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 This thesis examines the behavior of dc SQUID phase qubits in terms of their 

proposed use in a quantum computer. In a phase qubit, the two lowest energy states 

(  and ) of a current-biased Josephson junction form the qubit states, with the 

gauge invariant phase difference across the junction being relatively well defined. In a dc 

SQUID phase qubit, the Josephson junction is isolated from the environment using an 

inductive isolation network and Josephson junction, which are connected across the phase 

qubit junction to form a dc SQUID. 

0=n 1=n

 Five dc SQUID phase qubits were examined at temperatures down to 25 mK.  

Three of the devices had qubit junctions that were  2100 mμ Nb/AlO /Nb junctions with 

critical currents of roughly 

x

Aμ30 . The other two had  Al/AlO /Al junctions with 

critical currents of roughly 

216 mμ x

Aμ3.1 . The device that had the best performance was an 

Al/AlO /Al device with a relaxation time x nsT 301 ≈  and a coherence time nsT 242 ≈ . 



The devices were characterized using microwave spectroscopy, Rabi oscillations, 

relaxation and Ramsey fringe measurements. I was also able to see coupling between two 

Nb/AlO /Nb dc SQUID phase qubits and perform Rabi oscillations with them. The 

Nb/AlO /Nb devices had a relaxation time and coherence time that were half that of the 

Al/AlO /Al device.    

x

x

x

One of the goals of this work was to understand the nature of parasitic quantum 

systems (TLSs) that interact with the qubit. Coupling between a TLS and a qubit causes 

an avoided level crossing in the 10 =→= nn  transition spectrum of the qubit. In the 

Al/AlOx/Al devices unintentional avoided level crossings were visible with sizes up to 

240 MHz, although most visible splittings were of order ~20 MHz. The measured spectra 

were compared to a model of the avoided level crossing based on the TLSs coupling to 

the junction, through either the critical current or the voltage across the junction. From 

the  spectrum, from about 10-11 GHz, I was able to predict interactions 

between the qubit and the TLS in the 

10 =→= nn

20 =→= nn  transition spectrum, about 20-21 

GHz.  

The state of the qubit was measured using escape rate tunneling and a pulsed 

readout technique. The pulsed technique involved sending a brief (2 ns) pulse of current 

that allowed the qubit to be operated over a wide frequency range. The amplitude of the 

current pulse was adjusted such that the population in 1=n  would tunnel and 0=n  

would not. Analysis of this single-shot measurement revealed the fidelity was potentially 

as high as 94% in one of the devices I tested. This technique also allowed me to 

rigorously quantify population in 2=n and to calibrate the current pulses.         
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Chapter 1 

Introduction 

 

1.1 General Introduction to Quantum Computation 

Quantum mechanics does a remarkably accurate job of explaining the bulk 

properties of large interacting quantum systems, such as superconductors. However, bulk 

properties do not directly reveal possible subtleties in quantum dynamics. Remarkably 

since about 1970, many techniques have been developed to isolate and study single 

quantum systems or interacting systems with only a few quantum degrees of freedom. 

Current examples range from quantum dots, where the spin of a single electron is 

controlled [1], to neutral atoms, where the internal atomic quantum state of a neutral atom 

is manipulated [2], to superconducting devices [3].  

 Besides allowing the exploration of fundamental questions in quantum mechanics, 

a system of individually controlled quantum objects allows the possibility of quantum 

computation and quantum information processing. The field of quantum computation 

began in 1982, when Richard Feynman pointed out that classical computers were 

inherently ill-suited to model quantum systems [4]. A computer based on quantum bits or 

qubits would avoid these inherent difficulties by using one quantum system to simulate 

another. In 1985, David Deutsch formalized these ideas [5], and in 1992 with R. Jozsa, 

showed that a quantum computer might in fact have computational powers greater than a 

classical one [6]. In 1994 and 1995, Peter Shor and Lou Grover demonstrated concrete 

examples of the potential power of a quantum computer, beyond its use for modeling 

quantum systems. Grover showed that conducting a search through an unstructured sub-
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space could be sped up using a quantum computer [7]. Shor demonstrated that one could 

efficiently find the prime factors of an integer on a quantum computer [8]. Shor’s 

algorithm in particular has generated enormous interest in quantum computing, in part 

because RSA encryption relies on the difficulty of factoring large numbers for its 

security. 

 The quantum mechanical phenomena of superposition and entanglement are 

ultimately what give a quantum computer more computational power than a classical 

computer, at least for certain types of computations. In a classical computer, information 

is stored as bits and neither entangled nor superposed states are permissible; a classical 

bit has two possible states or outcomes, 0 or 1. A quantum computer allows superposed 

states that are a mixture of 0 and 1 qubit states, for example 10 βαψ += . Such a 

state has two measurement outcomes, 0 or 1, with probabilities 2α and 2β respectively. 

Naively, one might think this enables an infinite storage of information, since the only 

requirements on α  and β  are that they are complex numbers such that 122 =+ βα . 

However for a digital quantum computer α  and β  would be restricted to a finite set of 

values.  

As a simple example of the distinction between bits and qubits, consider two 

classical bits ; the four ( ) allowed possible states of the system are 00, 01, 10, 

and 11. In contrast, two qubits may exist in these four states as well as several others. An 

example is the Bell state, 

2=N N2

( ) 2/11002 +=ψ . Such a state does not exist in classical 

mechanics, and it cannot be written as the product of two individual qubit states, i.e. it is 

a type of correlated state between the two qubits. For example, if one measures the state 
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of the first qubit to be 1, then measurements of the second qubit will always give 1. This 

peculiar behavior was taken a step further by John Bell in his development of Bell’s 

Inequality [9]. Several different types of quantum systems, including photons and ions 

have been used to verify this inequality, highlighting one of the most counter-intuitive 

aspects of quantum mechanics [10-12].  

A quantum computer algorithm, like a classical one, is composed of a series of 

gate operations. The simplest single-bit classical gate to consider is a NOT gate, which 

changes  and  in a chosen bit. In contrast, all single qubit gates act on the 

entire Bloch sphere (see Chapter 3). For example, the phase gate 

01→ 10 →

1100 iS += , 

changes the qubit state ( ) 2/10 +=ψ  to ( ) 2/10 iS +=ψ . As another 

example, the CNOT gate is a prototypical two-qubit gate, which flips the state of the 

target qubit based on the state of the control qubit. In a two-qubit system, the CNOT gate 

can be expressed as 1110101101010000 +++=CNOT , where the first index 

is the control qubit and the second is the target. The Hadamard, 8/π gate, phase gate, and 

the CNOT gate together constitute a universal set of gates for quantum computation (i.e. 

any unitary operation can be approximated to arbitrary accuracy using only combinations 

of these gates).  

I should note that a major consideration in designing a quantum algorithm is 

ensuring that it is more efficient than simply using a classical algorithm. Very few such 

algorithms have been theoretically realized thus far. I have also made no mention of error 

correction, which is crucial for any realistic quantum computer. For a further discussion 

of quantum gates and qubits in general, I refer the reader to Quantum Computation and 

Quantum Information by Nielsen and Chuang [13]. 
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1.2 DiVincenzo Criteria 

In the late 1990s, David DiVincenzo laid out five requirements that a system must 

satisfy to be suitable as a qubit [14]:   

1) The Hilbert space must be precisely delineated, meaning the precise number of 

degrees of freedom must be known.  It is very desirable for the Hilbert space to be 

decomposable in a direct product form; i.e. a set of individual qubits. This second 

statement is not mandatory, but the Hilbert space should grow exponentially with 

the number of qubits.  

2) The quantum system can be put in a fiducial starting quantum state. Simply put, 

the qubits must be initialized before gate operations can occur. 

3) The quantum system must be isolated from coupling to the environment to a high 

degree. The requirement can be summarized in the expression εψρψ −≥ 1nn . 

Here nψ  is the state of an n qubit system, ρ is the density matrix, which will be 

discussed in Chapter 3, and ε  is an error rate. This equation is subject to work 

from both ends. The quantum algorithms understood as of 1996 required 

, within a few orders of magnitude [14]. The threshold is largely 

dependent on the algorithm and type of error. For example, in 2005, E. Knill [15] 

proposed that a tolerable erasure error rate for scalable quantum computing could 

be well above 0.1.  

610−=ε

4) A controlled sequence of unitary transformations must be possible. The 

transformations must be able to act upon specified small collections of qubits. 

Since a quantum computer derives much of its power over a classical computer 
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through entanglement, the transformations must be able to create entangled states 

between the qubits, such as the Bell state mentioned above. 

5) The system must be subject to a “strong” form of measurement that can project 

the final state of the system to the qubit basis. A strong measurement is one that 

irreversibly projects the waveform. A weak measurement may be sufficient for 

studying a quantum system, but will not satisfy the requirements for quantum 

computation. 

 

1.3 Superconducting Qubits 

 Current work on quantum computing focuses on finding qubits that could satisfy 

these criteria and improving the performance of the qubit to better satisfy them; all 

requirements must eventually be satisfied to achieve an operating quantum computer. A 

surprisingly wide variety of possible qubits have been investigated experimentally and 

theoretically. A partial list of broad types of qubits includes trapped ions [16], neutral 

atoms [2], solid-state spin-based systems [1,17] and superconducting systems [18], with 

each of these choices representing many different actual types of qubits. Superconducting 

qubits fall naturally into three classes, flux qubits, charge qubits and phase qubits, 

although some devices are best thought of as overlapping two categories [3].  

 In virtually all superconducting qubits, a Josephson junction is combined with 

circuit elements to produce a system that acts like an effective two-level quantum system. 

While the two levels do not come from what is commonly thought of as a quantum two-

level system, such as the spin of a single electron, with the proper choice of parameters, 

the device behaves like a two-level system. In this case, we can effectively restrict the 
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Hilbert space to the qubit subspace. This allows us to borrow much of the terminology 

from nuclear magnetic resonance [19] and other quantum systems and treat the system as 

a qubit. 

 An excellent introductory review of the three main types of superconducting 

qubits is available in Physics Today, by J. Q. You and Franco Nori [3] and the references 

therein. Some simple insight in to the three types of superconducting qubits comes 

directly from their names; the name of the qubit generally indicates the dominant degree 

of freedom in the circuit or the manner in which information is stored. For charge and 

phase qubits the ratio of  determines the dominant degree of freedom, where  

is the Josephson coupling energy of the Josephson junction and  is the energy to 

charge the capacitance of the junction with one electron, found solely from electrostatic 

considerations. Very roughly, 

cJ EE / JE

cE

10/ ≤cJ EE  for charge qubits,  for 

flux qubits, and  for phase qubits. I will discuss these parameters in more 

detail in Chapter 2.  

32 10/10 ≤≤ cJ EE

710/ ≥cJ EE

 In general, Josephson junction based qubits are promising in that they are highly 

scalable with current processing techniques, and easy to control. Ironically, the features 

that make these qubits so advantageous towards satisfying some elements of the 

DiVincenzo criteria also serve as disadvantages towards realizing others. For example, 

superconducting qubits are easy to couple to and this makes it easy to perform a 

controlled sequence of unitary transformation and couple many qubits together. However, 

this also leads to stronger coupling to the environment, which in turn causes decoherence 

and difficulty with criterion three. 
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1.4 Summary of Thesis 

 The primary goal of my thesis was to understand and improve the performance of 

phase qubits so as to satisfy the DiVincenzo criteria. The experimental results can be 

approached from the perspective of one or more of the criteria. While the devices I tested 

were a particular type of phase qubit, a dc SQUID phase qubit, most of the results and 

methods would be applicable to other types of phase qubits.  

In Chapter 2, I briefly review the basics of Josephson junctions, and 

superconducting quantum interference devices (SQUIDs). The Hamiltonians for these 

devices will be given and shown to be analogous to a quantum two-level system. I also 

then briefly discuss the coupling of two phase qubits. In Chapter 3, I discuss some basic 

physics of qubits, with an emphasis on results useful for measurements of phase qubits. 

Chapter 4 provides some details on the design and fabrication of my qubits, based on the 

results of Chapters 2 and 3. In Chapter 5, I describe the experimental apparatus, and 

techniques used to interact with a sample at milli-kelvin temperatures. 

In Chapter 6, I show experimental results from four devices I tested. I first discuss 

how I determined the parameters for the devices using the analysis from Chapter 2.  In 

Chapter 7, I demonstrate how to read out the qubit’s quantum state using the escape rate 

and then give a detailed discussion of a pulsed-current readout technique I developed. In 

Chapter 8, I show my measurements of a variety of microwave activation experiments. I 

used these experiments to map out the transition spectrum of the qubit, determine the 

coupling to the environment, and examine the feasibly of gate operations. As I will show 

in the final two chapters, the environment includes coupling to other quantum systems 

that appear to be located in the insulating layers of our devices. In Chapter 9, I focus on 
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what these other quantum systems are and discuss two possible theories of how they may 

couple to the qubit. In Chapter 10, I show detailed spectroscopic measurements of the 

coupling between the microstates and a qubit.  Finally, in Chapter 11, I summarize the 

main results and suggest future experiments. 
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Chapter 2 

Josephson Junctions and SQUIDs 

 

This chapter provides background information necessary to understand 

superconducting phase qubits. I begin with a basic introduction to Josephson junctions 

and a classical analysis of a junction using the RCSJ model. After viewing Josephson 

junctions from a classical perspective, I then discuss their quantum properties and how a 

junction can act as a phase qubit. I also examine some properties of dc SQUIDs and 

introduce the Hamiltonians of a single Josephson junction and a dc SQUID. Finally, I 

conclude with a brief introduction to two capacitively coupled phase qubits.     

 

2.1 Josephson Junctions 
When two superconducting electrodes are connected by a “weak link” a 

supercurrent can flow between the electrodes even with no voltage difference across the 

link. This weak link could be formed by introducing a very thin insulating layer between 

the superconducting electrodes to form a SIS junction, or by using a normal metal layer 

(SNS) or by forming a narrow constriction in the superconducting film (SCS). The zero 

voltage supercurrent is a result of the two superconductors coupling across the weak link. 

The strength of the coupling is determined by the characteristic length scale of the 

superconductor’s wavefunction in the weak-link. Brian Josephson first derived this effect 

in 1962 for the case of a thin-insulating barrier, [see Fig. 2.1(a)] [20]. His seminal paper 

correctly led to the prediction that the supercurrent through a weak link is given by  
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Figure 2.1: (a) Picture of a current biased (S-I-S) Josephson junction. (b) Circuit 

schematic of RCJS model of a current biased Josephson junction. 
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)sin(0 γII = ,     (2.1) 

where γ  is the gauge-invariant difference in the phase of the Ginzburg-Landau 

wavefunction  in the two superconducting electrodes and  is the maximum 

supercurrent possible through the junction. The Ginzburg-Landau wavefunction is a 

pseudowavefunction where 

Ψ 0I

2Ψ  represents the local density of superconducting 

electrons [21]. Therefore γ  results from a large number of Cooper pairs in the 

superconductors contributing coherently to produce a wavefunction  with a well-

defined phase. This is one reason why a Josephson junction can be thought of as a 

macroscopic quantum system. As one would expect,  is determined by the coupling 

between the superconductors. Josephson also showed that the voltage across the junction 

is given by 

Ψ

0I

dt
dV γ

π2
0Φ

= ,     (2.2) 

where is the flux quantum. Equations (2.1) and (2.2) are known as the dc and 

ac Josephson relations, respectively.  

eh 2/0 =Φ

Another useful relation can be derived from these equations, a non-linear 

Josephson inductance. The idea is that the junction acts as an effective tunable 

inductance, based on 
dt
dILV J= . From Eq. (2.1) and (2.2), one finds 

( )γπ cos2 0

0
I

LJ
Φ

= .     (2.3) 

This inductance is of course different in origin from a geometrical inductance; here the 

energy is stored in the flow of Cooper pairs. 
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The dynamics of a Josephson junction are readily understood through the RCSJ 

model [21-23]. The model treats a real junction as being an ideal Josephson junction that 

is capacitively and resistively shunted, as shown in Fig. 2.1(b). The capacitance C  

usually results from the geometric shunting capacitance between the two superconducting 

electrodes, although it can also account for additional shunting capacitors that have been 

deliberately added. The shunting resistance turns out to be a more subtle concept, and 

includes any source of dissipation across the junction, including quasiparticle tunneling, 

dielectric loss, radiation and any normal shorts. The junctions I used in this thesis have a 

very large resistance [24] for applied voltages V  that are less than the gap voltage 

. For voltages greater than , the resistance of my junctions was roughly 

 to , the tunneling resistance of the junction in the normal state. 

eVg /2Δ= gV

Ω≈ 100nR Ωk1

If the Josephson junction is attached to a current bias source I , conservation of 

current gives 

dt
dVC

R
VII ++= γsin0 .    (2.4) 

Using the Josephson equations this can be rewritten as  

 
dt
dD

d
dU

dt
dm γ

γ
γγ

−−=
)(

2

2
,    (2.5) 

where 
2

0
2

⎟
⎠

⎞
⎜
⎝

⎛ Φ=
π

Cm , ( )γγ
π

IIU +
Φ

−= )cos(
2 0

0  and 
R

D 1
2

2
0 ⎟
⎠

⎞
⎜
⎝

⎛ Φ=
π

. This is the 

equation of a particle of mass m , in a potential U , with drag force  acting on it. The 

potential U  is commonly referred to as a tilted washboard. I would like to emphasis that 

there is no actual particle here; the dynamics of a junction are simply analogous to those 

of a particle moving in a tilted washboard potential. 

D

 12



Figure 2.2(a) shows the potential well with AI μ6.10 =  for various currents I , 

and Fig. 2.2(b) shows a measured current/voltage characteristic. As the bias current I  

increases, the potential becomes more and more tilted until the potential barrier 

disappears at current . Once the bias exceeds the critical current, the phase begins to 

evolve continuously and a voltage develops across the junction. In general, the particle 

can escape for  due to quantum mechanical tunneling or thermal activation over 

the potential well [25]. The voltage across the junction increases very rapidly until it 

reaches the gap voltage of the superconductor,

0I

cII <

eVg /2Δ= , roughly 360 μV for aluminum 

and 2.8 mV for niobium. This gap voltage is consistent with the minimum energy Δ2  

required to break a Cooper pair. This is not the RCSJ model, which has no gap.  

 When the bias current is increased above the critical current, the voltage across 

the junction is given by approximately nIRV = . If the current through the junction is 

then decreased below the critical current the particle will not retrap in the supercurrent 

state until it reaches re-trapping current rI . The fact that the device is highly hysteric (i.e. 

) can be understood from a very small damping acting on the inertia of the 

moving particle; only when the energy dissipated due to the damping, using the sub-gap 

resistance, exceeds the potential energy gain from the preceding potential well, will the 

particle slow down and the system return to the zero-voltage state. The slight back 

bending in Fig. 2.2(b) near 

cr II <<

eV /2Δ=  is indicative of heating. 
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Figure 2.2: (a) Tilted washboard potential at five bias currents I  in the RCSJ model for a 

junction with a critical current of AI μ6.10 = .  With AI μ16.0=  the phase particle has 

still not retrapped into the zero voltage state after switching. (b) I-V curve for an 

Al/AlOx/Al junction (data from a dc SQUID that was never tested further since the 

critical currents were not as designed) with a critical current of 1.6 μA. The small back 

bending as the current is decreased below the critical current suggests some heating. 
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2.2 RCSJ Hamiltonian 

The Hamiltonian of a Josephson junction in the RCSJ model can be written in 

several identical forms. Ignoring damping, I can write   

( )

( )

( )0
2

0
2

2

0
0

2

2

/)cos(4

/)cos(
4

)cos(
22

2

IIENE

IIEp
E

II
m

p

U
m

p
H

Jc

J
c

γγ

γγ

γγ
π

γ

γ

γ

+−=

+−=

+
Φ

−=

+=

h

 ,  (2.6) 

where NCV
edt

dmp h
h

===
2

γ
γ , , and CeEc 2/2= π2/00 IEJ Φ=  [26]. The 

canonical momentum of the junction  is proportional to the voltage across the junction 

and the number of cooper pairs  that have been transferred to the junction’s capacitor 

plates. The electrostatic energy necessary to add an additional Cooper pair to the 

capacitor is given by the charging energy , which appears in an effective kinetic 

energy term in the Hamiltonian. The maximum potential energy that can be stored in the 

junction is twice the Josephson energy .   

γp

N

cE

JE

The Hamiltonian in Eq. (2.6) can be expanded about the potential minimum 

( 00 /arcsin II= )γ  to give 

⎟
⎠
⎞

⎜
⎝
⎛ +−−−

Φ
−= 3222

0
22

0
0

2
'

6
1'

2
1

22
γγ

π
γ IIIII
m

p
H ,  (2.7) 

where )cos(γ  has been expanded to third order in 'γ  and 0' γγγ −=  [27]. It will be 

useful to separate the bias current I  into a dc component, which will be referred to as 
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I , a microwave component , which is close to the resonant frequency of the 

junction, and a mixed frequency noise component . The noise component will include 

noise close to the resonant frequency of the junction  and lower frequency noise 

.  Adding the microwave component will not affect the minimum 

wIμ

nI

wnI μ

nlfI 0γ  and will simply 

add a term γ
πμμ 2
0Φ

−=Δ ww IH  to the Hamiltonian. The low frequency noise component 

 will vary the minimum location nlfI 0γ  and this effect will be considered when noise 

and decoherence are discussed. The microwave noise component  will also add a 

term to the Hamiltonian 

wnI μ

γ
πμ 2
0Φ

−=Δ wnn IH . 

The resonant frequency of small oscillations in the potential  is called the 

plasma frequency and it can be written as  

)(IU

    

4/12

00

0 1
2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Φ
=

I
I

C
I

p
π

ω .   (2.8) 

The potential barrier height is given by [28] 

( ) 2/3
0/12 IIEU J −≈Δ .     (2.9) 

From these equations a first order temperature-dependent escape rate can be determined 

by simply assuming the particle tries to escape at a rate pω  and succeeds if thermal 

excitations given by the Boltzmann distribution are greater than  [29]. In my 

experiments, the temperature T is always such that 

UΔ

UTkB Δ<< and I will in general 

ignore thermal escape. 
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2.3 Quantum Properties of Josephson Junctions 

 The above description of a junction as a particle moving in a tilted washboard 

potential is entirely classical. At low enough temperatures, quantum effects become 

important, including the uncertainty principle, discrete energy levels, and quantum 

mechanical tunneling [26, 30, 31]. 

As I discuss below a junction has many similarities to a simple harmonic 

oscillator. In a simple harmonic oscillator, the position and momentum operators x  and 

p  obey  and the ground state has a minimum uncertainty product form, given 

by 

hipx =],[

( ) ( ) 4/222 h=ΔΔ px  [32]. Similarity, in a Josephson junction the number of 

Cooper pairs on one plate of the junction capacitor and the phase difference N γ  obey 

the commutation relation iN =],[ γ . This implies that  and N γ  also obey the uncertainty 

relations ( ) ( ) 4/122 ≥ΔΔ γN . One might guess that ( )2NΔ  and ( )2γΔ  are of the 

same order, however this is not generally true. Phase qubits have a very large ratio of 

, typically of the order . This causes cJ EE / 610 ( ) ( )22 γΔ>>ΔN  and therefore 

 and thus ( ) 12 <<Δγ γ  is a good quantum number. A Josephson junction in this regime 

has a well-defined phase difference, but a relatively imprecise number of pairs 

participating in the tunneling. It may be relatively precise though, i.e. 1/ <<Δ NN . 

 

2.3.1 Harmonic Oscillator  

Solving Schrödinger’s equation with the potential U  produces a series of 

quantized energy levels in each potential well as shown in Fig. 2.3. Ignoring terms of  
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Figure 2.3: Tilted washboard potential in the RCSJ model showing three metastable 

energy levels, ,  and 0=n 1=n 2=n  as well as a continuum of states above the barrier. 

Higher energy levels have enhanced escape rates nΓ . The lowest two energy levels 0  

and 1  form the qubit basis states. 
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order  and higher in Eq. (2.7) gives the harmonic oscillator approximation to a 

junction; the truncated Hamiltonian is analogous to the Hamiltonian of a harmonic 

oscillator 

3'γ

22
2

2
1

2
xm

m
pH pω+= , implying quantized energy levels n  separated in energy 

by pωh . The junction operators γ  and  are analogous to typical harmonic oscillator 

operators 

γp

x  and p .  From the elementary properties of quantum harmonic oscillators, we 

thus have that:  

( ) nmnn p
2/12/1 ωγ h=− ,    (2.10a) 

0=nn γ , and      (2.10b) 

 02 =−nn γ .     (2.10c)  

The ground state 0  of the system or 0=n  and the first excited state 1  or 1=n  

will be used as the qubit states [33]. The number of energy levels in the potential well is 

approximately  

ps UN ωh/Δ=      (2.11) 

and is dependent on the bias current through the junction, based on Eqs. (2.8) and (2.9). 

Figure 2.4(a) shows  versus  for a Josephson junction with sN 0/ II AI μ3.10 =  and 

. Levels with  will generally exist in the well and will need to be 

considered to understand the junction’s behavior. There are also resonances above the 

barrier that form a continuum, which I will ignore.  

pFC 4.0= 2≥n

 Just considering the first two levels and ignoring , the Hamiltonian can be nlfI
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Figure 2.4: Cubic approximation results for a junction with AI μ3.10 =  and pFC 4.0= . 

(a) Approximate number of levels  of the titled washboard potential where sN

ps UN ωh/Δ= . (b) Solid curve is transition frequency  between  and 01f 0=n 1=n , 

dashed line is transition frequency . The anharmonicity increases at higher bias 

currents. (c) Escape rate  for the metastable energy levels  versus bias current.

12f

nΓ n

 20



written as: 

 
( )

( ) ( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
Φ

++
Φ

+
Φ

+
Φ

+
=

wwnwwn

wwnwwn

IIEII

IIIIE
H

μμμμ

μμμμ

π
γ

π
γ

π
γ

π
γ

2
11

2
01

2
10)(

2
00

0
1

0

00
0

.  (2.12) 

In the harmonic oscillator approximation the energy level difference is given by 

0101 ωω hh ==− pEE . The matrix elements can be determined from the harmonic 

oscillator relations given above [see Eqs. (2.10)]. The off-diagonal elements containing 

 cause coherent transitions between the energy levels of the qubit (Rabi oscillations) 

and those containing  cause excitation and relaxation between the levels due to 

current noise. The details of these processes are discussed in Chapter 3, where the effects 

due to low frequency noise  on the energy level spacing will be included as well.  

wIμ

wnI μ

nlfI

The qubit states 0  and 1  in the phase qubit are metastable. In particular these 

states can decay by tunneling through the potential barrier into the finite voltage state 

[30]. Higher energy levels  will have substantially higher tunneling rate  based on 

the smaller barrier heights and widths, as shown in Fig. 2.3. This difference in tunneling 

rates has been exploited to determine the energy state of the system [34]. I will usually 

ignore tunneling rates, except in the discussions of state readout, as they are generally 

much smaller than the other characteristic rates for the bias conditions I used in most of 

my research.      

n nΓ
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2.3.2 Cubic Approximation 

  To obtain more accurate results beyond the harmonic approximation, the  term 

in Eq. (2.7) must be included. Here I will just quote useful results that have been derived 

elsewhere. Expanding the potential about the minimum phase 

3'γ

0γ  gives  

0
0

2

0

'1'
4

27 U
qq

UU +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ≅

γγ ,      (2.13) 

where 0' γγγ −=  and 
m

Uq
p

Δ
=

54
2

1
0 ω

 [35]. Here the anharmonic energy level 

spacings are [26]  

)
36

51(01
s

p N
−≅ ωω  and     (2.14) 

)
18

51(12
s

p N
−≅ ωω .     (2.15) 

Using the cubic approximation other matrix elements can be more accurately described, 

for example, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

SN216
111

2
110γ  and 

sNnn

nn

54
1

1

2
≈

−

−

γ

γ
.   (2.16) 

The escape rates without damping can be approximated as well using the WKB method. 

Strauch found the tunneling rates out of the energy levels in the cubic approximation to 

be [26] 

[ ]
)2.7exp(

2!
4322 2/1

s
pn

s
n N

n
N

−=Γ
+

π

ωπ
.   (2.17) 

Figure 2.4(b) and (c) shows the energy level spacing and escape rates using the cubic 

approximation with AI μ3.10 =  and pFC 4.0= .  
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The cubic approximation provides a substantial improvement over the harmonic 

approximation in describing the dynamics. However for comparison with experiments, it 

is best to use numerical simulations of Schrödinger’s equation for the full Hamiltonian 

with appropriate boundary conditions. The complete code I used makes use of complex 

scaling, where eigenstates are superpositions of harmonic oscillator states [36-37]. A trial 

energy and wavefunction is numerically relaxed to a solution using inverse iteration (see 

Appendix A).  

 

2.4 dc SQUID Phase Qubit 

 The simplest phase qubit is just a Josephson junction attached to a current bias 

source, as I described above [33]. Unfortunately, in this configuration the junction is 

strongly coupled to the bias leads. If the junction is prepared in an excited eigenstate it 

will quickly dissipate energy by emitting photons to the leads, and the system will return 

to its ground state. By isolating the qubit from the leads this interaction can be 

minimized. One isolation scheme involves attaching an LC filter between the leads and 

the junction. When properly configured, current noise at microwave frequencies will be 

shunted through the capacitor and blocked by the inductor and not reach the qubit 

junction. The LC filter’s drawback is that it does not block low-frequency noise, which 

produces decoherence in the phase qubit [38]. This isolation scheme can be improved by 

replacing the capacitor with another junction and a small inductor [39]. Somewhat 

inadvertently this produces a highly asymmetric dc superconducting quantum 

interference device or dc SQUID. This was the isolation scheme I used in my 

experiments. In this section, I briefly discuss the properties of such SQUIDS. 
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Figure 2.5(a) shows a schematic of an inductively isolated Josephson junction 

qubit or “dc SQUID phase qubit”. The qubit junction  is placed in series with a 

relatively large inductor , and this combination is placed in parallel with a small 

inductor  and an isolation junction . The wavefunction of the Cooper pairs must be 

single-valued in the SQUID loop and thus leads to the general flux-phase relationship, 

which I can write [21,40],  

1J

1L

2L 2J

0220110021 /2/2/2/2 Φ−Φ+ΦΦ=ΦΦ=− LILIa ππππγγ , (2.18) 

where  is the flux applied to the loop,  is the current through the arm of the SQUID 

with junction , and  is the current through the arm of the SQUID with junction . 

I can also write 

aΦ 1I

1J 2I 2J

  III =+ 21 ,      (2.19) 

where )sin(
2 101

10
11 γ

γ
π

I
dt

d
dt
dCI J +⎟

⎠

⎞
⎜
⎝

⎛ Φ= , )sin(
2 202

20
22 γ

γ
π

I
dt

d
dt
dCI J +⎟

⎠

⎞
⎜
⎝

⎛ Φ=  [see 

Eq. (2.4)] and  and  are the critical currents of the two junctions. I will use the 

variable 

01I 02I

I  for the bias current in the dc SQUID [see Fig. 2.5(a)] as well as the current 

applied to a single Josephson junction [see Fig. 2.1(a)]   

Using the flux-phase relationship Eq. (2.18), the Hamiltonian for the dc SQUID 

can be written as, 

 ),,,(
22 21

2

2
2

1

2
1

aIU
m
p

m
pH Φ++= γγ ,    (2.20) 

where 

 

 

 24



L2 L1

M

I

fI

J2 J1

C

cC

C

(a)

(b)

2C 1C

L2 L1

M

I

fI

J2 J1

C

cC

C

(a)

(b)

2C 1C

 

 

 

Figure 2.5: Schematics for (a) single dc SQUID phase qubit and (b) capacitively coupled 

phase qubits. (a) The qubit junction J1 is isolated from the bias line by a large inductance 

 and a shunting branch with a junction J2 and small inductance . Flux bias current 

 is coupled to the SQUID via a mutual inductance 

1L 2L

fI M . Two phase qubits are coupling 

via a coupling capacitor . The dimensionless coupling constant is cC )/( CCC cc +=ξ , 

where the junction capacitances C  are considered to be identical.  
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Here ( ) 111
2

011 2 γγπ && mCp ≡Φ=  and ( ) 222
2

022 2 γγπ && mCp ≡Φ=  are the canonical 

momenta,  is the total loop inductance,  and  are the capacitances of 

the qubit and isolation junctions respectively, 

21 LLL += 1C 2C

π2/0011 Φ= IEJ  and π2/0022 Φ= IEJ  

are the Josephson coupling energies of the two junctions. The classical behavior of the 

system is analogous to a particle moving in the 2-D corrugated potential [40] and the 

qubit states are formed by the lowest two energy levels in a 2-D potential well of Eq. 

(2.21).  

Figure 2.6(a) shows the dc SQUID potential for a symmetric device (i.e. 

 and ) with 0201 II = 21 LL = 0=I  and 0=Φa . Figure 2.6(b) shows the calculated 

potential for a SQUID with parameters chosen to be the same as a device I tested (DS2A). 

Here I have assumed no applied bias current or applied flux and introduced the energy 

scale π2/)( 002010 Φ+= IIU . Applying flux to the SQUID tends to “roll” the potential 

in the ( )21 γγ −  direction while bias current tilts the potential in the ( 21 )γγ +  direction. 

By choosing ( ) 00201 Φ>>+ IIL  and applying flux and bias current the device can be 

operated such that the potential acts like a 1-D tilted washboard in the 2γ  direction, i.e. 

just like an ideal phase qubit [41,42].  

Each potential minimum corresponds to the system being in a specific flux state 

due to trapped circulating current in the loop.  The number of distinct flux states can be 

determined by taking the 2-D geometry of the potential energy surface into account; a  
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Figure 2.6: Normalized potential energy surface 021 /),( UU γγ  for (a) symmetric dc 

SQUID with current , 0=I 0=Φa , ( ) 3.5/ 00201 =Φ+= IILβ , and   (b) 

SQUID with , , 

0201 II =

0=I 0=Φa 20=β , AI μ3401 =  and AI μ502 = . Different potential 

wells (in 21 γγ −  direction) correspond to distinct flux states exist, as well as the 

indistinguishable repeated wells (in 21 γγ +  direction).  
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slice through ),( 21 γγU  at 02 =γ  will identify each distinct flux state [37]. If the 

junctions are weakly coupled (i.e. ( ) 00201 Φ>>+ IIL ) they will act independently and 

the maximum current circulating in the loop will be limited by the smaller of the two 

junction critical currents .  In this case, the number of metastable flux states is [41] min0I

)1(1/21 min0 αβ ++≈Φ+≅Φ oLIN     (2.22) 

with )/()( 01020102 IIII +−≡α  [43] and 00201 /)( Φ+≡ IILβ . The first term in Eq. 

(2.22) accounts for a state with no trapped flux, and the factor of two accounts for states 

corresponding to positive and negative circulating current.  Thus devices with 1>>β  

will tend to have , provided 1>>ΦN α  is not close to -1.    

 If flux and bias current are applied such that the potential well  disappears 

where the phase particle is located, the particle will escape from the well and a voltage 

will appear across the junction that switches. If the potential is such that both junctions’ 

phase continues to evolve in time, a roughly constant voltage will be measured across the 

SQUID. If only a small bias current is applied, the SQUID only switches from one flux 

state to another and no steady voltage will be detected. By ramping the flux and bias 

current and measuring when the SQUID switches to the voltage state, or switches flux 

states, the critical currents of the system can be effectively mapped out and used to 

determine the parameters of the dc SQUID. Experimental results and fits will be shown 

in Chapter 6 for the SQUIDs I studied.  

UΔ
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2.5 Two Capacitively Coupled dc SQUIDs  

 Two identical dc SQUID phase qubits can be coupled together as shown in Fig. 

2.5(b); here the qubits are connected using a capacitor . In this coupled system, the 

current and flux biases are ramped such that the dc SQUIDs can be thought of as two 

single Josephson junction phase qubits. Johnson et al. found the Hamiltonian for two 

capacitively coupled phase qubits is [44,45] 

cC
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( ) 2122202
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2
2
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2
1
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22
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Φ

−+

+
Φ

−=
 ,  (2.23) 

where . Here, the dimensionless coupling constant is 2
0 )2/)(1( πξ Φ+= Cm

)/( CCC cc +≡ξ ,    (2.24) 
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⎜
⎝

⎛ Φ+= .  

The dimensionless coupling constant ξ  determines the splitting size of the 

avoided level crossing. In real devices, careful consideration must also be given as to 

whether an LC mode, with a frequency near the qubit’s, is produced by the coupling 

capacitor and the associated wiring between the qubits [46]. The first coupled device 

successfully tested in our lab showed resonances consistent with the LC mode forming 

another coherent quantum system. It is an interesting three-body system, but for my work 

I shortened the lead length and reduced the capacitance to ensure that the resonance of 

the coupling network was well above the qubit frequency. 
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2.6 Summary 

In this chapter, I discussed the basic physics of Josephson junctions. In particular, 

the RCSJ model was used to develop a classical and quantum description of phase qubits. 

I briefly showed how the quantum nature could be exploited to form a qubit, with the 

lowest two energy levels forming the basis of the qubit. I described the simple harmonic 

oscillator approximation for the qubit and then a more exact cubic approximation. To 

isolate the junction from the environment, a second Josephson junction and an inductor 

were attached, forming a dc SQUID phase qubit. The basic properties of dc SQUIDs 

relevant for my experiments were considered and the method for coupling two qubits 

together was shown.   
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Chapter 3 

Dynamics of a Phase Qubit 

 

 In this chapter I discuss the dynamics of two-level systems, with an emphasis on 

how this applies to superconducting phase qubits. Much of the discussion applies to any 

two-level system and most of the terminology and techniques were originally developed 

for nuclear magnetic resonance [19, 47]. Starting from the Hamiltonian of a Josephson 

junction, I develop a two-level system model of the phase qubit. I then show how the 

environment affects the dynamics of the qubit and describe experimental techniques to 

examine this interaction. Finally, I present the density matrix formulism and show how it 

can be used to simulate the effect of the environment on the qubit.      

 

3.1 The Bloch Sphere and Ensembles 

 A pure state of a single isolated two-level system with eigenstates 0  and 1  can 

be expressed as  

1
2

sin0
2

cos10 θθβα φie+=+=Ψ  .    (3.1) 

A measurement of the energy of the system will project the system to 0 or 1  with 

probabilities of 2α and 2β , respectively. The complex numbers α  and β  are 

constrained by the condition 

122 =+ βα  .     (3.2) 
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These relations lead nicely to a representation of the state of the system as a point on the 

surface of the unit sphere.  The coefficients θ  and φ  become angles in a spherical 

coordinate system, with πθ ≤≤0  and πφ 20 ≤≤ . This representation is known as the 

Bloch sphere. For a pure state the eigenstate can be described by a location on the sphere 

with radius 1, as shown in Fig. 3.1. For example, the eigenstate ( ) 2/10 i+=Ψ  has 

2/πθ =  and 2/πφ =  and is represented by a vector pointing from the origin to (0,1,0) 

on the y-axis. Similarly ( ) 2/10 +=Ψ  has 2/πθ =  and 0=φ  and is the vector 

(1,0,0) on the x-axis.  

For a pure state, the Bloch sphere provides a convenient graphical representation. 

It is particularly useful for understanding the dynamics of a two-level system, especially 

in the rotating wave approximation, as I discuss in the next section. For example, 

rotations about the z-axis change the phase of the system φ . Similarly, a rotation of the 

state from 0  to 1  can be produced by a torque about the x-axis or y-axis. The driving 

force needed to produce the rotations will be described in the next section.  

The Bloch sphere is also useful for visualizing dissipation and decoherence. 

Equation 3.1 describes the pure state of a system, but I will also need to consider mixed 

states, or statistical ensembles of pure states. Here the ensemble accounts for many 

repeated experimental trials and is assumed to be ergodic [48]. The quantum dynamics of 

mixed states are most easily understood using the density matrix, which I discuss in 

section 3.5.   

 In the ensemble picture, uncertainty or fluctuations in the coefficients φ  and θ  

from randomly fluctuating drive terms will smear out the state on the Bloch sphere. For  
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Figure 3.1: Bloch sphere representation of the pure state of a two-level system. A vector 

of length 1 describes the quantum state ),( φθΨ . Open circles have been added at 

locations corresponding to various quantum states. For example, a unit length vector 

pointing down the x-axis corresponds to the pure state ( ) 2/10 +=Ψ . 
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example, if the system is initialized at 0=φ  and 2/πθ = , a randomly fluctuating torque 

around the z-axis will cause )(2 tφ  to increase with time until all knowledge of the 

phase is lost.  In a graphical sense the Bloch vector has spread out over the equator of the 

sphere. This effect is called dephasing, and is distinct from dissipation, which causes 

changes in the angle θ , as I will discuss below.  

 

3.2 Rotating Frame 

 Consider a qubit with states 0  and 1 , with energies  and , respectively. 

If the qubit is placed into the initial state 

0E 1E

( ) 2/10)0( +==Ψ t  at , then at later 

time  it will have evolved to 

0=t

t ( ) 2/10)( 01tiet ω+=Ψ , where ( ) h/0101 EE −=ω . 

Thus t01ωφ =  and a Bloch vector that is not along the z-axis will continually precess 

about the z-axis with a frequency 01ω . This behavior is completely analogous to the 

picture of a spin precessing at frequency Hγω =01  about a constant magnetic field 

zHH )=  [19]. If the coordinates are transformed to a rotating frame (non-inertial frame) a 

“fictitious” torque is created. If the rotating frame is set to co-rotate at frequency 01ω  the 

fictitious torque will affectively “cancel” the rotation and the vector will remain fixed in 

time, unless additional torques act on it. In practice, the rotating frame is usually taken to 

be at the frequency of a main driving term ω , which may not necessarily be identical 

with 01ω .  
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In chapter 2, I wrote the two-level Hamiltonian for the phase qubit as [see Eq. 

(2.12)] 

( )
( ) ( )⎥
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h

. 

The Hamiltonian in the rotating frame H  can be found from [26] 

( ) ( ) ( ) 000 expexp)( HtiHtHtiHtH −−= ,   (3.3) 

 where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωh0
00

0H .      (3.4) 

If Eq. (2.12) and the harmonic oscillator approximation are used the Hamiltonian in the 

rotating frame can then be written as  
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
Φ

−+
Φ

=
ωωω

π
γ

ω
π

γ

μμ

μμ

01
0

0

exp
2

01

)exp
2

100

htiII
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wwn
. (3.5) 

If the driving term is written as ( ) ( )tItII yxw ωωμ sincos += , the Hamiltonian can be 

simplified even further using the Pauli matrices and the identity matrix. Disregarding 

terms that contain )2exp( ti ω±  (this is equivalent to making the rotating wave 

approximation [26]) gives [49] 

 ( ) ( ) ( )
wnzyyxx HIIIH μ

ωω
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ωω
σσ

π
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++
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⎠
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22
10 01010 hh

, (3.6) 
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where 
( ) ( )

( ) ( ) ⎥
⎥
⎥
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⎢
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⎣
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γ

ω
π

γ

μ

μ
μ . I note that both 

the low frequency current noise  and the dc current nlfI I  determine 0γ  and 01ω .  

With Eq. (3.6) the Bloch sphere in the rotating frame can be used to view how the 

state of the system or Bloch vector varies when driving currents are applied to the phase 

qubit. For example, if ωω =01 , 0≠yI  and 0=xI , then from Eq. (3.6) we can see how 

this produces an effective constant torque about the y-axis in the rotating frame. If the 

state starts at 0 , the result is a Rabi oscillation in which θ  increases in time. Ignoring 

decoherence the measured state will rotate back and forth between 0  and 1  at a 

flopping frequency 

    ( )hπγ 2/10 001 Φ=Ω yI  .     (3.7) 

Interestingly, an off-resonant driving term also effectively acts like a torque about 

the z-axis. I note that the x and y axis of rotation for a microwave drive depends on the 

phase of the drive once the axis orientation is set by choosing the phase of the applied 

microwaves at . Noise at microwave frequencies  will act much like the 

microwave drive term and cause transitions, while low frequency noise  will cause 

fluctuations in 

0=t wnI μ

nlfI

01ω  and act like a z-axis drive [49]. 
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3.3 Dissipation and T1

The fluctuation-dissipation theorem reveals that small fluctuations acting on a 

system will result in the dissipation of energy in the system and vise-versa [50]. For the 

phase qubit, fluctuations in the current bias at frequency 01ω  cause transitions between 

energy eigenstate (torques about the x or y-axis). The current fluctuations could be due to 

Johnson-Nyquist noise [51,52], or noise from an external current source, or noise 

produced by other quantum systems coupled to the qubit, or any other noise source that 

couples to the qubit.  If the qubit is prepared in the first excited state  it will decay to 

 with mean lifetime .  is commonly referred to as the relaxation time or 

dissipation time. 

1=n

0=n 1T 1T

At elevated temperatures the population in the different energy levels is expected 

to follow a Boltzmann distribution. Johnson-Nyquist current noise  at wnI μ 01ω will cause 

transitions in the qubit from 10 →=n  at a rate , as well as transitions from 

 at a rate . Using first-order perturbation theory the rates  and  can 

be calculated based on the thermal noise spectrum, as shown by Xu [36]. Since the matrix 

elements for these processes are identical, the rates will be equal. Together with the 

spontaneous emission rate  they must produce an occupation in 

01W

01→=n 10W 01W 10W

1/1 T 0  and 1  that 

obeys the Boltzmann distribution. From these relations  can then be determined [36].  1/1 T

At the temperatures where I make my measurements,  and  were 

negligible and can be ignored.  Since relaxation occurs even at zero temperatures, the 

zero-point noise spectrum can be used to determine  directly using first order 

10W 01W

1/1 T
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perturbation theory. Starting from Fermi’s Golden rule and using the zero-point current 

noise power spectrum ( )πω 2/01zpIS , the relaxation rate can be written as [53] 

⎟
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⎜
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h
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To model relaxation using Eq. (3.8) one need to find the noise spectrum that the 

qubit sees. In general, the qubit is connected across of an admittance )(ωY  that includes 

contributions from dissipative and non-dissipative elements. In general, it can be viewed 

as being formed from an infinite set of LC oscillators in parallel [54] with the qubit, such 

that . With an infinite number of oscillators one ensures irreversible 

behavior. Each oscillator can be viewed as a quantum system that will produce charge 

and current fluctuations in the qubit [55]. The Fourier transform of the current correlation 

function 

∑=
∞

=0
)()(

m
mYY ωω

)()0( τII  gives the noise power spectral density [49, 55] 

( )[ ω
ω

]ωπω Y
Tk

S
B

I Re
)/exp(1

2)2/(
h

h

−−
= ,   (3.9) 

where πω 2/=f . Here I use the somewhat unconventional definition in which the 

power spectral density extends over positive (the qubit releases a photon to the 

impedance) and negative frequencies (where the qubit absorbs a photon) [55]. 

At zero temperature the spectral density is [56] 

( )[ ]ωωπω YSIzp Re2)2/( h=      (3.10) 
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for 0>ω  and  for 0=zpS 0<ω . Thus at 0=T , the qubit can only lose energy to the 

bath of oscillators. Using the zero-point noise and the harmonic oscillator approximation 

[Eq. 2.10(a)] in Eq. (3.8) gives 
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( )[ ] CY

Y
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2
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22
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1
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⎜
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⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛Φ= h
h

h
 .  (3.11) 

If the admittance is simply due to a resistor R , then ( ) RY /101 =ω  and RCT =1  as 

expected. In general, the capacitance  includes any effective reactance from the 

admittance as well as the capacitance of the junction, as I will discuss in Chapter 4. 

C

 

3.4 Decoherence and T2 

 A torque about the z-axis will cause the phase φ  of the Bloch vector to vary 

(unless it is in state 0  or 1 ). A randomly fluctuating torque about the z-axis will 

therefore give 0)(2 ≠tφ  and lead to dephasing. To calculate a characteristic time  

for dephasing, I assume the noise amplitude probability density can be described with a 

Gaussian 

φT

    
2

22

2

)2/exp()(

φπ

φφ

φ
φ −

=
d

dp  .    (3.12) 

If I consider an initial state with 2/πθ = , 0=φ  and only low frequency fluctuations (z-

axis torque), the probability  of measuring a projection to this initial state at some 

later time  is roughly given by [49] 

)(tp

t
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  ( ) ⎥⎦
⎤

⎢⎣
⎡−+≈∫=

∞

∞−
2/)(exp5.05.02/cos)()( 22 t

d
dpdtp φφ
φ
φφ .  (3.13) 

Since )(2 tφ  increases with time, as ∞→t  all phase information will be lost and the 

qubit will be in a mixed state.  If )(2 tφ  is linear in time, one can define an exponential 

decay time constant  called the dephasing time or phase diffusion time.  φT/1

A state at 2/πθ =  is also subject to high frequency noise that will not affect φ , 

but will change the Bloch vector by rotating it about the x or y-axis. If the state is 

( ) 2/10 + , torque fluctuations about y and z (but not x) will affect the state. One can 

then define an exponential decoherence rate or characteristic time constant , which 

describes how a state will evolve stochastically in any direction. The coherence time  

can be expressed in terms of  and  as [19] 

2T

2T

φT 1T

12 2/1/1/1 TTT += φ  .    (3.14)  

The factor of 2 in front of the  term makes sense in that an x-axis torque does not affect 

the state 

1T

( ) 2/10 + , where as both x and y torques would affect the state 1  [49].   

The fluctuations in the phase φ  result from current noise fluctuations  that are 

slow compared to 

nlfI

01ω . As is evident from Eq. (3.6),  causes the energy level spacing nlfI

01ω  to vary and not match the rotating wave frequency ω , producing an effective torque 

about the z-axis. Assuming no other forces act on the Bloch vector and ( ) 00 =φ , then I 

can write 
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where I have assumed 01ω  varies linearly with I . The mean-squared phase noise is 

therefore [49] 
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The cut off at πω 2/01  is somewhat ad hoc and occurs because at this frequency the 

noise would cause transitions. For a resistor,  is given by Eq. (3.9) with )( fS nI

[ ] RY /1)(Re =ω , and looks relatively white (flat spectrum) for TkB<<ωh . In this case,  
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Thus 2φ  grows linearly with time and knowledge of the phase will decay 

exponentially. For a spectrum that is not white, the decay will not be exponential. From 

Eq. (3.17) and Eq. (3.13), it can be shown that the dephasing time  for a white 

spectrum is [49] 
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This also matches the result found using a density matrix approach [57]. 
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3.5 Other Time Constants 

 From the discussion up to this point, it is clear that there are several time 

constants that govern the dynamics of phase qubits. The nth level has a tunneling rate nΓ  

to the voltage state that is bias current dependent. A qubit in the first excited state will 

decay to the ground state at a rate . Thermal excitation with rate , and relaxation 

with rate , are possible at elevated temperatures. The phase 

1/1 T 01W

10W φ  of the qubit decays at a 

rate . The decoherence rate  includes dephasing and dissipation [58]. φT/1 2/1 T

 In addition, as was described above, a resonant microwave drive can produce 

Rabi oscillations in the qubit. The oscillations will precess with a rate [see Eq. (3.7)] 

and the amplitude of oscillations will decay with a time constant, which I will define as 

'

01Ω

T . A new time constant is needed here, since the state of the qubit is affected differently 

by current noise at different times during the oscillation. For example, for 1=Ψ  or 

0=Ψ  dephasing will not affect the state of the qubit.  A long pulse at 01ω  can also 

be seen as a concatenation of many π-pulses, which can cause a refocusing effect [59]. 

As  the expectation value should saturate at approximately 50%, and the system 

will be in a mixed state.  

∞→t

 When decoherence is present and low power microwaves are applied, the 

probability of occupying the excited state will be less than 50% even as ∞→t . The 

limiting probability will be dependent on the microwave power, how far off resonance 

the microwaves are with the energy level spacing (detuning), and the coherence time of 

the qubit. For a sufficiently low power microwave drive the occupation in 1  as a 

function of the detuning provides a measure of the spectroscopic coherence time [19,58] 
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)(/1*
2 fT Δ= π ,     (3.19) 

where  is the full width at half max of the resonant peak (see Fig. 8.1). In the absence 

of dephasing the spectroscopic coherence time can be easily understood from the Fourier 

decomposition of the decay  and/or an imaginary energy associated with the energy 

level. This measurement is sensitive to low frequency noise and drift, so that . 

fΔ

1T

2
*
2 TT <

 Another common experiment is a Ramsey fringe measurement (see Fig. 8.13). In 

a Ramsey experiment, a detuned π/2 pulse first prepares the system in the state 

( ) 2/10 +=Ψ . Since the microwave drive term at ω  does not match the resonant 

frequency 01ω , after the π/2 pulse the Bloch vector in the rotating frame will precess in 

φ  at a rate that matches the detuning ωω −01 . If another π/2-pulse is then applied at a 

later time  the probability of finding the system in tΔ 1  will oscillate as a function of 

( tΔ− )ωω01 . As was mentioned above, for 2/πθ =  (after the π/2 pulse),  describes 

the decay of this state. From this it may appear that the amplitude of the oscillation will 

decay with time constant . However, this ignores the need to average multiple 

measurements together, and low frequency noise has a significant impact 

(inhomogeneous broadening). This time is actually better described using a time constant 

; it is also sometimes written as , although I will reserve this for the 

spectroscopic coherence time.  

2T

2T

RamseyT2
*
2T

I have so far avoided a subtlety of low-frequency noise versus high frequency 

noise. In particular, the state of a qubit can be “refocused” using a π-pulse in the middle 

of the delay  to remove the effects of fluctuations that occur on a time scale longer tΔ
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than . This is commonly referred to as spin echo.  Faster fluctuations can still be 

removed if the fluctuations are slow compared to 

tΔ

nt /Δ  and a train of n refocusing pulses 

is applied, each preceded and followed by a time interval  of free evolution [59]. 

This is the so-called Carr-Purcell sequence and gives the coherence time  [60]. The 

distinction between the loss of phase coherence, which can be removed with echo 

techniques and that which cannot is somewhat artificial in that any time evolution can in 

principle be reversed by a sufficiently rapid sequence of echo pulses [61].    

nt 2/

2T

 

3.6 Density Matrix 

 The density matrix formalism provides a powerful tool to model the dynamics of 

a qubit that is subject to dissipation and decoherence. Specifically one can model an 

ensemble that takes into account pure and mixed states. The density matrix is defined 

based on the density operator ρ)  [32], where 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=
i

ii
iw )()( ααρ) .    (3.20) 

Here  is the probability of the ensemble being in the pure quantum state iw )(iα , and 

.  1=∑
i

iw

The density matrix is Hermitian, with 1)ˆ( =ρtr . The ensemble average of an 

operator Â  is given by )ˆˆ( AtrA ρ= . For a pure state  and thus ; for a 

mixed state or statistical ensemble . The time evolution of the density operator 

is governed by [32]  

ρρ ˆˆ 2 = 1)ˆ( 2 =ρtr

1)ˆ( 2 <ρtr
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[ ρ]ρ ,Hi
t h

−=
∂
∂  .    (3.21) 

As mentioned above, dissipation in the qubit can be modeled as the qubit being 

coupled to an infinite number of LC oscillators. The density matrix would need to include 

all these oscillators, which would be very challenging. Instead, one can trace over the 

“rest of the universe” and construct a reduced density matrix [62]. By tracing over the 

rest of the universe a pure state can evolve into a mixed state, as we expect when 

decoherence is included. 

 If the harmonic oscillator approximation is used for the phase qubit and 

)cos( tII xw ωμ = , the time evolution of the density matrix can be written as  
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Expanding this out leads to four differential equations [63,64], 
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Here I have added the relaxation and decoherence rates in an ad hoc manner. The 

relaxation rate is fairly intuitive to add since it simply corresponds to the expectation 

value decaying exponentially.  The addition of  is a little more subtle, but a few 

comments can be made. Since dephasing will not affect the state 

2T

0=Ψ  or 1=Ψ  it 

would make no sense to include it in 00ρ&  or 11ρ& . If the qubit were dominated by 

dephasing, I would expect an x-axis Bloch vector  to decay to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2/12/1
2/12/1

)0(tρ
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⎟⎟
⎠

⎞
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⎝

⎛
=

2/10
02/1

)(tρ , as Eq. (3.23) predicts. A decoherence rate  is required, instead of 

simply a dephasing term  to keep the equations consistent, as can be easily seen by 

considering a system without dephasing; dissipation alone will force 

2T

φT

001 →ρ  as the 

qubit relaxes to the ground state. I note that the addition of  also somewhat mimics the 

addition of an imaginary term to the energy of the qubit. This will be exploited later to 

model the coupling of two quantum systems.  

2T

 By going to the rotating frame the density matrix becomes [37] 
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 If I make the rotating wave approximation, 0)2exp( =± ti ω , the density matrix 

equations can be simplified somewhat to get [63] 
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In future discussions I refer solely to the rotating frame and drop the tilde, for example 

1111
~ ρρ → .  

 

3.7 Some Simple Solutions to the Evolution of the Density Matrix  

From the density matrix equations (Eq. 3.25), the other time constants defined 

earlier can be determined. For example, suppose a steady microwave drive at freq ω  near 

01ω is applied. In this case one find that the excited state population settles down to [63] 

 46



    
21

2
01

2
2

2
01

21
2
01

11 )(1

2/

TTT

TT

d

eq

Ω+−+

Ω
=

ωω
ρ .   (3.26) 

This is a lorentzian with a peak height of 
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and a full width at half maximum of  

21
2
01

2
12 TT

T
Ω+=Δω  .    (3.28)  

The fact that an off-resonant term saturates at a lower population can be understood by 

considering the Bloch vector, which will now include some torque about the z-axis due to 

detuning [see Eq. (3.6)]. As expected for a high power microwave drive, (i.e. such that 

) the population will approach 50% on resonance. For low power (i.e. 

such that ), Eq. (3.28) simplifies to give 

21
2
01 /1 TT>>Ω

21
2
01 /1 TT<<Ω ωΔ= /22T , and thus . 

However this simple analysis doest include effects of low frequency fluctuations in 

*
22 TT =

01ω  

As I noted earlier, low frequency noise or inhomogeneous broadening causes  to be 

less that , and in general  

*
2T

2T

+
+=

22*
2

111
TTT

,    (3.29) 

where  is the inhomogeneous broadening time constant [19]. +
2T

 At larger microwave drives Eqs. (3.25) can be used to describe Rabi oscillations. 

With the system starting at 0 and a resonant microwave drive applied at 0=t  the 

population in the excited state is given by [63] 
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  ( )[ ]010101111111 '/)sin()cos('/exp)( ΩΩ+Ω−−= TttTtt eqeq ρρρ  , (3.30) 

where  and 21 2/12/1'/1 TTT += ( )221
2
0101 2/12/1 TT −−Ω=Ω .  As mentioned 

previously the Rabi decay time 'T  can be longer than  due to refocusing and the fact 

that dephasing and relaxation act differently on the state of the system at different times. 

2T

 The density matrix can also be used to model a Ramsey Fringe experiment. 

Ideally, with each pulse causing a rotation about the y-axis by exactly 2/πθ =Δ , the 

population in  evolves as 1=n

))cos(()/exp(5.05.0)( 01211 tTtt Δ−Δ−−= ωωρ .  (3.31) 

 In real experiments, the π/2-pulses are some fraction of the relaxation and decoherence 

times. In this case it is much better to time evolve Eq. (3.25) for the actual shape of the 

pulses. In addition, inhomogeneous broadening from low frequency noise must be 

accounted for. The time evolution is best done by expressing Eqs. (3.25) in the form 

ρρ )
)

P
dt
d

= . The density matrix can then be numerically time evolved in small steps tΔ  by 

ρρ )exp()( tPtt Δ≈Δ+ . 

 Tunneling can also be included in the density matrix framework by adding rates 

of ( ) 2/ji Γ+Γ−  to the right side of ijρ&  in Eq. (3.25) [36]. A large tunneling rate will 

need to be included in the low power spectroscopic widths and acts somewhat like a 

relaxation process. In the limit of no dephasing, 101/1 Γ+Γ+≅Δ Tω . Generally the qubit 

is operated where the tunneling rates are negligible and they can often be ignored until 

used for readout.     
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3.8 Summary 

A current biased Josephson junction can be approximated as a two-level system. 

Dissipation and decoherence can be understood in terms of microwave and low frequency 

current noise coming from an admittance across the junction. The admittance must 

include contributions from any intrinsic resistance across the junction, as well as 

contributions from any bias leads. The density matrix provides a powerful tool to model a 

qubit subjected to dissipation and decoherence as it evolves and can no longer be 

described as a pure state.    

Another important point, which I ignored here, is that higher levels exist in real 

phase qubits. The large microwave powers often used in Rabi oscillation lead to a large 

spectral broadening, which will allow for transition from 1=n  to . This leakage to 

higher energy levels, which can reach a few percent, must be considered to fully model 

the qubits [65].  

2=n
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Chapter 4 

Qubit Design and Fabrications 

 

 In Chapter 2, I briefly discussed the dc SQUID phase qubit and that we chose this 

design to isolate the qubit from the environment. In Chapter 3, I discussed why the qubit 

must be well isolated from noise at the resonant frequency of the junction as well as at 

lower frequencies; a broadband isolation isolated scheme is needed. In this chapter, I 

discuss the design considerations for the dc SQUID phase qubit. I then give an overview 

of the devices I tested and how they were fabricated.  

 

4.1 dc SQUID Design Considerations  

4.1.1 Admittances 

In Chapter 3, I showed that the relaxation time of a phase qubit was proportional 

to the capacitance of the junction and the effecting shunting resistance [see Eq. (3.11)]. It 

is expected that the gate fidelity necessary for a quantum computer will require the 

coherence time to be orders of magnitude larger than the time to complete gate 

operations. Superconducting qubit gates have been operated as fast as a few nanoseconds 

[37]. Although considerable progress has occurred, a coherence time of tens of 

microseconds in a phase qubit is still a daunting task. However, coherent dynamics can 

be seen with a coherence time of only a few nanoseconds.  

If an unfiltered bias line with an impedance of Ω= 500Z  was connected directly 

to a phase qubit with a capacitance of pFC 4= , Eq. (3.11) predicts a relaxation time  1T
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of only 0.2 nsec. This can be improved significantly by placing an on-chip LC filter on 

the bias line before the qubit junction [38]. The LC filter acts like a current divider and 

shunts noise at the junction plasma frequency if ffp CL/1>ω , where  is the filter 

inductance and  is the filter capacitor. However this approach fails to isolate the qubit 

from low frequency noise, which would lead to dephasing (for a complete discussion of 

an LC isolated phase qubit see refs. [27, 36, 37]). By replacing the capacitor with a small 

inductor  the isolation can be improved significantly, because this provides broadband 

isolation over all frequencies. This configuration is now an rf SQUID with a bias line 

attached.  

fL

fC

2L

State readout in phase qubits has so far only been done by switching to the 

voltage state or to a different flux state. Since an rf SQUID can never switch to the 

continuously running voltage state, it can’t be measured by a switch to the voltage state. 

Martinis et. al. realized by adding another Josephson junction J2 to the small inductor the 

device would be able to switch to the voltage state; by measuring the voltage across the 

bias line the switch can be detected directly. With the additional readout junction or 

“isolation junction” the device is a dc SQUID phase qubit [39], [see Fig. 4.1(a)].  

 Depending on the parameters of the qubit and isolation junctions, and the bias 

point, when the qubit junction switches it will either cause the SQUID to switch flux 

states or switch to the constant voltage state. If the dc SQUID contains only a few flux 

states, a change in flux state can be detected easily by using a modified switching 

technique, as I will show in Chapter 6. I note that a change of flux state in an rf SQUID 

could be detected with an auxiliary SQUID, and this technique has been used by Martinis 

and others [66, 67].  
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Figure 4.1: (a) dc SQUID phase qubit. The qubit junction J1 is isolated from the bias line 

by a large inductance  and a smaller inductance  and isolation junction J2. The flux 

line and current bias line enable independent control of the current through each junction. 

(b) Relaxation in the qubit is modeled as an effective admittance 

1L 2L

)(ωY  across the 

junction. (c) The admittance is more easily thought of as an effective resistance )(ωeffR  

and reactance )(ωeffX  across the junction. 
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The basic idea behind the design of the dc SQUID phase qubit is that the bias 

current I  will be shunted through the isolation branch, consisting of the isolation 

junction  and small inductor , and not reach the qubit junction. Since the qubit 

junction still needs to be biased, a current bias  is attached to a coil with mutual 

inductance 

2J 2L

fI

M  to the SQUID loop. With both current sources the current through each 

junction can be controlled independently. The qubit analysis in the previous chapters, 

which was based on the RCSJ model, must be modified to include current noise from 

both bias sources; fortunately this is easily incorporated and doesn’t change the analysis 

significantly.  

To understand how well the isolation branch filters out current noise, consider 

bias current noise  present on the current bias line. I can define the current noise 

power isolation factor 

nbiI

( 2
nnbiI IIr ≡ ) , where  is the noise current through the qubit 

junction . If the frequency  of the current fluctuations is much less than the 

resonance frequency of either junction, then one finds  

nI

1J f

2

22

1

2

22

2211
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++
=

JJ

JJ
I LL

L
LL

LLLL
r ,   (4.1)  

where , as appropriate for our devices [68,69]. The Josephson inductance of the 

junctions,  and , is given by Eq. (1.3). The current noise spectral density that 

reaches the qubit is given by 

1J1 LL >>

1JL 2JL

I

nbiI
nI r

)(S
  )(S

f
f = . This provides a simple classical picture 

of how the isolation scheme performs. Choosing  thus provides a large 21 LL >> Ir  and 

good broadband current noise rejection.  
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As discussed in Chapter 3, to calculate [ ])011 (Re/ ωYCT = , the admittance ( )ωY  

across the junction must be determined [see Fig. 4.1(b)]. The admittance is more easily 

visualized in term of an effective resistance [ ])(Re/1)( ωω YReff =  and an effective 

reactance [ )(Im/1)( ]ωω YX eff −= , [see Fig. 4.1(c)] [37]. In actuality, if 0)( 01 <ωeffX  the 

effective capacitance of the isolation circuit should be included along with that of the 

qubit junction  [37], to give  1C

( ) )()(/1 01010111 ωωω effeff RXCT −=  .   (4.2) 

 Just considering the bias line and the isolation, the admittance can be written as 

1
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ω
ωωω ,  (4.3) 

where  is the impedance of the current bias line connected to the SQUID. 0Z

If the plasma frequency of the isolation junction is somewhat larger than that of 

the qubit, which it will be during normal operation, the equation can be simplified 

further. I find , and this gives  ( )( )[ ] 1
2201 /1/1/1)( −+++≈ JLLiZLiY ωωω

2

22

221
0

0

2
1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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X J

eff
ω
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++

+++
= ,   (4.5) 

where I have assumed is real. 0Z

This more rigorous modeling also shows that  should be made as large as 

possible to achieve a maximum relaxation time. As I showed in Chapter 2, a large  has 

21 / LL

1L
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the effect of creating multiple stable flux states. Since only one potential well forms the 

basis for the qubit, the SQUID will need to be initialized to the same well every time 

[41]. From Eq. (4.5), one also sees that . Since  for the dc SQUID 

isolation scheme, the reactance is more accurately thought of as an inductor in parallel 

with the qubit junction and it has only a very small effect on .  

0>effX 0>effX

1T

The contribution to the admittance from a flux line with impedance  must also 

be considered. Using the model in Fig. 4.1, the admittance from the flux line using the 

model in Fig. 4.1 is 

fLR

( )
122

22
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⎥
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ω
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ωω .  (4.6) 

Separating out the real and imaginary parts of the admittance again gives an effective 

shunting resistance and reactance of  

( ) 22
221 / MLLLRR JfL

M
eff ++≈     (4.7) 

and 

  .    (4.8)  ( 221 J
M
eff LLLX ++≈ ω )

From Eq. (4.7) we see that choosing  as large as possible ensures good isolation. 

Of course, if 

ML /1

M  is made too small, then I would need to provide a very large current to 

flux bias the SQUID. For this reason, in practice making M  smaller than a few pH is 

undesirable. A microwave line is also attached to the qubit junction through a coupling 

capacitor; the coupling capacitor should be small enough, , that the 

microwave line should not add significant dissipation to the qubit.  

fFC w 2<μ
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Flux noise [53, 70-74] (not related to the flux leads) also leads to decoherence in 

phase qubits. SQUIDs with vastly different sizes and materials, and measured differently 

all produce a flux noise spectrum of roughly  

αfHzSfS /)1()( ΦΦ ≈ ,     (4.9) 

where 166.0 << α  and HzHzSHz /20)1(/2 0
2/1

0 Φ<<Φ Φ μμ  for temperatures 

under ~100 mK [53, 70-74]. The current noise power spectral density that flux noise 

would produce in the qubit is given by  

( )2
2121

nI L

)(S
~  )(S

JJ LLL

f
f

+++
Φ  .    (4.10) 

A large loop inductance is therefore once again desirable. Flux noise should have little 

affect on relaxation, since if falls as approximately , but it could contribute 

appreciable decoherence in phase qubits. If it dominates other sources of decoherence, 

the coherence time would no longer be well described with an exponential time constant, 

since the spectrum isn’t white [53]. Finally dielectric loss in the junction will also be 

present. Such intrinsic losses are unaffected by the isolation circuit.  

f/1

The effective resistance from each admittance source, including the junction 

dielectric, need to be combined in parallel to find the total effective resistance shunting 

the junction. In practice one source will often dominate. I note that this analysis assumes 

the line impedances  and  can be determined and that the lump element model is 

valid. For very high microwave frequencies the second assumption fails and more careful 

modeling of the distributed physical circuit is necessary.  

0Z fLR
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4.1.2 Junction Coupling 
 
 In the dc SQUID phase qubit, the isolation junction ensures that the SQUID can 

switch to the voltage state for readout. If a current biased junction can act like a quantum 

2-level system, a question can be raised, “Why is the isolation junction not considered a 

second qubit, coupled to the first through the inductor ?” In actuality, the isolation 

junction can be considered as another qubit. However, several different factors suggest 

that such a treatment is unnecessary. First, the coupling between the isolation junction 

and qubit junction is weak in the dc SQUID phase qubit, as I will show below. Also, the 

resonant frequency 

1L

2pω  of the isolation junction will usually be much larger than 1pω  of 

the qubit junction, which will reduce the dynamical coupling between the two junctions. 

Finally the isolation junction experiences a large amount of noise and dissipation since it 

is connected directly to the bias leads. This tends to hide quantum effects.     

To determine the coupling to lowest order, we can approximate the SQUID as two 

coupled harmonic oscillators (one for each junction). In this case, the isolation junction 

will produce a fractional shift in the resonant frequency ω1 of the qubit junction given by 

[41] 

2
1

2
1

2
2

4
0

1

11

1 )(2 pppp

p

p ωωω

ω
ω

ωω

ω
ω

−
≈

−
=

Δ  ,   (4.11)  

where , )/(1 21
2

1
4
0 CCL≡ω 12 pp ωω >  (as is typical for operation of the dc SQUID phase 

qubit) and the shift is small compared to 1pω . Here the resonant plasma frequencies of 

the uncoupled junctions are 1pω  and 2pω . The frequency shift is a measure of the 

dynamical coupling κ  between the junctions and I can define this coupling as just 
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1/ pωωκ Δ= . For the two junctions to act independently, one requires 1<<κ .  

For the SQUID phase qubit, Eq. (4.11) can be written in the form [41] 

2
011

22 )/(1)1()2(

2

II−−
≅

απβ
κ ,    (4.12)  

where  is the current through the qubit junction, 1I )/()( 01020102 IIII +−=α  is the 

current asymmetry parameter and 00201 /)( Φ+= IILβ  is the SQUID modulation 

parameter [43]. Thus 1<<κ  implies that we choose 

4/12
011

2 ])/(1[
1

1
2

2
1

II−−
>>

απ
β  .   (4.13)  

I note that Eq. (4.11) is not what one would find by simply examining the dc 

SQUID Hamiltonian, as given in Eq. (2.20). Expanding the last term in the Hamiltonian 

reveals a term that couples the two junction’s phase, given by, 

 ( ) 121
2

0int 2 LH γγπΦ−=     (4.14) 

between the two junctions. With the overall energy scale set by  this suggests 

a naïve dimensionless coupling strength of  

21 JJ EE +

)2/(10 πβκ =  .     (4.15) 

Equation (4.15) suggests that 10 <<κ  and thus πβ 2/1>>  is required in order for 

the two junctions to be weakly coupled, while Eq. (4.13) gives a different relationship. 

Although Eq. (4.13) may appear to be even more restrictive than the naïve condition, it is 

in fact less restrictive since the coupling is set by rather than 2/1 βκ ∝ βκ /10 ∝ . Either 

way, I can conclude that a large β  is desired, which tends to give many stable flux states. 

Note however that the coupling also depends on the critical current asymmetry α ; and by 
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choosing  sufficiently small, multiple flux state can be eliminated. In Chapter 6, the 

difficulty of operating a device with many stable flux states will be addressed.   

01I

 

4.2 Fabrication Techniques 

4.2.1 Hypres Fabrication 

 The first dc SQUID phase qubits I tested (DS1, DS2a and DS2b) were fabricated by 

Hypres, Inc., in Elmsford New York [75]. These devices were based on a CAD drawing 

we supplied. The Hypres multi-level process consists of Nb/AlOx/Nb trilayer junctions, 

four sputtered Nb metal layers (including two for the junction), a Mo layer, a Ti/Pd/Au 

layer, four sputtered SiO2 insulating layers and process steps where vias were formed. 

Table 4.1 summaries the Hypres layer designations, materials and thicknesses. The   

 

Table 4.1:Hypres layer parameters 

 Physical Layer properties: Resistance, Capacitance Thickness 
(nm) 

Deviation 
(± nm) 

M0 Nb, superconductor. Penetration depth λ=100 nm 100 10 
I0 SiO2 insulator Capacitance 0.277 fF/μm2 150 15 
M1 Trilayer base electrode, superconductor λ=100 nm 135 10 
I1A AlOx 45 5 
SiO2 SiO2 insulator Capacitance 0.416 fF/μm2 100 10 
R2 Mo, resistor  100 20 
SiO2 SiO2 insulator Capacitance 0.277 fF/μm2 100 10 
I1B Contact hole through the above two SiO2 ;auers   
M2 Nb, superconductor. Penetration depth λ=90 nm 300 20 
SiO2 SiO2 insulator Capacitance 0.08 fF/μm2 500 40 
I2 Contact hole through the above insulator   
M3 Nb, superconductor. Penetration depth λ=90 nm 600 50 
R3 Ti/PdAu resistor 350 60 
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critical current density was 100 A/cm2 for DS1, and 30 A/cm2 for DS2A and DS2B; a 

magnetic field was used to suppress the critical currents in device DS1. For DS2A and 

DS2B the molybdenum layer was used for quasiparticle traps.  

Figure 4.2 (a) shows a photograph of the single dc SQUID phase qubit DS1. Data 

were already being taken on this device when I first joined the group. The light region at 

the top of Fig. 4.2(a) is the ground plane where the currents were returned to the sample 

box and out through the dilution unit. The design parameters [37] are listed in Table 4.2. 

 For my measurements, a magnetic field was used to reduce the critical currents of 

DS1 to approximately AI μ3401 =  and AI μ502 =  (see Chapter 6). The mutual 

inductance from the flux line was expected to be pHM 54= and experimentally we 

found , the largest contribution to pHM 51= M  came from the return path through the 

ground plane. This was an undesirable consequence of the large ground plane layer next 

to the SQUID loop [see Fig. 4.2] and we eventually removed this layer in later designs. 

Based on the design parameters with a line impedance of 50 ohms, the expected 

relaxation time would be nsT 2501 ≈ , and the coupling would be 001.0≈κ  for typical  

 

Table 4.2: Parameters for dc SQUID phase qubit DS1 [34]. 

Element Size (μm x μm) Layers Design Value Measured Value 
(suppressed value) 

Bond Pad 280 x 280 R3, M3   
L2 40 M1 and M2 < 40 pF < 30 pF 
CJ2 7 x 7 M2, I1B, I1A / M1 2.09 pF  
I02 7 x 7 I1A / M1 46 μA 51.7 μA (5 μA) 
L1 84 x 84 M1 3.3 nH 3.5 nH 
CJ1 10 x 10 M2, I1B, I1 / M1 4.17 pF 4.43 pF 
I01 10 x 10 I1A / M1 97 μA 107.9 μA (34 μA) 
Cμw 4 x 4 M3 / M1 0.9 fF  
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Figure 4.2: (a) Photograph of dc SQUID phase qubit DS1. The device is a single dc 

SQUID phase qubit. A magnetic field was applied to reduce the critical currents. (b) 

Coupled devices DS2A and DS2B. The individual qubits are almost identical to DS1, 

except for having a smaller critical current density and making use of quasiparticle traps. 
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operating conditions. This  is clearly not enough for quantum computing, but would be 

more than sufficient for studying coherent quantum dynamics and performing the 

experiments mentioned in Chapter 3.   

1T

 The second chip I tested had devices DS2A and DS2B [see Fig. 4.2 (b)]. The qubits 

were designed to be identical to each other and they were similar to DS1. The parameters 

as given by S. K. Dutta [37] are listed below in Table 4.3. 

In this case it was necessary to find the mutual inductance between the devices 

and the four current sources. Since the ground current was taken out on one side of the 

ground plane there was a large difference in the mutual inductances of the current bias 

and flux lines to the two qubits. The mutual inductance is best described with a matrix 

equation, IM=Φ , where  

 

Table 4.3: Parameters for device DS2A and DS2B. When both values are equal one value is 

listed, otherwise the value for DS2A is listed first. 

Element Size (μm x μm) Layers Design Value Exp. Value 
 (DS2A, DS2B) 

Bond Pad 280 x 280 R3, M3   

L2 40 μm M1 and M2 < 40 pF < 30 pF 
CJ2 7 x 7 M2, I1B, I1A / M1 1.92 pF  
I02 7 x 7 I1A / M1 13.8 μA 3, 6 μA 
L1 84 x 84 M1 3.3 nH 3.4 nH 
CJ1 10 x 10 M2, I1B, I1 / M1 3.82 pF 4.4 pF 
I01 10 x 10 I1A / M1 29.1 μA 24, 20 μA 
Cμw 4 x 4 M3 / M1 0.9 fF  
LC 280 μm M0, M1, and M2 200 pH  
CC 30 x 30 M2 / M1 190 fF 130 fF 
QP Trap 56 x 20 R3, M3, I2, M2   
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Here, for example,  is the mutual inductance from the flux line of device B to dc 

SQUID A. The measured values were [37]  

BA
fM

pHM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−−

−−−−+
=

73.1794.5482.52
10.144.092.71

.   (4.17) 

This could be compared with values computed based on the layout of the device,  

pHM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

−
=

5.274.137.455.62
7.218.03.287.90

.   (4.18) 

Controlling the current through the four junctions in this chip therefore required careful 

control of the four current lines. Since the bandwidth of the filters was not necessarily the 

same on each current line, this created additional complications. 

    

4.2.2 Al/AlOx/Al Fabrication 

 The final two devices I tested, DS3A and DS4B, were built at the University of 

Maryland. Device DS3A was built by T. A. Palomaki, A. J. Przybysz and H. Kwon. 

Device DS4B was built by A. J. Przybysz. The devices were made using contact 

photolithography and double-angle evaporation on a sapphire substrate. Photolithography 

was used instead of e-beam lithography due to the relatively large features needed and to 

avoid charging effects on the sapphire substrate (it was also a simpler process). Creating 

a bridge and evaporating aluminum at two angles was used to create the junctions much 
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as in a standard e-beam double-angle evaporation technique [76]. A negative resist, 

LOR30B [77], forms the undercut layer used under the bridge for the junction; LOR30B 

develops faster than the upper layer of S1813 negative resist used to make the bridge. The 

masks were designed using the 2-D CAD program ICED and sent to U. C. Berkeley 

Microlab [78] for fabrication. Here I will just summarize the procedure used, since the 

method was the same as described by H. Paik [68], with only a few small changes. The 

specific parameters quoted below are those that were used for device DS3A. 

Procedure: 

1) A clean 2’’ sapphire wafer with orientation [0001], single-sided polished 

and 430 microns thick [79] was placed in the Trion Flourine RIE-1 etcher 

in the Kim building with a pressure of 200 mTorr. A power of 100 W was 

used for 100 s to clean the substrate. 

2) The mask was cleaned using acetone, methanol, and isopropanol and then 

dried off with N2 gas. 

3) LOR30B photoresist [77] was spun on the substrate at 5000 RPM for 45 s 

and then baked at 150 ºC for 10 minutes.  

4) Shipley S1813 [77] was then spun at 4500 for 45 seconds and baked at 

110 ºC for one minute.  

5) If any resist became caked on the back of the substrate, a cloth with PG 

remover was use to wipe it off, being careful not to touch the front surface 

of the wafer.  
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6) The mask was aligned in the Karl-Suss MJB3 contact mask aligner [80] 

with the wafer, such that is just made direct contact. It was exposed for 11 

sec at 8 mW/cm2. 

7) The wafer was then developed for roughly 30 seconds in MF319 

developer [77] and immediately rinsed with DI water. The timing is highly 

sensitive; the undercut should be developed completely and still leave a 

bridge. The bridge can be seen in an optical microscope with a red filter. 

We then diced the wafer by scribing with a diamond point and breaking 

off individual chips. 

8) A chip was then placed in the cryo-pumped evaporator in room 0215 of 

the Physics building and pumped to roughly 10-6 Torr. Approximately 50 

nm of Al was deposited at a rate of roughly 1nm/s from the first boat at an 

angle of ~ 45º. The sample was then exposed to 18 Torr of O2 for 10 

minutes. The system was pumped out again and the chip was rotated to the 

second angle (~ -45º) and a second boat of Al was evaporated. 

9) The resists were removed using PG remover [77] at 60 ºC for 45 minutes. 

This was repeated with clean PG solution and a final cleaning was done 

with isopropanol and DI water.  

 

Figure 4.3(a) shows a photograph of device DS3A that was fabricated according to 

the above procedure. It was originally planned to be a coupled device with two identical 

qubits. Unfortunately one of the qubits did not work (DS3B) and device DS3A had a flux 

line that did not work, or possibly an open was created in the wiring upon cooling the 
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Figure 4.3: Photograph of dc SQUID phase qubits DS3A and DS4B. Both were fabricated 

at the University of Maryland. These devices had a substantially smaller qubit junction 

area than our previous devices. (a) Device DS3A was coupled to a second qubit (not 

shown) that did not work.  (b) Device DS4B was almost identical to DS3A, except for a 

larger inductance . The large coupling capacitor is clearly visible. 1L
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device down, so I used the flux line of device DS3B to couple flux into DS3A. The working 

device DS3A matched the design parameters fairly well, as listed in Table 4.4 with the 

nominal design values in parenthesis.  

Here the mutual inductance used was that from DS3B’s flux line, pHM AB 4.1= , 

the mutual inductance of the device’s flux line was expected to be pHM AA 14= , but 

this line was found to be open when I cooled the device. The SQUID loop pickup area 

was approximately (600 μm x 100 μm) with a loop line width of roughly 4 μm. The 

coupling capacitor between the two SQUIDs was expected to be . I note that 

the expected relaxation time for DS

pFCC 10=

3A based solely on the bias lead impedance should 

have been f ns8~  i Ω= 500Z  and f ns50~  i Ω= 3000Z , substantially smaller than the 

expected values for DS1, DS2A and DS2B. This was because DS3A had a much smaller 

junction capacitance than the previous device. The coupling constant for DS3A is 

approximately 01.≈κ  [see Eq. (4.12)]. I also note that DS3A was generally biased much 

deeper in the potential well than the previous devices.  

The final chip I briefly worked with had two SQUIDs in it, DS4A and DS4B; I 

tested DS4B. They were both Al/AlOx/Al devices on a sapphire substrate. Device DS4A 

and DS4B had inductances nHL 31 =  and microwave coupling capacitance fFC w 2=μ . 

Figure 4.3(b) shows a photograph of the devices DS4B. In the chip, both devices and all  

 

Table 4.4 Parameters for DS3A 

I01 C1 I02 L1 L2 Cμw MAB MAA

1.26 μΑ  
(1 μΑ) 

0.37 pF 
(0.2 pF) 

8.5 μΑ 
(10  μΑ) 

1.05 nH 
(1 nH) 

~20 pH 1 fF 1.4 pH (14 pH) 
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lines worked as expected with mutual inductances of pHM AA 12=  in device DS4A and 

 in DSpHM BB 18= 4B. The idea behind this device was to only change the loop 

inductance from the previous device and look for the expected effect on the relaxation 

time. Here the loop area was 400 μm x 400μm, with a linewidth of 2 μm. The relaxation 

time was expected to be roughly 9 times that of the previous device, i.e. about f 

 and f 

ns90~  i

Ω= 500Z ns360~  i Ω= 3000Z . The coupling constant κ  should also be 9 times 

less. Table 4.5 summarizes the parameters of DS4B, which were only very roughly 

determined.  

 

4.3 Material and Fabrication Issues 

 The above predictions for  are based solely on the transformed line 

impedances. They would be accurate if there were no other sources of dissipation. 

However, the junction can also have dissipation associated with dielectric loss in the 

insulation used to create the tunnel barrier. No amount of isolation from the leads will 

improve the relaxation time if loss is dominated by the junction dielectric. Similarly, a 

lossy insulator layer could lead to dissipation. The Hypres devices had sputtered trilayer 

junctions and four sputtered SiO

1T

2 layers. The Maryland fabricated devices had AlOx in 

the barrier and grown over all aluminum surfaces, but no other insulators except the 

substrate itself. The two substrates, Si in the Hypres devices and sapphire for the Al  

 

Table 4.5 Parameters for DS4B  

I01 C1 I02 L1 L2 Cμw MBB

1.1 μΑ  
 

0.4 pF 
 

7.5 μΑ 3 nH 
 

~20 pH 2 fF 18 pH 
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devices were also different, which may have an effect. Other groups have reported that 

the removal of lossy dielectrics and insulators enhanced the coherence times [81]. These 

results motivated our design of the Maryland fabricated devices DS3A and DS4B. In 

addition, the qubit junction areas were much smaller in devices DS3A and DS4B than DS1, 

DS2A and DS2B. This was done to remove as much AlOx as possible in the barrier. Also, a 

sapphire substrate was used and no insulating SiO2 layers were used in an attempt to 

minimize possible sources of dielectric loss. 

I should also note that devices DS3A and DS4B were not exactly identical to the 

model described by Fig. 4.1(a), even ignoring the lumped element approximation. In 

these devices, parasitic junctions (Ix1, Ix2 and Ix3), and loops (Lp1, Lp2 and Lp3), were 

created during the double-angle evaporation, as can be clearly seen from an enlarged 

photograph of the qubit junction in Fig. 4.4(a). The parasitic loops result from the two Al 

layers not overlapping. In other parts of the device, the double angle evaporation process 

creates large area junctions. Figure 4.4(b) shows a schematic with the extra junctions and 

loops. These parasitic structures may be causing loss or introducing additional quantum 

systems, especially if the AlOx is lossy. 

 In Chapter 10, I will show evidence that loss in these devices is produced by 

defects in the materials. The junction qubit appears to be coupled to many other quantum 

systems. If a large number of quantum systems coupled to the junction, they could cause 

dissipation, just as dissipation was modeled as an infinite number of coupled LC 

oscillators.      
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Figure 4.4: (a) Photograph of the region near qubit junction J1 in device DS3A showing 

small parasitic loops and junctions that have been created during the double-angle 

evaporation of the Al films. (b) Schematic of circuit in (a), showing parasitic loops Lp1, 

Lp2 and Lp3 and parasitic junctions Ix1, Ix2 and Ix3. 
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 4.4 Summary 

In this chapter, I described the layout and parameters of the SQUID phase qubits I 

tested. Three qubits were fabricated by Hypres (DS1, DS2A and DS2B) and two were 

fabricated at Maryland (DS3A and DS4B). The Hypres devices consisted of Nb/AlOx/Nb 

trilayer junctions with four sputtered SiO2 insulating layers on oxidized silicon wafers. 

The devices fabricated at Maryland consisted of Al/AlOx/Al junctions on a sapphire 

substrate. For a 50 Ω lead impedance, both Hypres devices had predicted , 

the Maryland device DS

nsT 250~1

3 had a predicted  and DSnsT 8~1 4 was predicted to have 

, i.e. about 9 times longer than DSnsT 90~1 3. The coupling between the isolation and the 

qubit junction should not have affected the qubits, although in DS3, 01.0~κ , so there 

could have been some effect [42]. I emphasis that these predictions ignore losses in the 

materials. In Chapter 10, I show evidence of material defects affecting the performance 

of the qubit. 
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Chapter 5 

Experimental Setup 

 

This chapter focuses on the experimental apparatus I used to make measurements. 

From one experiment to the next, I made only minor changes to the dilution unit, wiring 

and electronics. The main thing that changed between experiments was the qubit and how 

I used the equipment. When changes were made between experiments, I will specifically 

mention what they were. The largest change was before run DS2; the lines and electronics 

were doubled to allow for two qubit operations and I used a new sample box. Excellent 

description of the set-up and electronics can be found in references [36] and [37]. The 

schematics of the electronics [36] and transfer functions of the filters and lines [37] are 

explained there in detail. Here I discuss the considerations that went into designing the 

system, particularly the wiring. 

 

5.1 Dilution Refrigerator Operation 

A common misconception is that superconducting qubits are operated in dilution 

refrigerators in order to make them superconducting. The real reason is that our qubits 

have energy level spacing GHz1062/01 −≈πω , so we require a device temperature of 

less than 70 mK to ensure the system initializes to the quantum ground state with over 

99% probability. Reaching such temperatures is most easily done using a dilution 

refrigerator. Roughly speaking, a dilution refrigerator generates cooling power by 

transporting He3 atoms across a liquid He3/He4 phase boundary [82]. Figure 5.1 shows a 
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schematic of the stages of a typical dilution unit along with a photograph of the dilution 

refrigerator I used.  

 All of my experiments were carried out using a Model 200 TLE Dilution 

Refrigerator by Oxford Instruments [82]. This unit has a cooling power of 200 μW at 100 

mK and can reach a base temperature of 20 mK. All experiments were done with a 

mixing chamber temperature of less than 30 mK, unless otherwise noted. I assumed that 

the samples were very close to the mixing chamber temperature. During operation the 

unit requires approximately 100 L of liquid Helium every four days, including transfer 

losses. If the vacuum space of the super-insulated dewar is not property evacuated, the 

hold time will decrease quite noticeably. In addition, there is a nitrogen trap for cleaning 

the circulating He3 that requires daily filling. Detailed procedures for operating the 

refrigerator are in Appendix [B], originally recorded by S. K. Dutta.  

 Each stage of the dilution unit has a calibrated resistance thermometer. These 

resistances are read using a four-wire measurement, controlled by a Picowatt AVS-47 

resistance bridge [83]. (see Table 5.1 for a list of the equipment) A RuO2 thermometer  

 

Table 5.1: List of the commercial electronics I used in my experiments. 

Function Instrument 
If, I Agilent 33120A Arbitrary Waveform Generator (AWG), Opt. 001 
Master Clock Dynatech Nevada Exact 628 Function Generator 
Timer Stanford Research Systems SR620 Universal Time Interval Counter 

Opt. 01 
Pulse Generator Stanford Research Systems DG 535 Digital Delay Generator, Opt. 01 
Iμw (1)Hewlett-Packard 83731B Synthesized Signal Generator 

(2)Hewlett-Packard 83732B Opt. 1E1, 1E2, 1E5, 1E8, 1E9, 800 
GPIB National Instruments PCI-GPIB 
DAC/ADC National Instruments PCI-6110 Data Acquisition Card & BNC-2110 

BNC Connector Block 
Temperature Picowatt AVS-47 resistance bridge 
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Figure 5.1: Photograph of Model 200 TLE Dilution Refrigerator by Oxford Instruments 

with LC and copper powder filters. Illustration on the right highlights the main section of 

the refrigerator and shows the path the helium mixture takes through the various stages.  
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labeled R7 gives the mixing chamber temperature. The bridge measures the resistance in 

ohms, which is converted to temperature T in kelvin using [37] 

RRRT /)ln(354)ln(/2.5398.7)ln( ++−= .   (5.1) 

 A superconducting magnet surrounds the vacuum can and is used to generate a 

field parallel to the junction, if needed. The magnet was built by Cryo-magnetics [84] 

using twisted multifilamentary NbTi in a copper matrix. The field to current ratio is 111.3 

gauss/A. Operating instructions for the superconducting magnet are given in Appendix B.   

The dewar is surrounded by a room temperature μ-metal shield and the entire set-

up is fixed to an xyz vibration isolation table. The μ-metal shield and dewar can be 

lowered through a hole to the floor below, where the rotary and roots pumps and the 

power panel are located. The dilution unit, table, shield and some electronics are located 

in a screened room built by Universal Shielding Corporation [85] in the basement of the 

Physics building.  

 

5.2 Wiring and Filters  

Each SQUID required four lines: for the flux bias, current bias, voltage readout, 

and for applying microwaves or pulses. In addition, I used a common ground 

configuration with the ground pad of the device wire-bonded to the sample box, which 

was anchored to the refrigerator. Each of these lines had its own requirements and 

considerations for optimal performance. Figure 5.2 shows an overview of the 

experimental setup and Fig. 5.3 shows the wiring for the lines. 
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Figure 5.2: Overview of experimental set-up for DS3A and DS4B. The filled circles 

represent a trigger and the arrows show the direction of current. The opto-isolators and all 

of the electronics inside the screen room were battery powered. 

 76



I IμwIf

U
T-34-SS-SS

LakeShore 

C
C

-SR-10
H

om
em

ade 

N
B C

oax

LakeShore 

C
C

-SR-10
Therm

ocoax

1N
c A

c 05

U
T85 

C
u/C

u

Tw
isted Pair 

M
anganin

Therm
ocoax

1N
c A

c 05
4K

 Patch Box

Still Patch Box

C
u C
u

C
uC
u

N
b-C

u clad

N
b-C

u clad

C
u Pow

der 
filter

LC
 filter

LC
 filter

C
u Pow

der 
filter

Still Patch Box

C
u

VI IμwIf

U
T-34-SS-SS

LakeShore 

C
C

-SR-10
H

om
em

ade 

N
B C

oax

LakeShore 

C
C

-SR-10
Therm

ocoax

1N
c A

c 05

U
T85 

C
u/C

u

Tw
isted Pair 

M
anganin

Therm
ocoax

1N
c A

c 05
4K

 Patch Box

Still Patch Box

C
u C
u

C
uC
u

N
b-C

u clad

N
b-C

u clad

C
u Pow

der 
filter

LC
 filter

LC
 filter

C
u Pow

der 
filter

Still Patch Box

C
u

V

 

 

Figure 5.3: Schematic of refrigerator wiring. Circles represent male SMA connectors and 

the squares represent female connectors. For devices DS2A, DS2B, DS3A and DS4B these 

wires were doubled to allow for two dc SQUIDs to be operated simultaneously.  
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 For each line, careful consideration must be given to how noise currents 

generated at room temperature propagate to the sample at 25 mK. Also, thermal shorts 

can ruin the performance of the refrigerator; wires with high thermal conductivity cannot 

be used to connect stages that are at different temperatures.  

 

5.2.1 Current Bias Line 

The current bias line is used to apply low frequency μA currents to the SQUID. 

We require that GHz signals be heavily filtered, since otherwise they could excite 

transitions in the qubit. In fact, all frequencies must be heavily filtered as mentioned in 

Chapter 3. To generate the current, an Agilent 33120A Arbitrary Waveform Generator 

(AWG) was used to generate a voltage ramp that was sent to a π-filter in the screen room 

wall, with a roll-off frequency of 20 kHz. The signal was then sent to a buffer (AMP03 

differential amplifier) inside the screened room [see Fig. 5.2]. The buffer serves to 

disconnect the ground at the AWG, from the ground inside the refrigerator, which is 

found through multiple vacuum connections [27]. The buffer removes the pick-up loop 

that would be created by having two ground connections from the top of the dilution unit 

to the screen room. After the buffer, the voltage was dropped across a bias resistor of 

order 100 kΩ (varied often for each device) to generate a current of order 10 μA. The 

current then passed through a grounding/switch box at the top of the refrigerator. The 

boxes were designed such that a switch connects the bias resistor to ground when closed. 

When open the connection to ground is cut and current is applied to the wiring 

connection at the top of the fridge. In ordinary operation, the current line is always 
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connected; this prevents voltage spikes from occurring when the switch is opened and 

closed.  

 From the ground/switch box to the 4K-connection box, the bias line is a 40-inch 

long manganin wire. A schematic of the wiring for the lines inside the refrigerator is 

shown in Fig. 5.3. The manganin wires were done in twisted pairs, although only one 

wire was used, as the refrigerator itself was the current return line. The twisted manganin 

wires were inserted into Teflon tubing, with a Cu/Ni shield and run through a vacuum 

tube to the 4K-connector box mounted just above the 1K-pot. Manganin and Cu/Ni were 

chosen for their low thermal conductivity, since these span a temperature gradient of 296 

K across 40 inches. Stainless steel has a lower conductivity, but is harder to bend and 

solder (it requires acid flux). The manganin wires are somewhat resistive, so that only 

low currents can be applied without causing significant heating; typically less than 30 

μA.  

From the 4K-connection box to the mixing chamber, the current was carried on a 

40-inch long Thermocoax cable (type 1NcAc) [86,87]. The Thermocoax cable has a 

stainless steel (type 304L) jacket with an outer diameter of 0.5 mm and an inner diameter 

of 0.35 mm. The central wire is a NiCr (80/20) alloy with an outer diameter of 0.17 mm 

and is surrounded by a dielectric of highly compacted MgO. The Thermocoax has a dc 

resistance of 50 Ω/m and 6.9 Ω/m for the inner conductor and the jacket, respectively, a 

capacitance of ≈ 490 pF/m and an inductance of ≈ 0.14 μH/m. Besides the low thermal 

conductivity of the stainless steel jacket, Thermocoax was chosen for its large attenuation 

at microwave frequencies [87]. The attenuation varies from 99 dB/m at 5 GHz to 140 

dB/m at 10 GHz.  
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The Thermocoax ended at the mixing chamber state at an SMA connecter, where 

it joined the voltage readout line. Connecting the Thermocoax to the SMA connector 

requires first fluxing, and tinning an inch of the Thermocoax, then filing down the end of 

the outer connector (steel shield), and carefully breaking it off.  After cleaning the NiCr 

wire and using “hard-core” flux to tin it (without shorting the conductors together), the 

SMA connector can be attached.  In buying SMA connectors one should be careful to 

always get close-capture center-pin connectors (CC) [88]. Push-pin connectors were 

originally bought and later removed from the LC filters because they occasionally opened 

up during cool down.   

The SMA connector was attached to an LC filter box, that was mounted on the 

mixing chamber [see Fig. 5.4(a)]. In the box, a copper wire (for thermal contact) 

connected to a 3.3 μH-100 pF-3.3 μH T-filter [36], which gave a 3 dB point of about 10 

MHz. An LC filter was used instead of an RC filter to prevent heating associated with 

resistors. The current then passed through SMA connectors to copper-powder filters. 

From there, UT85 Cu/Cu wires were used to connect to the sample box. The copper-

powder filters [89,90] were built based on the design presented in ref. [89]; a 50-50 mix 

of Stycast and 200 mesh copper powder was cast into a cylindrical core, and a signal wire 

of 3 mil Nb with a Cu cladding was wound around the core. For the copper powder 

filters, Cu clad Nb wire was used since Nb becomes a superconductor below 9 K. This 

ensured no heating in the wire even though the wire was about a meter long wrapped 

around the core.  

All together, the filtering on the bias line gave an attenuation of over 200 dB at 5 

GHz. Unfortunately, at lower frequencies the performance was not nearly as good.  
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Figure 5.4: LC filter and sample box. (a) The discrete LC filter is mounted in a copper 

box and has a cut-off frequency of around 10 MHz. (b) The aluminum sample box used 

for devices DS2A, DS2B, DS3A and DS4B. The copper mounting plate under the chip was 

replaced with an identical aluminum one for devices DS3A and DS4B. 
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Several resonances existed in the bias filters at 1-10 MHz and the LC filter and copper 

powder filter only gave –13 dB of attenuation at 100 kHz when terminated with a 10 

Ω resistor [37]; this does not include the attenuation due to the filters at the screen room 

wall.  

 

5.2.2 Flux Line 

The flux line is used to apply low frequency flux to the SQUID. We again require 

broadband filtering, but here we must be more careful of heating because the currents on 

the line can be as high as a few mA. For this line, an Agilent 33120A Arbitrary 

Waveform Generator (AWG) was used to generate voltage that was sent to a π-section 

filter in the screen room wall (see Fig. 5.2). The voltage was then sent to a battery-

powered buffer amplifier and a bias resistor of roughly 5 kΩ. The current was then 

passed through a grounding/switch box to wires at the top of the refrigerator (see Fig. 

5.3).  

From the top, the flux line was LakeShore CC-SR-10 coax [91] that connected to 

a patch box on the still plate. Manganin was not used due to its dc resistance, which 

would cause significant heating with mA currents. LakeShore CC-SR-10 coax uses a 

silver-plated copper-weld steel center-conductor with a thermal conductivity of about 

0.016 W/(cm • K) at 4.2 K and a low dc resistance. The center conductor is copper-weld 

steel, which is used for its price and low thermal conductivity. The current will flow on 

the silver plate surrounding the copper-weld steel. The outer conductor is stainless steel, 

again chosen for its low thermal conductivity. The line provides 14 dB and 20 dB of 

attenuation at frequencies of 5 GHz and 10 GHz, respectively. The patch box was used to 
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thermally sink the line to the still, which has a relatively high cooling power. Inside the 

patch box the line was either niobium-clad copper, or copper with an enamel shield, that 

was GE varnished to the copper patch box. Formvar shielding on the copper wire has a 

reputation of degrading over time [92].  

From the patch box to the SMA-LC filters, the flux line was a homemade coax, 

consisting of niobium wire threaded through Teflon tubing that was then inserted into a 

stainless steel tube. Since this line was for low frequencies, impedance matching was not 

a concern. From the SMA-LC filters the line was passed through copper-powder filters to 

the sample box. 

 

5.2.3 Voltage Readout Line 

For the voltage readout line, I also used LakeShore CC-SR-10 from a 

grounding/switch box to the still patch box. Here I needed low resistance on the line to 

minimize Nyquist noise voltages, thereby ensuring a clean signal when the junction 

switches [36]. Thus manganin would not work. At the patch box the line was thermally 

anchored, similar to the flux line. From the patch box to the SMA on the LC filter, I used 

Thermocoax, as in the current bias line.  

From the LC filter to the junction, one line serves as the common voltage readout 

and current bias line. Ideally, from the LC filters to the device, the wires are 

superconducting, and so we can obtain a 3-wire measurement, or something very close to 

it. A 4-wire is not possible without dedicated return lines and all of my ground lines 

returned through the metal tubes of the refrigerator itself.  
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5.2.4 Microwave Line 

The microwave line I used for driving and pulsing the qubit was connected from 

the microwave source, an HP 83732B, to SMA connectors in the screen room wall. From 

the wall, the line connects to a single UT-34-SS-SS semi-rigid coax at the top of the 

refrigerator, which then carriers the microwaves to the sample box. Since there was a 

direct connection from 300 K to the sample box, stainless steel coaxial lines were used. 

The outer stainless steel conductor was directly clamped to the refrigerator at multiple 

stages for cooling.  

 

5.2.5 Sample Box 

The aluminum sample box used for samples DS2A, DS2B, DS3A and DS4B is shown 

in Fig. 5.4(b) with the cover removed. SMA connectors (coaxicom 3214-1) are attached 

outside the box and the center pin inside the box was sanded down to provide a flat 

surface to wire bond to. This was not an ideal set-up. The SMA connectors are stainless 

steel plated with gold. The stainless steel was magnetic and not a superconductor. 

Magnetic and non-superconducting materials should remain as far from the SQUIDs as 

possible. Another experiment in our lab ran into serious problems when magnetic 

materials were located near the junction; they suppressed the critical currents of the 

junctions [92].  

The chip was attached to a plate in the sample box using GE varnish. During runs 

DS1 and DS2 the sample was silver painted to a copper plate, to help cool the sample. 

However, having a normal metal, such as gold, silver or copper, under the junction is a 
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bad idea since Johnson noise current can add significant flux noise to the SQUID loop. 

For devices DS3 and DS4, the copper plate was remade in aluminum and silver paint was 

not used. The SMA pins inside the sample box were connected to the sample pads using 

aluminum wire bonds. The wire bonds from the pins to the sample pads ranged in size 

from approximately 0.5 cm to 1.5 cm, depending on the positioning of the sample. The 

ground pads on the chip were wire-bonded to the aluminum plate. In creating strong wire 

bonds the main factor is the cleanliness of the SMA pins. I got good results by gently 

filing and sanding the pins and then cleaning with acetone and isopropanol before wiring 

bonding. The box was closed by 4 screws, which clamped an aluminum plate to the top. 

We used an indium gasket to provide a good superconducting joint between the box and 

cover to improve the magnetic shielding.     

 

5.3 Instrumentation 

 Figure 5.2 shows a block diagram of the electrical setup used to control and 

measure the qubits. An experimental trial was initiated by using a Dynatech Exact Model 

628 to generate a pulse at a repetition rate of 100-500 Hz. The pulse passed through an 

opto-isolator to trigger all of the HP 33120A AWGs used in the experiment. Opto-

isolators were used to break electrical contacts, preventing ground loops. The AWGs 

were configured from a PC for burst mode, single trigger, and arbitrary waveform. The 

command for the desired waveform was generated using a Labview program and sent to 

the AWG via a GPIB interface. The outputs of each AWG went to the screen room wall, 

where the wall filters could be used if desired. The SYNC front panel output of the AWG 

passed through another opto-isolator to input A of an SR620 timer. Input A’s trigger, and 
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all others, were set at the maximum slope of the signal. The AWG rear-panel input 

triggers have a 25 ns jitter time, so the AWG that the qubit is most sensitive to should be 

used to start the timer.    

If microwaves or pulses were desired, input A was also attached to an and gate 

(see Fig. 5.2). It performed an and operation on input A and an opto-isolated 5V pulse 

from the computer when a test with microwaves/pulses was required. The and-gate 

output was sent to a DG535 pulse generator. Pulses from the DG535 were used to trigger 

the microwaves from the HP83732B, using its external trigger as a control, and to send 

pulses directly to the qubit. In sending pulses to the microwave source, a TTL pulse with 

HIGH Z load seemed to work best. Pulses were sent to the qubit with a high Z load with a 

variable output of 0.10 V to 0.70 V. Attenuators were placed right before the signal 

reached the screen room wall. This way I could attenuate the output pulse further if I 

needed to. When both microwaves and pulses were required, I connected the pulse output 

to the qubit’s microwave line and used the auxiliary microwave line (see Fig. 5.2) for the 

microwaves. A microwave combiner would be needed to simultaneously control two 

qubits. 

 

5.4 Detection of Switching 

 When a dc SQUID switches to the finite voltage state a voltage of 2.8 mV will be 

generated across a niobium junction and 400 μV across an aluminum junction. This 

voltage must propagate to the top of the fridge before it can be detected and used to 

determine when the SQUID switched. At the top of the refrigerator, the voltage was 

amplified using a common-source JFET inverting amplifier, consisting of sixteen 
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2SK117 transistors wired in parallel [36]. This amplifier has a gain of 40, a bandwidth of 

about 2 MHz and a voltage noise of less than HznV /3.0 . All electronics in the screen 

room were powered from ultra-low noise power supplies inside the screen room. This 

amplifier was followed with an AD829 op-amp inverting amplifier, with a gain of 50 

above 10 kHz. This amplifier rolls off above 1 MHz and has a voltage noise of about 

HznV /0.4 . The 10 kHz low frequency cutoff is set from a high pass filter created with 

an additional AD829. By filtering out low frequencies, the 5 V offset from the JFET is 

removed as well as the voltage from the drop along the bias lines. The schematics and 

properties of these amplifiers are available in ref [36]. 

The switching signal was converted to an optical pulse using a Schmitt trigger 

made from a high speed CLC420 op-amp. When the signal from the op-amp reaches a 

certain threshold it produces a pulse that drives an LED, which is coupled to an optical 

fiber. The fiber passed through the screen room and the signal was converted to a TTL-

compatible pulse using a second CLC420. This TTL pulse was then sent to input B of the 

timer and the time between receipt of pulses of A (which was triggered at the start) and B 

(which triggered when a switch was detected) was recorded and sent via GPIB to a PC 

running a custom LABview program.   

The custom amplifiers improved the timing resolution substantially. With the 

amplifiers, experiments on a 130 μA critical current Nb junction showed a switching 

slope of 10 mV/μs [37]. Based on 720 μV rms of noise, this gave a resolution of under 

100 ps. For a critical current of less than 20 μA the switching slope begins to decrease. 

For a Nb SQUID, the slope ranged from 5 to 10 mV/μs. An aluminum SQUID with 

critical currents of 1.5 μA and 10 μA had a maximum slope of approximately 1.1 mV/μs, 
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which would have significantly degraded the timing resolution. Fortunately, for pulse 

measurements, which I will discuss in Chapter 7, sub-microsecond resolution in the 

output voltage becomes completely unnecessary. The only important factor is the timing 

between the applied current measurement pulse and the microwave source, both of which 

are externally controlled, as discussed in Chapter 7.  

The current at which the switch occurred was determined by calibrating the bias 

current and flux current versus time. The voltage across a room temperature resistor was 

amplified with a Stanford Research Systems SR560 in differential mode and then 

recorded versus time using the analog-to-digital converter on the computer’s PCI-6110 

data acquisition board. A reference pulse to define 0=t  was simultaneously recorded 

from the optoisolated sync from the bias waveform generator. 

      

5.5 Summary 

 In this chapter, I described the experimental apparatus used for my measurements, 

including the dilution refrigerator, wiring and instrumentation. The wiring inside the 

refrigerator must be carefully constructed, taking into account the current and voltage 

requirements for each of the different lines. Thermal considerations are also crucial to 

prevent the wiring from carrying heat to the mixing chamber. The sensitivity of the 

measurements and low noise requirements demand a careful design of the electronics, 

and detailed consideration of the current sources, timers and triggering. 
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Chapter 6 

Flux Shaking and dc SQUID Control 

  

This chapter describes how I calibrated my measurements, determined the device 

parameters and operated the SQUIDs as qubits. To determine the device parameters, I 

measured the flux and bias currents that caused the SQUID to switch to a new flux state 

or into the voltage state; these plots are referred to as I-Φ curves. The I-Φ curves are 

essential for finding some of the key experimental parameters of a device. The I-Φ curves 

also provide a graphical representation of how to optimally operate the dc SQUID as a 

Josephson junction phase qubit. The plots were also helpful in preparing the SQUID in a 

specific flux state using flux shaking.  

 

6.1 Device Calibration and I-Φ Curves 

As shown in Chapter 2 [see Eq. (2.18)], the flux-phase relation for two Josephson 

junctions in a superconducting loop is 

0220110021 /2/2/2/2 Φ−Φ+ΦΦ=ΦΦ=− LILIa ππππγγ , (6.1) 

where  is the total flux in the SQUID. For static currents and fluxes, I can also write 

, 

Φ

III =+ 21 )sin( 2022 γII =  and )sin( 1011 γII = . For a particular I  and aΦ , each 

different solution to these equations corresponds to the system in a different flux state. 

The equations determine the bias current I  and applied flux aΦ  at which the device will 

switch for a given initial flux state. A switch to the voltage state or to a different flux 

state will occur when the current through either of the junctions in the dc SQUID exceeds 
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its critical current. An initial flux state  will act something like  of applied flux, 

and induce a circulating current in the loop, i.e. if 

fn 0Φfn

0Φfn  of applied flux does not cause 

one of the junctions to exceed its critical current, that flux state is stable. In Chapters 2 

and 4, I noted that our dc SQUIDs tend to have a large 00201 /)( Φ+≈ IILβ  and 

therefore a tendency to have many stable flux states, [see Eq. (2.22)].  

Figure 6.1 shows part of the I-Φ curve calculated for an asymmetric dc SQUID 

with AI μ5.301 = , AI μ102 = , ,3.21 nHL =  nHL 4.02 =  and . The 

characteristics are periodic in the applied flux 

pHM 4.71=

aΦ , and only a few flux states are shown. 

Notice that the plot consists of five overlapping regions. Here I have just shown curves 

for trapped flux of 0,  and 0Φ± 02Φ± .  Graphically, a switch will happen if I  and aΦ  

are changed such that the new values of I  and aΦ  are no longer inside the loop 

corresponding to the initial flux state. At 0=I  and 0=Φ= af MI , three flux states are 

stable; this point is inside the three black curves, while states corresponding to the gray 

curves are not stable. Whether the device switches to the voltage state or simply switches 

to a new flux states depends on the bias current at which the switch occurs and the critical 

currents. For example, at  the device will never switch to the voltage state; 0=I aΦ  only 

rolls the SQUID potential in ( ) 2/21 γγ −  (as I discussed in Section 2.4 and later in 

6.2). If the device switches to a new flux state it will switch to a stable one, i.e. one that 

encloses the bias current I  and applied flux aΦ  values at the time of the switch. By 

fitting these curves to the experimental data the parameters ( , , , ) of a dc 

SQUID can be determined.  

1L 2L 01I 02I
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Figure 6.1: Calculated I-Φ curves showing five flux states  in an 

asymmetric dc SQUID. By measuring the I-Φ curves, the inductance and critical current 

of the SQUID can be determined, as well as the number of stable flux states. In this case 

at 

0,1,2 ±±=fn

AI μ0=  and AMI af μ0/ =Φ= , just three flux states are stable. This device has 

AI μ5.301 = , AI μ0.102 = , nHL 3.21 = , nHL 4.02 =  and pHM 71= . 
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The different sloped lines in Fig 6.1 correspond to which of the junctions switches 

first. For example, in Fig. 6.1, if the bias current is ramped at a constant applied flux, it is 

likely that a relatively shallow positive sloped branch will be crossed. This corresponds to 

the isolation junction J2 switching first. This makes sense considering the large 

asymmetry in the inductance of the two branches and the smaller critical current ; 

applied bias current mainly goes through J2. Complete control of the two junctions is 

possible by ramping the flux and bias current simultaneously. Equation (6.1) also implies 

that the equations are symmetric about negative currents as seen in Fig. 6.1.    

02I

Without rigorously fitting the data, a few parameters can be quickly estimated as 

shown in Fig. 6.1. Since 0Φfn  acts like an applied flux, the mutual inductance can be 

determined by measuring the flux current fIΔ  necessary for the curve to repeat itself. 

Then I can use . Also, the maximum possible switching current occurs 

where both junctions are carrying their critical current, i.e. . This 

occurs where the two different sloped lines meet at the top. Similarly the other corner 

where the two slopes meet is given by 

fIM ΔΦ= /0

[ ] 0201max III +=

0201 II − . In addition, the slopes of the branches 

of the I-Φ curve where J1 or J2 switches first are given by roughly  and 

, respectively.  Unfortunately, the capacitance of the junctions cannot be 

determined from fitting I-Φ curves. Also, while the curves allow  and  to be 

extracted, the values are somewhat approximate. Fortunately, the capacitance and more 

accurate values for  and  can be obtained from spectroscopy (see Chapter 8). 

( )22/1 JLL +

( 11/1 JLL + )

01I 02I

01I 02I
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6.1.1 Sample DS2

Figure 6.2 shows an experimental I-Φ curve measured for device DS2A. Each gray 

point corresponds to one switching event (I note that device DS1 was calibrated before I 

joined the project and the results can be found in Ref. [36] and Ref. [37]). In the plot, I 

also show black curves on every other flux state. These curves are from fits with 

AI μ8.2101 = , AI μ5.202 = , ,3.31 nHL =  nHL 01.02 = and pHM 436.71=  (these are 

not that fits used to determine the parameters given in Table 4.3). The fits are somewhat 

coarse since the lower bend at 0201 III −=  is not visible.  is especially difficult to 

determine from the fits since it is so small, especially if  is not well known. In fact, 

for all of the devices I found the value of  could vary by 100% and still produce a 

reasonable fit to the I-Φ curve.   

2L

02I

2L

It is important to understand that the flux states shown in Fig. 6.2(a) are not stable 

at AI μ0=  and AMI af μ0/ =Φ= . This can be seen by extending the calculation over 

a larger range of current and flux, [see Fig. 6.2(b)]. Note that if the bias current is ramped 

at a fixed , initial stable flux states become unstable and the SQUID must change to a 

new flux state, without switching to the voltage state. Six of these I-Φ curves were taken 

for this device to find the mutual inductance for each of the qubits and each of the flux 

and bias lines as given in Eq. (4.17). I will ignore the mutual inductance from the qubit’s 

bias line. I also note that the bias current 

aΦ

I  was generally negatively ramped, but for 

simplicity I will always plot it positively. 
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Figure 6.2: (a) Experimental I-Φ curve for device DS2A and a fit. Each gray point 

corresponds to the location of a switch and the black curves are a fit to the data. Since the 

system will always switch before the true critical current is reached, a region defined by 

the closed black curve encloses the corresponding gray points. (b) Schematic of the entire 

I-Φ curve for a single flux state and a current trajectory such that the device is optimized 

as a qubit.  
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6.1.2 Samples DS3 and DS4

 Figure 6.3 shows experimental I-Φ curves and best-fit curves for device DS3A. In 

this device the qubit junction had a substantially smaller area than the isolation junction, 

opposite from the previously tested SQUIDs. Three flux states are fit here with 

AI μ22.101 = , AI μ625.802 = , ,05.11 nHL =  nHL 01.02 =  and . The 

light gray points represent experimental values where the SQUID switched to the voltage 

state, while the open circles are points where the system only switched flux states (not to 

the voltage state). These flux-switch points were found by (a) initializing the system into 

the initial flux state, (b) ramping the bias to a fixed point, (c) negatively pulsing the 

applied flux, and then (d-f) increasing the bias current (see Fig. 6.3). The circles represent 

the flux pulse amplitude (in ) and 

pHM 436.71=

fI I  for which the SQUID switched flux states 50% of 

the time. To determine whether a flux jump occurred, I ramped the bias current and 

monitored whether the SQUID switched at AI μ8<  (the flux state did not change) or 

AI μ8>  (the flux pulse made the SQUID switch flux states). This procedure allowed me 

to obtain a more accurate estimate of the SQUID parameters. 

 In chip DS4, I performed rough experimental I-Φ curves for each of the qubits. 

For device DS4B, I found AI μ2.101 ≈ , AI μ5.702 ≈ , ,31 nHL =   and 

. These fit values were very close to those of DS

nHL 01.02 ≈

pHM 18= 3A, except for the larger 

inductance . 1L
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Figure 6.3: I-Φ curve for device DS3A. The gray points correspond to where the system 

switched to the finite voltage state and the open circles represent the location where the 

system switched flux states during a flux current pulse. The solid black curves are a fit to 

the data. By following the switching curve below 0102 II −  the fit parameters are 

substantially more accurate. The dashed line shows an example of a measurement 

trajectory to determine the circles. Starting at (a), the current I  is increased to (b), a 

negative flux pulse quickly takes the system to (c), and then back to (d). The current I  is 

then increased to (e). If the flux pulse did not cross the solid curve at (c), then the SQUID 

will switch at (e); otherwise it will switch at (f).  
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6.2 Flux Shaking 

The dc SQUID phase qubit will generally have more than one stable flux state, 

and these states are not equivalent. In particular, at the same applied flux, each flux state 

has a different plasma frequency. For this reason the SQUID must always be initialized to 

the same flux state before it can be used as a qubit. Our approach to selecting one flux 

state out of the  possible states is an extension of Lefevre-Seguin’s “forced-

retrapping” technique [93]. Their technique involved applying an oscillating bias current 

ΦN

I  to a hysteretic SQUID with a maximum current that was somewhat less than 

, the maximum critical current of the SQUID. If flux is trapped in the loop, a 

static circulating current will be present that adds current to one junction and subtracts it 

from the other. If the net current from the bias and trapped flux exceeds the critical 

current of one of the junctions, the device switches to the finite voltage state and then 

retraps into another flux state once 

0201 II +

I  decreases below the retrapping current. By 

choosing the amplitude of I  correctly, all of the flux states can be made unstable except 

for the state corresponding to zero trapped flux. If the SQUID is in an undesired state, 

than at each cycle it is forced to retrap into another allowed flux state. If the new state is 

the desired one, than it would be stable during the rest of the cycle and the SQUID would 

end up in the desired one. If the device did not reach the desired state during the cycle, 

then it would have another chance at the next cycle. Lefevre-Seguin et al. applied many 

current oscillations to ensure that the probability of reaching the selected state was near 

unity.  

 In our technique, instead of applying an oscillating current, I apply an oscillating 

flux to the SQUID [41]. By also applying a static flux, our “flux-shaking” technique 
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allows me to choose any one of the allowed flux states.  Moreover, the technique resets 

the flux state with minimal energy release since switching to the voltage state only occurs 

for extremely brief intervals.  Energy considerations are important because we operate 

our qubits at , and significant heating occurs when a junction is in the finite 

voltage state.  

mK25

To gain insight into both techniques, I again consider the potential energy 

),,,( 21 aIU Φγγ . Figure 6.4 shows U  for the simple case of a symmetric SQUID with 

3.5=β , when  and 0=I 0=Φa .  There is a degeneracy due to the periodicity of the 

potential in the 2/)( 21 γγ + -direction, and the physically distinct flux states occur at 

the minima of the wells with different 2/)( 21 γγ − . In the current shaking technique, 

increasing the bias current tilts the potential in the 2/)( 21 γγ + direction.  Wells of 

higher potential have larger |2/)( 21 γγ −| , and lower barrier heights, and thus become 

unstable at lower bias current. In the flux shaking technique, increasing the flux 

effectively tilts or shifts the potential in the 2/)( 21 γγ − direction, changing which flux 

state corresponds to the minimum potential energy. Again, wells corresponding to stable 

states can become unstable while previously unstable states can become stable; the total 

number of stable states will not change in the large β  limit. I note that for 0=I , the 

potential, and thus the flux-shaking process, does not depend on the inductive asymmetry 

of the SQUID.   

As mentioned above, if the SQUID is in a flux state that becomes unstable due to 

applied current or flux, there are two distinct options: The SQUID can re-trap in another 

stable well, producing a short-lived voltage (undetectable to us), or it can roll  
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Figure 6.4: Normalized potential energy surface 021 /),( UU γγ  for a symmetric dc 

SQUID with current , 0=I 0=Φa , 3.5=β  and 0201 II = . Applied flux  will tilt 

the potential in the 

aΦ

( ) 2/21 γγ −  direction forcing the system to switch if it is in a well 

that becomes unstable. If the SQUID switches with 0=I , it will quickly retrap into a 

new flux state.    

 99



continuously in the 2/)( 21 γγ + direction, producing a steady measurable voltage, until 

the current through the junction drops below the retrapping current. If the system does 

switch to the voltage state, it stays there until the current falls below the retrapping 

current. On the other hand, if the system is in a potential well that becomes unstable due 

to a change in flux with , it escapes and must always re-trap in another well, just 

releasing the difference in energy between the original and final state. 

0=I

To choose just one flux state using the flux-shaking technique, I make all but the 

desired well unstable at some point during each flux oscillation.  In this way if the 

SQUID is trapped in an undesired well, this well becomes unstable at some point in each 

cycle and the system will be forced to choose a new well.  If it happens to retrap in the 

desired well, then it will be trapped there for the remainder of the oscillations since this 

one desired flux state is always stable. If the system lands in any other well, then during 

the next oscillation it will again be forced out and have to find a new flux state. Although 

the retrapping is random, the probability of being in the wrong well decreases 

exponentially with the number of oscillations; very low failure rates can be achieved with 

relatively few oscillations (50 to 100). Different flux states can be selected by applying 

an appropriate static flux so that the desired well has the lowest energy. 

Before performing the initialization procedure, I determined the initial probability 

of finding the system in each flux state. To do this, I ramped the bias current and flux 

such that the qubit junction switched first and a minimal amount of bias current passed 

through the isolation junction, [see Fig. 6.2(b)], as I will describe in more detail below.  

This simultaneous sweep of current and flux was repeated every  to build up a 

histogram of the bias current at which the junction switched to the voltage state.  After 

ms5
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each ramp, the current I  and applied flux aΦ  were set to zero, forcing the system to re-

trap randomly in an allowed flux state.  By summing the counts in each peak of the 

histogram, I found the starting probability of being in each well. Figure 6.5(a) shows the 

initial histogram for device DS1. There were about 10 states that had a significant 

occupation probability.     

To set the system in a specific well using flux-shaking, I chose a number of 

oscillations  flux offset, and flux oscillation amplitude. I then applied the flux at a 

fixed frequency of  until  oscillations were completed. I next ramped the bias 

current 

,N

kHz44 N

I  and measured the current, at which the device switched (see Fig. 6.6 for 

sample waveforms for this procedure). I repeated this entire process to build up 

histograms for each set of conditions.  Each amplitude, flux offset and number of 

oscillations produced a different histogram.  For a specific range of amplitudes and 

offsets it is possible to make every well unstable at some point in the oscillation except 

one chosen desired well. Applying more oscillations in this case produces a steady 

increase in the probability  of finding the SQUID in the desired flux state  [see 

Fig. 6.5(b-d)]. This somewhat awkward notation has been used to distinguish the 

probability in a flux state  from the probability in an energy level ; thus  is 

the probability of finding the SQUID in the 

nfp fn

nfp np fp2

2=fn  flux state. Increasing the amplitude 

too much results in no continuously stable flux state during the initialization process and 

no single peak develops an increasing probability.  The offset value  of the 

oscillation determines which peak becomes heavily populated. In Fig 6.5(b-d) no flux 

offset was applied, and the 

aΔΦ

0=fn  state was selected using flux oscillations with an  
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Figure 6.5: (a) Initial switching histogram, for device DS1. (b) Switching histogram after 

 oscillations,  (c) 1=N 5=N  oscillations, and (d) 10=N  oscillations of amplitude 

at .  For b-d, no flux offset was applied and the 04.7 Φ )3.0( mAI f = kHz44 0=fn  state 

was selected. (e) Isolating the 4−=fn  flux state using 6=N  oscillations of amplitude 

, at and with a flux offset of 04.7 Φ kHz44 04.4 Φ )177.0( mAI f = . 
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Figure 6.6:  Schematic and waveforms used for flux shaking. (a) dc SQUID (b) I vs. t, If 

vs. t, and V vs. t for flux shaking a SQUID about the 0=fn  flux state with 14=N . The 

bias current includes a small offset to ensure the SQUID re-traps after switching to the 

voltage state. 
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amplitude of 04.7 Φ . In Fig. 6.5(e) I applied an offset of  to select the 

state. 

04.4 Φ

4−=fn

I note that during flux shaking of DS1, flux states appeared at bias currents of  

and 

38

Aμ5.38  [see Fig. 6.5(b)], while no such states were evident in the original switching 

distribution [see Fig. 6.5(a)].  Evidently, these states are stable states of the system, but 

had a negligible probability of being occupied initially. 

I also tested DS1 when its critical current was not suppressed. In this case the 

critical current was AI μ10801 ≈ , or about an order of magnitude higher, and I found 

 flux states.  I found the initial probability of occupying the 167 0=fn  well 

(corresponding to no circulating current) was 03.00 =fp . Figure 6.7 shows that after  

oscillations I could increase this to 

45

493.00 =fp . 

To use such a device as a qubit, ultimately one will need to initialize the system 

with near unity probability.  Figure 6.8 shows how the failure rate  for 

selection of the  state falls with the number of oscillations for up to  

oscillations. These oscillations were performed on device AL1 by H. Paik [68]. By  

oscillations, the probability of being in the desired state, which is initially 

ff pq 00 1−=

0=fn 50

50

13.00 =fp , 

increases to . For this measurement we chose the oscillation frequency so 

that the entire initialization process always took , independent of the number of 

oscillations; e.g. a frequency of  was used for 50  oscillations. As expected, the 

failure probability decreases exponentially with the number of oscillations.  More 

oscillations are clearly possible; extrapolating the trend to 100  oscillations implies  

99996.00 =fp

sec2.2 m

kHz6.22
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Figure 6.7: Zero flux state selected in DS1 using 45=N oscillations of amplitude 

and . In this case the critical currents were unsuppressed 

and the device had 167 states. The filled circles show the probability of each flux state 

being selected. The dashed line and open circles shows the initial probabilities . 

mA37.3 )4.83( 0Φ kHzf 20=

)( np
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q 0
f

Number of oscillations N

q 0
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Figure 6.8: Probability ff pq 00 1−= of not occupying the 0=fn  state versus number 

of flux oscillations , showing the exponential decay of N nfp−1  with  for another 

device AL1 [68,41].  For each point,  cycles of initialization and readout were 

performed. The dashed line shows simulation results based on the initial distribution. The 

solid line is an exponential fit to the data.   

N

5102×
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nfp−1  would fall to about .    9102 −×

To understand the switching histograms produced by flux-shaking, we developed 

a simple model for this process. When a change in the flux makes the SQUID unstable, I 

assume it will retrap in a stable state with the same probability as the initial distribution 

 [e.g. see Fig. 6.5(a)], except shifted by the applied flux. For example, 

consider a system with five stable flux states with the flux oscillation centered about the 

 state. After the oscillation forces the flux state 

( 0=tpnf )

0=fn 2=fn  to become unstable, i.e. 

, the probability in the stable flux states ( ) 02 =Δ+ ttp f ( )0,1,2,3 ±−−=fn  are given 

by  

)0()()()( 12 =+=Δ+ + tptptpttp fnfnfnf .  (6.2) 

This model naturally causes nfp−1  to decrease exponentially with  for the 

desired well (see dashed line in Fig. 6.8). Figure 6.9 shows a comparison between the 

measured probability for each well and this simple model for 4  oscillations of device 

DS

N

1. While I find reasonable qualitative agreement for small , significant differences 

arise for large , most likely because the re-trapping probability is not identical to the 

initial probability distribution.   

N

N

To be useful in a quantum computer where  qubits are coupled together, the 

time to initialize the entire system must not grow faster than a polynomial in . The 

situation for multiple coupled qubits appears favorable. In principle, if the resetting of 

one qubit does not disturb the flux state of the others, then the same flux oscillation could 

be supplied to every qubit at the same time. By way of example, suppose that 

qN

qN

100=N   
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Figure 6.9: Probability of occupying different allowed flux states after four oscillations in 

device DS1 for simulations (dashed lines and filled circles) and data (open circles).  
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oscillations will set the state of one qubit with a probability . 

Then the probability that all of 

61011 −−=−= nfnf qp

1000=qN  qubits are set to the correct initial state after 

 oscillations will be . Since the one qubit probability of 

failure  decreases exponentially with the number of oscillations , reducing the failure 

rate of  to a set level only requires increasing  logarithmically with . Although 

resetting one qubit may disturb the state of others, particularly nearest neighbors, most 

qubit schemes involve relatively weak qubit-qubit coupling, suggesting that little 

disturbance will be created.  

100 1~1011~ 3−−=− nfqqNp

q N

qN N qN

More energy would be produced if two neighbors of a qubit reset at the same 

time. While this would be a relatively rare occurrence, it could be prevented by first 

applying flux oscillations to every other qubit (each qubit has two neighbors that are not 

being reset), and then applying oscillations to the remaining devices. This would increase 

the time to initialize the entire system by a factor of 2, independent of the total number of 

qubits. 

In sample DS2, both dc SQUIDs required initialization before any measurements 

could occur, even if just one qubit was being measured. This was necessary because the 

flux in one qubit coupled to the other, affectively adding a small flux state dependent 

offset. I found that by carefully considering the mutual inductances, both qubits could be 

initialized simultaneously or one after the other with no added complexity. 

 

6.3 Qubit Control 

 After initializing the flux state of the qubit, the dc SQUID needs to be biased such 
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that the:  

(i) qubit’s energy levels are sufficiently anharmonic  

(ii) qubit remains well isolated from the environment  

(iii) two junctions are weakly coupled  

(iv) qubit’s energy state can be measured.  

In devices DS1, DS2A and DS2B the qubit junction had a substantially larger critical 

current than the isolation junction; if the qubit junction switched the isolation junction 

would also switch and the device could be measured in the constant voltage state. Figure 

6.1(b) shows a trajectory for ( ) fILMI Δ=Δ 1/  in device DS2B. This I-Φ trajectory 

ensures that almost no additional current (other than current from the initial flux state) is 

applied to the isolation junction during the sweep. In this trajectory the current through 

the qubit  is approximately equal to the bias current 1I I  plus any trapped circulating 

current. I note that the current in the isolation junction does change somewhat during the 

sweep. This happens because the inductance  of the qubit junction varies as more 

current is applied, causing some current to be directed through J2. Since , this 

is a small effect. The inductance of the isolation junction J2 is dependent on the current 

through it [see Eq. (1.3)], 

1JL

11 JLL >>

)cos(2/ 20202 γπILJ Φ= . By initializing the qubit to a flux 

state with no circulating current and following the trajectory ( ) fILMI Δ=Δ 1/ , the 

current noise isolation power isolation factor 
2

22

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≈
J

I LL
Lr  is maximized because 

 is minimal. Since the current through the isolation junction can be controlled, 2JL Ir  

can be varied to test the qubit under various isolation conditions [69]. Finally, I note that 
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by following a trajectory that keeps the current through J2 small, I can also keep the 

plasma frequency of the isolation junction far from the plasma frequency of the qubit 

junction. 

 Devices DS3A and DS4B required a different I-Φ biasing trajectory due to the qubit 

junction having a smaller critical current than the isolation junction. Here if the qubit 

junction switched, the SQUID would only switch flux states, unless the isolation junction 

was heavily biased, in which case it would switch to the voltage state. By following the 

trajectory shown in Fig. 6.10, the flux state switch for DS3A could still be determined 

from voltage switching measurements. The trajectory was as follows:  

1) Starting from the desired flux offset (point 0), the current I  was ramped 

to the desired bias point (point 1), based on the isolation desired. 

2)  The SQUID was shuffled to the desired flux state, in Fig. 6.10 the dashed 

curve shows the I-Φ switching boundary for this state. In this case 

oscillations were not necessary since only one flux state exists at certain 

values of I  and  (point 2). aΦ

3) The flux current  is ramped to the desired qubit bias (point 3’). After 

stabilizing there, the desired qubit operation can occur until a pulse is used 

to force population in the 

fI

1=n  to switch flux states (point 3). 

4) The flux current  is returned to a point where the flux states are very 

stable (point 4). 

fI

5) The bias current I  is ramped such that if the SQUID switched flux state 

during step 3, then it will switch to the constant voltage state at about 8 

μA and if not at 9.5 μA (point 5). The actual switch current is measured,  
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Figure 6.10: (a) I-Φ trajectory used for to operate device DS3A such that it acts like a 

Josephson junction phase qubit; the trajectory starts at (0) and proceeds through (5). The 

dashed line corresponds to switching curve for the flux state used for qubit operations. 

The solid circle shows where the device will switch to the constant voltage state if the 

qubit switched flux states at point (3). The open circles shows where the device will 

switch if it did not switch flux states at (3). (b) Current waveforms used in the trajectory 

described in (a). The device will switch at one of two currents, dependent on the state of 

the qubit after step 3. 
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thereby determining whether or not the qubit was in state 1  at step 3.   

The same procedure was applied to device DS4B, but with flux shaking at step two 

since device DS4B had several stable flux states. I note that in the biasing trajectory for 

devices DS3A and DS4B calibrating the current through the qubit  requires accurate 

knowledge of , 

1I

fn I ,  and any flux offset. This required careful measurements of the 

I-Φ curves as discussed in section 6.1. 

aΦ

 

6.4 Summary 

 In this chapter I discussed the control and calibration of my dc SQUID phase 

qubits. I-Φ curves provide an essential step in determining the parameters of the device 

and guiding how to operate it. I also showed how flux shaking enables a system with a 

many-well potential to be used as a qubit. In Chapter 7, I discuss in detail how escape 

rate measurements and pulse measurements can be used to read out the energy level of 

the qubit. 
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Chapter 7 

State Readout Techniques 

 

 In this chapter, I discuss how I measured the energy state of the qubit. I 

investigated two related techniques, both of which relied on the dc SQUID to switch, 

either to the voltage state or another flux state. The first technique (escape rate readout) 

relied on performing qubit operations at a bias current such that  had an escape rate 

that was much larger than 

1=n

0=n . A weakly interacting measurement process, tunneling, 

acted continuously on the qubit. The second technique (pulsed state measurement) 

allowed for the qubit to be operated at any bias point; when a measurement was desired a 

pulse was applied such that with a high probability the population in  would tunnel 

while the population in  would not.  

1=n

0=n

To quantify undesirable leakage to other energy levels, it is essential for the state 

measurement technique to be able to also measure small populations in upper levels such 

as , as well as the qubit levels 2=n 0=n  and 1=n . I found clear evidence for small 

 populations in the qubits. In fact,  effects often dominate the escape rate 

readout technique. The fidelity of the pulsed measurement technique and other potential 

difficulties are discussed in this chapter, including the effect of Landau-Zener transitions 

due to other coupled quantum systems.  

2=n 2≥n
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7.1 Escape Rate Readout 

The average tunneling rate Γ  of the qubit junction to the voltage state depends 

on the tunneling rates  of each energy level and the probability in each level ,  nΓ np

∑Γ=Γ
=

N

n
nn p

0
.     (7.1) 

If the individual tunneling rates nΓ  are well known and levels greater than 1=n  are 

negligible,  at time  can therefore be determined by simply measuring the system 

escape rate at time . If the tunneling rates are substantially less than the other 

characteristic transition rates of the qubit, tunneling will affectively act as a continuous 

weakly-interacting measurement of the qubit. If the tunneling rates are not small, then 

they will need to be explicitly considered and included in the density matrix. Relatively 

large tunneling rates will broaden a spectroscopic measurement [36]. Surprisingly, for a 

Rabi oscillation found by measuring 

1p t

t

Γ , the decay of the Rabi oscillation in Γ  does not 

depend on the tunneling rate, although the populations obviously will [63].  

The escape rate of a current-biased Josephson junction can be approximated as 

 
[ ]

)2.7exp(
2!

4322 2/1

s
pn

s
n N

n
N

−=Γ
+

π

ωπ
,   (7.2) 

where  and ( ) pJs IIEN ω//12 2/3
0−≈ ( )( ) 4/12

0
0

0 /1
2

II
C

I
p −

Φ
=

π
ω  [94]. For 

example, the parameters of DS2B ( AI μ200 =  and pFC 4.4= ) at  give rates 

of ,  and . If  and I 

can ignore population in , then these escape rates will only weakly disturb the 

population in  and . 

99.0/ 0 =II

sec/700 =Γ sec/106.9 4
1 x=Γ sec/106.6 7

2 x=Γ sec/10/1 5
1 >>T

2≥n

0=n 1=n
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 To determine the escape rate experimentally, I ramped the bias current I  and flux 

 so that the current  through the qubit junction changed at a rate of approximately aΦ 1I

msA /20μ ; faster and slower rates enable one to operate and observe higher and lower 

escape rates, respectively. By recording when the junction switched, a histogram  

can be constructed [see Fig. 7.1(a)]. This can then be converted to an escape rate versus 

time using 

)(th

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
Δ

−=Γ
)(

)(
ln1)(

tN
ttN

t
t

t

t ,    (7.3) 

where  denotes the number of times that the system did ∑=
∞

t
t thtN )()( not tunnel before t  

[28,36]. By calibrating the current versus time, the escape rate as a function of current 

can be found and compared to Eq. (7.2) or a simulation of Schrödinger’s equation [37]. 

For example, Figure 7.1(b) shows the calibrated escape rate versus bias current for device 

DS2B, based on the histogram in 7.1(a).  

Figure 7.1(c) demonstrates how the escape rate can be used to read out the state of 

the qubit and map the spectrum. For this plot the qubit bias  was slowly ramped while 

low power 6.5 GHz microwaves were applied. When the qubit came into resonance with 

the applied microwaves this produced a noticeable enhancement in  and the total 

escape rate increased as expected from Eq. (7.1). By repeating this for many frequencies, 

I could find the spectrum of allowed transition frequencies, as I will show in Chapter 8. 

For all of my data the ramp rate was always slow enough that the qubit reached 

equilibrium at each bias point. The escape rates also provide a method to measure 

relaxation in the qubit without applying microwaves. By measuring the total escape rate  

1I

1p
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Figure 7.1: Measured histogram and escape rate in dc SQUID DS2B. (a) Calibrated 

histogram versus current I, measured at 20 mK using simultaneous current and flux 

sweeps and (b) escape rate from the same data. (c) The open circles are escape rates when 

continuous 6.5 GHz microwaves were applied to the sample. The solid circles are 

repeated from (b) to highlight the enhancement when the qubit is on resonance with the 

microwaves at AI μ397.181 = . 
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as a function of temperature, Dutta et. al. showed that the experimental escape rate can be 

fit to determine  [95].  1T

High speed operation is desirable in qubits, as there is less chance for the system 

to decohere, and this generally requires the use of higher microwave power. However, 

high power causes resonances to broaden, and since the levels are not strongly 

anharmonic this leads to a potentially significant population in higher levels. Occupancy 

of  and higher levels is undesirable unless the levels are being used as auxiliary 

states for gate manipulation or readout [39, 96]. 

2=n

It is also important to realize that even fairly small populations in the upper levels 

can dominate escape rate based measurements. For example, if we use the escape rate to 

measure Rabi oscillations, the effects of higher levels are readily seen as a continuous 

increase in the escape rate with power, up to and beyond the escape rate . In the 

example given above 

1Γ

690/ 12 =ΓΓ , therefore even for %2.02 =p  the  level will 

dominate the total escape rate. Fortunately  often acts to simply enhance , since it 

can result from an off-resonant transition that remains approximately constant throughout 

the qubit operation.  While this enables us to probe many basic properties of the qubit, 

leakage is an added complication that limits the measurement of fidelity. Clearly for 

quantum computation a measurement based on a tunneling is not ideal since the system 

leaves the qubit basis when the measurement of 

2=n

2p 1p

1  occurs. The strength of this technique 

is the simplicity with which data can be taken, and for some situations, being able to 

detect higher energy levels is advantageous [65]. 
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7.2 Pulsed State Readout 

    The second readout technique I used involved applying a current pulse to the 

qubit junction and determining if the pulse forced the device to escape to the voltage state 

or to another flux state [66, 97, 98]. The main difference between the pulse technique and 

the escape rate technique is that in the pulse technique the measurement happens at a 

chosen time and returns a yes or no answer, while in the escape rate technique there is a 

continuous measurement. For both techniques the switch can be detected by measuring 

the voltage across the bias leads as discussed in Chapter 6. The pulse technique also 

exploits the different escape rates of the levels; each successive energy level has a 

tunneling rate that is two to three orders of magnitude larger than the level below it (see 

Fig. 7.2). As Silvestrini et al. first showed experimentally, different energy levels become 

unstable, or reach a specified high escape rate, at different currents [99]. Thus by 

carefully choosing the size of the current pulse, one can ensure with a high probability 

that levels  and higher will tunnel, while n 1−n  and below will not. 

 

7.2.1 Optimizing the State Detection Process 

To analyze the state detection process, I now introduce conditional probabilities 

, where  corresponds to the initial quantum state of the system, and  indicates 

whether the system has switched during the current pulse (

ijP i j

1=j  indicates that the system 

has switched,  indicates that it has not switched). When the system is in state 0=j 1=n , 

11P  is the probability that a correct detection occurs, i.e. 11P  is the probability that the 

state  switches to the voltage state during the current pulse.  Similarly, I will define 1=n
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Figure 7.2: Solid curve shows the escape rate of dc SQUID phase qubit DS2B plotted 

versus current. The flux and bias current are ramped such that the current through the 

qubit junction is equal to the bias current. The lowest dashed curve is a fit using a single 

Josephson junction model with pFC 3.4=  and AI μ957.170 = , to the escape rate 0Γ  

from the ground state. The theoretical escape rates 1Γ  and 2Γ  from the first and second 

excited levels are plotted as well. The large feature in the escape rate at 17.755 μA 

appears to be due to a very small population (about 0.01%) in the second excited state.   
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00P  as the probability of correctly reporting a 0 when the system is in the state 0=n , i.e. 

the state  does 0=n not switch to the voltage state during a current pulse.  Four main 

types of errors will occur:  

(i) False detection of the state 1=n  when the system was in the state , 0=n

corresponding to switching when the system was in 0=n , occurs with 

probability . 01P

(ii) Missed detection of the state 1=n , corresponding to not switching when 

the system is in the state 1=n , occurs with probability . 10P

(iii) False detection of the state 1=n  when the system was in the state , 

corresponding to switching from 

2=n

2=n , occurs with probability .  21P

(iv) False detection of the state 0=n  when the system is in the state , 

corresponding to not switching when in the state 

2=n

2=n , occurs with 

probability . 20P

Additional errors will occur if there is occupancy in higher levels, i.e.  or . 

However, this is a significant effect only at very high microwave drive power, which I 

ignore here. Conservation of probability forces some constraints, in particular 

3=n 4

   2021101100011 PPPPPP +=+=+=  .    (7.4) 

It is also important to realize that in general 1001 PP ≠  and that under typical pulse 

conditions . 2021 PP >>

 Optimizing the detection process involves maximizing the probability of detecting 

the anticipated signal while minimizing the errors. I can optimize the process by varying 

the duration and height of the current pulse, since this affects the probabilities 
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ijP differently.  

In order to optimize the detection process, one needs to know what the expected 

signal is. Different signals will typically require a different optimized pulse size. Let  

be the probability of the system truly being in the quantum state.  For simplicity, I will 

assume that the qubit is equally likely to be in 

ip

thi

0=n  or 1=n  and that there is no 

probability to be in , i.e. 2=n 5.010 == PP  and 02 =P .  This assumption corresponds 

to a situation where the qubit has been manipulated within its basis states but there is no a 

priori information about the state of the qubit before the measurement. With this choice, 

the probability of correctly detecting the state of the system (the average signal) is 

( ) 2/1100111000 PPPPPPS +=+=  .    (7.5) 

The corresponding probability of making an error or the average noise is 

( ) 2/1001101010 PPPPPPNe +=+= .   (7.6) 

Using Eq. (7.5) and (7.6), the single-shot signal-to-noise ratio is then: 

   
( )

11122
/

10011001

1001

1001

1100 −=−
+

=
+
−−

=
+
+

=
e

e NPPPP
PP

PP
PP

NS  , (7.7) 

where I have used Eq. (7.4) to eliminate  and . I can now define the measurement 

fidelity  as 

00P 11P

F

    eNPPF 211 1001 −=−−≡  .    (7.8) 

Notice that if the detection pulse does not make any errors then . While the fidelity 

mainly has been used in discussions of Rabi oscillations, the closely related concept of 

the average error  is probably more appropriate for error correction.   

1=F

eN

 Examination of Eqs. (7.6-7.8) reveals that minimizing  will simultaneously eN
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maximize the  ratio and . Since  and  can be obtained from switching 

measurements on a device as a function of pulse parameters, Eqs. (7.6-7.8) can be used to 

find the optimum detection conditions from experimental data. To understand the 

ultimate limits to the pulse detection technique, I first analyze the system analytically 

using approximate forms for  and  and then compare the results to full numerical 

simulations and our measurements.  

eNS / F 01P 10P

01P 10P

 From the escape rates in Eq. (7.2), the probability that the system has tunneled 

can be determined. To proceed, I adopt a simple model of the pulse: The current pulse 

starts at  where there is negligible probability of escape, and then at  ramps to a 

value  where it holds steady, and then returns to  after a time 

aI 0=t

pa II + aI τ  has passed. If 

the current does not vary too rapidly during the pulse rise and fall, then it will act 

adiabatically on the system [26, 100]. If I also ignore  and avoided crossings the only 

changes in the occupancy of the levels will be due to tunneling. The average escape rate 

at any time during the pulse will then be well represented by Eq. (7.1). 

1T

If the system starts with 10 =P  at 0=t , the cumulative probability )(01 τP  that 

the state  has escaped (detected as a 1) after the time 0=n τ  has passed is  

  ,  (7.9) ( ) ydttP −=Γ−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ−−= ∫ 1exp1')'(exp1)( 0

0
001 ττ

τ

where ( )τ0exp Γ−=y  and  is the escape rate from the 0Γ 0=n  state during the pulse. 

Similarly, if the system starts with 11 =P  at 0=t  the probability )(11 τP  that the state 

 has escaped (detected as a 1) after the time 1=n τ  has passed is  
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 , (7.10) ( ) ( ) uyudttP −=Γ−−=Γ−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ−−= ∫ 1exp1exp1')'(exp1)( 01

0
111 τττ

τ

where  is the escape rate from the first excited state during the pulse, and 1Γ 01 /ΓΓ≡u  is 

the ratio of the escape rates during the pulse. From Eqs. (7.4) and (7.10), I find 

    .    (7.11) uyPP =−= )(1)( 1110 ττ

Equations (7.5)-(7.8) can then be written in the form 

    ( ) 2/1 uyyS −+= ,     (7.12) 

( ) 2/1 u
e yyN +−= ,     (7.13) 

     ( ) 1
1

2/ −
+−

= ue
yy

NS  and    (7.14) 

    .      (7.15) uyyF −=

Equations (7.12-7.15) are shown in Fig. 10.3 for 100=u . Minimizing the noise  with 

respect to , will also maximize  with respect to the size of the current pulse or the 

pulse time 

eN

y F

τ . Solving 0/ =∂∂ yNe , I find the minimum error  occurs for eN

     1
1

1 −⎟
⎠
⎞

⎜
⎝
⎛= uopt

u
y  .    (7.16) 

For , I found  as can be seen from Fig. 10.3 as well. 100=u 9545.0=opty

This final expression can be rearranged to show that at the optimum pulse height 

one has 

( ) ( ) ( )uuuu ln1ln1 ≈−=Γτ ,    (7.17) 

where in the last step I have used the fact that 1/ 01 >>ΓΓ=u . The optimum values for  
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Figure 7.3: (a) Average signal , (b) average noise , (c) average signal-to-noise 

, and (d) measurement fidelity  using Eq. (7.12-7.15) for . The optimal 

fidelity and signal-to-noise 

S eN

eNS / F 100=u

945.0=F 35/ =eNS  is found at 9545.0=y . These results 

assume the qubit is equally likely to be in 0=n  and 1=n . 
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the signal , error rate , the  ratio, and fidelity then become S eN eNS /

⎟
⎟
⎟
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⎠
⎞

⎜
⎝
⎛=

u
u

uopt

uu
F .     (7.21) 

 Examination of Eqs. (7.18)-(7.21) reveal that the optimal values only depend on 

 during the pulse. Figure 7.4 shows plots of the optimal  and or 

typical values of u . I find that log  varies nearly linearly with log u  while 

 varies approximately inversely with u . Since the maximum  is about 1000 for 

typical junction parameters, Fig. 7.4(b) shows that the ultimate minimum probability of 

making a single-shot detection error is 

01 /ΓΓ=u eN eNS /  f

( )opt
eNS /

opt
eN u

004.0≅eN  with this technique. This level of 

measurement error is probably low enough to be compatible with some error correction 

schemes [101-103]. However, in practice devices have tended to have considerably lower 

values of  because the ratio u 01 /ΓΓ=u  decreases at the large current values needed to 

achieve the high escape rates required for short measurement times (see Fig. 7.2).   
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Figure 7.4: (a) Single-shot signal-to-noise ratio  and (b) average error  for 

optimized square adiabatic pulses, plotted as a function of the ratio of the escape rates 

. As expected, the larger the ratio between the escape rates the smaller the 

detection error.   

eNS / eN

01 /ΓΓ=u
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Table 7.1. Calculated results for optimum pulses for representative values of 01 /ΓΓ=u , 

the ratio of the escape rates during the measurement current pulse. These results 

correspond to a state that is equally likely to be 0=n  or 1=n . 

01 /ΓΓ=u  τ1Γ  01P  10P  N  F  

100 4.6 0.046 0.0094 0.028 0.945 

250 5.5 0.022 0.0035 0.013 0.974 

500 6.2 0.013 0.0018 0.007 0.986 

750 6.6 0.009 0.0015 0.005 0.990 

1000 6.9 0.007 0.0013 0.004 0.992 
 

I also note that at the optimal bias point, the error probabilities  and  are 

not the same (see Table 7.1). For 

10P 01P

250=u  with the optimum pulse, I find 013.0=eN  

and . In this case the dominant error is 974.0=F 022.001 =P  while  is 

about 7 times smaller. For comparison, if 

0035.010 =P

750=u , the average error falls to 005.0=eN ,  

the dominant error is  while 009.001 =P 0015.010 =P  is six times smaller, and 

. 99.0=F

 

7.2.2 Experimental Results 

To test the pulse measurement scheme, I applied current  pulses to SQUID DS2B 

through the on-chip capacitor fFC w 1=μ . This was the same capacitor I used for 

applying microwave power to excite transitions.  Some of the pulse current also flows 

through the isolation junction, but since it is not biased this should produce no significant 

effects. To form a short pulse ( ns2< ) at the qubit junction, I used the capacitor  to wCμ
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differentiate the rising edge of a slower current pulse; the overall applied pulse was ~2 μs 

long with the rising edge of the pulse producing the ~2 ns pulse at the qubit. I monitored 

the output voltage across the SQUID using a low-noise amplifier, keeping track of 

whether or not the device switched, and resolved the timing of the individual escape 

events to better than 100 ps.  Repeating this for many switching events, I constructed the 

average probability of switching for a given pulse size and the escape rate as a function of 

time during the pulse.  

The pulsed method presents one difficulty:  The current in the qubit during the 

pulse differs greatly from the current applied at the top of the refrigerator. What is needed 

is a way to determine the actual pulse current in the qubit vs. time.  To calibrate the 

pulses, I made use of the escape rate of the system. Figure 7.2 shows the measured escape 

rate  of the qubit junction as a function of time for device DS>Γ< 2B. Also plotted are 

fitted results (dotted lines) for 0Γ , 1Γ , and 2Γ  using numerical analysis (see section 2.5) 

for an effective qubit critical current, AI μ957.1701 =  and pFC 3.41 = . I note that this 

isn’t the actual critical current of the qubit, but an effective critical current that depends 

on the flux state. Based on the device parameters, the single junction cubic approximation 

model provides a good description of the escape rates [41]. Quantum simulations have 

also verified this approximation [42]. The disagreement between the measured >Γ<  and 

expected  is due to high-frequency noise producing a very small population in 0Γ 2=n , 

as discovered using the pulse measurement technique [104]. Since the escape rate of the 

second excited state is approximately  in the region of the disagreement, even 

a small  population leads to an easily observable enhancement in . 

s/108
2 =Γ

2=n >Γ<

Since the escape rate depends on the current through the junction; I could use 
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measurements of the escape rate to infer the current during the pulse. I carefully 

measured the escape rate versus time during a pulse and then used Fig. 7.2 to map from 

escape rate versus time to current versus time for the pulse. Figure 7.5(a) shows the 

actual measured escape rate versus time for three sample pulses with amplitudes of 0.61,  

0.79 and 0.85 V at the pulse generator and 10 dB of additional attenuation on the line. 

Figure 7.5(b) shows nine pulses with successively larger amplitude, from 0.4 V to 0.64 V 

(the peak voltage of the pulse at the top of the refrigerator was used to characterize the 

amplitude) after converting the escape rate to current. To improve statistics, the two 

smallest pulses in Fig. 7.5(b) were calibrated at relatively high bias currents, 

AI μ81.17= , while larger pulses were calibrated at lower bias currents, AI μ74.17= . 

This was done so that the escape rate during the pulse was always easily measured. 

Figure 7.5 shows that our pulses were quite short, only 1-2 ns in duration, and at the peak 

of the pulse the current appears to be resolvable to better than 10 nA in 100 ps time 

intervals. 

Figure 7.6 shows examples of switching curves when the qubit was prepared in 

different initial states.  The open diamonds show the probability  that the system 

escaped versus pulse size for the situation where the qubit was predominantly in its 

ground state (no resonant microwave excitation applied). For small pulses, the data 

follow a straight line on a semi-log plot, as expected since in this limit the probability of 

switching is 

eP

τ001 ~ ΓP  and 0Γ  depends approximately exponentially on current. The 

solid squares show the corresponding measured switching probability  after a resonant 

microwave pulse of 6.5 GHz was used to produce some population in the first excited 

state; the measurement pulse was applied 3 ns after the microwaves were turned off to  

eP
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Figure 7.5: (a) Escape rate through device DS2B plotted versus time for three 

measurement pulses of amplitude 0.61, 0.79 and 0.85 V at the pulse generator and 10 dB 

of attenuation on the line. (b) The current through the qubit for nine pulses with 

amplitudes ranging from 110 nA to 150 nA (0.4 to 0.64 V at the pulse generator) as 

determined from the ground state escape rate of Fig. 7.2. The conversion assumes that the 

system is entirely in the ground state during the measurement pulse. 
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Figure 7.6: Switching probability  versus pulse amplitude for three population 

distributions. The diamonds correspond to the situation when no microwaves were 

applied and the qubit was predominantly in the ground state. The solid squares show the 

measured fraction that escaped when 6.5 GHz microwaves were applied to enhance 

eP

1=n  

state population. The open circles show data where 2=n  and  excited state 

populations were produced by pumping with microwaves at 12.5 GHz.  The solid lines 

are fits with the only variable being the populations of 

1=n

0=n , 1, and .  The three solid 

curves show fits to the diamonds with 

2

99996.00 =P , 01 =P  and , the 

squares with , 

5
2 104 −×=P

80096.00 =P 199.01 =P , , and then , 

,  and the circles with 

5
2 104 −×=P 78996.00 =P

21.01 =P 5
2 104 −×=P 867.00 =P , 088.01 =P , . The 

difference in the two fits to the square data is not distinguishable in this plot. 

045.02 =P
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ensure that any undesired transients had decayed away.  Finally, the open circles show 

the corresponding result after a 12.5 GHz resonant microwave pulse was used to produce 

some population in the second excited state.  In this case, 1=n  was also occupied due to 

relaxation from . 2=n

Examination of Fig. 7.6 reveals clear bending in the switching curves 

corresponding to the currents at which individual energy levels become highly likely to 

escape (about 150 nA for 0=n , 100 nA for 1=n  and 50 nA for ). In order to 

extract the population in each level, I first used the pulse current calibration (Fig. 7.5) to 

determine the current at time , and then found the escape rate at time t  from Fig. 7.2.  

Starting from an initial occupancy of the levels, I numerically time evolved the 

occupancies in 0.1 ns increments (

2=n

t

nsdt 1.0= ), accounting for loss due to tunneling from 

each of the levels,  

( )dtttPdttP nnn )(exp)()( Γ−=+ .   (7.22) 

The only variables in this procedure are the initial populations of the levels. The 

diamonds in Fig. 7.6 were fit using 99996.0 =P , 01 =P  and ; the squares 

were fit using , 

5
2 104 −×=P

80096.00 =P 199.01 =P  and ; and the circles were fit using 

,  and 

5
2 104 −×=P

867.00 =P 088.01 =P 045.02 =P .  For the 6.5 GHz data (squares), the best λ2 fit 

for the entire data set came from 199.01 =P . However, 21.01 =P  fits the bend more 

accurately and is plotted as well. Figure 7.7 shows a linear representation for the case of 

no microwaves and with microwaves applied at 6.5 GHz, here only  is used to 

fit the 6.5 GHz data. In general, the agreement is quite good between the fit and the data, 

with the most serious discrepancies being in the 

21.01 =P

2=n  data, probably due to uncertainties  
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Figure 7.7: Switching probability  versus pulse amplitude for two population 

distributions. The solid circles correspond to the situation when no microwaves were 

applied and the qubit was predominantly in the ground state. The open circles show the 

measured fraction that escaped when 6.5 GHz microwaves were applied to enhance the 

 state population. The solid circles are fit with 

eP

1=n 99996.00 =P , 01 =P  and 

 using Eq. (7.22). Here the solid curve through the open circles uses 

, , and , since this captures the bend at  

better on a linear plot.  

5
2 104 −×=P

78996.00 =P 21.01 =P 5
2 104 −×=P nAI p 110~
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in  and the small population in 2Γ 2=n . Note that since there is no independent way to 

determine the population during the pulse, we can only check for self-consistency. 

To the extent that these fits determine the state populations, P10 can be found from 

the measurements. I emphasize here that P10 is the probability that a single shot 

measurement incorrectly detects 1=n , not the error in fitting many pulse amplitudes. 

Figure 7.8 shows the resulting determination of  (circles), 10P 01P  (squares), and  

(pluses) from the data and fits shown in Fig. 7.6. The filled circles show  determined 

using  data for parameters 

N

10P

01P 80096.00 =P , and 199.01 =P . The open circles and plot 

of  are based on , since the behavior near the bend is critical. This gives a 

better representation of the data near the optimal point. Examination of Fig. 7.8 reveals 

that the optimum single-shot pulse occurred for an amplitude of 117 nA, which yielded 

an optimum error of  and optimal fidelity 

N 21.01 =P

03.0≅eN %94=F . This error matches the 

predicted error from Fig. 7.2 for 100=u , which is roughly consistent with the expected 

ratio of  at the peak of the pulse at 01 /ΓΓ AI μ875.17= .  

For comparison, Fig. 7.8 also shows theoretical results (solid and dashed curves) 

for ,  and  for the pulses shown in Fig. 7.5. The  curve came from time 

evolving Eq. (7.22) from an initial population 

01P 10P eN 10P

11 =P  for different pulses. The  curve 

was found by time evolving Eq. (7.22) from an initial population . As expected for 

small pulse amplitudes,  is large, since the pulse isn’t large enough to give the first 

excited state a large escape rate.  For large pulse amplitudes, 

01P

10 =P

10P

1=n  tunnels rapidly so that 

 is small, however the ground state has a very large escape rate so that  becomes  10P 01P
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Figure 7.8: Measured error  (squares) and inferred average error  (pluses) and  

(circles) found from data shown in Fig. (7.5) for SQUID DS

01P eN 10P

2B. Solid and dashed curves 

show theoretical curves based on the pulse current calibration. Open circles show  if a 

population of  is inferred from Fig. 7.6, closed circles show  for 

10P

21.01 =P 10P 199.01 =P . 

Note offset zero on y-axis and that 199.01 =P  produces unphysical (negative) values for 

, while  is better behaved. 10P 21.01 =P
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large. Also shown is a solid curve for the resulting average single-shot error  for 

, and .  As noted above, the minimum error does not occur when 

.  agrees very well with the data. On the other hand  shows a small 

discrepancy, which may come from errors in 

eN

5.01 =P 5.00 =P 02 =P

0110 PP = 01P 10P

1Γ  or the difficulty in determining the 

relatively small population 2.01 =P 1 in the excited state 1=n , which I used to get  

(open circles in Fig. 7.8). 

10P

 

7.2.3 T1 and Landau-Zener Fidelity Loss 

 In the above analysis I had to make some assumptions that may not be true. 

Ideally, I could simply prepare the population in a few known states and compare with 

the measured result to determine the measurement fidelity. Of course, this assumes you 

can perfectly prepare a state with a known probability in a specific state. Since we do not 

have an independent way of determining the populations in each level, this was not 

possible. One possibility would be to use the fixed escape rate measurements to cross-

check the pulse measurements. Since the escape rate measurements do not involve 

sweeping the bias, they are much less susceptible to Lanau-Zener effects [105]. However, 

they require precise knowledge of nΓ  and do not give independent measurements of each 

. nP

 The previous discussion also made no reference to relaxation and assumed that 

the rate of relaxation was negligible compared to the width of the pulse. To demonstrate 

the potential problems with this assumption, imagine a qubit with . An initial 

population with  will appear after 1 ns as 

nsT 201 =

11 =P 95.01 =p . This problem is actually less 
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serious than it appears at first. The idea is that one should assume that the measurement 

happens not when the pulse begins, but when the majority of the events switch, at the 

peak of the pulse. Thus the drop in  is being honestly reflected in the measurement.  1p

A more serious issue is the loss of measurement fidelity due to Landau-Zener 

transitions [106]. This seemed to be particularly noticeable in device DS3 and DS4. As I 

will discuss in detail in Chapters 9 and 10, our qubit is coupled to many parasitic 

quantum systems, which produce avoided level crossings in the transition spectrum [37, 

106]. During the measurement pulse, the transition frequency of the qubit varies, and the 

qubit has some probability of transferring energy to these other quantum system before 

the qubit switches. Landau-Zener transitions will only affect the error , since if the 

qubit is in  there is no energy to transfer. Assuming that the system starts with 

, the probability of transferring the energy to a coupled quantum system with the 

same transition frequency is: [63, 66, 105] 

10P

0=n

1=n

    
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ Δ−
−=→

dtdf
P fi

i /
exp1)01(

01

22π
 ,    (7.23) 

where  is the frequency splitting caused by the ifiΔ th avoided level crossing and  

is the rate at which the current pulse changes the  transition frequency . 

Equation (7.23) implies that large splittings will dominate the measurement error.   For 

example, a splitting size 

dtdf /01

10 → 01f

MHzf 10=Δ  and pulse ramp rate , will 

lead to an additional , where as 

nsGHzdtdf /2/01 =

0005.010 =P MHzf 60=Δ  gives .  The 

distribution of splittings will need to be considered to determine the actual measurement 

fidelity in a device, with special attention given to any large individual splittings. In fact, 

012.010 =P
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the effect of many small uniformly distributed splittings is exactly like ; energy is 

transferred from the qubit to a bath on a time scale that is independent of the sweep rate.  

1T

When fine spectroscopic measurements were performed on DS2A and DS2B, only 

very fine splittings  were seen [37]. This includes a large section of the 

spectrum (from 5.5 GHz to 6.25 GHz in DS

MHzf 10<Δ

2B) that the qubit would pass through during a 

measurement pulse. Unfortunately, we were unable to clearly resolve splittings 

. An exact prediction is therefore not possible, but if we take as a worse 

case estimate that the qubit would transverse through 20 splittings with , 

this would lead to . Additionally if large splittings were affecting the 

measurement fidelity we would expect to see discrete steps in Fig. 7.6, corresponding to a 

larger measurement pulse crossing a new splitting; we see no evidence of this. Of course, 

our results do not rule out effects of small splittings, which would cause a loss of 

measurement fidelity and lead to underestimating the population in 

MHzf 10<Δ

MHzf 10=Δ

01.010 <P

1 . 

While determining the measurement fidelity by preparing a perfectly known state 

is not possible, measurements of Rabi oscillations should reveal significant discrepancies. 

In device DS2B, Rabi oscillations typically had decay times of  using 

either the pulse measurement technique or the escape rate technique (see Chapter 8). 

With this range of 

nsnsT 1510' −=

'T  and a Rabi flopping frequency of ns9/2πω =  one expects a 

maximum peak  during the oscillation. As I will show in Chapter 8, an 

on-resonance Rabi oscillation was viewed using the pulse measurement technique in 

DS

87.083.01 −≈p

2B. From fitting the entire switching curve, I found peak values of and 

 at 

75.01 ≈p

05.02 ≈p nst 4= , as shown in Fig. 7.9. If I assume a relaxation time  and  nsT 151 =
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Figure 7.9: Rabi oscillation in the probability  of occupying  in device DS1p 1=n 2B 

using the pulsed readout technique. On-resonance 6.2 GHz microwaves were applied for 

28 ns to induce Rabi oscillations between 0=t  and nst 28= . By fitting the entire 

switching curve the population in 2=n  was also determined. The dark solid curve 

plotted from  to  is a fit to the Rabi oscillation using  (see Section 

8.2.2 for details). The maximum excited state populations were and 

0=t nst 28= nsT 10'=

75.01 ≈p 05.02 ≈p  

at . nst 4=
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1 ns of delay after the microwaves are no longer resonant,  falls from 0.83 to 0.78 

before tunneling occurs. This probability is close to what I found. This example 

demonstrates the difficulty in determining the measurement fidelity within a few percent 

if the device has relatively short coherence times and leakage to higher levels. However, 

these rough calculations demonstrate with confidence that any additional measurement 

error to the single shot estimate is rather small in DS

1p

2B. Surprisingly, Rabi oscillations 

measured in DS2B using the pulse readout technique tended to drift downwards in time 

(see Fig. 7.9) for some data sets; the cause of this was never determined 

As I will show in Chapters 9 and 10 spectroscopic measurements on device DS3A 

showed prominent large avoided level crossings over the range experimentally tested, 

with a maximum . While some of these large splittings were avoided by 

operating at lower frequencies (so that a pulse would not transverse the crossings), others 

could not be avoided. Unfortunately the entire spectrum covered during a measurement 

pulse could not be measured, but only portions of the spectrum within about 500 MHz of 

the operating point due to the biasing conditions. The problem is that devices with 

 could not be operated at high escape rates when optimally biased. As I will 

discuss in Chapter 8, Rabi oscillation in these devices always had measured peak 

probabilities , consistent with lower measurement fidelity due to Landau-Zener 

transitions, even though the coherence times were double those of device DS

MHzf 250>Δ

0201 II <

70.01 <p

2B. 

 

7.3 Summary 

In this chapter, I described my use of two measurement techniques to view the 

energy level of the qubit, both of which require measuring when the SQUID switches to 

 141



the voltage state. In the first technique, I measured the total tunneling rate of the qubit 

junction and used this to detect population in higher levels. This technique requires many 

repetitions to determine the total tunneling rate at the desired resolution and could only be 

used at bias points where the tunneling was non-negligible. In the pulse measurement 

technique the qubit could be operated at any bias point. The time resolution is determined 

by the jitter (between the qubit operation and measurement pulse) and the width of the 

pulse (typically 1-2 ns in DS2B). Using the pulse measurement technique also allowed me 

to selectively measure at any time during the operation. The main drawbacks to the pulse 

technique are the influence of Landau-Zener transitions, which reduce the measured 

fidelity of  and the additional complexity in setting up the experiment. In contrast, 

the escape rate technique is plagued by leakage to higher levels of the qubit, which 

dominate the measurement, and it does not give individual population levels in each state 

without resorting to detailed modeling [65]. 

1=n
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Chapter 8 

Qubit Performance 

 

In this chapter, I describe my results on the control of the quantum state of dc 

SQUID phase qubits. Using the methods previously described to calibrate, initialize, 

control and readout the qubit, I performed a series of measurements on three different 

devices. The goal of these measurements was to test our understanding of the system as 

well as demonstrate control of the quantum state. I measured the spectrum, Rabi 

oscillations, Ramsey fringes and relaxation, and used this data to determine quantitatively 

the relaxation and decoherence times of the qubits. Here, I also discuss the relationships 

between the different characteristic times of these measurements. Evidence of coupling 

between two qubits and manipulation of the coupled states will also be shown. The 

results will be compared to theoretical predictions from Chapters 2 and 3. I finally 

conclude this chapter with a comparison of the different devices and some potential 

sources that might be the causes of the short coherence times I find in these qubits. 

 

8.1 SQUID DS1

8.1.1 SQUID DS1 Spectrum 

 The first device I tested was device DS1, which was an uncoupled dc SQUID 

phase qubit fabricated by Hypress, Inc. [75], see [Fig. 4.2(a)]. A spectrum for the device 

at 100 mK is shown in Fig. 8.1(a-b). This specific data set was taken before I joined the  
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Figure 8.1: (a-b) Spectrum and fits for two flux states of dc SQUID phase qubit DS1 and 

(c) a slice of the spectrum measured at 100 mK [37]. The color scale represents the 

enhancement ( ) ΓΔΓ=ΓΓ−Γ //m  in the escape rate, where mΓ  is the escape rate when 

continuous microwaves were applied and Γ  is the background escape rate.  The solid 

curves show a fit to the transitions using a single Josephson junction model. (c) Plot of 

 vs.  for the  transition with 8.4 GHz microwaves applied. Solid curve is 

a fit to a Lorentzian to determine the spectroscopic width.  

ΓΔΓ / 01f 10 →
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group [36, 37] and I present it here for completeness. For this measurement, the bias 

current and flux current were ramped as described in Chapter 6; the device was run 

effectively as a single current biased Josephson junction. Continuous low power 

microwaves were applied, such that power broadening was not significant (low power 

limit). When the energy level spacing was resonant with the microwave frequency an 

enhancement in the escape rate was observed. The ramp was repeated approximately 105 

times for each microwave frequency to obtain adequate statistics. The enhancement in the 

escape rate ( ) ΓΓ−Γ=ΓΔΓ // m  is plotted in Fig. 8.1, where mΓ  is the escape rate with 

microwaves and  is without. In practice what is measured is the time at which the 

junction switches to the voltage state, I converted the switching time to qubit junction 

current 

Γ

I  in the plot by separately measuring I  vs. time  (see Chapter 5).  t

 Figure 8.1(a) shows the spectrum of DS1 for the flux state  and Fig. 

8.1(b) shows the next flux state 

1−=fn

0=fn  at 100 mK. The solid curves are fits using a 

single junction model, numerically solved, with a capacitance of  and a 

critical current of 

pFC 468.4=

AI μ4.330 =  in Fig. 8.1(a) and AI μ97.330 =  for Fig. 8.1(b). The 

difference in the critical currents in the two fits corresponds to the expected difference in 

trapped circulating current in the two flux states AL μ59.0/0 ≅Φ . The two fits 

demonstrate that regardless of the flux state the single Josephson junction model fits the 

spectrum quite well.  

Along with the first excited state, higher-level transitions are also visible in the 

spectra, which provide an additional check on the model. For example in Fig. 8.1(a) at 

AI μ05.33= , the 10 =→= nn  resonant frequency is GHzf 7.801 = ,  GHzf 2.812 =
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and . I note that these transitions are visible due to a small population in 

higher levels; this population occurs even without applying microwaves at 100 mK due to 

thermal excitation. The escape rate readout technique is extremely sensitive to population 

in the higher levels, making a measurement of higher-level transitions like  relatively 

easy. By applying microwaves at approximately 13-14 GHz, I was also able to map out 

the  to  transition, as will be shown in section 8.2.3.  

GHzf 4.723 =

12f

0=n 2=n

The spectrum also allows me to find the spectroscopic coherence time . 

Provided I use a low enough power so as to not induce significant power broadening [see 

Eq. (3.26)], I can use  

*
2T

2
2

2
01

21
2
01

11 )(1

2/

T

TT

d

eq

ωω
ρ

−+

Ω
=  .     (8.1) 

Figure 8.1(c) shows a slice of the DS1 spectrum when the resonance was at 8.4 GHz. In 

this plot, I converted the x-axis from current I  to  using the single junction fit shown 

in Fig. 8.1(a). I should emphasize that for these plot I used a relatively slow current ramp 

with 

01f

msAdtdI /20/ μ< . The solid curve in Fig. 8.1(c) is a lorentzian fit with a full-

width-at-half-maximum MHzf 47=Δ . Using Eq. (3.19), I find . I 

note that the spectroscopic coherence time is determined by ,  and 

nsfT 8.6/*
2 =Δ= π

1T φT +T , i.e. 

relaxation, dephasing, and inhomogeneous broadening, as well as tunneling. If low 

frequency noise (inhomogeneous broadening) is present the width will depend on 

dIdf /01 , which is a function of bias current [38, 57, 107]. Thus  depends on the 

current, through both the tunneling rate 

*
2T

1Γ  and dIdf /01 . Spectroscopic coherence times 
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in this device ranged from  to approximately ; in general longer times were 

found at lower currents where  is smaller, as expected. 

nsT 1*
2 = ns7

dIdf /01

 

8.1.2 SQUID DS1 Rabi Oscillations and Relaxation 

The relaxation time of SQUID DS1 was measured using a variety of techniques 

before I joined the group. A list of the measured characteristic times in this device and 

the techniques used to obtain them are given in Ref. [108]. Here I quote these results, as 

given by S. K. Dutta [34]. A relaxation time of approximately 14 ns was found using a 

temperature dependent escape rate fit technique [109]. Measurements of the escape rate 

after preparing an initial population in the excited states yielded several exponential 

decay times, an initial one of nsT a 21 ≈  for nst 2< , then nsT b 61 ≈  for nstns 202 << , 

and a final one of . The initial decay was found to arise from tunneling of 

population in the second excited state, while the final two time constants appear to be 

related to the population in 

nsT c 601 ≈

1=n  [110]. Unfortunately, with the escape rate measurement 

technique it is difficult to distinguish contributions from the different energy levels. 

Finally, Rabi oscillation measurements on this device showed an exponential decay 

constant of  to 15 ns, depending on the bias point. 6'=T

 

8.2 SQUIDs DS2A and DS2B

8.2.1 SQUIDs DS2A and DS2B Spectrum 

The behavior of SQUID phase qubits DS2A and DS2B were very similar to that of 

DS1. It is worth noting that device DS1 had a magnetic field applied to reduce the critical  
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Figure 8.2: Spectrum and spectroscopic widths of devices DS2A and DS2B measured at 25 

mK. False color plot of the enhancement ΓΔΓ /  versus applied microwave frequency  

and current 

f

I  in the escape rate maps out the spectrum of (a) SQUID DS2A and (b) 

SQUID DS2B. The  transitions were fit using a single Josephson junction model 

(solid line). Plots also show higher-level transitions  and . The 

10 →

21→ 32 → ΓΔΓ /  

spectrum of  transition taken with 6.8 GHz applied microwaves for (c) DS10 → 2A and 

(d) DS2B. Solid curves are fits to a lorentzian to determine the spectroscopic coherence 

time at 6.8 GHz.  
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current, while DS2A and DS2B did not. Spectra for DS2A and DS2B, obtained using the 

same procedure as described above, are shown in Figs. 8.2(a) and 8.2(b), respectively. 

The solid lines are fits using the single junction model with  and pFC 842.4=

AI μ153.220 =  in Fig. 8.2(a) and pFC 557.4=  and AI μ1364.200 =  in Fig. 8.2(b). In 

taking the spectrum of DS2B the background escape rate drifted (possibly due to simple 

drift in the flux). I removed the drift in Fig. 8.2 by lining up the escape rates without 

applied microwaves and applying the same shift to the data with microwaves.  

Figures 8.2(a) and 8.2(b) also show signs of initial population in higher levels, 

even though the dilution refrigerator was at base temperature. This was later minimized 

by minimizing the time the device spent in the voltage state after it switched; the device 

was retrapped in the zero voltage state within a few μs after switching. This prevented the 

self-heating that lead to higher level population evident in Fig. 8.2(a) and (b).  

As shown in Fig. 8.2(c), I measured MHzf 52=Δ  when 6.8 GHz microwaves 

were applied to DS2A or a spectroscopic coherence time . Figure 8.2(d) 

shows the results for device DS

nsfT 6/*
2 =Δ= π

2B; I measured MHzf 55=Δ  at 6.8 GHz, which gives a 

spectroscopic coherence time . These times were similar to those 

found in DS

nsfT 7.5/*
2 =Δ= π

1. 

I also measured the spectroscopic coherence time in DS2B using the pulse readout 

measurement technique. The bias was held constant, at a negligible tunneling rate and I 

applied continuous microwaves before performing the readout pulse. The microwaves 

were then stepped in 3 MHz intervals at this bias point. These measurements do not 

require a current versus time calibration since each frequency is a separate data set and 
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results in only one population value. This technique allowed me to operate the qubit 

substantially deeper in the potential well, reducing the effects of inhomogeneous 

broadening and removing any effects of a continuously ramped current. At 

, I found GHzf 67.801 = MHzf 40=Δ  or a spectroscopic coherence time 

. A detailed study of the spectroscopic coherence time with respect 

to bias current for this device is given in Ref. [107]. 

nsfT 9.7/*
2 =Δ= π

 

8.2.2 SQUID DS2A and DS2B Rabi Oscillations and Relaxation 

 Figure 8.3(a-b) show six different Rabi oscillations (from –10 to –25 dBm in 

microwave power at the source) in DS2A measured using escape rate readout with 6.8 

GHz microwaves applied starting at 0=t . The microwaves were turned on at resonance, 

here . The six curves in the top two plots clearly demonstrate the effects of 

higher levels in the device; higher power Rabi oscillations saturate at long times to higher 

escape rates as expected if the higher power microwaves produce more off-resonant 

transitions from  to . 

GHzf 8.601 =

1=n 2=n

   Figure 8.3(c) shows a fit of the of the –16 dBm curve to a modified version of Eq. 

(3.30),  

( ) ( )[ ]01010111 '/sincos)'/exp( ΩΩ+Ω−Γ−Γ=Γ TttTteq
b

eq
a ,   (8.2) 

using the fit parameters , , decay time  and Rabi 

frequency 

seq
a μ/7=Γ seq

b μ/5=Γ nsT 3.10'=

ns8.3/201 π=Ω . The initial discrepancy between the data and Eq. (8.2) is 

due to the several nanosecond rise time of the microwave source, which resulted in a poor 

fit at the start of the waveform [37].  
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Figure 8.3: Rabi oscillations in the escape rate for dc SQUID phase qubit DS2A (a) and 

(b) are Rabi oscillations driven using 6.8 GHz applied microwaves for a variety of 

microwave powers. The powers listed are those at the microwave source. The Rabi 

frequency increased as expected for increased microwave powers. (c) Fit (solid line) to 

the –16 dBm data using an exponential decay to determine the Rabi oscillation decay 

time constant .  nsT 3.10' =
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Figure 8.4(a-b) show similar measurements of Rabi oscillation in the escape rate 

in SQUID DS2B, with 6.6 GHz microwaves applied. Here the solid curve in Fig. 8.4(c) is 

a fit to Eq. (8.2) with , , seq
a μ/20=Γ seq

b μ/16=Γ nsT 15'=  and Rabi frequency  

ns15.3/201 π=Ω . I note the decay times in these devices did depend somewhat on the 

bias current, with some data containing decay times as short as 5 ns. However, none of 

these Nb devices (DS1, DS2A, DS2B) had Rabi decay times 'T  exceeding 10 to 15 ns and 

none showed clear oscillations after about 40 ns. 

 While it was relatively easy to see Rabi oscillations in the escape rate, this 

measurement technique has several shortcomings. Under typical conditions, what is 

actually measured is mostly determined by the population in states with . Based on 

multi-level density matrix simulations [65], it appears that the population in the higher 

levels is typically proportion to , since population in higher levels in mainly created by 

pumping from . However, even if no leakage to 

1>n

1p

1=n 2=n  existed, the escape rate 

method still requires precise knowledge of 1Γ  to determine , which is subject to error. 

This measurement technique is also inefficient and somewhat susceptible to drift, since 

the entire oscillation is determined through repeated measurements of random tunneling 

events, many of which correspond to switching events at times, when the oscillations 

have died away.     

1p

 For comparison, Figure 8.5 shows Rabi oscillations in the probability  in 

device DS

1p

2B [98] measured using the pulse technique. For these measurements, I found 

 using pulse measurements with different pulse sizes (see Chapter 7) and fitting to the 

entire switching curve. I applied microwaves on-resonance at 6.2 GHz to induce Rabi  

1p
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Figure 8.4: Rabi oscillation in the escape rate for device DS2B. (a) and (b) show Rabi 

oscillations measured in the escape rate when 6.6 GHz microwaves were applied for a 

variety of microwave powers (referred to the microwave source). (c) Solid curve is a fit 

to the –16 dBm data using Eq. 8.1 to determine the Rabi oscillation decay . nsT 15' =
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Figure 8.5: Rabi oscillation in the probability  of occupying  in device DS1p 1=n 2B 

using the pulsed readout technique. On-resonance 6.2 GHz microwaves were applied to 

induce Rabi oscillations between 0=t  and nst 28= . The microwaves were then shut off 

to measure the relaxation time. By fitting the entire switching curve (not shown) the 

population  in  was also determined. The dark curve is a fit to the Rabi 

oscillation and the subsequent decay in . A single exponential relaxation time 

 does a poor job of describing the entire decay. 

2p 2=n

1p

nsT 121 =
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oscillations from  to nst 0= nst 30= . I then switched off the microwaves and followed 

the subsequent decay. The open circles in Fig. 8.5 correspond to the probability  of 

being in .  At each time I took 15,000 points at 15 different pulse amplitudes. By  

1p

1=n

fitting the entire switching curve, I also found , the population in , which are 

plotted as solid circles. The dark solid curve is a fit of  vs. t  to the Rabi oscillation and 

the subsequent exponential decay. The Rabi oscillations from 

2p 2=n

1p

nst 0=  to  was a 

fit to Eq. (3.30), with , 

nst 30=

45.011 =eqρ nsT 10'=  and ns3.5/201 π=Ω . Ordinarily one 

would expect , where here it is a factor of 0.9 smaller. This factor could 

account for Landau-Zener transitions causing loss of measurement fidelity or relaxation 

that might occur during the measurement pulse. Moreover  was not included in Eq. 

(3.30) so it should not fit perfectly. Nevertheless, Fig. 8.5 shows reasonable agreement 

for the first three oscillations. However, the final two oscillations lie below the fit; this is 

quite peculiar and the cause is not known. 

50.011 =eqρ

2p

 After the microwaves are shut off at nst 29=  the subsequent relaxation appears 

to have two time constants, similar to what was seen in DS1. Starting from when the 

microwaves were shut off, just before nst 29= , the fit has an exponential decay of about 

12 ns. This fits the data up to about , but for  the data clearly has a much 

longer time constant.  

ns43 nst 43>

The Rabi oscillations and subsequent decay as measured by the pulse technique 

can be directly compared to those found using the escape rate technique. Figure 8.6(a) 

shows the background escape rate that was used to find 0Γ . I also show in Fig. 8.6(a) the 

Rabi oscillation data as measured using the escape rate readout (visible as a spike near  
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Figure 8.6: Comparison of escape rate and pulsed measurements of Rabi oscillations and 

subsequent relaxation. (a) Escape rate vs. current (solid curve) with no applied 

microwaves is fit to  to determine 0Γ nΓ  (dashed curves) during the Rabi oscillations and 

decay. (b) The dark solid curve is the escape rate of a Rabi oscillation and decay in DS2B 

(same experiment as in Fig. 8.5). The solid curve with open squares is the predicted 

escape rate only considering 1=n  using the pulsed measurements of  from Fig. 8.5 

and  from the fit of Fig. 8.6(a). The dashed line with circles includes the lowest three 

levels.  

1p

1Γ
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AI μ99.16= . From the fit to 0Γ , I estimated that during the measurement 

, , and . The dark solid curve in Fig. 8.6(b) 

shows the Rabi oscillations measured using the escape rate. The semi-log plot is the same  

sx /103 3
0 ≈Γ sx /103 6

1 ≈Γ sx /106 8
2 ≈Γ

data shown in Fig. 8.6(a) as a spike, except here the time scale has been expanded to 

make the oscillations visible. This data was taken at the same bias current and microwave 

power as I used for taking the data in Fig. 8.5. The open squares highlighted with a solid 

curve show the escape rate contribution from the first excited state , 

with  being the values plotted in Fig. 8.5, which were obtained from pulsed 

measurements. The open circles highlighted with the dashed line include , 1 and 2 

with ; this value for 

1
6

11 *103 pxp =Γ

1p

0=n

sx /104 8
2 =Γ 2Γ  is about 30% smaller than I estimated based on 

, perhaps because of uncertainty deducing 0Γ 2Γ  from the fit to 0Γ .  

After the Rabi oscillation ends at about 30 ns,  and 1p 1Γ  describe the subsequent 

decay of the escape rate very well.  The two decay constants are also obvious in this 

semi-log plot, just as seen in the pulse data, with the second . Also evident in 

Fig. 8.6 is the rapid decay of  after the oscillation. A large fraction of the extremely 

rapid decay in  can be attributed to the large escape rate . 

nsT 501 >

2p

2p sx /104 8
2 ≅Γ

 

8.2.3 Coupled Qubits DS2A and DS2B

Devices DS2A and DS2B were coupled to each other via an on-chip coupling 

capacitor [  in Fig. 4.2(b)]. This coupling allowed me to prepare entangled states of the 

system [45]. The coupling between the two qubits is most easily visualized in its  

cC
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Figure 8.7: Coupled qubits DS2A and DS2B. (a) A clear avoided level crossing is visible in 

the spectrum of the coupled qubits. False color map shows the microwave enhancement 

in the escape rate with microwaves. The current through qubit DS2B is ramped in time, 

while qubit DS2A is held fixed. A few of the transitions from 00  are labeled. (b) Bold 

curve shows Rabi oscillations when strong microwaves were applied at the upper avoided 

level crossing (7.037 GHz). The increased frequency for the detuned oscillations (dashed 

curves) is consistent with the qubit being driven to the entangled state during the 

oscillations. 
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spectrum. To obtain the spectrum shown in Fig. 8.7, I held qubit DS2A at a fixed 

frequency , while the current through qubit DS01f 2B  was ramped. Unfortunately 

with the escape rate measurement technique it was problematic to measure qubit DS

BI1

2B at 

frequencies higher than 7.1 GHz or to couple the two devices together at frequencies 

lower than 6.9 GHz. The problem was that the escape rate of the device that is held at 

fixed bias needs to be small, but still experimentally measurable. I applied continuous 

microwaves and monitored the voltage line of qubit DS2A to detect switches while the 

current through DS2B was swept. In these experiments, DS2A’s microwave line was used, 

but the microwaves strongly coupled to DS2B as well. DS2A was biased such that a switch 

in DS2B would very quickly cause DS2A to also switch to the voltage state.  

Figure 8.7 shows a clear avoided level crossing for transitions from o 

 and o . Here the first index indicates the state of DS

>00|  t

>01| >00|  t >10| 2A and the second 

the state of DS2B.  The minimum splitting is about 250 MHz. Plugging the design values 

for  and  into Eq. (2.24), I find the expected coupling constant C cC 04.0=ξ . The 

experimental value from Fig. 8.7 is 036.06900/250 == MHzMHzξ , which matches the 

design value reasonably well.  

When the two qubits are biased at different 0 to 1 transitions frequencies, they are 

dynamically decoupled [45]. In this case, applying resonant microwaves to either qubit 

produces Rabi oscillations as shown previously. On the other hand, if the qubits are 

biased to the same , one gets maximal dynamical coupling and an avoided crossing. 

The solid curve and open circles in Fig. 8.7(b) shows a Rabi oscillations for this situation. 

I find clear Rabi oscillations consistent with the system cycling between  and the 

entangled state.  The open circles in Fig. 8.7(b) show an on-resonance Rabi oscillations 

01f

>00|
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for applied microwaves of 7.037 GHz (-14 dBm). These oscillations are consistent with 

2
10|01|00| >+>

>↔  transitions. The square and triangles show a Rabi oscillation at  

the same bias point, but with microwaves applied at 7.012 GHz and 7.062 GHz 

respectively, i.e. detuned by ±25 MHz. The off-resonance microwaves produced a faster 

Rabi-flopping frequency as expected [19, 37, 58] and therefore demonstrate that the 

oscillation when driving at 7.037 GHz is consistent with pumping to the entangled state 

2
10|01| >+>

=Ψ . In other words, if the microwaves were interacting with uncoupled 

qubits, the smallest flopping-frequency would be at 6.9 GHz. The same procedure was 

done at the anti-symmetric avoided crossing and oscillations were seen with microwaves 

applied at 6.76 GHz,.  

Unfortunately the escape rate technique and the short coherence times of these 

qubits made it difficult to perform rigorous analysis of the dynamics of the entangled 

system. The Rabi decay time appears to be nsT 15'≈  for both coupled qubit frequencies, 

however it was difficult to see any oscillations after 20 ns so  is either an 

overestimate, or something more complicated is happening in the coupled system. This 

nsT 15'≈

'T  is roughly the same as the decay times of the individual qubits. In hindsight using the 

pulse technique would have allowed for a more detailed analysis of the coupled states and 

potentially seperate readout of the individual qubits [111].        

  It is also possible to observe higher energy level transitions. Figure 8.8 shows 

transitions from |  to   and . For this data, I again fixed 

 in qubit DS

>00 >20| , >02| >11|

GHzf 95.601 = 2A, while qubit DS2B’s frequency was ramped. At 

AI B μ146.241 ≈ , qubit B had GHzf 45.601 ≈ , based on my measurements of the   01f
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Figure 8.8: Higher level transition spectrum of coupled qubits DS2A and DS2B. The 

coupled qubits were driven with continuous microwaves from 00  to the labeled 

transitions. The false color map represents the enhancement in the escape rate when 

microwaves were applied. The 11  state transition is very weak but especially important 

since it is part of our computational basis. The location of the transition 1100 →  

matches fairly well with predictions from the lower spectrum in this data set, not shown 

here. The white dashed curves are guides to the eye. 
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transition spectrum (not shown); therefore one would expect the  transition 

at approximately 13.4 GHz. This is relatively close to the measured value of 13.5 GHz. 

Due to the larger microwave powers required to drive these transitions and the smaller 

coherence times of higher states, I found it difficult to finely resolve the spectrum. 

>>→ 11|00|

 In the coupled experiments described above, I used a single microwave line that 

coupled to both qubits. This line (A) was originally intended to only strongly couple to 

qubit DS2A. I also had a microwave line for qubit B. By adding attenuators and an 

adjustable phase shifter, I could effectively send microwaves to each device separately by 

arranging that the combined signals from both lines cancelled at one qubit and not at the 

other. For example, Figure 8.9(a) shows a spectrum of the coupled qubits when the 

microwaves were “in-phase” (i.e. both devices received in-phase microwave currents). 

Figure 8.9(b) shows the situation when the microwaves were “out-of-phase” (i.e. when 

one device receives microwave currents that were 180º out of phase with respect to the 

other). As before, the resonant frequency of qubit DS2B was ramped while qubit DS2A‘s 

frequency was held fixed. To apply the different phases I used a splitter after the 

microwave source and placed a 3 dB attenuator on the input to microwave line A and a 

phase shifter in microwaves line B.  

The phase shift required to produce the out-of-phase condition was calibrated by 

separately viewing the enhancement and Rabi oscillations in the individual qubits. For 

example at 6.8 GHz, when the phase shifter was set to 6.5º (which produced the 

minimum enhancement in each device and so was probably out of phase), -6 dBm at the 

source produced 5ns period Rabi oscillations in each qubit. Similarly at 33º (which 

produced the maximum enhancement in each device and so was probably in phase) a  
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Figure 8.9: Phase dependent spectrum near the avoided crossing. The spectrum of two 

coupled qubits DS2A and DS2B was taken when the applied microwaves to each qubit was 

adjusted to be (a) in-phase at the qubits and (b) out-of phase relative to each other. The 

phases were calibrated by looking at the qubits individually. Notice that the 1100 →  

branch is much more prominent in the out of phase data. The color map is the 

enhancement in the escape rate when microwaves were applied. See Table 8.1 for powers 

used at each frequency. 
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Table 8.1: Microwave power at the source for the in-phase and out-of-phase spectrum of 

Fig 8.9(a) (33º) and 8.9(b) (6.5º). The source was then split to a 3 dB attenuator in 

microwave line A and a phase shifter in line B. 

Freq  (GHz) 6.4 6.5 6.6 6.65 6.7 6.75 6.775 6.8 6.825 6.85 
Power (-dBm) 
in-phase 36 8 38 38 39 39 39 39 39 39 

Power (-dBm) 
out-of-phase 35 32 32 28 25 20 20 20 20 20 

Freq (GHz) 6.875 6.9 6.925 6.95 6.975 7 7.025 7.05 7.075 7.1 
Power (-dBm) 
in-phase 40 40 40 39 37 35 34 32 30 27 

Power (-dBm) 
out-of-phase 21 22 21 22 23 24 23 22 21 21 

 

power at the source of only –16 dBm was required to produce 5 ns period Rabi 

oscillations. Table 8.1 shows the microwave power I used at different frequencies to 

produce Fig. 8.9(a) and Fig. 8.9(b). 

Figure 8.9 requires some additional discussion. While the states |  at >10

AI B μ138.241 =  and t >01|  a AI B μ146.241 =  appear to match, the spectrums in Fig. 

8.9(a) and 8.9(b) look quite different elsewhere. The in-phase data in Fig. 8.9(a) looks 

similar to that obtained using a single microwave source as shown in Fig. 8.7(a). In the 

out-of-phase data in Fig. 8.9(b) another transition becomes visible that was not seen 

before, while the lower avoided crossing becomes less visible, even at high microwave 

powers. This new peak may be a two-photon transition to . In particular, this 

transition depends on qubit B, yet is also at a higher frequency than qubit B’s . This 

behavior may be consistent with in-phase and out-of-phase pumping of the coupled 

system, but further analysis is clearly needed to understand the significance of the relative 

microwave phases on coupled qubits. Moreover, what I was trying to test was whether I  

>11|

01f
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could select the 
2

10|01|00| >+>
>↔  and 

2
10|01|00| >−>

>↔  transitions based on 

the relative phase of the two microwave signals. The evidence from Fig. 8.9 is weak at 

best. 

 

8.3 SQUID DS3A

8.3.1 SQUID DS3A Spectrum 

Figure 8.10 shows the transition spectrum of device DS3A, measured using the 

pulse readout technique using the current flux trajectory shown in Fig. 6.10. Here the bias 

current, flux current and frequency were fixed for each data point. This device was 

coupled to another qubit, but the second device was not operational due to an open line; 

no clear effects of coupling to the other device was seen. Examining Fig. 8.10, many 

avoided level crossings are clearly visible. I found that the crossing locations did not 

depend on the flux current, bias current or offset flux combination used to reach the 

desired qubit frequency, so it was unlikely they were due to the other qubit. These 

unintended avoided crossings will be discussed in detail in Chapters 9 and 10. A fit to the 

entire spectrum, including the avoided crossings, will be presented in Chapter 10. 

As mentioned above, almost all measurements of device DS3A were taken using 

the pulsed readout technique. This was done because the alternative approach of using the 

escape rate technique required operating the device under poor isolation conditions (see 

discussion in Section 6.3). For the pulse measurement, I used a single-shot mode to 

extract an approximate ; I did not fit an entire switching curve. This significantly sped 

up the data collection and analysis, but meant that I could only determine the population  

1p
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Figure 8.10: Transition spectrum of dc SQUID phase qubit DS3A measured at 20 mK 

using the pulsed readout technique. The color map represents the fraction  that 

escaped after many repetitions of a single amplitude measurement pulse (each current 

bias point required a different amplitude). Pure white corresponds to where no data was 

taken. Several large unexpected avoided level crossings are clearly visible.  

ep
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within a few percent and could not distinguish higher levels. Also, Landau-Zener 

tunneling due to the many avoided crossings in this device would be expected to degrade 

the readout fidelity [66].  

 

8.3.2 SQUID DS3A Rabi Oscillations and Relaxation  

Figure 8.11(a) shows seven line spectra measured in device DS3A at different bias 

currents. Fig 8.11(b) shows the corresponding on-resonance Rabi oscillation (and decay 

after the microwaves were shut off). For clarity, each curve in (a) and (b) is shifted by an 

offset; the offset is 0.2 for each successive curve in (a) and 0.5 for each successive curve 

in (b). In this range of bias currents, as the current through the qubit is decreased 

(resonance moves towards higher frequency), the system moves towards a small avoided-

level crossing at 10.185 GHz and the spectroscopic width increases significantly. The 

Rabi oscillations and relaxation time also vary quite noticeably, and the spectrum looks 

less and less Lorentzian as I approach the avoided crossing. This figure explicitly 

demonstrates that the device behavior depends strongly on the bias point. This is quite 

unlike our earlier devices. In general, I took data away from any clearly observable 

splittings, unless otherwise noted, although very small crossing may have existed that 

affected the device performance. 

Figure 8.12 shows the line spectrum and Rabi oscillations, away from any visible 

splittings. Figure 8.12(a) shows the escape probability spectrum versus microwave 

frequency when  and the current bias is held fixed (circles). The solid 

line is a fit to a Lorentzian width with the FWHM 

GHzf 080.1001 =

MHzf 0.15=Δ . This gives a good fit 

and corresponds to . Figures 8.12(b) and 8.12(c) show on-resonance (10.080 nsT 2.21*
2 =
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Figure 8.11: Bias dependence of transition linewidth and Rabi oscillation dc SQUID 

phase qubit DS3A. As the qubit resonance approached a small avoided level crossings at 

10.175 GHz, the performance of the device varied significantly. (a) The spectroscopic 

width varied significantly over a relatively small bias range. (b) The variation in 

performance with bias point is visible in the decay of Rabi oscillations (taken on 

resonance with the peaks) and the subsequent relaxation when microwaves were turned 

off. 
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Figure 8.12: Spectroscopic width, Rabi oscillations and relaxation in SQUID DS3. (a) 

The resonance at 10.080 GHz fits to a single lorentzian peak, with no indication of 

avoided level crossings. Rabi oscillations and decay (after ) were fit to 

determine 

nst 80=

'T  and  for two microwave powers (b) –16 dBm and (c) –25 dBm (at the 

microwave source) at . 

1T

GHzf 080.1001 =
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 GHz) Rabi oscillations at powers of –16 and –25 dBm, respectively, followed by 

relaxation in the devices after the microwaves were shut off at . The Rabi 

oscillations in Fig. 8.12(b) were fit using  

nst 80=

( )'/)sin()cos()'/exp( 0101011111 TttTtp eq
b

eq
ae ΩΩ+Ω−−= ρρ   (8.3) 

with , nsT 19'= ns7/201 π=Ω ,  and . The subsequent decay is 

fit with a decay time . Since I am using a single shot pulse measurement, even 

with , I still expect 

41.011 =eq
aρ 33.011 =eq

bρ

nsT 291 =

10 =p 05.0=ep  due to . To account for this I have added a 

second line for  that includes a 0.05 offset, i.e. 

01P

nst 100>

    ( )nsnstpe 29/)80(exp4.005.0 −−+= .     (8.4) 

For Fig 8.12(c), the –25 dBm data was fit using nsT 27'= , ns5.18/201 π=Ω , 

 and . The subsequent decay is fit with a decay time 40.011 =eq
aρ 34.011 =eq

bρ nsT 271 = . 

I find rather good agreement for these fits.  

As expected the relaxation times were very similar (29 ns versus 27 ns), however 

the Rabi decay time of the two were quite noticeably different (19 ns at high power 

versus 27 ns at low power). This is somewhat surprising, but might be caused by current 

noise around 100 MHz (the qubit is most sensitive to noise at the Rabi frequency) [49]. 

Another possible explanation is that the qubit is crossing more two-level systems at high 

microwave power causing an increase in the loss.  

The low measured saturation value of 0.40 may be due to Landau-Zener 

transitions during the measurement pulse. It would have been better to fit the entire 

switching curve, as this would have yielded a more accurate value for . I note that 1p
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from the discussion in Chapter 7, even a single ideal pulse with  still produces 

 due to escapes from 

01 =p

0>ep 0 and 11 =p  gives 1<ep ; this accounts for the 5% offset 

visible in Figs. 8.12 (b) and (c) at 0=t .  

 

8.3.3 SQUID DS3A Ramsey Fringes and Discussion 

 The coherence times in device DS3A were long enough to perform a Ramsey 

Fringe experiment using the pulsed readout technique. Figure 8.13, shows a Ramsey 

experiment where I applied two detuned 2/π -pulses separated by a time  and then 

performed a pulsed state measurement. The qubit was biased such that 

 and the microwaves were applied with power such that the on-

resonance Rabi frequency was 

tΔ

GHzf 003.0104.1001 ±=

ns24/201 π=Ω , thus 2/π -pulses were 6 ns long. The 

open circles in Fig. 8.13(a) correspond to detuned microwaves at 10.139 GHz, Fig. 

8.13(b) at 10.144 GHz and Fig. 8.13(c) at 10.149 GHz. The solid and dashed lines are fits 

to the data using a density matrix simulation that takes into account the finite length of 

the 2/π -pulses (6 ns). The oscillation frequencies closely match the estimated detuning. 

The solid line is a fit with nsT 281 = , nsT 252 =  and with detuning , 

 and  in Figs. 8.1 (a), (b), and (c) respectively. To roughly 

take into account the reduced measurement fidelity, the fit in Fig. 8.13 used 

, where  is found from the simulation.  

MHzf 38=Δ

MHzf 43=Δ MHzf 48=Δ

( 11 105.75. pppe −−= ) 1p

The dashed curves in Fig. 8.13 correspond to the simulation with nsT 202 =  

instead of . From these results, I estimate . I note that this  nsT 252 = nsT ramsey 424
2

±≈
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Figure 8.13: Ramsey fringes in dc SQUID phase qubit DS3A. The probability of escape 

during a measurement pulse is plotted versus the time between two detuned π/2-pulses. 

The three curves (a-c) show three different microwave detunings (with 

), GHzf 003.104.1001 ±= GHzf 139.10= , GHzf 144.10=  and , 

respectively. The solid line and dashed lines are fits using a density matrix simulation 

with  and either 

GHzf 149.10=

nsT 281 = nsT 202 =  (dashed) or nsT 252 = (solid). 
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was the only device I measured Ramsey oscillations in; in part this was because the 

relaxation time was relatively long.  

As expected, the Ramsey Fringe decay time matches fairly well with the 

spectroscopic coherence time,  and . Both measurements 

are sensitive to low frequency noise and should measure the same thing. Unfortunately 

the short relaxation time of the device did not allow me to make spin-echo measurements 

and remove dephasing due to low frequency noise.  

nsT ramsey 424
2

±≈ nsT 21*
2 ≈

I also note that the true coherence time  can be found from [59] 2T

+−= 222 /1/1/1 TTT ramsey ,     (8.5) 

where  is the inhomogeneous broadening time scale.  If I assume , so 

 and use the measured value of 

+
2T ∞=+

2T

nsTT ramsey 24
22 == nsT 281 = , I find an expected Rabi 

oscillation decay  using Eq. (3.30). This predicted time is close to the measured 

low power value of . This suggests the system has little inhomogeneous 

broadening. If I also assume that only pure dephasing  and dissipation  affect my 

measurements of , I can then estimate a dephasing 

nsT 26'≈

nsT 27'=

φT 1T

2T nsT 42=φ  using Eq. (3.14). 

 With separate estimates of the relaxation time  and coherence time , I can 

predict the affect of power broadening on the spectroscopic resonance peak [see Eq. 

(3.27)]. The solid line in Fig. 8.14 shows the expected spectroscopic width versus Rabi 

frequency based on Eq. (3.28) with 

1T 2T

nsT 281 =  and nsT 242 = . The open circles 

correspond to data taken at GHzf 078.1001 =  with powers ranging from –52 to –25 dBm 

in 3 dBm intervals. The crosses indicate points at which the microwave power was  
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Figure 8.14: Power broadening observed by plotting FWHM of  resonance vs. Rabi 

frequency 

10 →

01Ω  in SQUID DS3A. The power broadening in the spectroscopic widths 

provides a check on the coherence times of the device. The solid line is a fit to Eq. (3.28) 

using the  and  times determined from other experiments on the device. Points with 

crosses indicate powers at which the Rabi frequency was calibrated.   

1T 2T
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calibrated against the Rabi frequency; the Rabi frequency could not be directly 

determined below about 70 MHz. I find fairly good agreement at low power (low Rabi 

frequency); at higher powers the spectral width decreases from the predicted values. 

Curiously the Rabi oscillations had shorter decay times as the microwave power 

increased, as shown in Fig. 8.12. This behavior is inconsistent with decoherence from 

 noise, but suggests that additional crossings might be contributing at high powers.  f/1

 

8.3.4 SQUID DS3A Variable T1  

 If the current bias leads limit the relaxation time in the qubit, varying the 

inductance of the isolation branch should produce a noticeable effect (see discussion in 

Section 4.1.1). If dissipation is solely due to the bias leads, Eqs. (4.2) and (4.4) predict a 

relaxation time of 

    
2

22

221
011 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
++

Ζ≈
J

J
LL

LLL
CT  .   (8.6) 

where, 

( )202202

0
2

/12 III
LJ

−

Φ
=

π
.   (8.7) 

 Thus by varying the current  through the isolation junction J2 I can produce a change 

in the expected relaxation time. Since there were many microstates in the spectra of 

device DS

2I

3A, comparing the relaxation at different isolation factors requires a comparison 

at the exact same qubit frequency. Since I can separately control the current through the 

qubit junctions and isolation junction, different isolation factors are possible for the same 

qubit frequency. To reduce the isolation factor I simply increased the bias current, since 
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the bias current passes almost entirely through the isolation junction this leaves the qubit 

bias almost unchanged while increasing . 2JL

Figure 8.15 shows the relaxation in the qubit for four different isolations for 

. Semi-log plots of  versus time are shown for four different 

isolations factors in Fig. 8.15(a). In each case I find a good exponential decay, implying 

no strong coupling to individual two-level systems. The open circles in Fig 8.15(b) show 

the relaxation time  from fitting these decays, plotted versus the bias current 

MHzf 8999301 ±= ep

1T I  at 

which the data was taken. The relaxation time clearly decreases dramatically with bias 

current. The spectroscopic widths also varied [squares in Fig. 8.15(b)]. For nsT 311 = , I 

found , for nsT 17*
2 = nsT 251 = ,  for nsT 18*

2 = nsT 171 = ,  and for 

 I found . 

nsT 16*
2 =

nsT 121 = nsT 11*
2 =

The solid line in Fig. 8.15(b) is a fit of the data to a simple model for relaxation 

due to the leads. There are two free parameters, the line impedance  and the 

inductance  of the isolation arm of the SQUID (  is too small to determine 

accurately from the I-Φ curves). Based on fits to the spectrum and I-Φ curves, I used 

, , 

0Ζ

2L 2L

nHL 05.11 = pFCJ 4.0= AI μ22.101 = , and AI μ63.802 =  in the model. Since 

, keeping 12 III −= AI μ08.11 =  fixed and varying the bias allowed me to control 

. With  and JL2 Ω=Ζ 2850 pHL 252 =  I find good agreement, as shown in Fig. 

8.15(b). A characteristic impedance of Ω=Ζ 2850  is high but not unreasonable if one 

considers the effect of the inductive impedance of the wire bonds. For a rigorous physical 

simulation, the precise length of the wire bonds must also be considered since they are 

not negligible compared to the wavelength of the qubit’s frequency. Regardless of the  
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Figure 8.15: Variable isolation in DS3. By varying the bias current to the SQUID the 

impedance that the qubit sees was varied. (a) Pulse measurement of escape probability 

versus time for four different isolations with GHzf 008.993.901 ±= . (b) Fit relaxation 

plotted versus bias current (open circles) and the spectroscopic coherence times  (open 

squares). Solid curve is fit to  assuming the sole source of dissipation is the current 

bias line with . 

*
2T

1T

Ω= 2850Z
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impedance used in the model, the fact that a large change was produced in  is quite 

noteworthy. In particular, similar experiments on previous devices (DS

1T

2B and AL1) 

showed no evidence of such a variation in the relaxation rate based on the line impedance 

[69]. This was a good indication that DS3A was functioning with much lower intrinsic 

loss or two-level effects than our prior devices (at least at this operating point). Unlike the 

previous devices we tested, DS3A was built on a sapphire substrate, with smaller junctions 

and no SiO2 insulation layer.   

 

8.4 SQUID DS4B 

The fact that device DS3A showed a relaxation time that depended on the bias line 

isolation factor suggested trying to do even better by increasing the isolation by simply 

increasing . Of course if extraneous factors such as the wire bond length strongly 

affected , this might not work. Device DS

1L

0Ζ 4B had roughly identical critical currents to 

DS3, but a loop inductance  that was roughly 3 times larger, i.e. . If  was 

limited by the bias line isolation and everything else was the same, this should have 

produced a 9-fold increase in the relaxation time of the qubit compared to that in DS

1L nHL 31 = 1T

3A.  

In SQUID DS4B the qubit was coupled to SQUID DS4A. Both SQUIDs were wired 

to bias leads and fully operational. A rough spectrum for DS4B is shown in Fig. 8.16; 

several large and small splittings are clearly visible. Figure 8.17 shows spectroscopic 

widths and the corresponding on-resonance Rabi oscillation and decay after microwaves 

were shut off at several different .  This bias range seemed to have the least number 

of large splittings. However, the device had many splittings and a splitting is clearly 

visible at 9.43 GHz that affected the qubit performance, shown in Fig. 8.17(b).  

01f
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Figure 8.16: Transition spectrum of device DS4B measured at 20 mK. Using the pulsed 

readout technique the spectrum of the device showed several clear avoided level 

crossings. The false color map shows the fraction that escaped with a single amplitude 

measurement pulse. 
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Figure 8.17: (a) Spectroscopic widths and (b) on-resonance Rabi oscillations in device 

DS4B for different resonant frequencies . The performance of the device away from 

large splittings appeared to be no better than device DS

01f

3A. 
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From these results, I concluded that qubit DS4B appeared to be no better than DS3. 

From Figs. 8.16 and 8.17 one can immediately see that it certainly did not have a  that 

was 9 times longer. There also seemed to be more microstates. Qubit DS

1T

4A did not 

produce better results either. This suggests that the junction quality or some other factor 

in DS4B was worse than DS3A and this prevented the device from operating as well as 

expected.  

 

8.5 Summary 

In this chapter, I described a series of measurements I made to demonstrate 

coherent quantum control of several dc SQUID qubits. Some of the qubits showed 

substantial bias dependent variations in the performance. The best coherence times from 

the Al devices (DS3A and DS4B) were clearly superior to those of the Nb ones (DS1, DS2A 

and DS2B). The relaxation times in the Nb devices were at least an order of magnitude 

shorter than expected if they were solely due to the impedance of the bias leads. In 

contrast, for the Al device DS3A,  did depend on the isolation from the leads. 1T

In the Nb devices (DS1, DS2A and DS2B), SiO2 was used as an insulator between 

the metal layers (see Chapter 4). Other groups have reported substantial loss due to this 

insulator and saw dramatic improvements above removing it [81]. Our aluminum devices 

(DS3A and DS4B) have no SiO2. On the other hand our devices have AlOx between the 

two aluminum layers, and this may still be causing loss and microstates. Our aluminum 

devices also have extraneous loops and junctions that were created from the double-angle 

fabrication procedure (see Fig. 4.4). It is not known if these parasitic structures create 

additional dissipation or decoherence. 
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The tunnel barriers in our junctions appear to contain other parasitic quantum 

system that couple to the qubit and are visible as avoided level crossings in the spectra. If 

large splittings are clearly visible, perhaps many small ones exist that affect the qubit. Nb 

devices DS2A and DS2B showed what were apparently several very small avoided level 

crossings of less than 10 MHz in size [37]. By reducing the size of the junction, as was 

done in aluminum devices (DS3A and DS4B) I should have reduced the number of coupled 

parasitic systems and perhaps been able to operate the qubit away from them. These 

parasitic quantum systems will be discussed in detail in Chapters 9 and 10. I should also 

note that another aluminum device (AL1) on a Si substrate was tested in our lab. This 

device had a larger qubit junction with an area of 80 μm2 [68]. It showed Rabi decay 

times  to , but a much lower spectroscopic coherence time (  to 

) [68], measured using an escape rate readout. 

nsT 18'
2 = ns28 nsT 4*

2 =

ns10

Finally, I note that other loss mechanisms may play a role, For example, another 

possible source of dissipation is radiation resistance. The relatively long inductance  

could be acting like an antenna that radiates electromagnetic energy from the qubit. 

Consider device DS

1L

4B at GHzf 10= . At this frequency the isolation junction has an 

impedance JL2ω  of only a few ohms, much less than the impedance of free space. This 

suggest modeling the qubit as the driving source in a circular loop with a diameter of 

order 1 mm, which will act like an oscillating magnetic dipole [see Fig. 8.18(a)].  In the 

limit where the wavelength in the substrate (here mm16'≈λ ) is much longer than the 

loop diameter (here ), I can estimate the radiation resistance as [112] mmd 8.0≈
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Figure 8.18: (a) SQUID loop of device DS4B is modeled as a superconducting loop driven 

by the qubit junction J1. The loop radiates energy like an oscillating magnetic dipole. (b) 

Schematic of SQUID including radiation resistance Rrad used to calculate the effect on the 

relaxation time . 1T
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dRrad    (8.8)  

The factor of ½ in Eq. (8.8) is to account the substrate occupying only the space below 

the loop. 

The radiation resistance can be modeled as a resistor that is in series with the loop 

inductance . A schematic including this resistance is shown in Fig. 8.18(b). The new 

effective parallel resistance across the qubit junction for this model (not including losses 

intrinsic to the junctions, the flux line or microwave line) is 

1L

( )
( )( )2

22
2

0

2
221

2
0

Jrad

J
eff

LLRZ

LLL
ZR

++

++
≈

ω

ω
      (8.9) 

Using , nHL J 32 = pHL 202 = Ω= 3000Z , pHL 202 = , , pHL J 402 = pFC 4.0=  

and , I find GHzf 1001 = Ω= kReff 380 . This would give nsT 1501 ≈ . If Ω= 0.0radR , I 

find  and Ω= kReff 780 nsT 3101 ≈ . Using this crude model I can conclude that the 

radiation resistance may not be negligible in our device and should be considered. If I had 

assumed the isolation junction acted as an open, the system would have been more 

accurately modeled as an electric dipole. This situation may in fact lead to a substantially 

larger radiation resistance [63]. Perhaps in SQUID DS4B this factor dominated any gain 

from the larger isolation factor from the bias leads.  

Further work is needed to clarify the causes of relaxation in our devices.    
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Chapter 9 

Coupling Between a Phase Qubit and a Two-Level System 

 

 In this chapter, I discuss a model of parasitic quantum systems coupled to a phase 

qubit. In particular, I consider the combined Hamiltonian ctlsJ HHHH ++= , where 

 is the Hamiltonian of the qubit as given in Eq. (2.6),  is the Hamiltonian of the 

two-level parasitic quantum system (TLS) and  is the Hamiltonian coupling the TLS 

to the junction. With two coupled quantum systems, states will now exist such as 

JH tlsH

cH

e1 , 

where the first index refers to the qubit state (here 1=n ) and the second index refers to 

the state of the parasitic quantum system (here the first excited state e ). The interaction 

is most easily understood by considering the spectrum of the coupled system. When the 

energy level spacing of the qubit equals that of the two-level system, the coupling 

between the two systems lifts the degeneracy, producing an avoided crossing or 

“splitting” (see Fig. 9.1).  

In amorphous solids, anomalous effects have been observed at very low 

temperatures and been attributed to the tunneling of unknown ions, atoms, or molecules 

between two potential wells [113]. Since the exact microscopic nature of the object that is 

tunneling is not known, I will simply call them “particles”. In this model, the particle can 

occupy different positions of almost equal potential producing a two-level system. 

Presumably the particles also have a series of vibrational states separated by energies 

, which one might expect to be on the order of the Debye energy. However, since 

 in my experiments, only the two lowest states are considered. I will  

Ωh

Ω<< hTkB
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Figure 9.1: Simulation of avoided level crossing or “splitting” in a phase qubit. At 

AI μ13.1≅ , the degeneracy between the e0  state and g1  state is lifted. Here the 

parameters of device DS3A ( pFC 38.0=  and AI μ26.10 = ) are used with a microstate 

with  and GHzf 3.10= MHzf 25=Δ . Coupling between states e1  and g2  is also 

shown; the splitting is expected to be roughly 2  larger than the ge 10 −  splitting. 
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generally assume the particle is of microscopic origin, and will use the terms two-level 

system (TLS), parasitic quantum system, and microstate interchangeably. 

Clear experimental evidence has been found that superconducting qubits can be 

coupled to microstates located or closely associated with the Josephson junctions [106]. 

The aluminum oxide used in tunnel barriers appears to have an amorphous component, 

which could contain ionic two-level system. To model the microstates here, I will assume 

that the particles can occupy two different positions of almost equal energy, are located in 

the tunnel barriers, and can possess a charge [see Fig 9.2(a)].  

In the remainder of this chapter, I briefly outline the two-level system model. I 

then consider two different mechanisms for how the TLSs could couple to the qubit, 

through the critical current and through the charge. I then discuss an approach that could 

be used to determine the coupling mechanism experimentally. Since the microstates are 

likely caused by random disorder in the materials, I next consider the distribution of 

splittings based on a few simple assumptions. Finally, I conclude with a brief discussion 

of how microstates could cause relaxation in the junction. In Chapter 10, I compare these 

models with experimental results. 

 

9.1 Two-level Systems 

The Hamiltonian of a single isolated two-level system can be written in the form 

( )RRULRTRLTLLUH aLRLRatls −++−=
2
1 , (9.1) 

where  is the difference in energy between the left and right well (“asymmetry 

energy”),  is the tunneling matrix element, and 

aU

LRT L  or LΨ  and R  or  represents  RΨ
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Figure 9.2: (a) Picture of two-level system in which a charge located in the Josephson 

junction tunnel barrier can tunnel between two locations. (b) Potential energy versus 

position for a two-level system model [113]. The tunneling between the two wells is a 

function of  and the distance between the two wells bU RL xx − . 
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the eigenstates in the absence of tunneling. This model is easily understood by 

considering Fig. 9.2(b). Here LΨ  and RΨ  are the states of the system in the left and right 

well, centered on Lx  and Rx , respectively and  the height of the barrier. For a square 

or flat barrier the tunneling element can be written as 

bU

λ−= eTTLR 0  ,    (9.2) 

where ( ) bLR Uxx −= αλ 2  (reflects the overlap of the wavefunctions) and α  and 

 are constants. Ω= h0T

The eigenstates of the system are then given by 

    RLg
2

sin
2

cos θθ
+=  and   (9.3a) 

RLe
2

cos
2

sin θθ
+−= ,    (9.3b) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

a

LR
U
T

arctanθ . Alternatively I can write 

     egL
2

sin
2

cos θθ
−=  and    (9.4a) 

egR
2

cos
2

sin θθ
+=     (9.4b) 

 
The energy of the eigenstates can be shown to be 

22
1 22 tls

LRag
E

TUEE −=+−==− ,   (9.5a) 

22
1 22 tls

LRae
E

TUEE +=++==+ .   (9.5b) 

A few basic limits provide some intuition about the model:  

(1) As , 0→LRT 0→θ  and the eigenstates are L  and R , with aUE
2
1

±=± .  
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(2) As , 0→aU 2/πθ →  and the eigenstates are ( ) 2/RLg +=  and 

( ) 2/RLe +−= , with LRTE
2
1

±=± . 

  

9.2 Critical Current Coupling 

 One way that a TLS could couple to a phase qubit is if the critical current of the 

junction depends on the state of the TLS. Specifically, I mean that if the microstate is in 

state  the junction has a critical current  and if the microstate is in state LΨ LI0 RΨ  it has 

a critical current . In principle, the tunneling particle could be an atom, ion, electron, 

or trapped flux quantum that has two possible locations in space. The particle’s position 

could affect the local potential in the junction tunnel barrier and thus give different 

supercurrent tunneling matrix elements; this would produce a critical current that depends 

on the particles position. Similarly, a critical current variation could occur from a single-

charge trap that blocks tunneling over a section of the junction due to the Coulomb 

repulsion [114]. 

RI0

In this case, I can now write the total Hamiltonian as [115]: 

tlsJ HHH += ,     (9.6) 

where 

[ ] [ LL
I

RR
II

m
pH LR

J ⊗
Φ

−⊗
Φ

−
Φ

−= )cos(
2

)cos(
222

00000
2

γ
π

γ
π

γ
π

]  (9.7) 

and  is the canonical momentum of the junction and  is the Hamiltonian of the 

two-level system. I now define the difference in the two critical currents 

γp TLSH
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LR III 000 −≡δ . Setting  as the critical current when the microstates is in the ground 

state  seems reasonable and using Eq. 9.3(a), one finds 

0I

gΨ

( ) ( 2/sin2/cos 2
0

2
00 θθ RL III += ) .   (9.8)  

Using Eq. (9.4) and (9.8), the trigonometric identities  and ( ) ( ) θθθ cos2/sin2/cos 22 =−

( ) ( ) ( ) 2/sin2/sin2/cos θθθ = , I can simplify Eq. (9.7) to get 

( )[ ]2/sincos)cos(

)cos(
222 0

00
2

geegeeE

HI
I

m
p

H

J

tls

++⊗−

+
Φ

−
Φ

−=

θθγδ

γ
π

γ
π

γ
,  (9.9) 

where πδδ 2/00 IEJ Φ≡ . The coupling term is therefore  

  ( )[ ]2/sincos)cos( geegeeEH Jc ++⊗−= θθγδ .  (9.10) 

As in Chapter 2, I can expand the )cos(γ  term to order  about the potential 

minimum 

2'γ

0γ , where 0' γγγ −=  now represents a small variation and is an operator. I 

can write   

( ) ( ) ( ) 20
000 '

2
cos

'sin)cos()'cos(cos γ
γ

γγγγγγ −−=+= .  (9.11) 

Inserting Eq. (9.11) into Eq. (9.10), I can write the coupling term as 

( ) ( )

( )⎥⎦
⎤

⎢⎣
⎡ ++⊗

⎟
⎠

⎞
⎜
⎝

⎛ −−−=

geegee

EH Jc

2
sincos

'
2

)cos(
'sincos 20

00

θθ

γ
γ

γγγδ
 .   (9.12) 

Using the harmonic oscillator approximation for the first three energy levels of the phase 

qubit, I find the following matrix elements: 
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( ) ( )[ ]2',11',20,1'1,0'
01

2
212' ======== +++= nnnnnnnnC

enn δδδδ
ω

γ
h

 (9.13a) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

+
=

======

====

2',21',10',0

2,0'0,2'

01

2
2

53

22'
nnnnnn

nnnn
C

enn
δδδ

δδ
ω

γ
h

  (9.13b)  

The coupling terms between specific states can then be determined. For example: 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

01

2
0

0
2

2
cos

coscos00
ω

γ
γθδ

hC
eEeHe Jc ,   (9.14) 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

01

2
0

0
2

2
cos

3coscos11
ω

γ
γθδ

hC
eEeHe Jc ,   (9.15) 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−==

01

2
0

0
2

2
cos

cos
2

sin0000
ω

γ
γθδ

hC
eEeHggHe Jcc , (9.16) 

( )
01

2
0

2sin
2

sin0110
ω

γθδ
hC
eEeHggHe Jcc == ,   (9.17) 

( )
01

2
0

2sin
2

sin21221
ω

γθδ
hC
eEeHggHe Jcc == ,   (9.18) 

( )
01

2
0 2

2
cos

2
sin20220

ω
γθδ

hC
eEeHggHe Jcc == .   (9.19) 

I note that the coupling term gHe c 10  depends on θ , 0γ   and 0Iδ . It is largest 

for  aLR UT >> ( 2/ )πθ =  and disappears when aLR UT << . The maximum value is 

found for 10 =γ ; i.e. the junction is biased at its critical current,  

C
Ih

gHe f
c

01

0maxmax

222
10

ω
δ h

=
Δ

= .  (9.20)  
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The term eHe c 11  also depends on θ , 0γ  and 0Iδ  but is a minimum for 

 and decreases as the qubit is biased closer to its critical current aLR UT >> 2/0 πγ → . 

Interestingly, a term eHe c 00  exists, meaning 0000 Jtls HeHeeHe +≠ . 

This term also decreases for  and will diminish as the qubit is biased closer to 

its critical current 

aLR UT >>

( 2/0 )πγ → . Finally, to first order, I find  

2
10
21

≈
gHe
gHe

c

c .    (9.21) 

 I note that this is only an approximation since the splittings will be at different 

bias currents and thus 0γ  will differ at the ge 10 −  and ge 21 −  avoided crossings 

(see Fig. 9.1). 

 

 9.3 Charge Coupling 

 The second physical mechanism I consider for coupling involves an ion in the 

dielectric layer that couples electrostatically to the voltage across the junction. I want to 

emphasize here that the voltage is not the result of the junction tunneling out of the zero-

voltage state, but the quantum operator. The two ion states correspond to real space 

locations inside the junction barrier with position expectation values equal to Lx  and Rx , 

where I will assume LxLRxL << . The individual Hamiltonians  and  

are given by Eq. (2.6) and Eq. (9.1), respectively, and the coupling to the qubit can be 

written as 

JH TLSH

    ( )0xxEQHc −⋅−= ,     (9.22) 
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where  is the charge of the ion, Q E  is the electric field produced by the junction in the 

junction dielectric, and ( 0xx )−  is the distance of the ion from the ground plate 

capacitor.  

If I now assume a parallel plate capacitor, the coupling term can be written as 

       dQVzH ac /= ,    (9.23) 

where  is the voltage across the junction,  is the perpendicular distance of the ion 

from the ground plate and  is the distance between the two plates, generally 1-2 nm. 

The voltage can be expressed in terms of the canonical momentum as defined in Chapter 

2, . The coupling Hamiltonian can then be 

written with  and  as operators, 

V az

d

( ) ( VCdtdCp πγπγ 2//2/ 0
2

0 Φ=Φ= )

γp az

     ac zp
Cd

QH γ
π

0

2
Φ

= .    (9.24) 

For comparison, if I had assumed the object was a dipole with charge  with a 

displacement distance  between the charges, the coupling term would be 

Q

ax

ηπ
γ cos2

0
ac xp

Cd
QH
Φ

= , where η  is the relative angle of the dipole moment with 

respect to the field [81]. Here I follow the model of a charge, as in Ref. [63]. 

 The canonical momentum operator  will act only on the qubit, whereas the 

distance operator  acts on the ion. From Eq. (9.3) and Eq. (9.24) and the harmonic 

oscillator approximation, I find the following coupling matrix elements: 

γp

az

 ( )
2

sin
2

10210 01

0

θωπ
γ LRac zz

Cd
Qigzep

Cd
QgHe −−=
Φ

=
h

, (9.25) 
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( )
2

sin
2

221221 01

0

θωπ
γ LRac zz

Cd
Qigzep

Cd
QgHe −−=
Φ

=
h

, (9.26) 

0021100 === eHgeHeeHe ccc .     (9.27) 

 It is worth making a few comments about these coupling terms. The gHe c 10  

term is bias current dependent (since 01ω  depends on I ) and increases as 

increases. The maximum coupling occurs when the two ion positions are on opposite 

sides of the junction dielectric, i.e. 

aUT /  

dzz LR =− , and 0=aU . In this case, 

C
Q

gHe
h

c
f

22
110

2
01

2maxmax ωh
==

Δ
.   (9.28) 

Note also that 210/21 =gHegHe cc  for the same microstate. Finally, if I use the 

cubic approximation to the junction states, I find 

scc NgHegHe 54/1020 = .    (9.29) 

This relation implies that when the 2=n  level of the junction crosses the excited state of 

the ion, it will produce about an order of magnitude smaller splitting than that when the 

same microstate crosses the 1=n  level, for typical junction parameters (i.e. 51 ≤≤ sN ). 

 

9.4 Magnetic Field Effects 

 By applying a magnetic field to the qubit junction it may be possible to determine 

whether charge or critical current coupling dominates. For a magnetic field yHH y ˆ=  

pointing in the plane of a Josephson junction (the junction in the x-y plane) the critical 

current density  is position dependent [116] and varies with the applied field. The 

total current through the junction 

)(xJ

I  can be found by integrating  over the area of the )(xJ
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junction. To calculate the effect of a magnetic field on the coupling between the qubit and 

a microstate, I need to first calculate the Josephson coupling energy for a junction in an 

applied magnetic field. I will set the junction center at , , so x varies from 0 

to  and y varies from 0 to 

2/xL 2/yL

xL yL .  

Considering the junction without any microstate, current conservation gives 

∫ ++⎟
⎠

⎞
⎜
⎝

⎛ Φ

∫ =∫ ++=

xL
y

xL yL

dxkxLJ
dt
dC

dydxkxJ
dt
dVCI

0
12

2
0

0 0
1

)sin(
2

)sin(

γγ
π

γ
,    (9.30) 

where 0/2 Φ= ydHk π , 02 hd += λ ,  is the thickness of the junction oxide, which is 

negligible compared to the penetration depth 

0h

λ , and  is the unsuppressed critical 

current density. I can rearrange Eq. (9.30) to give 

1J

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫ +−−

Φ
−=⎟

⎠

⎞
⎜
⎝

⎛ Φ xL
y dxkxLJI

d
d

dt
dC

0
1

0
2

22
0 )cos(

22
γγ

γπ
γ

π
.  (9.31) 

The effective potential U  can then be written as 

⎟
⎠
⎞

⎜
⎝
⎛ +−

Φ
−=

2
cos)2/sin(

2/2
1

1
1

10 ϕ
γϕ

ϕ
γ

π
JE

IU ,   (9.32) 

where yxj LLJE 1
0

1 2π
Φ

=  and xkL=1ϕ .  

 For a critical current coupling mechanism, I now need to find the change LUδ  or 

RUδ  in the potential U  of the junction due to the microstate blocking tunneling over 

some effective area of the junction based on its position in the left or right well, 

respectively. I will assume that the microstate blocks an effective tunneling area  in RA
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the right well and  in the left potential well, where LA yxL LLA <<  and yxR LLA << . 

When the microstate is in the left well I find 

( )L
yx

Lj

LL
yL xL

LL

kx
LL
AE

dxdyyyxxkxA
J

U

+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∫ ∫ +

Φ
−=

γ

δδγ
π

δ

cos

)()()cos(
2

1

0 0

10

 (9.33) 

If the microstate is in the right well, I similarly find 

( R
yx

Rj
R kx

LL
AE

U +−= γδ cos1 )    (9.34) 

If the microstate is in the right well, the potential is RUU δ−  and if it is in the left well 

LUU δ− . The Hamiltonian is therefore 

( ) ( ) LLUURRUUH
m

p
H LRTLS ⊗−−⊗−−+= δδγ

2

2
 . (9.35) 

I will set  

( ) ( ) ( ) ( 2/sin2/cos 22
0 θδθδ RL UUUUU −+−= ) ,   (9.36) 

 since this is the potential when the microstate is in the ground state. 

Using the same procedure as in Section 9.2, I can simplify this to find 

( )

( )⎥⎦
⎤

⎢⎣
⎡ ++⊗

−−−+=

eggeee

UUUH
m

p
H LRTLS

2
sincos

2 0

2

θθ

δδγ

.   (9.37) 

To reduce this expression further I will assume that the separation between the L and R 

wells is very small compared to the dimensions of the junction, i.e. 

( ) ( LR kxkx +≅+ )γγ coscos . I can then write 
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( )
( )L

yx

LRj
LR kx

LL
AAE

UU +
−

−≈− γδδ cos1  .  (9.38) 

After expanding ( Lkx+ )γcos  about the potential minimum 0γ , I find a coupling term,  
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⎜
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L

yx

LR
jc L

x
C

e
LL

AA
EeHg

h
. (9.39) 

This coupling term has the same magnetic field dependence as found by Tian et. al. [117] 

if I set 2/10 ϕγ −= . It also reduces to Eq. (9.17) in the limit of zero-field.  

In principle, the change in the coupling term when a magnetic field is applied 

could be used to determine if a microstate couples to the qubit through the critical 

current. In particular the ge 10 −  avoided level crossing would change in size as the 

magnetic field through the junction is varied because 01 /2 Φ= xy LdHπϕ  depends on the 

applied field . If I divide the coupling term in a field yH gHe c 10  [Eq. (9.39)], to the 

zero field coupling [Eq. (9.17)] and set ( )LR AAJI −= 10δ , I find   

( )( )
( )n

mxL
B

c

field
c Lx

gHe

gHe

0

101
0 sin

//sin

10

10
γ

ϕγϕ +
=

=
,    (9.40) 

where I have written 0γ  with additional subscripts m0γ  (with field) and n0γ  (without 

field) to highlight they will not be equal at the same qubit frequency.  This of course, 

assumes that the qubit can be biased to give the same frequency with the new critical 

current density. If the microstate couples to the qubit through a term other than the 

critical current, applying a magnetic field will produce a different effect. In the case of 

charge coupling the coupling term eHg c 01  should remain constant.   
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9.5 Distribution of Splittings 

Here I discuss the distribution of splitting sizes and frequencies in a charge-

coupling model. The volume density of defects  per frequency interval df and per 

splitting frequency interval 

D

fdΔ  can be written as  

   
f

f dfd
Nd

Ad
fD

Δ
=Δ

21),( ,     (9.41) 

where  

hgHe cf /102≡Δ      (9.42) 

and  is the number of defects with splitting size smaller than ),( ffN Δ fΔ  and 

frequency less than . I first derive the form of this distribution using the Tunneling 

Model, developed to describe amorphous solids [113]. After this result, I will quote 

results from a model that is perhaps more realistic as written in Ref. [63].  The Tunneling 

Model makes a major simplification by combining the barrier height and distance 

between the two wells into a constant distribution 

f

( )λP , while the splitting size is 

dependent on the  component of the tunneling distance.  z

The Tunneling Model assumes that the tunneling rate λ  ( i.e.  Eq. 

(9.2)) and the well asymmetry energy  (see Eq. (9.1)) are independent of each other 

and have constant distributions, 

λ−= eTTLR 0

aU

( ) max/1 aP λλ =  and ( ) max/1 aa UUP = , where 

( ) bLR Uxx −= αλ 2   (see Fig. 9.2). I now define a new variable θsin/ =≡ ETu LR . 

The distribution for the total energy E  and the variable u  for the two-level system is 

then [113] 
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 ( ) ( ) θθ sincos/11/1,
2/12 ∝−∝ uuuEP .    (9.43)  

I note that this function is energy independent, by assumption.  

Assuming that the location of the two wells are uniformly distributed in the 

junction and taking into consideration that I need to only consider the distance 

LR zzz −=  between them parallel to the field, the distribution of can be shown to be 

given by .  

z

( ) ( ) 2/2 dzdzP −=

 It is worth noting a few expressions that will prove valuable later. The splitting 

size as given by Eq. (9.25) and (9.42) can be written as  

Ed
zT

E
T

Chd
Qz LR

f
LR

f max2
Δ==Δ  ,   (9.44) 

with 
Ch

fQ
f 2

2
max =Δ .   

For a given splitting size fΔ , I can use Eq. 9.44 to write dz
f

f

maxΔ

Δ
≥  since 

. This lends itself to define a minimum distance 1/ ≤ETLR ( ) maxmin / fff dz ΔΔ=Δ . 

From Eq. (9.44) and (9.5), I can also write the asymmetry energy in terms of variables 

,  and , fΔ f z

2
max

222 / ffa dz
z

hfU ΔΔ−= .   (9.45) 

The total number of splittings can be expressed as  
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.  (9.46) 
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Comparing the different expressions for , I can write the distribution as N
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where the Jacobian 
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. The distribution can then be determined by 

integrating Eq. (9.47),  
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Finally I find 
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The distribution can be derived for a more realistic model [63] by replacing the 

Tunneling Model with one that assumes:  

(1) The ion positions (wells) are uniformly distributed in the dielectric volume.  

(2) The tunnel barrier energy  has a uniform distribution, . bU ( ) max/1 bb UUP =

(3) λ  is dependent on the total distance between the wells and the barrier height. 

(4) The asymmetry energy  is uniformly distributed, aU ( ) max/1 aa UUP = .  

Using the above assumptions in a junction with area , Wellstood found [63]  LxL
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where AdN /=η . A few general observations can be made about Eq. (9.49) and Eq. 

(9.50). Both have the same dependence on fΔ  and are separable in terms of  and . 

For splittings sizes  the distributions are very close to being equal to 

 (see Fig. 9.3). Also the first term in Eq. (9.49), which is proportional to 

fΔ f

2/maxff Δ<Δ

ff ΔΔ /max

( ) fff ΔΔΔ− //1 2
max  matches that of Ref. [81]. Finally, the density of splittings 

depends only weakly on frequency in Eq. (9.50) and is constant in Eq. (9.49). 

 The distribution of frequencies and splitting sizes could also be estimated for the 

case of critical current coupling. The distribution for the uncoupled TLS would be the 

same as above if I used the Tunneling Model. The splitting size for a critical current 

coupling model is a function of 0Iδ , which we would expect to depend on the critical 

current density as well as details of how the particle influences the Josephson tunnel 

barrier. Therefore, a spatial approximation of the potential in the barrier and how the 

particle affects it would need to be considered to proceed further with the analysis. 
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Figure 9.3: Distribution of splitting size versus max/ ff ΔΔ . The solid curve shows the 

dependence on  as determined from the distribution of Eq. (9.49) or (9.50). 

The dotted curve is the first part of the distribution of Eq. (9.49), which matches that of 

Ref. [81]. The dashed curve is the distribution 

max/ ff ΔΔ

ff ΔΔ /max  for comparison. 
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9.6 TLS Induced Relaxation 

 In Chapter 3, I modeled the admittance across the junction as an infinite set of 

harmonic oscillators. In some sense this admittance models the situation where many 

two-level systems are coupled to the junction. Fermi’s golden rule can be used to 

calculate the relaxation of the qubit due to a density of coupled microstates using [81] 

   ∫ Δ
⎟
⎟
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⎞

⎜
⎜
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⎝

⎛

Δ
Δ= f

ff
f d
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222
1/1 π .    (9.51) 

The resulting loss tangent is ( ) 1012/1tan Tfπδ = . 

 The same equation can be found by considering Landau-Zener transitions, in the 

limit of a negligible frequency sweep range. The probability of losing energy when 

sweeping through a series of splittings, 1=i  to  in the low loss limit is [63] N

∑ Δ=∑ ⎟
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where  is the rate at which the frequency is swept. Turning the summation into an 

integral gives 

f&

dfd
df
dt

dfd
NdP ff

f
Δ∫ ∫ Δ

Δ
=→

22
2

01 π . As , I find Eq. (9.51), as 

expected.  

0→df

 

9.7 Summary 

 In this chapter I discussed how parasitic two-level quantum systems in the tunnel 

barrier could interact with a phase qubit. I modeled these systems based on a two-level 

system model commonly used in amorphous solids and looked at two different coupling 

mechanisms between them and the qubit (charge and critical current coupling). The 
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precise physical nature of the two-level systems remains an open question and I have 

avoided a detailed discussion of the “particles” themselves. I have also made no remarks 

on the potential relationship between the microstates described here and  noise [70]. 

The random filling and emptying of charge traps is sufficient to explain  charge 

noise, and critical-current noise in junctions [74]. In the model of Ref. [74] an attempt is 

made to explain anomalous low temperature flux noise in terms of a magnetic moment 

associated with the trapped particle, which I made no mention of here. In this chapter, I 

also examined the distribution of the splittings and the effect of a magnetic field on 

splittings in the charge and critical current coupling models. Finally I discussed how 

splittings produce an additional relaxation mechanism, which can impact device 

performance. In the next chapter, I show experimental results of dc phase qubits coupled 

to parasitic quantum systems and test some of these predictions.      

f/1

f/1
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Chapter 10 

Measurements of Microstates in a Phase Qubit 

 

In this chapter, I discuss my measurements of microstates coupled to phase qubits. 

The fact that phase qubits are sensitive to charge microstates is perhaps discouraging 

from the point of view of quantum computation. However, we could also view this as an 

opportunity to apply sensitive detectors (the junction) to study these poorly understood 

systems. In particular, the spectrum of a phase qubit provides an easily accessible 

window into the coupling strengths and transition frequencies of the microstates. By 

applying microwaves resonant with the qubits transition frequency 01f . I can map out 

the energy levels of the qubit. If the qubit junction is coupled to a two-level system 

through eHg c 01 , an avoided crossing will be produced in the spectrum when the 

qubit’s frequency 01f  equals that of an individual two-level system. Unintended 

splittings in phase qubits were first reported by Simmonds et. al., [106] at NIST to some 

skepticism [118]. Subsequently the NIST group was able to show that the coherence 

times of their devices improved substantially after they reduced the number of unintended 

splittings when they used a smaller area junction and removed much of the insulating 

SiO2 [81]. The implication was that there were defects in the junction and the deposited 

or grown SiO2 layers had a loss tangent that could produce significant relaxation.  

Device DS3A was designed with the NIST results in mind; it was made on a 

sapphire substrate, with a smaller junction area than any of our previous devices and no 

SiO2. I found clear unintended splittings in this device as I discussed in Chapter 8. Here, I 
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first discuss the splittings characteristics and then show coherent dynamics of the coupled 

system. These measurements highlight the quantum mechanical nature of the microstates. 

To provide a check on the coupling model, I also examined higher-level interactions. 

This provides a fairly powerful test because no new free parameters should be necessary 

to fit upper levels once the lower level states have been found. Higher-level interactions 

are also important if the second excited state 2=n  of the qubit is to serve a role in the 

readout, in the gating operation of the qubit, or if the state e1  is considered [119]. In this 

chapter, I also discuss some of my preliminary results on applying a magnetic field to the 

qubit to determine the coupling mechanism. I briefly discuss a proposal to use the 

microstates themselves as qubits [120] and conclude with a comparison of the 

experimental results with the predictions of Chapter 9. 

 

10.1 Unintended Avoided Level Crossings 

Although, our group had made many spectroscopic measurements on phase 

qubits, it was several years before splittings were clearly observed. S. K. Dutta first 

observed what appeared to be very small avoided-level crossings in device DS2 [37]. He 

found approximately 10 avoided crossings with splitting sizes MHzf 10<Δ  over a 

range of GHzf 5.501 =  to GHz25.6 . These spectroscopic measurements were made by 

ramping the current through the junction at a fixed microwave frequency. Unfortunately, 

analyzing the splittings in detail proved to be difficult due to the remarkably small size of 

all the splittings; the spectroscopic widths of the qubit was large compared to the splitting 

sizes. Another difficultly was with the technique; the spectrum was made up of slices at a 

given frequency, which can hide splittings that are smaller than the slice-to-slice 
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frequency change. Given the very small size of the splittings S. K. Dutta observed, it was 

not surprising that they went undetected in our qubits until a specific search was made. 

In contrast, Device DS3A and the technique I used were far more conducive to 

observing avoided level crossings. For this device, the current was held fixed, a single 

frequency was applied, and the state was then measured using a pulsed readout technique. 

The resulting spectrum is a collection of individual points, as opposed to fixed frequency 

slices. Figure 10.1 shows a gray scale plot of a measured spectrum when I drove the qubit 

near the 0=n  to 1=n  transition. The qubit was biased at approximately 60 different 

currents, continuous microwaves were applied in 5 MHz or 3 MHz steps and the 

population in 1=n  was measured by applying single-amplitude measurement pulses at 

each bias point. Examination of Fig. 10.1 reveals that several avoided crossings are 

clearly visible with sizes ranging several MHz to about 250 MHz. Splittings less than a 

few MHz are also probably present, but would not be clearly resolvable.   

 To quantify the splittings, at each current bias the probability of escape ep  versus 

f  was 2χ -fit to a sum of Lorentzian peaks, one Lorentzian for each distinguishable 

peak. Figure 10.2(a-d) shows four sample fits (see Table 10.1 for fit parameters). The 

offset of about 4% is due to population in 0  tunneling during the single amplitude 

readout pulse.  I note that when the qubit is coupled to a TLS simply adding two 

lorentzians may not be rigorously correct. However, I found it gave a rather accurate fit 

for the spectroscopic width and peak location, as shown. Away from any splittings, the 

peaks fit well to a single Lorentzian, as shown in Fig. 8.12(a). 
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Figure 10.1: Transition spectrum of SQUID DS3A. The false color map represents 

probability of escape during a pulse. Several prominent splittings are clearly visible. 
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Figure 10.2: Lorentzian fits to resonant peaks in spectrum of SQUID DS3A. At each bias 

current, ep  was 2χ  fit with an appropriate number of Lorentzians. From these fits (see 

Table 10.1) the location and full-width-half-max fΔ  for each peak was determined.  
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Table 10.1: Parameters from Lorentzian fits shown in Fig. 10.2. 

plot Peak (GHz) Δf (MHz) Amplitude Offset 
a 10.531 17.8 0.0128 0.0406 
a 10.556 17.2 0.0778 0.0406 
b 10.465 3.9 0.0132 0.0438 
b 10.520 19.3 0.0837 0.0438 
c 10.461 7.7 0.0325 0.0387 
c 10.493 18.2 0.0726 0.0387 
d 10.454 13.9 0.056 0.0386 
d 10.482 12.0 0.0457 0.0386 

 

   Figure 10.3 summarizes the result of the analysis. The circles in Fig. 10.3 

correspond to the location of the resonance peaks and the vertical lines the FWHM, found 

using the fitting procedure at each current. The open circles at 10.714 GHz correspond to 

“peaks” that were not Lorentzian. The enhancement for these points immediately drops to 

zero above 10.714 GHz, regardless of the bias current and the enhancement at 

frequencies less than 10.714 GHz. This suggests that microwaves were not able to reach 

the qubit here. I have therefore ignored these points in my fit.   

Figure 10.4(a) is an enlarged section of Fig. 10.3 where I have also added labels 

to several of the states; microstates subscripts not shown are in their ground state, i.e. 

876543214 00 ggggeggge = . In Figure 10.4(a), I have represented some branches 

with triangles for clarity. The solid lines in Figs. 10.3 and 10.4(a) are a fit to the energy 

levels of the qubit coupled to eight microstates. The uncoupled junction spectrum is 

found from solving Schrodinger’s equation for a single Josephson junction, which 

depends on only the critical current, here AI μ263.10 =  and capacitance of the junction 

qubit pFC 377.0= . In the fit to the full spectrum, I assume that each TLS has a first 

excited state energy that is independent of I  and does not directly couple to other  
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Figure 10.3: Transition spectrum for DS3A showing the peak location (circles) and 

FWHM (vertical lines) from fitting each bias point. The solid line is a fit to the data using 

a single junction model, and 8 microstates. The frequency and coupling strength for each 

microstate was varied to give the best 2χ  fit. The microstates are assumed to only couple 

to the junction and not directly to each other. Table 10.2 shows the best-fit values used 

here for the fit. 



 213

I (μA)

f (
G

H
z)

Δ
f (

M
H

z)

(a)

(b)

30e

40e

20e

30e

40e
20e

I (μA)

f (
G

H
z)

Δ
f (

M
H

z)

(a)

(b)

30e

40e

20e

30e

40e
20e

 

Figure 10.4: Enlarged sections of Fig. 10.3 and 10.5. (a) An enlarged section of spectrum 

in Fig. 10.3 with several states labeled. Circles and triangles are used to clarify the 

different branches. (b) Corresponding section of FWHM from Fig. 10.5 with the same 

states labeled. The dashed curve is the fit to the triangle points and the solid curves fit the 

circles. The FWHM of the junction as determined from the entire fit is plotted as a 

horizontal dashed line at MHzf 12=Δ .   



 214

microstates. Here, I will add a subscript to clarify the different microstates, for example 

fiΔ  and if  are the splitting size and frequency of the ith microstate, respectively.  

For the fit curves in Fig. 10.3 and 10.4, each if  and fiΔ  and the qubit parameters 

0I  and C  were varied to determine the best fit to the peak locations for the entire 

spectrum simultaneously. The resulting best fit values are given in Table 10.2. For 

example, in a two microstate system coupled to the qubit the eigenvalues of the following 

Hamiltonian would have been determined: 
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110101
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. (10.1) 

With eight microstates, the actual Hamiltonian, I used was a 9x9 matrix (see Appendix 

A). 

The data in Fig. 10.3 was taken several months after that shown in Fig. 10.1, yet 

most of the splittings remained relatively fixed. A few observations can be made from the 

spectrum of Figs. 10.1 and 10.3. All the splittings here are much larger than any seen in 

DS2, the implications of this fact are discussed in Section 10.5. Examination of Fig. 10.3 

shows that I obtained excellent agreement between the data and the fit, especially 

considering the simplicity of the model. While I assume the microstates do not couple to 

each other, they affect the fit of each other through the qubit. Unfortunately, the fit in 

itself does not reveal much about the microscopic nature of the TLSs.  

Figure 10.5 shows the full-width-at-half-maximum ( FWHM  or fΔ ) of the 

resonant peaks as a function of current. The circles and triangles represent the FWHM  

values as determined by the Lorentzian fits described above; two different symbols are 
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Table 10.2: Best fit microstate parameters for DS3A spectrum as shown in Fig. 10.3.  

Microstate ( )GHzf  ( )MHzfiΔ  ( )MHzfΔ  

 
1 10.075 14 23 14 
2 10.197 16 6 53 
3 10.335 114 80 4 
4 10.472 36 2 159 
5 10.540 24 17 19 
6 10.621 24 5 64 
7 10.935 240 ~ 80 [121] 4 
8 11.042 60 < 20 [122] >15 
Qubit f01(I0, C, I)   12 27 

  

used to clarify distinct branches in the spectrum. As the qubit comes in and out of 

resonance with the microstates, the FWHM  of the eigenstates reflects this. The FWHM  

can also be written as a spectroscopic coherence time *
2T , where fT Δ= π/1*

2  (see right 

hand axis in Fig. 10.5). Figure 10.4(b) shows an enlarged view of the fit in the same 

region as Fig. 10.4(a) to help clarify the relationship between the two curves and the 

fitting procedure.  

The solid lines in Fig. 10.5 and 10.4(b) are fits to the widths of the coupled 

systems. Imaginary energy terms representing 2T  were added to the microstates and 

qubit energies in the Hamiltonian of Eq. (10.1); then the eigenvalues of the system at 

each bias point were again determined. The real component of the resulting eigenvalue is 

the frequency f  and the imaginary component is 2/fΔ . The coupling strengths and real 

part of the energies were completely determined from fitting the peak Lorentzian 

locations, only the coherence times were varied to fit the widths (see Table 10.2 for fit 

parameters used). The best fit produced a qubit MHzf 12=Δ  or nsT 27*
2 = . For clarity 

in Fig. 10.5, the values for fΔ  are only shown near the avoided crossing, since otherwise 

)(*
2 nsT
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they appear as constant horizontal lines. I generally observe good qualitative agreement, 

with the FWHM  reflecting its composition from the different systems. However, some 

discrepancies are clearly visible. For example, in Fig. 10.4(b) at AI μ122.1≈ , the 

crossing in the FWHM  points does not quite match the predicted crossing. As expected, 

eigenstates that are predominantly an individual TLS have a fixed FWHM  that changes 

as the crossing is approached. Finally, I found that at AI μ108.1≈ , the peaks are very 

poorly fit by Lorentzians and at AI μ10.1≈  the data is very scattered, and thus no fits are 

shown for AI μ108.1< . 

I note that several of the microstates I found had MHzf 5<Δ  or nsT 64*
2 > . For 

example, fine scale measurements with 1 MHz steps in a region where the 4th microstate 

(at 10.472 GHz) was only very weakly coupled showed MHzf 4=Δ or nsT 80*
2 =  (see 

Fig. 10.6). The star in Fig. 10.6(a) represents the peak location and Fig. 10.6(b) shows the 

spectrum that determined the peak. Interestingly, the 3rd microstate has a much larger 

FWHM ( MHzf 80=Δ  or nsT 4*
2 = ) along with a much larger splitting size 

MHzf 1143 =Δ . Perhaps this splitting has a different physical origin than the others. 

Away from resolvable splittings, the coherence time of the qubit also appears to 

vary somewhat, potentially due to smaller unresolved splittings. The best FWHM  

measured for the qubit was MHzf 15=Δ  or nsT 21*
2 =  at GHzf 080.1001 =  as shown 

in Chapter 8. This was close to the 12 MHz value used in the fit shown in Fig. 10.3. I 

note that as the current through the junction is decreased, If ∂∂ /01  decreases, suggesting 

a smaller spectroscopic width should be expected at higher frequencies if the device is 

limited by low-frequency current noise (a similar argument can be made for flux noise or  
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Figure 10.6: Fine scale measurement of the spectrum with 1 MHz steps. (a) The splitting 

centered at AI μ121.1= (microstate 4) was followed down to AI μ114.1~ , far from the 

avoided crossing. The peak frequency location as determined from (b) is plotted with a 

star in (a). The FWHM is approximately 4 MHz. 
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critical current noise). This effect does not appear in my data, although the lowest 

frequency in this data set is fairly deep (less sensitive) compared to our previous 

measurements. 

Similar splittings were also seen in DS4B (see Fig. 8.16). In this device I did not 

analyze the spectrum in detail, but it is clear from the rough spectrum that a wide range of 

splitting sizes are visible. For example, at 9.25 GHz and 8.95 GHz splittings with 

MHzf 30≈Δ  are visible as well as a much larger ones at 8.8 GHz and 9.1 GHz. 

 

10.2 Coherent Dynamics 

 While splittings are indicative of the qubit coupling to other quantum systems, 

seeing real time dynamics associated with it provides an additional window into the 

interaction. To look for coherent dynamics associated with the TLS, the qubit was biased 

at AI μ122.1≈ , where the qubit was maximally entangled with the 4th microstate. In this 

experiment, taken several months before the fit data in Table 10.2, at the maximally 

entangled current the splitting was MHz325 ± (compared with 36 MHz shown in Table 

10.2). In Fig. 10.7(a) the circles represent the eigenstates for this splitting. A short 

microwave π-pulse (~5 ns) at 10.469 GHz was applied, [represented by the 3rd star in Fig. 

10.7(a)]. This frequency is midway between the transition frequencies at the avoided 

crossing. This was chosen with the idea that the microwaves would only pump the 

junction, leaving it in the state g1 , which is not an eigenstate of the system. In an 

idealized system without decoherence or relaxation after the pulse the state of the system 

would then evolve as 
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Figure 10.7: Spectrum and coherent dynamics near the 4th microstate. (a) The circles 

represent the eigenstates of the coupled system near the 4th microstate. The stars show the 

current I  and microwave frequency applied to excite the system into a non-eigenstate. 

(b) Points show oscillation frequency as roughly determined from Fig. 10.8(c) for the six 

locations in Fig. 10.7(a). Solid curve shows splittings size as determined from the 

spectrum. 
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( ) ( ) ( )( )etigttit ff 0sin1cosexp)( 01 Δ+Δ−= ππωψ  .  (10.2) 

A measurement of the probability of finding the qubit in its excited state would give  

( ) ( )[ ] ( )tttg ff Δ+=Δ= ππψ 2cos
2
1

2
1cos1 22 .   (10.3) 

The filled circles in Fig. 10.8(a) shows the probability in 1=n  versus time as 

measured using the pulse readout technique. After the 5 ns π-pulse, the subsequent decay 

oscillates weakly with a period close to 40 ns, which would be expected based on the 

splitting. Figure 10.8(b) shows 1p  versus time if the microwaves are not shut off after 5 

ns. Figure 10.8(c) shows the results of a π-pulse and subsequent decay if the qubit is 

biased at different locations near the splitting; the locations are represented as stars in 

Fig. 10.7(a). For clarity, the successive curves in Fig. 10.8(c) are offset in ep  for each 

larger qubit bias current. For comparison, the curve in Fig. 10.8(a) is again plotted in Fig. 

10.8(c) with a solid line (3rd from the top). As the eigenstates become further separated, 

the frequency of the oscillation in the free evolution decay increases, as expected. This 

change in the oscillation frequency, as roughly estimated from Fig. 10.8(c) is shown for 

the 6 bias locations in Fig. 10.7(b). The solid curve shows the splitting size as determined 

from the spectrum. The frequencies from the two measurements follow the same trend.  

The coupled system can be modeled using the density matrix to include effects of 

relaxation and decoherence. For this simulation, I assumed that the microwaves only 

couple to the qubit junction and chose the qubit and TLS relaxation and dephasing times 

to achieve a good it. The population from the simulation was multiplied by 0.78 and 

given an additional 0.07 to roughly account for the measurement fidelity of the single- 

shot pulse measurement. The solid lines in Fig. 10.8(a) and (b) show the results of these 
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Figure 10.8: Coherent dynamics of microstate #4 coupled to device DS3A. (a) The system 

was prepared in a non-eigenstate by applying a 10.469 GHz, 5ns, π-pulse. After the 

microwaves were shut off at nst 5=  the system decayed with a weak oscillation. (b) 

Measured switching probability when the microwaves were left on. The solid line in (a) 

and (b) is a density matrix fit to the data with nsT 91 =  and nsT 30=φ  for the qubit and 

nsT 1001 =  and nsT 400=φ  for the TLS. The simulation is in rough agreement, but 

predicts some features not seen in the data in (b). (c) The same experiment as (a) for the 

bias locations shown in Fig. 10.7(a) as stars. Solid curve is same as in (a). 
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simulations with nsT 91 =  and nsT 30=φ  in the qubit, nsT 1001 =  and nsT 400=φ  in 

the two-level system, MHzf 25=Δ  and .469.10 GHzf =  Using these parameters I was 

able to model the free evolution data rather well [see Fig. 10.8(a)]. In fitting the data, the 

key parameters were nsT 91 =  in the qubit and MHzf 25=Δ ; the fit was not very 

sensitive to 1T  and φT  of the TLS, provided they were much longer than the 

corresponding times for the qubit. Using these same parameters I fit the case where 

microwaves were left on, as shown in Fig. 10.8(b).  

The simulation in Fig. 10.8(b), however, showed some interesting behavior from 

nst 20=  to ns40  that was not seen in the data. In the simulation, the coherent 

population in the TLS seems to have leaked back to the qubit to produce the effects 

around nst 4020 −= . This effect wasn’t seen in the experimental data, perhaps due to 

the other microstates near by in frequency. If I assume nsT 301 =  in the qubit, I was 

unable to fit the data, regardless of the splitting size. Since the known microstate is 

accounted for, it is curious that the data seemed to require a qubit relaxation time 

nsT 9~1  that is much shorter than that found elsewhere in the device away from 

splittings nsT 30~1 . Perhaps this is due to other microstates near by. I note that in both 

the free evolution and spectroscopic fits, TLS #4 appears to have a substantially longer 

*
2T  than the qubit. The relatively long *

2T , and the presence of coherent oscillations in 

the free evolution decay, suggests the microstates may be good qubits themselves, as 

suggest by Zagoskin et. al. [120].  
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10.3 Higher Level Spectroscopy 

The interaction of a microstate with the second excited state of the qubit 2=n  

can provide a check on our understanding of the coupled system. In particular, if e0  

and g1  have the same energy, then at this same bias current e1  should have about the 

same energy as g2 . Based on the analysis of Chapter 9, I would expect e1  to strongly 

couple with g2 , while g2  should only very weakly couple to e0 .   

To check the higher-level spectrum, I applied microwaves to excite 

20 =→= nn  qubit transitions in the 20-21 GHz range. Figure 10.9 shows the 

corresponding gray scale plot of the spectrum. Unlike the 10 =→= nn  spectrum, two 

“tilted” avoided crossings are visible, while no “horizontal” splittings are evident. For 

other data sets as well, I found no signs of horizontal splittings from 21.4 GHz down to 

20.0 GHz. I note that at 19.93 GHz and 21.420 GHz peaks did emerge and their 

frequency did not appear to depend on the qubit junction. Presumably they were due to a 

resonance in the system of unknown origin.  

As was done for the lower frequency spectrum, this spectrum was fit with a series 

of Lorentzians at each bias point. For the higher-level spectrum data, a Lorentzian peak 

was included for every clear distinguishable peak; often more than two were required. 

Several sample slices are shown in Fig. 10.10(a-d). The dashed curves represent the 

individual Lorentzian peaks used to fit the measured points (circles) and the dark curve is 

the result of the combined Lorentzians. A list of the parameters used in these fits is given 

in Table 10.3. While the resolution is worse than the lower spectrum due to the larger 

widths and greater number of peaks involved, the spectra are fairly well represented by 
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Figure 10.9: Transition spectrum of the qubit and microstates from 20.4 to 21.3 GHz. The 

false color map represents the fraction that escaped with a measurement pulse. Two 

“tilted” splittings are visible, one near 20.9 GHz and one near 21.1 GHz. No horizontal 

splittings are visible; the light horizontal band near 20.78 GHz is likely due to an anti-

resonance in the microwave line, since no bending of the spectrum occurs as the 

frequency is approached.   
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Figure 10.10: Sample fits to the higher frequency spectrum. (a-d) Sample slices at fixed 

current show how several Lorentzians were used to fit the data. The parameters used for 

the fits are given in Table 10.3. 
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Table 10.3: Fit parameters for resonant peaks shown in Fig. 10.10.   

plot Peak (GHz) Δf (MHz) Amplitude Offset 
a 21.111 37.5 0.02 0.057 
a 21.150 54 0.058 0.057 
b 20.945 78.4 0.0079 0.0366 
b 21.076 73 0.058 0.0366 
b 21.120 52.1 0.023 0.0366 
c 20.903 66 0.0133 0.0417 
c 21.029 80.6 0.0528 0.0417 
c 21.0826 14 0.0109 0.0417 
d 20.874 68 0.0548 0.04 
d 20.993 0.101 0.0925 0.04 
d 21.073 0.027 0.0112 0.04 

 

the fit. Figures 10.10 and 10.11, taken two months after Fig. 10.5, show the 

corresponding higher-level transitions associated with Fig. 10.3. The two spectra shown 

in Fig. 10.3 and 10.11 were taken within a week of each other to enable a direct 

comparison and to minimize bias calibration drift and possible changes in the splittings 

sizes and locations. In Fig. 10.11 and 10.12, the circles and “error bars” again show the 

peak location and FWHM at each bias current. 

Examination of Fig. 10.11 reveals clear slanted avoided level crossings. This 

qualitative behavior is exactly what one expects for g2  states coupling to e1  states. 

The solid curves in Fig. 10.11 are uncoupled predictions of the eg 10 →  transition 

versus bias, determined solely from the fits in Fig 10.3.  The predictions ignore coupling 

and come from simply adding the single junction transition frequency )(01 If  and 

microstate transition frequency if  determined previously (i.e. ifIff += )(01 ) with no 

free parameters. The three curves represent the three largest splittings found in the lower 

frequency spectrum that would be expected in this higher frequency spectrum.  I note that  
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Figure 10.11: Higher frequency transition spectrum in DS3A. The circles correspond to 

the fit peaks and the “error bars” the FWHM at each bias point. The dashed curves 

represent the transition frequency found by adding the qubit 01f  and the different 

microstate transitions as determined from Table 10.2, with no new fit parameters. Three 

“tilted” avoided crossings are clearly visible. 
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Figure 10.12: Fit to the higher frequency spectrum in DS3A. The circles correspond to the 

fit peaks and the “error bars” are FWHM at each bias point. The solid curves show fits to 

the second excited state energy of eight TLSs and a junction model with 

2
01
12

=
eHg
eHg

c

c . The microstate frequencies and coupling strengths are fixed from the 

lower spectrum (see Table 10.2). 
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the three curves predict the tilted experimental crossings seen in the data fairly well. 

Figure 10.12 takes this model a step further by fitting the slanted avoided 

crossings using the second excited state of a junction and including coupling between the 

junction and microstate. With the e1  energy determined from the lower spectrum, the 

coupling between g2  and e1  for each microstate was fixed at fiΔ2 , which is what 

one would expect for harmonic states in the junction (see Section 9.2). This assumption 

comes directly from both coupling models of Chapter 9. For the fits in Fig. 10.12, the 

Hamiltonian shown in Eq. (10.1) must be expanded to include higher states, with terms 

including e1  and g2 . Unfortunately, the single junction model with the same 

parameters as before was unable to fit the 20 =→= nn  transition even away from 

splittings. This may be because the qubit is not actually a single current bias Josephson 

junction, but part of a dc SQUID [42] or because the current had changed slightly over 

two weeks. To obtain the fit shown, a single junction model with a critical current of 

AI μ266.10 =  and pFC 374.0=  was used for 2=n , slightly different than what I used 

for the 1=n  transition ( AI μ263.10 =  and pFC 377.0= ). The resulting curves are in 

good agreement with the data, although some discrepancies are obvious. I note that if the 

coupling of the three slanted avoided crossing is adjusted for the χ2 best fits, I find the 

best fits for coupling are 1, 1.5 and 2 times the lower coupling (i.e. coupling size of 64 

MHz for the 3rd microstate, 23 MHz for the 4th microstate and 25 MHz for the 5th 

microstate).  

In theory another type of avoided level crossing should be present in the higher-

level spectrum. If one can resolve the spectrum sufficiently, a splitting may appear where 
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a eg1  state couples to ee0 . Here the second and third indices refer to separate TLSs. 

This would be a horizontal crossing. There is possibly evidence of such a crossing at 

21.093 GHz, which is 64 ff + . As Figs. 10.13(a) and (b) show, there appear to be very 

small additional peaks near this frequency. The arrows highlight the additional peaks that 

could be this interaction, which I ignored during earlier fits. Unfortunately the resolution 

precludes making a definitive experimental statement about this interaction.     

It is also worth emphasizing that I see no clear horizontal splittings in the 

20 =→= nn  spectrum in Fig. 10.9, Fig. 10.11 or any other data I took. This range 

includes frequencies where 2=n  level would be if the TLS was actually a simple 

harmonic oscillator.  

 

10.4 Magnetic Field 

In principle, applying a magnetic field in the plane of the junction to suppress the 

critical current can be used to distinguish critical current coupling from charge coupling, 

as I discussed in Chapter 9. For a critical current fluctuator the coupling is dependent on 

0Iδ , which should be a function of the applied field. In particular by applying a field, I 

can reduce the current density difference between the two defect locations, thus changing 

the coupling. For a charge fluctuator the coupling to first order would not change with 

field. One complication is that applying a magnetic field through the junction does not 

uniformly change the critical current density. Therefore the change in coupling would 

also be sensitive to the position of the critical current fluctuator. TLSs located in certain 

areas of the junction could change their coupling to the qubit drastically, while others  
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Figure 10.13: Possible eg1 - ee0  interactions. The 4th microstate and 6th microstate 

have a combined frequency of 21.093 GHz, which matches reasonably well with the 

small features (potentially an avoided crossing) highlighted by the arrows. This feature is 

seen in both (a) and (b), which were taken at different currents 1I  where the qubit is less 

strongly coupled to the 41e  state. The lack of resolution precludes making a definite 

statement and similar interactions were not seen at other locations where it would have 

been expected. Previously, I limited myself to a maximum of three Lorentzians at any 

single bias current. 
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may not change their coupling at all. As discussed in Chapter 9, the current density in the 

junction is given by 

)sin()( 1 kxJxJ += γ  ,   (10.4) 

where 0/2 Φ= ydHk π  and nmd 100≈ . 

I made some preliminary tests to check for effects upon the application of a 

magnetic field. For these tests, I heated the mixing chamber to slightly over 1 K, such 

that magnetic field could easily penetrate the aluminum sample box, applied the magnetic 

field in the plane of the junction and then cooled the device back down to base 

temperature. I then took an I-Φ curve to determine the new critical currents. This process 

was repeated several times until I found roughly the maximum change in the critical 

currents where the device could be operated in the 9-10 GHz frequency range.   

The maximum field I applied (nominally 32 G) changed the critical current of the 

qubit junction to AI μ04.10 ≈  or about 83% of its non-field value. I determined an 

effective yH  by setting the integral of Eq. 10.4 over the junction area ( mxm μμ 44 ) 

equal to the critical current found experimentally. Surprisingly, the effective magnetic 

field was approximately GH y 16= . A similar deviation was seen previously by S. K. 

Dutta in a Nb device [37]. Figure 10.14 shows the calculated current density through the 

junction when it is biased so GHzf 5.1001 ≈  with an effective magnetic field of 

GH y 16=  applied to an ideal junction. Also shown is the current density with no field 

applied and with GH y 16−=  applied. For no applied field AI μ22.10 =  and thus 

AI μ07.1=  gave GHzf 5.1001 ≈ . Using Eq. (10.4) this implies 075.1=γ .  With  
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Figure 10.14: Current density J  through the qubit junction versus location x  in device 

DS3A for three different applied fields yH . The total current for each field is set such that 

GHzf 5.1001 ≈ . By reversing the applied magnetic field the current could be modified 

over a larger area of the junction.  
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GH y 16= , AI μ04.10 =  and AI μ867.0=  was required to get GHzf 5.1001 ≈ , 

implying 019.0=γ . 

I found that applying this magnetic field experimentally produced no measurable 

change in the location or splitting size for the microstates with energies of 

GHzf 472.104 =  and GHzf 540.105 = (microstates #4 and 5 in Table 10.2). The 

resolution in determining the splitting size would have allowed me to detect a change as 

small as about 10% in the splittings (i.e. several MHz). One possibility is that these 

microstates fluctuators could have been located in the roughly 40 percent of the junction 

area where the current density was not modified enough to generate a detectable change 

in the coupling (as seen from Fig. 10.14). Of course, another possibility is that the 

coupling was not dependent on critical current.  

On the other hand, the TLS at GHzf 335.103 =  (TLS #3 in Table 10.1) did 

change its coupling strength to the qubit. The coupling increased from roughly 

MHzf 1143 =Δ  to MHzf 1603 =Δ  upon application of the field. Needless to say, one 

would naively have expected the critical current to decrease upon application of a field. 

Examination of Fig. 10.14 shows that the current density actually does increase in some 

parts of the junction, although not by much, so this result is not entirely consistent.  

Interestingly this microstate also had a spectroscopic coherence time much shorter than 

the other splittings ( nsT 4*
2 = ). Perhaps this microstate has some current density 

component to its coupling.  

Finally, I note that by applying a magnetic field in the opposite direction 

(i.e. GH y 16−= ) I should have been able to significantly modify the critical current 
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density over a different region in the junction (see Fig. 10.14). Unfortunately, this was 

not attempted.  

 

10.5 Comparison with Theory 

My experimental results can be used to test some of the predictions of Chapter 9. 

In particular, I was able to simulate the coupled spectrum, coupled spectroscopic 

coherence times and coherent dynamics using the models of Chapter 9. Although the fits 

contained a large number of free parameters there were many more data points than 

fitting parameters and the general form of the data matched the fits.  

For device DS3A the maximum splitting size in a charge-coupling model, with 

eQ =  would be approximately 750 MHz at 11 GHz (see Eq. 9.28). The largest 

experimental splitting I found was 240 MHz, at 10.935 GHz corresponding to a single 

electron charge hopping about 1/3 of the dielectric thickness or about 3 Å if the barrier 

thickness is 1 nm.  

The light lines in Fig. 10.15 are the experimental cumulative number N  of 

splittings with sizes larger than 10 MHz and less than '
fΔ  in device DS3A (dashed curve) 

and the average of the distributions from DS3A and DS4A (medium solid curve). For 

device DS4A I estimated five splittings (16, 17, 27, 94, 115 MHz) over the 800 MHz 

range measured. The darker curves are fits using the distribution of Eq. (9.50), multiplied 

by a constant to match the total number of splittings. The dark dashed curve is with 

MHzf 700max =Δ  and the dark solid curve is for MHzf 250max =Δ .  Qualitatively the  
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Figure 10.15:  Number of splittings per GHz with splitting size smaller than '
fΔ  and 

larger than 10 MHz versus splitting size '
fΔ . The lighter dashed curve corresponds to the 

splitting distribution for device DS3A and the lighter solid line shows very rough 

estimates including DS4B also. The dark solid curve uses the distribution given by Eq. 

(9.49) with MHzf 250max =Δ  and the dark dashed curve is with MHzf 700max =Δ . 
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distribution seems consistent with the data, however such a small sample set prevents a 

quantitative comparison. 

In comparison, the lack of any large splittings in DS2A or DS1A and “similar” Nb 

devices is striking. The capacitance of the devices were roughly an order of magnitude 

higher, so naively one might expect splitting sizes only about 3 times smaller from Eq. 

(9.28). If I scale the maximum splittings of 240 MHz seen in the Aluminum devices DS3A 

this should have produced a splitting of about 80 MHz, which would have been easily 

seen. Many more splittings should have existed as well due to the much larger area of 

dielectric. Perhaps many more very small splittings did exist that were not resolvable and 

those were the dominant relaxation source in the qubit, as modeled in Section 9.6. 

Devices DS2A and DS2B were of course fabricated using a completely different process, 

and no doubt this affected the distribution of defects. Never the less, the lack of large 

splittings in Nb devices is suggestive of significant differences in the respective defect 

density and coupling.  

I note that my measurements of the higher-level interactions were not able to 

determine the coupling mechanism since both charge and critical current coupling models 

predict 2
01
12

≈
eHg
eHg

c

c , and this was roughly supported by the data. The effect of 

eHe c 11  on the energy of the e1  state in a critical current coupling model (see Section 

9.2) is also smaller than the experimental resolution. Conditions in the model that predict 

a large splitting size, lead to a small eHe c 11  term, as seen from Eq. 9.15 and 9.17.  

The higher-level interactions do, however, provide another test of the two-coupled 

systems. Not seeing the tilted avoided level crossing would have been surprising and 
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given reason to reconsider the basic models of the TLSs, as would the existence of 

harmonic TLS levels.  

I also note that one would reasonably expect some microstates to have first 

excited states in the 20 GHz range. In a charge-coupling model the maximum splitting is 

actually expected to scale as ff ∝Δ max , [see Eq. (9.25)] and the distribution only 

weakly depends on the frequency (see Eq. (9.50)). The lack of e0  and g2  splittings is 

consistent with e0  coupling weakly with g2 , as expected in the coupling models.  

 A promising approach to study the coupling mechanism is to measure changes in 

the splitting upon application of a magnetic field. I found that the two smaller splittings 

(microstates #4 and #5 in Table 10.1) remained fixed with an applied magnetic field, 

while one of the larger splittings (microstate #3) actually increased. A slight increase in 

splitting size is possible, if the qubit is not biased at the critical current and is coupled via 

critical current to the qubit. The increase would occur if the microstate position had an 

increased current density when a field was applied. If I had decreased the critical current 

of the qubit further or applied an opposite field, perhaps some concrete conclusions could 

have been reached using this technique.   

 

10.6 Summary 

I have measured multi-level spectra of two-level systems that are coupled to 

Josephson junction phase qubits. Splittings were clearly visible in the qubit’s 

10 =→= nn transition. Using a simple model I was able to accurately model the 

interactions of the two-level systems and the first excited state of the qubit. The effects 

are consistent with charged ions coupling to the qubit, including the maximum splitting 
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size. By fitting the lower spectrum, i.e. gg 10 →  and eg 00 →  I was able to predict 

interactions between higher level states. As expected, the much smaller qubit junction 

area dramatically increased the size of the splittings and allowed for a more complete 

study of these two-level systems. 

 

 

 
 

 
 

 
 



Chapter 11 

Conclusion 

 

In this thesis, I reported research on a dc SQUID phase qubit. A variety of 

techniques were developed and studied with the ultimate goal of satisfying some 

elements of the DiVincenzo criteria for quantum compuation. In particular, I focused on 

control of the dc SQUID, a pulse readout technique and the coupling of microstates to the 

qubit. 

Designing a dc SQUID phase qubit that is well isolated from the bias source tends 

to produce a device with many stable flux states. To operate the SQUID as a qubit, the 

system must be initialized to the same potential well with near perfect accuracy. By 

applying a “flux shaking” technique, I was able to satisfy this requirement. By using 

different flux versus bias current trajectories I was also able to operate dc SQUID phase 

qubits with substantially different critical currents and inductance ratios. This made 

designs with a much smaller qubit junction possible. 

By employing a pulsed current readout technique, I was able to significantly 

improve the measurement resolution compared to an escape rate readout technique. 

Direct measurements of the relaxation time  became possible. I showed that very small 

levels of leakage to higher levels 

1T

2=n  were also directly measurable using this 

technique. The very short pulse time (a few ns) makes single-shot measurements 

possible.  

Our qubits showed avoided level crossings in the transition spectrum resulting 

from microstates coupling to the qubit. I analyzed two possible models for this coupling, 
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through the critical current and the charge. Unfortunately, both models can produce very 

similar results and I was not able to experimentally verify which coupling was dominant 

in our qubits. By applying a magnetic field, one might be able to distinguish these 

coupling mechanisms. I did obtain some preliminary results using this technique, but the 

parameters of the device (DS3A) prevented a complete verification. I was able to test 

some theoretical predictions of the coupling models, specifically: variations in the 

spectroscopic coherence time as the two quantum systems interact, higher level 

interactions of the systems and the distribution of avoided level crossings. In general, I 

found relatively good agreement.  

 The relaxation and coherence times in our dc SQUID phase qubits were generally 

lower than expected if the current lines were the dominant source of dissipation. In 

device DS3A, I found a best-case relaxation time nsT 301 ≈ , Rabi decay time nsT 30'≈ , 

spectroscopic coherence time  and a coherence time . These times 

were twice as large as the best experimental values I obtained in device DS

nsT 20*
2 ≈ nsT 202 ≈

2A, DS2B and 

DS1, even though DS2A, DS2B and DS1 were much better isolated from the current lines. 

While the bias current admittance could be made to affect the relaxation rate in DS3A; 

DS4B, which was better isolated from the bias leads, performed no better.  

 Several other possible sources of dissipation have not been ruled out in our qubits. 

Defects in the materials, possibly related to the splittings, could still be limiting the 

performance of our qubits, even if no splittings are visible in the spectrum. Our AlOx 

tunnel barriers could simply be lossy. Other groups have invested substantial effort into 

investigating the materials used [81]. Another source that should be considered in the 

future is radiation resistance. Most of the superconducting qubits that have relatively long 
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coherence times, of order μs, have tended to be very small compared to my devices [53, 

123]. 

 Even very modest gains in the coherence times of our devices would open up new 

experiments. The simplest would be spin-echo measurements, which would further 

quantify the coherence times in the qubits. Another interesting experiment would be the 

coupled qubit gates developed by Strauch et. al. [96] for phase qubits. As the qubit’s 

coherence times improve, less microwave power would be needed to observe coherent 

dynamics. Experiments with less microwave power have less leakage to higher level, 

which would enable more precise gates. If the state 1=n  has a long lifetime, a drive at 

 could selectively pump the state to 12f 2=n  for readout. This would enable a larger 

single shot measurement fidelity based on the much higher tunneling rate, `12 Γ>>Γ .  

Finally, while much work remains, phase qubits have advanced remarkably over 

the last few years. The long-term prospects of implementing some preliminary algorithms 

using superconducting qubits look very positive.  

 

 

.     
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Appendix A 
 

MATLAB Code 
 

 

The following programs calculate the eigenfunctions, energy levels, and tunneling 

rates for a single current-biased Josephson junction and a qubit coupled to TLSs. The 

algorithms were written by S. K. Dutta [37] and Huizhong Xu [36]. 

  
A.1 Solutions of the Junction Hamiltonian  
 
function [stuff,wavefn] = … 

jjspectrum(Io, Cj, Iri, Irf, dIr, levelmaxIr, E0, psi0) 
 
% [stuff, wavefn] = 
%  jjspectrum(Io, Cj, Iri, Irf, dIr, levelmaxIr, E0, psi0) 
% This calculates all the energies and wavefunctions for a single 
% junction with critical current 'Io' (Amps), junction capacitance 
% 'Cj' (Farads), from reduced bias current 'Iri' to 'Irf', in 'dIr' 
% steps. 'levelmaxIr' sets the number of levels to calculate; it's 
% defined in 'keeplevels'. 'E0' and 'psi0' are optional -- they 
% specify the initial guesses for all the levels. Everything sent 
% back in a big structure. 
% calls: hbar, keeplevels, jjeigentbc, wp, plotlevels, xaxis 
 
more off 
diary on 
global hbar; 
 
stuff.params.Io = Io; 
stuff.params.Cj = Cj; 
stuff.params.Iri = Iri; 
stuff.params.Ifr = Irf; 
stuff.params.dIr = dIr; 
stuff.params.levelmaxIr = levelmaxIr; 
stuff.params.start = clock; 
 
NIr = floor( (Irf - Iri) / dIr ) + 1; 
 
for Ircount = 1 : NIr 

Ir = Iri + (Ircount-1) * dIr; 
stuff.Ir(Ircount) = Ir; 
disp(['Reduced current ' num2str(Ir)]); 

 
% After the first current, use the previous wavefunction as the 
% initial guess. Use the same n, which (at a higher current) will 
% give a lower initial guess for the energy. 
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for levelcount = keeplevels(levelmaxIr, Ir) 
disp(['Level ' num2str(levelcount)]); 

 
if Ircount == 1 
if nargin == 8 

% User supplied energy and wavefunction 
solution = jjeigentbc(Ir*Io, Io, C length(levelmaxIr)-1,... 
E0(levelcount+1)/hbar/wp(Ir*Io, Io, Cj) - 0.5, ... 
psi0(levelcount+1,:)); 

 
elseif nargin == 7 

% User supplied energy -- use a random initial wavefunction 
solution = jjeigentbc(Ir*Io, Io, Cj, length(levelmaxIr)-1,... 
E0(levelcount+1)/hbar/wp(Ir*Io, Io, Cj) - 0.5); 
 
else 
% User didn't give you anything. Guess the energy and use a 
% random psi. 
corr = 0.15 - 5 * (1 - Ir - 0.005); 
solution = jjeigentbc(Ir*Io, Io, Cj, length(levelmaxIr)-1,... 
levelcount*(1-corr)); 
end 

 
stuff.params.xleft = solution.x(1); 
stuff.params.dx = solution.dx; 
stuff.params.Ngrid = length(solution.x); 
 
else 
solution = jjeigentbc(Ir*Io, Io, Cj, length(levelmaxIr)-1, ... 

n0(levelcount+1), psi(levelcount+1,:)); 
end 
 
energy = real(solution.E); 
gamma = -imag(solution.E) / (hbar/2); 
 
psi(levelcount+1,:) = solution.wavefn; 
n0(levelcount+1) = energy / hbar / wp(Ir*Io, Io, Cj) - 0.5; 
 
levstr = num2str(levelcount); 
Irstr = num2str(Ircount); 
eval(['stuff.energy' levstr '(' Irstr ') = energy;']); 
eval(['stuff.gamma' levstr '(' Irstr ') = gamma;']); 
eval(['wavefn.level' levstr '(' Irstr ',:) = solution.wavefn;']); 

end 
 

if Ircount == 1 
Eplot = figure; 

end 
 

figure(Eplot); 
plotlevels(stuff); 
xaxis([stuff.Ir(1) 1]); 
shg; 

end 
 
stuff.params.stop = clock; 
more on 
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diary off 
 
 

This is the primary routine that calculates the solutions for a single value of the 

bias current, using transmission boundary conditions. 

 
 
function solution = jjeigentbc(Ib, Io, Cj, nmax, n0, psi0) 
 
% solution = jjeigentbc(Ib, Io, Cj, nmax, n0, psi0) 
% Calculates the energy, potential, and wavefunction (on a grid x, 
% with steps dx) for bias current 'Ib', critical current 'Io', 
% capacitance 'Cj', maximum number of levels 'nmax', and current 
% level 'n0' (or the best guess of what it is). 'psi0' is the 
% (optional) inital guess for the wavefunction. Uses transmission 
% boundary conditions. Results sent back in a structure. 
% calls: mj, wp, hbar, jjeigengrid 
 
% Some constants 
global hbar; 
 
% Set up a grid to solve Schrodinger's eq. 
[xleft, dx, Ngrid] = jjeigengrid(0.97, 0.999, Io, Cj, nmax); 
 
disp(['xleft = ' num2str(xleft) ' dx = ' num2str(dx) ' ... 
Ngrid = ' num2str(Ngrid)]); 
 
% This constant is in front of d2(psi)/dx2. Multiply it over to 
% V and E and call them Vp and Ep (p for prime) 
 
m = mj(Cj); 
a = 2 * m * (dx / hbar)^2; 
 
Umin = twb(Ib, Io, asin(Ib/Io)); 
 
for i = 1 : Ngrid 

x(i) = xleft + dx * (i-1); 
Utwb(i) = twb(Ib, Io, x(i)) - Umin; 

end 
 
Uleft = Utwb(1); 
Uright = Utwb(Ngrid); 
 
% The matrix is N-2 x N-2, because the boundary conditions are 
% evaluated in the 2 and N-1 equations. Set up H*psi = E*psi. 
 
A(1 : Ngrid-2) = -1; 
C(1 : Ngrid-2) = -1; 
 
for i = 1 : Ngrid-2 
B(i) = 2 + Utwb(i+1) * a; 
end 
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% Here's the first guess at the eigenvalue. Start with a random 
% wavefunction (if one isn't provided) and use inverse iteration 
% (Numerical Recipes 11.7) to improve it. 
 
Ep = (n0 + 0.5) * hbar * wp(Ib, Io, Cj) * a; 
 
if nargin == 6 

newpsi = psi0(2:end-1); 
else 
% This is the MATLAB R12 command 
% newpsi = random('unif', 0, 1, 1, Ngrid-2); 
 
% This is the MATLAB R14 command 
newpsi = rand(1, Ngrid-2); 
end 
newpsi = newpsi / sqrt(sum(newpsi.^2)); 
 
% Boundary conditions for first go round. 
Btbc = B; 
Kleft = sqrt(2 * m * (Uleft - Ep/a)) / hbar; 
Btbc(1) = B(1) - exp(-1 * Kleft * dx); 
Kright = sqrt(2 * m * (Ep/a - Uright)) / hbar; 
Btbc(Ngrid-2) = B(Ngrid-2) - exp(sqrt(-1) * Kright * dx); 
 
% First iterate a couple times, without updating the eigenvalue. 
diff = 2; err = 0; 
count1 = 0; 
while (diff > 1e-6) & (err == 0) 
oldpsi = newpsi; 
[temppsi, err] = tridiag(A, Btbc - Ep, C, oldpsi); 
newpsi = temppsi / sqrt( sum(abs(temppsi).^2) ); 
diff = max(abs( (abs(newpsi)./abs(oldpsi)).^2 - 1 )); 
count1 = count1 + 1; 
end 
 
% Now update the energy too 
oldEp = Ep; 
newEp = oldEp + sum( conj(temppsi) .* oldpsi ) ... 
/ sum(abs(temppsi).^2); 
diff = 1; 
count2 = 0; 
while((diff > 1e-7) ... 

| max(abs( imag(newEp)/imag(oldEp) - 1 )) > 1e-7) & err==0 
oldpsi = newpsi; 
oldEp = newEp; 
Kleft = sqrt(2 * m * (Uleft - oldEp/a)) / hbar; 
Btbc(1) = B(1) - exp(-1 * Kleft * dx); 
Kright = sqrt(2 * m * (oldEp/a - Uright)) / hbar; 
Btbc(Ngrid-2) = B(Ngrid-2) - exp(sqrt(-1) * Kright * dx); 
[temppsi, err] = tridiag(A, Btbc - oldEp, C, oldpsi); 
newpsi = temppsi / sqrt( sum(abs(temppsi).^2) ); 
diff = max(abs( (abs(newpsi)./abs(oldpsi)).^2 - 1 )); 
newEp = oldEp + sum( conj(temppsi) .* oldpsi ) ... 
/ sum(abs(temppsi).^2); 
count2 = count2 + 1; 

end 
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% So far, have been normalizing the vector psi. But to make it 
% a 'continuous' function on x, do a Riemann sum. 
 
newpsi = -sqrt(-1) * newpsi / sqrt(dx); 
wavefn = [newpsi(1)*exp(-1 * Kleft * dx) newpsi ... 
newpsi(Ngrid-2)*exp(sqrt(-1) * Kright * dx)]; 
wavefn = wavefn / sqrt( sum(abs(wavefn).^2) ) / sqrt(dx); 
solution.E = newEp/a; 
solution.x = x; 
solution.Utwb = Utwb; 
solution.wavefn = wavefn; 
solution.dx = dx; 
disp([num2str(count1) ' iterations of first loop; ' ... 
num2str(count2) ' iterations of second']); 
 
 

This sets up the grid on which the solution is calculated. 
 
function [xleft, dx, Ngrid] = jjeigengrid(Irmin, Irmax, Io, Cj, nmax) 
% [xleft, dx, Ngrid] = jjeigengrid(Irmin, Irmax, Io, Cj, nmax) 
% This calculates a grid for jjeigentbc. It should select the 
% smallest grid compatible for currents between 'Irmin' and 'Irmax', 
% critical current 'Io', capacitance 'Cj', and maximum quantum level 
% 'nmax'. If everything is done on the same grid, then you can take 
% inner products and stuff with the wavefunctions later. 
% calls: mj, wp, hbar, twb 
% Some constants 
 
global hbar; 
m = mj(Cj); 
 
% Ideally, you would use the smallest range for a given Irmin/max and 
% Cj. However, this is complicated. 
% First, you need to find the values of the phase, where the 
% washboard hits (again) the local max (to the left) and min (to the 
% right) of the first well. The widest range of phase occurs for the 
% smallest bias current. Just pick a fixed [0.8, 2.3], which should 
% cover down to Ir = 0.95. 
% Then, you want enough phase outside of this to capture some 
% oscillations (to the right of the well) and the decay (to the 
% left). This is set by the constant alpha below. The longest 
% spatial scale occurs at the highest current, opposite of the 
% previous paragraph -- ignore this. Don't really know how many of 
% these spatial constants to keep. This should be optimized. 
 
wpmin = wp(Irmax*Io, Io, Cj); 
alphamin = sqrt(m*wpmin/hbar); 
wpmax = wp(Irmin*Io, Io, Cj); 
alphamax = sqrt(m*wpmax/hbar); 
xleft = 0.8 - 4/alphamin; 
xright = 2.3 + 4/alphamin; 
 
% Next get the step size, which is based on the oscillations of the 
% highest energy you plan to calculate. These should be evaluated at 
% the highest current, where the potential is steep and the energy 
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% differences are large. 
 
xmin = asin(Irmax); 
Umin = twb(Irmax*Io, Io, xmin); 
Uleft = twb(Irmax*Io, Io, xleft) - Umin; 
Uright = twb(Irmax*Io, Io, xright) - Umin; 
Emax = (nmax + 0.5) * hbar * wpmax; 
lambdal = sqrt(2*m * (Uleft - Emax)) / hbar; 
lambdar = sqrt(2*m * (Emax - Uright)) / hbar; 
dx = 1 / max([alphamax lambdal lambdar]) / 10; 
Ngrid = floor((xright - xleft) / dx) + 1; 
 

 

The main M-files above call several simple routines, given below. In addition, 

global variables called hbar and Phio (which are equal to ħ and Ф0) should be defined in 

the workspace. 

 

 
function levels = keeplevels(levelmaxIr, Ir) 
 
% levels = keeplevels(levelmaxIr, Ir) 
% This returns a vector of the levels to keep at a given reduced bias 
% current, 'Ir'. 'levelmaxIr'(i) gives the reduced current where the 
% (i-1)th state leaves the well (or least where you don't want it 
% anymore). If you should keep it, i-1 is included in 'levels'. 
% 0 is the ground state. The number of elements in 'levelmaxIr' sets 
% the maximum number of levels to keep. 
 
levels = []; 
for i = 1 : length(levelmaxIr) 

if Ir <= levelmaxIr(i) 
levels = [levels i-1]; 
end 

end 
 
function omegap = wp(Ib, Io, C); 
 
% wp(Ib, Io, C) gives the plasma frequency of a junction 
 
global Phio; 
omegap = sqrt(2*pi*Io/C/Phio) .* (1-(Ib./Io).^2).^(1/4); 
 
 

plotlevels plots the energy levels as the solutions are calculated. Running the 

program for a large number of bias currents can be time-taking, so this is a useful way of 

spotting trouble early. 
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function plotlevels(eigenstuff) 
 
% plotlevels(eigenstuff) 
% This assumes 'eigenstuff' has fields named Ir and energy0, energy1. 
 
colors = 'bgrcmy'; 
plotcnt = 0; 
fields = fieldnames(eigenstuff); 
for i = 1 : length(fields) 

if strncmp(fields(i), 'energy', 6) == 1 
data = getfield(eigenstuff, char(fields(i))); 
plot(eigenstuff.Ir(1:length(data)), data, ... 
colors(mod(plotcnt, 6) + 1)); 
hold on 
plotcnt = plotcnt + 1; 

end 
end 
 
function xaxis(xbounds) 
% xaxis([xmin xmax]) 
% This replots the current graph, using new x bounds. 
 
graphaxes = axis; 
graphaxes(1) = xbounds(1); 
graphaxes(2) = xbounds(2); 
axis(graphaxes); 
 
function mass = mj(Cj); 
 
% mass = mj(Cj) returns the phase particle mass, given the junction 
% capacitance. 
% calls: Phio 
global Phio; 
mass = Cj * (Phio/2/pi)^2; 
 
function U = twb(Ib, Io, gamma); 
 
% U = twb(Ib, Io, gamma) returns the tilted washboard potential. 
% calls: Phio 
 
global Phio; 
U = -Phio/2/pi * (Io * cos(gamma) + Ib * gamma); 
 
 
 
 This calculates the escape rate from the nth level. 
 
 
 
function gamman = Gn(n, Ib, Io, Cj) 
  
% gamman = Gn(n, Ib, Io, Cj) 
% This calculates the escape rate from the nth level (where 0 is the 
% ground state).  It ought to be good everywhere.  It needs the spline 

 250



% structure PPG<n> (which came form jjspectrum or whatever).  Be sure 
% to load it from the .mat file. 
% created 2/21/04    modified 2/21/04 
  
eval(['global PPG' num2str(n) ';']); 
eval(['PP = PPG' num2str(n) ';']); 
  
x = ex(Ib, Io, Cj); 
gamman = wp(Ib, Io, Cj)./2./pi .* exp(-7.2./x) .* (7.2./x).^(n+0.5); 
  
% Assume a constant exponential above and below the spline range. 
% This will depend on the spline used. 
%x(x < 0.1205) = 0.1205; 
x(x < 0.0725) = 0.0725; 
x(x > 12.164) = 12.164; 
  
polyn = ppval(PP, x); 
gamman = gamman .* exp(polyn); 
 

 
A.2 Coupled Qubit and TLS  
 
 
function f = FfvsIbTLS(Ib, params, n) 
  
%f = FfvsIbTLS(Ib, params, n) 
%This calculates the energy levels of a junction that interacts with a 
%series of two-level systems (whose energy levels are independent of 
%the current bias, 'Ib' (in Amps)).  This gives f as a function of Ib, 
%so the function is multi-valued. 
% 
%params is [Io Cj fwhmJJ f1 d1 fwhm1 f2 d2 fwhm2 ...] 
%Io (Amps) and Cj (Farads) are the critical current and capacitance 
%of the junction.  'f1' (Hertz) and 'd1' (Hertz) are the location and 
%interaction energy of the first TLS.  'fwhmJJ' and 'fwhm<#>' are the 
%full width at half max of the junction and TLSs in Hertz, which will $ 
%be incorporated in the Hamiltonian as imaginary energies.  Set any to 
%0 for infinite lifetimes.  The length of 'params' sets the number of % 
%TLSs. 'f' (Hertz) is a matrix of complex frequencies, where each row % 
%corresponds to a value of 'Ib'.  'n' is an optional argument that  
%%specifies that only the nth (1-based) eigenvalue (in increasing 
%order) %should be returned. 'n' may either be a single number which 
%will apply % to all 'Ib' or a vector as long as 'Ib', so that 
%different   eigenvalues can be chosen -- 
%this second option is useful for fitting to multiple branches of a 
%spectrum. 
% 
% calls: wnm, ensurerow, ensurecolumn 
% created 4/19/07    modified 4/21/07 
  
for j = 1 : length(Ib) 
  Ham(1, 1) = wnm(0, Ib(j), params(1), params(2)) / 2 / pi; 
   
  for k = 1 : (length(params)-3)/3 
    in = 4 + 3 * (k-1); 
    Ham(k+1, k+1) = params(in); 
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    Ham(k+1, 1) = params(in+1); 
    Ham(1, k+1) = params(in+1); 
  end 
   
  for k = 1 : length(params)/3 
    in = 3 * k; 
    Ham(k, k) = Ham(k, k) - i * params(in) / 2; 
  end 
  
% Order the eigenvalues by the real energies 
   
  evs = ensurerow(eig(Ham)); 
  [e, in] = sort(real(evs)); 
  f(j, :) = evs(in); 
end 
  
if nargin == 3 
  if length(n) == 1 
    f = f(:, n); 
     
  elseif length(n) == length(Ib) 
    temp = f; 
    clear f; 
     
    for j = 1 : length(Ib) 
      f(j) = temp(j, n(j)); 
    end 
     
    f = ensurecolumn(f); 
     
  else 
    disp('n is the wrong size'); 
    clear f; 
    return; 
  end 
end 
 
 
 

A.3 Coupled Qubit and TLS Including Higher Levels  
 
function f = FfvsIbTLS2(Ib, params, n) 
%I've added some more params 06/15/07 
% f = FfvsIbTLS2(Ib, params, n) 
% This calculates the energy levels of a junction that interacts with a 
% series of two-level systems (whose energy levels are independent of 
% the current bias, 'Ib' (in Amps)).  This gives f as a function of Ib, 
% so the function is multi-valued. 
% 
% This is similar to FfvsIbTLS.m, except that the second excited state 
% of the junction is kept, as are the |11> states of all of the TLSs 
% (which assumes the TLSs interact with |10> and |11> interacts with 
% |20>). 
%  
% params is [dIb Io Cj fwhmJJa fwhmJJb f1 d1a fwhm1a d1b fwhm1b 
%            f2 d2a fwhm2a d2b fwhm2b ...] 
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% 'dIb' is a current offset (Amps); it is added to 'Ib' before  
% calculatingthe energy levels.  'Io' (Amps) and 'Cj' (Farads) are the 
% critical current and capacitance of the junction.  'fwhmJJa' and 
% 'fwhmJJb' (Hertz) are the idths of the junction levels |10> and |20>; 
% they are incorporated in the Hamiltonian as imaginary energies.  'f1' 
% (Hertz) is the frequency of the 
% first TLS.  'd1a' (Hertz) is the interaction energy of it with the 
% first excited state of the junction and 'fwhm1a' (Hertz) is its 
% width.  'd1b' is the interaction energy of this |11> with the |20>;  
% 'fwhm1b' is the width of the |11>.  Any of the widths can be set to 0  
% for infinite lifetimes.  The length of 'params' sets the number of 
% TLSs. 
% 
% 'f' (Hertz) is a matrix of complex frequencies, where each row 
% corresponds to a value of 'Ib'.  'n' is an optional argument that  
% specifies that only the nth (1-based) eigenvalue (in increasing  
% order) should be returned.'n' may either be a single number which  
% will apply to all 'Ib' or a vector as long as 'Ib', so that different  
% eigenvalues can be chosen --this second option is useful for fitting  
% to multiple branches of a spectrum. 
% 
% calls: wnl, ensurerow, ensurecolumn 
% created 4/19/07    modified 4/21/07 
  
% Calculate the 0 -> 1 and 0 -> 2 transitions separately; this is 
faster 
% (maybe...) and hopefully is still accurate. 
  
for j = 1 : length(Ib) 
  JJ1 = wnl(0, 1, Ib(j), params(1), params(3)) / 2 / pi; 
  JJb= wnl(0, 1, Ib(j), params(5), params(6)) / 2 / pi; 
  JJ2 = wnl(0, 2, Ib(j), params(2), params(4)) / 2 / pi; 
   
  Ham1(1, 1) = JJ1 - i * params(7) / 2; 
  Ham2(1, 1) = JJ2 - i * params(8) / 2; 
   
  for k = 1 : (length(params)-8)/5 
    in = 8 + 5 * (k-1) + 1; 
     
    Ham1(k+1, k+1) = params(in) - i * params(in+2) / 2; 
    Ham1(k+1, 1) = params(in+1); 
    Ham1(1, k+1) = params(in+1); 
     
    Ham2(k+1, k+1) = JJb + params(in) - i * params(in+4) / 2; 
    Ham2(k+1, 1) = params(in+3); 
    Ham2(1, k+1) = params(in+3); 
  end 
  
% Order the eigenvalues by the real energies 
  
  evs = [ensurerow(eig(Ham1)) ensurerow(eig(Ham2))]; 
  [e, in] = sort(real(evs)); 
  f(j, :) = evs(in); 
end 
  
if nargin == 3 
  if length(n) == 1 
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    f = f(:, n); 
     
  elseif length(n) == length(Ib) 
    temp = f; 
    clear f; 
     
    for j = 1 : length(Ib) 
      f(j) = temp(j, n(j)); 
    end 
     
    f = ensurecolumn(f); 
     
  else 
    disp('n is the wrong size'); 
    clear f; 
    return; 
  end 
end 
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Appendix B 
 

Dilution Refrigerator 
 

 

The following gives detailed instructions on operating the dilution refrigerator 

that I used, as of 2007. The instructions were originally recorded by S. K. Dutta. 

 
B.1 Cooling the Dilution Refrigerator 
 
I.  Preliminary stuff 
 A. Clean the mix – can start several days before cool down if you’re worried 
   1. Presumably, all the valves are closed and the mix is behind the Rotary and in the closed dumps. 
   2. Fill the trap with nitrogen or your favorite soda. 
   3. Open #8A a crack to let some gas into the trap and cool the charcoal.  The liquid might bubble. 
   4. Open up the circulation path: right dump valves, #7A, (pump), 8A, (trap), 1A, 13, left dump 

valves. 
   5. Throttle #5 to give, say, 2 mbar on P2.  Keep an eye on P2, G4 (for blocks), and the nitrogen 

level. 
   6. To get the mix back, close #8A, 5, and the left dump valves.  Open #2 to clean the panel / trap 

and #9 to return mix.  Close everything when you’re done. 
 B. If you want, take out the IVC charcoal and bake it. 
 C. Pump out the vacuum space of the dewar. 
 D. Sample stuff 
   1. With yourself grounded and the junction lines shorted at the fridge top, put the sample box on 

the mixing chamber. 
   2. Put on the other filter boxes and stuff and silver paint the joints. 
   3. When everything is ready (and any extra grounding wire bonds have been removed), you can 

test the junctions by measuring resistance at the grounding boxes on the 40 kΩ scale (to limit 
current). 

 
II.  Prepare to cool down 
 A. Raise the can 
   1. Raise the still shield and make sure there are no thermal shorts.  Tape over any light leaks. 
   2. Clean both sealing surfaces for the o-ring seal.  Prepare a new (possibly greased) indium o-ring. 
   3. Make sure the push-out screws are out. 
   4. Raise the IVC, connecting the can charcoal heater on the way.  Might want to secure the leads so 

they don’t cause any shorts. 
   5. Do the bolt tightening jig. 
 B. Pump on the can. 
   1. Open the can valve on the fridge top – it’s the honkin’ big Speedivalve on the “right” side 
   2. Turn on Rotary A, open #35 and 29, and monitor pressure on P3; should go down to 10-1 mbar. 
   3. Throttle #25A to rough out everything, until P3 is vertical or so (0.12 mbar).  It’ll take a while. 
   4. Close #25A and 29. 
   5. Turn on two diffusion pump switches and open #30 to back it. 
   6. Wait for oil to heat and turn on Penning gauge.  It should get below 10-5 mbar (perhaps 10-6). 
   7. Open #27 and throttle #25A, keeping the Penning gauge below 10-4 mbar.  Let it go overnight – 

it should get below 10-5.  The next day, retighten the IVC bolts. 
 C. Fire up the leak detector. 
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   1. Hook it up to the gas panel and wait until it’s ready to go. 
   2. Close #25A to protect the LD. 
   3. Close #35 (and maybe turn off Rotary A) and open #36 so the LD is backing the diffusion pump. 
   4. Slowly open #25A, watching the Penning and the LD leak / pressure. 
   5. To make sure everything is working, heat the IVC charcoal a bit. 
 D. Leak test the pot. 
   1. Close both needle valves. 
   2. Turn on the pot pump and perhaps let it warm up a bit.  Open #24 and 22 to pump out.  Close 

#24. 
   3. Fill it with Helium through Vent 3, by throttling #21A.  Try not to slam G6.  Monitor LD. 
   4. When you’re done, close #22 and #21A. 
 E. At some point, check the needle valves, by opening each of them in turn, while putting a beaker of 

acetone (volatile) under the siphon.  Should see bubbles at about ¾ turn. 
 F. Leak test the DR. 
   1. Clean mix if you want 
   2. Close all gas panel valves.  Open the right dump valves. 
   3. Open condenser valve on fridge top and open #3 to monitor G3. 
   4. Open #7.  Slowly open #5, watching G2 and the LD.  G1 should go from 650 to 350 mbar or so 

when it’s at equilibrium. 
 G. Check impedance. 
   1. If you want, close #7 and 5.  Turn on 3He Rotary and open #7A, 2, and 3 to empty condenser.  

Close #2. 
   2. Watch G3 – ought to increase by about 10 mbar in 5 minutes. 
 H. Empty DR. 
   1. Close everything and make sure 3He Rotary is on.  Open #9 and make sure the right dump valves 

are open. 
   2. Open #3, 2, and throttle 7A (keeping P2 below 1 mbar) to empty panel and condenser. 
   3. Empty Still by throttling #12.  Can keep pumping on condenser. 
   4. When P2 bottoms out (maybe 7x10-2 mbar) and G1 is back to normal, close #3, 2, 7A, 12, and 9.  

Close the dumps too. 
 I. Leak test can and the fridge top connectors.  Do this one last if the microwave ports are still leaky. 
 J. Set-up the magnet. 
   1. Solder the current leads together and connect the voltage tap and switch heater. 
   2. Check resistances at the panel on the outside of the screen room: current = 7.8 Ω, voltage = 8.7 

Ω, heater = 40.7 Ω. 
 K. Check heaters and thermometers. 
   1. Using the bridge at 1 mV: #0 (Allen-Bradley on 4 K flange) = 69 Ω, #1 (Ge on MXC) = 5.2 Ω, 

#2 (RuO2 on MXC) = 1010 Ω, #3 (Carbon on MXC) = 430 Ω, #4 (Carbon on 1 K pot) = 900 Ω 
– varies a lot, #5 (Carbon on Still) = 3200 Ω – varies a lot, #6 (used to be RuO2 on MXC) = 
Ahhh!!, #7 (RuO2 on MXC) = 1009 Ω. 

   2. Off box, inside screen room: pot = 214 Ω, still = 504 Ω, MXC = 730 Ω. 
   3. IVC charcoal (screwed up connectors on fridge top): 107.1 Ω. 
 L. Transfer siphon. 
   1. Screw on the siphon extension and tape it into place. 
   2. Insert the L-tube (the one for Nitrogen) and bring it close to seating (will it freeze?). 
 
III.  Cool down to 77 K 
 A. Raise dewar (may take up to 40% on motor controller), making sure that it is level, and μ-metal 

(anytime before sample goes super). 
 B. Last leak check (if L-tube is out or you can plug it) 
   1. Close #32. 
   2. Make sure #24 is closed and turn on the 4He Rotary. 
   3. Throttle #31 and watch G5 – ought to get to 20 mbar with big leak. 
   4. Close #31.  Fill the bath with He through Vent 3, by opening #21A and 21.  Watch the LD. 
   5. Close #21 and 21A.  Leave the He.  Open #32. 
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 C. Flush pot a couple times and leave pressurized over 1 atm.  Leave the bottle hooked up to the gas 
panel, so you can keep the pot pressure high, during the transfer (without worrying about adding 
small volumes of air). 

 D. Start lN2 transfer with L-tube seated.  Monitor T0 and T1 with Fridge9.vi. 
 E. Stop pumping on the can. 
   1. Close #27. 
   2. Start Rotary A. 
   3. Close #36 and stop the leak detector. 
   4. Open #35 to continue to back diffusion pump. 
   5. Turn off two diffusion pump switches and Penning gauge.  After 30 minutes, close #30 and 35 

and turn off Rotary A.  Unplug heater and fan. 
 D. Add exchange gas to can. 
   1. Hook up H2 bottle to Vent 1 with metal bellows. 
   2. Turn on Rotary B. 
   3. With reg closed (but main bottle valve open), open #11 and 10.  Open #34 slowly, watching P4, 

to flush out bellows. 
   4. Close #10 (for example) and open regulator to maybe 5 psi.  Wait a few seconds and close 

regulator. 
   5. Open #10 to flush.  Repeat. 

   6. Close #34, turn off Rotary B if you want, and make sure the can’s not being pumped on. 
   7. Close #10, set the reg to a couple psi, then close #11.  Open #10, 26, and 25A to dose this 
volume in. 
   8. Keep the H2 hooked-up, to maintain the H2 at about P4 = 1 mbar during the transfer. 
 E. Keep on transferrin’. 
   1. Keep the pot above an atmosphere and the exchange above 1 mbar, either by periodic doses, or 

by adjusting the regulators for continuous flow. 
   2. Probably want to start out with transfer siphon seated in the extension, but it really restricts the 

throughput.  At some point, unseat it. 
   3. Wait until thermometer 0 bottoms out (about 83 Ω) and keep going for at least 30 minutes.  The 

whole deal will take 3 to 8 hours, depending on stuff. 
 F. Stop transfer. 
   1. Depressurize dewar and slide around in the rain. 
   2. Make sure the pot and IVC are pressurized where you want and close the bottles.  Close #10, 11, 

21A, and 22. 
   3. Hopefully, the fridge will cool overnight.  If not, transfer some more and quickly move on. 
   4. At some point, check the junction resistances with a DMM on the 40 kΩ scale. 
 
IV.  Preparing to go to Helium 
 A. Get rid of exchange gas. 
   1. Close #26 and #25A. 
   2. Start Rotary A. 
   3. Open #35, 29, and throttle 25A. 
   4. When P3 hits base pressure, close #25A and 29. 
   5. Turn on two diffusion pump switches and open #30 to back it. 
   6. When it’s ready, open #27 and throttle #25A, keeping the Penning gauge below 10-4 mbar.  

Pump down to base (should be real low when it’s cold). 
 B. While this is going on, siphon out Nitrogen. 
   1. Seat the Nitrogen L-tube in the transfer siphon extension and get an empty dewar to catch the 

fun. 
   2. Hook up a Nitrogen gas bottle at Vent 3 or He gas. 
   3. Close #32.  Pressurize the bath, by opening #21A and 21, making sure #22, 23A, and 23B are 

closed.  Adjust the regulator so that G5 is at 100 (past atmosphere).  At this value, liquid should 
really be pissin’ outta there. 

   4. Keep going until no liquid it coming out.  The Nitrogen regulator will probably let a lot more gas 
through when this happens (you can hear it). 
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   5. Close the gas bottle, #21 and #21A.  Open #32 a little.  Maybe it’s worth having a little nitrogen 
gas flowing from this point on, so ice won’t condense on the DR? 

   6. Let the lines defrost.  Remove the L-tube and plug up the port. 
 C. Leak check the DR 
   1. Fire up the leak detector and close #25A. 
   2. Close #35 and open #36 so the LD is backing the diffusion pump. 
   3. Slowly open #25A, watching the Penning and the LD leak / pressure. 
   4. With the right dump valves open, open #7.  Slowly open #5, watching G2 and the LD. 
   5. As long as you’re here, check the impedance: open #3 and watch G3 – it should increase by 20 

mbar in about 100 s. 
   6. Empty DR, using the same method as RT. 
 D. Leak check bath (do this after DR, because leaky microwave ports could contaminate everything). 
   1. Close #32.  Make sure #24 is closed and turn on the 4He Rotary. 
   2. Throttle #31 and watch G5 – it should get below 50 mbar, but it’s painfully slow. (100 mbar 

means Nitrogen is still there) 
   3. Close #31.  Fill the bath with He through Vent 3, by opening #21A and 21.  Watch the LD. 
   4. Close #36 and open #35.  Shut off the leak detector. 
   
V.  Cool down to 4 K 
 A. Start He bath transfer with L-tube seated and other end of siphon just barely in liquid or even out of 

it.  You need very little pressure and have recovery open. It’ll take at least 5 hours. 
 B. Keep transferrin’ 
   1. As it cools, ideally want to keep siphon in liquid and T0 between 150 and 200 Ω, by periodically 

releasing the pressure in the storage dewar (don’t need to pressurize it externally).  Keep an eye 
on the temperature and pressure – doesn’t take long for liquid to accumulate. 

   2. Watch T0 (which you want to keep under 160 Ω, which is about 20 K) and T1.  The idea is get 
T1 to 19 Ω and then stop.  If you go too fast, you’ll freeze out the Hydrogen. 

   3. Keep the IVC pressurized to 1 mbar (same as during nitrogen transfer).  It might take a lot, so 
open #11 and #26 and throttle #10 to maintain the desired pressure. 

   4. If you think the can is too cold (e.g. the charcoal is sucking down lots of Hydrogen), heat the 
IVC charcoal with about 10 V (1 W) and the pot heater with something.  [Maybe have the IVC 
charcoal at 27V / 0.265A]  The IVC pressure should increase and the MXC cooling rate should 
increase.  By the way, this is a gosh darn good idea. 

 C. Get rid of exchange gas when T1 is near 20 Ω.  The can and bath have to be cold enough to get the 
fridge cold, but not so cold that the pump out is slow.  The timing is important. 

    1. If you added a lot of hydrogen, start pumping some of it out before T1 hits 20. 
   2. When it’s ready, close #27 and 30 and “quickly throttle” 29.  The diff pump will be ok for a 

while. 
    3. Heat the IVC charcoal with maybe 16 V if you weren’t before. 
   4. Let it go for about 15 minutes – P3 should be about 0.2 mbar.  T1 will probably go down some, 

but that’s ok. 
   5. Close #29 and 25A.  Open #27 and 30.  Throttle #25A, keeping the Penning below 10-4 mbar, 

hopefully opening it all the way.  Go for 10 or 20 minutes.  Probably won’t hit base pressure. 
   6. During this time, make sure the transfer is going real slow. 
   7. Empty the panel of hydrogen. 
 D. If you used helium instead of hydrogen for exchange gas 
   1. Probably still want to stop cooling at 20 K (the heat capacity of the metal is mostly gone by 

then). 
   2. Making sure that it’s not still cooling, pump out the can with the IVC charcoal heater going.  

Eventually want the leak detector backing the diffusion pump and LR < 10-6. 
   3. If the leak rate doesn’t come down, turn on the pot and still heaters. 
   4. After an hour or so, finish the bath transfer.  However, if the LR > 10-6, don’t start the pot or 

fridge.  Pump overnight, if needed. 
 E. Finish helium transfer. 
   1. Turn off all heaters.  Can keep pumping – Penning gauge will bottom out. 
   2. Fill up the dewar.  Unseat the siphon once there is level on the meter. 
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VI.  Start the fridge 
 A. Start the water chiller for the 3He pump, if it’s not already on. 
 B. Last leak check. 
   1. Fire up leak detector and close #25A. 

   2. Close #35 and open #36.  Open #27 and throttle #25A.  Pressure and leak ought to be real low.  
Can also check DR here. 

   3. Close #25A and #27.  Close #36 and stop leak detector.  Open #35 and turn off diff pump heater.  
   4. Wait 30 minutes, unplug diff pump power, close #35, and stop Rotary A.  Maybe keep 

pumping???? 
 C. Start pot. 
   1. Make sure #22 is closed and try to throttle #24. 
   2. Monitor pot level (may be easier to empty it and watch it fill), pressure on G6, and T4. 
 D. Prep the mix. 
   1. If you haven’t already, pump out the nitrogen trap with Rotary B and fill the trap. 
   2. Clean mix, as above, if you haven’t. 
   3. Make sure #8A is open, to cool charcoal. 
 E. Start condensing mix. 

1. Want pot cold before adding any mix, around 1800 ohms 
2. Open 9, 8A, 1A,2,7 right dump. 
3. Use 1A to control flow and keep G3 between 50 and 100 mbar, less than 200 mbar for sure 
4. When G1<100 mbar open 1A all the way 
5. When G3<100 mbar close 2 and 7 and open 3 
6. Slowly open 12 assuming pump is running and keep P2 < 2 mbar for sure 
7. Eventually open 12 all the way 
8. Close 9 and suck out the rest of the dumps by opening 5 and 7A or 7 but keep P2 reasonable 

 F. Turn off all electronics inside the screen room, turn off the circuit breaker, and shut the door. 
 G. Finish condensing. 
   1. If you’ve been pumping on the can all this time, turn it off and close the can valve on the fridge 

top. 
2. When R7 is above 5 or 10 kΩ or so (may take overnight), close #12, and turn on the Mag Valve 

and Roots. 
3. Once you’re sure everything is super, check the junction resistances with a DMM on 40 kΩ.  

There will be a thermal voltage, so flip the leads. 
 
In little fridge, 1Kpot if it’s too full the temp will oscillated since He is overflowing and making a thermal 
leak.  
 
B.2 Dilution Refrigerator Procedures 
 
 
I.  Cleaning the cold traps 
 A. Stop circulation. 
   1. If Roots is going, turn it off, wait for it to slow down, close the Mag Valve. 
   2. If it’s not, close #12. 
   3. Close condenser valve on fridge top (it’s after the trap). 
   4. Start Rotary B, so it can warm up a bit. 
 B. Save gas panel mix. 
   1. Close #8A to isolate the bottom section of the gas panel. 
   2. Close #5 to keep dumps isolated. 
   3. Close #1A, 3.  Now everything’s closed. 
   4. Open #7A slowly.  Open #2 to pump out panel to maybe 10-1 mbar on P2. 
 C. Save Nitrogen trap mix. 
   1. Open #1A to empty Nitrogen trap.  Pump for about 5 minutes or until P2 goes down to base 

pressure.  G4 might go up a bit. 
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   2. Close #1A, 2, 7A.  Everything’s closed again. 
 D. Save Helium trap mix. 
   1. Make sure #1A is closed. 
   2. Open #7A, 2, 3.  P2 will rise.  Wait 5 minutes for it to come back down. 
   3. Close #7A, 2, and 3.  
 E. Clean Nitrogen trap. 
   1. Turn on Rotary B. 
   2. Open #34 and switch to measuring P4. 
   3. Take out trap. 
   4. Making sure #2 and 3 are closed, open #1A to monitor pressure on G3. 
   5. Open #4A.  P4 will go up. 
   6. Heat gun it until it’s warm to the touch.  After 10 or 20 minutes, P4 will drop below 10-1 mbar or 

so. 
 F. Finish Nitrogen trap. 
   1. When P4 is low enough, close #4A and #1A. 
   2. Open #8A momentarily for heat exchange to charcoal. Wait for it to cool off and put it back in 

the dewar.    After a while, open it all the way. 
 G. Clean Helium trap. 
   1. With #1A and 2 closed, open #3 to monitor pressure. 
   2. Pull out trap all the way to ceiling – watch the bellows.  G3 could increase by several hundred 

mbar. 
   3. After it’s warm, open #10, 6, 2.  G2 should be zero (before opening #6) and P4 shouldn’t rise 

until #2 is opened.  P4 will go off-scale and come back fast. 
   4. When P4 is below 10-1 mbar, close #3, 2, 6, 10. 
   5. Close #34, shut off pump, and switch back to P3 (if you were measuring it to begin with). 
 H. Finish up. 
   1. Put the Helium trap back slowly, watching the bath boil-off. 
   2. Once Nitrogen trap has stopped bubbling, open #1A and then #3 slowly to cool Helium trap. 
   3. Wait a minute and then open condenser valve on fridge top. 
   4. Open #12 slowly enough to keep P2 less than 8 x 10-1 mbar or so. 
   5. Open #5 eventually. 
   6. When P1 is well on scale and the MXC is getting cold, close #12.  Open the Mag Valve and then 

turn on the Roots. 
 
II.  Pulling the mix 
 A.  Stop the circulation 
   1. If it’s on, turn off the Roots and then the Mag Valve. 
   2. Monitoring P2, slowly open #12 all the way. 
   3. Make sure right dump valves are open.  Close #5 and 8A.  Open #9 so mix can go to dumps. 
 B. Heat fridge 
   1. Turn on MXC heater – can eventually ramp it up to 2 mW. 
   2. Turn on Still heater to max (slowly). 
   3. May want to keep the pot going, so that 4He boil off isn’t too violent.  Otherwise, close #24 to 

stop it.  Probably want to eventually stop it. 
   4. Probably want to keep P2 below 2 mbar.  Some mixture will want to come out when R7 hits 

about 2.2 kΩ (phase separation?), so don’t get there too fast.  Will have to increase MXC heat 
over time to keep it there.  At about 300 mbar or so, even 20 mW on MXC won’t do much.  
Wait as long as you want – maybe a couple hours and then move on. 

 C. Pump on the can if you want to (definitely if this is during a warm-up) if bath is nearly empty 
   1. Turn on Rotary A, open #35, and monitor pressure on P3; should go down to 10-1 mbar. 
   2. Rough out room temperature lines by opening #29 and 25A. 
   3. When pressure comes back down, close #29 and 25A. 
   4. Make sure diffusion pump heater / fan is plugged in.  Fan should be on.  Turn on two pump 

heater switches and open #30 to back it. 
   5. Wait for oil to heat and turn on the Penning gauge (it may take a while for it to warm up).  It 

should get below 10-5 mbar. 

 260



   6. Open #27 and throttle #25A to pump down room temperature lines.  Close #25A. 
   7. Open can valve on fridge top – it’s the honkin’ big Speedivalve on the “right” side.  Throttle 

#25A. 
 D. Heat the mixing chamber some more to remove mix 
   1. Monitor the Germanium thermometer (T1).  20.23 Ω = 20 K, which is a safe goal. 
   2. With the MXC heater at 20 mW, #1 probably won’t get any lower than 35 Ω. 
   3. Then hook up the MXC charcoal heater.  Use the V+ and V- leads of #2 on the auxiliary box – 

may have to pull some tricks to get two BNC’s to one.  Send it outside the screen room to a 
power supply.  The resistance should be 650 Ω. 

   4. Start with perhaps a few volts to get the last of the mix out.  When you finally heat to 20K, don’t 
want any violent boiling in the mixing chamber. 

   5. Heat with up to 20 V, keeping P2 under a couple mbar.  It should take 15 – 20 minutes and it’ll 
speed waaaay up at the end!  If the Penning gauge goes up, make a run for it. 

 E. If you really want every little bit… 
   1. Wait for P2 to bottom out and G1 to hit 650 mbar (or whatever it should be). 
   2. Close #1A and open #7A , 2, and 3 to pump out the condenser.  Wait for P2 to come down. 
   3. Close #3 (and perhaps #12) and open #1A to clean out Nitrogen trap.  When it’s done, close #1A 

to clean out panel.  Finally close #2 and 7A.  Might want to re-open #12.  
   4. If you want to protect the mix, close #9 and the right dump valves.  If the 3He Rotary is still on, 

make sure the exhaust won’t blow up. 
 F. Whenever you’re done what you’re doing, stop pumping on the can 
   1. Close the can valve on the fridge top. 
   2. Close #25A and 27. 
   3. Turn off two diffusion pump switches and Penning gauge.  After 30 minutes, close #30 and 35 

and turn off Rotary A.  Unplug the heater and fan. 
 
III.  Cycling the sample to 20 K 
 A.  Follow the instructions for pulling the mix. 
   1. Only have to get most of it out.  Want to warm up relatively quickly (so the whole fridge isn’t 

warm), but not so fast that any mix boils too quickly. 
   2.  Keep the 3He Rotary going and #12, 1A, and #3 open. 
   3. Shut all heaters off immediately when the Germanium thermometer (T1) is at 20 Ω.  Don’t 

worry – it’ll stay warm without any more help. 
 B. Check junctions 
   1. If you’re really bored, look at the IV curve to see when it stops switching.  Remember to make 

the bias resistor small enough to be able to measure large critical currents. 
   2. Measure the junction resistance directly.  Use an Ohmmeter on the 100 kΩ scale (where the 

sourced current is small).  It ought to be 1.1 kΩ (or whatever). 
 C. Cool down 
   1. Turn off all electronics by the time the junction goes super, to avoid stray fields.  Turn off the 

screen room power. 
   2. Wiggle the field if you think it’ll do any good. 
   3. Open #24 (slowly, if you can) to start the pot. 
   4. Throttle #8A to reintroduce mix, keeping G3 at about 200 mbar. 
   5. It’ll take a long time.  Might try closing #9 and just circulate what’s inside.  Wait for some 

cooling before adding more mix.  When you’re done, make sure #5 is open and #9 is closed. 
   6. At some point, close the fridge can valve, #25A, and 27.  Turn off the diffusion pump heater (but 

keep the fan on) and the Penning gauge.  It should cool in about 30 minutes.  Close #30 and #35, 
turn off Rotary A, and turn off the fan. 

 
IV.  Warming up 
 A. Discharge the magnet. 
 B. Follow the instructions for pulling the mix. 
   1. Make sure to pump on the can if it has been a long run. 
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   2. When the mix is out, return to pumping on the still just in case.  When you’re sure it’s out, close 
#12 and turn off the pump. 

   3. Close #9 and the right dump valves to protect the mix.  
 C. Stop the pot 
   1. While the mix is coming out, can stop the pot once the can is being pumped on. 
   2.  Can try closing the needle valves and pumping the pot out, but they leak, so it probably won’t 

work. 
   3. Close #24 and turn off pump. 
   4. Heat pot heater (outside screen room) with up to 10V / 60 mA.  The relief valve will hiss if the 

pressure is too high and open valve to release pressure to bath. 
   5. Monitor T4 and G6.  Check the pot level meter. 
 D. When the mix is out, blow out the bath with helium gas (few psi) down the transfer line and pump 

on can. 
 E. If you want, heat the IVC charcoal (screwy connectors on fridge top) with a few volts. 
 F. Once the mix is out of the Nitrogen trap, close #8A and #1A.  Clean it with Rotary B and leave it 

out. 
 G. Heat the fridge overnight, at least 
   1. Turn up all the heaters: Still and MXC to max.  Pot, MXC charcoal, and IVC charcoal to 20 V.  

Monitor T0. 
   2. May not want to pump on the can the whole time though.  Not sure. 

H. Drop the shield and dewar if there is nothing in bath or ice may form and get the dewar stuck 
 Make sure you are sure the bath is empty 

   1. Open the trap door and move the “lock” out of the way.  Clear space below. 
   2. Drop the mu-metal shield.  Will take 25-30% power. 
   3. Switch the lines over to the dewar and hope that their lengths haven’t changed.  Also make sure 

the lines are wound on the drum nicely.  Tighten them way up and check that both have the same 
tension. 

   4. Start pumping on can again, if you stopped. 
   5. Undo both sets of bolts (5 small and 6 big) and drop the dewar – 20% power.  Try not to screw 

this part up. 
   6. Maybe pause half way down and check P3. 
   7. May want to switch to just Rotary A if you’re worried about a lot of stuff coming out. 
 I. Let the fridge warm up 
   1. At some point (perhaps when the fridge is about 77 K), may want to stop Rotary A, so that you 

don’t oil the fridge. 
   2. Hook up a nitrogen gas bottle to Vent 3.  Open #21A and throttle 23A to add some exchange 

gas.  Can monitor with P3, P4, or the dial gauge.  Close everything when done. 
 J. Drop can when the fridge is above freezing 
   1. Untape stuff.  Unsolder the magnet leads and unplug the voltage and heater leads.  Take off the 

siphon extension. 
   2. Vent the can to atmosphere (or Nitrogen) through #23A and #21A. 
   3. Unbolt the can, leaving two bolts. 
   4. Loosen those two, while tightening the push-out screws.  When the indium gives, the two bolts 

should hold the can up. 
   5. Drop the can, unplugging the charcoal heater on the way.  Drop the still shield. 
 
V.  Changing the field 
 A. Set-up 
   1. Monitor the magnet voltage with a DMM. 
   2. Hook up a power supply to the persistent current switch heater. 
   3. Send the positive lead of the magnet power supply to the series resistor (maybe 4 W) and then to 

a magnet terminal. The return should go back to the supply. 
   4. Monitor the voltage across the resistor.  If the positive power supply went to the red banana 

magnet terminal, this voltage is positive. 
 B. Turn on the magnet power supply 
   1. Hit “Output On/Off”. 
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   2. Hit “Current” and set it to about an Amp, so you’re guaranteed to be in constant voltage mode. 
   3. If there’s current in the magnet, set the voltage to match the current. 
 C. Drive the switch normal.  Need at least 55 mA; use about 70 (about 2.5 V).  The magnet voltage 

shouldn’t go nuts. 
 D. Adjust the magnet current, making sure the magnet voltage stays well below 3 V.  Note the final 

value. 
 E. Turn off the switch heater and wait a bit. 
 F. Turn down the magnet supply voltage, making sure the magnet voltage doesn’t change.  Go home. 
 
VI.  Breaking vacuum on the 3He pump 
 A. The fridge has got to be cold for this method to work 
 B. Get the pump ready 
   1. Stop Roots and turn the Mag Valve off.  Close #12. 
   2. Close #3 to the condenser and #5 to the dumps. 
   3. When P2 is at base pressure, turn off Rotary and let it cool down (maybe 30 minutes).  To 

minimize the time that the fridge is warm, don’t proceed until you’re ready to yank the pump 
(i.e. it’s cold).  Transferring at some point might help keep everything cold. 

 C. Shove the mix in the panel into the fridge 
   1. Open #2 and slowly open #7 to the Still.  Wait until G2, G3, and G4 are zero.  Could take 

several minutes and G4 may never get there. 
   2. Close #8A and 1A to isolate trap. 
   2. Close #2 and #7. 
 D. Prep the lines 
   1. Turn on Rotary B and monitor P4. 
   2. If CT 2 is being used, hook up a section of bellows at CT 1. 
   3. Hook up Helium to Vent 1. 
   4. Open #10 and 4.  Slowly open #11 to fill the whole deal with He. 
   5. Wait a second, close #11 and throttle #34 to flush.  Close #34.  Repeat a couple times. 
   6. Open #7A; use G2 to monitor front of pump.  Open #8 and 4; use G4 to monitor the back of 

pump. 
   7. Open #11 and throttle #6 and 10.  Fill both sides equally and slowly, up to 950 mbar.  You want 

a layer of Helium on the bellows when you open up. 
   8. Close #11 and then all the valves. 
 E. Disconnect the lines to the pump and cap the bellows.  Get up and do what needs to be done.  Put the 

lines back. 
 F. Pump out the lines (in case there is any air and so as not to throw off the mix) – here’s one way 
   1. Open #34. 
   2. Open #7A and 6; monitor the front of the pump with G2 and P2.  Open #8; monitor the back of 

the pump with G4. 
   3. Throttle #10 and 4 to slowly bring down both sides of the pump.  Probably pump out everything. 
   4. Close everything. 
   5. Clean any other parts of the panel that you used. 
   6. Close #34 and turn off pump. 
 G. Get the pump and panel ready 
   1. Turn on the 3He Rotary and make sure P2 gets down to base pressure.  See if garbage shows up 

at G4. 
   2. If you changed the oil, wait about 30 minutes for it to stop bubbling like crazy. 
   3. Open #8A, 1A, 2, and 7A to clean whatever’s still around.  Wait a while. 
 H. Finish up 
   1. At this point, R7 might be 6k, but the mix ought to be fine. 
   2. Close #2, wait, and then 7A. 
   3. Throttle #12, keeping P2 below 1 mbar.  Might try one-shotting to get things going.  Otherwise, 

open #3 and let it go. 
   4. When P2 is low enough, close #12, open the Mag Valve and start the Roots.  Open #5. 
 
VII.  Recovering from power failure 
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 A. Turn off Roots, Mag Valve, 3He Rotary, 4He Rotary.  Close #12 and 24. 
 B. If it’s been off a while, check temperatures and pressures (especially the dumps).  Check the pump 

room for flames. 
 C. Hit “Fault Reset” if any of the indicator lights are on.  May need to cycle the power of the gas panel 

and the main panel in the pump room if that doesn’t work. 
 D. Start Pot Pump and let it warm up for a minute.  “Slowly” open #24. 
 E. Start 3He Rotary.  Wait a while for it to warm up and the pot to cool. 
 F. Slowly open #12.  Eventually turn on Roots if you want. 
 
VIII.  Pump explosion 
 A. If a pump fails, close relevant valves and turn off the gas panel power.  Turn off the main power 

downstairs and check the main fuses. 
 B. If you think the pump isn’t seized, replace the fuses and try again.  To test the pump momentarily, 

push the little blank button on the relay for the pump (after turning all the power back on). 
 C. If a fail light is still on, try “Fault Reset” and/or cycling the power again. 
 D. If that doesn’t work, try hitting the red breakers on the bottom of the contactors in the main power 

box.  The contactor also has a test button. 
 E. If that doesn’t fix it, it might be the 3 phase monitor at the top of the main box.  There should be a 

green and yellow light if it’s working ok. 
 
IX.  Trouble Shooting 
 A. Fridge won’t cool 
   1. Symptoms: Still pressure low, even with a little heating.  Nothing else unusual. 
    Problem: 3He caught somewhere funny 

   Solution: Close #3 to stop circulation.  Open #2, 5, and right Dump valves.  Make sure there’s 
enough still heat to give a decent still pressure once the circulation stops.  Pull maybe 20 mbar 
into Dumps through cold trap; close #2. Open #3 again and go grab a sandwich.  Open #7 
(slowly) to cryopump mix into Still and perhaps heat a bit.  Close #7 after Dumps are empty – 
could be a while. 

 B. Condenser pressure increases 
   1. Symptom: Cold traps are clean 
    Problem: Pot might be empty 
    Solution: Check pot level; fiddle with needle valve 
 
 
X. Changing the He3 pump oil. -Tauno(summer2006) * Hasn’t been double checked in practice 

A. Preliminary stuff 
  1. Everything closed and all mix should be between He3 Rotary, 5, 8, and 8a; 
  2. Have He3 rotary on 

3. Make sure you have enough new pump oil, 6 liters of Alcatel 111; Alcatel 111 has a low vapor 
pressure  

B. Pump out everything,  
  1. Turn on Rotary B, turn on P4, and open #34 and #10 
  2. P4 should get below 0.1mBarr 
  3. Attach cryopump to vent #1 
   4. Open #11 and then open black knob on cryopump, pressure should again fall below 0.1mBarr 
  5.Close everything, (except black knob on cryopump) 
C. Save Mix 
  1.Put the cryopump in the liquid Helium dewar 
  2. Open #9, #5, #6, #11 and watch the dump pressure fall, should get to be <20mBarr 
  3. To get even more saved…close #9 and #5  (#6 and #11 only things open)  
  4. Open right dump valve, dump pressure should go to 650ish, 

5. Pull cryopump out of dewar watching the still pressure, when it gets above 650 open #5 to put 
more in the dumps.       
6. When the dump pressure and still pressure become equal with #5 open, close everything (except 
black knob) 
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7. Put the cryopump back in the dewar and open #9, #5, #6, #11; Dump pressure should be at 0 now 
8. Close every last thing now, and turn off the He3 rotary  

D. Change oil 
1. There is a lot of oil in this pump so prepare for more than one load, and get paper towels 
2. Release pressure by opening both sides of pump and cover them up so nothing gets in 
3. Open release plug and watch it flow, catching oil, open pour valve for a better flow, 
4. Open secondary plug to get more oil. 
5. Check all o-rings for cracks while you’re at it 
6. Put in clean Alcatel 111 oil until both windows are filled to the middle, about 6 liters after 

plugs returned 
7. Close up the oil pumps and openings 
8. Reattach the pump lines 

E. Pumping out lines (with pumping on I’d guess?) 
1. Pump out line B, open #34 and then open #4 and #8 to pump out section behind pump, 

should take a while to get to base pressure  
2. After a day or two of pumping 
3. Flush the mix through the nitrogen traps before putting it in the fridge again. 
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