedups

due to many active threads in parallel execution relative to its small on-chip shared

cache in the prototype. The cache hit rate is discussed in the next section.

The BST program showed a relatively low speedup of 8.55 in the large input

set, and 13.5 in the small input set. Recall that the BST is a balanced binary tree
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and a search proceeds from the root of the tree and advances towards leaves until

the key is found or a leaf is reached. The upper part of the tree, especially the

root, is accessed by all threads repetitively, which adds queuing delay to the TCUs.

The read-only buffer has the ability to combine the memory read requests from a

cluster, but it is still not enough. The small size of the read-only buffer (8KB) and

its direct mapped scheme limited its advantage. Unlike the local cache in MTCU,

which is used only by one thread, the read-only buffer is shared by all 16 TCUs

in a cluster, meaning 512 bytes per thread, which is extremely small to be able to

take advantage of temporal locality. The increased speedup in the small input set

confirms the explanation above.

3.3.2 What is Happening inside the XMT Processor?

In the previous section, the cycle counts and speedup of the parallel versus

serial versions are reported. In this section, we will investigate the performance of

the XMT processor with a close look at some of the components of XMT.

3.3.2.1 Bandwidth Utilization in Memory Access

XMT is a shared memory architecture and all TCUs access the shared memory

space through the interconnection network. It is interesting to understand how the

interconnection network is used in each of the benchmarks. The idea of grouping

16 TCUs into a cluster and assigning one interconnection network port to a cluster

is to allow efficient utilization of the interconnection network. Note that the cost of
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the interconnection network, both in terms of area and delay, increases significantly

with an increase in the number of ports. For all benchmarks, we calculated the total

number of packets delivered by the interconnection network as well as the number

of requests processed by the load/store (LS) unit inside clusters. After introducing

the read-only buffer in the clusters, some requests from TCUs can be processed

locally without sending packets to the interconnection network. If a request cannot

be served by the read-only buffer, the LS unit will decompose the request into

packet(s). The number of packets that will be sent and received are listed in table

3.3.

Table 3.3: Number of packets in requests

Request # of packets sent # of packets received

Read 1 1

Write/PSM 2 1

SDRAM prefetch 1 0

The bandwidth utilization of the interconnection network and normalized

throughput of the LS units are shown in figure 3.7. The number of total requests

processed by the LS units is divided by the total number of the parallel cycles and

the number of LS units in the XMT processor, which is 4 in this prototype. The

total number of packets transferred from clusters to the cache modules are divided

by the number of cycles in parallel mode and the number of clusters, 4.

Four benchmarks: mmul, qsort, add and comp showed a high utilization rate
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Figure 3.7: Normalized throughput of LS unit and interconnection network. ‘LS’ at

the bottom of the bar indicates LS unit and ‘IN’ at the bottom of the bar indicates

interconnection network.

of the LS unit or interconnection network. For mmul and conv, where the read-

only buffer is extensively used, the LS unit is almost fully loaded, but the network

has much less traffic. For other benchmarks, where the read-only buffer is not used

extensively, the interconnection network is more crowded than the LS units, because

the LS unit uses one cycle to process a write operation that will then require two

packets(address and data), and, therefore two cycles in the interconnection network.
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The 3 benchmarks BFS, DAG and BST used a very small portion of the bandwidth

available. This is because of the long latency in cache accesses due to the low hit

rate and extensively long queue in the cache module (BST).

3.3.2.2 Breakdown of Execution Cycles

It is good to know what portion of the overall XMT cycles are spent on each of

the categories, such as ALU operation(alu), multiplication/division (md), memory

access (mem), register based prefix-sum operation (ps), memory based prefix-sum

operation (psm), idle time and bubble cycles. The idle time is the number of cycles

a TCU spent in the sleep state shown in the figure 2.5. The bubble cycles are

mainly for the branch misprediction, but also include cycles wasted because of an

instruction buffer miss. Figure 3.8 shows the breakdown of the execution time of all

benchmarks. For each benchmark, serial versions are shown on the left and parallel

versions are shown on the right. The input size for benchmarks is the large one, as

listed in table 3.2.

In general, memory access takes a significant portion of the overall execution

time in both serial and parallel execution. This is due to the small amount of on-

chip cache and large input data size. The cache hit rate is listed in table 3.4. Cache

hit rate is calculated for read operations only. In serial execution only lw (load

word) instructions are counted and the prefetch instructions are not counted. For

the parallel execution, since the prefetch instructions replace some read instructions

from the view of the shared cache modules, they are counted as well, but SDRAM
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Figure 3.8: Breakdown of serial and parallel execution time in XMT FPGA proto-

type. For each benchmark, left bar is for serial execution and right bar is parallel

execution.

prefetch is not counted. From the table we can find that the cache hit rate is low

for BFS, DAG, qsort and BST. Figure 3.8 also shows that these benchmarks spend

a large portion of execution time on memory accesses.

Since the interconnection network is an expensive component in the XMT processor

in terms of hardware implementation cost, XMT tries to increase the utilization of

the interconnection network by letting multiple TCUs share one interconnection

port. As a result the individual TCUs may have longer cache access latency and
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Table 3.4: Cache hit rate

execution mmul qsort BFS DAG add comp BST conv

serial 0.688 0.953 0.681 0.587 0.874 0.993 0.794 0.918

parallel 0.75 0.57 0.31 0.50 0.88 0.78 0.43 0.99

spend more time on memory access. In figure 3.8, the parallel programs spent a

larger percentage of the time on memory access than their serial counterpart.

3.3.2.3 Average Latency for Read Operations

Like simultaneous multi-threaded (SMT) architectures, TCUs in the same

cluster share some functional units. 16 TCUs in a cluster share one LS unit and

one interconnection network port. The cache modules are also shared by all TCUs.

The cache module and the LS unit are only capable of processing one requests per

cycle, so when multiple requests arrive, queuing is necessary and results in a longer

delay. As a result, a read operation may take extra cycles in addition to the number

of cycles needed to travel the interconnection network. Prefetching may shorten the

delay by sending a read request earlier than the value is actually needed by a TCU.

The read-only buffer stores values that are safe to be cached and shared by TCUs,

and which are identified by a special read command. Requests from other TCUs for

the same memory location may be served locally by the read-only buffer, instead

of fetching values from a shared cache through the interconnection network. This

helps not only to reduce the traffic load in the interconnection network, but also to
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reduce the access latency.

Figure 3.9 shows the average latency of read operations in serial and parallel
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Figure 3.9: Average latency of read operations in the serial and parallel program in

number of cycles

executions. In general, the read operation delay in parallel mode was larger than in

serial mode. This is not surprising, because of the long latency of the round trip to

memory and resource sharing among TCUs. For the benchmarks that exhibit regular

access patterns, the read operation delay is significantly lower than the others. BST

had the worst performance in terms of read latency, more than 10 times longer than

serial execution. The low cache hit rate (see table 3.4) is one of the reasons, but
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more importantly, the data structure of the problem resulted in a long queue for

accessing the top of the tree, particularly the root. The small size (8KB) of the

read-only buffer and direct mapping caused the frequent replacement, which limited

the benefit of the read-only buffer.

TCUs can send prefix-sum requests that are using different global registers.

In such a case, the ps unit chooses the base register in a round robin fashion from

those that are requested. As a result, the latency of ps operation varies from 10 to

25 cycles.

The prefix-sum to memory (psm) operation does not have the limitation of

the register-based ps operation. (1) The increment amount is not limited to 0 and

1; it can be any integer. (2) There is no limit to the number of bases for psm

operations that can be used in the program simultaneously, while the number of

global registers is limited. These advantages come at the cost of performance. The

prefix-sum to memory operation is the most expensive memory access operation in

terms of latency, because of the round trip to memory delay and, furthermore, the

long queuing delay. Queuing of multiple prefix-sum operations to the same memory

location is very likely to happen, because prefix-sum to memory operations are used

to provide synchronization among multiple threads.

From table 3.5, it can be observed that the average latency of the global register-

based ps operations increases as the number of global registers used in a program

increases. Only two programs, BFS and DAG, used psm operations. As we expected,

the delay of the psm operation is quite long, which suggests that the programmer

should avoid using the psm operation if possible.
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Table 3.5: Average latency of ps and psm operations

item mmul qsort BFS DAG add comp BST conv

psm lat. - - 194 141 - - - -

ps lat. 10.0 12.0 11.8 13.1 10.0 10.0 10.0 10.0

# GR used 1 3 3 3 1 2 1 1

3.3.3 Wall Clock Time Comparison between Projected XMT Proces-

sor and AMD Opteron

In previous sections, various aspects of the performance of the XMT FPGA

computer are measured and evaluated, but we are not ready to compare the per-

formance of the XMT FPGA computer against any existing processors, because

the clock rate of the XMT FPGA computer is too low. It is clear that the XMT

processor with ASIC implementation can operate at a much higher clock rate, and

thus achieve much better performance in terms of wall clock time. In this section,

performance of an arbitrary XMT ASIC processor with a higher, yet quite modest,

clock rate is projected and compared with an AMD Opteron processor. An arbitrary

XMT processor with 800MHz internal clock, and 400MHz DDR2 SDRAM memory

is chosen for the performance evaluation of an XMT ASIC processor (see lower part

of figure 3.10). Both clock rates are quite reasonable and it is a bit conservative, con-

sidering the fact that 400MHz DDR2 SDRAM (PC2-6400) is commercially available

and MIPS32 r© 74KTM family cores operate at 1GHz.

If all components of the XMT FPGA computer are accelerated by the same
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Figure 3.10: The differences in the FPGA and ASIC implementation

factor, the cycle count will not change and the wall clock time will decrease at the

same ratio. Then we can easily project the performance of the XMT processor with

a higher clock rate. However, this is not the case for the XMT prototype, as shown

in figure 3.10. The behavior of SDRAM changes as clock rate increases, mostly

because many timing constraints in SDRAM operations are given in absolute time

(ns) and cycle times of different clock rates are different. In addition, the SDRAM

controller in the FPGA prototype is faster than the XMT core, while it is slower than

the core in the XMT ASIC counterpart. The challenge is how to apply constraints

to the SDRAM controller in the FPGA prototype so that the emulator behaves in

the same way as an 800MHz XMT processor in terms of cycle counts.

Based on our initial physical design with IBM technology and ARM standard

cells, the 64-TCU XMT processor takes about 100 mm2 in 90nm technology. As this

was an academic project by a team of only four students and with rather limited

optimization, this area usage should be interpreted as an upper bound on the area

needed. Unfortunately, we were not able to find the area information about the
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tested 2.6GHz AMD Opteron, but a similar configuration (same cache size) AMD

Opteron used 189 mm2 in 130nm technology[21]. Although it is not fair to compare

the two numbers directly, it is reasonable to believe that the XMT ASIC uses a

similar silicon area as the AMD Opteron processor tested.

3.3.3.1 DDR2 SDRAM Basics

DDR2 SDRAMs are three dimensional memory arrays: bank, row and column.

Accessing DDR2 SDRAM normally requires multiple steps. Banks are independent

of each other and have a row buffer. A typical access cycle of the SDRAM includes

three commands: ACTIVE, READ or WRITE and PRECHARGE. A row in a bank

can only be accessible after it has been brought to the row buffer, which is done

by the ACTIVE command. When an ACTIVE command is sent, the bank and

row number should also be sent along with it to SDRAM. After tRCD, a READ or

WRITE command, which specify the column address, can be sent to the active row.

Data will be available after CL cycles for READ and should appear on the data bus

after WL (normally WL=CL-1) cycles for WRITE command. A PRECHARGE

command is needed before sending a new ACTIVE command for other rows in the

same bank.

Periodical refresh is necessary for SDRAM or it will lose the data. Among the

many time constraints on SDRAM operations, only part of them, which determines

the performance of a SDRAM chip, are listed below. The second to last column is

the specification from a Micron DDR2 SDRAM chip, MT47H128M8x8 -25E, and
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the last column lists the equivalent number of cycles in 800MHz.

Table 3.6: Timing constraints for MT47H128M8x8 -25E

Symbol Parameter time cycle

(ns) in 800MHz

tRAS ACTIVE to PRECHARGE 45 36

tRCD ACTIVE to READ/WRITE 12.5 10

tRC ACTIVE to ACTIVE(same bank) 55 44

tRRD ACTIVE to ACTIVE(different bank) 7.5 6

CL READ to the first data 12.51 10

WL WRITE to the first data 101 8

tRTP READ to PRECHARGE 7.5 6

tWTR WRITE to READ 7.5 6

tWR WRITE to PRECHARGE (write recovery) 15 12

tRP PRECHARGE period 12.5 10

3.3.3.2 Slowing Down the DDR2 SDRAM

The idea of projection is to design a low clock rate system that behaves exactly

as the high clock rate system in terms of cycle count. In other words, if the low

clock rate system is cycle-accurate for the high clock system, the cycle count can

be used for evaluating the high clock rate system. For example, tRCD in table 3.6 is

1converted from cycle counts for 400MHz
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12.5ns, which is 10 cycles in 800MHz, but less than 1 cycles in 75MHz. To project

a 800MHz XMT system, delay of 10 cycles needs to be used for tRAS instead of 1

cycle. The number of cycles used for the XMT FPGA projection system are listed

in table 3.6 with exception of CL and WL. The value of CL is limited to certain

numbers and the proper number for projection, 10, is out of the range. This problem

is solved by using the natural CL=3, but delaying READ or WRITE commands to

accommodate the differences in the two systems. For CL and WL, 12 cycles and 11

cycles are used for delay, respectively. These delays also accommodate the difference

in the data transfer rate or the burst length in cycles. A burst of 4 columns takes 1

cycle in the XMT FPGA 75MHz system, but 4 cycles in the XMT ASIC 800MHz

system.

Figures 3.11 (a) and (b) show the read timing in the XMT FPGA 75MHz

system and the envisioned XMT ASIC 800MHz system respectively. The tRCD and

CL times are converted to the number of cycles in the corresponding clock. To make

the XMT FPGA 75MHz system cycle-accurate for XMT ASIC 800MHz, the DDR2

READ commands were delayed so that the last data arrives 24 cycles later as shown

in figure 3.11 (b). The READ command is delayed for 12 cycles to accommodate

the CL difference and data transfer rate.

The SDRAM bandwidth is also reduced to match the imaginary 800MHz XMT

system, where the SDRAM data transfer rate (after doubling the command clock

rate) is the same as the internal clock rate and a READ/WRITE command can be

sent to the SDRAM every 4 cycles, because the minimum burst length is 4 cycles. To

emulate this, the READ/WRITE commands from all banks are queued and issued
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to the SDRAM only every 4 cycles. This results in 3 bubble cycles in the XMT

75MHz, where a burst of 4 columns are transferred in 1 cycle, because the SDRAM

transfer rate is 4 times 75MHz, or 300MHz.

Similarly, the rest of the DDR2 commands are also limited to 1 command

per 2 cycles, which is done in a similar way to the READ/WRITE command. All

commands other than READ/WRITE are queued in another queue and committed

only after an empty cycle.

Table 3.7 summarizes major modifications applied to the prototype for a

proper emulation.

Table 3.7: Modifications for performance projection

Item 75MHz 75MHz 800MHz

emulating emulated

800MHz

Read latency a (cycle) 3.5 b 24.5 24.5

Maximum DRAM command per cycle 2 0.5 0.5

Peak bandwidth 2.4GB/s 0.6GB/s 6.4GB/s

aLatency of DRAM access depends on many factors. We only noted the latency of a read oper-

ation, under some DRAM assumptions. For those familiar with DRAMs and DRAM terminology,

the assumptions are that the reading is done from a closed bank and there are no activities in

other banks.
bThe DRAM controller operates at 150MHz and one cycle in 150MHz is converted to half a

cycle in 75MHz
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3.3.3.3 Validation of the Projection

The XMT 800MHz was also simulated using verilog with the DDR2-800 model

from Micron [53]. Since the simulation model from Micron is an accurate represen-

tation of a real DDR2 SDRAM chip, the cycle counts acquired from the verilog

simulation can be used as the reference. The limitation of the simulation is the long

simulation time. We chose a few programs to check the accuracy of our projection.

Table 3.8 lists the number of cycles measured in both simulation and emulator for

different sizes of a random memory access test. This test mixes different types of

memory accesses: continuous read (CR), randomized read (RR) and randomized

write (RW), in the ratio of 2:1:1 (CR:RR:RW). The total amounts of memory ac-

cessed by each test are listed in table 3.8. Table 3.9 lists the results from the eight

kernel benchmarks with small input size described in table 3.2. From tables 3.8 and

3.9 we can see that the projection is quite accurate.

Table 3.8: cycle counts (million) in a random memory access program (different

sizes)

test 1 2 3 4 5 6

accessed memory 4MB 8MB 16MB 32MB 64MB 128MB

simulated 4.782 10.88 23.23 48.10 97.80 197.5

projected 4.944 11.05 23.68 49.14 100.0 201.9

error 1.3% 1.5% 1.9% 2.2% 2.3% 2.2%
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Table 3.9: cycle counts (million) in kernel benchmarks

Input mmul qsort BFS DAG add comp BST conv

sim. 1.111 2.311 13.03 18.92 2.043 5.410 4.690 5.328

proj. 1,126 2.271 13.20 19.12 1.988 5.470 4.750 5.334

error 1.3% -1.8% 1.3% 1.1% -2.7% 1.1% 1.3% 0.11%

3.3.3.4 Envisioned Performance of XMT ASIC 800MHz with DDR2-

800

With the extra delays and reduced command and data rate, the XMT FPGA

75MHz system is a cycle accurate emulator of the XMT ASIC 800MHz. Although

the behavior of the system is not exactly the same, it is very close in terms of cycles,

because the two important key aspects of a SDRAM, latency and bandwidth, are

accurately represented with the proper number of cycles. The execution time is

calculated by converting the cycle count using the period of the 800MHz clock or by

dividing the wall clock time by a ratio of 800/75=10.67. Figure 3.12 shows wall clock

time of the 8 kernel benchmarks in AMD Opteron 2.6GHz, XMT FPGA 75MHz and

envisioned XMT ASIC 800MHz. All wall clock time is normalized to the execution

time of AMD Opteron 2.6GHz.

The AMD Opteron processor is operating at 2.6GHz and has 64KB (instruction) +

64KB (data) L1, and 1MB L2 cache. The system used for testing had dual channel

PC-3200 DDR SDRAM, which provides bandwidth of 6.4GB/s. The envisioned

XMT ASIC 800MHz system outperforms AMD Opteron for all 8 kernel benchmarks.
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It is quite impressive considering that the XMT ASIC 800MHz processor has only

a total of 256 KB shared cache and operates at a much lower clock rate. The

envisioned XMT ASIC 800MHz processor showed a significant advantage over the

AMD Opteron in two CPU-bound benchmarks, mmul and conv.
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Chapter 4

Local Caches vs Shared Caches in XMT

4.1 Why Not Use Private Caches?

The reason for not having private caches in TCUs/clusters is that XMT is a

fine-grained parallel architecture, where a cache line is not the proper granularity

for some problems. The aggressive number of TCUs (1024), that we are targeting,

would limit the design to having cluster-level private caches, since it is prohibitive in

terms of area for each TCU to have its own private cache. In this section, the current

XMT design and an alternative XMT processor that incorporates cluster-level local

caches are compared and analyzed.

Spacial locality - memory locations will be more likely referenced if their neigh-

bors are referenced - is an important feature of the computer program that cache

systems try to exploit. However, in XMT, this is not always true. Because the

XMT is a fine-grained parallel machine, it is possible that a cache line is accessed

by different TCUs from different clusters. Fetching a cache line, therefore, can cre-

ate unnecessary loads to the interconnection network and cache system. Prefetch

buffers in the XMT processor can be used to take advantage of spacial locality with-

out wasting the precious bandwidth of the interconnection network, since TCUs,

with help from the compiler, can prefetch only items that are guaranteed to be

used.
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The hardware is responsible for handling the cache coherence problem in a

typical processor with multiple private caches. A directory-based system is the

popular scalable solution. In a typical directory-based multiprocessor system, if a

processor writes to a memory location, the cache line has to be exclusively owned by

that processor. This requires that all other copies of the cache line in other processors

are invalidated, resulting in non-trivial message exchanges and long latency for a

write. On the other hand, if the cache line is not shared by multiple processors,

private caches can improve the performance of the processor.

In the XMT processor, there are multiple shared cache modules operating

independently. Any memory location is only available in one of these cache modules.

The cache modules are non-blocking, meaning they can still serve the requests from

TCUs while previous cache misses are pending. The latency of cache accesses ranges

from 20 to 30 cycles for a cache hit, depending on the number of cache modules, the

number of clusters and clock speed. However, with broadcasting, prefetch, read-only

buffers and non-blocking stores, the average latency can be reduced. For example,

for a read request, if a prefetch instruction is issued prior to the read, the latency

can be one, similar to a processor with a local cache. It is worth noting that in early

years when only multi-chip parallel computers were available, it was impossible to

have a shared cache with latency similar to the XMT processor.

In chapter 2, the memory hierarchy of the XMT processor is presented. The

TCUs/clusters do not have private local caches and as a result, every memory access

requires a round trip to the shared cache through the interconnection network, if

no other optimization, such as prefetch, is applied. With the introduction of the
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prefetch buffer, read-only buffer and broadcasting, the latency can be reduced, but

it is interesting to know what would happen if a local private cache with a hardware

cache coherence protocol was used instead. In this chapter, the XMT processor

without local cache is compared to an alternative XMT processor where each cluster

has a local private cache. For brevity, XMT S(hared) and XMT P(rivate) will

be used to name the XMT processor without local cache and with local cache,

respectively.

4.2 XMT Processor with Local Caches

The verilog HDL model is revised to analyze the XMT architecture with local

caches. The model is only used for simulation and is not synthesizable. The memory

hierarchy of the revised XMT P processor and original XMT S processor are shown

in Figure 4.1 side by side. The two major changes in processor XMT P are: (a) the

read-only buffer in the original design is replaced by a coherent private cache and

(b) a directory module is attached to every shared cache module.

4.2.1 Directory

A directory-based MSI protocol is used in the XMT P for the cache coherence

protocol. The directory keeps the status of each cache line. Since the memory space

is partitioned among multiple shared cache modules and any memory location can

only be found in one of the these cache modules. The directory is also distributed in

the same way that cache lines are distributed and are placed between the intercon-
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Figure 4.1: Two XMT processors side by side: (a) XMT S processor, without local

cache; (b) XMT P processor with local private cache

nection network and the cache modules. Accessing shared cache modules requires

checking the corresponding directory entry first, then depending on the status of
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the cache line, access is either permitted immediately or delayed until all necessary

cache coherence messages have been exchanged.

In the directory, one bit per cache line is assigned for each of the private caches.

If a cluster has a copy of a cache line, the corresponding bit is set to 1, otherwise it

is set to 0. There is one extra bit for each cache line, indicating whether the cache

line is exclusively owned by a private cache. Note that when the exclusive bit is set,

only one of the private cache bits is 1 and the rest are all 0s. The cache line status

can be

Clean None of the private caches has a copy of the cache line. Directory entry has

0 value.

Shared Exclusive bit is 0, and one or more private caches have a copy of the cache

line.

Exclusive Exclusive bit is 1, and only one private cache has a copy of the cache

line.

Figure 4.2 shows the state transition diagram of a cache line in the directory. The

message(s) for each of the transitions are listed below, which are exchanged between

private caches and directory.

① An exclusive read request from a private cache. The request will be forwarded

to the shared cache, which delivers the data to the private cache.

② The private cache writes back the modified cache line to the shared cache.
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Figure 4.2: State transition diagram of a cache line in directory

③ A shared read request from a private cache. The request will be forwarded to

the shared cache, which delivers the data to the private cache.

④ A cache line evicted message is received from a private cache line and no other

private cache keeps this cache line.

⑤ An exclusive read request or an upgrade message is received. First, the directory

will send invalidation messages to all private cache modules who have a copy of

this cache line. The private cache modules invalidate the cache line and then

send back acknowledge messages to the directory. After all acknowledgement

messages are received, the directory is updated to an exclusive state. For an

upgrade request, an approval message is sufficient, since the data is already

available in the private cache, but for an exclusive read request, the shared
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cache module has to provide data.

⑥ The cache line is in the modified state in one of the private caches i, and a shared

read request arrived from another private cache j. An invalidation message

is sent to the private cache i from the directory. Private cache i invalidates

the cache line and then sends back the modified cache line to the directory.

Finally, the cache line is forwarded to the private cache j as well as the shared

cache.

⑦ The cache line is in a modified state in one of the private caches i, and an

exclusive read request arrived from another private cache j. An invalidation

message is sent to the private cache i from the directory. Private cache i

invalidates the cache line and then sends back the modified cache line to the

directory. Finally, the cache line is forwarded to the private cache j and the

directory status is updated.

⑧ The cache line is already in a shared state and a shared read request is received

from another private cache. The request is forwarded to the shared cache,

which delivers the data to the private cache. The directory status is updated

as well.

4.2.2 Private Caches

A cache line in a private cache can be in one of the 3 states listed below:

Invalid The cache line is not available in the private cache.
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Modified The cache line is exclusively owned and the content is modified; both read

and write requests are permitted.

Shared The cache line is shared with other private caches and only read requests

are permitted.

Figure 4.3 shows the state transition diagram. For a cache miss, the cache line is
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Figure 4.3: State transition diagram of a cache line in private cache

brought to the private cache from the shared cache, but marked as shared for a

read miss and as modified for a write miss. The following read operations on the

cache line will be served without changing the status. For the write, the operation

is different based on the current cache line state. If the current state is modified,

the write operation is processed immediately. If the write operation turns out to

be a hit in a shared state, the cache line state must be changed to modified before
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the write operation can be processed. Note that for any state change, the private

cache needs to exchange cache coherence messages with the directory. The messages

exchanged between private cache and directory are listed below.

① An exclusive read request is sent to the directory and receives the cache line.

② This transition may occur as a result of a cache line eviction or an invalidation

request from the directory. In either case, the modified cache line will be

written back to the shared cache.

③ A shared read request is sent to the directory and receives the data of the cache

line.

④ This transition may occur by cache line eviction or invalidation request from

the directory. In either case, an invalidation acknowledgement message will

be sent to the directory, so that the directory can be updated properly.

⑤ An upgrade request will be sent to the directory. The response from the directory

can be (a) an approval of the upgrade request. In this case, the data in the

private cache is up-to-date and only the status needs to be changed. (b) The

cache line is delivered to a private cache and the cache line needs to be updated

with the new data. This will happen if the data in the private cache is obsolete.

⑥ ⑦ No message is exchanged, because the state does not change.
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4.3 Simulation Results

For the XMT S and XMT P processors, four different configurations, with 8,

16, 32 or 64 clusters are tested. In each case, the number of cache modules are

the same as the number of clusters. In XMT S, each cluster has an 8KB read-

only buffer, while a cluster in XMT P has a 32KB, 2-way associative private cache.

Both XMT S and XMT P use the same size shared cache module: 32KB and 2-

way associative. The bandwidth of off-chip memory is assumed to be a quarter of

the total bandwidth of on-chip cache modules. A constant delay of 150 cycles are

used for off-chip memory access from shared cache. Note that, as the number of

clusters/caches doubles, total size of the on-chip parallel shared cache also doubles.

Since XMT P can also take advantage of value broadcasting and prefetching, these

two features are also incorporated in XMT P. Table 4.1 summarizes the latencies of

read operations from different levels of the memory hierarchy.

The eight micro-benchmarks listed in section 3.2 are used to analyze the per-

formance of the XMT processor with a private cache per cluster. Due to long

simulation time, only small input sizes are tested. The input size and memory us-

ages are listed in table 3.2. The basic difference in the two processors (XMT S

and P) are the granularity of the data blocks transferred by the interconnection

network. When private caches are used by the clusters, the minimum data transfer

unit is a cache line, requiring 8 packets. Because of this, the XMT P processor has

a disadvantage for extremely fine-grained parallelism and the XMT P will perform

better if granularity of the program is increased. This was considered during the
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Table 4.1: Read latencies in XMT S and XMT P

read from # of clusters XMT S XMT P

prefetch buffer all 1 1

RO buffer or local cachea all 4 4

shared cache (SC) b 8 21 24

(miss in RO buffer 16 25 28

or local cache) 32 29 32

64 33 36

off-chip memory all 150+SC

aSince RO buffer or local cache is shared by 16 TCUs in a cluster, arbitration and result delivery

takes 1 cycle each.
bAssumed there is no contention in the interconnection network and shared cache module. XMT

S needs extra 3 cycles for directory access and additional FIFOs

development of the eight parallel programs. The tasks are partitioned in coarse-

grained mode whenever it is possible. For example, in the compaction application,

the input array is partitioned into 1024 blocks, which is the maximum number of

TCUs we simulated, and each block is assigned to a thread. With this partitioning

a cache line is very likely to be read by only one thread (TCU) which minimizes

unnecessary transferring of data.

Table 4.2 summarizes which features are applied to each of the eight bench-

marks. While broadcasting can be used for an array address or a pointer in any

program, it was not counted as an applicable feature, since in this case, broadcast-

ing is not necessary. However, the pivot in qsort and the level number in BFS are
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always dynamic and use of broadcasting is beneficial. All benchmarks have loops

and prefetch is used for fetching data for iterations ahead. The read-only buffer is

used in five out of eight benchmarks and in the other three benchmarks, no values

are shared or reused by threads, thus the read-only buffer is not used.

Table 4.2: Applicable features in benchmarks

App. broadcasting prefetch buffer read-only buffer

mmul N Y Y

qsort Y Y N

BFS Y Y Y

DAG N Y Y

add N Y N

comp N Y N

BST N Y Y

conv N Y Y

In this section, the performance of XMT S and XMT P processors is analyzed

based on the execution cycle count, total messages transferred by the interconnec-

tion network and the average latency of read operations.
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4.3.1 Program Execution Cycle Count and Speedups

The execution time of eight benchmarks on both the XMT S and XMT P

with a different number of clusters were recorded and the speedups were calculated

over the eight-cluster/cache XMT S processor. The results are shown in figure 4.4.

First, it is very clear that both XMT S and XMT P scaled up very well, except for
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Figure 4.4: Speedups of the benchmarks over the 8-cluster XMT S. Bars are marked

with ’s’ and ’p’ for XMT S and XMT P respectively. The numbers under each pair

of bars are the number of clusters

the qsort benchmark. The input size of qsort is 100K and it is not sufficiently large

to provide enough tasks for large-scale XMT processors, with 32 and 64 clusters.

The high speedups for BFS, DAG and BST are mainly from the enlarged cache

size rather than an increased number of clusters/TCUs. This is also supported by

the fact that the latency of read operations in these programs decreases (see figure

4.6). For mmul, qsort, comp, BFS and DAG, XMT S outperformed XMT P for all

4 configurations of the XMT processor. In add and conv, XMT P marginally beats
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XMT S in the 8 and 16-cluster XMT processors, but XMT S wins in the large-scale

XMT processors of 32 and 64 clusters. This is interesting because both add and

conv are coarse-grained parallel programs. XMT P had an advantage over the XMT

S for the application BST in 8, 16 and especially for a 32-cluster XMT processor,

where it is two times faster. In the data structure of the BST, the pointer to the

left child always follows the parent node. XMT P takes advantage of this spacial

locality automatically. However, for XMT S, explicit prefetch commands need to be

inserted, which is not done in the simulated program because we are not sure yet

that the compiler can figure out this locality.

4.3.2 Traffic Volume in the Interconnection Network

The minimum data chunk that is transferred from shared cache to the clusters

is different in XMT S and XMT P. They are a cache line (eight packets) and a

word (one packet), in XMT P and XMT S respectively. As a result, for the same

program, the total number of packets exchanged between clusters and cache modules

are different in the two processors. Figure 4.5 shows the normalized number of

exchanged packets in each of the benchmarks for different sizes of XMT processors.

When TCUs/clusters bring in data from cache modules, XMT S sends one packet

of request and receives one packet of response. On the other hand, XMT P also

sends one packet of request, but it receives a cache line, eight packets, of response.

If all words of these cache line are accessed by the TCUs, XMT P has an advantage

over the XMT S, since for a cache line, XMT P needs a total of 9 packets but XMT S
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Figure 4.5: Number of packets transferred between clusters and cache modules,

normalized to the 8-cluster XMT S for each applications. Bars are marked with ’s’

and ’p’ for XMT S and XMT P respectively

needs 16 packets. However, if less than 4 words in a cache line are used, then, XMT

S has less communication overhead. For a write operation, the situation is similar,

but it is prohibitive for false sharing [19], which happens when different clusters are

writing to different words in the same cache line. For example, in the worst case,

when eight different words in a cache line are written by eight different clusters, a

total of up to 151 packets need to be transferred in XMT P, but only 24 packets

in XMT S. The calculation follows. In XMT P, if a cache line will be brought in

with 9 packets for a read operation, then the whole cache line (seven words in the

cache line are unchanged) will be written back to the shared cache line, requiring 9

packets (one address and eight data). Each cluster needs to have exclusive access

to the cache line, so an invalid request packet will be sent to the previous owner

of the cache line. The total number of packets required is 18 × 8 + 7 = 151. This
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is quite simple in XMT S, where each write needs 2 request packets (address and

data), plus one acknowledge packet, a total 3× 8 = 24 packets.

For add and conv, which are coarse-grained parallel programs and where every

word in a cache line is used by a TCU, XMT P has significantly less packet exchange

than XMT S. That is the best scenario for the XMT P. Note that the XMT S can

also increase the granularity of software prefetch and reduce the overall number of

packets transferred, which is part of the future work. For comp and qsort, although

the reading is done in coarse-grained mode, writing is still done in fine-grained mode.

The initial experiment shows that increasing the write granularity by reserving more

than one word and clearing the bubbles (unused words) in serial mode, did not

improve the overall performance, because of Amdahl’s law. In the BFS, DAG and

BST, more packet exchange in XMT P is obvious because only part of the cache

line, which is brought in regardless, is likely to be used.

In the XMT P processor, even if a cache line is accessed by different TCUs,

a cluster-level private cache can still be beneficial if those TCUs are from the same

cluster. In XMT (both P and S), each TCU will be assigned a natural virtual thread

for the first round, which has regularity compared to the dynamic assignment from

a join instruction. The regularity makes more efficient use of local cache in the

clusters because the cache lines are more likely being shared by TCUs from the

same clusters. Unfortunately, as the number of cluster increases, the probability

of this lucky sharing decreases. This explains why the traffic increased in qsort,

comp, BFS and DAG with an increasing number of clusters. In mmul, the matrix

is 128x128 and the overall computation is partitioned into 1024 pieces. As the
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number of TCUs increases, the number of virtual threads that are assigned by a

join instruction decreases, resulting in better use of local cache and reduced packet

exchange. In other words, if TCUs advance synchronously and they share the same

cache line, the local private cache can be used more effectively resulting in less

traffic in the interconnection network as well. The same effect explains the BST

application. For conv, because the program exhibits a high level of spacial locality

and the local cache size is big enough to hold the working set, there is very little

traffic during computation. The interconnection network traffic is mainly for loading

the local caches and only one communication sequence is required for each local

cache. Therefore, the traffic volume increases with the number of clusters in the

conv benchmark.

In the XMT S processor, because the memory access is per-word, the traffic

volume in the applications, qsort, add, comp, BFS and DAG, remains the same,

with an incresing number of clusters. The synchronous execution also reduces the

traffic volume in mmul and BST as in XMT P. For the conv benchmarks, because the

size of read-only buffer (8KB) is smaller than the private cache (32KB) in XMT P,

XMT S has to move data between clusters and the shared cache during computation,

resulting in much more traffic volume.

4.3.3 Average Latency for Read Operation

The most important task of a cache is to store the data close to the processor

and shorten the latency of read operations. Compared to XMT S, XMT P has local
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private caches which are much closer to the TCUs. It is interesting to understand

how effective the prefetch buffer and read-only buffer are in shortening latencies of

read operations compared to a local cache. Figure 4.6 shows the average latency of

the read operations in the eight benchmarks with different numbers of clusters.

When the number of clusters increases, two factors affect the average latency of
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Figure 4.6: Average latency of the read operations in cycles

the read operations. First, the number of stages in the interconnection network,

which is proportional to the log2(#ofcluster), increases, and the round trip to the

shared cache takes more cycles. On the other hand, the total size of the on-chip

caches increases with the number of cache modules, therefore, the cache hit rate in

the shared caches increases and average latency of the read oeprations decreases.

In terms of latency of read operations, there is no clear winner between XMT

S and XMT P. For mmul, qsort and DAG, the XMT S had significant advantage

over the XMT P, especially for qsort. For BFS and BST (except for 64-cluster),

XMT P had lower latency for read operations. The rest of the micro-benchmarks,

add, comp and conv had similar latency numbers for both XMT S and XMT P

106



processors. In general, the software controlled prefetch buffer and read-only buffer

are as effective as a local cache in shortening the memory access time.

In mmul, the two processors showed a different trend when the number of

cluster increases. In XMT P, the average latency decreases when the number of

cluster increases. This is due to the same reason as the changes in traffic volume

in the interconnection network. The synchronous execution of TCUs in the same

clusters helped for high hit rate in local cache. Less traffic volume means that more

read operations are served by the local cache without help from the shared cache,

resulting in reduced latency. But for the XMT S, because there is no local cache,

the latency instead depends on the effectiveness of the prefetch, which has longer

latency for the large scale of the XMT processor.

4.3.4 Summary of XMT P and S

The different scales of the XMT S and XMT P processors are evaluated with

eight kernel benchmarks. The three metrics: program execution cycle count, traffic

volume in the interconnection network and average latency for read operations are

used in the evaluation. XMT S, which does not have a local private cache per

cluster, outperforms XMT P for the first two metrics. Although XMT P had some

advantage over XMT S in the third metric for BFS and BST, XMT S had less or

equal latency for other applications.

In general, XMT P is more efficient for coarse-grained parallelism than fine-

grained parallelism due to the granuality of a cache line. XMT S also benefits from
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coarse-grained parallelism, but its impact is significantly less than in XMT P. The

eight tested benchmarks are programmed in a coarse-grained manner, if possible.

For example, add and conv are completely coarse-grained programs.

It is clear that XMT P is more complicated in terms of hardware implementa-

tion and takes more area than XMT S. The simulated XMT P is only a behavioral

model and avoids many hardware implementation challenges. The storage for di-

rectory information is not negligible for the large scale XMT processor, which for

a 64-cluster configuration reaches 25%. From figure 4.5, XMT P has more traffic

volume in the interconnection network for many benchmarks, which means more

power consumption in the interconnection network.

Because there is no local cache, XMT S depends on the compiler to take advan-

tage of the prefetch buffers and read-only buffers. The challenges for the compiler

are figuring out what to prefetch or store in the read-only buffer and ensuring the

correctness of the program, because there is no hardware that guarantees cache

coherence, like there is in XMT P.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Originated from PRAM theory, the XMT architecture is designed to efficiently

execute fine-grained parallel programs based on PRAM algorithms. The XMT pro-

cessor appears to programmers as a PRAM-like processor where they do not need

to take care of load balancing and data locality. The XMT processor achieves this

by introducing many architecture features: shared on-chip cache, high performance

on-chip interconnection network, constant-time multi-operand prefix-sum unit, in-

struction (value) broadcasting, software/hardware co-managed prefetch buffer, and

software/hardware co-managed read-only buffer. Note that the XMT processor

partially relies on the compiler for optimizations that used to be part of the job of

programmers.

The XMT processor has very good scalability, since the clusters and cache

modules can be replicated as many times as the die area and power consumption

permit. The only global resource in the XMT architecture is the interconnection

network that connects clusters and cache modules. It is addressed by papers [8, 9, 7,

10]. The XMT programs are binary compatible among the different scales of XMT

processors, which means re-compilation is not needed unless the program uses some

specific information like number of TCUs explicitly, which is not needed in most
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cases.

The performance of the XMT architecture is very promising. The 75MHz 64-

TCU XMT FPGA prototype outperforms a 2.6GHz AMD Opteron for 2000x2000

matrix multiplication. Note that the performance of the XMT FPGA prototype can

be improved by fine tunings/optimizations that we did not do due to the limited man

power. An arbitrary 800MHz XMT ASIC processor is studied with a cycle-accurate

emulator, which is done by slowing down the DRAM component proportionally in

the 75MHz XMT FPGA prototype. The results show that a 800MHz XMT ASIC

processor outperforms 2.6GHz AMD Opteron processor for all eight benchmarks

tested. Our initial results suggest that the 64-TCU XMT ASIC would take a similar

area to the AMD Opteron in the same 90nm technology.

Coherent caches are used in many multicore processors and traditional massive

parallel computers. In the XMT architecture, we chose to use software/hardware

co-managed temporal storage as an alternative solution to the traditional coher-

ent private caches. The choice is based on the observation that (i) The hardware

implementation of a scalable cache coherence protocol is very complicated. (ii) Co-

herent private caches are inefficient for certain types of memory access patterns,

like fine-grained parallelism. (iii) With help from the compiler, software/hardware

co-managed temporal storages, like prefetch buffers and read-only buffers, provide

spacial and temporal locality like a cache. The simulation results suggest that the

XMT processor without coherent local caches can perform as well as an alternative

XMT processor with incorporates coherent caches.
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5.2 Future Work

Future work involving the XMT architecture is listed here.

• Floating point operations

Since XMT FPGA prototype uses the MIPS I instruction set, a new dedicated

register file for floating point operations needs to be added as the MIPS in-

struction set defines. The major work involves modifying TCUs to properly

decode the new instructions and it is also needed to add shared floating point

functional units to the clusters.

• Interrupt

In serial mode, the conventional interrupt scheme can be applied to the MTCU.

The challenge is in parallel mode and it can be divided into two questions. (i)

how to interrupt all TCUs in parallel mode and switch back to serial mode? (ii)

what kind of interrupt scheme needs to be supported by TCUs while the XMT

processor is still in parallel mode? For the first question, one possible solution

is as follows: When an interrupt happens, TCUs will not start a new thread

but the MTCU has to wait until all TCUs finish their current thread, then

the XMT processor switches to serial mode. After the MTCU returns from

the interrupt service routine, it can spawn the rest of the threads that need

to be executed. The potential problem of this solution is that the response

time of the interrupt is undetermined and it will depend on the current active

threads.
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• Virtual memory

This issue is related to interrupt handling very closely. When a page fault

occurs in parallel mode, the MTCU may need to be involved in page table

update, which probably needs to be handled in the form of service of an

interrupt. For those TLB misses in individual TCUs, if the page table has a

valid entry, it can be handled by the TCU itself by loading it from the shared

memory.

• Operating System

After introducing both interrupt handling and virtual memory, an OS can be

ported to the XMT processor. Since the XMT processor is using the MIPS I

instruction set, one of the portable linux OS versions is a good choice.

• Other minor improvements

Other fine tuning/optimizations may improve the performance of the XMT

FPGA prototype. The potential improvement may come from a faster clock

rate in the interconnection network, optimizing the throughput of the on-chip

caches. The current instruction buffers in TCUs, which limit the number of

instructions in parallel sections, need to be replaced with a full instruction

cache for function calls in parallel mode.
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Appendix A

Introduction to the Verilog Model of the XMT Prototype

A verilog model of the XMT processor is developed for prototyping. The

modules in the verilog code are explained based on the 64-TCU XMT ASIC version,

but since many modules are shared by two prototypes, it is also applicable to the

XMT FPGA prototype. The differences are listed in appendix G.

Figure A.1 shows the components of an XMT processor and their connections.

The XMT prototype consists of clusters, an interconnection network, multiple on-

chip cache modules and a master cluster.

Each chapter in appendixes explains one component from the XMT prototype

shown in figure A.1 on the next page.

A.1 Clusters

The clusters are a group of TCUs and accompanying functional units. TCUs

are the basic processing units of the XMT processor and each TCU executes a

thread in parallel mode. TCUs have their own local registers and they are simple

in-order pipelines including fetch, decode, execute/memory access, and write back

stages. Every cluster has a single load/store port and a prefix-sum request port.

The prefix-sum requests for the same base register from all TCUs in the same cluster

are combined to one single request and sent to the global prefix-sum unit. Simple
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Figure A.1: XMT block diagram
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functional units are dedicated to each TCU while complicated ones are shared by

multiple TCUs. Arbitration of multiple requests are done fairly for TCUs.

A.2 Master Cluster

The master cluster includes a master TCU (MTCU), a global register file and

a prefix-sum unit. The MTCU executes the serial portion of programs and handles

the special XMT instructions such as spawn and join. The MTCU broadcasts the

instructions for a parallel section to all clusters, where they are copied to a local

instruction buffer and later fetched by TCUs inside clusters. The Master TCU has

its own cache, L0, that is only active during serial mode and applies a write-through

protocol. When the XMT processor enters parallel mode, the Master TCU discards

its local cache. The overhead of the flushing the L0 cache is trivial since the write-

through mechanism is chosen. When XMT operates in serial mode, the L0 cache

is the first-level cache of the MTCU and multiple shared memory modules provide

the lower level of the memory hierarchy (similar to a serial processor).

The prefix-sum operation is an atomic fetch-and-add computation that is very

important for the XMT to achieve low-overhead synchronization between threads.

The prefix-sum unit can accept binary input from multiple TCUs simultaneously

and the execution will take constant time in XMT, regardless of how many threads

participate.

Global registers in XMT are used primarily as base registers for prefix-sum

operations in parallel mode. Among eight global registers, two are used for storing
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the begin (low) and end (high) thread IDs during parallel mode. The Master TCU

can access global registers through special instructions that move values between

global registers and local registers in the MTCU. Regular TCUs can access global

registers only through prefix-sum operations.

A.3 Interconnection Network

Clusters and cache modules are connected by a high-bandwidth, low-latency

interconnection network. Clusters send requests to the cache modules and receive

responses. The communication between clusters and cache modules is all-to-all.

When multiple clusters send requests to the same cache module, they are queued

and delivered to the cache module serially.

A.4 Cache Module

The memory space is divided among multiple shared on-chip cache modules.

Each cache module processes requests from TCUs independently and communicates

with the off-chip DRAM through a shared DRAM access channel. To avoid an

unbalanced load in different cache modules for certain patterns of memory access,

hashing is used in mapping between memory address and cache modules. The

shared caches are used primarily for data, since the instructions for regular TCUs

are broadcast by the MTCU and stored in the instruction buffer.
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A.5 Interface of XMT Processor

The XMT processor has two channels of interface: (1) External cache access

port and (2) Off-chip DRAM controller access port. The external cache access

port exposes the XMT memory hierarchy, including on-chip cache, to the outside

world. The XMT ASIC prototype does not have an on-chip DRAM controller and

it is supposed to be connected to an off-chip DRAM controller. The handshaking

protocol is described in detail.

A.6 Differences in XMT ASIC and XMT FPGA

Unlike the XMT ASIC prototype, the XMT FPGA prototype includes an

on-chip DDR2 DRAM controller. Besides the on-chip DRAM controller, other dif-

ferences are also presented.
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Appendix B

Cluster
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B.1 Overview

A cluster is a group of 16 TCUs and accompanying functional units. The block

diagram of a cluster is shown in figure B.1. TCUs have their own local registers

and they are simple in-order pipelines including fetch, decode, execute/memory

access, and write back stages. In parallel mode, threads will be executed by TCUs
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Figure B.1: Clusters

There are 16 ALUs, 16 Branch units, 16 Shifting units, 1 Multiplication/Division

unit and 1 Load/Store unit in a cluster.

and when all parallel threads are finished, the XMT processor changes back to

serial mode. Similar to a simultaneous multithreaded (SMT) processor, TCUs share

some functional units: a Multiplication/Division (M/D) unit, read-only buffer and

interconnection network port. If several TCUs assigned to a functional unit try to

access it, proper arbitration is used to queue all requests. The read-only buffers in
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the clusters are hardware/software co-managed temporal storage for TCUs. The

cluster has one load/store port to the interconnection network, which is shared by

all TCUs inside the cluster. The store counter is used to flush the store operations

by counting the number of pending stores.

As a key feature of the XMT processor, prefix-sum operations must be ex-

ecuted very efficiently. The hardware implementation of the prefix-sum unit can

accept binary inputs from TCUs and the execution time does not depend on the

number of TCUs that are sending requests to it. The PS TCU module in a cluster

combines all requests from TCUs within the cluster and sends one request to the

global prefix-sum unit. It is also responsible for distributing the results from the

prefix-sum unit to the individual TCUs. The PS TCU module will be discussed in

appendix C on page 162.

B.1.1 Interface of Cluster

The interface of a cluster module is listed in Table B.1 on the next page and

Table B.2 on page 122. Parts of them are also shown in Figure B.1 on the page

before.

B.2 Instruction Buffer

There are eight instruction buffers and each is shared by two TCUs. The size

of an instruction buffer determines the maximum size of a parallel section of a XMT

program. The instruction buffer has one write port and two read ports. A write
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Table B.1: Inputs of the clusters

Name Driver Description

parallel MTCU 1 in parallel mode, 0 in serial mode

cluster id hard-wired id of cluster

instrBroadCast MTCU broadcast instructions

pNextToWrite MTCU destination address of the instrBroadCast

ls back ICN responses of loads/stores

ls select ICN acknowledge signal from ICN

writeIC MTCU write enable for instruction buffer

lastID GR7 high ID of current spawn block

ps back PS unit 0 based prefix-sum results

ps base PS unit original global register value for PS

ps back index PS unit transaction id for a ps operation

ps base reg PS unit base register and transaction id

Connections are shown in figure B.1 on page 119

port includes addrWrite, write, and dataBusWrite. When the write signal is high,

the value on dataBusWrite will be written into the location specified by addrWrite.

For a read operation, the data in location addrRead will appear on dataBusRead on

the next clock cycle. The two TCUs can read instructions at the same time using

two read ports.

Typical SRAM IPs only have two ports, but the instruction buffer uses three

ports, therefore, one SRAM IP port is used as both a write and read port. A write
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Table B.2: Outputs of the clusters

Name Send to Description

idle MTCU 1 – idling, 0 – active

ls send ICN request for load/store

ps send PS unit request to PS unit

ps Request PS unit indicating base addresses asked by ps operations

Connections are shown in Figure B.1 on page 119

0

write …
… dataBusRead0

dataBusWrite

addrWrite addrRead0

dataBusRead1

addrRead 1

reset

clk

1024

Figure B.2: Instruction cache

operation is given higher priority, thus one TCU that uses the shared read port

cannot read the instruction while a write occurs. Since the instruction buffers are
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only updated once per parallel mode, the overhead of port sharing is negligible.

The instruction buffer needs to be cleared between two parallel sections to prevent

TCUs from using obsolete instructions. A register valid addr is used to keep the

last location where a new instruction is written. When the read address is less than

or equal to this address, the instruction in the databusRead is valid. The size of the

instruction buffer is 4KB (1024 instructions) in the FPGA prototype and 2K (512

instructions) in the XMT ASIC prototype.

The instructions buffers in clusters need to be upgraded to instruction caches

to eliminate the constraint on the number of instructions in a parallel section. With

an instruction cache (I-cache), the broadcasting is only used to load certain number

of instructions at the beginning of a parallel section into the I-cache. When an

instruction miss occurs, the I-cache will fetch instructions from the shared cache

through the interconnection network as if reading data. This mechanism can also

take advantage of read-only buffers, but it is still less efficient than broadcasting.

B.3 Thread Control Unit (TCU)

A TCU comprised of a simple pipeline (named as PC - Program Counter) and

some dedicated local functional units, like ALU, SHIFT and BRANCH units. The

block diagram of the PC is shown in figure B.3. Instructions are dispatched to the

proper functional unit and the result is collected by PC after the calculation is done.

The prefetch buffer needs to be checked before sending a read operation to the LS

unit in the cluster. The response from cache is processed by the prefetch buffer
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and proper responses are delivered to the PC. The PS module calculates the sum of

ps base, ps back and ps value within the cluster.
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Figure B.3: Block diagram of a Thread Control Unit (TCU)

B.3.1 Interface of the TCUs

Table B.3 on the following page and B.4 on page 126 summarize the input and

output ports of a TCU.

B.3.2 Program Counter (PC)

The PC module is a four-stage simple in-order processor core. This module

fetches an instruction from the instruction buffer in the cluster and sends it to the
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Table B.3: Inputs of the TCUs

Name Driver Description

cluster id hard-wired Cluster ID, used by GETID command

tcu id hard-wired TCU ID

instrFromIC I-buffer instruction from instruction buffer

lastID GR7 The highest ID of spawn block, global reg-

ister 7

ps base GRF The original value of the base register

ps back index PS Unit The index of the operation

ps base reg PS Unit The base register number and index of the

current operation

md select FuncMD The MD request is accepted by the fanin

tree of the FuncMD

md result FuncMD The result of MD operation

ls select LS unit The ls request is accepted by fan-in tree for

load/store

ls data LS unit The response of the LS request

ps clust back PS cluster PS result within a cluster

ps back PS Unit The result of the PS operation

Connections are shown in figure B.4 on page 127.

proper functional unit. A virtual thread is executed by PC. Figure B.4 on page 127

shows the pipeline stages and the connections of the registers in PC module.
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Table B.4: Outputs of the TCUs

Name Send to Description

pFetchFrom I-buffer Program Counter

idle Cluster set if current ID greater than lastID

md request FuncMD MD request

ls send LS unit load/store request

psRequest PS Unit Identify which base register is used

ps send PS Unit PS operation binary input with valid bit

Connections are shown on figure B.4 on the next page.

The behavior of the pipeline is described below.

IF stage -

The description of the main registers and signals are as follows.

• PC [8:0]

⇐ PC + 1 if previously fetched instruction is valid and no exception.

⇐ exception pc if exception happened.

• instruction pc[6:0] - the program counter of the fetched instruction.

• isInstrValid - wire indicating if fetched instruction is valid (1) or invalid

(0).

• instruction - wire connected to the read bus of the instruction buffer.

• pre pc - When a fetched instruction is invalid, pFetchFrom will be as-

signed from this register, not from pc.
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Figure B.4: Structure of the TCUs

ID stage - The ID/EX registers, which are IDEX valid, IDEX pc, IDEX rs,

IDEX rt, rf2 imm sel, IDEX imm, IDEX fnc opcode, funcID and IDEX rfAddrWrite,

will be updated when the following conditions are met.

• No exception happened. (If exception occurs, ID/EX registers will be
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cleared)

AND EX/WR registers will be updated with current ID/EX registers or current

IDEX valid is 0 indicating ID/EX registers are invalid.

The description of the main registers and signals are as follows.

• register file - 32 32-bit local registers with two read ports and one write

port.

• IDEX valid - indicates the status whether the fetched instruction in

ID/EX stage is valid. 1 is valid and 0 is invalid.

• IDEX pc - PC of the decoded instruction.

• IDEX rs - the address of register file for operand1.

• IDEX rt - the address of register file for operand2.

• rf2 imm sel - the selection bit whether the operand2 is from immediate

value or register file.

• IDEX imm - the immediate value of a instruction.

• IDEX fnc opcode - the functional opcode of the instruction decoded.

• funcID[6:0] - the ID of the functional unit needed for this instruction.

Only one bit of funcID can be 1 and from bit 6 to 0 indicate move,

LOAD/STORE, Prefix-sum, MD,BR, shift and ALU respectively.

• IDEX rfAddrWrite - the destination register of the instruction, if no

register will be updated, IDEX rfAddrWrite will be 0.

128



• instruction buf - the decoded instruction.

EX stage - The EX/WR registers, which are EXWR valid, EXWR operand1,

EXWR operand2, EXWR imm, EXWR fnc opcode, EXWR funcID, EXWR rfAddrWrite

and EXWR pc, monitor the func result out port. If the result is available (is-

ResultForMe==1), it is written to the register file. If an instruction in the

ID/EX registers is chkid and if the branch is taken, idle will be set to 1, other-

wise 0. If the instruction is not a chkid instruction, idle will not change. The

description of other registers and signals follows.

• operand1 [31:0] wire

⇐ from func result when forwarding is needed.

⇐ from register file.

• operand2 [31:0] wire

⇐ from func result when forwarding is needed.

⇐ from lastID when instruction is chkid.

⇐ from NATURAL ID when instruction is getid, it is the same as the

TCU hardware ID.

⇐ immediate value from instruction, for I-type instructions.

⇐ from instruction for some shifting instructions.

⇐ from register file.

• EXWR valid - valid bit in EXWR stage.

• EXWR imm - the immediate value in EXWR stage.
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• EXWR pc - the program counter in EXWR stage.

• EXWR fnc opcode[3:0] - the operation type of the functional unit in

EXWR stage.

• EXWR funcID[6:0] - the functional unit needed for the instruction in

EXWR stage. bit definition is the same as funcID.

• EXWR rfAddrWrite- the destination register of the current instruc-

tion in EXWR stage.

WR stage - This stage has the idle register.

• idle - the TCU status. 1 is idle and 0 is busy.

The register file is updated by rfWrite, EXWR rfAddrWr, and rfBusWrite

when the result of an instruction is ready.

B.3.3 Performance Counter Register Files

Each TCU has two Performance Counter Register Files (PCRF). The instruc-

tion count PCRF is used to count the number of instructions executed by a TCU

and the cycle count PCRF is counting the number of cycles used for instructions.

Both PCRFs keep the accumulative counts. Some instructions share one register

in PCRFs and they are shown in table B.5 on the next page. The size of PCRF is

16(depth)x64(width) and 64-bit registers (not 32-bit) are used to count longer pro-

grams. When an instruction is executed the instruction count PCRF will increment

the corresponding register specified by its group. It is only incremented by one even

130



Table B.5: PCRF instruction categories

Group instructions

0 ALU instructions

1 SFT instructions

2 BR instructions

3 mult,multu,div,divu

4 ps

5 lw

6 instructions processed by PC, without using FU

7 mfhi,mflo,mthi,mtlo

8 sw

9 psm

0xa pref 8

0xb swp

0xc pref 9

0xd lwbuf

0xe DRAM prefetch

0xf all other instructions.(used for cycle count PCRF)

if the instruction takes multiple cycles. On the other hand, the cycle count PCRF

is incremented by one for every cycle for the corresponding register specified by its

group. The reset will not clear the contents of the PCRFs. During serial mode,
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both PCRFs in TCUs will not be active and values remain unchanged.

In addition to two PCRFs, the MTCU has a 64-bit register that counts the

total number of cycles the MTCU spent since last reset. This cycle count register

is cleared to 0 when XMT is reset.

B.3.3.1 How to use PCRFs?

The instructions, mvfp and mvtp, are introduced for users to access PCRFs.

The formats of these two instructions are listed in table B.9 on page 143.

mvfp rt,rp,imm

• rt is the destination register number in the TCU.

• rp is a register in the TCU and the content of it is used to address the PCRF.

This means the PCRF is using indirect addressing. The 16x64 registers are

accessed as 32x32 registers, so two mvfp are needed to read a 64-bit value from

the PCRF. For example, to read count value for ps operation, the content of

rp should be 8 and 9, for low and high (32-bit values), respectively.

• imm can be either 1, 2, 4, or 8. If imm is 1 or 2, the mvfp instruction operates

on cycle count PCRF or instruction count PCRF, respectively. If imm is 8,

the mvfp is not reading from PCRFs, but disables both PCRFs, meaning the

PCRFs stop counting. Note that imm=4 is only valid for MTCU. If imm is

4, mvfp reads the total number of cycles the MTCU spent since the last reset

(reset clears this to 0).
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mvtp rp,rs,imm

• rs is the source register number in the TCU.

• rp is a register in the TCU and the content of it is used to address the PCRF.

This means the PCRF is using indirect addressing. Unlike mvfp, mvtp clears

the upper 32-bit to 0 and set lower 32-bit with content of rs.

• imm can be either 1, 2, or 8. If imm is 1 or 2, the mvtp instruction operates on

cycle count PCRF or instruction count PCRF, respectively. If imm is 8, the

mvtp is not writing to PCRFs, but enables both PCRFs, meaning the PCRFs

begin counting. Note that using 4 for imm in a mvtp cannot change the cycle

count register in MTCU.

By using these two instructions, these performance counter registers can be dumped

into the XMT memory and that can be accessed from the host computer through

the external cache access port of the XMT processor. Typical pieces of assembly

code for initializing and dumping to the memory are shown below.
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Initializing with 0

mvfp $0 , $0 , 8 #disable PCRFs

addi $2 , $0 , 32 #number of iterations

addi $1 , $0 , 0 #start from register 0 at PCRFs

clean pcm :

mvtp $1 , $0 , 1 #clear address $1 in cycle count PCRF

mvtp $1 , $0 , 2 #clear address $1 in instruction count

PCRF

addi $1 , $1 , 2 #increase the pointer in PCRFs, each mtpf

clears 64-bit register

bne $2 , $1 , clean pcm #clear all 16 registers in PCRFs

Dumping PCRFs to memory

mvfp $0 , $0 , 8 #disable PCRFs

addi $2 , $0 , 32 #number of iterations

addi $1 , $0 , 0 #start from register 0 at PCRFs

read pcm :

mvfp $3 , $1 , 1 #read from cycle count PCRF

sw $3 , 0 ( $29 ) #store it to memory

mvfp $3 , $1 , 2 #read from instruction count PCRF

sw $3 , 128 ( $29 )

addi $29 , $29 , 4 #update memory pointer

addi $1 , $1 , 1 #increase the pointer in PCRFs

bne $1 , $2 , read pcm #iterate
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B.4 Arbiters

B.4.1 Basic Arbiter

In XMT, arbiters are used to deal with resource contentions. For example, the

MD unit is shared by several TCUs or multiple clusters send memory requests to

the same on-chip cache module. Arbiters should be fair for every input.

A parameterized arbiter is designed and used for XMT verilog description as

a building block. Inputs and outputs are listed in table B.6.

Table B.6: Inputs and outputs of the arbiter

Name Port type Width

in0 input Parameter wire width

in1 input Parameter wire width

in0 select output 1

in1 select output 1

out output Parameter wire width

out select input 1

Parameters - Wire width of the inputs and outputs are parameterized. The inputs

are assumed to have a valid bit indicating whether the request is valid. The

position of the valid bit is specified by a parameter valid bit.

Register - A one bit history register his is used to record previous arbitration.

his is used to choose one of the two inputs if they both have a valid input and
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his will be updated to ∼his(negative of previous value), so that next time the

arbiter will choose the other input given both inputs are valid.

Arbitration - The behavior of an arbiter is shown in table B.7.

Table B.7: Truth table of arbiter

input output

in0 in1 his in0 select in1 select out next his

valid valid 0 out select 0 in0 1

valid valid 1 0 out select in1 0

valid invalid X out select 0 in0 his

invalid valid X 0 out select in1 his

invalid invalid X 0 0 0 his

B.4.2 Basic Arbiter Tree

A balanced binary tree is used to build arbiters whose number of input ports is

larger than two. When arbiters are cascaded, the timing is a concern for implemen-

tation, since the signal out select is supposed to be transferred to in* select passing

through logN
2 layers. One solution for this problem is to place a buffer between two

layers of basic arbiters as shown in figure B.5 on the following page.

To prevent the signal from traveling through multiple layers, data can be

registered to buffers only if the destination register is empty. This results in half of

the transfer rate at output. If there are two buffers for each node, the transfer rate
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buf 20 buf 21 buf 22 buf 23 

buf 10 buf 11 

buf 00 

Figure B.5: One buffer arbiter tree

can be one packet per cycle. Figure B.6 on the next page has 8 inputs and 1 output

with a two-entry buffer.

Two registers in a node share common input and output ports and only one of

two registers is connected to them. When a new valid packet comes and the current

input port is empty, the packet will be registered to the input register. When a

valid packet is taken from the next level arbiter, the current output register will be
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Figure B.6: Two entry buffer arbiter tree

cleared and the output will be connected to the other register. The two-entry buffer

is essentially a FIFO (First In, First Out).
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Figure B.7: Memory address hashing

B.5 Memory Address Hashing

The memory space is evenly divided among memory modules. Each memory

request from a cluster will be dispatched to one of those memory modules. One

possible implementation of the allocation of the memory address to memory mod-

ules is outlined below. Some bit fields of the address can be used to determine the

cache module, such as the Module(L) field consisting of bit 5 through 7, as shown in

Figure B.7, but then code exhibiting certain regularities could result in unbalanced

accesses to the cache modules. Hashing is used for module indexing in the follow-

ing manner. The module index (see Module(P) in Figure B.7) is constructed using

both the upper address field (bits 8 through 31 and the natural module index (Mod-
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ule(L)). Applying a permutation to the bit field of Module(L) will result in having

memory locations that have the same upper address field, but different Module(L)

values map to different cache modules. Mixing such a permutation with both XOR

and ADD operation on higher bit fields can be used to change the natural ordering

for the module index, but each of them can only provide 8 different orders for 3 bit

module index field. Let M0 denote Module(L) (bit fields 5 through 7). For exam-

ple, given a non-zero value M1 (bit fields 8 through 10), M1 XOR M0 will change

the original sequence of 0,1,. . ., 7 to a different sequence, and the overall number

of potential sequences remains 8. An extra XOR with M2 (bit fields 11 through

13) will still result in one of those 8 possible sequences. An ADD operation also

has similar limitations, but when these two are combined, the number of potential

sequences become much larger than 8. The proposed hashing can be represented by

the formula:

Module(P ) = ((M0 XOR M1) + S) XOR M2.

Figure B.7 on the preceding page (a) depicts bit fields M0, M1 and M2. S

in the formula can be any number from 0 to 7, and 3 was chosen for current im-

plementation. Adding a number to M0 XOR M1 results in a cyclic shifting of the

sequence. Applying XOR M2 to the shifted sequence will generate new sequences.

This hashing scheme showed good performance in tentative studies. It needs only

a relatively simple hardware implementation: only two 3-bit XOR units and one

3-bit adder. The mapping needs theoretical analysis and a much more elaborate

quantitative study. This scheme solves contention from a regular memory access

pattern while keeping spatial locality. All logical addresses with identical upper 24
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bits will be evenly distributed to the 8 memory modules.
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B.6 Functional Units

The output of ALU, BRANCH and SHIFT units has the same format.

func result:

35 34:32 31:0

VALID EXCEPTION VALUE

The meaning of the exception field in func result is listed in table B.8.

Table B.8: Definition of the Exceptions

code Source Description

000 – No exception

001 PC Jump instruction

010 BR branch instructions

011 BR checkid instruction

101 Spawn/Join SPAWN instruction

110 Spawn/Join JOIN instruction

111 PC HALT

Some functional units also have exception pc port, which specifies the desti-

nation address for an exception.

Some instructions do not need any functional units for execution, like data

movement between two registers. These instructions are handled directly by the PC

module and they are listed in table B.9 on the next page.
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Table B.9: Instructions handled by PC

instruction instruction format opcode in PC

6 bits 5 bits 5 bits 5 bits 11 bits 4 bits

j target 0x02 target 1

jal target 0x03 target 2

lui rt,imm 0xf 0 rt imm 3

jr rs 0 rs 0 8 4

jalr rs,rd 0 rs 0 rd 9 5

mvfp rt,rp,imm 0x1c rp rt imm 8

mvtp rp,rs,imm 0x1d rs rp imm 9

sflush 0x2d don’t care 0xa

mflo rd 0 0 rd 0x12 0xc

B.6.1 ALU

Input

• forALU:
68 67:64 63:32 31:0

VALID OPERATION OPERAND1 OPERAND2

OPERATION bits is defined on table B.10 on page 145

Output
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• func result

• exception pc This is NOT used currently, but it is reserved for future use.

B.6.1.1 Instructions Executed by ALU

Figure B.10 lists instructions executed by the ALU and the opcode inside the

ALU are listed on the right most column. These values are specified in IDEX fnc opcode

after an instruction is decoded.

Table B.10: Instructions executed by ALU

instruction instruction format opcode in ALU

6 bits 5 bits 5 bits 5 bits 11 bits 4 bits

getid rd, rs 0x19 rs rt don’t care 0

add rd,rs,rt 0x00 rs rt rd 0x20 0

addi rt,rs,imm 0x08 rs rt imm 0

addu rd,rs,rt 0 rs rt rd 0x21 1

addiu rt,rs,imm 0x09 rs rt imm 1

sub rd,rs,rt 0 rs rt rd 0x22 2

subu rd,rs,rt 0 rs rt rd 0x23 3

and rd,rs,rt 0 rs rt rd 0x24 4

andi rt,rs,imm 0x0c rs rt imm 4

or rd,rs,rt 0 rs rt rd 0x25 5

ori rt,rs,imm 0x0d rs rt imm 5
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Table B.10: Instructions executed by ALU

instruction instruction format opcode in ALU

6 bits 5 bits 5 bits 5 bits 11 bits 4 bits

nor rd,rs,rt 0x27 rs rt rd 0x27 6

xor rd,rs,rt 0 rs rt rd 0x26 9

xori rt,rs,imm 0x0e rs rt imm 9

slt rd,rs,rt 0 rs rt rd 0x24 0x0a

slti rt,rs,imm 0x0a rs rt imm 0x0a

sltu rd,rs,rt 0 rs rt rd 0x2b 0x0b

sltiu rt,rs,imm 0x0b rs rt imm 0x0b

ALU operations take one cycle.

B.6.2 Shift Functional Unit(SFT)

Input

• forSFT:

39 38:37 36:5 4:0

VALID OPERATION OPERAND1 OPERAND2

OPERATION bits is defined on table B.11
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Output

• func result

B.6.2.1 Instructions Executed by SFT

Table B.11 lists instructions executed by the shift functional unit.

Table B.11: Instructions executed by SFT

instruction instruction format opcode

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 2 bits

sll rd,rt,shamt 0 0 rt rd shamt 0 1X1

srl rd,rt,shamt 0 0 rt rd shamt 2 00

sra rd,rt,shamt 0 0 rt rd shamt 3 01

sllv rd,rt,rs 0 rs rt rd 0 4 1X1

srlv rd,rt,rs 0 rs rt rd 0 6 00

srav rd,rt,rs 0 rs rt rd 0 7 01

Shifting operations take 2 cycles and there is no exception. The FPGA pro-

totype needs 2 cycles to meet timing constraints. In an ASIC implementation, a 2

cycle delay may not be necessary.

1X means don’t care
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B.6.3 Branch Functional Unit(BR)

Input

• forBR:

96 95:80 79:68 67:64 63:32 31:0

VALID OFFSET PC OPERATION OPERAND1 OPERAND2

OPERATION bits is defined on table B.12 on the following page

Output

• func result

• exception pc

B.6.3.1 Instructions Executed by BR

Table B.12 on the next page lists instructions executed by the branch func-

tional unit.

chkid is an instruction introduced for implementing the spawn instruction.

Each TCU needs to compare it’s own ID($) with the high ID(GR7) and if $ is

less than GR7, the TCU will advance to the next instruction, otherwise chkid will

be executed again (jumping to itself). Since the high ID (GR7) is broadcast to

the TCUs all the time, the chkid can catch any increase of GR7 from the sspawn

instruction.
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Table B.12: Instructions executed by BR

instruction instruction format opcode in BR

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 3 bits

beq rs,rt,label 0x04 rs rt offset 0

bne rs,rt,label 0x05 rs rt offset 1

chkid rs 0x18 0 0xff 2

blez rs,label 0x06 rs 0 offset 6

bgtz rs,label 0x07 rs 0 offset 7

bltz rs,label 0x01 rs 0 offset 8

bltzal rs,label 0x01 rs 0x10 offset 8

bgez rs,label 0x01 rs 1 offset 9

bgezal rs,label 0x01 rs 0x11 offset 9

B.6.3.2 Behavioral Description of BR

Operations in the branch unit take two cycles.

B.6.4 Multiplication/Division Functional Unit(MD)

Input

• forMD:

71 70:67 66:64 63:32 31:0

VALID TCU ID OPERATION OPERAND1 OPERAND2

OPERATION bits will be defined on table B.13 on the following page
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Output

• func result

B.6.4.1 Instructions Executed by MD

Table B.13 lists instructions executed by the multiplication/division (MD)

functional unit.

Table B.13: Instructions executed by MD

instruction instruction format opcode in MD

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 4 bits

mult rs,rt 0 rs rt 0 0x18 0

multu rs,rt 0 rs rt 0 0x19 1

div rs,rt 0 rs rt 0 0x1a 2

divu rs,rt 0 rs rt 0 0x1b 3

mfhi rd 0 0 rd 0 0x10 4

mthi rs 0 rs 0 0x11 5

mtlo rs 0 rs 0 0x13 7
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B.6.4.2 Behavioral Description of MD

In the MIPS ISA, there are two special registers, HI and LO, for multiplication

and division operations. The result of these two operations are stored in HI and

LO. For multiplication, the upper and lower 32 bits of the product are stored in HI

and LO, respectively. In division, HI is for the remainder and LO register is for the

quotient. To match the MIPS ISA, a pair of HI and LO registers are instantiated

per TCU in the MD unit. The MD unit stores the result in the corresponding HI

and LO for each TCU. The MD unit is fully pipelined and it can serve one request

per cycle. The latency of multiplication and division in FPGA prototype is 6 cycles

and 36 cycles, respectively. The latency of multiplication and division in the ASIC

implementation is 6 cycles and 11 cycles, respectively.

mult or div instructions only store the results in the HI and LO registers within

the shared MD unit. A mfhi or mflo is needed to move the results to the register file

in a TCU. To reduce the overall latency of a multiplication or division operation,

the LO register is replicated on the TCU side, so the mflo can get the value of the

LO register locally. Both LOs in the MD unit and in the TCU are updated at the

same time for any instruction that changes the LO register.

B.6.5 Prefix-sum

The prefix-sum of 16 TCUs is calculated inside clusters and the sum of ps

requests is sent to the PS unit to get the global prefix-sum results. Prefix-sum

operations are described in appendix C on page 162.
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Table B.14: Instruction executed by PS unit

instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ps rt, gr 0x16 gr rt 0

B.6.6 Load/Store

Each cluster has one Load/store port and the requests may be queued at the

port. Currently there are four layers of arbiters with two-entry buffers to solve

the contention from 16 TCUs. Detailed information about arbiters can be found

in section B.4.2 on page 136. Table B.15 listed different types of memory access

instructions. lw and sw are load and store instructions and they match the definition

from the MIPS ISA. The four instructions: lw, lwbuf, pref 8 and pref 9 are explained

in Table B.18. swp is explained in section B.7.4. The psm instruction is similar to

ps but the base is a memory location and the increment value can be any unsigned

integer. The following two operations happen atomically for a psm instruction.

memory[imm(rs)] ⇐ memory[imm(rs)] + rt

rt ⇐ memory[imm(rs)]

The register rt will get the original value in memory[imm(rs)].

pref 10 is a DRAM prefetch instruction that asks a cache module to bring in a cache

line from the off-chip DRAM. The cache module will not send any acknowledgement

to the TCUs for pref 10.

151



Table B.15: Instructions executed by LS unit

instruction instruction format opcode in LS

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 4 bits

lw rt, imm(rs) 0x23 rs rt imm 0

sw rt, imm(rs) 0x2b rs rt imm 1

lwbuf rt, imm(rs) 0x27 rs rt imm 2

psm rt, imm(rs) 0x17 rs rt imm 3

pref 8,imm(rs) 0x33 rs 8 imm 4

swp rt, imm(rs) 0x2c rs rt imm 5

pref 9,imm(rs) 0x33 rs 9 imm 6

pref 10,imm(rs) 0x33 rs 0xa imm 0xe

B.7 Four Enhancements

B.7.1 Broadcasting

Value broadcasting is used when all or most of the threads read the same

variable. The shared variable will be read by the MTCU and the value will be

broadcast through the instruction broadcasting bus. Figure B.8 (copy of Figure

2.6) shows how it works. (a) shows when there is no broadcasting mechanism, all

TCUs will send a lw request to the same memory location and result in more traffic

in the interconnection network, as well as a long queue in the shared L1 cache
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module. (b) shows what happens when a broadcasting mechanism is used.
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Figure B.8: Value broadcasting

The broadcasting requires support from both hardware and software(compiler).

Software

• A lw instruction is inserted before the spawn instruction. The value will

be stored in a register in the MTCU, rSrc.

• Replace the original lw instruction with two instruction: broadh and

broadl. Note that the broadh instruction should be always placed before

broadl, since the broadh instruction will clear the lower 16 bits to 0.

Hardware When instructions are broadcast at the beginning of a parallel section,

normal instructions are broadcast without any change, but these two instruc-

tions, broadh and broadl, are handled differently. broadh is replaced by lui
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and the immediate field is filled with the upper 16 bits of value in the MTCU

register rSrc. broadl is replaced by ori and the immediate field is filled with

the lower 16 bits of value in the MTCU register rSrc.

After broadcasting is used, the TCUs get the value from two instructions, lui and

ori, instead of reading it from memory. Since the broadcasting uses a register in

MTCU, the number of values that can be broadcast is limited.

B.7.2 Prefetch Buffer

Each TCU has four prefetch buffers and they provide support for software

prefetch. Note that hardware does not guarantee the coherence of these prefetched

values.

In each prefetch buffer, there is an address and data field. Depending on the

status of the address and data field, The prefetch buffer has 3 states:

Invalid The prefetch buffer is not used at all. Both the data and address are

invalid.

Pending A prefetch command is sent out, but the data is not received yet. The

address field is valid, but the data field is not valid.

Valid The prefetch buffer has valid data that can be used by the TCU immediately.

Both address and data are valid.

The last case, invalid address and valid data, is a non-reachable state. When a TCU

sends a prefetch command, one of the 4 prefetch buffers will be used, chosen in a
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round-robin fashion. If the particular buffer is in the pending state, the prefetch

command has to wait until the response comes back, otherwise the prefetch buffer

will be confused by the two possible responses. For the other two cases, the prefetch

command will be sent out immediately.

Both normal read and write for a prefetched memory location will invalidate

the prefetch buffer. For the read, if the buffer is in the pending status, it will

wait until the response is returned. For the write, the buffer is marked as “write

invalidate” and the write request will be sent out. When the response comes back,

the buffer enters the state of invalid. When the XMT processor enters serial mode,

the prefetch buffers are cleared and all entries enter the invalid state.

B.7.3 Read-Only Buffer

Each cluster has an 8KB read-only buffer (ROB), which is a hardware/software

co-managed storage. Unlike regular cache, ROB is supposed to store values that

will not be changed during a particular parallel section to avoid the cache coherence

problem. The other difference is that there is no cache line and each word has it’s

own tag. If the data can be safely stored in the ROB, the compiler should use lwbuf

instruction for a read operation and pref 9, addr for prefetch command. These

two instructions are referred to as ROB commands and other read commands are

referred to as non-ROB read commands.

The ROB uses direct map, so when a ROB command or any read command

arrives at ROB, only one entry of the ROB needs to be checked. When a ROB
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command turns out to be a miss, then the request will be forwarded to the shared

cache. It will take time to get the response back from the shared cache through the

interconnection network, and it is desirable to keep the old tag and data pair if they

are valid, because other TCUs may be able to use the old data. Therefore, each

ROB entry has an extra address field where the address of the pending request is

kept.

The behavior of the ROB is simple for the non-ROB read commands.

Hit If the current address of the ROB matches the request and ROB has valid

data, then ROB can serve the request locally.

Miss If the address of both the current and pending addresses do not match the

request or they are invalid, then the request is forwarded to the shared cache

through the interconnection network.

Pending If the pending address of the ROB matches, a request for the same

location has been sent out and the data will be available later. Therefore the

TCU ID will be recorded and as soon as the data is available, the response

will be delivered to the TCU.

Table B.16 summarize the behavior of ROB for lw and pref 8, addr.

For a ROB command , the response of the ROB is different. The response is

described below and summarized in the table B.17.

Hit If the current address of the ROB matches the request and ROB has valid

data for the location, then ROB can serve the request locally.
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Table B.16: Response of ROB for lw or pref 8

current pending Response

entry in ROB entry in ROB

hit - NOT send request to shared

cache, send result to TCU

invalid or mismatch send request to shared cache

miss valid and match NOT send request to shared

cache, add the TCU ID to the

waiting list

Miss When the current address of the ROB entry is not the same as the request,

the pending address field needs to be checked. When the pending address field

is empty, mismatch or match, the response of ROB is:

Empty The address of the request is stored in the pending address field and

the request is sent to the shared cache. When the response comes back

the data and address are updated to the current address and data field.

Mismatch If the pending address is not empty but it is different from the

request, the request will be replaced with a corresponding non-ROB com-

mand and sent to the shared cache.

Match If the pending address is the same as the request, the TCU ID of

the request is recorded so that when the response arrives from the shared

cache, the result will be delivered to the TCU.
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The ROB is cleared when the XMT processor enters serial mode. Since each

entry of the ROB take one cycle to clear, the number of cycles needed for clearing the

ROB is the same as the size of the ROB. For the size of 8KB, it is 2048 cycles. This

procedure starts immediately after the XMT processor switches to serial mode, and

will continue in the following parallel mode, if the serial mode is not long enough.

When the clearing continues into the next parallel mode, all requests will bypass

the ROB. This only affects the performance of a program with a short serial section

followed by a short parallel section that uses ROB commands. A potential solution

for this issue is using two (or more) sets of valid bit arrays and alternate between

them, because this effectively reduces the cycles needed for clearing.

When a TCU ID is added to a waiting list, 6-bit information needs to be stored

and therefore, a total of 96 bits are needed for 16 TCUs in a cluster. Instantiating a

waiting list for every entry of ROB is a huge overhead and this is avoided by using a

pointer. The size of the waiting list is limited by the number of TCUs and maximum

number of pending requests from a TCU. In the current design, there are 16 TCUs

in a cluster and each TCU can have a maximum of 16 pending requests. Therefore

the size of the waiting list can be 256, which is much less than the number of entries

in the ROB, 2048. Instead of having a waiting list for every entry, each entry has

a pointer to the waiting list array as shown in figure B.9. By fixing the size of the

waiting list to 256, the overhead of the ROB is reduced significantly.

Until now, we presented how the prefetch and read-only buffers are imple-

mented in hardware. Table B.18 summarizes four different read instructions avail-

able in XMT.
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Table B.17: Response of ROB for lwbuf or pref 9

current pending Response

entry in ROB entry in ROB

hit - NOT send request to the cache,

send result to TCU

invalid (empty) send request to shared cache,

record the address in pending ad-

dress field

miss valid but mismatch send non-ROB counterpart of the

request to shared cache

valid and match NOT send request to shared

cache, add the TCU ID to the

waiting list

Table B.18: Four different memory read instructions

instruction destination update ROB

lw register no

lwbuf register yes

pref 8 prefetch buffer no

pref 9 prefetch buffer yes
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Figure B.9: Using pointer in ROB for waiting list

B.7.4 Non-Blocking Store

There are two kinds of stores in XMT: (i) blocking store, sw, where a TCU

waits until the store operation is acknowledged by the shared cache, and (ii) non-

blocking store, swp, where a TCU will advance as soon as the store requests are

accepted by LS unit in the cluster. The behavior of the parallel cache is the same

for the two store instructions, acknowledgement will be sent back to the TCU for

both store commands. The compiler should choose the non-blocking store whenever

it is safe to use.

Each TCU has two counters to store the number of non-blocking stores sent

out and the number of non-blocking store acknowledgements received. When the

XMT processor changes to serial mode, the TCU will make sure all non-blocking

store instructions have been committed to the shared cache by making sure the two
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counters are the same. A sflush instruction blocks the TCU from advancing to the

next instruction until the two counters in the TCU have the same value. Essentially,

a blocking store is the same as a non-blocking stored followed by a sflush instruction.
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Appendix C

Master Cluster
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(Not to scale) master cluster 

cluster 

0 

interconnection network 

prefix-

sum unit 

GRF 

MTCU 

L1 0 

cluster 

1 

cluster 

3 
cluster 

2 

L1 1 L1 2 L1 3 L1 4 L1 5 L1 6 L1 7 

MC_if 

* 

interface for memory controller * external cache access port 

The master cluster includes a global register file (GRF) and a prefix-sum (PS) unit

in addition to the MTCU. The MTCU is a serial processor with the capability of

handling XMT-specific instructions. The MTCU has an integer ALU, a shifting

unit, a branch unit, a multiplication/division unit, a spawn/join functional unit,

local private cache and a load/store port.

Some instructions are only for the Master TCU and they are not supported
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by regular TCUs. Table C.1 lists instructions executed by the MTCU only.

Table C.1: Instructions executed by MTCU only

instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

spawn 0x14 0

join 0x15 0

broadh rt, rs 0x34 rs rt 0

broadl rt, rs 0x35 rs rt 0

mvfg rt, gr 0x1a gr rt 0

mvtg gr, rs 0x1b rs gr 0

halt 0x3f don’t care

Some instructions are supported in regular TCU, but they are not supported

in MTCU. They are:

• pref

• ps rt, gr

• lwbuf rt, imm(rs)

C.1 Master TCU

The interface of the Master TCU is listed below, which is slightly different

from the regular TCUs.
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Table C.2: Inputs of the MTCU

Name Driver Description

ls back ICN response from cache module

ls select ICN acknowledgement from interconnection network

spawnDone Clusters set 1, when all TCUs idle

grBusRead GR read bus of global register file

Table C.3: Outputs of the MTCU

Name Send to Description

grAddrRead GR read address port of GR

grAddrWrite GR write address port of GR

grBusWrite GR value to be written into the global register

file

grwrite GR write enable signal

ls send ICN LS request to the cache

instrBroadCast Clusters instruction broadcasting bus

pNextInSpawn Clusters location of the broadcasted instruction

parallel Clusters set to 1 during parallel section

spawnblock Cluster 1 during instruction broadcasting

stop System set to 1, when halt command is executed
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Compared to regular TCUs, the master TCU has a few special registers and

extra interfaces for global register operations.

Additional registers

• spawnblock set to 1 during master TCU broadcasts instructions

• parallel set to 1 during regular TCUs are active. spawnblock and parallel

are set to 1 in the same cycle, but parallel will not be cleared until the

execution of spawn block finishes, while spawnblock will be cleared as

soon as master TCU finishes instruction broadcasting.

Interface for global registers

• Master TCU can read and write global registers by using move instruc-

tions.

• spawn instruction only changes the execution mode to the parallel, the

two registers: GR high and GR low need to be initialized by using the

mvtg instruction.

When the XMT processor exits from reset, the MTCU will start from the

instruction in address 0. The MTCU has a 16KB instruction buffer, which will

be loaded with the contents of the memory address from 0 to 16KB. The MTCU

starts executing instructions as soon as they are copied into the instruction buffer

from the memory space. After instructions are saved in the instruction buffer, any

consequent changes in the memory will not affect the instructions in the buffer.
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C.1.1 Spawn/join Functional Unit(SJ)

Unlike TCUs in the clusters, all functional units for the MTCU are dedicated.

The MTCU does not have a PS unit, but it has a SJ unit which a normal cluster

does not have. The SJ unit handles the spawn/join instruction.

Input

• forSJ:
14 13:2 1:0

VALID PC OPCODE

• spawnDone 1 bit, 1 – means finished spawn block, 0 – means not finished.

Checked when the XMT processor switches to serial mode.

• mcacheidle 1 bit, 1 – means mcache is idling. Checked when XMT pro-

cessor switches to parallel mode.

Output

• func result

• exception pc

C.1.1.1 Behavioral Description of SJ

Spawn and join instructions take 1 cycle and the behavior is summarized in

table C.4. The spawn and join instructions act like a branch instruction based

on spawnDone and mcacheIdle respectively. These two instructions also update a

special register spawnblock, in the Master TCU with the VALUE in table C.4.
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Table C.4: Operation of SJ

instr. Input Output

OPCODE spawnDone mcacheidle EXCEP. VALUE exception pc

1 X 1 0 1 X

spawn 1 X 0 5 1 self

0 0 X 6 0 self

join 0 1 X 0 0 X

C.1.2 Local private cache for MTCU

• Size of 8KB

• 32-byte cache lines (eight 32-bit words per line)

• 2 cycles access time

• Direct-Mapped

• Write-through

• No write-allocate

• blocked on a read cache miss.

The Master TCU has a local private cache. The shared caches act as a level

two cache for the mcache, as all cache misses in the Master TCU’s cache (mcache)

must go through the interconnection network and bring in the missed cache line
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from parallel caches. Thus, the MTCU has two levels of on-chip cache: its own

unified cache and the shared caches.

When switching from serial to parallel mode, the entire tag array of the mcache

is marked invalid. Whenever the mcache is modified during serial mode, the shared

cache modules are also updated using a write-through policy, to minimize the over-

head of a transition from serial mode to parallel mode.

The implementation of the mcache is much simpler compared to the shared

cache modules. The mcache has two SRAMs: tag and data. When a request comes

from the master program counter (MPC), both tag and data arrays are read using

index field of the request. The behavior of the cache depends on whether the access

is cache hit or miss, as well as the request type (read or write), which are shown in

table C.5.

When a read request from MPC is a cache miss, the cache line will be brought

in from the shared cache module. The shared cache modules expect a per-word

operation, therefore, the mcache will send eight requests for the cache line with the

critical word first. After the first word arrives from the shared cache module, it will

be forwarded to the MPC immediately, but mcache needs another seven cycles to

update the rest of seven words. During this time, the mcache will not accept any

new request from MPC.
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Table C.5: Behavior of MCache

hit read the value in the data SRAM will be sent to the MPC

next cycle.

miss read mark mcache as busy and send the requests to the shared

cache module and wait.

hit write the value will be written into data SRAM next cycle and

an acknowledge will be sent to MPC.

miss write the request will be forwarded to the ICN and an acknowl-

edgement will be sent to MPC. No missed cache line is

brought in (no write allocate)

C.1.3 Instruction Broadcasting

Following the execution of a spawn instruction, the MPC starts broadcast-

ing the instructions between spawn and join instructions. Most instructions are

broadcast as is, but there are three instructions that are changed during broadcast-

ing. They are broadh, broadl and join. The transformation of broadh and broadl is

described in B.7.1 on page 152.

The join instruction in TCUs is a jump instruction that jumps to the chkid

instruction in the spawn-join section. When instructions are broadcast, they are

monitored by the MTCU. If a broadcasted instruction is a chkid instruction, then

the program counter of the chkid is stored in a register. When a join instruction is

fetched by MTCU, it will be replaced with a j instruction that jumps to the chkid
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using the program counter stored in the register.

C.2 Global Register File (GRF)

• Global register file has one read port and one write port.

• There are 8 global registers, GR0 ∼ GR7

• Master TCU can access all global registers by using special transfer instruc-

tions.

• In parallel mode, from GR0 to GR7 are used for base register of prefix -sum

operation.

• GR6 stores the low ID of the spawn block. If a regular TCU finishes a virtual

thread, it will perform a prefix-sum operation with GR6 as the base register

and get a new ID.

• GR7 stores the high ID of the spawn block. If a regular TCU executes a

prefix-sum on this global register, it will increase the high ID and therefore

generate a new virtual thread.

C.2.1 Interface of the GRF

Basically, the global register file has one read and one write port. Write ports

have a one bit write enable and the content of the grBusWrite will be registered

to the global register addressed by grAddrWrite only if the one-bit write enable is

high.
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C.2.2 Serial Mode

Global registers can be accessed by the master TCU using transfer instruc-

tions. The mvtg and mvfg instructions are for MTCU use only. The “mvtg gr, rs”

instruction moves the data from rs in the MTCU register file to the global register

gr. The “mvfg rt, gr” instruction moves the data from the global register gr to rt

in MTCU register file.

C.2.3 Parallel Mode

If a regular TCU finishes a virtual thread, it will perform a prefix-sum oper-

ation on GR6 and get the next virtual ID, and, if it is less than GR7, the TCU

executes the new virtual thread; otherwise, it will flag itself as idling. A sspawn

instruction executed by a regular TCU will increment GR7 and this is implemented

by a prefix-sum operation on GR7 with the incremental value of 1. Because of

sspawn, a virtual thread may become active anytime, so idling TCUs still need to

keep checking the last ID(GR7).

C.3 Prefix-sum Unit

A Prefix sum unit executes multi-operand prefix-sum operations from different

TCUs in a constant time.

• Binary prefix-sum(input: 0 or 1)

• Compute the base-zero prefix-sum
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• Prefix sum of the TCUs inside a cluster is calculated locally

• Sum of binary input of the TCUs inside a cluster is used for a global prefix-sum

operation

• Serve different base registers in a round-robin fashion

The prefix sum calculation has two steps: in the first step, the prefix-sum of

the TCUs within the clusters is calculated; in step two, the sum is sent to the global

prefix-sum unit. After the global prefix-sum results are sent back to the clusters,

each TCUs will calculate their own prefix-sum value. In this section, we will first

look at the interface between clusters and PS unit, then the implementation inside

the cluster, and finally the PS unit itself.

C.3.1 Interface between Cluster and PS Unit

Figure C.1 on the following page shows the connections between clusters and

the PS unit. ps base reg specifies the base register number for the current cycle

along with a 6 -bit number which is a time stamp that is used to identify the result.

ps send is the sum of the binary inputs from TCUs in a cluster. The PS unit will

send the calculation results to the clusters through ps back and ps base. ps back is a

unique value for each cluster and ps base is shared for all clusters as it is the original

value of the base register.

psRequest has 8 bits information, each bit representing a global register. Each

bit is set to 1 if there is a request from a TCU for the corresponding global register.

In the worst case, the prefix-sum operation may take 2 round trips to the PS unit.
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psRequest

ps_base_reg
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ps_send

ps_back, ps_base
ps_back_index

(3)

(4)

Figure C.1: Interface between clusters and PS unit

The first notifies the PS unit about the base register, and the second sends the

actual request when the PS unit serves that particular base register.

C.3.2 Interface of PS Unit

PS requests from TCUs are combined in each cluster before sending to the PS

unit and the PS unit sends the results to each cluster.

Table C.6: Inputs of the PS unit

Name Bit width Driver Description

psRequest 8 clusters specify the base register of ps

ps send vec 24 clusters requests of ps operations

Z0 32 GR initial value of base register
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Table C.7: Outputs of the PS unit

Name Bit width Send to Description

ps base reg 10 clusters base register of accepting ps

operation, time stamp

GR base read 4 GRF base register of reading ps

operation

GR base write 4 GRF base register of writing ps

operation

grwrite 1 GRF write enable signals for

GRF

Zn 32 GR new value for global register

W 32 Clusters original value in base regis-

ter

ps back out 48 clusters Zero-base prefix-sum

C.3.3 Base Register Selection

Considering the cost of hardware, the XMT processor cannot have one PS unit

per global register. The PS unit must be used for multiple base registers and give

the same priority for every global register. A simple and efficient policy for choosing

base register is round-robin.

Bit 4 of the ps base reg specifies that the global register will be defined as a

global id. If a request from a TCU is using the register that the global id specifies,
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then the request will be accepted. If a request from a TCU is using a different

register than the global id specified, the TCU will keep the request until the global id

matches. The PS unit will change global id only if there is a prefix-sum operation

request for another global id.

Every cycle, the PS unit will check to see if the current global register (specified

by global id) is requested (specified by psRequest). If it is not, then the PS unit will

check if any other global register is requested in round-robin order, starting from

the current global id. Although actual hardware will evaluate this in parallel during

one cycle, it is easy to understand by describing it step by step.

1. Make a 16-bit (twice of psRequest) wire, twoPsRequest, by repeating psRe-

quest twice.

2. if (global id+1)th bit of the twoPsRequest is 1, increase global id by 1, other-

wise, next step

3. if (global id+2)th bit of the twoPsRequest is 1, increase global id by 2, other-

wise, next step

4. . . .

5. if (global id+7)th bit of the twoPsRequest, increase global id by 7, otherwise,

keep global id.

This policy has the following properties:

Fair: global id moves towards one direction(larger), this means there is no starva-

tion.
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Efficient: global id will change only if there are other requests, this guarantees

global id will never change to a new global register on which there is no request.

C.3.4 Zero-base Prefix-sum Computation

Figure C.2 on the next page shows a PS unit with 8 binary inputs. This module

is used for both prefix-sum operation of TCUs inside clusters and global ps unit.

The result of a zero-base prefix-sum is the prefix-sum result when the original value

of the base register is zero (0).

• First stage of the PS is computing N
2

prefix-sum of two inputs. N inputs are

grouped to N
2

sets, Si = {input(x)|x = 2i + j, j = 0, 1}, i = 0 · · · N
2
− 1. In

each set, the prefix- sum of two elements are computed and save the result on

registers. In figure C.2 on the following page, the prefix-sum of input 0 and

input 1 is calculated as well as the other 3 set of prefix-sum.

• Second stage is computing N
4

prefix-sum of four inputs. N inputs are grouped

to N
4

sets, Si = {input(x)|x = 4i + j, j = 0, · · · , 3}, i = 0 · · · N
4
− 1. In each

set, the prefix-sum of four elements needs to be calculated. The first half is

ready from the previous stage and only second half needs to be computed.

Computation of the second half can be done by adding the sum of the first

half that is provided by the previous stage. In figure C.2 on the next page,

8 inputs are divided to 2 sets, this step calculates the prefix-sum of each set,

input 0,1,2 and 3 are the first set and input 4,5,6 and 7 are the second set.

• Repeat until the prefix-sum of N inputs is obtained. The ith stage will get
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prefix-sum of 2i inputs, so the total number of stage will be logN
2 .1

• Stage i needs N
2

of adder with i bits wide.

• TCU 0 will always get 0 and TCU i(i>1) will get the sum of the first i-1 inputs.

 

S
um

 

0 

ps_back 

Figure C.2: Prefix-sum tree for 8 inputs

C.3.5 Putting it All Together

The components that serve the PS operations have been described. Fig-

ure C.3 on the following page shows the whole system.

1Here stage is counted from 1
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Figure C.3: PS unit and clusters

Not all signals are shown.

PS TCUs calculate zero-based prefix sum inside a cluster and the results and

the time stamp that are assigned by the PS UNIT are kept in local registers s1 . . . s15.

When the result with the corresponding time stamp comes back it can calculate the

final prefix- sum results by adding si,ps back and ps base.

The number of cycles needed for a prefix-sum operation varies between 10 and

25, depending on the number of global registers used in the program. Recall that,

the prefix-sum unit is used for PS operations to the 8 global registers, but at any

given cycle, it can only be used for only one particular global register, active base

register. On the other hand, a TCU can send a prefix-sum request for any global
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register, the pending base register. When a TCU executes a ps instruction, it waits

until the active base register matches the pending base register. The prefix-sum

unit monitors pending base registers from all TCUs and switches the active base

register among those pending base registers. If only one global register is used in

the program and the active base register of the prefix-sum unit matches that global

register, a ps operation will take only 10 cycles (figure C.4 (b)). If the active base

register does not match the pending base register from a TCU, the TCU has to

wait until the prefix-sum unit switches the active base register to the pending base

register and this procedure takes up to 15 cycles (figure 3.4 (a)).

 

ps inside cluster(2) 

travel to ps_unit (2) 

ps calculation (2) 

travel to cluster(2) 

8 2 6 9 10 4 

dispatch to TCU(1) 

local summation (1) 

travel to cluster(2) 

base request inside cluster(1) 

travel to ps_unit (2) 

next base calculation (2) 

dispatch to TCU(1) 

round robin queue(0-7) 

1 3 5 7 8 8 

15 

(a)extra cycles, when base register NOT match (b) base register matches 

Figure C.4: Prefix-sum operation
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Appendix D

Interconnection Network
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The interconnection network provides all-to-all communication paths between clus-

ters and on-chip cache modules. Figure D.1 on the next page shows components

inside the interconnection network. The shaded part is based on papers [8, 9, 7]

and it is designed by Aydin Balkan. The shaded part is integrated into the XMT

processor during place and route as a soft IP.
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Figure D.1: interconnection network

D.1 Interface of the interconnection network

Table D.1 on the following page lists the interfaces of the interconnection net-

work. The interconnection network provides a full duplex communication path be-

tween clusters and cache modules. Requests enter the interconnection network from

ls send vec or ls send and out from the interconnection network through cache request vec

to cache modules. Responses from caches enter from cache response vec and out

through ls back vec or ls back e. Except ls back vec, each request or response port is

paired with an acknowledge port indicating the packets are accepted by the receiver.
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The ls back vec does not have an associated acknowledge port, because the response

packets from the interconnection network are guaranteed to be accepted by clusters

for every cycle.

Table D.1: Interface of the Interconnection Network

Name Width type Description

ls send 50 packet input of request port for

ls send select e 1 ack MTCU and external port

ls send vec 200 packet input of request port for

ls send select 4 ack clusters

cache request vec 200 packet output of request

cache request select vec 4 ack

cache response vec 208 packet input of response

cache response select vec 4 ack from cache modules

ls back e 52 ack output port of response

ls back e select 1 packet from cache module

ls back vec 208 packet output port of response

from cache

D.2 Packet formats

For write requests from clusters, both address and data need to be transferred

to cache modules while a read request only needs to send an address. Having
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an interconnection network that is wide enough for both address and data in one

packet is not a good solution, since the bandwidth will be wasted for read requests.

A packet in the current interconnection network can only carry either an address

or data. Therefore a write request needs two packets and a read request needs one

packet.

Read requests expect data packets from cache modules and write requests

expect acknowledgements from cache modules.

Figure D.2 on the next page shows a bit field definition for packets. (a) shows

the request packet from a TCU, which is generated for a load/store command and

also used by shared cache modules. (b) and (c) are packets split from (a), data

packet is only relevant for a write request. (d) is the format of the response packet

from cache modules. The fields of a load/store request are explained in table D.2.

Note that since the XMT chip is expected to have 64 clusters and 64 cache modules,

6 bits are used for identifying a cluster or a cache module. When an 84-bit memory

request is split into two packets: address and data packets, some fields are replicated

in both packets as proper head information is needed for each packet.

As shown below, the address field of a memory request is partitioned into 3

fields : dst cache, addr1 and addr2. The rest of field in address packet have the

same definitions as in a memory request shown in table D.2 on page 185.

dst cache address[10:5]

addr1 address[31:11]

addr2 address[4:2]

The fields in a data packet have the same definitions as in a memory request
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Figure D.2: Packet bit definition

shown in (a) table D.2 on the following page.

When packets arrive at cache modules, they are restored to the 84-bit request

packet (Figure D.2(a)). The response from cache modules use some fields from a

request packet. For example, the dst cluster is used for routing in the interconnection

network and that is the copy of the src cluster field in the request. Depending on

the request type, data or an acknowledgement is sent back to the TCUs. Currently,

the acknowledgement packet has 0s in the field of ack in Figure D.2 (d).
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Table D.2: Field definition for a load/store request

Field Width Description

T 1 specifies cluster type: 0 - parallel clus-

ters, 1 - master cluster

V 1 valid bit: 0 - invalid, 1 - valid

src cluster 6 specifies the request is from which clus-

ter

sequence 4 each TCU can send multiple requests

and they are identified by a sequence

number

TCU ID 4 specifies the request is from which TCU

opcode 4 opcode for memory operation.

see E.14 on page 198

address 32 address of the memory request

data 32 data for a write request
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Appendix E

On-chip Cache
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Key Features

• Non-blocking cache, can hold up to 64 misses for 8 different cache lines

• 2-way associative

• Write allocate
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• 8 cache modules share one memory access port

• Cache line size: 32 bytes, 8 word(32-bit)

E.1 Overview of the Cache Hierarchy in the XMT Prototype

The XMT processor has eight on-chip cache modules, they are connected to

the four clusters with an interconnection network. The cache modules handle 3

categories of commands: read, write, and psm. A value is sent back to the requestor

for read and psm, and an acknowledgement is sent to the requestor for a write

operation.

The cache modules are connected to (i) an interconnection network, through

which they get requests from the clusters and send back responses to the clusters.

(ii) a shared memory controller(MC) through a mc if (memory controller interface)

module, which provides arbitration for requests from eight cache modules.

The cache module is a non-blocking cache and it can respond to new requests

until there are up to 64 pending cache misses for 8 different cache lines. A cache

access time is 3 cycles for a hit. The cache module is able to handle out-of-order

responses from the MC, which means the responses can arrive in a different order

than they were sent.

E.2 Interface of a Cache Module

Table E.1 on the next page and E.2 on the following page list the input and

output of a cache module, respectively. In the interface names, L2 refers to the
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lower level cache in the memory hierarchy and in the current design, since there is

no second level cache, these ports are connected to the memory controller through

the mc if module.

Table E.1: Inputs of a parallel cache module

Name Bit width Driver Description

ackFromInter 1 ICN acknowledgement to the cache response

ackFromL2 1 mc if acknowledgement of L1 request to mc if

rqstToCacheIn 84 ICN request from clusters and mcluster

rspsFromL2 36 mc if response from mc if

Table E.2: Outputs of a parallel cache module

Name Bit width Sent to Description

ackToInter 1 ICN acknowledgement to the cache request

ackToL2 1 mc if acknowledgement of mc if response

result 52 ICN response to the clusters and mcache

rqstToL2 38 mc if request to mc if

idle 1 Not used
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E.3 Components of a Cache Module

Figure E.1 on the next page shows submodules inside a cache module. The

connections among them are suppressed since it is very complicated and may not

help in understanding the big picture of a cache module. A brief description of the

submodules is listed in Table E.3.

Table E.3: Sub-modules of the L1 Cache

Module Name Purpose

cache Actual data-storage

tag The information to distinguish cache misses from cache-hits

newTag On a cache miss, this is a temporary location to store the tag

of the new address for the new cache line, this is also used to

check whether this is the first miss for the cache line

PendingRqsts A buffer that stores requests that are misses

pendQue A stack for managing the PendingRqsts buffer

L2RqstBuf FIFO, acts as a buffer for requests to the MC on a cache miss

L2RspsBuf FIFO, used to store responses from the MC
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Figure E.1: Components of an L1 Cache Module
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E.3.1 Tag

The tag module is used to store the tags for the cache module. Each cache

module is 32KB and 2-way associative, so the width of the index is 12 bits. Therefore

the width of the tag is 16 = 32−3(8cachemodules)−12(index)−2(4− byteword)+

1(validbit). The tag module has one write port and 2 read ports. If both the read

and write ports try to access the same word, the old value will be read from the

read port. Compared to the other option, where read port always gets the new

value, the hardware implementation is simple, since some extra logic is not needed.

In the cache module, since this case (read and write the same location in tag) is

an exception and the value in the read port will not be used anyway, this simple

implementation is chosen. The inputs and outputs for the tag are shown in table

E.4 and E.5.

Table E.4: Tag Inputs

Name Bit width Description

busWriteTag 16 The tag value

addrReadTag1 10 The index for which tag to read

addrReadTag2 10 The index for which tag to read

addrWriteTag 10 The index for which tag to write

writeTag 1 Write enable signal
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Table E.5: Tag Outputs

Name Bit width Description

busReadTag1 16 The tag value

busReadTag2 16 The tag value

E.3.2 NewTag

The newTag module is used to store tags of previously missed requests. When

a request turns out to be a cache miss, before sending a request to the MC, we need

to check if there is a previously missed request that already asked for the same cache

line and waiting for the response from the MC. If the cache line has been requested

before, no request needs to be sent to the MC. The newTag module stores tags of

these pending cache lines and a queue ID within the PendingRqst(see below). Since

there are eight queues within a PendingRqst, newTag is 3 bits wider than tag. The

newTag module has one write port and 2 read ports. If both the read and write

ports try to access the same word, the updated value will be read from the read

port. The inputs and outputs for the newTag are shown in tables E.6 and E.7.

E.3.3 Data Array

The cache module is a simple memory array with one read port and one write

port. The depth of this memory array is 8192 and width is 32-bit. If both the read

and write ports try to access the same word, the updated value will be read from

read port.
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Table E.6: NewTag Inputs

Name Bit width Description

busWriteNT 19 The new tag value, lower 3 bits indicate

which buffer in PendingRqsts are used

addrReadNT1 10 The index for which new tag to read

addrReadNT2 10 The index for which new tag to read

addrWriteNT 10 The index for which new tag to write

writeNT 1 Write enable signal

Table E.7: NewTag Outputs

Name Bit width Description

busReadNT1 19 The new tag value

busReadNT2 19 The new tag value

Table E.8: Cache Inputs

Name Bit width Description

dataBusWrite 32 new value need to be written into

addrRead 13 the index for which to read

addrWrite 13 the index for to write

write 1 write enable signal
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Table E.9: Cache Outputs

Name Bit width Description

dataBusRead 32 the word at the location specified by addr-

Read in previous cycle

E.3.4 Pending Requests

When there is an L1 cache miss, an entire cache line will be brought in. The

address of the requested word, and the TCU that requested it is placed in one of

64 entries in the PendingRqsts module. There are eight identical queues (called

PendRqstInL1 ) inside the PendingRqsts module, each of which can be allocated to

service one cache line at a time. Each such queue is eight entries deep, and each

entry can be for any member of the cache line, and for any TCU. After the responses

from the MC arrive, the missed requests in the queue are processed and the queue

can be used for another missed request.

E.3.5 Pending Queue

Because the cache module does not require the MC to process requests in-

order, the queues in the PendingRqsts module need to be managed properly. A

stack, PendQue, is used for tracking the usage of the queues in the PendingRqsts

module. This stack has entries that indicate which queue in the PendingRqsts

module to allocate. When this stack receives a pop command (when there is a new

cache miss for an as-yet not serviced cache line), an empty queue ID is presented
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Table E.10: Inputs of Pending Requests

Name Bit width Description

bufIDIn 3 specifies into which queue the new request

(inPR) will be inserted

inPR 57 the new request to be inserted

out selectPR 1 acknowledgement to the outPR, indicating

the outPR can be dequeued

bufIDOut 3 specified the request from which queue will

be processed

Table E.11: Outputs of Pending Requests

Name Bit width Description

in selectPR 1 acknowledgement to the inPR, indicating

it will be enqueued

outPR 57 output of the queue that is specified by bu-

fIDOut in previous cycle

for the cache line and the pointer will be moved to the next available queue ID. On

a push command (when a buffer becomes empty after an entire cache line has been

served), the pointer on the stack is moved in the other direction, and the entry in

the stack is updated to reflect the newly available buffer.
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Table E.12: Inputs for Pending Queue

Name Bit width Description

pop 1 Indicates a buffer in the Pending Requests

has just become in-use

push 1 Indicates a buffer in the Pending Requests

has just become available

availablePQ 3 Indicates which buffer in the Pending Re-

quests become available

Table E.13: Outputs for Pending Queue

Name Bit width Description

idPQ 3 Indicates which buffer in the Pending Re-

quests is available

full 1 Indicates if there are any free buffers to

service additional cache line misses. Logic

1 means all queues are used and cannot

hold any new cache miss

idlePQ 1 Indicates if all queues are empty(no cache

line is pending)
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E.3.6 FIFOs and Arbiters

E.3.6.1 MC Request and Response Buffers

These two modules are FIFOs and used to achieve better timing by having

registered outputs. As the name indicates, these two modules also provide extra

storage for buffering requests and responses. Each of them are 8 entries deep,

enough for a full cache line.

E.3.6.2 Result Arbiter and FIFOs

The TCUs expect value or acknowledgement from cache modules. For each

request, the return message can be generated at two different times and they are fed

to the result port through different ports of the arbiter. The “current” port (marked

as result cur in in figure E.1) is used for requests that turn out to be cache hits.

The “previous” port (marked as result pre in in figure E.1) is used for requests that

turn out to be cache misses. Both “current” and “previous” ports have a FIFO to

provide buffering and reduce the stalls in the cache modules.

E.4 How a Cache Module Works

The cache modules accept three kinds of commands: read, write, and psm. The

cache module returns a value for a read or a psm command and an acknowledgement

for a write command. The supported commands are listed in the table E.14 The

command category is determined by the 2 LSBs from the binary encoding. In
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Table E.14: Supported cache access commands

Command Binary Description

READ 0000 Read a word to a register, NOT cache the

value into ROB(read-only-buffer), block-

ing

READ BUF 0010 Read a word to a register, cache the value

into ROB, blocking

FETCH TCU 0100 Read a word to a prefetch buffer, NOT

cache the value into ROB, non-blocking

FETCH TCU BUF 0110 Read a word to a prefetch buffer, cache the

value into ROB, non-blocking

DPF 1110 DRAM prefetch

WRITE 0001 Write a word to cache, blocking

WRITE POST 0101 Write a word to cache, non-blocking

PSM 0011 prefix-sum to memory

INSTR 0100 Read a word to the instruction buffer

CACHE PCM 1100 Read and write the performance counters

in the cache modules, explained in the

chapter F

addition to the command, the requests also contain information about (i) point of

origin (source cluster ID, TCU ID). (ii) the sequence ID of the request, which is
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Table E.15: Categories of cache access commands

Category Binary

read xxx0

write xx01

psm xx11

used to identify different prefetch instructions. (iii) memory address, data value for

write and psm.

A cache access is processed in a pipeline and it takes at least three stages: tag

access, read data, and write data. Some commands will pass some pipeline stages

without actually performing any operations. For example, for a write command,

the read data stage is not needed and the request will simply moved to the write

stage. In the first cycle, the tag information is retrieved from the tag module and

it will be used to check whether the access is a hit or miss. Based on the cache

hit or miss, the cache module will operate differently and they are presented in the

following sections.

E.4.1 The Life-Cycle of a Cache Hit

If the tag information retrieved in the first cycle resulted in a cache hit, the

set number will be determined and the cache module is accessed for read and psm

commands. For a write, the request as well as the set information will move to the

next stage. After the read data stage, the return value (or acknowledgement) is
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presented to the “current” port of the result arbiter where it will be sent to TCUs

through the interconnection network.

E.4.2 The Life-Cycle of a Cache Miss

For a cache miss, the processing time can be partitioned into 3 parts: (i) cache

miss detection and status update, (ii) update tag and data array with the response

from the MC, and (iii) process missed requests in the queue in the PendingRqst

module.

Cache miss detection

If the tags do not match, there are two different cases: (i) First miss. This is

the first request for the missed cache line. The cache line needs to be brought in

from the off-chip memory to the chip. (ii) Following misses. This is not the first

request for the missed cache line. The cache line has been requested by another

previously missed request.

• First miss

For the case of a first miss, the PendQue module will assign an empty queue

from PendingRqst for the missed cache line and the missed request will be

kept in the queue. At the same cycle, a request to the MC will be sent out.

The newTag module will be updated with the tag of the new address and the

queue ID assigned by the PendQue module. The information in newTag is

used to check if a missed request is a first miss or a following miss.
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• Following miss

In this case, since a request to the MC has been sent out by a previously

missed request for the same cache line, no request to the MC needs to be

sent out. The missed request will be appended to the end of the queue in the

PendingRqst module, and wait for the response from the MC. The queue ID

can be found from a newTag module, since the first miss of the cache line will

store the queue ID to the newTag module.

The newTag module is used to determine whether a cache miss is a first miss

or following miss, since any first miss will update it with the new tag information

which can be compared with the request.

Updating tag and data array with response from the MC

The MC will respond to a request from a cache module with the cache line,

eight words, as a chain of 8 packets. Each response identifies itself with a 3-bit

ID, that is also the same as the queue ID in the PendingRqst module. The cache

module will pick the victim set and update tag and cache module with the new

cache line. If the victim cache line is a dirty block, the data will be sent back to the

MC, otherwise, it will be simply discarded.

During this 8-cycle period, both sets (2-way associative) of the cache for the

same index address are locked, since the values are changing and it will result in an

error if a wrong value is used. The write port of the cache module will be used for

updating with the new values, but the read port may not be needed if the victim
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cache line is not a dirty block. In this case, the read port can be used by new

requests from the interconnection network.

Processing a queue in the PendingRqst module

After the tag and cache modules are updated with the responses from the

MC, the previously missed requests that are stored in a queue can be processed.

For a read and psm request, the value is read from the cache module and it will be

presented to the “previous” port of the result arbiter. For a write, only the cache

needs to be updated, since the acknowledgement has been sent to the TCU when

the request is stored in the queue.

The number of cycles needed for this stage is the same as the number of

requests in the queue. Since the depth of the queues in the PendingRqst module is

eight, this stage can take up to eight cycles. During this period, the two sets of the

cache line for the same index address are locked for the same reason as above.

E.4.3 Cache Module Status

Based on previous discussion, we find that the read and write ports of the cache

module can be used in three ways: (i) request that is a cache hit, (ii) updating with

new data from the MC and write back the victim cache line, and (iii) processing

previously missed requests from the PendingRqst module.

To make the assignment simple, the cache module operates in three states as

shown in Figure E.2 on page 204.
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• S1

Process requests from interconnection network. If the request is a cache hit,

the port of the cache module will be assigned properly. When a response from

MC arrives the cache module changes to S2 state.

• S2

Update data array (cache) with the responses from the MC. After all updates

are finished, the cache module enters S3 state.

• S3

Process pending requests (missed) in the PendingRqst module. After all pend-

ing requests are processed, the cache module enters S1 state.

E.5 Sharing a Memory Controller Channel

The eight cache modules in the XMT prototype share one memory controller

interface as shown in figure E.3 on page 205.

For each cache module, there is a bank controller (BC) which handles the

requests from cache modules. BCs act as an interface between two clock domains

and provides a data packet conversion between the cache module and the off-chip

memory controller. The XMT processor uses two synchronous clocks: a slow clock

for IO operation and a fast clock (4× of slow clock) for internal components. The

BCs are used where the two clock domains meet and the response buffer and request
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buffer and sending the appropriate words from the cache into the 
interconnection network.

Figure E.2: State transition diagram for L1 shared cache

que in Figure E.3 on the next page are working at the slow clock. The memory

controller interface can transfer one cache line per clock (slow), but cache modules

can only process a word per fast clock period. BCs also take care of combining and

splitting of a 256-bit cache line.

The requests from cache modules are sent to an off-chip memory controller

through the request que and responses are buffered in the response buffer, then it is

broadcast to all of the BCs. Read requests only carry an address, but write requests
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have 256-bit data along with an address, therefore there are read and write queues

separately. The data bus between the XMT processor and MC is a two-way bus, and

only one can be the bus master at a certain time. When the XMT processor is the

master of the memory controller data bus, the write queue is processed; otherwise,

the read queue is processed. The bus control logic is also part of the request que

and is described in detail in Chapter F on page 212. An arbiter chooses one of the

requests from BCs and puts it in the proper queue. The request que also checks

RAW (Read After Write) hazards for cache lines and, if detected, the read request

will be blocked until the write request has been committed to the memory controller.
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Figure E.3: Eight cache modules share one memory controller interface
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E.6 Performance Counter and Special Registers

Each cache module has three performance counter register files (PCRFs) for

evaluating behavior of the cache module. The three PCRFs are hit, miss, and all

and they count the number of cache requests that are cache hits, misses, and total,

respectively. Actually, the total is the sum of hit and miss. Recall that a TCU

memory request has a 4-bit opcode field, so there are 16 types of memory requests.

The PCRFs count every type of request separately so each PCRF is a 16x32 register

file.

There are also counters for DRAM read and write requests that can be used

to find how many DRAM operations are performed from each cache module.

Since the SRAMs are prone to manufacturing error, a limited correction mech-

anism is introduced in the current design using two special-purpose registers (SRs).

The first one is to limit the cache module to use only one of the two sets by dis-

abling half of the SRAMs. This is controlled by a 2-bit register, one set in every

cache module and either set can be disabled. The second one is using the built-in

redundant rows and columns in the Artisan SRAM IPs, which are controlled by a

40-bit register, RB. To use the built-in redundancy rows and columns in SRAM IPs,

a 40-bit register is needed per IP and we decided to apply the second solution only

to the largest SRAM IP, data array, in the cache module, since it takes more than

half of the total area taken by all SRAM IPs.

To access these PCRFs and special purpose registers, a memory access request

can be sent to cache modules through the external cache access port. The opcode

206



for cache PCRF/SR access request is 0xc as shown in table E.14 on page 198. The

opcode 0xc belongs to the read type command, but this command is also used to

clear PCRFs and update SRs as shown below. Figure E.6 and table E.16 on the

next page shows how the address field is used in a PCRF/SR request.
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Figure E.4: Cache PCRF/SR access request

For the three PCRFs, the A and addr1, total of 4 bit is used to addressing

the PCRF. The location is the same as the definition of the opcode as shown in

table E.14 on page 198. When type is 3, the request is for SRs. The meanings are

different for read and write, which are listed below.
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Table E.16: Address field in a cache PCRF/SR request

Field Width Description

addr0 2 Not used

addr1 3 lower 3-bit of address in a PCRF (or RF addressing for

type=3)

A 1 MSB of address in a PCRF (or RF addressing for type=3)

dst mod 3 the destination cache module, 0-7

type 2 define which PCRF/SR is accessed. 0 - hit, 1 - miss, 2 -

total, 3 - SRs

C 1 whether update the selected PCRF/SR. 0 - not update,

1 - update

new value 20 when C is 1 and SRs are selected, this new value is written

into one of the SR specified by addr1

2 LSBs C What happens?

of addr1

00 0 returns number of cache lines read from DRAM

01 0 returns number cache lines written to DRAM

10 0 returns current one set value in bit 1:0 and upper

8 bits of RB in bit 31:24

11 0 returns lower 32 bits of RB

00 1 reset both DRAM access counts to 0

01 1 update lower 20 bits of RB using new value

10 1 update one set with the 2 LSBs in new value

11 1 update upper 20 bits of RB using new value
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The one set is a special register that configures which set among the 2 sets in

the cache modules is used. Among the SRAM IPs used in the cache modules, tag,

newTag, and cache are controlled by one set. The meaning of the one set is listed

below.

Value Meaning

0x Both sets are enabled.

10 set 0 is enabled, but set 1 is disabled.

11 set 1 is enabled, but set 0 is enabled.

The RB is used to configure how the two redundant rows and columns are

used. The meaning of the bits are defined in table E.17

Table E.17: Bit definition for RB

Bit(s) Name Description

39 RRE2 Row redundancy enable fuse for second redundant row,

if it is blown(1) then row redundancy is ON for first row.

38:30 FRA2 Faulty row address fuse for second redundant row, Bus

with 9 bits This has the logical address of the row. These

are the higher A[8:0] bits of address bus that select this

row.

29 RRE1 Row redundancy enable fuse for first redundant row, if it

is blown(1) then row redundancy is ON for first row.

Continued on Next Page. . .

209



Bit(s) Name Description

28:20 FRA1 Faulty row address fuse for first redundant row, Bus with

9 bits This has the logical address of the row. These are

the higher A[8:0] bits of address bus that select this row.

19 CRE2 Column redundancy enable fuse, if it is blown(1) then

second column redundancy is ON.

18:14 FBA2 Faulty Bit Address fuse for second column, this fuse value

tell the index of the BIT in the word that is faulty. For

example for 9 BIT memory if the first bit is faulty the

FBA will have value 4’b0000, if the 9’th bit is faulty it

will have value 4’b1000.

13:10 FCA2 Faulty Column Address fuse for second column, this fuse

value tell the logical address of the faulty column in the

faulty bit. The width of this FUSE is same as the width

of the lower address bits.

9 CRE1 Column redundancy enable fuse, if it is blown(1) then

first column redundancy is ON.

Continued on Next Page. . .
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Bit(s) Name Description

8:4 FBA1 Faulty Bit Address fuse for first column, this fuse value

tell the index of the BIT in the word that is faulty. For

example for 9 BIT memory if the first bit is faulty the

FBA will have value 4’b0000, if the 9’th bit is faulty it

will have value 4’b1000.

3:0 FCA1 Faulty Column Address fuse for first column, this fuse

value tell the logical address of the faulty column in the

faulty bit. The width of this FUSE is same as the width

of the lower address bits.
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Appendix F

Interface of XMT Prototype
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The XMT processor core has two interface ports to the outside world. One is the in-

terface to the off-chip memory controller and the other one is for users to access the

memory space of the XMT processor, including the on-chip caches. The interface

of an XMT processor core is shown in Figure F.1.
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Figure F.1: Interface of an XMT processor core

F.1 clock, reset, stop and no dram n

The XMT processor core uses two clock signals, clk low and clk. clk is gener-

ated internally from clk low by a PLL. The clk is 4 times faster than clk low and

they are positive-edge aligned.

Both reset and reset icn pins are active-high. The reset icn signal is used to

reset the interconnection network and eight on-chip shared cache modules, as well

as the interface to the MC. After reset icn is cleared (logic 0), the cache modules
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will clear their contents and then accept requests. If the reset pin is cleared (logic

0), then the MTCU will start executing instructions in the memory, starting from

address 0.

Typically, both reset icn and reset need to be asserted high (logic 1) for reset-

ting the processor, then reset icn cleared (logic 0). Then a program and data can

be written into the memory of the processor through the external memory access

port. After all initial data and programs are in place, the reset pin can be cleared

to start the execution of the processor. If the processor reaches a halt instruction,

the processor flags itself as “done” using the stop pin, setting it to high. To execute

another program, the reset pin needs to be set, which clears the stop signal. A new

program begins after clearing reset. The reset icn signal can stay at logic 0, unless

the cache modules need to be cleared. Note that reset icn only clears the on-chip

cache, but not off-chip memory.

The no dram n pin is for testing the XMT processor without connecting to an

off-chip memory controller. If it is tied to logic 0, the off-chip memory controller is

not used. If a program does not need to access off-chip DRAM (data and program

fit in on-chip cache), it should run correctly. During normal operation mode, this

pin should be tied to logic 1.

F.2 External Memory Access Port

Both the ls send e and ls back e ports have the same bit definition as the

interconnection network (see chapterD). Both the ls send e and ls back e ports
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have an associated acknowledge pin, which are driven by receivers. Logic 1 means

the receiver will store the value in the next positive edge of clk low, otherwise not.

For a write command, two packets need to be sent to the processor and the two

packets have to arrive in consecutive cycles. The response message can arrive in a

different order than requests were sent, but each response will be marked with the

sequence number presented in the request so that responses can be paired with the

request.

This port is also used to access performance counters in cache modules and

some special purpose registers introduced for testing. Special registers are a 2-bit

direct map register and 40-bit redundancy bus (RB). For detailed binary encoding

information see section E.6.

F.3 Interface to an Off-chip Memory Controller

The XMT processor communicates with an off-chip memory controller with

this interface. The data is transferred through a 256-bit bus between XMT processor

and off-chip memory controller.

• rqstToMC (output)

The XMT processor sends requests to off-chip memory controller through this

port.
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Bit index of rqstToMC Description

36 opcode: 0-read 1-write

35:33 request ID, it is the same as the ID of the

queue in PendingRqst where the missed re-

quests are stored

32 valid bit

31:0 address of the request

• ackFromMC (input)

Acknowledgement from the MC for the request presented on rqstToMC.

• rspsFromMC (input)

Header part of the response from the off-chip memory controller.

Bit index rspsFromMC Description

6 valid bit

5:3 destination cache ID, identify which cache

module among those eight modules sharing

one off-chip memory controller

2:0 queue ID, the copy of 35:33 in the rqst-

ToMC

• ackToMC (output)

Acknowledgement to the MC for the response presented on rspsFromMC.

• dataBus i, dataBus o, and busFlag

These ports are supposed to be connected to tri-state buffers. The busFlag
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will be set to logic 1s, for enabling the output of the tri-state buffers. The

width of these ports are 256 bits, a cache line.

• busRqstToMC (output)

Only one of the XMT processor and memory controller can be the bus master

at a given time. Therefore a handshaking protocol is needed between the XMT

processor and the memory controller. This port is used to notify the current

status of the XMT processor to the off-chip memory controller. The value of

this 2-bit wide port is the same as the binary encoding of the state machine

inside the XMT processor.

value Description

00 XMT is the bus master and will keep the

bus for next cycle

01 XMT is NOT the bus master

11 XMT is the bus master, but transfer the

control to the memory controller next cycle

10 Impossible value, will never present this

value

• busRqstFromMC (input)

When the memory controller is the bus master it will notify the XMT processor

about the status of the memory controller. The value of this 2-bit wide port

is the same as the binary encoding of the state machine inside the memory

controller.
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value Description

00 MC is the bus master and will keep the bus

for next cycle

01 MC is NOT the bus master

11 MC is the bus master, but transfer the con-

trol to the memory controller next cycle

10 Impossible value, will never be this value

The protocol between the XMT processor and the MC for switching bus master

is shown in figure F.2. The two states at the top and right-middle state is for

the XMT processor and the rest of states are for the off-chip memory controller.

Initially, the MC is the bus master and the XMT processor is the slave. The

bus master continues to use the bus until there is no need for the bus or the

buffer in the slave is full, then it will enter the transition state. When the slave

sees the master is in the transition state, it enters master state next cycle and

the original master now becomes the slave. During bus master transition, the

data bus is not used for one cycle, which results in one bubble cycle for every

bus master change.
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Appendix G

XMT FPGA Prototype - Paraleap

The XMT FPGA prototype - Paraleap1 shares most of the Verilog code with

the XMT ASIC version, but there are some differences between these two prototypes.

For example, the FPGA prototype includes a PCI interface that is connected to the

external port of the XMT processor core.

• PCI interface

The FPGA prototype uses the PCI bus to communicate with the host com-

puter and a pci if module provides the connection between PCI bus and the

external memory access port of the XMT processor.

• On-chip DDR2 DRAM controller

The FPGA prototype has an on-chip DDR2 DRAM memory controller shared

by eight on-chip cache modules.

• Other minor differences

There are no redundance bus(RB) and cache module configuration registers.

The size of instruction buffer in the clusters is different.

1A naming contest for the XMT FPGA prototype held by the University of Maryland got nearly

6000 submissions. The name Paraleap was selected.
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G.1 PCI Interface Module

The DN8000K10PCI board, which is used in the XMT FPGA prototype, has

a dedicated 64-bit PCI bridge, QL5064, connected to the FPGA A. Dini Group,

the manufacture of the board, provides a sample code for simple PCI interface and

it can be found in the accompanying CD. Through the module, ql5064 interface,

the registers in FPGA A can be accessed. The ql5064 interface (QL) module is also

capable of DMA(direct memory access), but it is not used in the Paraleap prototype.

For normal reads and writes, ql5064 interface can access eight bars (term used for

PCI), but the Paraleap uses only bar 2.

G.1.1 Interface of pci if Module

The interface of the pci if module is listed in table G.1. The pci if module

connects the XMT processor core and the ql5064 interface module that was provided

by Dini group.
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Table G.1: interface of pci if module

Name width Port Con. to Description

bar2 read enable 1 in QL QL read request

bar2 write enable 1 in QL QL write request

target write data 64 in QL data value to be written to

pci if

bar2 read data 64 out QL data from pci if as the response

of a read

bar2 read data valid 1 out QL indicating bar2 read data is

valid

target address 64 in QL address of read and write oper-

ation

ls send e 50 out XMT request to XMT

ls select e 1 in XMT acknowledgement of ls send e

ls back e 52 in XMT response from XMT

stop 1 in XMT set to logic 1 when a program

finishes

reset icn 1 out XMT reset interconnection network

and cache modules

reset xmt 1 out XMT reset XMT processor core, ac-

tive high. Connected to the re-

set pin of the XMT processor
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G.1.2 How does the pci if Module Work?

G.1.2.1 Two Buffers in pci if Module

The pci if has two 256× 32 buffers. When the host computer writes the XMT

processor’s memory, it first uploads the data into the buffers and then the pci if

module will send the data to the XMT processor through the external port.

A simple procedure of writing the XMT processor’s memory is described below,

which uses only one buffer.

1. Write data to the buffer chosen until the buffer is full or no more data to write.

2. Specify the starting address in the XMT processor memory space.

3. Notify pci if to transfer data to the XMT processor memory space through

the external port.

4. Wait until it finishes. If there is more data to write, repeat these steps until

all data is transferred.

Because there are two buffers, it is possible to overlap uploading and transferring of

the data as shown in figure G.1(a).

To read the XMT processor’s memory, the following steps are needed.

1. Specifies the starting address in the XMT processor’s memory space.

2. Notify pci if to transfer data to the XMT processor memory space through

the external port.
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Figure G.1: Access the memory space of the XMT processor through the PCI bus

3. Wait until all data are received from the XMT processor. Note that the data

may arrive out of order.

4. Read data from the buffer through the PCI interface.

Similar to the writing procedure, it is possible to overlap receiving and downloading

of the data as shown in figure G.1 (b).

In verilog, these two buffers are actually lower and upper parts of a 512×32

memory. The MSB, bit 8, is used to choose which half to use. The depth of 512 is

chosen to use exactly one BRAM (16Kb) in the Xilinx Virtex-4 FPGA.
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G.1.2.2 Address Mapping for the Host Computer

The address mapping is listed in table G.2. Because the PCI data bus is 64-bit,

the 3 LSBs are not used in the PCI operations.

Table G.2: Address mapping of pci if

Addr. Op. Description

0x0 write The address in the XMT processor memory space that

will be read from or written to. This value will be

changed by pci if during sending requests to the XMT

0x0 read The current address in the XMT processor memory space

that pci if is reading from or writing to

0x8 write Notifying pci if to send READ (from XMT memory)

requests to the XMT processor. Also clears the read

counter. the target write data[13:0] is used. 0 - defines

which half buffer is the source. 9:1 - define number of

word to read. 13:10 - which read commands to use,

0(READ) or 0xc(CACHE PCM).

0x8 read Returns the upper 20 bits of the request that pci if sends

to the XMT processor. 83:64 part of the cache request

vector.

Continued on Next Page. . .
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Addr. Op. Description

0x10 write Notifying pci if to send WRITE (to XMT memory) re-

quests to the XMT processor. The target write data[9:0]

is used. 0 - defines which half buffer is the destination.

9:1 - define number of word to write.

0x10 read Undefined

0x18 write Update the register which stores the 31:0 of the last valid

response packet from the XMT processor

0x18 read The 31:0 of the last valid response packet from the XMT

processor

0x20 write Clears cycle count register to 0. Also set reset and re-

set icn of the XMT processor. The target write data[1:0]

is used. bit 0 - reset xmt, bit 1 - reset icn

0x20 read 7:0 are defined. 0 - reset xmt, 1 - reset icn, 2 - stop sig-

nal from the XMT processor. Bits 7:3 represent current

buffer state. one hot state, from bit 3 to bit 7: idle, send-

ing read requests, waiting for response of read, first write

request, sending write request.

Continued on Next Page. . .
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Addr. Op. Description

0x28 write Define which half of the buffer will be accessed by the

host computer. The target write data[9:0] is used. 0 -

defines which half buffer is accessed. 9:1 - initialize the

pointer with this value (normally 0).

0x28 read Read from buffers in the pci if module. The starting

address is determined by what is written to address 0x28.

Every read operation automatically increase the pointer

by 1, so, to read multiple words from the buffer, only

need to read address 0x28 for multiple times.

0x30 write Write to the buffer in the pci if module. Every write

operation automatically increase the pointer by 1, so, to

write multiple words to the buffer, only need to write into

address 0x30 consecutively. The starting pointer can be

initialized by writing to address 0x28.

0x38 read Read counter, showing how many response packets are

received for this round (since 0x8 is written to start read-

ing).

0x40 write Write counter

0x40 read Write counter

Continued on Next Page. . .
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Addr. Op. Description

0x48 read Bit 31 specifies which buffer is used for the XMT pro-

cessor. Bit 30 specifies which buffer is accessed for host

pc. Bit 29 is always 0. Bit 28:20 is the length of the

current round of transfer. Bit 19:17 are always 0. Bit

16:8 transfer count(how many read or write requests are

sent to XMT processor for this round. Bit 7:0 pointer of

the buffer.

0x58 read 40-bit cycle count. Since XMT FPGA operates at

75MHz, the maximum execution time is 14660 seconds

or slightly more than 4 hours.

G.2 Memory Controller

When a memory request has turned out to be a cache miss in a shared cache

module, the cache line needs to be brought in from the off-chip DDR2 DRAM. The

Paraleap has an on-chip DDR2 DRAM memory controller as shown in figure G.2.

Each parallel cache module is connected to a bank controller (BC) that handles

cache miss requests. The eight BCs share one DDR2 DRAM channel. The DDR2
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Figure G.2: Memory modules

DRAM module used in the Paraleap has exactly 8 banks and each of them is assigned

to a shared cache and BC as shown with dotted lines in figure G.2.

G.2.1 DRAM Architecture and Organization

Before presenting the MC in the Paraleap, the basic concepts of DDR2 DRAM

are briefly reviewed in this section as background. Each address in DRAM is speci-

fied by a triple – bank, row, and column – and DRAM is accessed like a three dimen-

sional array. The DDR2 DRAM module used in the Paraleap, MT16HTF12864HY-
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667, has 8 banks, 16k rows per bank, and 1k columns per row. Also, each bank has

its own row buffer, the function of which is explained below.

Accessing an address in DRAM can require up to three operations. First,

ACTIVE: a row in a bank must be copied into the bank’s row buffer for the row

to be accessed. Second, the READ/WRITE command accesses a column in the

row buffer. Third, PRECHARGE: before another row in the same bank can be

activated, the row buffer must be copied back into memory. In the event of a

READ/WRITE to a new row, the bank must be first PRECHARGED and then

the new row can be ACTIVATED before the READ/WRITE occur. But it should

be noted that subsequent READ/WRITE commands to an active row require no

additional operations.

The fourth important command of a DRAM is REFRESH. Periodical RE-

FRESH is necessary for DRAM or it will lose its data. The micron MT16HTF12864HY-

667 requires a REFRESH for every 7.8125µs.

G.2.2 Bank Controller (BC)

A bank controller accepts cache miss requests from the paired cache module

and generates a sequence of DDR2 DRAM commands to access the off-chip DRAM

module. A BC keeps the state of the corresponding bank and attempts to send com-

mands through the shared command/data controller (CBC). Because the minimum

clock rate for the MT16HTF12864HY-667 is 133MHz and the XMT FPGA operates

at 75MHz, a 2x clock is used for the CBC. The CBC has two 150MHz cycles for
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every cycle of 75MHz. For convenience of bus arbitration, the CBC processes the

column commands only in the cycle where two positive edges (75MHz and 150MHz)

occur. READ and WRITE commands are column commands and they are using

the DRAM data bus. ACTIVE, PRECHARGE, and REFRESH are not using the

data bus and they are row commands.

The DRAM commands are sent in the following order:

• If the bank is not active, send the ACTIVE command

• If the bank is active but the row does not match with the request, then send

PRECHARGE command

• READ or WRITE command depending on request

The REFRESH command operates on all banks and all banks need to be in

the idle state. When a REFRESH command is necessary, the CBC will request

all banks to remain in or change to the idle state. If a row in a bank is opened

(ACTIVE), then a PRECHARGE command will be sent to change the bank to the

idle state. After all banks are ready for a REFRESH command, the CBC will send

a REFRESH command to the DRAM.

There are many time constraints on the DRAM operations. Generally, every

DDR2 DRAM command takes multiple cycles. Especially, opening or closing a

row is expensive. Also, switching from READ to WRITE – effectively changing

the direction of traffic – also requires some extra cycles. The exact numbers of

cycles(150MHz) are listed below for the micron MT16HTF12864HY-667 module.
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Table G.3: Timing constraints for MT16HTF12864HY-667

Symbol Parameter value cycles

(ns) 150MHz

tRAS ACTIVE to PRECHARGE 40 6

tRCD ACTIVE to READ/WRITE 12 2

tRC ACTIVE to ACTIVE(same bank) 55 9

tRRD ACTIVE to ACTIVE(different bank) 7.5 2

CL READ to the first data - 3

WL WRITE to the first data CL-1 2

tRTP READ to PRECHARGE 7.5 2

tWTR WRITE to READ 7.5 2

tWR WRITE to PRECHARGE (write recovery) 15 3

tRP PRECHARGE period 12 2

Because of the timing constraints, BCs have to keep the banks’ state. For

example, a row can be ACTIVATED only if the bank has been PRECHARGED.

The following registers are used to keep bank information.

• bk state, 13 bits, only 1 bit can be 1 and there are 13 state.

• rowStatus, 15 bits, if bit 14 is 1, a row is open and the row number is in the

bit field 13:0

• bk state counter, 8 bits, cycle count since the bank entered this state, increase
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1 at 2x clock

• bk last act, 4 bits, cycle count since last ACTIVE command to this bank,

increase 1 at 2x clock

A BC makes sure all timing constraints are met before a command is sent to the

CBC using current bank state and global information from the CBC. The following

information will be broadcasted from the CBC to all banks.

• ACTIVE

indicating whether a ACTIVE command is permitted. Constrained by tRRD

• READ

indicating whether a READ command is permitted. Not permitted when data

bus is used or will be used for WRITE commands.

• WRITE

indicating whether a WRITE command is permitted. Not permitted when

data bus is used or will be used for READ commands.

• REFRESH request

request of REFRESH will be presented.

• REFRESH commit

notifying banks about the commitment of a REFRESH command.

• bus direction

indicating current direction of data movement.
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• last DRAM command

this is monitored by banks to confirm that a posted command has been com-

mitted.

The figure G.3 shows the block diagram of a bank controller. Each BC has

eight buffers for request from a cache module. A stack tracks the usage of buffers,

because the requests in these eight buffers are not processed in the order they arrived.

The reordering of the requests is to achieve a better off-chip memory bandwidth

utilization and it is described after this brief overview of BC. There are two IDs in

bank controller and they need to be clarified. The request ID is the ID assigned by

a cache module to distinguish multiple pending requests, which also indicates which

queue in the PendingRqst is used for this cache line. The request buffer ID indicates

which one among the eight request buffers in the BC is used for the request.

When a cache module send a read request to its BC, the request will be

saved in one of the eight request buffers, which is allocated by the empty buffer ID

stack. When the read request is selected by the BC, the request ID (buffer ID of

PendingRqst in cache module) of the read request will be pushed in the ReadID

FIFO and it will be paired with the data from DRAM. The FIFO is used because

the data will arrive at the BC a few cycles later and the latency can vary. After

the data from DRAM is paired with the request ID, it can be delivered to the cache

who requested this cache line.

While a read request from a cache has only one address packet, a write request

has a total of nine packets: one address packet followed by eight data packets.
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Similar to read request, the address packet goes to one of the eight buffers allocated

by the empty buffer ID stack. The eight data packets will be saved into a register file

(Write buffer) using the request buffer ID of the address packet and packet sequence

number. When the write request is processed by the BC, the buffer ID is used

to retrieve data from the buffer. For the same reason as in the ReadID FIFO, a

WriteID FIFO is used to keep the ID number of the request. Note that the write

port and read port of the Write buffer have a different width: 32-bit for write and

256-bit for read. It takes 8 cycles to store a cache line, but only one cycle to read.

After a BC processes a request, the corresponding buffer ID will be pushed

into the empty buffer ID stack, so the buffer will be reused. The BC also checks for

RAW (Read After Write) hazards, and the read request that would cause RAW will

be blocked until the write request is processed by the BC.

The BC reschedules the requests to achieve better bandwidth utilization and

less overall latency. As described in section G.2.1, a typical DRAM access needs 3

commands: ACTIVE, READ/WRITE, and PRECHARGE. When a row is opened(ACTIVE),

multiple column requests (READ or WRITE) can be sent to DRAM. This will re-

sult in less commands and achieve better performance. When a DRAM switches the

direction of the data movement in the bus, the data bus cannot be used during the

transition. The BC in the Paraleap attempts to minimize both the row open/close

operations and bus direction changes. The BC has a request buffer that holds 8

commands, this allows it to look ahead 8 steps and find the best one. The bank
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controller chooses 1 command out of the 8 by three rounds of binary comparison.

The algorithm for binary comparison operates as follows: at the first level where one

command is deemed better than another, the algorithm stops. Two commands will

only be compared at step n if they are equivalent for the n−1 previous comparisons.

1. Take a valid request over an invalid request.

2. Take a request which has been in the buffer for a very long time (more than

a certain number of cycles).

3. Take a request which matches the current traffic direction over a request which
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goes against traffic.

4. Take a request to the current open row over a request to an inactive row.

5. Take a row that has more pending commands. Two requests to the same row

are only considered as pending if both are in the same traffic direction.

6. Take the request that was received earlier.

G.2.3 Command and Bus Controller(CBC)

The eight BCs send DDR2 DRAM commands to the CBC and the CBC sends

these commands to the off-chip DRAM. The functions of the CBC are:

• DDR2 DRAM initialization

• posting DRAM commands from BCs

• periodical DRAM refreshing

• presenting data to the DRAM bus for writing

• collecting data from the DRAM for reading

• providing BCs with global information

G.2.3.1 Interface of the CBC

The interface of the CBC is listed in table G.4 and G.5. The brief description

of each port is also listed in tables.

237



Table G.4: interface of the command/bus controller (BC

side)

Name Width Port Description

clk low 1 input 75Mhz clock signal

clk in 1 input 150Mhz clock signal, pos edge aligned with

clk low

clk 90 1 input 150MHz, 90 degree a head of clk in

clk 180 1 input 150MHz, 180 degree a head of clk in

clk 90 n 1 input 150MHz, 270 degree a head of clk in

bks cmd 184 input DRAM commands from BCs

bks busy 8 input busy banks will present 1 at corresponding

bit, not used now

bks open 8 input Used for making sure the banks are ready

for refresh, need to be all 0

ack bk cmd 8 output acknowledgement to the DRAM com-

mands from BCs

mem access r 8 output the corresponding bit for a BC will be 1 if

the data is presented in the bus for read

from DRAM

Continued on Next Page. . .
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Name Width Port Description

mem access w 8 output the corresponding bit for a BC will be 1 if

the data will be consumed for a write to

DRAM

write bk id 3 output this is used to select a 256-bit data bus

from 8 BCs

rqst r 8 input each bit indicating whether there is a read

request from corresponding BC

rqst w 8 input each bit indicating whether there is a write

request from corresponding BC

switch dir ok 8 input each bit indicating whether the corre-

sponding BC is ready for a traffic direction

change

globalInfo 7 output Information about DRAM state. bit 0 to 2

: indicate whether active , read, and write

is permitted. bit 3: refresh request to all

banks. bit 4: refresh command has been

committed. bit 5: the current traffic di-

rection in the DRAM data bus. bit 6: not

used

Continued on Next Page. . .
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Name Width Port Description

write data 256 input the data will be written to DRAM, selected

from BCs using write bk id

read data 256 output the data from DRAM will be broadcasted

and mem access r is used to specify the

destination BC

mem cmd info 8 output the last DRAM command committed. bit

7: valid, bit 6-4 bank ID, bit 3-0 DRAM

command

G.2.3.2 How Does the CBC Work?

The DDR2 DRAM needs to be initialized and the steps are defined in the chip

manual. The CBC sets CL as 3 and burst length for 4.

The CBC operates at twice the rate of the internal clock. For convenience

of bus control, the column commands are processed in cycles where the positive

edges of 2× and 1× clocks overlap. Name this cycle as column command cycle and

the other as row command cycle. During column command cycle, a row command

can be sent to the DRAM if there is no column command. The CBC uses a 36-bit

register, dq reserve, to track the bus usage for column commands. An associated

register bk reserve stores the 3-bit bank IDs for column commands.
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Table G.5: interface of the command/bus controller (DRAM side)

Name Width Port Description

Cal clk 1 input 200MHz reference clock for IDELAY in

Xilinx Virtex-4 FPGA

Clk 1 output clock for DRAM, 150MHz

Clkn 1 output negative of Clk

CKE 2 output should keep high for normal DRAM oper-

ation

CSn 2 output chip select, low effective

RASn 1 output row access strobe

CASn 1 output column access strobe

WEn 1 output write enable

DM 8 inout not used in

BA 2 output bank address

A 14 output address pins

DQ 64 inout data bus, tri-state bus

DQS 8 inout data strobe, tri-state bus

DQSn 8 inout negative of DQS, tri-state bus

ODT 2 input on die termination

The CBC also decides when to switch the traffic direction in the DRAM data

bus. Each BC presents the current request type through rqst r and rqst w and
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the CBC will change when a direction change is needed. To minimize the number

of direction changes, the CBC will only change the direction when multiple BCs

request a change or any of the BC has been waiting for a change for a long time.

This behavior prevents starvation while reducing the number of direction changes.

G.3 Other Differences in XMT FPGA Prototype

• Instruction Buffer for the MTCU

The maximum size of the XMTC program is limited by the size of the instruc-

tion buffer in the MTCU. The maximum program size for the XMT FPGA

prototype is 64KB, while it is 16KB for the XMT ASIC.

• Instruction Buffer for TCUs

The size of each instruction buffer in the clusters is different. XMT FPGA

prototype is 4KB and can hold up to 1024 instructions, however, the XMT

ASIC has half of it, 2KB or 512 instructions.

• Interconnection Network

Figure G.4 shows the differences in the XMT ASIC and the XMT FPGA pro-

totype. In the XMT ASIC, separate trees are used for MCluster and external

ports as shown at (a). This will reduce the latencies of cache accesses from

MCluster and external ports. In the XMT FPGA prototype, the FPGA IO

pins are limited and cannot afford to have a dedicated port for MCluster as

in the XMT ASIC. Therefore the MCluster and Cluster 0 share one port and

the External port shares with Cluster 1.
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Appendix H

Verilog Module Hierarchy

Figure H.1 on the following page lists module names, and normally they are

defined in files with the same name and .v extension. Modules whose file name is

different from the module name are followed by a number. (1) block.v (2) pre-PAR

module (3) mc if.v (4) Synopsys DesignWare library module.
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File: \\192.168.151.27\xingzhi\working_dir\modules.txt  1/7/2008, 2:36:07PM

xmt_s-|-reset_cell
      |-xmt_part1-|-mcluster---|-mtcu------------------|-micache
      |           |            |                       |-mpc------------|-rfile
      |           |            |                       |                |-tcu_pcm
      |           |            |                       |-ls_addr
      |           |            |                       |-mcache---------|-mcache_rf
      |           |            |                       |                |-mtagBRAM
      |           |            |                       |                |-cacheline_rqst
      |           |            |                       |-FuncALU
      |           |            |                       |-FuncSFT
      |           |            |                       |-FuncBR
      |           |            |                       |-FuncMul
      |           |            |                       |-FuncSJ
      |           |            |                       |-packet_split
      |           |            |-ps_request_or(1)
      |           |            |-GRs
      |           |            |-ps_unit(1)------------|-pstree_B(1)
      |           |-simpPipe
      |           |-cluster----|-tcu-------------------|-pc-------------|-rfile
      |           |            |                       |                |-pc_monitor
      |           |            |                       |-prefetchTCU
      |           |            |                       |-ls_addr
      |           |            |                       |-FuncALU
      |           |            |                       |-FuncSFT
      |           |            |                       |-FuncBR
      |           |            |                       |-FuncPS
      |           |            |                       |-MultiClockBuf
      |           |            |-ps_cluster(1)
      |           |            |-FuncMul---------------|-hi_low
      |           |            |                       |-div_mtcu
      |           |            |                       |-DW_div_pipe(4)
      |           |            |                       |-DW02_mult_5_stage(4)
      |           |            |-addrHash
      |           |            |-read_only_buf---------|-ntagBRAM_RAW
      |           |            |                       |-nRequestor
      |           |            |                       |-mcache_rf
      |           |            |                       |-seqRecord
      |           |            |                       |-MultiClockBuf
      |           |            |                       |-addrRecord
      |           |            |-sahred_icache
      |           |            |-mul_tree(1)-----------|-MultiClockBuf
      |           |            |                       |-CombArbitor
      |           |            |-SimpPath
      |           |            |-stree(1)--------------|-MultiClockBuf
      |           |            |                       |-CombArbitor
      |           |            |                       |-Shrink_E(1)
      |           |            |-pkt_split
      |           |            |-ps_request_cluster(1)
      |           |-external_port
      |           |-MultiClockBuf
      |           |-part1_logic
      |           |-pkt_arbitor
      |           |-reset_cell
      |
      |-xmt_part2-|-icn(2)
                  |-reset_cell
                  |-icn_split_i
                  |-icn_split_o
                  |-mem_access(3)-|-pkt_combine
                  |               |-reset_cell
                  |               |-level_one_cache-------|-pendQueL1
                  |               |                       |-MultiClockBuf
                  |               |                       |-CombArbitor
                  |               |                       |-pendingRqsts
                  |               |                       |-cache_pcm
                  |               |                       |-cache_rf
                  |               |                       |-next_rf
                  |               |                       |-dirty_rf
                  |               |                       |-Cache1RF
                  |               |                       |-tagBRAM
                  |               |                       |-tagBRAM_RAW
                  |               |
                  |               |-mc_if(3)--------------|-bkController(3)|-MultiClockBuf
                  |               |                       |
                  |               |                       |-rqst_que(3)----|-MultiClockBuf
                  |               |                       |                |-CombArbitor
                  |               |                       |                |-wr_que(3)
                  |               |                       |                |-IO_buf_send
                  |               |                       |
                  |               |                       |-Rsponse_buf(3)-|-IO_buf_receive

Page: 1

Figure H.1: Verilog Module Hierarchy
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Appendix I

XMT ISA

instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

j target 0x02 target

jal target 0x03 target

lui rt,imm 0xf 0 rt imm

jr rs 0 rs 0 8

jalr rs,rd 0 rs 0 rd 0 9

mvfp rt,rp,imm 0x1c rp rt imm

mvtp rp,rs,imm 0x1d rs rp imm

sflush 0x2d don’t care

sll rd,rt,shamt 0 0 rt rd shamt 0

srl rd,rt,shamt 0 0 rt rd shamt 2

sra rd,rt,shamt 0 0 rt rd shamt 3

sllv rd,rt,rs 0 rs rt rd 0 4

srlv rd,rt,rs 0 rs rt rd 0 6

srav rd,rt,rs 0 rs rt rd 0 7

getid rd, rs 0x19 rs rt don’t care

Continued on Next Page. . .
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instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add rd,rs,rt 0x00 rs rt rd 0 0x20

addi rt,rs,imm 0x08 rs rt imm

addu rd,rs,rt 0 rs rt rd 0 0x21

addiu rt,rs,imm 0x09 rs rt imm

sub rd,rs,rt 0 rs rt rd 0 0x22

subu rd,rs,rt 0 rs rt rd 0 0x23

and rd,rs,rt 0 rs rt rd 0 0x24

andi rt,rs,imm 0x0c rs rt imm

or rd,rs,rt 0 rs rt rd 0 0x25

ori rt,rs,imm 0x0d rs rt imm

nor rd,rs,rt 0x27 rs rt rd 0 0x27

xor rd,rs,rt 0 rs rt rd 0 0x26

xori rt,rs,imm 0x0e rs rt imm

slt rd,rs,rt 0 rs rt rd 0 0x2a

slti rt,rs,imm 0x0a rs rt imm

sltu rd,rs,rt 0 rs rt rd 0 0x2b

sltiu rt,rs,imm 0x0b rs rt imm

beq rs,rt,label 0x04 rs rt offset

bne rs,rt,label 0x05 rs rt offset

Continued on Next Page. . .
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instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

chkid rs 0x18 rs 0 0xffff

blez rs,label 0x06 rs 0 offset

bgtz rs,label 0x07 rs 0 offset

bltz rs,label 0x01 rs 0 offset

bltzal rs,label 0x01 rs 0x10 offset

bgez rs,label 0x01 rs 1 offset

bgezal rs,label 0x01 rs 0x11 offset

mult rs,rt 0 rs rt 0 0x18

multu rs,rt 0 rs rt 0 0x19

div rs,rt 0 rs rt 0 0x1a

divu rs,rt 0 rs rt 0 0x1b

mfhi rd 0 0 rd 0 0x10

mthi rs 0 rs 0 0x11

mtlo rs 0 rs 0 0x13

mflo rd 0 0 0 rd 0x12

lw rt, imm(rs) 0x23 rs rt imm

sw rt, imm(rs) 0x2b rs rt imm

lwbuf rt, imm(rs) 0x27 rs rt imm

psm rt, imm(rs) 0x17 rs rt imm

Continued on Next Page. . .
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instruction instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

pref hint,imm(rs) 0x33 rs hint imm

swp rt, imm(rs) 0x2c rs rt imm

ps rt, gr 0x16 gr rt 0

spawn 0x14 0

join 0x15 0

broadh rt, rs 0x34 rs rt 0

broadl rt, rs 0x35 rs rt 0

mvfg rt, gr 0x1a gr rt 0

mvtg gr, rs 0x1b rs gr 0

halt 0x3f 0
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