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Simple Summary: The coronavirus disease 2019 (COVID-19) pandemic caused more than 6.7 million
deaths worldwide. Certain groups of individuals are still at a high risk of severe illness. The
availability of drugs to treat COVID-19 symptoms will save many lives. The main protease (Mpro)
of SARS-CoV2, the causal agent of COVID-19, is a promising target for drug discovery. Natural
products have been used for thousands of years to treat diseases and represent valuable resources
for drug discovery. While the process of experimentally screening chemicals for drug discovery has
often been very long and expensive, recent advances in virtual screening have made it possible to
screen millions of potential chemicals in a very short time using computers. In this research, around
400,000 natural products were virtually screened within a month and narrowed down to 20 products
that could potentially bind to the SARS-CoV2 Mpro. In vitro experimental testing of seven natural
products demonstrated that the virtual screening approach used in this study had a significantly high
rate of accuracy since more than 50% of the experimentally tested natural products (four out of seven)
were able to inhibit the function of the Mpro in real-life consistent with the computer predictions. Our
results show that with further research, beta-carboline, N-alkyl indole, and Benzoic acid ester types
of natural products could be used in treating COVID-19 in the future.

Abstract: The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health,
social, and economic consequences. While the development of effective vaccines substantially reduced
the severity of symptoms and the associated deaths, we still urgently need effective drugs to further
reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods
both improved and sped up all the different stages of the drug discovery processes by performing
complex analyses with enormous datasets. Natural products (NPs) have been used for treating
diseases and infections for thousands of years and represent a valuable resource for drug discovery
when combined with the current computation advancements. Here, a dataset of 406,747 unique
NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a
combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding
affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids
that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we
identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of
7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7;
57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant
inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment
of COVID-19 symptoms.

Keywords: COVID-19; computation; structure-based virtual screening; protease inhibitor; ligand-
based virtual screening; in vitro; drug-target interaction
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has caused serious negative
social and economic impacts on the world. As of January 2023, the SARS-CoV-2 virus
(the causal agent of COVID-19) has infected more than 665 million people worldwide and
has resulted in 6.7 million deaths (Johns Hopkins Coronavirus Resource Center, https:
//coronavirus.jhu.edu/map.html, (accessed on 6 June 2021)). The uncontrolled spread
of the virus contributed to the emergence of novel SARS-CoV-2 variants of concern such
as the UK variant [1], Brazil variant [2], South Africa variant [3], Delta variant [4], and
lastly the Omicron variant [5]. Consequently, several countries became the epicenter of
the COVID-19 pandemic at different times. The development of vaccines substantially
contributed to slowing the spread of the virus. Vaccination also reduced adverse outcomes
such as ICU hospitalizations and deaths by 63–69% [6]. Despite the benefits of the vaccines,
we still urgently need effective drugs to further reduce the number of casualties associated
with SARS-CoV-2 infections in the vulnerable population.

Viruses encode several proteins that are essential to the different stages of their life
cycle from infecting the host to replicating and spreading to new hosts. SARS-CoV-2
encodes 27 proteins [7] and the viral main protease (Mpro; also called 3C-like protease;
3CLpro) has emerged as a potential target for antiviral drug design [8] since it is conserved
in coronaviruses, plays important roles in viral gene expression and replication, and has no
human homolog [9]. Antiviral drugs bind to viral proteins and disrupt the normal viral life
cycle as means of protecting the host from severe and sometimes detrimental consequences.
To this date, effective natural antiviral drugs are not available for the treatment of severe
illnesses caused by SARS-CoV-2.

The unprecedented advancements in computational resources over the last three
decades have greatly improved the efficiency of finding new drugs. With modern parallel
computing, millions of compounds can be virtually screened against viral proteins in a
relatively short time and ranked according to the calculated binding affinity [10]. Thus,
markedly decreasing the number of potential lead molecules that need to be experimentally
tested for validating their binding efficacy against the viral target protein. There are two
general approaches to virtual drug screening. Ligand-based virtual screening (LBVS) is
a widely used high-throughput in silico drug screening approach that makes use of the
known properties of the compounds (ligands) to evaluate their suitability to bind to a
receptor (such as viral protein) [11]. The two main advantages of an LBVS approach are
its speed and the fact that it does not rely on the availability of the three-dimensional
(3D) structure of the target, which is often a limiting factor. Thus, LBVS can be used as
a first step to screen for the binding affinities of hundreds of thousands of compounds
against the target and select potential candidates predicted to strongly bind to the target of
interest. On the other hand, structure-based virtual screening (SBVS) depends on the 3D
structure of the target molecule. The SBVS approach is computationally demanding but
performs close inspection of the binding site topology of the target, such as the occurrence
of cavities, clefts, sub-pockets, and electrostatic properties, to find the compounds that
would most effectively bind to the target [12]. Therefore, SBVS results provide substantial
validation of the compounds identified by the LBVS approach to bind the target of interest.
Thus, when applied sequentially, referred to as a hybrid approach, these two approaches
complement each other by reducing the time and cost of the resources needed to screen
many compounds.

Given the urgency to combat the devastating COVID-19 pandemic, the most direct
route to antiviral drug discovery was repurposing existing Food and Drug Administration
(FDA) approved drugs against other diseases [13], mostly because starting with exist-
ing pharmacological agents that have already undergone clinical trials saved significant
time [14]. Consequently, several currently available drugs have been tested for the treat-
ment of COVID-19 but have shown little success. For instance, several drugs, such as
chloroquine, lopinavir, and ritonavir, are known to inhibit the replication of other coro-
naviruses in vitro [15]. However, these drugs have shown no benefits when tested in
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https://coronavirus.jhu.edu/map.html
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hospitalized adult patients with severe COVID-19 [16]. Similarly, hydroxychloroquine, a
polymerase inhibitor classically used as antimalarial medication, was not associated with a
reduction in death among hospitalized patients with COVID-19 [17]. Currently, nafamostat
and camostat are being evaluated in clinical trials in the treatment of COVID-19. Camostat
shows inhibitory effects on the SARS-CoV-2 in TMPRSS2-expressing human cells [18] while
nafamostat can block the SARS-CoV-2 fusion and significantly inhibit the cell infection of
SARS-CoV-2 [19,20]. Screening a library of 10,000 compounds in preclinical stages identified
seven compounds, including ebselen, which in antiviral activity assay showed the strongest
antiviral effects at a concentration of 10 µM treatment in SARS-CoV-2-infected Vero cells [21].
A recent study identified the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway as
a common signaling pathway between cancer and COVID-19 disease [22]. Capivasertib
is a potent pan-AKT kinase inhibitor drug that inhibits AKT1, AKT2 and, AKT3, and is
currently being used as an oral small-molecule AKT inhibitor for drug-resistant breast
cancer in clinical trials [23]. While this anticancer drug did not have a role in viral genome
replication/expression, it could prevent the entry of SARS-CoV-2 into cells [22]. Thus,
Capivasertib has great potential for treating cancer patients with COVID-19.

A wide range of synthetic small molecules have also been screened for drug develop-
ment purposes against COVID-19. Using a computational structure-assisted drug design
approach, an inhibitor named N3 was designed that showed fast in vitro inactivation of
many coronavirus Mpros including SARS-CoV-2, by fitting inside the substrate-binding
pocket [24]. In experimental studies, N3 showed strong antiviral effects at a concentration
of 10 µM treatment in SARS-CoV-2-infected Vero cells [21]. Similarly, by targeting the
substrate-binding pocket of SARS-CoV Mpro, two additional inhibitors were designed
and synthesized that exhibited 96–100% SARS-CoV-2 Mpro inhibition activity. Structural
analysis showed covalent interaction between the aldehyde group of the inhibitors and
the Mpro Cys145 residue [9]. By redesigning a previously synthesized peptidomimetic
α-ketoamides developed as a broad-spectrum inhibitor of the coronavirus main proteases,
ref. [25] generated compound 13b that inhibited SARS-CoV-2 replication in human Calu-3
lung cells. The COVID Moonshot non-profit and open-science consortium identified several
key compounds (such as DNDI-6510) and is constantly working towards the discovery
of safe, globally affordable, and easily-manufactured antiviral drugs against COVID-19
and future viral pandemics [26]. Finally, an orally bioavailable SARS-CoV-2 main protease
inhibitor (PF-07321332) was developed by Pfizer showing in vitro antiviral activity with
excellent off-target selectivity and in vivo safety profiles [27].

Synthetic drugs, while effective, are well known to occasionally cause adverse or side
effects [28–30]. On the other hand, natural products (plant products in particular) are
generally believed to be safer if identified accurately, as deaths or hospitalizations due to
herbs are very rare [31]. Owing to their vast chemical diversity, natural products (NPs)
offer great promise as potentially effective antiviral drugs. Baicalin and baicalein, two NPs
derived from Chinese traditional medicines, exhibited potent in vitro anti-SARS-CoV-2
activities [32]. Silvestrol, an NP from Aglaia foveolata Pannell, is a specific inhibitor of
eukaryotic translation factor eIF4A [33] and also has antiviral activity by inhibiting the
replication of Ebola, Coronaviruses, hepatitis E virus, and Zika virus [34–37]. NPs of
non-plant origin have also been investigated as potential Mpro inhibitors. Screening of a
marine NP library, using both pharmacophore model and molecular docking approaches,
identified 17 potential SARS-CoV-2 Mpro inhibitors [38]. Similarly, through computational
ligand screening of 50,000 NPs from the ZINC Database [39], identified 11 NPs with the
potential to effectively inhibit the SARS-CoV-2 Mpro function. All these potential NPs await
experimental validation.

In this manuscript, we screened the binding affinity of 406,747 NPs from the most
comprehensive database of NPs, called COCONUT, against the SARS-CoV-2 Mpro using a
combination of ligand-based and structural-based hybrid virtual screening. We identified
a total of 20 potential candidates with predicted inhibitory effects and provided in vitro
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experimental evidence of the inhibitory effects of four natural products against the SARS-
CoV-2 main protease activity.

2. Materials and Methods
2.1. Datasets

An aggregated collection of NPs derived from 123 resources called MongoDB COl-
leCtion of Open Natural prodUcTs (COCONUT for short) [40] was used as input in the
virtual screening performed in this study. This database provides information about NP
structures cited in scientific literature since 2000 and contained a total of 406,747 unique
molecules at the time of our study. A second database called BindingDB [41] was used for
training the virtual screening engine (DeepPurpose) [42]. BindingDB is a public database
that provides binding affinity information for proteins considered to be drug-targets with
small molecules. It had 41,328 entries, each with a DOI, containing 2,240,573 binding data
for 8503 protein targets and 971,073 small molecules at the time of our study.

2.2. Ligand-Based Virtual Screening

Machine learning is commonly used as a drug discovery tool for predicting protein-
ligand affinities also known as drug-target interaction (DTI) [43]. A hybrid virtual screening
approach was utilized in this study which included two main steps that were executed
sequentially [43]. The initial step was the LBVS and was performed using the Deep
Learning-based Machine learning platform called DeepPurpose [42]. DeepPurpose inte-
grates a variety of encoding methods of drug molecules and protein amino acid sequences
for DTI prediction. In addition, DeepPurpose offers a comprehensive library for DTI
prediction and supports customized prediction models. To run the LBVS, the simplified
molecular-input line-entry system (SMILES) notations of the 406,747 NPs derived from the
COCONUT database and the amino acid sequence of the SARS-CoV-2 Mpro protein were
encoded. The Morgan fingerprint encoder was used for the “compound encoder” while
the Amino Acid Composition (AAC) was used for the “protein encoder”. The encoder
process of DeepPurpose resulted in two different embeddings, namely drug and protein
embeddings. These learned embeddings were concatenated and fed into an MLP-based
decoder to predict the probability of binding between each NP and the target Mpro protein
sequence. The binary classification option was selected as the classification method. The
model used in DeepPurpose was trained using the BindingDB dataset described above.
The BindingDB dataset was split up into training, validation, and test sets during the model
training and evaluation process at a proportion of 70/10/20 training/validation/test. Of
the top candidates with at least 50% binding probability predicted by LBVS, only NPs that
showed no violation of Lipinski’s five rules were retained and subjected to SBVS using
AutoDock Vina 1.1.2 [44].

2.3. Performance Measures

Receiver Operating Characteristic (ROC) and Precision-Recall curves were used to
evaluate and interpret the prediction of probabilities in the binary classification system used
in the LBVS process. ROC graph is a commonly used technique for visualizing, organizing
and selecting classifiers based on their performance. It is a two-dimensional graph that
shows the true positive rate on the y-axis and the false positive rate on the x-axis. A ROC
graph depicts relative tradeoffs between benefits (true positives) and costs (false positives).
Classifiers that fall on the upper left-hand side of a ROC graph are considered good with
the point (0, 1) representing perfect classification that makes positive classifications only
with strong evidence and makes few false positive errors [45]. The accuracy of the model
was assessed by calculating the Area Under Curve (AUC) against the test datasets. The
AUC represents the degree of separability. It indicates how much the model can distinguish
between classes. The higher the AUC, the better the model is at predicting true positives as
positives and true negatives as negatives [46].



Biology 2023, 12, 519 5 of 18

2.4. Molecular Docking

The SARS-CoV-2 Mpro crystal structure used as the molecular docking targets were
downloaded from the protein data bank (PDB ID: 6LU7). Among more than 200 Mpro
protein structures, this structure was selected since it is the most commonly investigated
structure in the literature. To specifically target the area harboring the active site pocket
of the Mpro enzyme, a grid box was generated with the Cys145 amino acid residue at
the center of the grid box (Table 1). To prepare the receptors, PDBQT files were created
containing only the polar hydrogen atoms as well as partial charges using the python
script prepare_receptor4.py (supplemental material). The missing hydrogens in the protein
structures were added using the REDUCE software [47]. The ligand file was prepared
in a similar way. A PDBQT file was created from a ligand molecule file using the pre-
pare_ligand4.py (supplemental material). The processed PDBQT files were used to run
Autodock Vina 1.1.2 to predict the binding affinities of multiple poses between the complex
of the ligand and the target. Autodock Vina generated multiple poses for a given ligand
and target complex and the best pose was selected based on the lowest binding affinity.
The identified NP ligands were sorted based on their binding affinities (lowest to highest).

Table 1. The coordinates and the size of the grid box on 6LU7 crystal structure.

Protein
Structure

Center Size

X Y Z X Y Z

6LU7 −14.607 19.162 64.101 25 25 25

To validate the binding affinities obtained through Autodock Vina, molecular docking
was run with two additional docking tools CB Dock (http://clab.labshare.cn/cb-dock
(accessed on 6 June 2021)) and SwissDock (http://www.swissdock.ch/ (accessed on 6 June
2021)). CB Dock is a protein-ligand docking method that automatically identifies the
binding sites, calculates the center and size, customizes the docking box size according
to the query ligands, and then performs the molecular docking with AutoDock Vina.
SwissDock is a web service to predict the molecular interactions that may occur between a
target protein and a small molecule using a docking tool called EADock DSS.

2.5. Visual Validation of Drug-Target Interactions

The top 81 NP candidates from docking runs performed against the 6LU7 crystal
structure of the SARS-CoV-2 Mpro were further analyzed. The docking visualization
of these NP candidates was performed on PyMOL 2.5 and BIOVIA Discovery Studio
Visualizer (https://discover.3ds.com/ (accessed on 12 July 2021)) to visually inspect the
docking location of the NP ligand within the Mpro’s target cavity. The types and number
of bonds present between the NP ligand and the Thr24, Thr26, His41, Phe140, Asn142,
Gly143, Cys145, His163, His164, Glu166, and His172 amino acid residues of each Mpro

protein structure were observed using the BIOVIA Discovery Studio Visualizer. The given
11 amino acid residues were previously shown in the literature to play important roles in
the activity of the SARS-CoV-2 Mpro. These interactions were analyzed and weighted to
further validate the efficacies of the results obtained from the molecular docking analysis
from the previous step. Observations were made based on the number of hydrogen bonds
and other interactions present between the NP ligands and residues within Mpro’s target
cavity. An arbitrary “Hit Score” was calculated by assigning a value of “1” if the ligand
had a hydrogen bond with the 11 amino acid residues of Mpro and a value of “0.5” with
any other types of interactions with the 11 amino acids (Table S2).

2.6. In Vitro Protease Inhibition Assay

The seven NPs received as powder stock were resuspended to 10 mM concentration in
DMSO (Thermo Fisher Scientific, Inc., Fremont, CA, USA). The starting NP concentration
of 200 µM was subjected to 10 dose IC50 assay (threefold dilution factor) according to

http://clab.labshare.cn/cb-dock
http://www.swissdock.ch/
https://discover.3ds.com/
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the protocol by Reaction Biology Corp (Malvern, PA, USA) [48]. Initially, 2X enzyme or
buffer as no enzyme control was delivered into the wells (Table 2). Compounds diluted
in the buffer to 200 µM as the highest concentration (total 2% DMSO) or 2% DMSO as no
compound control were added into the wells. After an incubation of 20 min, 2X substrate
was delivered to initiate the reaction. After spin and shake, measurement by EnVision
plate reader (PerkinElmer, Waltham, MA, USA) was started at room temperature, for
25 measurements with 5 min intervals (total measurement time is 2 h). Data were analyzed
by taking the slope (signal/time) of the linear portion of the measurement. The slope was
calculated using Excel, and curve fits were performed using Prism software v6 (GRAPH
PAD software Inc., San Diego, CA, USA). GC376 inhibitor (Aobious; Cat # AOB36447) was
used as a positive control. According to the RBC recommendations, NPs with IC50 values
less than 2 × 10−4 M are considered to have a significant inhibitory effect25.

Table 2. Components of the assay.

Enzyme SARS-CoV-2 Mpro

Enzyme in rxn (nM) 12

Substrate NH2-C(EDANS)VNSTQSGLRK(DABCYL)M-CO2H

Substrate in rxn (µM) 5

Excitation/Emission 340/490

Mpro buffer 50 mM Tris pH 7.3, 1 mM EDTA, 1 mM DTT, 0.005% Triton X-100

3. Results

To predict the efficacy of NPs in potentially inhibiting the SARS-CoV-2 main pro-
tease activity, virtual screening was performed with more than 400,000 NPs from the
COCONUT database using the LBVS methodology outlined in Section 2.2. The LBVS
identified 2927 NPs with at least 50% predicted binding probability (Figure 1). A total of
431 NPs were selected after filtering for desirable pharmacokinetics properties (according to
Lipinski’s rule of five) and were subjected to molecular docking. The top 81 NP candidates
with ≤−8 kcal/mol binding affinity, based on molecular docking against the 6LU7 crystal
structure of the SARS-CoV-2 Mpro (commonly investigated in the literature), were selected
and further analyzed (Figure 1).
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3.1. Performance of the Machine Learning Classifier

The ROC-AUC measure was used to assess the performance of the training model
used in this study and to calculate its probability of making a correct binary classification.
With an AUC value of 0.92 (Figure 2a), the accuracy of the binary classification system
is considered outstanding [49]. This result was confirmed by the precision and recall
(PR) curve (Figure 2b), which shows that the model provides better precision (more true
positives) at the expense of having lower recall (more misses of predicting true positives)
which reduces the number of false positives.
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3.2. Virtual Screening for NP inhibitors of Mpro

The initial LBVS with the deep learning platform called DeepPurpose identified
2927 NP ligands (0.72% of the total NPs screened) showing at least a 50% probability
of being a positive ligand. These NP ligands were further filtered to retain only those
NPs that do not show any violations of Lipinski’s rule of five. A total of 431 NP ligands
were identified with both a high probability of binding and an increased likelihood of
high oral absorption (Table S1). These NPs represented diverse compounds (Figure 3).
Around a quarter of these NPs belonged to the organoheterocyclic compounds, lipids
and lipid-like molecules, and alkaloids and derivatives superclass (Figure 3a; Table S1).
Within the chemical class category, prenol lipids and aurone flavonoids showed the most
abundant representation (Figure 3b; Table S1), while within the chemical subclass the
most abundant representations were benzodiazepines and terpenoids (Figure 3c; Table S1).
In terms of direct parent classification of these NPs, 12% were represented by aurone
flavonoids (Figure 3d; Table S1).

The 431 NP candidates with desirable pharmacokinetics were subjected to molecular
docking to observe and analyze the interaction between these NPs and the SARS-CoV-2
Mpro protein structure at the atomic level with the goal of identifying more potent, selective,
and efficient NPs as antiviral candidates. The binding affinities of these 431 NP candidates
ranged between −9.9 and −3.7 kcal/mol. A total of 81 NPs with ≤−8 kcal/mol binding
affinity were manually inspected for types and number of bonds with the critical amino acid
residues believed to be important for the protease function of the Mpro protein (Table S2).
Of these 81 NPs, 83% are represented by organoheterocyclic compounds, alkaloids and
derivatives, and phenylpropanoids and polyketides superclasses. Within the chemical
class category, indoles and derivatives, aurone flavonoids, and benzodiazepines showed
the most abundant representation (Table S3), while within the chemical subclass, the most
abundant representatives were pyridoindoles and 1,4-benzodiazepines. In terms of direct
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parent classification of these NPs, 30% were represented by beta carbolines and aurone
flavonoids (Table S3). Based on the types and number of bonds with the critical Mpro amino
acid residues (see Section 2.5 for details), the top 20 NP candidates were selected (Table 3).
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Figure 3. The top chemical categories represented within the 431 NP ligands identified as having
potential to bind SARS-CoV-2 Mpro protein. (a) Chemical superclass, (b) Chemical class, (c) Chemical
subclass, (d) Direct parent classification.

Table 3. The selected top 20 NP ligands against 6LU7 Mpro protein structure. The last three columns
show binding affinities based on Autodock Vina, SwissDock, and CBDock docking software.

Binding Affinity (kcal/mol)

COCONUT Id Name Direct
Parent/Class

Autodoc
Vina SwissDock CB

Dock

CNP0403473
N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,5-

dioxo-2,3,4,5-tetrahydro-1H-1,4-
benzodiazepin-3-yl)acetamide

1,4-
benzodiazepines −8.1 −7.65 −8.6

CNP0391183
5-bromo-N-(5-chloro-2-methoxyphenyl)-5′-(1-
hydroxyethyl)-2-oxo-1,2-dihydrospiro[indole-

3,2′-pyrrolidine]-3′-carboxamide
Indoles −8.7 −7.94 −7.8

CNP0064681

4′-(methoxycarbonyl)-1′-methyl-2-oxo-
1,2,4′a,5′,5′a,7′,8′,9′,10′,10′a-decahydro-1′H-

spiro[indole-3,6′-pyrano
[3,4-f]indolizin]-9′-ium

Indolizidines −8.0 −7.97 −7.5

CNP0381522

(8R)-6-[(E)-[(4-
nitrophenyl)methylidene]amino]-3,6,17-

triazatetracyclo
[8.7.0.03,8.011,16]heptadeca-1(10),11,13,15-

tetraene-4,7-dione

NA −8.9 NA −9
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Table 3. Cont.

Binding Affinity (kcal/mol)

COCONUT Id Name Direct
Parent/Class

Autodoc
Vina SwissDock CB

Dock

CNP0161104 3-[(2-hydroxy-2,2-diphenylacetyl)oxy]-1,1-
dimethylpiperidin-1-ium Diphenylmethanes −8.1 NA −7.9

CNP0333632

11-(1-hydroxy-4-methylpentyl)-4-(3-methoxy-
4-methyl-5-oxo-2,5-dihydrofuran-2-ylidene)-3-

methyl-5-oxa-10-azatetracyclo
[6.6.2.01,10.02,6]hexadeca-6,15-dien-10-ium

Azaspirodecane −8.0 NA −7.7

CNP0043743

N-[13-(4-chlorophenyl)-2,8-dioxo-3,9-
diazatricyclo

[8.4.0.03,7]tetradeca-1(14),10,12-trien-5-
yl]methanesulfonamide

Benzodiazepines −8.1 −8.12 −8

CNP0047370
4-[bis(4-fluorophenyl)methylidene]-1-(2-{7-

methyl-5-oxo-5H-[1,3]thiazolo
[3,2-a]pyrimidin-6-yl}ethyl)piperidin-1-ium

Diphenylmethanes −8.3 −8.03 −8.3

CNP0336034 4-chloro-2-[4-(2,3-dihydro-1,4-benzodioxin-6-
yl)-1,2-oxazol-5-yl]phenol Benzodioxanes −8.2 −7.81 −7.8

CNP0375828

(12aS)-2-{[(E)-(4-
nitrophenyl)methylidene]amino}-
2,3,6,7,12,12a-hexahydropyrazino

[1′,2′:1,6]pyrido [3,4-b]indole-1,4-dione

NA −9.3 NA −8.2

CNP0403000
3-(2,5-dioxo-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepin-3-yl)-N-[(1-methyl-1H-1,3-
benzodiazol-2-yl)methyl]propanamide

Benzodiazepines −8.7 −8.84 −8.7

CNP0061237
2-[(5-methylfuran-2-yl)methylidene]-3-oxo-

2,3-dihydro-1-benzofuran-6-yl
4-methylbenzoate

Benzene and
derivatives −8.2 −8.33 −8

CNP0372136

17-[(4-nitrophenyl)methyl]-9-oxo-12-oxa-8,17-
diazaheptacyclo

[15.5.2.01,18.02,7.08,22.011,21.015,20]tetracosa-
2,4,6,14-tetraen-17-ium

Strychnos
alkaloids −8.4 NA −8.9

CNP0038881
3-[(2-hydroxy-2,2-diphenylacetyl)oxy]-8-

methyl-8-azabicyclo
[3.2.1]octan-8-ium

Diphenylmethanes −8.0 −7.53 −7.6

CNP0402005
3-(2,5-dioxo-2,3,4,5-tetrahydro-1H-1,4-

benzodiazepin-3-yl)-N-(4-oxo-3,4-
dihydroquinazolin-6-yl)propanamide

Diazanaphthalenes −8.4 −8.58 −8.9

CNP0366487

1-({2-[(1-ethyl-5-methoxy-1H-indol-3-
yl)methylidene]-6-oxido-3-oxo-2,3-dihydro-1-
benzofuran-7-yl}methyl)-2-methylpiperidin-1-

ium

Indoles and
derivatives −8.2 NA −8.2

CNP0105187
2-[(4-fluorophenyl)methylidene]-3-oxo-2,3-

dihydro-1-benzofuran-6-yl
morpholine-4-carboxylate

Aurone flavonoids −8 −8.56 −8.2

CNP0028523 NA NA −8 −9.51 −7.4

CNP0259483

6-cyclopentyl-2-(3-nitrophenyl)-3,6,17-
triazatetracyclo

[8.7.0.03,8.011,16]heptadeca-1(10),11,13,15-
tetraene-4,7-dione

NA −9.9 NA −10.1

CNP0331537 Capsimycin B Macrolactams −8.3 −7.02 −8.9
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The top 20 NP ligands were 50% represented by organoheterocyclic compounds super-
class, 40% by indoles and derivatives and benzodiazepines class, 30% by 1,4-benzodiazepines
and pyridoindoles subclass, and 30% by 1,4-benzodiazepines and beta carbolines (Table S4).
The amino acid residues 143, 144, and 145 of Mpro were targeted by 80% (16/20) of the top
20 NP ligands. Interestingly, all the interactions at these three amino acids were hydrogen
bonds (Figure 4). Amino acid 165 had hydrophobic interactions with 75% (15/20) of the
NP ligands.
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types of interactions between the ligands and the 21 amino acid residues of the Mpro are designated
by different colors. The NP COCONUT ids are presented on the y-axis and amino acid residues of
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3.3. In Vitro Protease Inhibition Assay of Selected NP Candidates

Among the top 20 NP candidates identified based on the virtual screening, 7 NPs
were available for purchase (Table S5). These compounds belonged to different chemical
classes (Table 4). The inhibitory activity of these seven compounds against the puri-
fied SARS-CoV-2 Mpro protein was assessed in vitro (Figure 5). Three NPs (CNP0061237,
CNP0375828, and CNP0381522) showed significant inhibitory effects with IC50 rang-
ing from 6.88 × 10−6 to 2.24 × 10−5 Molar (M) concentrations (Figure 5b–d). A fourth
NP (CNP0366487) also showed inhibition, but to a lesser extent, with IC50 greater than
4.52 × 10−4 M (Figure 5f). The interactions of these NPs with the key amino acid residues
of SARS-CoV-2 Mpro protein are presented in Table 5 and Figure 6.
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Table 4. Classification of the seven NPs used for in vitro Mpro inhibition assay. COCONUT Ids in
bold, gray color and with asterisk show in vitro inhibition.

COCONUT Id Chemical SuperClass Chemical Class Chemical SubClass DirectParent Classification

CNP0403473 Organoheterocyclic
compounds Benzodiazepines 1,4-benzodiazepines 1,4-benzodiazepines

CNP0381522 * Organoheterocyclic
compounds Indoles and derivatives Pyridoindoles Beta carbolines

CNP0375828 * Organoheterocyclic
compounds Indoles and derivatives Pyridoindoles Beta carbolines

CNP0061237 * Benzenoids Benzene and
derivatives

Benzoic acids and
derivatives Benzoic acid esters

CNP0402005 Organoheterocyclic
compounds Diazanaphthalenes Benzodiazines Quinazolinamines

CNP0366487 * Organoheterocyclic
compounds Indoles and derivatives N-alkylindoles N-alkylindoles

CNP0105187 Phenylpropanoids and
polyketides Aurone flavonoids Unknown Aurone flavonoids
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Figure 5. The results of in vitro protease inhibition assay of the seven NP ligands against the
SARS-CoV-2 Mpro protein. The y-axis shows the percent Mpro protease activity. The x-axis shows the
negative log10 transformed molar concentration of the NP ligands. A 10-dose three-fold serial dilution
has been applied to the original 200 uM NP ligand. Some data points exhibited fluorescent back-
grounds and were excluded from curve fitting. (a) CNP0403473, (b) CNP0381522, (c) CNP0375828,
(d) CNP0061237, (e) CNP0402005, (f) CNP0366487, (g) CNP0105187, (h) GC376 (positive control),
(i) DMSO (negative control). The IC50 values are provided for the four NPs and the positive control
(subfigures b–d,f,h).



Biology 2023, 12, 519 12 of 18

Table 5. Schematics of the 2D interactions between the four in vitro validated ligands and 6LU7
Mpro structure.

Name 2D Structure 2D Interaction with Mpro Residues

CNP0381522
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Table 5. Cont.

Name 2D Structure 2D Interaction with Mpro Residues

CNP0366487
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Figure 6. Schematics of the 3D interactions between the in vitro validated ligands and 6LU7 Mpro

structure. (a) CNP0061237; (b) CNP0381522; (c) CNP0375828; (d) CNP0366487.

4. Discussion

Using a combination of ligand-based virtual screening and molecular docking against
the 6lu7 protein structure of the SARS-CoV-2 main protease (Mpro), followed by manual
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analysis of the ligand-target interactions, we selected 20 NPs with potential protease
inhibition activity representing 0.005% of the COCONUT database with 406,747 NPs. The
inhibitory activity of four NPs was experimentally confirmed in vitro. Mpro is a cysteine
protease that is active as a homodimer [50]. The Cys145 and His41 residues present in
the cleft between domains I and II in addition to the Glu166 residue are involved in the
protein dimerization [51]. In line with the examination of the active site, recent studies
have mentioned that the active site of this protein contains Glu166 as the most repeated
and important residue, alongside Gln189, His41 and Thr190.

The molecular docking results presented in Table 3 reveal that the selected 20 NPs
showed very low predicted binding affinity to the selected pocket (≤−8 kcal/mol). The 2D
interaction analysis of these NPs with the 6lu7 Mpro structure (Table 5; Figure 4) reveals
predicted interactions with the key residues in the active site (Table 4). All four NP
candidates with in vitro inhibitory activity (CNP0381522, CNP0375828, CNP0061237, and
CNP0366487) have predicted hydrogen bond interaction with Cys145 and hydrophobic
interaction with Gln 189. Interactions with some of the other amino acid residues critical
for Mpro function (His41 and Glu166) were also evident in these NPs with the exceptions of
CNP0366487 and CNP0375828 that miss interactions with His41 and Glu166, respectively.
Altogether, this suggests that one possible mechanism by which these four NPs inhibit
protease activity is by inhibiting the protein dimerization of Mpro which is indispensable
for the protease activity. Additional experiments are needed to confirm this hypothesis.

The four NPs showing in vitro inhibitory activity against Mpro belong to the classes
of Indole and Benzene derivatives (Table 4). Due to its versatile nature with several
important active positions that help bind to target proteins, many drugs with indole
nuclei are currently being used in the treatment of cancer, malaria, and bacterial and viral
infections [52]. In this study, we identified three Indole alkaloids (two β-carbolines and
one n-alkylindole) and demonstrated their in vitro inhibitory activity against SARS-CoV-2
Mpro. Indole alkaloids are broadly present in various plant families [53] and some interact
with receptors such as opioid receptor [54]. Marine and bacterial indole alkaloids were also
shown to have cytotoxic, antibacterial, antimicrobial, and antineoplastic activities [55]. β-
carbolines are a specific group of biologically active and naturally occurring plant-derived
alkaloids that are derivatives of indole. They are present in several plant species and
exhibit a wide spectrum of biological and pharmacological effects, including antioxidant,
neuroprotective, and anti-inflammatory effects [56]. The β-carbolines norharman (NH) and
harman (H) are the most frequently identified carbolines. β-carbolines are found in fruits,
juices, cereal products, meat, fish, and coffee which seems to be the most important food
source of β-carbolines. More than 23 annomontine analogs, which represent a special class
of β-carboline, were designed and docked against multiple SARS-CoV-2. Based on docking
scores, the binding affinities of these annomontine derivatives were better compared to
hydroxycholoquine [57]. While the potential of different β-carbolines in binding to several
SARS-CoV-2 proteins has been demonstrated computationally, our results are the first to
show direct in vitro experimental evidence against SARS-CoV-2 Mpro. In the Tibetan herbal
medicine Arenaria kansuensis extract, the relative content of the total β-carboline alkaloids
was shown to be about 5% [58]. Mice with pulmonary fibrosis, a key feature of COVID-19,
that were treated with this extract showed a significant increase in survival rate in a
dose-dependent manner [58]. Moreover, a newly identified β-carboline alkaloid from the
deep-sea fungus Trichoderma sp. MCCC 3A01244 has been shown to decrease pulmonary
fibrosis by inhibiting the TGF-β/Smad signaling pathway [59]. The n-alkylindole was
the third indole alkaloid natural product that inhibited the Mpro protease activity in our
in vitro analysis. Various bisindolylmaleimide derivatives, synthesized by alkylation of
the side chains of the indole nitrogen, have been shown to have pro-apoptotic activity and
potential as an anti-cancer drug [60,61]. The bisindolylmaleimide GF 109203X is a potent
and selective inhibitor of protein kinase C [62]. Three n-alkylated indole derivatives were
shown to have different antimicrobial activity against Staphylococcus aureus, Escherichia coli,
and Candida albicans [63]. However, n-alkylindoles have not been tested previously for their
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effect against SARS-CoV-2. Altogether, these promising in vitro results suggest that the
indole alkaloids identified in this study could reduce SARS-CoV-2-induced life-threatening
symptoms. Future in vivo and mouse model studies are needed to test this hypothesis.

Benzoic acid is the simplest aromatic carboxylic acid, with a carboxylic group directly
bonded to the benzene ring. In plants, benzoic acids and their derivatives are common
and widespread mediators of plant responses to biotic and abiotic stresses [64]. Many
natural products derived from plant benzoic acids or containing benzoyl/benzyl moieties
are also of medicinal or nutritional value to humans [65]. In the food industry, Benzoic
acid and its derivatives are widely used as antibacterial and antifungal preservatives in
foods [66]. Benzoic acid ester derivatives were demonstrated as potent PDE4 inhibitors for
the treatment of respiratory diseases [67]. Benzoic acid esters have also been shown to have
anti-microbial activity against several microbes, including mycobacteria, and represent a
valuable potential for the treatment of tuberculosis [68]. Through computational analysis
of the bioactive compounds of the herbal infusion “horchata” from Ecuador, Benzoic acid,
2-(ethylthio)-, ethyl ester was shown to have the lowest predicted free energy of binding to
the SARS-CoV-2 Mpro [69]. In silico screening of several benzoic acid derivatives against the
SARS-CoV-2 main protease identified 2,5-dihydroxybenzoic acid as the best potential candi-
date among the investigated structures [70]. Another in silico study provided evidence for
(R)4-(1,5-dimethyl-3-oxo-4-hexenyl)-benzoic acid as a promising inhibitor of the spike and
papain-like protease of SARS-CoV-2 [71]. According to a docking analysis with components
of Egyptian propolis or bee glue, a resinous material produced by bees to protect their
hives, benzoic acid revealed the lowest ICM scores with four hydrogen bonds with LYS110
and THR111. In vitro Mpro protease inhibition assay showed that propolis extract possesses
a good inhibitory effect against SARS-CoV-2 Mpro (IC50 = 2.452 ± 0.11 µg/mL) [72]. In our
study, we provide direct in vitro experimental evidence for a Benzoic acid ester inhibiting
the protease activity of SARS-CoV-2 Mpro.

5. Conclusions

In conclusion, the virtual screening approach used in this study was successful in
identifying a high percentage (57%) of true positive candidates, at least based on in vitro
experimental validation, from a database with more than 400,000 natural products. In the
future, the same approach could be applied to other natural product libraries to utilize
natural products as an alternative to synthetic compounds. The present finding, together
with other research findings in the literature, suggest that natural products hold promise
to find out novel cures for devastating diseases affecting humans. The natural products
identified in this study will have to be tested in animal systems in vivo to further validate
their inhibitory effect against the SARS-CoV-2 Mpro in a more complex and real-life setting
before proceeding to clinical studies.
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seven compounds tested in vitro.
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