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With the extension of cochlear implant candidacy, more and more cochlear-

implant listeners fitted with a traditional-long electrode array or a partial-insertion 

electrode array have residual acoustic hearing either in the nonimplanted ear or in 

both ears and have shown to receive significant speech-perception benefits from the 

low-frequency acoustic information provided by residual acoustic hearing.  

The aim of Experiment 1 was to assess the minimum amount of low-

frequency acoustic information that was required to achieve speech-perception 

benefits both in quiet and in noise from combined electric and contralateral acoustic 

stimulation (EAS). Speech-recognition performance of consonant-nucleus vowel-

consonant (CNC) words in quiet and AzBio sentences in a competing babble noise at 

+10 dB SNR was evaluated in nine cochlear-implant subjects with residual acoustic 

hearing in the nonimplanted ear in  three listening conditions: acoustic stimulation 

alone, electric stimulation alone, and combined contralateral EAS. The results 

showed that adding low-frequency acoustic information to electrically stimulated 

information led to an overall improvement in speech-recognition performance for 

both words in quiet and sentences in noise. This improvement was observed even 



when the acoustic information was limited down to 125 Hz, suggesting that the 

benefits were primarily due to the voice-pitch information provided by residual 

acoustic hearing. A further improvement in speech-recognition performance was also 

observed for sentences in noise, suggesting that part of the improvement in 

performance was likely due to the improved spectral representation of the first 

formant.  

The aims of Experiments 2 and 3 were to investigate the underlying 

psychophysical mechanisms of the contribution of the acoustic input to electric 

hearing. Temporal Modulation Transfer Functions (TMTFs) and Spectral Modulation 

Transfer Functions (SMTFs) were measured in three stimulation conditions: acoustic 

stimulation alone, electric stimulation alone, and combined contralateral EAS. The 

results showed that the temporal resolution of acoustic hearing was as good as that of 

electric hearing and the spectral resolution of acoustic hearing was better than that of 

electric hearing, suggesting that the speech-perception benefits were attributable to 

the normal temporal resolution and the better spectral resolution of residual acoustic 

hearing.  

The present dissertation research provided important information about the 

benefits of low-frequency acoustic input added to electric hearing in cochlear-implant 

listeners with some residual hearing. The overall results reinforced the importance of 

preserving residual acoustic hearing in cochlear-implant listeners. 

 

 



THE BENEFITS OF ACOUSTIC INPUT TO COMBINED ELECTRIC AND 
CONTRALATERAL ACOUSTIC HEARING 

 
by 
 

Ting Zhang 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2008 
 
 
 
 
 
 
 
 
 
 
 

Advisory Committee: 
   Professor Sandra Gordan-Salant, Chair 
   Assistant Professor Monita Chatterjee, Co-Chair 
   Professor Michael F. Dorman, Co-Advisor 
   Professor Peter Fitzgibbons 
   Professor Arthur N. Popper 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

©Copyright by 
Ting Zhang 

2008 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii

ACKNOWLEDGMENTS 
 

I would like to honor the efforts of those who contributed to the completion of 

this dissertation. First, I would like to thank my mentor Dr. Sandra Gordon-Salant 

who has given me tremendous help and support along the long and unusual path of 

pursuing my Ph. D. degree with a mere nine years and three kids after. I would also 

like to thank my dissertation advisor Dr. Michael F. Dorman who offered me a 

precious opportunity to finish my dissertation research at Arizona State University, 

and whose guidance and support made every aspect of this dissertation research 

possible. I would also like to acknowledge the significant contributions of my 

committee members: Dr. Monita Chatterjee, Dr. Peter Fitzggibons, Dr. Arthur N. 

Popper, and Dr. Robert J. Dooling. Finally, I would like to thank the members of the 

Cochlear Implant and Psychoacoustics Research Groups at Arizona State University 

who contributed to many aspects of my dissertation research, including Dr. Anthony 

Spahr, Dr. Rene Gifford, Dr. William A. Yost, Dr. Christopher Brown, Sharron 

McKarns, and Callen Shutters. 

My parents, Wende Zhang and Xiuying Huang, and my parents-in-law, 

Yizhong Qian and Zhengcheng Shi, have always supported and encouraged me in my 

educational endeavors.  

I am deeply grateful to my husband, Gang Qian, whose loving encouragement 

and endless support have brought me to this point, and to our lovely children, Marian, 

Phoebe, and Tina, who have given me strength to move forward.  

This project was funded by a grant from NIDCD awarded to Dr. Michael F. 

Dorman. 



 

 iii

TABLE OF CONTENTS 

ABSTRACT.................................................................................................................. i 

ACKNOWLEDGMENTS .......................................................................................... ii 

TABLE OF CONTENTS .......................................................................................... iii 

LIST OF TABLES ...................................................................................................... x 

LIST OF FIGURES ................................................................................................... xi 

Chapter 1: General Introduction .............................................................................. 1 

Goals and Aims ......................................................................................................... 2 

Chapter 2: Low-pass Filtering in Speech-Perception Benefits from Contralateral 

Acoustic Input in Listeners with Combined Contralateral EAS............................ 3 

Introduction............................................................................................................... 3 

Limitations of current cochlear implants.............................................................. 3 

Poor speech perception in noise ....................................................................... 3 

Loss appreciation of the aesthetic qualities of sound. ...................................... 5 

Pitch perception in cochlear-implant listeners..................................................... 6 

Temporal codes. ................................................................................................ 7 

Place of excitation............................................................................................. 9 

Summary. ........................................................................................................ 10 

Combined contralateral EAS .............................................................................. 11 

Advantages of combined contralateral EAS ................................................... 12 



 

 iv

Avoidance of auditory deprivation.............................................................. 12 

Provision of complementary cues. .............................................................. 12 

Perceptual incompatibility.......................................................................... 13 

Summary. .................................................................................................... 14 

Previous reports on bimodal benefits ............................................................. 15 

Bimodal benefits in adults........................................................................... 15 

Bimodal benefits in children ....................................................................... 18 

Summary ..................................................................................................... 20 

Combined ipsilateral EAS................................................................................... 20 

Previous reports on combined ipsilateral EAS in cochlear-implant listeners 21 

Previous reports on simulation of combined ipsilateral EAS in normal-

hearing listeners.............................................................................................. 25 

Summary ......................................................................................................... 28 

Questions remained for combined contralateral/ipsilateral EAS....................... 28 

Amount of acoustic information necessary for achieving EAS benefits ......... 28 

Frequency overlap on the speech-perception benefits.................................... 30 

Hypotheses .......................................................................................................... 32 

Summary and predictions based on literature review ........................................ 33 

Methods................................................................................................................... 34 

Experimental Design........................................................................................... 34 

Subjects ............................................................................................................... 35 

Hearing aids........................................................................................................ 38 

Cochlear implants ............................................................................................... 38 



 

 v

Speech stimuli ..................................................................................................... 38 

The CNC words............................................................................................... 38 

The Az Bio sentences....................................................................................... 39 

Stimulus processing ........................................................................................ 39 

Overall Procedure .............................................................................................. 41 

Test conditions ................................................................................................ 41 

Presentation level............................................................................................ 45 

Results ..................................................................................................................... 46 

Results for normal-hearing listeners when listening to the processed speech 

stimuli.................................................................................................................. 46 

Subjects ........................................................................................................... 46 

Stimuli and Procedure .................................................................................... 46 

Results ............................................................................................................. 47 

Results for cochlear-implant listeners with combined contralateral EAS.......... 49 

Amount of acoustic information necessary for achieving EAS benefits ......... 49 

CNC words.................................................................................................. 49 

AzBio sentences at +10 dB SNR. ................................................................ 51 

Frequency overlap on the speech-perception benefits.................................... 52 

CNC words.................................................................................................. 52 

AzBio sentences at +10 dB SNR. ................................................................ 54 

Discussion............................................................................................................... 56 

Discussion of results for normal-hearing subjects ............................................. 56 

Discussion of results for cochlear-implant subjects. .......................................... 56 



 

 vi

Amount of acoustic information necessary for achieving EAS benefits ......... 56 

Frequency extent of residual hearing necessary for speech-perception 

benefits ........................................................................................................ 58 

Role of acoustic input  in improving performance...................................... 59 

Envelope cues and periodicity cues. ....................................................... 60 

Role of F0 representation in improving performance. ........................... 63 

Temporal-fine-structure cues.................................................................. 66 

Summary. ................................................................................................ 67 

Frequency overlap on the speech-perception benefits.................................... 68 

Summary ..................................................................................................... 71 

Clinical relevance ........................................................................................... 72 

Conclusions............................................................................................................. 73 

Chapter 3. Temporal Modulation Transfer Functions (TMTFs) in Listeners with 

Combined Contralateral EAS.................................................................................. 75 

Introduction............................................................................................................. 75 

Literature review..................................................................................................... 75 

Temporal cues for speech perception ................................................................. 76 

Temporal resolution in hearing-impaired listeners ............................................ 79 

Gap detection .................................................................................................. 79 

Modulation detection ...................................................................................... 79 

Temporal resolution in cochlear-implant listeners............................................. 81 

Gap detection .................................................................................................. 82 



 

 vii

Modulation detection ...................................................................................... 82 

Rationale ............................................................................................................. 84 

Hypotheses .......................................................................................................... 85 

Summary and predictions based on literature review ........................................ 85 

Methods................................................................................................................... 86 

Experimental design............................................................................................ 86 

Subjects ............................................................................................................... 87 

Cochlear Implants............................................................................................... 87 

Stimuli ................................................................................................................. 88 

Stimuli generation ........................................................................................... 88 

Selection of carrier ......................................................................................... 89 

Presentation level............................................................................................ 91 

Procedure............................................................................................................ 93 

Results ..................................................................................................................... 94 

Temporal modulation detection .......................................................................... 94 

In the combined-contralateral-EAS condition, a repeated-measures ANOVA 

analysis revealed no significant main effects for modulation frequency (F(2,32) = 

2.2, p > 0.05) and for subject group (F(1, 16 ) = 0.4, p > 0.05), and no significant 

interaction (F(2,32) = 1.4, p > 0.05)....................................................................... 96 

Correlation.......................................................................................................... 96 

Discussion............................................................................................................... 97 

Temporal modulation detection .......................................................................... 97 

Age effect on the measurement of TMTFs....................................................... 99 



 

 viii

Summary ....................................................................................................... 101 

Correlation........................................................................................................ 101 

The electric-stimulation condition ................................................................ 101 

The acoustic-stimulation condition............................................................... 103 

The combined-EAS condition........................................................................ 104 

Summary ....................................................................................................... 104 

Conclusions........................................................................................................... 104 

Chapter 4. Spectral Modulation Transfer Functions (SMTFs) in Listeners with 

Combined Contralateral EAS................................................................................ 106 

Introduction........................................................................................................... 106 

Spectral cues for speech perception ................................................................. 107 

Spectral resolution in hearing-impaired listeners ............................................ 107 

Spectral resolution in cochlear-implant listeners............................................. 109 

Measures of spectral profile resolution ............................................................ 112 

Spectral Modulation Transfer Function ....................................................... 115 

Rationale ........................................................................................................... 119 

Hypotheses ........................................................................................................ 120 

Summary and predictions based on literature review ...................................... 120 

Methods................................................................................................................. 121 

Experimental design.......................................................................................... 121 

Subjects ............................................................................................................. 122 

Cochlear implants ............................................................................................. 122 



 

 ix

Stimuli ............................................................................................................... 123 

Stimuli generation ......................................................................................... 123 

Presentation level.......................................................................................... 124 

Procedure.......................................................................................................... 126 

Results ................................................................................................................... 127 

Spectral modulation detection .......................................................................... 127 

Correlation........................................................................................................ 130 

Discussion............................................................................................................. 133 

Spectral Modulation Detection ......................................................................... 133 

Age effect on the measurement of SMTFs..................................................... 137 

Correlation........................................................................................................ 138 

The electric-stimulation condition ................................................................ 138 

The acoustic-stimulation condition............................................................... 141 

The combined-EAS condition........................................................................ 142 

Conclusions........................................................................................................... 142 

Chapter 5. Summary of Results from Three Experiments. ................................ 144 

Future Directions.................................................................................................. 148 

References................................................................................................................ 150 

 

 

 

 



 

 x

 

 

 

 

 

LIST OF TABLES   

Table 1. Individual audiometric thresholds (dB HL) in the nonimplanted ear. ................ 36 

Table 2. Individual subject demographic information...................................................... 37 

Table 3. Scores for CNC words as a function of filter condition. LP = low pass. HP = 

high pass............................................................................................................................ 70 

Table 4.  Scores for AzBio sentences at +10 dB SNR as a function of filter condition. 

LP = low pass. HP = high pass. ........................................................................................ 70 

 

 

 

 

 

 

 

 

 

 

 



 

 xi

 

 

 

 

 

LIST OF FIGURES 

Figure 1.  FFT outputs for the low-pass-filtered speech stimuli....................................... 42 

Figure 2. Schematic representations of speech stimuli (CNC words and AzBio 

sentences at +10 dB SNR). ................................................................................... 44 

Figure 3. Group mean scores of CNC word (white bars) and AzBio sentence at +10 

dB SNR (black bars) presented at 70 dB SPL for normal-hearing subjects. 

Error bars indicate +1 standard deviation. ............................................................ 48 

Figure 4.  Percent correct scores for CNC words and AzBio sentences at +10 dB SNR 

as a function of stimulation condition and low-pass filter setting. ....................... 50 

Figure 5. Percent correct scores for CNC words and AzBio sentences at +10 dB SNR 

as a function of stimulation condition and filter condition. .................................. 53 

Figure 6. Time/amplitude display of “I hear another conversation through the cordless 

phone.” low-passed filtered at 125 Hz, 250 Hz, 500 Hz or 750 Hz. Arrows 

indicate the location of word boundaries. ............................................................. 61 

Figure 7. Amplitude envelopes for /aba/, /ama/, and /asa/ low-passed filtered at 125 

Hz, 250 Hz, 500 Hz, or 750 Hz............................................................................. 62 

Figure 8. Envelope for a portion of a vowel low-passed filtered at 125 Hz, 250 Hz, 

500 Hz, or 750 Hz................................................................................................. 65 



 

 xii

Figure 9. Group mean temporal modulation detection thresholds (TMDTs) as a 

function of modulation frequency (16 Hz, 32 Hz, and 64 Hz) for eight 

cochlear-implant subjects with combined contralateral EAS. TMDTs of ten 

normal-hearing subjects as a function of modulation frequency are shown with 

black bars. Error bars indicate +1 standard deviation........................................... 95 

Figure 10. displays the correlation of CNC word (left column) and AzBio sentence 

(right column) scores with the mean TMDTs across the modulation 

frequencies of 16 Hz, 32 Hz, and 64 Hz. .............................................................. 98 

Figure 11. 3-D Schematic representations of TMTF and SMTF. The time/amplitude 

domains are modulated in the TMTF and the frequency/amplitude domains 

are modulated in the SMTF. ............................................................................... 116 

Figure 12. A schematic representation of a sinusoidal spectral modulation with a 

modulation frequency of 1 cyc/oct superimposed on a 6-octave wide band of 

noise (200 to 12800 Hz).  The modulation contrast is 20 dB. ............................ 117 

Figure 13. Group mean spectral modulation detection thresholds (SMDTs) as a 

function of modulation frequency (0.5 and 1 cyc/oct) for eight cochlear-

implant subjects with combined contralateral EAS. SMDTs of ten normal-

hearing subjects as a function of modulation frequency are shown with black 

bars...................................................................................................................... 128 

Figure 14. displays the correlation of CNC word (left column) and AzBio sentence 

(right column) scores with the mean SMDTs at 0.5 cyc/oct modulation 

frequency............................................................................................................. 131 



 

 xiii

Figure 15. displays the correlation of CNC word (left column) and AzBio sentence 

(right column) scores with the mean SMDTs at 1 cyc/oct modulation 

frequency............................................................................................................. 132 

Figure 16. displays mean audiogram for eight subjects with low-frequency residual 

hearing and a schematic representation of spectral modulation cycles for 

modulation frequencies of 0.5 and 1 cyc/oct audible for residual acoustic 

hearing................................................................................................................. 136 



 

 1

 Chapter 1: General Introduction 

Cochlear implants have been shown to successfully restore partial hearing and 

provide considerable benefits to profoundly deaf individuals through electric 

stimulation. Although recent studies have reported that many implant users can 

recognize 70%-80% of sentences presented in quiet, understanding speech in noise 

and appreciation of the aesthetic qualities of sound (such as music and voice quality) 

remain challenges for most implant users. These deficits are most likely related to 

poor resolution of low-frequency information including voice pitch provided by 

current cochlear implants.  

 As the audiological criteria for implant candidacy have become less stringent, 

implant candidacy has now been extended to include individuals with moderate to 

severe bilateral hearing losses (e.g., Parkinson, Arcaroli, Staller, Arndt, Cosgriff & 

Ebinger, 2002). Consequently, an increasing number of individuals with a unilateral 

cochlear implant have residual hearing in the implanted and/or nonimplanted ear. 

With a full insertion implant (22-30 mm), patients receive electric stimulation from 

the implanted ear and acoustic stimulation from the contralateral ear (bimodal 

hearing). Many implant listeners with bimodal hearing have shown to receive 

significant speech-perception benefits from low-frequency acoustic information 

provided by residual acoustic hearing via a conventional hearing aid (e.g., Armstrong, 

Pegg, James & Blamey, 1997; Ching, Psarros, Hill, Dillon & Incerti, 2001; Ching, 

Incerti & Hill, 2004). Recently, interest has focused on the application of a relatively 

short insertion of electrode array (10, 16, or 20 mm) into the cochlea in patients with 

bilateral residual hearing without destroying low-frequency hearing in the implanted 
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ear. With a partial electrode insertion, patients receive acoustic stimulation from both 

the implanted and nonimplanted ears and electric stimulation from the implanted ear. 

In these patients, speech intelligibility both in quiet and in noise is significantly better 

in the combined-electric-and-acoustic-stimulation (EAS) condition than that in the 

electric-stimulation condition (e.g., Turner, Gantz, Vidal, Behrens & Henry, 2004; 

Kiefer, Gstoettner, Baumgartner, Pok, Tillein, Ye & von Ilberg, 2005). Therefore, 

both groups of patients above have the opportunity to benefit from the combination of 

EAS and have shown to receive considerable benefits from low-frequency acoustic 

information in terms of appreciation of the aesthetic qualities of sound and 

understanding speech in background noise.   

Goals and Aims 

The principal goals of this dissertation research are (i) to investigate the 

benefits of low-frequency acoustic information to the speech-perception abilities of 

individuals with combined contralateral EAS, and (ii) to relate their speech-

recognition performance to their underlying psychophysical abilities in the region of 

both acoustic hearing and electric hearing.  The goals are met through experiments 

and analyses relative to two aims. 

Aim 1. Assess the minimum amount of low-frequency acoustic information 

that is required to achieve speech-perception benefits both in quiet and in noise from 

combined contralateral EAS. 

Aim 2. Determine the relationships among (i) the psychophysical measures of 

low-frequency acoustic hearing, electric hearing, and combined electric and 

contralateral acoustic hearing and (ii) measures of speech recognition. 
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Chapter 2: Low-pass Filtering in Speech-Perception Benefits from Contralateral 

Acoustic Input in Listeners with Combined Contralateral EAS 

Introduction 

Limitations of current cochlear implants 

Speech recognition of cochlear-implant listeners has improved significantly 

over the past decade and now the average scores of sentences in quiet are 70% - 80% 

(Osberger, Fisher & Kalberer, 2000) and the average score of monosyllabic words in 

quiet is approximately 50% (Dorman, 2000; Wilson, in press). However, 

understanding speech in noise and appreciation of the aesthetic qualities of sound 

(such as music and voice quality) remain challenges for most implant users due to the 

limitations of the electrode design and the signal processing schemes employed in 

current cochlear implants (e.g., Dorman, Loizou & Tu, 1998; Zeng & Galvin, 1999). 

Poor speech perception in noise. In acoustic hearing, the cochlea performs an 

exquisite frequency analysis of a stimulus, resolving its frequency components into a 

spatially distributed array of activity.  However, in electric hearing,  an electric 

stimulus is not resolved into its spectral components because electric field spreads out 

from electrodes and activates nearby neurons and, therefore, electric stimulation 

bypasses all cochlear mechanisms that aid in separating the electric stimulus 

spectrally. In other words, cochlear implants generally have not been able to 

reproduce fine spectral analyses performed by the normal cochlea and can only 

provide coarse spectral information of the input signal. Even the most successful 
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implant users only realize perhaps 6 to 8 channels of distinct “place-frequency” 

information across the entire spectral range (Friesen, Shannon, Baskent & Wang, 

2001). Nonetheless, today’s cochlear implant users typically can understand speech 

remarkably well in quiet with limited spectral resolution (Skinner, Clark, Whitford, 

Seligman, Staller & Shipp, 1994; Osberger, Fisher & Kalberer, 2000; Garnham, 

O’Driscoll, Ramsden & Saeed, 2002). This is because speech is a very robust medium 

for communicating information due to the layers of acoustic, phonetic, and linguistic 

redundancies of speech information (Fletcher & Galt, 1950; Miller & Licklider, 1950; 

Remez, Rubin, Berns, Pardo & Lang, 1994). Therefore, only limited spectral 

resolution or little spectral information is necessary for implant users to understand 

speech in quiet. However, when the listening environment becomes more 

challenging, the limited spectral resolution provided by current cochlear implants is 

not adequate for understanding speech in noise for cochlear-implant listeners. 

Although poor spectral resolution does not appear to be a limitation for 

understanding speech in quiet to the most successful implant users, the limited 

spectral resolution has a direct negative consequence on implant users’ ability to 

understand speech in background noise. Understanding speech in background noise 

requires spectral resolution much finer than that required for understanding speech in 

quiet in order to separate speech from noise or to distinguish multiple talkers (Fu, 

Shannon & Wang, 1998). Implant listeners typically require higher target-to-masker 

ratios in broadband noise to achieve levels of speech-recognition performance 

comparable to normal-hearing listeners. Thus, even the most successful implant users 

still suffer from significant problems of understanding speech in background noise 
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(Turner, Gantz, Vidal, Behrens & Henry, 2004; Stickney, Zeng, Litovsky & 

Assmann., 2004). 

Loss appreciation of the aesthetic qualities of sound. While speech can be 

understood in the presence of severe degradation of spectral cues, music recognition 

and appreciation are compromised by even mild degradation (Shannon, 2005). Smith, 

Delgutte, and Oxenham (2002) have shown in normal-hearing listeners that increased 

spectral resolution is required to perceive harmonic pitch and to identify melodies and 

instruments. As many as 100 frequency bands are required to be resolved for music 

perception in normal-hearing listeners. A study by Oxenham, Bernstein, and Panagos 

(2004) demonstrated that fine place-specific frequency resolution is required to 

produce the harmonic pitch perception necessary for listening to complex acoustic 

signals. 

Implant listeners using conventional long electrode implants have shown 

poorer performance than normal-hearing listeners on several pitch-related tasks, 

including detecting pitch change (frequency difference limens), perception of 

direction of pitch change (higher or lower), and discrimination of brief pitch patterns 

(Gfeller & Lansing, 1991; Gfeller, Turner, Mehr, Woodworth, Fearn, Knutson, Witt 

& Stordahl, 2002). Therefore, most cochlear-implant listeners are unable to perform a 

very basic listening task that normal-hearing people tend to take for granted, e.g., the 

ability to recognize familiar melodies such as holiday songs (Gfeller et al., 2002; 

Kong, Stichney & Zeng 2005). In addition, the aesthetic qualities of sound cannot be 

enjoyed by most cochlear-implant listeners. Many of them reported that the 

perception of sound became "mechanical" or "raspy" when compared to their 
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memories of acoustic hearing, and that many of the aesthetic qualities of sound were 

diminished (Gfeller et al., 2002).  

Pitch perception in cochlear-implant listeners 

It is widely believed that poor speech perception in noise and loss of 

appreciation of the aesthetic qualities of sound in cochlear-implant listeners are most 

likely related to poor resolution of low-frequency information including voice pitch 

(Gfeller et al., 2002). Voice pitch, or the fundamental frequency (F0) of voicing, has 

long been thought to be an important cue in the perceptual segregation of 

simultaneous and nonsimultaneous speech sources (e.g., Bregman, 1990; Darwin & 

Carlyon, 1995). Studies of normal-hearing listeners have found that when a 

competing voice is present, listeners generally find it easier to understand the target 

voice if the competing voice has a different F0 (e.g., Darwin & Carlyon, 1995; Bird 

& Darwin, 1998). Cochlear-implant listeners are unlikely to use the same F0 cues as 

normal-hearing listeners. Part of the difficulty experienced by cochlear-implant 

listeners in background noise may reflect their impaired abilities of extracting the F0s 

of two concurrent sounds to perceptually segregate the fluctuations of the target from 

those of the masker (Bregman, 1990; Darwin & Carlyon, 1995). Therefore, poor pitch 

perception is likely to be one of the important issues that limit cochlear-implant 

listeners to fully benefit from cochlear implantation. A discussion of pitch perception 

in cochlear-implant listeners follows. 

Pitch is a subjective attribute of sound defined in terms of what is heard. It is 

related to the physical repetition rate of the waveform of a sound, which corresponds 

to the frequency for a pure tone and to the F0 for a periodic complex tone (Moor, 
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1998). In all languages, the pitch patterns of speech indicate which are the most 

important words in an utterance, they distinguish a question from a statement, and 

they indicate the structure of sentences in terms of phrases. In tonal languages, such 

as Mandarin Chinese, Zulu, and Thai, pitch can affect word meanings. Pitch also 

conveys nonlinguistic information about the gender, age, and emotional state of the 

speaker (Rosen, Fourcin & Moore, 1981). Pitch encoding in the normal auditory 

system involves both a temporal mechanism following the temporal fine structure of 

the input signal (“phase locking”)  and a place mechanism with resolved low-order 

harmonics (“place of excitation”) (e.g., Plomp, 1967; Houtsma & Smurzynski, 1990; 

Smith, Delgutte & Oxenham 2002). However, both pitch encoding mechanisms fail in 

current cochlear implants. 

Temporal codes. It is widely believed that auditory neurons are phase-locked 

to resolved frequency components and a correspondence between the temporal 

pattern of the neural firing and the place of excitation is important to derive pitch 

information from the lower harmonics (Loeb, White & Merzenich, 1983; Carlyon & 

Deeks, 2002). However, except for Simultaneous Analog Stimulation (SAS), all 

current processing strategies for cochlear implants remove temporal fine structures 

(“phase-locking” information) in stimulus waveforms and preserve only the slowly-

varying temporal envelope. The envelopes are extracted from each of 6 to 22 

frequency bands by full-wave rectification and low-pass filtering at a low frequency 

(<500 Hz). The envelope outputs are finally compressed and then used to modulate 

biphasic pulses. Trains of modulated biphasic pulses are then delivered to electrodes 

at a fixed rate. The temporal-fine-structure or “phase-locking” information is 
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eliminated in such processing schemes due to the usage of a fixed-rate carrier. 

Therefore, the temporal-fine-structure information of the input signal is not 

appropriately encoded by the speech processing strategies used in current cochlear 

implants.  

Pitch perception in cochlear-implant listeners largely depends on deriving 

temporal pitch cues from temporal amplitude modulations corresponding to F0. The 

extent to which this is possible depends on two factors. First, the F0 must be passed 

by an envelope smoothing filter and a carrier pulse rate must be high enough to 

represent the modulations corresponding to the F0 (Green, Faulkner & Rosen, 2002; 

Moore, 2003). The average F0s of voicing are 125 Hz for adult males, 200 Hz for 

adult females and 300-400 Hz for children (Pickett, 1999). Both physiological and 

psychophysical evidences suggest that accurate representation of the temporal 

modulation envelopes requires the carrier pulse rate to be at least 4 to 5 times the 

frequency of the modulations to avoid aliasing (McKay, McDermott & Clark, 1994; 

Wilson, 1997). However, several widely used implant systems (e.g., Nucleus device) 

use a pulse rate of less than 1 kHz which is insufficient to cover much of the voice-

pitch range. Second, there are limitations on the ability of the auditory system to 

perceptually encode the temporal amplitude modulations. Several psychophysical 

studies have reported that the ability of normal-hearing listeners to use temporal cues 

to derive a pitch perception from amplitude modulated noise is limited to frequencies 

below around 300 Hz (Pollack, 1969; Burns & Viemeister, 1976, 1981). Similarly, the 

ability of cochlear-implant listeners to detect the amplitude modulations in pulses 

applied to a single channel typically declines rapidly for modulation frequencies 
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above 100–150 Hz (Shannon, 1992; Busby, Tong & Clark, 1993; Cazals, Pelizzone & 

Boex, 1994). Thus, the pitch salience associated with temporal modulations 

corresponding to the F0 is rather weak although the envelopes of the implant-

processed stimuli can carry some periodicity information. Therefore, pitch perception 

in the temporal domain is expected to be severely limited in cochlear-implant 

listeners. 

Place of excitation. Normal-hearing listeners derive pitch information 

primarily from lower (resolved) harmonics, whose frequencies are each encoded by a 

separate subset of auditory neuron fibers in the apical part of the cochlea. 

Unfortunately for cochlear-implant listeners, the shallow insertion of implant 

electrode arrays and the speech processing algorithms used in modern implants are 

unlikely to result in this information being encoded in the auditory neuron fibers. 

First, the average length of the human cochlea is about 32.4-37.1 mm (Sato, Sando & 

Takahashi, 1991). The electrode array is usually not fully inserted into the cochlea. 

The relatively shallow insertion severely limits the transfer of low-frequency spectral 

information. For example, Ketten, Skinner, Wang, Wannier, Gates, and Neely (1998), 

in a study of 20 patients implanted with the Nucleus Corporation implant, found that 

the average lower limit of frequency conveyed by the most apical electrode 

corresponds to the acoustic frequency of about 1000 Hz, according to Greenwood’s 

(1990) equation. Therefore, the relatively shallow insertion depth of the implant 

electrode array does not reach the low-frequency place and the lower harmonics of 

pitch cannot be encoded appropriately in the “right place” of the cochlea. Even when 

the low-frequency spectral information is transferred to the apical electrodes, it is 
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encoded in the “wrong place”, i.e., locations in the cochlea that are tuned to higher 

frequencies (Nadol, Young & Glynn, 1989; Linthicum, Fayad, Otto, Galey & House., 

1991). Second, for all strategies, the input filters used to create “channels” are 

typically too broad to resolve individual harmonics. Furthermore, spread of current 

along and across the cochlea would increase the “mixing” of harmonics within 

individual auditory neuron fibers, even if implant devices were modified to have a 

larger number of electrodes each encoding a narrow range of frequencies (Frijns, de 

Snoo & ten Kate, 1996).   

In summary, low-frequency information is not appropriately represented by 

the place of stimulation due to the shallow insertion depth of the electrode array, the 

spectral mismatch from the warped frequency-to-electrode allocation, and the 

relatively broad filters used in speech processing strategy to create “channels”, 

combined with the spread of electric charge along and across the cochlea. This means 

that cochlear-implant listeners cannot extract the pitch of an electric input in a way 

analogous to that used by normal-hearing listeners for resolved harmonics (Friesen et 

al., 2001). Cochlear-implant listeners are most likely to have difficulty in hearing the 

pitch of a single voice even in quiet. They usually experience more difficulty in 

understanding speech in noise where they cannot use differences in the F0 to 

perceptually separate the voices of competing speakers.  

Summary. Current cochlear implants preserve temporal/amplitude 

information and only provide coarse spectral information of the input signal. Poor 

pitch perception is a consequence of inadequate temporal and place encoding of low-

frequency information provided by current cochlear implants. The loss of pitch 
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perception has unfortunate consequences for speech perception in noise and 

appreciation of the aesthetic qualities of sound in most implant listeners. However, 

preservation of residual low-frequency acoustic hearing in the implanted and/or 

nonimplanted ear can provide the valuable low-frequency information that is not well 

resolved by cochlear implants, leading to a substantial improvement in speech-

recognition performance especially in noise and appreciation of the aesthetic qualities 

of sound in these cochlear-implant listeners. 

Combined contralateral EAS 

As the audiological criteria for implant candidacy have become less stringent 

and have extended to include people with a severe degree of hearing loss (Cohen, 

2004), an increasing number of individuals with a unilateral cochlear implant have 

substantial residual low-frequency hearing in the nonimplanted ear. For these 

individuals implanted with a conventional long-electrode array, low-frequency 

acoustic information is available by combining electric hearing with acoustic hearing 

from the nonimplanted ear via a conventional hearing aid, whereas high-frequency 

information is provided by a cochlear implant (Dooley, Blamey, Seligman, Alcantara, 

Clark, Shallop, Arndt, Heller & Menapace, 1993; Tyler, Parkinson, Wilson, Witt, 

Preece & Noble., 2002). Such fitting of the cochlear implant in one ear and the 

hearing aid on the other is often called “bimodal fitting.” The benefit that arises from 

wearing both the hearing aid and the cochlear implant compared to wearing the 

cochlear implant alone is referred to as a “bimodal benefit”. While residual acoustic 

hearing present in these implant users is unlikely to contribute directly to speech 

intelligibility, the additional low-frequency cues from acoustic hearing may provide 
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sufficient information to compensate for the limitations encountered by current 

cochlear-implant listeners as noted above. These developments have led to the 

exploitation of combined contralateral EAS to provide information about the bimodal 

benefit and its underlying mechanisms.  

Advantages of combined contralateral EAS 

There are at least two advantages that individuals with electric hearing in the 

implanted ear and residual acoustic hearing in the nonimplanted ear benefit with 

combined contralateral EAS. The advantages are avoidance of auditory deprivation 

and provision of the complementary cues provided by combined contralateral EAS. 

Avoidance of auditory deprivation. Providing an auditory input to the ear 

with residual acoustic hearing may help prevent neural degeneration that is associated 

with auditory deprivation. It is known that speech recognition ability gets worse in the 

unaided ear for individuals who have bilateral hearing losses but unilateral hearing 

aid amplification (Silman, Gelfand & Silverman, 1984; Hurley, 1999; Neuman, 

1996). This deterioration is often attributed to a lack of auditory stimulation and 

reduced peripheral neural activity in the unaided ear. The stimulation provided by a 

hearing aid may help maintain spiral ganglion cell survival in the nonimplanted ear 

for future advances in hearing restoration or future cochlear implantation.  

Provision of complementary cues. There is some evidence showing that a 

hearing aid and a cochlear implant can provide complementary information. Acoustic 

amplification with the hearing aid provides adequate low-frequency information 

whereas electric stimulation with the cochlear implant does not.  Specifically, 

acoustic stimulation provided by the hearing aid may help the user access adequate 
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low-frequency information, which contains finer spectral and/or temporal cues in an 

input signal and is not well resolved by the cochlear implant. Better speech 

performance in quiet has been observed mainly due to better perception of voicing 

and manner information in consonant perception in the combined-contralateral-EAS 

condition when compared to that in the electric-stimulation-alone condition (Ching et 

al., 2001). Similar results have also been reported by Mok, Grayden, Dowell, and 

Lawrence (2006), suggesting that the speech-perception benefits in quiet arise from 

improved perception of the low-frequency components in the acoustic input from the 

hearing aid. In addition, low-frequency information relating to voice pitch in acoustic 

hearing may provide sufficient cues to aid in source segregation of competing voices 

and, thereby, contribute to the improved speech perception in noise for listeners with 

combined contralateral EAS (Kong, Stickney & Zeng, 2005).  

Perceptual incompatibility. Little doubt exists regarding the advantages of 

combined contralateral EAS. However, there is a major concern arising from the 

“incompatibility” between sensations elicited by electric stimulation via an implant 

and by acoustic stimulation via a hearing aid (Dooley et al., 1993, Ching et al., 2001). 

There are perceptual dissimilarities between electric hearing and contralateral 

acoustic hearing because electric stimuli differ in several essential aspects from 

acoustic stimuli. For example, it is known that sounds processed by the cochlear 

implant and the hearing aid in opposite ears may elicit different pitch sensations 

because the cochlear implant stimulates the basal part of the cochlea, whereas the 

hearing aid stimulates the apical part of the cochlea (Blamey, Dooley, Parisi & Clark, 

1996). In addition, the dynamic range and the shape of iso-loudness curves between 
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electric and contralateral acoustic hearing of the same person can also be quite 

different (Blamey, Dooley, James & Parisi, 2000).  

Perceptual incompatibility between electric and contralateral acoustic hearing 

has been reported in some studies. Generally, cochlear-implant users described any 

acoustic sound they heard as being qualitatively very different from the sensations 

created by stimuli delivered through the implant system. Tyler et al. (2002) reported 

that one of their subjects heard the acoustic and electric stimuli as separate sound 

sources. Blamey et al. (1996, 2000) demonstrated a pitch mismatch and differences in 

the dynamic range and the shape of the iso-loudness curves between the acoustically 

and electrically stimulated ears. Dooley et al. (1993) also reported that some subjects 

discontinued using their hearing aids or cochlear implants after implantation.  

Despite the potential “incompatibilities,” many implant users who have some 

residual hearing in the nonimplanted ear have opted to use a hearing aid and a 

cochlear implant in opposite ears even though speech perception in the nonimplanted 

ear is often poorer than that in the implanted ear. A demographic study (Cowan & 

Chin-Lenn, 2004) reported 51% of adults with an unaided threshold of 90 dB HL or 

better at 500 Hz in the nonimplanted ear continued to wear the hearing aid together 

with the cochlear implant for at least 4 hours per day. For those patients who adapted 

to both devices, the perceptual incompatibility did not seem to interfere with their 

speech recognition both in quiet and in noise (Dooley et al., 1993; Tyler et al., 2002). 

Summary. Two advantages benefit individuals with combined contralateral 

EAS. The acoustic amplification via a hearing aid to the nonimplanted ear may help 

prevent auditory deprivation. Improved speech perception both in quiet and in noise 
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for individuals with combined contralateral EAS may be related to the 

complementary information provided by the two devices. Acoustic stimulation 

provided by the hearing aid may help the individuals access adequate low-frequency 

information, which contains finer spectral and/or temporal cues in the speech signal 

and is not well resolved by current cochlear implants. Perceptual incompatibilities 

arise from differences in several essential psychophysical aspects in terms of 

encoding of electric stimuli and acoustic stimuli in the auditory system. Despite the 

potential incompatibilities, many cochlear-implant listeners with residual hearing in 

the nonimplanted ear have adapted to use both devices. 

Previous reports on bimodal benefits 

Bimodal benefits in adults. Studies conducted with adult listeners have shown 

that benefits can be obtained from using a cochlear implant with a hearing aid 

compared with using either device on its own (Shallop, Arndt & Turnacliff, 1992; 

Dooley et al., 1993; Armstrong, Pegg, James & Blamey, 1997; Blamey, Armstrong & 

James, 1997). Shallop et al. (1992) reported speech results in quiet from seven 

subjects whose mean hearing threshold at 500, 1000, and 2000 Hz (pure tone average 

(PTA)) was 104 dB in the nonimplanted ear. Vowel and consonant identification and 

sentence recognition were evaluated in each subject. The results showed a significant 

improvement in performance in at least one speech-recognition test in the combined-

contralateral-EAS condition over the acoustic-stimulation condition or the electric-

stimulation condition after 6 months of implant use, and the improvement continued 

to be observed at 12 months postoperatively. Dooley et al. (1993) evaluated four 

adults (mean PTA in the nonimplanted ear = 106 dB HL) and reported significantly 
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higher consonant scores in the combined-contralateral-EAS condition than those in 

the acoustic-stimulation condition or the electric-stimulation condition. Blamey, 

Armstrong, and James (1997) reported results from a group of 50 implant users (mean 

PTA= 107 dB HL in the nonimplanted ear) showing that continued use of the implant 

plus the hearing aid could provide a significant advantage in speech perception over 

the use of the implant on its own. Armstrong et al. (1997) tested four adults whose 

mean PTA in the nonimplanted ear was 103.5 dB HL. Speech perception was 

evaluated using CUNY sentences and CNC words in quiet and in background noise. 

Their results showed that speech scores in quiet and in noise at 5 and 10 dB SNRs 

were significantly higher with combined contralateral EAS compared to those with 

electric stimulation alone. Those individuals who were consistent hearing aid and 

implant users tended to receive greater bimodal benefits than others who normally 

wore the implant alone.  

In more recent studies, the outcomes of research into combined contralateral 

EAS have been published, with the majority of listeners showing benefits in terms of 

speech recognition in quiet at a conversational level, speech recognition in noise, and 

localization ability. There have also been rare cases in which poorer speech 

recognition was reported for individuals using combined contralateral EAS compared 

to using electric stimulation alone (Tyler et al., 2002; Ching, Incerti. & Hill 2004; 

Hamzavi, Pok, Gstoettner & Baumgartner, 2004; Kong, Stickney & Zeng, 2005; 

Dunn, Tyler & Witt, 2005; Mok, Grayden, Dowell & Lawrence 2006). Tyler et al. 

(2002) tested three listeners (mean PTA in the nonimplanted ear = 86.5 dB HL) on 

CNC word and CUNY sentence recognition both in quiet and in noise and 
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localization tasks. They reported that two adult listeners received bimodal benefits in 

noise but only one listener received bimodal benefits for words in quiet. In addition, 

two listeners had improved localization ability. Ching, Incerti, and Hill (2004) tested 

21 adults (mean PTA in the nonimplanted ear = 99 dB HL) with Bamford-Kowal-

Bench (BKB) sentences in noise at + 10 dB SNR and found that seven subjects 

demonstrated better sentence and phoneme recognition performance in multi-talker 

babble noise at 10 dB SNR with combined contralateral EAS. They also found overall 

improved localization with combined contralateral EAS relative to monaural electric 

stimulation.  

Further, a group benefit of combined contralateral EAS relative to electric-

stimulation was reported by Hamzavi, et al. (2004) for speech recognition in quiet. 

Seven cochlear-implant listeners who continued to use their hearing aids in the 

opposite ear were tested. In the majority of subjects, the combined-contralateral-EAS 

condition was superior to the electric-stimulation condition with an average group 

improvement of 8.9% on a sentence test and 10.5% on a monosyllable test. Similar 

group benefits were also reported by Kong, Stickney, and Zeng (2005) for speech 

recognition in noise and melody recognition. Five implant subjects with moderate to 

profound hearing loss at frequencies from 125 to 8000 Hz in the nonimplanted ear 

were tested on sentence recognition at 0, +5, +10, +15, and +20 dB SNR. The results 

showed that residual low-frequency acoustic hearing produced essentially no speech 

recognition in noise but it significantly enhanced performance when combined with 

electric hearing. Performance of melody recognition in the same group of subjects 

was better than that with electric hearing. Mok et al. (2006) reported that 6 of 14 
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subjects with hearing loss less than 90 dB HL from 125 to 1000 Hz in the 

nonimplanted ear showed significant benefits on open-set speech tests and 5 showed 

benefits on close-set spondees. However, 2 participants showed poorer speech 

perception with combined contralateral EAS when compared to that with electric 

stimulation in at least one of the speech-perception tests. Results of information 

transmission analyses demonstrated that speech-perception benefits in quiet arose 

from the improved perception of the low-frequency components in speech. 

Gifford, Dorman, McKarns, and Spahr (2007) reported bimodal effects in 

patients with bilateral hearing losses meeting candidacy for a partial-insertion 

cochlear implant (≤ 65 dB HL up to 500 Hz) but who have chosen to receive a full-

insertion cochlear implant. Scores on tests of monosyllabic word recognition in quiet 

and sentence recognition in quiet were obtained from 12 subjects and in noise at +10 

and +5 dB SNR from 6 subjects. All subjects benefited significantly when low-

frequency information from the nonimplanted ear was added to the implanted ear. 

Performance of the subjects was comparable to individuals with combined ipsilateral 

EAS as reported in the literature. Similar results were reported in the following study 

by Dorman, Gifford, Spahr, and McKarns (2008). The performance of 15 subjects 

with combined contralateral EAS, whose mean thresholds at 500 Hz and lower were 

53 dB HL and better in the nonimplanted ear, increased by 17-23 percentage points 

on tests of CNC word and AzBio sentence recognition both in quiet and in noise from 

the electric-stimulation condition to the combined-contralateral-EAS condition.  

Bimodal benefits in children. Pediatric data have also showed that some 

children benefit from using both a cochlear implant and a hearing aid. Chmiel, Clark, 
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Jerger, Jenkins, and Freeman (1995) evaluated six children between the ages of 4 and 

13 yr who continued to wear their hearing aids in the nonimplanted ear after 

implantation in the contralateral ear. The mean PTA in the nonimplanted ear was 105 

dB HL. Three children showed significant bimodal benefits in speech-perception 

tasks and in a speech-imitation task. The other three children did not show any 

significant speech-perception or speech-production difference between the combined-

contralateral-EAS condition and the electric-stimulation condition. Simon-

McCandless and Shelton (2000) studied four children and found that speech-

perception scores for half of the children were higher in the combined-contralateral-

EAS condition than those in the acoustic-stimulation or the electric-stimulation 

condition. Ching, Psarros, Hill Dillon, and Incerti (2001) reported benefits in speech 

perception, localization, and aural/oral function for 16 children and the results 

showed that open-set sentence and closed-set consonant recognition at +10 dB SNR 

was significantly better with combined contralateral EAS than that with electric 

stimulation due to the significantly improved transmission of voicing and manner 

cues but not due to the transmission of place cues. Further, 4 of 5 children in Ching et 

al.’s study (2001) had improved horizontal localization abilities in the combined-

contralateral-EAS condition relative to the electric-stimulation condition.  

At least one investigation did not find bimodal benefits in children.  

Waltzman, Cohen, and Shapiro (1992) reported that children who were deaf before 

age 5 yrs did not show better speech-recognition performance in the combined-

contralateral-EAS condition over the electric-stimulation condition. This result may 

stem from language delays and much less residual hearing in the nonimplanted ear, 
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which may influence the amount of benefit they received from the acoustic input. 

This notion was supported by the study of Holt, Kirk, Eisenberg, Martinez, and 

Campbell (2005). Children with more residual hearing (severe degree of 

sensorineural hearing loss) in the nonimplanted ear were included in their study. 

Children were longitudinally tested on Phonetically Balanced-Kindergarten Word 

lists (PB-K) in quiet and Hearing-In-Noise Test-Children’s Version (HINT-C) 

sentences at 6-month intervals. The results showed benefits from combined 

contralateral EAS particularly in background noise. 

Summary. Previous research on bimodal benefits for speech perception has 

shown mixed results across studies as well as among individuals. Although most 

studies showed signs of benefits from combined contralateral EAS, some individuals 

obtained benefits whereas others did not. There have also been rare cases in which 

poorer speech perception with combined contralateral EAS compared to that with 

electric stimulation was reported for individuals. This could be related to the way in 

which bimodal benefits were measured, the divergent experience in hearing aid and 

implant usage among individuals, and the degree of hearing loss in the nonimplanted 

ear.  

Combined ipsilateral EAS 

There is a subpopulation of candidates fulfilling the newer criteria of cochlear 

implantation who have a significant amount of low-frequency residual hearing in both 

ears. These are extreme cases of the “ski-sloping” audiogram where pure-tone hearing 

threshold levels up to 500 Hz may be near normal or moderately impaired, but with 

severe or profound levels of hearing loss at 750 Hz and above. These individuals 
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usually have unsatisfactory speech understanding with hearing aids. One of the 

newest applications in cochlear implants that can be helpful for this group of 

individuals is to use a partial electrode array (10, 16, or 20 mm) and an improved 

atraumatic surgical technique to preserve low-frequency acoustic hearing in the 

implanted ear. With the partial electrode array, individuals receive acoustic 

stimulation from both ears and electric stimulation from the implanted ear. Initial 

reports of hearing preservation and speech recognition following the partial insertion 

of the electrode array have been very encouraging.  

Previous reports on combined ipsilateral EAS in cochlear-implant listeners 

Van Tassel, Greenfield, Logeman, and Nelson (1999) were the first to 

introduce the concept of acoustic stimulation in the low-frequency range in 

combination with electric stimulation in the mid-to-high frequency range for patients 

with rather well-preserved low-frequency hearing of 20-70 dB up to 1 kHz and 

severe-to-profound hearing loss of ≥ 70 dB in the mid-to-high-frequency range of ≥ 1 

kHz. They showed that acoustic hearing could be preserved with the insertion of a 

20mm electrode array into the cochlea reaching to approximately the 1000 Hz 

frequency place in the cochlea. Better speech recognition in quiet was observed with 

combined ipsilateral EAS when compared to that with electric stimulation. The range 

of improvement was 44% to 53% on the Hochmair-Schulz-Moser (HSM) sentence 

test and 20% to 35% on the monosyllables, depending on the training experience with 

combined ipsilateral EAS. 

Gantz and Turner (2004) studied six patients with combined ipsilateral EAS 

who were fit with a “short” electrode array of either 6 or 10mm in length. Residual 
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low-frequency hearing was preserved to within 10 to 15 dB in all patients. Gantz and 

Turner found that combined ipsilateral EAS helped the patients with consonant 

identification as well as with monosyllabic word recognition. The 10 mm insertion 

depth allowed better performance than the 6mm insertion depth. A study by Turner, 

Gantz, Vidal, Behrens, and Henry (2004) on short-electrodes also showed significant 

benefits of additional low-frequency acoustic hearing in terms of speech recognition 

in noise. In this study, acoustic hearing was preserved up to frequencies of 500 to 750 

Hz. They compared the speech reception thresholds of spondee words in different 

noise backgrounds (steady-state noise versus competing sentences) in implant users 

with “10mm short-electrodes” and traditional “18-20mm long-electrodes”. They 

reported that speech reception thresholds improved by 15 dB in the competing talker 

background and 5 dB in the steady-state noise background in combined hearing 

recipients with the short-electrode implants when compared to the speech reception 

thresholds in combined hearing recipients with the traditional long-electrode 

implants. They concluded that the better speech-recognition performance in multi-

talker babble noise with additional low-frequency acoustic hearing was attributed to 

the ability of the listeners to take advantage of the voice differences between the 

target and the masker speech.  

Successful conservation of hearing after traditionally long-electrode cochlear 

implantation using the atraumatic electrode insertion technique to preserve residual 

low-frequency hearing was reported by Kiefer, Gstoettner, Baumgartner, Pok, Tillein, 

Ye, and von Ilberg (2004). The patients presented with low-frequency hearing of 20-

60 dB up to 750 Hz. Insertion depths in the patients ranged from 19 mm to 24 mm 
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with the majority of insertions at 19mm or 20mm. Hearing preservation in the 

implanted ear could be partially achieved in 1 2/14 subjects (86%). The 

patients’ mean performance on Freiburg monosyllabic words in the acoustic-

stimulation condition was 7% correct; in the electric-stimulation condition it was 

54%; and in the combined-ipsilateral-EAS condition it was 62%. The patients’ 

average performance on the HSM sentences in quiet in the acoustic-stimulation 

condition was 32%; in the electric-stimulation condition it was 78%; and in the 

combined-ipsilateral-EAS condition it was 86%. In noise, the improvement from the 

electric-stimulation condition to the combined-ipsilateral-EAS condition was 23%. A 

significant speech recognition improvement was shown in 7 of 13 patients in the 

combined-ipsilateral-EAS condition relative to the electric-stimulation condition. 

Similar results were also reported by Gstoettner, Kiefer, Baumgartner, Pok, Peters, 

and Adunka (2004). In their study, 21 subjects with considerable low-frequency 

hearing but with unsatisfactory speech understanding with hearing aids were 

implanted with 18-24 mm insertion depth of MED-EL COMBI-40+ cochlear implant 

electrode arrays. Hearing preservation in the implanted ear could be achieved in 

18/21 patients (85.7%). Dramatic benefits for combined ipsilateral EAS compared to 

electric stimulation were observed in speech recognition tests. The long-term 

ipsilateral hearing preservation in patients who underwent cochlear implantation 

using the atraumatic technique was later reported by Gstoettner, Helbig, Maier, 

Kiefer, Radeloff, and Adunka (2006). Their study showed that complete and partial 

preservation of ipsilateral hearing after cochlear implantation was achieved in about 

70% of 23 cases over an average period of 27.25 months. 
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James, Albegger, Battmer, Burdo, Deggouj, Deguine, Dillier, Gersdorff, et al. 

(2005) reported preliminary results from a prospective study investigating the benefits 

of combined ipsilateral EAS and the conservation of residual hearing after 

implantation with 17-19 mm insertion depth (300-430 degrees) of standard-length 

Nucleus Contour Advance perimodiolar electrode array by using a defined surgical 

protocol. Word recognition scores in quiet were improved from 10% in the electric-

stimulation condition to 30% in the combined-ipsilateral-EAS condition in 3 out of 12 

patients. Signal-to-noise ratio thresholds for sentence recognition were improved by 

up to 3 dB. Patients reported that they experienced greatly improved sound quality 

and preferred to use the two devices together. Similar benefits of combined ipsilateral 

EAS were reported in the following study of James, Fraysse, Deguine, Lenarz, 

Mawman, Ramos, Ramsden, and Sterker (2006). They investigated 10 adults 

implanted with 17 mm insertion depth (285-420 degrees Insertion depth angles) of 

Nucleus 24 Contour Advance perimodiolar electrode arrays. Mean postoperative 

scores improved from 56% in the electric-stimulation condition to 68% in the 

combined-ipsilateral-EAS condition. For sentences presented in multitalker babble 

noise at 5 dB SNR, mean scores improved from 61% in the electric-stimulation 

condition to 75% in the combined-ipsilateral-EAS condition. 

Fraysse, Macias, Sterkers, Burdo, Ramsden, Deguine, Klenzner, and Lenarz 

(2006) assessed the conservation of residual hearing in recipients of the Nucleus 24 

Contour Advance cochlear implant with 17 mm insertion depth, and the benefits of 

combined ipsilateral EAS. Hearing was preserved in 12 out of 27 conventional 

candidates for cochlear implantation where a recommended soft-surgery protocol was 
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strictly adhered. Group mean recognition scores for words improved from 45% in the 

electric-stimulation condition to 55% in the combined-ipsilateral-EAS condition. For 

sentences presented in noise at 5 dB SNR, combined ipsilateral EAS provided 

considerable benefits for speech recognition in noise, equivalent to between 3 and 5 

dB SNR, when compared to electric stimulation. 

Previous reports on simulation of combined ipsilateral EAS in normal-

hearing listeners 

In a simulation of cochlear-implant signal processing for combined ipsilateral 

EAS, the input signal is low-pass filtered at a certain frequency (e.g., 500 Hz) for 

acoustic stimulation. For electric stimulation, the input signal is divided into a number 

of frequency bands and the amplitude envelope of each band is extracted and 

modulated by either a noise-band, whose bandwidth is equal to the band of speech 

information it is representing, or a sine wave, whose frequency is equal to the center 

frequency of the band it represents (Shannon, Zeng, Kamath, Wygonski & Ekelid, 

1995; Dorman, Loizou & Rainey, 1997). The low-pass filtered acoustic input and the 

processed electric input are added together to form a simulated signal of combined 

ipsilateral EAS. Acoustic simulation is applied to normal-hearing listeners to evaluate 

the potential benefits from the combination of EAS. 

Dorman, Spahr, Loizou, Dana, and Schmidt (2005) tested 12 normal-hearing 

listeners with sentence stimuli through a five-channel, combined-ipsilateral-EAS 

condition. Insertion depths of 19, 17, 15, 13, and 11mm were simulated. Acoustic 

stimulation was allowed to 500 Hz. Using sentences for the test material, they found 

that all simulated insertion depths for combined ipsilateral EAS, whether shallow or 
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deep, gave better performance than electric stimulation alone.  The best performance 

was found with depths of 19 and 17mm. A 19mm insertion depth allowed 40% better 

sentence understanding than an 11mm insertion depth.   

In addition to testing implant patients, Turner et al. (2004) also tested normal-

hearing listeners using a noise-excited envelope vocoder. They investigated the effect 

of introducing unprocessed low-frequency information on listeners’ ability to 

recognize two-syllable words (spondees) in a background of either steady-state noise 

or two-talker babble. Using a 16-channel vocoder and steady-state noise interference, 

they found no effect of processing: vocoder processing did not degrade performance, 

relative to the unprocessed condition, and adding back unprocessed acoustic 

information below 500 Hz did not improve performance. In contrast, performance in 

two-talker babble was degraded by 16-channel vocoder processing and was partially 

restored by reintroducing the unprocessed signal below 500 Hz. 

Qin and Oxenham (2006) investigated the benefits of adding unprocessed 

low-frequency information at different low-pass cutoff frequencies to an eight-

channel noise-excited envelope vocoder in normal-hearing listeners. The results 

confirmed that the additional low-frequency information provided significant benefits 

in speech intelligibility in noise even when the cutoff frequency for the unprocessed 

acoustic information was reduced as low as to 300 Hz, suggesting the improved 

speech intelligibility in noise were attributed to the improvement in F0 representation. 

With the higher cutoff frequency of 600 Hz, part of the improvement in performance 

was likely due to the improved spectral representation of the first formant. 
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Chang, Bai, and Zeng (2006) used a 4 channel simulation of a cochlear 

implant and a 4-channel simulation with the addition of low-passed speech to 

investigate the minimum amount of the low-passed speech needed for achieving the 

speech-perception benefits from combined ipsilateral EAS. The speech was filtered at 

250, 500 and 1000 Hz to simulate different degrees of hearing preservation. The 

addition of the low-passed speech information improved performance relative to the 

electric-stimulation condition. The 250 Hz low-pass condition allowed a 10-dB-SNR 

and the 500 Hz low-pass condition allows a 15-dB-SNR improvement, suggesting 

that the F0 of voicing played a major role in the speech-perception benefits. A larger 

15-dB-SNR improvement was observed with the 1000 Hz low-pass condition, 

suggesting that the first formant could also play a role if listeners had hearing beyond 

500 Hz. 

Brown and Bacon (2007) investigated the contributions of F0 information and 

the amplitude envelope of speech from acoustic hearing to electric hearing under 

simulated ipsilateral EAS. They replaced the low-frequency speech with a tone that 

was modulated either in frequency to track the F0 of the speech, in amplitude with the 

extracted envelope of the low-frequency speech, or both. Speech tokens recorded by a 

female talker were combined with various backgrounds and processed with a four-

channel vocoder to simulate electric hearing. Across all backgrounds, intelligibility 

improved significantly when a tone tracking F0 was added to vocoder stimulation and 

further still when both F0 and amplitude envelope cues were applied. These results 

are consistent with previous reports on the importance of F0 information in speech 
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understanding in noise, which enables listeners to use voice pitch to separate a target 

voice from a background of other voices.  

Summary 

Short-insertion cochlear implants stimulate only the basal end of the cochlea 

and leave the apical (low-frequency) end sufficiently intact to preserve low-frequency 

residual hearing. Studies in both real and simulated implant listeners have shown that 

speech intelligibility both in quiet and in noise is significantly better in the combined-

ipsilateral-EAS condition than that in the electric-stimulation condition. The benefits 

of adding low-frequency acoustic information to electrically stimulated information 

may be mostly derived from the improved representation of voice pitch. 

Questions remained for combined contralateral/ipsilateral EAS 

Amount of acoustic information necessary for achieving EAS benefits  

The results from the previous studies above suggest that combined 

contralateral/ipsilateral EAS can lead to a substantial improvement in speech-

recognition performance over electric stimulation. However, little is known about the 

underlying mechanisms of the speech-perception benefits from residual acoustic 

hearing. Implant listeners with contralateral/ipsilateral residual hearing may benefit 

from the combination of EAS because the additional low-frequency information 

provided by acoustic hearing may contain finer spectral and/or temporal cues that are 

particularly useful to help implant listeners identify important acoustic cues for 

speech perception. For example, the additional spectral and/or temporal pitch cues 

from acoustic hearing may help resolve the lowest harmonics of a complex sound to 
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identify voices of two concurrent sounds, which may lead to an improved ability to 

perceptually segregate the fluctuations of the target from those of the masker. This 

additional low-frequency information is mostly absent from electric hearing. It is 

possible that the auditory system can integrate the complementary information 

provided by combined EAS, resulting in improved speech perception (Ching et al, 

2001; Mok et al, 2006). 

Low-frequency acoustic information (<1000 Hz) contains different amount of 

speech cues. Therefore, the questions remaining are: (i) How much low-frequency 

acoustic information or residual low-frequency hearing is required to achieve the 

speech-perception benefits from combined contralateral EAS? (ii) What is the 

additional acoustic information attributed to the observed speech-perception benefits 

both in quiet and in noise? There are studies that have investigated the amount of 

low-frequency acoustic input in order to achieve the speech-perception benefits by 

using acoustic simulation of combined ipsilateral EAS on normal-hearing listeners 

(e.g., Chang, Bai & Zeng, 2006; Qin & Oxenham, 2006). The results showed that 

significant benefits were observed even when the acoustic input was limited to a 

range containing only the F0. Up-to-date, no study has been done on actual cochlear-

implant listeners with combined contralateral/ipsilateral EAS. The acoustic 

simulation of normal-hearing subjects involves ‘ideal’ residual hearing, with no 

hearing loss and accompanying deficits, such as broadened auditory filters. At issue is 

whether cochlear-implant listeners, who have significant hearing loss and 

accompanying disorders of auditory processing, are able to access and benefit from 

limited low-frequency information – as did normal-hearing listeners.  
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In Experiment 1, nine, adult, postlingually-deafened, cochlear-implant 

subjects with some residual acoustic hearing in the nonimplanted ear were recruited 

to assess the minimum amount of low-frequency acoustic information that was 

required to achieve the speech-perception benefits both in quiet and in noise from 

combined contralateral EAS (Aim 1). Speech-recognition performance of CNC words 

in quiet and AzBio sentences in a competing babble noise at +10 dB SNR was 

evaluated in three listening conditions: acoustic stimulation alone, electric stimulation 

alone, and combined contralateral EAS. The acoustic stimuli presented to the 

nonimplanted ear were wide band or low-pass filtered at 125 Hz, 250 Hz, 500 Hz, or 

750 Hz. The electric stimuli presented to the implanted ear were wide band. These 

selected cutoff frequencies were used to assess the minimum amount of low-

frequency acoustic information for achieving the speech-perception benefits from 

combined contralateral EAS.  

Frequency overlap on the speech-perception benefits 

Consider the case of patients with a standard cochlear implant electrode in one 

ear and low-frequency, residual hearing in the other ear.  If the cochlear implant 

signal processor is configured in the usual manner, the band pass of the input filters 

will be 250-350 Hz at the low-frequency end and 5-7 kHz at the high frequency end.  

Additionally, low frequency information below 750-1000 Hz may be available from 

the ear contralateral to the implant depending, of course, on the extent of low 

frequency hearing.  Because there are perceptual dissimilarities between the 

acoustically and electrically stimulated information (e.g., Dooley et al., 1993; Ching 

et al., 2001), it is reasonable to wonder if EAS patients would benefit from keeping 
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information from the two stimulation modalities separate to facilitate the perceptual 

integration of the acoustic signal and the electric signal. This can be accomplished by 

high pass filtering the electric signal and low-pass filtering the acoustic signal. 

Previous research into the benefit from the division of frequency content 

between the acoustic signal and the electric signal in EAS patients has shown mixed 

results across studies as well as among individuals. Some studies have found no 

significant difference in speech perception between conditions in which frequency 

ranges overlap or do not overlap (Gantz & Turner, 2003; Kiefer et al., 2005). Other 

studies, however, have found that some individuals benefited from reduced overlap 

between acoustic and electric stimulation. For example, Wilson, Woford, Lawson, 

and Schatzer (2002) examined identification of consonants and identification of 

words in CUNY sentences in noise at +5 and +10 dB SNR in five patients in test 

conditions in which the analysis bands of cochlear implant signal processing extended 

from 350 Hz to 5500 Hz, from 600 Hz to 5500 Hz, or from 1000 Hz to 5500 Hz. The 

patients had different amounts of residual hearing -- both in their implanted ear and in 

the contralateral ear.  One of five subjects showed significant benefit from the use of 

the 600-5500 Hz (i.e., reduced overlap) frequency range. This patient benefited both 

when the acoustic signal was in the ear contralateral to the implant and in the ear 

ipsilateral to the implant. A larger effect has been reported by Vermeire, Anderson, 

Flynn, and Van de Heyning (2008).  These researchers investigated the influence of 

different cochlear implant and hearing aid fittings on sentence recognition in noise at 

+5, +10 and +15 dB SNR in four subjects with electric and acoustic hearing in the 

same ear. The hearing aid amplification gain was systematically manipulated and the 
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frequency range of the cochlear implant was either a full range or a reduced overlap 

with acoustic hearing. The results showed that the reduced overlap of cochlear-

implant stimulation and hearing-aid amplification allowed the best scores in three out 

of four subjects.  

The issue of overlap in information provided by electric and acoustic 

stimulation was revisited in Experiment 1 as a minor topic. Speech-recognition 

performance of CNC words in quiet and AzBio sentences in a competing babble 

noise at +10 dB SNR was evaluated in three listening conditions: acoustic stimulation 

alone, electric stimulation alone, and combined contralateral EAS. The acoustic 

stimuli presented to the nonimplanted ear were wide band or low-pass filtered at 250 

Hz, 500 Hz, or 750 Hz. The electric stimuli presented to the implanted ear were wide 

band or high-pass filtered at 250 Hz, 500 Hz, or 750 Hz. These selected cutoff 

frequencies were used to assess, for patients with combined contralateral EAS, 

whether reducing the overlap in frequency representation in the input filters of the 

cochlear implant and in acoustic hearing would be beneficial to speech recognition. 

To set a reference for the newly processed speech stimuli in Experiment 1, 

speech-recognition performance of ten normal-hearing subjects was evaluated when 

listening to the low-pass or high-pass filtered speech stimuli listed above.  

Hypotheses 

The operating hypotheses of Experiment 1 were: (1) the amount of low-

frequency acoustic information from the nonimplanted ear available to cochlear-

implant listeners would affect the speech-perception benefits both in quiet and in 

noise from combined contralateral EAS; and (ii) reducing the overlap in frequency 



 

 33

representation in the input filters of the cochlear implant and in acoustic hearing 

would be beneficial to speech recognition for listeners with combined contralateral 

EAS. 

Summary and predictions based on literature review 

Understanding speech in noise and appreciation of the aesthetic qualities of 

sound (such as music and voice quality) are the two main challenges for most implant 

users. These deficits are most likely related to the poor resolution of low-frequency 

information including voice pitch. With the extension of cochlear implant candidacy, 

individuals with some residual hearing have received cochlear implants with a 

traditional long-electrode array or a short-electrode array. Low-frequency acoustic 

information is available by combining electric hearing with acoustic hearing from the 

implanted and/or nonimplanted ears. Residual acoustic hearing in the implanted 

and/or nonimplanted ear provides these implant listeners with a unique opportunity to 

access low-frequency information, which contains finer spectral and/or temporal 

speech cues and is not well resolved by cochlear implants. Studies on speech 

perception both in quiet and in noise with combined contralateral/ipsilateral EAS 

have shown significantly better speech-recognition performance than that with 

electric stimulation.  

The goal of the present experiment is to assess the minimum amount of low-

frequency acoustic information that is required to achieve the speech-perception 

benefits both in quiet and in noise from combined contralateral EAS. It is expected 

that the additional low-frequency information would provide significant speech-

perception benefits both in quiet and in noise even when the acoustic information is 
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limited down to 250 Hz, which is consistent with the results from the previous studies 

of acoustic simulation on normal-hearing listeners (Chang, Bai & Zeng, 2006; Qin & 

Oxenham, 2006). In addition, it is also expected that reducing the overlap in 

frequency representation in the input filters of the cochlear implant and in acoustic 

hearing may be beneficial to speech recognition for listeners with combined 

contralateral EAS. 

Methods 

 Experimental Design 

 Experiment 1 used a within-subject design with stimulation mode (e.g., 

acoustic stimulation, electric stimulation, and combined contralateral EAS) and filter 

cutoff frequency (e.g., 125 Hz, 250 Hz, 500 Hz, 750 Hz, and wide band) as 

independent variables.  Dependent variables were the speech recognition scores of 

CNC words in quiet and AzBio sentences in a competing babble noise at +10 dB 

SNR. A repeated-measures analysis of variances (ANOVA) was applied to the results 

and the effects of the stimulation mode and the filter cutoff frequency on the speech-

recognition performance were evaluated and analyzed to (i) assess the minimum 

amount of acoustic low-frequency information that was required to achieve the 

speech-perception benefits both in quiet and in noise from combined contralateral 

EAS (Aim 1); and (ii) assess whether reducing the overlap in frequency 

representation in the input filters of the cochlear implant and in acoustic hearing 

would be beneficial to speech recognition for listeners with combined contralateral 

EAS.   
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Subjects 
Nine, adult, postlingually-deafened, cochlear implant users were recruited as 

study participants in the present experiment. Eight subjects were fitted with a 

traditional long-electrode implant in one ear and with a hearing aid in the 

nonimplanted ear and they participated in a complete series of performance 

measurements. S8 was fitted with a short-electrode (20mm) implant (Duet, Med-El 

device) in one ear and with two hearing aids in both ears, and he only participated in 

the conditions to assess the minimum amount of acoustic low-frequency information 

necessary to achieve the speech-perception benefits from combined contralateral 

EAS. All nine subjects demonstrated large amount of speech-perception improvement 

(20-40%) from the electric-stimulation-alone condition to the combined-contralateral-

EAS condition and, therefore, were recruited into the present experiment to avoid a 

possible flooring effect on the measurement of speech-perception benefits in the 

conditions in which acoustic information was reduced from wide band to 125 Hz. All 

nine subjects had residual hearing in the nonimplanted ear with thresholds at 500 Hz 

and below at ≤ 60 dB HL and thresholds at 1000 Hz and above at ≥ 55 dB HL. Table 

1 displays individual audiometric thresholds. Table 2 displays demographic 

information for each subject including age, sex, etiology of hearing loss, duration of 

hearing loss both in the implanted and nonimplanted ear, processor type and strategy, 

duration of experience with the implant and hearing aids, hearing aid device in the 

nonimplanted ear, and hearing aid usage post operatively in the nonimplanted ear. At 

the time of testing, all subjects except for S6 had at least 4 months experience with 

electric stimulation (range of 4 months to 5 years) and at least 5 years experience with 

amplification prior to implantation. S6 had 6 months experience with electric  
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Table 1. Individual audiometric thresholds (dB HL) in the nonimplanted ear. 

 

 

 

 

 

 

 

 

 

 

Subject 125 Hz 250 Hz 500 Hz 750 Hz 1000 Hz 1500 Hz 2000 Hz 3000 Hz 4000 HZ 6000 Hz 8000 Hz 
1 25 30 50 80 100 100 100 100 NR(115) NR(110) NR(110) 
2 35 35 55 65 70 75 80 90 95 NR(110) NR(110) 
3 35 40 60 70 90 95 100 NR(110) NR(115) NR(110) NR(110) 
4 40 45 50 60 70 80 80 90 100 85 80 
5 25 25 50 65 70 80 95 NR(110) NR(115) NR(110) NR(110) 
6 20 25 50 75 95 NR (110) NR(110) NR(110) NR(115) NR(110) NR(110) 
7 30 35 40 50 55 55 60 65 70 70 70 
8 30 30 35 45 55 90 100 110 115 NR(110) NR(110) 
9 40 45 60 65 75 85 90 100 110 110 110 

Note. NR = no response at audiometer limits. The limits in the audiometers are listed in parentheses.   
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Table 2. Individual subject demographic information, including age, sex, etiology of 
hearing loss, duration of hearing loss both in the implanted and nonimplanted ear, 
processor type and strategy, duration of experience with the implant and hearing aids, 
hearing aid device in the nonimplanted ear, and hearing aid usage post operatively in 
the nonimplanted ear. 

 

 

 

 

 

 

 

 
 
 
Subject 

 
 
 
Age 

 
 
 
Gender 

 
 
 
Etiology 

Duration 
of 

hearing 
lossa 
(NIE) 

Duration 
of 

hearing 
lossa 

(IE) 

 
 

CI 
experience 

 

 
 
 

CI devices 

 
HA 

experience 
(NIE) (yrs) 

 
 

 
HA models 

 
HA 

usage 
(% 

waking 
hours) 

1 69 M Unknown 40 40 4 months Harmony 25  Starkey CE 100% 
2 70 M Unknown 23 23 4 months Harmony 21 Senso Diva BTE 100% 
3 79 M Unknown 35 35 2 yrs Freedom 18 Oticon  BTE 100% 
4 82 M Unknown 40 40 2 yrs Freedom 23 Starkey Sequel II BTE 100% 
5 49 F Unknown 35 35 5 yrs ESPrit 3G 15 Belton D71 Polara  100% 
6 64 M Unknown 44 44 6 months Harmony N/A N/A N/A 
7 58 M Ménière 4 14 3 yrs Combi 40+ 2 Oticon BTE 100% 
8 61 M Genetic 47 47 1yrs Duet 25 Danalogic BTE 100% 
9 62 M Unknown 40 40 8 months Harmony 24 Virtue Audibel BTE 100% 

Note.  NIE = nonimplanted ear; IE = implanted ear; CI = cochlear implant; HA = hearing aid; N/A = not applicable 
aDuration of hearing loss was defined as duration of time since patients first noticed incapable of understanding a conversation on the telephone as an 
indication of significant hearing loss. 
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stimulation and was not fitted with a hearing aid in the nonimplanted ear. Informed 

consents were approved by Institutional Review Board from both Arizona State 

University and University of Maryland College Park and were obtained from each 

individual subject after the nature of the study was explained.  

Hearing aids 

In the present experiment, all speech stimuli were delivered dichotically to 

both ears. The acoustic input of test materials was amplified based on a frequency-

gain characteristic prescribed by NAL-NL1 formula and was presented through an 

insert  earphone (Etymotic ER-1) to the nonimplanted ear (Ching, Inerti & Hill, 

2004). Therefore, subjects’ hearing aids were not used in present experiment. 

Cochlear implants 

The electric input of test materials was presented through a direct input cable 

to each subject’s speech processor. Subjects were tested with their ‘everyday’ device 

settings and each subject’s cochlear implant was checked before speech-recognition 

performance was evaluated at each test session. The volumes and sensitivity settings 

of the cochlear implant were not adjusted in order to maintain the same settings on 

the cochlear implant for both the combined-contralateral-EAS and the electric-

stimulation conditions.  

Speech stimuli  

The CNC words. The CNC words were phonemically balanced to American 

English, each consisting of 50 words (Peterson & Lehiste, 1962). The speaker was a 

male and his average F0 was 123 Hz (S. D. = 17 Hz) (WaveSurfer software, version 
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1.8.5). To avoid a possible learning effect, no CNC word list was repeatedly used in 

the same test session and only the lists with poor scores (<20%) were used in the 

following session. 

The Az Bio sentences. Lists of Az Bio sentences with equal intelligibility (33 

lists in total) , each consisting of 20 sentences ranging in length from 6 to 10 words, 

were developed to evaluate the performance of cochlear-implant listeners in the 

Cochlear Implant Laboratory at Department of Speech and Hearing Sciences at 

Arizona State University (Spahr & Dorman, 2005). The speakers were instructed to 

speak in a casual style and a total of 5 speakers (2 male & 3 female) were used. The 

average F0s were 131 Hz (S. D. = 35 Hz) for the male voice and 205 Hz (S. D. = 45 

Hz) for the female voice (WaveSurfer software, version 1.8.5). Because the average 

scores of Az Bio sentences at +5 dB SNR and at +10 dB SNR were 37 % and 66%, 

respectively, in the combined-contralateral-EAS condition (Gifford, et al., 2007), 

AzBio sentences at +10 dB SNR were selected in the present experiment to avoid a 

possible flooring effect. 

Stimulus processing. All speech stimuli were recorded using waveform 

editing software (COOL EDIT PRO 2.0 at 44.1 kHz sampling rate) and then 

processed by a low-pass filter with cut-off frequencies of 125 Hz, 250 Hz, 500 Hz, 

and 750 Hz, or a high-pass filter with cut-off frequencies of 250 Hz, 500 Hz, and 750 

Hz.  The filters were designed with a FIR1 function in MATLAB (7.0).  

Because speech stimuli were presented dichotically in the combined-

contralateral-EAS condition, the acoustic input of all speech stimuli was presented 

through an insert earphone (Etymotic ER-1) and the electric input was presented 
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through a direct input cable to each subject’s speech processor to avoid acoustic 

crosstalk. To make the speech stimuli audible to the nonimplanted ear with hearing 

loss, the acoustic input was subjected to a frequency-gain characteristic prescribed by 

NAL-R formula (Byrne & Dillon, 1986; Byrne, Parkinson & Newall, 1990) prior to 

presentation to the nonimplanted ear. The NAL-R formula was intended to make the 

average loudness of the speech the same for speech intelligibility. The goal of the 

frequency-dependent amplification was to restore audibility as far as possible, while 

avoiding excessive loudness. The gain specified by the NAL-R formula was 

calculated and applied to the nonimplanted ear for each subject. The maximum 

insertion gain applied was 50 dB. If the NAL-R formula called for an insertion gain 

greater than 50 dB, then the insertion gain was limited to 50 dB. The NAL-R formula 

filters were designed using a FIR2 function in MATLAB (7.0).  

A Tucker-Davis Technologies (TDT system 3) Power digital-analog converter 

(DAC) with six digital signal processors was used to implement the low-pass/high-

pass filters and the NAL-R formula filters for each condition and each subject. The 

low-pass/high-pass filters were implemented on one processor. A 90 dB/octave roll-

off was chosen for the low-pass filter because it created an audiometric configuration 

similar to that found in the literature for many combined EAS patients. The NAL-R 

formula filters were implemented on the other five processors to give maximum 

cutoff sharpness. The TDT Power DAC was then connected to two attenuators (PA5) 

and the outputs were fed to a headphone driver, which presented the stimuli 

dichotically to each subject. The stimuli were calibrated daily.  
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Overall Procedure  

Test conditions. Speech-recognition accuracy for CNC words (speech 

perception in quiet) and AzBio sentences in the presence of a competing babble noise 

at +10 dB SNR (speech perception in noise) was evaluated in three listening 

conditions: acoustic stimulation alone, electric stimulation alone, and combined 

contralateral EAS. The amount of the acoustic/electric input in three listening 

conditions was varied by filtering the speech stimuli at different cutoff frequencies. 

In the acoustic-stimulation condition, all speech stimuli were either 

unprocessed with a full speech spectrum (Wide band) or processed by a low-pass 

filter with cutoff frequencies of 125 Hz (125 LP), 250 Hz (250 LP), 500 Hz (500LP), 

and 750 Hz (750LP). To document the effect of the low-pass filter on the speech 

stimuli, 50 CNC words and 20 AzBio sentences were processed through each of the 

filter conditions by using a waveform editing software (COOL EDIT PRO 2.0 at 

44.1 kHz sampling rate) and then a frequency analysis was conducted for each of the 

filter conditions by using Fast Fourier Transform (FFT). The spectra of the low-pass-

filtered speech stimuli are shown in Figure 1.  

In the electric-stimulation condition, the speech stimuli were either 

unprocessed with a full speech spectrum (Wide band) or processed by a high-pass 

filter with cutoff frequencies of 250 Hz (250HP), 500 Hz (500HP), and 750 Hz 

(750HP).  

In the combined-contralateral-EAS condition, the low-pass-filtered or the 

wide-band speech stimuli presented to the nonimplanted ear were combined with the 

wide-band speech stimuli presented to the implanted ear to assess the minimum  
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Figure 1.  FFT outputs for the low-pass-filtered speech stimuli.  
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amount of low-frequency acoustic information that was required to achieve the 

speech-perception benefits from combined contralateral EAS. Then the low-pass-

filtered acoustic stimuli (250LP, 500LP, and 750LP) were combined with high-pass-

filtered electric stimuli (250HP, 500HP, and 750HP) to test whether reducing the 

overlap in frequency representation in the input filters of the cochlear implant and in 

acoustic hearing would be beneficial to speech recognition in listeners with combined 

contralateral EAS.   

The total number of CNC word lists and AzBio sentence lists presented in 

three stimulation conditions was 5 for the acoustic-stimulation condition, 8 for the 

electric- stimulation condition, and 8 for the combined-contralateral-EAS condition. 

The total conditions and repeated measurements for each subject are represented in 

Figure 2.  

All subjects were tested with CNC words and AzBio sentences in the presence 

of a competing babble noise at +10 dB SNR. No feedback was provided and they 

were instructed to guess if they were not sure. All tests were preceded by practice 

sessions with sentences and words. CNC words and sentences were scored as words 

correct. Performance was measured in the following conditions: acoustic stimulation 

alone, electric stimulation alone, and combined contralateral EAS. In each condition, 

performance was repeatedly measured with test materials listed above. Subjects were 

seated in a sound-attenuating chamber. Typically all speech tests included two 

sessions, 3-4 hours per session with frequent breaks. The entire procedure, including 

preliminary audiometric assessment and practice sessions, was completed in about 7-8  
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Figure 2. Schematic representations of speech stimuli (CNC words and AzBio 
sentences at +10 dB SNR). In the acoustic-stimulation condition, the stimuli 
presented to the nonimplanted ear were unprocessed (Wide band) or low-passed 
filtered at 125 Hz (125LP), 250 Hz (250LP), 500 Hz (500LP), or 750 Hz (750LP). In 
the electric-stimulation condition, the stimuli presented to the implanted ear were 
unprocessed (Wide band) or high-pass filtered at 250 Hz (250HP), 500 Hz (500HP), 
or 750 Hz (750HP). In the combined-contralateral-EAS condition, the low-pass 
filtered (125LP, 250LP, 500LP, or 750LP) or the wide-band acoustic stimuli were 
combined with the wide-band electric input. The low-pass filtered acoustic stimuli 
(250LP, 500LP, or 750LP) were also combined with the high-pass filtered electric 
stimuli (250HP, 500HP, or 750HP). 
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hours. The order of test conditions was counterbalanced across subjects. Subjects 

were reimbursed for their participation in the experiment.  

Presentation level. In the acoustic-stimulation condition, the acoustic stimuli 

were presented to the nonimplanted ear through an insert earphone (Etymotic ER-1). 

All acoustic input of speech stimuli was presented at 70 dB sound pressure level 

(SPL) prior to the amplification based on a frequency-gain characteristic prescribed 

by NAL-R formula. Therefore, the presentation level was set on an individual basis 

for each subject, according to his/her audiometric thresholds.  

In the electric-stimulation condition, the electric stimuli were presented to each 

subject’s speech processor via a direct input cable. This was to defeat the headset 

microphone so that no external input occurred, while at the same time preserving the 

microphone pre-emphasis. All electric input of speech stimuli was presented at 70 dB 

SPL. The volume and sensitivity settings of the cochlear implant were not adjusted in 

order to maintain the same settings on the cochlear implant for both the electric-

stimulation and the combined-EAS conditions. 

In the combined-contralateral-EAS condition, the stimuli were output via an 

audio splitter connector with one connected to an insert earphone (Etymotic ER-1) 

and the other one connected to each subject’s speech processor via a direct input 

cable. Adjustment of amplification gain of the acoustic input has been found to be 

useful because the relative effectiveness with which each ear transmits low-frequency 

versus high-frequency information may be different in listeners with combined 

contralateral EAS (Ching, et al., 2001). Therefore, to facilitate the perceptual fusion 

of the acoustic input and the electric input, a loudness matching method was used to 
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find the frequency gain of the acoustic input that amplified speech to the same overall 

loudness as the electric input. The speech stimuli used for loudness adjustment were 

AzBio sentences at +10 dB SNR, which were not used in the following speech-

recognition test. The subject was instructed to listen to the speech stimuli first 

presented at 70 dB SPL with the implant alone and remember the loudness, then 

listen to the amplified speech stimuli with the insert earphone alone, and indicate on a 

response card whether the sound was louder or softer than that in the implanted ear. 

The response card was a continuous scale, labeled with “louder” and “softer” at the 

end points and “the same” halfway in between. The experimenter adjusted the 

frequency gain until the speech stimuli were rated to sound equally loud in both ears. 

The volume and sensitivity settings of the cochlear implant were not adjusted in order 

to maintain the same settings on the cochlear implant for both the electric-stimulation 

and the combined-EAS conditions. 

Results 

Results for normal-hearing listeners when listening to the processed speech stimuli 

Subjects. Ten normal-hearing subjects participated in the present experiment 

and they ranged in age from 20-53 years (mean age = 28.8 yrs; st. dev. = 10.7 yrs). 

All subjects had normal audiometric thresholds ≤ 15 dB HL for octave test 

frequencies from 250 to 8000 Hz (ANSI, 2004). All subjects provided written 

informed consent and were paid an hourly wage for their participation. 

Stimuli and Procedure. All speech stimuli were: (i) processed by a low-pass 

filter with cutoff frequencies of 125 Hz (125LP), 250 Hz (250LP), 500 Hz (500LP), 

750 Hz (750LP), and 1000 Hz (1000LP); (ii) processed by a high-pass filter with 
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cutoff frequencies of 250 Hz (250HP), 500 Hz (500HP), and 750 Hz (750HP); or (iii) 

unprocessed with a full spectrum (Wide band). The signal processing schemes were 

followed as described above. All speech stimuli were presented via a loudspeaker 

directly in front of subjects at 70 dB SPL. The testing procedure was followed as 

described above. 

Results. Figure 3 shows the identification accuracy of CNC words and AzBio 

sentences at +10 dB SNR, in percent correct, as a function of filter cutoff frequency. 

A single-factor repeated-measures ANOVA was conducted separately for CNC words 

and AzBio sentences with the filter cutoff frequency as a within-subject factor. The 

analysis revealed that the effect of the filter cutoff frequency was statistically 

significant for both CNC words (F(8, 72) = 1010.6, p < 0.001) and AzBio sentences 

(F(8, 72) = 714.0, p < 0.001). Post hoc pairwise comparison tests (Fisher’s LSD) 

revealed that (i) the mean scores in the low-pass-filtered conditions (125LP, 250LP, 

500LP, 750LP, and 1000LP) were significantly different from one another both for  

CNC words and AzBio sentences (p < 0.05); (ii) the mean scores in the high-pass-

filtered conditions (250HP, 500HP, and 750HP) were not significantly different from 

one another (p > 0.05) and were not significantly different from the mean scores in 

the wide-band condition for both CNC words and AzBio sentences (p > 0.05); and  

(iii) the mean scores in the low-pass-filtered conditions were all significantly lower 

than those in the high-pass-filtered conditions (p < 0.05), and were significantly lower 

than the mean scores in the wide-band condition for both CNC words and AzBio 

sentences (p < 0.05). 
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Figure 3. Group mean scores of CNC word (white bars) and AzBio sentence at +10 
dB SNR (black bars) presented at 70 dB SPL for normal-hearing subjects. Error bars 
indicate +1 standard deviation. 
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Results for cochlear-implant listeners with combined contralateral EAS 

Amount of acoustic information necessary for achieving EAS benefits  

CNC words. Figure 4 shows recognition accuracy for CNC words as a function of 

filter cutoff frequency and as a function of stimulation condition. A repeated-

measures ANOVA revealed that the effect of condition was statistically significant 

(F(10, 80) = 98.1, p < 0.0010). In the acoustic-stimulation conditions the mean scores in 

the 125LP, 250LP, 500LP, 750LP, and wide-band conditions were 0, 0.9, 6.7, 19.3, 

46.4 percent correct, respectively. A post hoc pairwise comparison (Fisher’s LSD) 

revealed that the scores in the 125LP and 250LP conditions were not significantly 

different from each other (p > 0.05) but were all lower than the scores in the 500LP, 

750LP, and wide-band conditions (p < 0.05). The scores in the 500LP, 750LP, and 

wide-band conditions were significantly different from one another (p < 0.05).  

In the electric-stimulation condition the mean score was 56% correct. This 

score was not significantly higher than the score in the wide-band, acoustic-

stimulation condition (Fisher’s LSD, p > 0.05).   

In the EAS conditions the mean scores for the 125LP (A) + wide band (E), 

250LP (A) + wide band (E), 500LP (A) + wide band (E), 750LP (A) + wide band (E), 

and wide (A) + wide band (E) conditions were 77, 82, 84, 85.5, and 86.2 percent 

correct, respectively. All scores were significantly higher than those in the wide-band, 

acoustic-stimulation condition and in the wide-band, electric-stimulation condition 

(Fisher’s LSD, p < 0.05). Among the five EAS conditions, a post hoc pairwise 

comparison (Fisher’s LSD) revealed that there was a significant improvement for 

word recognition when the acoustic information increased from 125 Hz to 250 Hz (p  
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Figure 4.  Percent correct scores for CNC words and AzBio sentences at +10 dB SNR 
as a function of stimulation condition and low-pass filter setting. LP = low pass. WB 
= wide band. 
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< 0.05). No significant improvement was observed when the acoustic information 

increased from 250 Hz to 500 Hz, from 500 Hz and 750 Hz, and from 750 Hz to wide 

band (p > 0.05).  

AzBio sentences at +10 dB SNR. Figure 4 shows recognition accuracy as a 

function of filter cutoff frequency and as a function of stimulation condition. A 

repeated-measures ANOVA revealed that the effect of condition was statistically 

significant (F(10, 80) = 62.4, p < 0.0010). In the acoustic-stimulation conditions the 

mean scores in the 125LP, 250LP, 500LP, 750LP, and wide-band conditions were 0, 

0, 6, 22 and 44 percent correct. A post hoc pairwise comparison (Fisher’s LSD) 

revealed that the scores in the 125LP and 250LP conditions were not significantly 

different from each other (p > 0.05) but were all lower than the scores in the 500LP, 

750LP, and wide-band conditions (p < 0.05). The scores in the 750LP and wide-band 

conditions were not significantly different from each other (p > 0.05) but were all 

significantly higher than that in the 500LP condition (p < 0.05).  

In the E condition the mean score was 40 percent correct. This score was not 

significantly higher than the score in the wide-band, acoustic-stimulation condition 

(Fisher’s LSD, p > 0.05).   

In the EAS conditions the mean scores for the 125LP (A) + wide band (E), 

250LP (A) + wide band (E), 500LP (A) + wide band (E), 750LP (A) + wide band (E), 

and wide band (A) + wide band (E) conditions were 69.8, 71.5, 76.8, 82.3 and 86.9 

percent correct, respectively.  All scores were significantly higher than those in the 

wide-band, acoustic-stimulation condition and in the wide-band, electric-stimulation 

condition (Fisher’s LSD, p < 0.05). Among the five EAS condition, a post hoc 
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pairwise comparison (Fisher’s LSD) revealed that there was a significant 

improvement for sentence recognition when the acoustic information increased from 

250 Hz to 500Hz and from 500 Hz to750 Hz (p < 0.05). No significant improvement 

was observed when the acoustic information increased from 125 Hz to 250 Hz and 

from 750 Hz to wide band (p > 0.05).  

Frequency overlap on the speech-perception benefits 

CNC words. Figure 5 shows recognition accuracy for CNC words as a 

function of filter cutoff frequency and as a function of stimulation condition. A two-

way repeated-measures ANOVA revealed significant main effects for the filter cutoff 

frequency (F(3,21 ) = 95.2, p < 0.001) and for the stimulation condition (F(2,14 ) = 23.4, p 

< 0.001) with a significant interaction (F(6,42 ) = 15.8, p < 0.0010).  

Subsequent analysis of simple main effects for the filter cutoff frequency 

revealed that the mean word recognition scores were influenced by the filter cutoff 

frequency for the acoustic-stimulation condition (F(3, 5) = 11.5, p < 0.05) and the 

electric-stimulation condition (F(3, 5) = 7.1, p < 0.05) but not for the EAS condition 

(F(3, 5) = 4.4, p > 0.05). A post hoc pairwise comparison (Fisher’s LSD) revealed that 

the mean word recognition scores in the 250LP, 500LP, 750LP, and wide-band 

conditions were significantly different from one another for the acoustic-stimulation 

condition (p < 0.05). The mean word recognition scores in the 250HP, 500HP, and 

750HP conditions were significantly different from one another for the electric-

stimulation condition (p < 0.05). When the scores in the 250HP, 500HP, and 750HP 

conditions were compared with that in the wide-band condition for the electric-

stimulation condition, the score in the wide-band condition was not significantly  
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Figure 5. Percent correct scores for CNC words and AzBio sentences at +10 dB SNR 
as a function of stimulation condition and filter condition. LP = low pass. HP = high 
pass. WB = wide band. 
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different from that in the 250HP condition  (p > 0.05) but was significantly higher 

than those in the 500HP and 750HP conditions (p < 0.05).  

Subsequent analysis of simple main effect for the stimulation condition 

revealed that the mean word recognition scores were influenced by the stimulation 

condition for all four filter-cutoff-frequency conditions (for 250 Hz: F(2, 6)  = 152.1, p 

< 0.001; for 500 Hz: F(2, 6)  = 92.4, p < 0.001; for 750 Hz: F(2, 6)  = 135.4, p < 0.001; 

for wide band: F(2, 6)  = 112.8, p < 0.001). A post hoc pairwise comparison (Fisher’s 

LSD) revealed that the mean word recognition scores in the EA condition were 

significantly higher than those in the acoustic- and electric-stimulation conditions for 

all four filter-cutoff-frequency conditions (p < 0.05). The mean word recognition 

scores in the electric-stimulation condition were significantly higher than those in the 

acoustic-stimulation conditions for the 250-Hz, 500-Hz, and 750-Hz conditions (p < 

0.05) but not for the wide-band condition (p > 0.05).  

AzBio sentences at +10 dB SNR. Figure 5 shows recognition accuracy for 

AzBio sentences in noise at +10 dB SNR as a function of filter cutoff frequency and 

as a function of stimulation condition. A two-way repeated-measures ANOVA 

revealed significant main effects for the filter cutoff frequency (F(3,21 ) = 19.2, p < 

0.001) and for the stimulation condition (F(2,14 ) = 53.3, p < 0.001) with a significant 

interaction (F(6,42 ) = 10.8, p < 0.001).  

Subsequent analysis of simple main effect for the filter cutoff frequency 

revealed that the mean sentence recognition scores were influenced by the filter cutoff 

frequency for the acoustic-stimulation condition (F(3, 5) = 8.1, p < 0.05) and the 

electric-stimulation condition (F(3, 5) = 48.7, p < 0.001) but not for the EAS condition 
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(F(3, 5) = 2.7, p > 0.05). A post hoc pairwise comparison (Fisher’s LSD) revealed that 

the mean sentence recognition scores in the 250LP, 500LP, 750LP, and wide-band 

conditions were significantly different from one another for the acoustic-stimulation 

condition (p < 0.05). The mean sentence recognition scores in the 250HP, 500HP, and 

750HP conditions were significantly different from one another for the electric-

stimulation condition (p < 0.05). When the scores in the 250HP, 500HP, and 750HP 

conditions were compared with that in the wide-band condition for the electric-

stimulation condition, the score in the wide-band condition was not significantly 

different from that in the 250HP condition (p > 0.05) but was significantly higher 

than those in the 500HP and 750HP conditions (p < 0.05).  

Subsequent analysis of simple main effects for the stimulation condition 

revealed that the mean sentence recognition scores were influenced by the stimulation 

condition for all four filter-cutoff-frequency conditions (for 250 Hz: F(2, 6)  = 39.9, p = 

.000; for 500 Hz: F(2, 6)  = 63.0, p = .000; for 750 Hz: F(2, 6)  = 56.5, p = .000; for wide 

band: F(2, 6)  = 136.8, p = .000). A post hoc pairwise comparison (Fisher’s LSD) 

revealed that the mean sentence recognition scores in the EA condition were 

significantly higher than those in the acoustic- and electric-stimulation conditions for 

all four filter-cutoff-frequency conditions (p < 0.05). The mean sentence recognition 

scores in the electric-stimulation condition were significantly higher than those in the 

acoustic-stimulation conditions for the 250-Hz, 500-Hz, and 750-Hz conditions (p < 

0.05) but not for the wide-band condition (p > 0.05).  
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Discussion 

Discussion of results for normal-hearing subjects 

Normal-hearing subjects were able to use limited low-frequency information 

(up to 1000 Hz) to get good speech recognition in quiet (83% percent correct for 

CNC words) and even in noise (89% percent correct for AzBio sentences at +10 dB 

SNR), and their speech-recognition performance was not affected when the low-

frequency information was completely eliminated from the speech signal up to 750 

Hz.  These results reinforce the notion that speech contains layers of acoustic, 

phonetic, and linguistic redundancies and is a very robust medium for communicating 

information. These redundancies explain why good speech recognition in cochlear-

implant listeners is possible given a severe reduction in the spectral cues and the 

elimination of the temporal-fine-structure information of the speech signal provided 

by current cochlear implants. The results also suggest that “ideal” residual hearing 

(up to 1000 Hz) with no hearing loss and accompanying deficits, such as broadened 

auditory filters, can produce good speech intelligibility both in quiet and in noise 

because of the speech redundancies.  

Discussion of results for cochlear-implant subjects. 

Amount of acoustic information necessary for achieving EAS benefits  

The results can be summarized as follow. Adding low-frequency acoustic 

information from the nonimplanted ear to electrically stimulated information led to an 

overall improvement in the speech-recognition performance for both CNC words in 

quiet and AzBio sentences in noise at +10 dB SNR. This improvement was observed 
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even when the acoustic input was low-pass filtered at 125 Hz, suggesting that the 

speech-perception benefits are primarily attributed to the voice-pitch information 

(even one harmonic) from the acoustic input. A further improvement in speech-

recognition performance for sentences in noise was observed when the low-pass 

cutoff frequency increased from 250 Hz to 750 Hz, suggesting that part of the speech-

perception benefits are likely due to the improved spectral representation of the first 

formant.  

The results from Experiment 1 are consistent with those of studies using 

acoustic simulations of EAS, which showed that additional low-frequency 

information led to a significant improvement in speech-recognition performance in 

noise with a greater improvement observed for higher low-pass cutoff frequencies 

e.g., 600 Hz in Qin and Oxenham’s study (2006) and 1000 Hz in Chang, Bai, and 

Zeng’s study (2006). The findings from Experiment 1 also extend the previous results 

in the following ways. First, speech recognition in quiet can improve with the 

additional low-frequency information. Second, the improvement can be observed 

with a low-pass cutoff frequency as low as 125 Hz, containing only one harmonic (F0) 

of voice-pitch information. Third, the benefits from the low-frequency acoustic input 

hold in real listeners with combined contralateral EAS, who have “real” residual 

hearing with hearing loss and accompanying deficits, such as broadened auditory 

filters. These findings further support the approaches that attempt to combine either 

contralateral or ipsilateral acoustic stimulation with electric stimulation in cochlear-

implant listeners with some residual hearing. 
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Frequency extent of residual hearing necessary for speech-perception 
benefits 

Because there is large variability in the amount of residual hearing available 

across the population of cochlear-implant listeners, at issue in this experiment is to 

assess the amount of low-frequency acoustic information (or the frequency extent of 

residual hearing) necessary to achieve the speech-perception benefits both in quiet 

and in noise from combined contralateral EAS. The results from Experiment 1 

suggest that the low-frequency acoustic information from the contralateral ear can 

provide significant speech-perception benefits both in quiet and in noise when that 

information is from an extremely limited frequency range (<125 Hz) and when 

auditory thresholds in that limited frequency range are elevated. The subjects who 

participated in Experiment 1 presumably have relatively good frequency resolution at 

125 Hz given a mild degree of hearing loss (mean threshold = 31 dB HL) (e.g., 

Glasberg & Moore, 1986). Therefore, care should be taken when interpreting the 

current findings in terms of the potential benefits for cochlear-implant listeners who 

have less amount of residual acoustic hearing, e.g., severe-to-profound hearing loss at 

125 Hz and above.  It should be of interest to further investigate whether the speech-

perception benefits from adding limited acoustic information (< 125 Hz) to 

electrically stimulated information would be achieved in patients who have less 

amount of residual acoustic hearing.  

One concern about the frequency extent of residual hearing for the speech-

perception benefits in the present experiment is that most of the speech stimuli (all the 

CNC word lists and half of the sentences of each AzBio sentence list) were recorded 
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by a male voice and the frequency extent may be overestimated due to the lower F0 

of a male voice than that of a female voice. The average F0 of the male voice was 

123 Hz for the CNC words and 131 Hz for the AzBio sentences. The average F0 of 

the female voice was 205 Hz for the AzBio sentences. Therefore, little acoustic 

information of the female-spoken sentences was left after the acoustic input was low-

pass filtered at 125 Hz. However, the sentence recognition score in the A(125LP) + 

E(Wide band) condition was still significantly better than that in the E (Wide band) 

condition, indicating that subjects were able to benefit from the acoustic input in the 

region of the slope (90 dB/octive) of the low-pass filter as demonstrated by the 

presence of a substantial amount of energy around the F0 of the female voice in the 

FFT output for the 125LP condition in Figure 1. Overall, the results suggest that the 

limited acoustic input that contains only the F0, even a harmonic, of the voice pitch 

contributes significantly to the speech-perception benefits in listeners with combined 

contralateral EAS. 

Role of acoustic input  in improving performance 

 The present experiment demonstrated that although low-frequency acoustic 

hearing produced negligible or even no intelligibility for speech recognition, it 

significantly improved speech-recognition performance both in quiet and in noise 

when combined with electric hearing. Cochlear-implant subjects in the present 

experiment had residual hearing up to 1 kHz except for Subject 7 who had a severe 

degree hearing loss above 1 kHz. This frequency range contains the acoustic cues for 

speech perception distributing over time mostly in the time and amplitude domains. 

Rosen (1992) divides speech information in the time and amplitude domains into 
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envelope cues, periodicity cues, and temporal-fine-structure cues. A detailed 

discussion of the contribution of each of the acoustic cues to the speech-perception 

benefits when combined with electric hearing follows.  

Envelope cues and periodicity cues. The envelope of the signal typically can 

help segment speech into word-sized and, in some instances, phoneme-sized units in 

the signal. As shown in Figure 6, a sample sentence spoken by a male voice from 

AzBio sentences at +10 dB SNR is low-pass filtered at 125 Hz, 250 Hz, 500 Hz, or 

750Hz. Word units and even phoneme-sized units are clearly recognizable even when 

the speech stimuli are low-pass filtered at 125 Hz. Additionally, the envelope also 

provides information about “manner” of consonant articulation, that is, whether a 

sound is from the category stop consonant, nasal, semivowel, or fricative. As shown 

in Figure 7, /aba/, /ama/, /asa/ are low-pass filtered at 125 Hz, 250 Hz, 500 Hz, or 750 

Hz. Relative to the surrounding vowels, voiced stop consonants (e.g., /b/) are 

characterized by periodic energy before a period of silence in the signal. Nasals (e.g. 

/m/) are characterized by periodic energy connected with the vowels before and after. 

Fricatives (e.g., /s/) are characterized by a period of silence in the signal. All the 

acoustic signatures above are clearly recognizable even when the stimuli are low-pass 

filtered at 125 Hz. Therefore, the differences in envelopes between classes of 

consonants from the low-frequency acoustic input are sufficiently large to allow 

subjects to “sort” speech phonemes into possible categories and provide information 

about the consonant “manner”.  
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Figure 6. Time/amplitude display of “I hear another conversation through the cordless 
phone.” low-passed filtered at 125 Hz, 250 Hz, 500 Hz or 750 Hz. Arrows indicate 
the location of word boundaries. For the word “Conversation”, arrows indicate 
envelope-marked boundaries for the phonetic elements. 
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Figure 7. Amplitude envelopes for /aba/, /ama/, and /asa/ low-passed filtered at 125 
Hz, 250 Hz, 500 Hz, or 750 Hz. The envelopes differ for each consonant category, 
providing information about the manner of consonant production, and the periodicity 
cues provide information about the voicing status of a consonant. 
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Periodicity cues provide information about the voicing status of a segment. As 

shown in Figure 7, voiced sounds (e.g., /b, m/) are periodic, whereas voiceless sounds 

(e.g., /s/) are characterized by a period of silence for the low-pass filtered stimuli. 

Therefore, the large differences in periodicity between the two classes of sounds from 

the low-frequency acoustic input also provide information about the consonant 

“voicing”. 

Although implants transmit envelope and periodicity cues with reasonable 

fidelity,  scores for “voicing” and “manner” are far below asymptote for average 

cochlear-implant listeners. Spahr, Dorman, and Loiselle (2007) reported, for a sample 

of 39 patients with average and above scores on CNC words, that place was received 

with 59 percent accuracy, voicing with 73 percent accuracy and manner with 86 

percent accuracy.  Thus, there is ample room for the acoustic signal to enhance 

voicing and a little room to enhance manner. It appears as if the limited low-

frequency acoustic hearing (<125 Hz) in the nonimplanted ear functions more like an 

additional “independent” channel, providing additional information about the 

consonant “manner” and “voicing”, which are signaled by envelope and periodicity 

cues. A correct decision about consonant manner and voicing provides phonotactic 

constraints which can significantly narrow potential word candidates in a lexicon (e.g., 

Zue, 1985), leading to a substantial improvement in speech-recognition performance 

for both CNC words in quiet and AzBio sentences in noise.  

Role of F0 representation in improving performance. As stated in the 

Introduction, voice-pitch information is poorly encoded by current implants due to the 



 

 64

fact that place–frequency cues are generally poor due to poor spectral resolution. The 

only pitch information available in the implants is from the temporal-pitch cues 

signaled in the temporal envelopes, which are only salient at lower frequencies (< 

100-150 Hz). However, voice pitch is an important cue in the perceptual segregation 

of simultaneous and nonsimultaneous speech sources. Therefore, the pitch differences 

between the target and the masker in the temporal envelopes provided by the implants 

are not robust enough to reliably separate the target and the masker.  

In Experiment 1, the recognition of sentences in noise benefited significantly 

from adding low-frequency acoustic information to electrically stimulated 

information even when the acoustic information was low-pass filtered at 125 Hz. 

With this level of acoustic input (residual acoustic hearing) which contains very little 

speech information (ANSI, 2004), the speech-perception benefits should be attributed 

mostly to the improvement in F0 representation alone. As shown in Figure 8, a 

portion of a vowel (/a/) is low-pass filtered at 125 Hz, 250 Hz, 500 Hz or 750 Hz. The 

acoustic realization of voice pitch is a series of high-amplitude components, or spikes, 

in the time/amplitude envelope and the F0 is clearly represented even when the 

acoustic input is low-pass filtered at 125 Hz. Better F0 information provided by the 

acoustic input aids the recognition of the target speech from the background noise by 

assisting the listener to “group” the various upper-frequency components of speech. 

Thus, it is reasonable to conclude that the additional low-frequency acoustic 

information (<125 Hz) improves the F0 representation and thus aids recognition of 

sentences in noise by improving speech segregation abilities of cochlear-implant 

listeners. This result is in line with those of EAS-simulation studies which showed  
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Figure 8. Envelope for a portion of a vowel low-passed filtered at 125 Hz, 250 Hz, 
500 Hz, or 750 Hz. The interval between the arrows marks the pitch period. The 
temporal fluctuations within the pitch period in the 500-and 750-Hz conditions are the 
temporal fine structure cues. 
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that (i) the additional low-frequency information that contained only the F0 of the 

voicing significantly improved speech recognition performance in noise when 

combined with envelope-vocoder processed speech  (Chang, Bai & Zeng, 2006; Qin 

& Oxenham, 2006), and (ii) an amplitude and/or frequency modulated sine wave at 

the frequency of the voice aided speech understanding in noise   (Brown & Bacon, 

2007). 

Temporal-fine-structure cues. Temporal-fine-structure cues can provide 

information about the frequency of the first formant of the speech signal. As shown in 

Figure 8,  the lower amplitude fluctuations (the temporal-fine-structure cues) between 

the large pitch “spikes” are clearly recognizable for a potion of a vowel (/a/) low-pass 

filtered at 500 Hz or 750 Hz. The interval between the lower amplitude fluctuations 

codes the frequency information of the first formant. Because the temporal fine 

structures are discarded in all current speech processing strategies due to the usage of 

a fixed-rate carrier, the temporal-fine-structure information is not well transmitted by 

electric stimulation. With the higher cutoff frequencies of 500 Hz and 750, part of the 

improvement in performance in the combined-EAS condition is likely due to the 

improved spectral representation of the first formant. This is suggested in the results 

of AzBio sentence recognition at 10 dB SNR by the fact that there was a significant 

improvement in sentence recognition performance when the acoustic input presented 

with the wide-band electric input was increased from 250 Hz to 500Hz and from 500 

Hz to 750 Hz.  
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When speech in noise is transmitted electrically, the spectral representations 

of F1 and F2 are corrupted by noise. Even in quiet, F1 and F2 are not well specified 

by electrical stimulation due to the small number of functional channels of 

stimulation.  Spahr, Dorman, and Loiselle (2007) report mean vowel scores ranging 

between 52 and 70% correct for a sample of patients with average and above levels of 

performance on CNC words.  The same authors report a 59% transmission score for 

place of articulation – a feature specified, in large part, by the location and direction 

of change of F2 and F3.  If formant location is minimally specified in quiet, and the 

location is further obscured by noise, then it is not surprising that a good 

representation of F1 from the acoustic signal can provide significant aid for EAS 

patients in noise. A good representation of F1 can aid in vowel recognition and can 

aid in the identification of consonant voicing (Liberman, Delattre & Cooper, 1958) 

and manner of articulation (e.g., Liberman et al.  1956). Again, a correct decision 

about consonant manner and voicing provides phonotactic constraints which can 

significantly narrow potential word candidates in a lexicon (e.g., Zue, 1985), leading 

to a substantial improvement in speech-recognition performance for AzBio sentences 

in noise.  

Summary. When speech is presented both acoustically and electrically to 

patients who use an implant in one ear and who have low-frequency hearing in the 

other ear, information from the F0 of voicing is sufficient to provide a significant 

improvement in both word recognition in quiet and sentence recognition in noise. In 

addition, information from the first formant (F1) accounts for part of the 

improvement in sentence recognition in noise. A mechanism that is common to 
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improvement both in quiet and in noise is proposed: The information in the acoustic 

signal aids in the recognition of consonant voicing and manner which leads to a large 

reduction of word candidates in the lexicon.     

Frequency overlap on the speech-perception benefits 

Another minor issue addressed in Experiment 1 was whether reducing the 

overlap in frequency representation in the input filters of the cochlear implant and in 

acoustic hearing would be beneficial to speech recognition for patients with a 

cochlear implant in one ear and low-frequency hearing in the contralateral ear. No 

significant benefit in reduced overlap was observed either at the group level or at the 

individual level.  Thus, clinicians can use a standard cochlear implant programming 

with patients who have residual hearing on the ear contralateral to the implant.  

The finding of no benefit from reduced overlap stems largely from the 

negative effect of high-pass filtering the electric signal. In the electric-stimulation 

condition (Figure 5), the scores for both CNC words and AzBio sentences in noise in 

the 500HP and 750HP conditions were significantly lower than that in the wide-band 

condition. This outcome documents a speech-recognition advantage for the full 

frequency range over the reduced frequency range of the electric signal. In other 

words, apical electrodes, which are effectively turned off by the action of the high-

pass filtering, convey a significant amount of low-frequency information. This 

finding is consistent with the results of Wilson et al. (2002) who also showed a 

performance advantage for the widest overall analysis band for electric-only 

stimulation.  
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Row 1 of Tables 3 & 4 documents the EAS benefit observed when the electric 

signal high-pass filtered at 250 Hz is complemented by acoustic information below 

250 Hz.  High-pass filtering the electric signal at 250 Hz should be, and is, equivalent 

to presenting the wide-band electric signal because 250 Hz is about the low-frequency 

cut off of channel 1 in most cochlear implant signal processors.  When acoustic 

information below 250 Hz is added to this signal, then speech-recognition 

performance improves significantly, demonstrating that the low-frequency acoustic 

signal below 250 Hz provides information that is (i) important for understanding, and 

(ii) not well represented in the electric signal.   

 Rows 2 & 3 of each table demonstrate the effect of transferring information 

above 250 Hz from electric hearing to acoustic hearing. As it should be expected, 

high-pass filtering the electric signal progressively degrades performance in the 

electric-stimulation condition. And, as it should be expected, opening up the low-pass 

filter allows incrementally better performance in the acoustic-stimulation condition. 

What is surprising is that the information loss in the electric-stimulation condition is 

offset by the information gain in the acoustic-stimulation condition. This suggests 

that, for the purposes of speech understanding, information between 250 Hz and 750 

Hz is adequately represented in both the electric and acoustic case. 

Finally, for electric and acoustic stimulation delivered to opposite ears, the 

large synergistic effects reported by others for electric and acoustic stimulation 

delivered to the same ear have been replicated in Experiment 1. For example, 

Gstoettner et al. (2004) reported a patient with a 6 % correct sentence score with a 

hearing aid, a 39 % correct score with a cochlear implant, and a 90 % correct score  
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Table 3. Scores for CNC words as a function of filter condition. LP = low pass. HP = 
high pass 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.  Scores for AzBio sentences at +10 dB SNR as a function of filter condition. 
LP = low pass. HP = high pass.  

 

Filter Settings Speech Understanding Scores 
Electric Signal Acoustic Signal E Only A Only EAS 
250 HP 250 LP 59% .5% 80% 
500 HP 500 LP 53% 6% 78% 
750 HP 750 LP 44% 18% 83% 
Wide band Wide band 59% 45% 85% 

Filter Settings Speech Understanding Scores 
Electric Signal Acoustic Signal E Only A Only EAS 
250 HP 250 LP 41% 0% 72% 
500 HP 500 LP 26% 6% 76% 
750 HP 750 LP 15% 22% 77% 
Wide band Wide band 41% 42% 86% 



 

 71

when stimulation was from both the implant and hearing aid.  As shown in Tables 3 

and 4, similar synergy is found. Indeed, extreme cases of synergy in the 250 HP 

electric + 250 LP acoustic conditions are found. For CNC words, a mean score of 0% 

correct in the acoustic-stimulation condition combined with a mean score of 41% 

correct in the electric-stimulation condition produces a mean score of 72% correct in 

the combined-contralateral-EAS condition. For sentences in noise, a mean score 

of.5% correct in the acoustic-stimulation condition combined with a mean score of 59 

% correct in the electric-stimulation condition produces a mean score of 80% correct 

in the combined-contralateral-EAS condition. Thus, acoustic signals that allow no 

speech intelligibility in isolation can provide large benefit to speech understanding 

when combined with electrical stimulation.  Given this outcome clinicians should 

always aid the ear contralateral to an implant and assess speech intelligibility in the 

combined-contralateral-EAS condition.  

 Summary 

A reduced frequency overlap between acoustic and electric stimulation is not 

beneficial for patients who use an implant in one ear and who have low-frequency 

hearing in the other ear, due to a speech-recognition advantage for the full frequency 

range over the reduced frequency range of the electric signal. For the purposes of 

speech understanding, information between 250 and 750 Hz is equally represented in 

both acoustic and electric stimulation. Although low-frequency acoustic information 

below 250 Hz, which isn't conveyed by implants, produces no speech-recognition 

intelligibility, it significantly improves cochlear-implant performance and accounts 

for the majority of the speech-perception benefits when combined with electric 



 

 72

stimulation. Therefore, clinicians should use a standard cochlear implant 

programming and always aid the ear contralateral to an implant for patients who have 

residual hearing on the ear contralateral to the implant. 

Clinical relevance 

The results from the present experiment have a significant clinical relevance 

in terms of determining how much residual hearing (i.e., different inherent “cutoff 

frequencies”) is necessary to achieve the speech-perception benefits in listeners with 

combined contralateral EAS. This information helps estimate the potential benefits 

that listeners with different degrees of residual hearing in the nonimplanted ear will 

get after implantation. The results from the present experiment also provide insight to 

the potential benefits for listeners with combined ipsilateral EAS. To generalize the 

benefits of the acoustic input from combined contralateral EAS to combined 

ipsilateral EAS, it requires an assumption that the benefits of low-frequency acoustic 

stimulation of the contralateral ear should be equivalent to those of low-frequency 

acoustical stimulation of the same ear. However, both combined contralateral and 

ipsilateral EAS provide complementary information via a hearing aid (contralateral or 

ipsilateral to the implanted ear) and a cochlear implant, which should account for the 

major benefits of the acoustic input to combined EAS. Therefore, the present 

experiment also provides valuable information to estimate the potential benefits for 

listeners with combined ipsilateral EAS.  

The results of the present study also provide an important guidance for 

cochlear implant candidates with different amounts of residual hearing when 

considering different options of implantation, e.g., unilateral implantation vs. bilateral 



 

 73

implantation; long electrode vs. partial-insertion implantation. As shown in the 

present experiment, even extremely limited acoustic input (< 125 Hz) provided 

substantial speech-perception benefits. Therefore, preserving residual hearing in the 

nonimplanted ear should be a better choice than taking a second implant with a 

traditional long electrode array, which may cause a complete loss of acoustic hearing 

after implantation. The residual hearing in the implanted ear should also be preserved 

as far as possible and, therefore, a partial-insertion implant should be a better choice 

than a long electrode implant if implant candidates meet the criteria for the partial-

insertion implantation. 

Conclusions 

The overall pattern of results suggests that although low-frequency acoustic 

hearing (<125 Hz) produces no speech-recognition intelligibility, cochlear-implant 

listeners are able to benefit significantly from the limited residual hearing in 

improving speech-recognition performance both in quiet and in noise. It appears as if 

the limited low-frequency acoustic hearing in the nonimplanted ear functions as an 

additional “independent”channel, providing acoustic cues for speech perception 

distributing over time mostly in the time/amplitude envelope of the speech signal, 

which include envelope cues, periodicity cues and temporal-fine-structure cues. 

Envelope cues and periodicity cues are available for residual hearing down to 125 Hz, 

providing information about word- and phoneme-size units, “manner” and “voicing” 

of consonant articulation, and F0, which leads to a substantial improvement in 

speech-recognition performance for both CNC words in quiet and sentences in noise 

when combined with electrically stimulated information. Additional temporal-fine-
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structure cues are also available for residual hearing up to 500- and 750-Hz, providing 

information of the first formant, which leads to a further improvement in speech-

recognition performance for sentences in noise. A mechanism that is common to 

improvement both in quiet and in noise is proposed: The information in the acoustic 

signal aids in the recognition of consonant voicing and manner which leads to a large 

reduction of word candidates in the lexicon.  

A reduced frequency overlap between acoustic and electric stimulation is not 

beneficial for patients who use an implant in one ear and who have low-frequency 

hearing in the other ear, due to a speech-recognition advantage for the full frequency 

range over the reduced frequency range of the electric signal.  

Given the outcomes of significant speech-perception benefits from the limited 

acoustic input (<125 Hz) and no significant speech-perception benefits in the reduced 

frequency overlap between acoustic and electric stimulation, clinicians should always 

aid the ear contralateral to an implant and use a standard cochlear implant 

programming for patients who have residual hearing on the ear contralateral to the 

implant. 
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Chapter 3. Temporal Modulation Transfer Functions (TMTFs) in Listeners with 

Combined Contralateral EAS 

Introduction 

As noted in Experiment 1, additional acoustic information can provide 

significant speech-perception benefits to listeners with combined contralateral EAS.  

In order to design improved speech processing strategies for combined contralateral 

EAS and to optimize these strategies for cochlear-implant listeners who meet the 

criteria of combined contralateral EAS, it is necessary to develop an understanding of 

the perceptual mechanisms of the benefits of the acoustic input to combined 

contralateral EAS. The following questions need to be addressed: (i) In which 

domains does the acoustic information add extra benefits, in the frequency domain, 

the amplitude/temporal domains (envelope cues), or both?  (ii) Are the speech-

perception benefits attributable to better temporal resolution and/or spectral resolution 

of residual acoustic hearing? The auditory psychophysical abilities of patients with 

combined contralateral EAS and the relation to their speech recognition abilities may 

provide insight to the perceptual mechanisms of the contribution of the acoustic input 

to electric hearing. Aim 2 of this dissertation research is to assess the differences 

among the psychophysical measures of low-frequency acoustic hearing, electric 

hearing, and combined EA hearing.  

Literature review 

Sound is defined in the intensity, temporal, and frequency domains. For a 

cochlear-implant listener to use his or her device successfully for speech perception, 
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environmental sound awareness, and/or music appreciation (if possible), a cochlear 

implant must encode each of the three domains of the sound. Although the electric 

stimulation of the auditory nerve can compensate to some degree for hearing 

sensation and frequency resolution of moderately-to-profoundly hearing-impaired 

listeners, current cochlear implants are still far from providing normal spectral 

resolution to cochlear-implant listeners due to the factors such as the problems of 

channel interaction and electrode-array placement that causes a frequency mismatch 

between the place of the electrodes and the characteristic frequency of the neurons at 

that location in an individual cochlear-implant listener (e.g., Shannon, Zeng  & 

Wygonski, 1998; Skinner, Ketten, Holden, Harding, Smith, Gatges, Neely, Kletzker, 

Brunsde & Blocker, 2002).  Therefore, the temporal-envelope cues, which are 

encoded in the amplitude and temporal domains, have been shown to be particularly 

important for transmitting speech information through cochlear implants (e.g., Van 

Tassel, Greenfield, Logeman & Nelson, 1992).  

Temporal cues for speech perception 

Temporal variations in amplitude over time occurring in different frequency 

bands are a common feature of many complex sounds such as speech. Rosen (1992) 

divided the time/amplitude waveform into three classes of cues that are important for 

speech perception. The major classes include the envelope cues, occurring at 2-50 Hz, 

the period or voice-pitch cues, occurring at 50-500 Hz, and the temporal-fine-

structure cues, occurring at 600-10,000 Hz. 
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 The low-frequency amplitude changes contained in the envelope of the 

speech signal convey information about consonant manner of articulation, consonant 

voicing, and vowel duration (Rosen, 1992). The envelope can also provide the most 

useful prosodic and segmental speech information in the signal (e.g., Drullman, 

Festern & Plomp, 1994a, b; Fu & Shannon, 2000).  

Rosen (1992) also described speech contrasts appearing as higher rate 

modulations in the time and amplitude domains that represent voice-pitch cues. The 

voice-pitch cues appear as periodic oscillations in the time waveform at rates of 50 to 

500 Hz. Because implanted electrodes do not typically stimulate cochlear regions 

below 1000 Hz and, therefore, provide limited voice-pitch cues, periodic temporal 

information (50-500 Hz) may be especially important for implant patients to derive 

pitch cues from the speech signal and contribute to perception of suprasegmental 

information, such as voice gender recognition (Fu, Chinchilla & Galvin, 2004) and 

tone recognition for tonal languages (e.g., Fu, Zeng, Shannon & Soli, 1998; Fu & 

Zeng, 2000).  

The highest frequency component of the time-amplitude waveform is the 

temporal fine structure, which codes the frequency information of the first formant. 

According to Rosen (1992), listeners who can extract the temporal-fine-structure 

information (600 – 10,000 Hz) from the time-waveform are able to distinguish 

phonemes that share low-frequency voicing and manner characteristics, but differ 

spectrally. This level of resolution allows identification of vowels, classified by 

formant frequency relationships, and consonants that vary only by place of 
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articulation. Therefore, these temporal-fine-structure cues within each frequency band 

of a speech processor are also important for speech recognition in cochlear implant 

listeners (Wilson, Finley, Lawson, Wolford, Eddington & Rabinowitz, 1991).  

All current processing strategies for cochlear implants divide the stimulus 

waveform into 6 to 22 frequency bands and extract the temporal envelope from each 

frequency band by full-wave rectification and low-pass filtering at a low frequency 

(<500 Hz). During this signal processing, the temporal-fine-structure information is 

removed from the stimulus waveforms and the envelope cues are preserved and used 

to modulate biphasic pulses. Therefore, current cochlear implants can only provide 

low-frequency envelope cues and limited periodicity cues. It is possible that residual 

hearing in the nonimplanted ear may provide additional periodicity cues (voice pitch) 

and temporal-fine-structure cues, which lead to a substantial improvement in speech-

recognition performance in listeners with combined contralateral EAS. However, it is 

unknown (i) whether the perception of the temporal/amplitude variations in the 

nonimplanted ear is normal or close to normal so that residual acoustic hearing is 

capable of conveying the periodicity cues and the temporal-fine-structure cues of the 

input signal; and (ii) whether the temporal resolution of the hearing-impaired ear is 

better than that of the implanted ear. Therefore, it is important to first understand the 

temporal resolution abilities of hearing-impaired listeners and cochlear-implant 

listeners.   
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Temporal resolution in hearing-impaired listeners 

Temporal resolution refers to the ability to detect amplitude changes over time 

and the resolution of the envelope of sound rather than the fine structure of sound 

(Moore, 1998). Gap detection and TMTF are two main methods to measure the 

temporal resolution.   

Gap detection. In the task of gap detection, the duration of a gap in 

narrowband sounds (tones or bands of noise) is adjusted to find the point where it is 

just detectable. For normal-hearing listeners, the gap thresholds were generally 

constant, at 6-8 ms over a wide frequency range, except at very low frequencies (200 

Hz and below) due to a smoothing effect produced by the auditory filters at very low 

frequencies (Shailer & Moore; 1987; Moore, Peters & Glasberg, 1993). Hearing-

impaired listeners performed markedly worse in detecting gaps in narrowband stimuli 

than normal subjects when tested at the same SPLs, but only slightly worse at equal 

sensation levels (SLs) (Fitzgibbons & Wightman, 1982; Glasberg, Moore & Bacon, 

1987; Nelson & Thomas, 1997).  

Modulation detection. Gap detection experiments give a single number - the 

gap threshold - to describe the temporal resolution. A more general approach is to 

measure the threshold for detecting changes in the amplitude of a sound as a function 

of the rapidity of changes. The function relating the threshold amount of modulation 

to modulation frequency is known as a temporal modulation transfer function 

(TMTF: temporal modulation detection threshold (TMDT) as a function of 

modulation frequency). For normal-hearing subjects, the transfer functions have 

resembled a low-pass filter with a cutoff frequency of about 70 Hz, as detection 
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thresholds are relatively constant for modulation frequencies below about 70 Hz. 

Performance for this section is presumably determined mainly by the amplitude 

resolution of the auditory system. For modulation frequencies above about 70 Hz, the 

detection thresholds increase at a rate of 3-6 dB/oct (Bacon & Viemeister, 1985; 

Formby & Muir, 1988; Strickland & Viemeister, 1997). The decline is usually 

interpreted as a measure of the limited ability of the auditory system to follow rapid 

amplitude fluctuations. The shapes of TMTFs do not vary much with overall sound 

level, but the ability to detect the modulation does worsen at low SLs (Viemeister, 

1979; Bacon & Viemeister, 1985; Formby, 1985).  

Several studies measuring TMTFs for broad-band noise carriers (Lamoré, 

Verweiji & Brocaar, 1984; Bacon & Viemeister, 1985; Formby, 1986) showed that 

hearing-impaired subjects exhibited impaired temporal resolution as revealed by a 

decrease in sensitivity to amplitude modulation, often particularly for modulation 

frequencies above about 100 Hz. Poor sensitivity at higher modulation frequencies 

resulted in the TMTF with an abnormally steep high-frequency attenuation rate and 

the rates in hearing-impaired subjects could be more than twice of those in normal-

hearing subjects (Bacon & Viemeister, 1985; Formby, 1987). In addition, the 3-dB 

cutoff frequencies of the TMTFs in many of hearing-impaired subjects were found to 

be lower than normal, indicating a longer time constant (Bacon & Viemeister, 1985; 

Formby, 1986). However, this may have been largely a consequence of the fact that 

high frequencies were inaudible to the hearing-impaired subjects (Bacon & 

Viwemeister, 1985). Bacon and Gleitman (1992) measured the TMTFs for broad-

band noise using subjects with relatively flat hearing losses. They found that at equal 
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(high) SPLs performance was similar for hearing-impaired and normal-hearing 

subjects. At equal (low) SLs, hearing-impaired subjects tended to perform better than 

normal-hearing subjects.  

TMTFs were also measured by using sinusoidal carriers (e.g., Strickland & 

Viemeister, 1997; Kohlrausch, Fassel & Dau 2000; Moore & Glasberg, 2001). 

Although the interpretation of the results is complicated by the fact that the 

modulation introduces spectral sidebands, which may be detected as separate 

components if they are sufficiently far in frequency from the carrier frequency (Seck 

& Moore, 1994; Kohlrausch et al., 2000), listeners with cochlear hearing loss have 

reduced frequency selectivity and, therefore, the temporal resolution can be measured 

with the sinusoidal carrier independently from the spectral resolution. The overall 

results from the previous studies suggest that the temporal resolution for deterministic 

stimuli is similar for both normal-hearing and hearing-impaired listeners (e.g., Moore 

& Glasberg, 2001). 

To summarize the results above, hearing-impaired listeners often show 

reduced temporal resolution as a result of the low SL of the stimuli and/or the reduced 

audible bandwidth of the stimuli. When these factors are controlled, hearing-impaired 

listeners often perform as well as normal-hearing listeners. 

Temporal resolution in cochlear-implant listeners 

 There have been a number of studies documenting the temporal resolution of 

cochlear-implant listeners with simple stimuli and reporting relatively normal 

temporal processing ability in cochlear-implant listeners.  
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 Gap detection. Gap detection thresholds for postlingually-deafened implant 

patients, using high intensities, were 2-5 ms (Moore & Glasberg, 1988; Shannon, 

1989). Thresholds for normal-hearing subjects using acoustic stimulation were 6-8 ms 

(Shailer & Moore; 1987; Moore, Peters & Glasberg, 1993). Thresholds increased 

when using stimuli at low SLs for both electric and acoustic stimulation. Gaps of 10-

20 ms duration were often important in discriminating speech sounds and, therefore, 

cochlear-implant listeners should be as able to detect gaps of that duration as normal-

hearing listeners (Dorman, 1993).  

Modulation detection. TMTFs have been reported for electric stimulation in 

postlingually-deafened cochlear implant subjects. Shannon (1992) reported TMTFs 

for electric stimulation in postlingually-deafened adults that had some similarities to 

those obtained with acoustic stimulation in normal-hearing subjects. The shape of the 

transfer function resembled that of a low- or band-pass filter. The lowest thresholds 

were recorded at modulation frequencies of 80-100 Hz. Also, the attenuation rate of 

the transfer function for modulation frequencies above 100 Hz obtained with electric 

stimulation was steeper than that obtained with acoustic stimulation. Shannon (1992) 

observed that thresholds increased at lower SLs, whereas performance for normal-

hearing subjects with acoustic stimulation was relatively unaffected by SL 

(Viemeister, 1979). Busby, Tong, and Clark (1993) measured amplitude modulation 

detection in cochlear implant subjects and indicated that their TMTFs often 

resembled a low-pass filter with a cutoff frequency of 50-150 Hz, which tended to be 

higher than that recorded for acoustic stimulation in normal-hearing subjects. Cazals, 

Pelizzone, Saudan, and Boex, (1993) compared amplitude modulation detection and 
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phonetic recognition in nine cochlear implant subjects who demonstrated open-set 

speech understanding ranging from excellent to poor. TMTFs showed clear low-pass 

filtering characteristics up to 100 Hz for subjects with better speech understanding, 

whereas little or no such characteristics were observed in subjects with poorer speech 

intelligibility. 

While acoustic TMTFs are relatively homogeneous across normal-hearing 

listeners, there can be great variability in the shape and the overall modulation 

sensitivity of the TMTFs across cochlear-implant listeners. For instance, Shannon 

(1992) reported some cases where the transfer function resembled a band-pass filter 

with cutoff frequencies of 80 and 140 Hz. Busby et al. (1993) reported flat transfer 

functions for one of four postlingually-deafened subjects tested, as the very low 

detection thresholds did not vary over the range of modulation frequencies tested: 4-

250 Hz. Transfer functions which did not markedly vary across modulation 

frequencies were also recorded by Cazals et al. (1994) although these were primarily 

found in cases where the detection thresholds were considerably elevated. In addition, 

Busby et al. (1993) recorded transfer functions which resembled an additional low-

pass filter with a cutoff frequency of 4-5 Hz in two prelingually-deafened subjects. 

For the third prelingually-deafened subject, the transfer function resembled a filter 

with two pass bands at 4-5 and 100-125 Hz.  

Many studies have also evaluated the relationship between cochlear-implant 

listeners' modulation sensitivity and speech performance (Cazals et al., 1994; Fu 

2002). Cazals et al. (1994) found a moderate correlation between the phoneme 

recognition and the depth of high frequency rejection in the TMTFs of nine 
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postlingually-deafened Ineraid users. Fu (2002) showed a highly significant 

correlation between the modulation sensitivity and phoneme recognition. These 

results suggest that differences in speech recognition abilities of cochlear-implant 

listeners may be partly caused by differences in temporal processing capabilities.  

To summarize the results above, cochlear-implant listeners have relatively 

normal temporal processing ability measured by gap detection. TMTFs for electric 

stimulation are similar to those obtained with acoustic stimulation in normal-hearing 

subjects but there can be great variability in the shape and the overall modulation 

sensitivity of the TMTFs across cochlear-implant listeners. Moderate to high 

relationships have been reported between temporal modulation sensitivity and 

speech-recognition performance in cochlear-implant listeners. Overall, the pattern of 

results on temporal resolution indicates that implant listeners can detect and 

discriminate temporal changes about the same as acoustic listeners.  

Rationale 

As noted in Experiment 1, additional acoustic information can provide 

significant speech-perception benefits to listeners with combined contralateral EAS. 

The temporal/amplitude resolution of low-frequency acoustic hearing in the 

nonimplanted ear may be better than that of electric hearing, which may account for 

the speech-perception benefits in listeners with combined contralateral EAS. 

Psychophysical measurements of TMTFs in the acoustic-stimulation, the electric-

stimulation, and the combined-contralateral-EAS conditions would allow direct 

comparisons of the temporal/amplitude resolution among three stimulation conditions 

to test whether the temporal/amplitude resolution of the hearing-impaired ear is better 
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than that of the implanted ear. In addition, a comparison of the temporal/amplitude 

resolution between cochlear-implant subjects and normal-hearing subjects would 

answer the question of whether the temporal/amplitude resolution in three stimulation 

conditions is normal or close to normal. Furthermore, considerable individual 

variability of the speech-perception benefits both in quiet and in noise appears in 

many of the reported studies, revealing large differences in using additional acoustic 

information to help identify speech sounds in listeners with combined EAS. 

Therefore, an explanation of individual differences of the speech-perception benefits 

should include variations of basic psychophysical sensitivities to the 

temporal/amplitude modulations. Assessments of the correlation of the speech-

recognition performance and the TMDT would provide insight to the relation of the 

speech-perception benefits with the temporal/amplitude resolution in three 

stimulation conditions.  

Hypotheses 

The operating hypothesis of this experiment was that the mechanism 

contributing to the speech-perception benefits in listeners with combined contralateral 

EAS would not be due to the improved temporal/amplitude representation of the input 

signal provided by  residual acoustic hearing. 

Summary and predictions based on literature review 

Current cochlear implants can only provide coarse spectral resolution to 

cochlear-implant listeners. The temporal envelope cues, which are encoded in the 

amplitude and temporal domains, are particularly important for transmitting speech 



 

 86

information through cochlear implants. Speech information in the amplitude and 

temporal domains can be divided into three classes for speech perception: envelope 

cues, periodicity cues or voice-pitch cues, and temporal-fine-structure cues. Current 

cochlear implants preserve the low-frequency envelope cues and remove the 

temporal-fine-structure cues in the stimulus waveforms. Residual hearing in the 

nonimplanted ear may have better temporal resolution than electric hearing in the 

implanted ear, which accounts for the speech-perception benefits in listeners with 

combined contralateral EAS. However, studies have shown that cochlear-implant and 

hearing-impaired listeners have relatively normal temporal processing abilities 

measured by gap detection and TMTF. Therefore, it is been expected that the 

mechanism contributing to the speech-perception benefits in listeners with combined 

contralateral EAS is not due to the improved temporal/amplitude representation of the 

input speech signal provided by residual acoustic hearing. 

Methods 

Experimental design 

Experiment 2 used a within-subject design with stimulation mode (acoustic-

stimulation alone, electric-stimulation alone, and combined contralateral EAS) and 

modulation frequency (16 Hz, 32 Hz, and 64 Hz) as independent variables, and 

TMDT as a dependent variable. A repeated-measures ANOVA was applied to the 

data and the effects of the stimulation mode and the modulation frequency on the 

TMDT were evaluated and analyzed.  Speech recognition scores of CNC words in 

quiet and AzBio sentences in noise at +10 dB SNR from Experiment 1 with a wide-

band input were used to correlate with the mean TMDTs. The results provided us 
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insight to the underlying mechanisms of the contribution of the acoustic input to 

combined contralateral EAS (Aim 2).     

Subjects 

All cochlear-implant subjects except for S8 who participated in Experiment 1 

were recruited in the present experiment. S8 had a partial-insertion implant and the 

lower cutoff of the frequency range for his speech processor was set at 750 Hz so that 

the electrically stimulated information did not interfere with the acoustically 

stimulated information in the same ear. Therefore, S8 was not able to hear the 500 Hz 

carrier with his implant and did not allow a direct comparison of TMTFs between 

electric and acoustic hearing.  

Ten normal-hearing subjects participated in the present experiment and they 

ranged in age from 20-53 years (mean age=28.8 yrs; st. dev. = 10.7 yrs). All subjects 

had normal audiometric thresholds ≤ 15 dB HL for octave test frequencies from 250 

to 8000 Hz (ANSI, 1997).  

All subjects provided written informed consent for their participation in the 

present experiment. The research protocol and informed consent statement were 

approved by the Institutional Review Board at the University of Maryland, College 

Park and Arizona State University. Subjects were paid an hourly wage for their 

participation. 

Cochlear Implants 

The electric input of stimuli was presented through a direct input cable to each 

subject’s speech processor. Subjects were tested with their ‘everyday’ device settings 
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and each subject’s cochlear implant was checked before modulation detection was 

evaluated at each test session. The volumes and sensitivity settings of the cochlear 

implant were not adjusted in order to maintain the same settings on the cochlear 

implant for both the combined-contralateral-EAS and electric-stimulation conditions.  

Stimuli  

Stimuli generation. Stimuli were generated using a Tucker-Davis 

Technologies (TDT II) system with a 16-bit digital-to-analog converter (DD1, 50-

kHz sampling rate), attenuated (TDT PA4), passed through a headphone buffer (TDT 

HB6), and delivered to a double-walled sound attenuating booth. The time signal of a 

sinusoidally amplitude-modulated sinusoid was defined as follows:  

).π2sin())π2cos(1()( tftfmAts cm+=                    (1) 

A indicates the overall amplitude, m is the degree of modulation taking values 

between 0 and 1, and mf  and cf are the carrier frequency and the modulation 

frequency, respectively. The carrier frequency was 500 Hz. The modulation 

frequencies were 16, 32, and 64 Hz. Modulation detection thresholds indicated the 

just noticeable value of m [often expressed as 20 log(m)]. The spectrum of such a 

stimulus consisted of three components: the carrier frequency and the two sidebands 

which were spectrally separated from the carrier by the modulation frequency. The 

level of the sidebands relative to the carrier level can be derived by subtracting 6 dB 

from 20 log(m). Thus, for 100% amplitude modulation (20 log(m) = 0 dB), the 

sideband level is 6 dB lower than the carrier level. Each carrier burst lasted 540 ms, 



 

 89

including 20 ms raised-cosine rise/fall ramps. The interval between bursts within a 

trial was 500 ms. The overall level of the modulated and unmodulated stimuli was the 

same, regardless of modulation depth. The depth of the modulation—based on the 

modulation index, m— was varied adaptively. The modulated waveforms were 

attenuated by a factor of (1+m2/2)1/2 to ensure that the average level of each 

observation interval was equal. 

Selection of carrier. A 500-Hz sinusoidal carrier instead of a noise carrier was 

used in the present experiment for the following reasons. The modulation of the 

sinusoidal carrier introduces two spectral sidebands with a spectral distance from the 

carrier that equals the modulation frequency. Therefore, it is impossible to control 

which detection cues are used by the subjects in discriminating a modulated sinusoid 

from an unmodulated sinusoid, especially at high modulation rates where sidebands 

are sufficiently far in frequency from the carrier frequency and become audible as 

separate tones (Kohlrausch, Fassel & Dau, 2000). Because of this disadvantage of 

sinusoidal carriers, a vast majority of studies measuring TMTFs have used noise 

carriers. However, a disadvantage of the noise carrier is that noise is a stochastic 

carrier that has intrinsic modulations, which may function as a masker in the task of 

modulation detection of a modulated noise from an unmodulated noise and limit the 

listener’s ability of detecting the imposed modulation. These intrinsic fluctuations 

become particularly relevant for narrow-band-noise carriers (Dau, Kollmeier & 

Kohlrausch, 1997a, b; Dau, Verhey & Kohlrausch, 1999). Then, TMTFs obtained by 

using sinusoidal carriers provide a better measure of the inherent temporal resolution 

of the auditory system than by using noise carriers, provided that the modulation 
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frequency is within the range where spectral resolution does not play a major role. A 

look into the literature reveals that both carrier types reveal basically the same 

temporal processing, which is usually described by an initial flat portion up to around 

50-60 Hz for broadband noise (Viemeister, 1979; Bacon & Viemeister, 1985; Formby, 

1986) and around 100-130 Hz for sinusoid (Zwicker, 1952; Sek, 1994; Srickland & 

Viemeister, 1997; Yost & Sheft, 1997).  

Because subjects with combined contralateral EAS have limited residual 

acoustic hearing (≤ 60 dB HL up to 500 Hz), a 500-Hz sinusoidal carrier instead of a 

1000-Hz sinusoidal carrier was used to ensure the audibility of the test stimuli 

presented to the nonimplanted ear. In addition, for the carrier frequency of 500 Hz, 

the equivalent rectangular bandwidth (ERB) of the auditory filter is about 80 Hz 

(Glasberg & Moore, 1990) and the “edge” components in complex tones need to be 

separated by more than about 0.75 ERB (60 Hz for the carrier frequency of 500 Hz) 

from neighboring components to be “heard out” as separate tones, even when all 

components have equal amplitude (Moore & Ohgushi, 1993). As mentioned above, 

the sideband level of the 500 Hz carrier is 6 dB lower than the carrier level for 100% 

amplitude modulation and even lower for less amplitude modulation. Thus, the 

effects of resolution of sidebands are likely to be small for modulation frequencies up 

to 64 Hz for the carrier frequency of 500 Hz. Several studies on modulation detection 

for sinusoidal carriers showed that modulation thresholds stayed much more constant 

at rates between 8 and 64 Hz for sinusoidal carrier frequencies above 1 kHz in both 

normal-hearing and hearing-impaired listeners (Sek, 1994; Stricklang & Viemeister, 

1997; Yost & Sheft, 1997; Kohlrausch, Fassel & Dau, 2000; Moore & Glasberg, 
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2001). Therefore, the temporal resolution can be measured by TMTFs with the 500-

Hz sinusoidal carrier and modulation frequencies up to 64 Hz independently from the 

spectral resolution both for acoustic hearing and electric hearing in the present 

experiment.  

Presentation level. In the acoustic-stimulation condition, the stimuli were 

presented to the nonimplanted ear through an insert earphone (Etymotic ER-1). The 

presentation level was set at 30 dB SL (re: threshold at 500 Hz) on an individual basis 

for each subject. The mean threshold at 500 Hz for the subjects was 53 dB HL (S. D. 

= 9 dB). Therefore, the stimuli were presented at 70-90 dB SPL. The use of 30 dB SL 

presentation level of stimuli was to ensure the stimuli were presented at each subject’s 

most comfortable level.  The reason was that many of the previous studies (e.g., 

Busby et al., 1993; Cazals et al., 1993) showed that modulation detection by hearing-

impaired listeners was much more sensitive to stimulation level as revealed by 

decreased absolute modulation sensitivity at lower SLs when compared to normal-

hearing listeners (Shannon, 1992). 

In the electric-stimulation condition, the stimuli were presented to each 

subject’ speech processor via a direct cable. This was to defeat the headset 

microphone so that no external input occurred, while at the same time preserving the 

microphone pre-emphasis. The presentation level of the electric input was set at the 

same loudness level as the acoustic input on an individual basis for each subject to 

ensure the stimuli presented at each subject’s most comfortable level.  A loudness 

matching method was used to find the presentation level of the electric stimuli with 



 

 92

the same overall loudness as the acoustic stimuli presented at 30 dB SL. The subject 

was instructed to listen to the acoustic stimuli first with the insert earphone alone and 

remember the loudness, then listen to the electric stimuli with implant alone, and 

indicate on a response card whether the stimuli were louder or softer than those in the 

nonimplanted ear. The response card was a continuous scale, labeled with “louder” 

and “softer” at the end points and “the same” halfway in between. The experimenter 

adjusted the presentation level of the electric stimuli until they were rated to sound 

equally loud to the acoustic stimuli presented at 30 dB SL. 

In the combined-contralateral-EAS condition, the stimuli were output via an 

audio splitter connector with one end connected to an insert earphone (Etymotic ER-

1) and the other one connected to each subject’s speech processor via a direct input 

cable. The presentation level of the acoustic stimuli was set at 30 dB SL. The level of 

the electric stimuli that sounded equally loud to the acoustic stimuli was used to 

facilitate the perceptual fusion of the acoustic input and the electric input. The volume 

and sensitivity settings of the cochlear implant were not adjusted in order to maintain 

the same settings on the cochlear implant for both the electric-stimulation and the 

combined-contralateral-EAS conditions. 

Normal-hearing subjects were tested by using a level of 80 dB SPL, which 

was in a similar range to those for cochlear-implant subjects tested at 30 dB SL, i.e., 

70-90 dB SPL. This level was chosen because Moore and Glasberg (2001) showed 

that for low modulation frequencies, the TMDTs obtained at low SLs (e.g., 15-30 dB 

SL) with a 1000-Hz carrier in hearing-impaired subjects were similar to those 

obtained at high carrier levels (e.g., 80 dB SPL) in normal-hearing subjects. Other 
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research measured TMTFs for broadband or narrowband noise also showed that 

performance was similar for hearing-impaired and normal-hearing subjects at equal 

(high) SPLs (Bacon & Gleitman, 1992; Moore, Shailer & Schooneveldt, 1992). 

Therefore, presenting the stimuli to cochlear-implant and normal-hearing subjects at 

equal (high) SPL instead of equal SL allowed a reasonable comparison of TMTFs 

between two groups of subjects. 

Procedure 

The measurements included the assessment of TMDT as a function of the 

modulation frequency in three listening conditions: acoustic stimulation alone, 

electric stimulation alone, and combined EAS. All subjects were tested in a double-

walled sound treated room. Prior to actual psychophysical testing, training was 

provided for the TMTF measurements. 

The TMDTs (dB) were estimated using a three-interval-forced-choice (3IFC) 

paradigm. Two intervals contained the standard (reference) stimulus, while the other 

interval, chosen at random, contained the comparison (test) stimulus. The comparison 

was always a modulated signal of variable modulation depth, while the reference was 

unmodulated. Three buttons were displayed on a subject response pad, corresponding 

to three intervals. A colored light was turned on and off above each button when 

presenting the stimuli. Subjects were instructed to press the button corresponding to 

the interval that sounded “different” (i.e., that contained the test stimulus), ignoring 

any loudness variation between intervals. Feedback was given after each trial by a 

flashing colored light above the button corresponding to the correct interval. Each run 
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began with the comparison clearly different from the reference with a 100% 

modulation depth (m =1 in the above formula), and the modulation depth was varied 

in a three-down, one-up procedure. The modulation depth of the comparison was 

reduced after three correct responses and increased after one incorrect response. This 

converged on the modulation depth that produced 79.4% correct responses (Levitt, 

1971). A starting level of 100% modulation depth was used with a decreasing step of 

5 dB for the first two reversals and the step size was reduced to 2 dB at the third and 

fourth reversals and remained fixed at 1 dB thereafter. Each run ended after 10 

reversals and took about 5-6 minutes to complete. All threshold estimates were based 

on the average of even number of the last six reversals. For each subject measures 

were repeated two to four times at each selected modulation frequency to check 

reproducibility and the average was taken as a final measure. 

Results 

Temporal modulation detection 

Figure 9 shows the mean TMDTs expressed as 20 log m (m: the modulation 

index at threshold) and +1 standard deviation, in dB, as a function of modulation 

frequency and as a function of stimulation condition. The mean TMDTs as a function 

of the modulation frequency for ten normal-hearing subjects are also shown in the 

figure with black bars. A repeated-measures ANOVA was performed on the raw data 

for the TMDTs with two within-subjects factors (the modulation frequency with four 

levels and the stimulation condition with three levels).  The analysis revealed no 

significant main effects for the modulation frequency (F(2,14) = 0.6, p > 0.05) and the  
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Figure 9. Group mean temporal modulation detection thresholds (TMDTs) as a 
function of modulation frequency (16 Hz, 32 Hz, and 64 Hz) for eight cochlear-
implant subjects with combined contralateral EAS. TMDTs of ten normal-hearing 
subjects as a function of modulation frequency are shown with black bars. Error bars 
indicate +1 standard deviation.   
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stimulation condition (F(2, 14) =1.9, p > 0.05), and no significant interaction (F(4,28) = 

1.2, p > 0.05).  

To further investigate the difference of the temporal resolution between 

cochlear- implant subjects and normal-hearing subjects, the TMDTs in three 

stimulation conditions in eight cochlear-implant subjects were compared separately 

with the TMDTs in ten normal-hearing subjects. A repeated-measures ANOVA was 

conducted with a within-subject factor (modulation frequency with four levels) and a 

between-subject factor (subject group with two levels). 

In the acoustic-stimulation condition, a repeated-measures ANOVA analysis 

revealed no significant main effects for modulation frequency (F(2,32) = 3.1, p > 0.05) 

and for subject group (F(1, 16 ) = 0.1, p > 0.05), and no significant interaction (F(2,32) = 

0.3, p >0.05).  

In the electric-stimulation condition, a repeated-measures ANOVA analysis revealed 

no significant main effects for modulation frequency (F(2,32) = 1.5, p > 0.05) and for 

subject group (F(1, 16 ) = 0.1, p > 0.05), and no significant interaction (F(2,32) = 1.6, p > 

0.05).  

In the combined-contralateral-EAS condition, a repeated-measures ANOVA 

analysis revealed no significant main effects for modulation frequency (F(2,32) = 2.2, p 

> 0.05) and for subject group (F(1, 16 ) = 0.4, p > 0.05), and no significant interaction 

(F(2,32) = 1.4, p > 0.05).   

Correlation 

The mean TMDTs calculated across the modulation frequencies (16, 32 and 

64 Hz) were used to correlate with the speech recognition scores. Relations between 
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the mean TMDTs and the speech recognition scores of CNC words in quiet and 

AzBio sentences in noise at +10 dB SNR in three stimulation conditions with a wide-

band input were assessed separately with a Pearson’s correlation coefficient. Figure 

10 displays the percentage correct for CNC word (left column) and AzBio sentence 

(right column) recognition as a function of the mean TMDT for the eight cochlear-

implant subjects. The lines show the linear regression between the word/sentence 

recognition scores and the mean TMDTs in three stimulation conditions. Statistical 

analysis revealed no significant correlations between with temporal modulation 

sensitivity and speech recognition performance in all three stimulation conditions (p > 

0.05).  

Discussion 

Temporal modulation detection 

The overall pattern of results suggests that the temporal/amplitude resolution 

of acoustic hearing, electric hearing, and combined electric and acoustic hearing is 

essentially normal in subjects with combined contralateral EAS. The speech-

perception benefits observed in listeners with combined contralateral EAS are 

attributable to the normal temporal/amplitude resolution of residual acoustic hearing. 

The TMDTs did not depend systematically on the modulation frequencies 

from 16 Hz to 64 Hz for all three stimulation conditions in cochlear-implant subjects 

and for the normal control condition in normal-hearing subjects. Unsystematic 

variations of the TMDTs were not greater than 2-3 dB at each individual modulation 

frequency. The TMDTs at modulation frequencies up to 64 Hz for three stimulation  
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Figure 10. displays the correlation of CNC word (left column) and AzBio sentence 
(right column) scores with the mean TMDTs across the modulation frequencies of 16 
Hz, 32 Hz, and 64 Hz. 

r = - 0.351 
(p > 0.05) 

r = - 0.410 
(p > 0.05) 

r = - 0.190 
(p > 0.05) 

r = 0.089 
(p > 0.05) 

r = - 0.063 
(p > 0.05) 

r = -0.063 
(p > 0.05) 
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conditions in cochlear-implant subjects were not significantly different from those in 

normal-hearing subjects. The general results above were similar to those previously 

reported for acoustic stimulation in normal-hearing and hearing-impaired listeners, 

and for electric stimulation in cochlear-implant listeners. For example, several studies 

on modulation detection for sinusoidal carriers showed that modulation thresholds 

stayed much more constant at frequencies between 8 and 64 Hz for sinusoidal carrier 

frequencies above 1 kHz in both normal-hearing and hearing-impaired listeners (Sek, 

1994; Stricklang & Viemeister, 1997; Yost & Sheft, 1997; Kohlrausch, Fassel & Dau, 

2000; Moore & Glasberg, 2001). Other studies also showed that implanted subjects 

were most sensitive to modulations of sinusoidal current up to 50-100 Hz (Shannon, 

1992, Busby, Tong & Clark, 1993).  

 Age effect on the measurement of TMTFs. Although the mean TMDTs for 

three stimulation conditions in cochlear-implant subjects were not significantly 

different from those in normal-hearing subjects, there is a concern about a possible 

age effect on the measures of temporal resolution when considering the age difference 

between cochlear-implant (mean age = 66 yrs; st. dev. = 10.3 yrs) and normal-hearing 

groups (mean age = 28.8 yrs; st. dev. = 10.7 yrs).  

A number of studies examining the age effect on measures of temporal 

resolution have shown that older listeners with normal or near-normal hearing 

demonstrate impaired temporal resolution as evidenced by elevated TMDTs 

(Takahashi & Bacon, 1992), longer modulation transfer function time constants 

(Bacon & Gleitman, 1992; Takahashi & Bacon, 1992), elevated gap detection 

thresholds (Moore, Peters & Glasberg, 1992; Schneider, Pichora-Fuller, Kowalchuk 
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& Lamb 1994; Snell, 1997; Schneider & Hamstra, 1999; Snell & Frisina, 2000), and 

poorer temporal discrimination performance in complex stimulus conditions (e.g., 

tonal duration discrimination, gap duration discrimination, and discrimination of 

temporal order) (Fitzgibbons & Gordon-Salant, 1995, 1998, 2001; Gordon-Salant & 

Fitzgibbons, 1999). Therefore, cochlear-implant subjects in the present experiment 

would have shown elevated TMDTs and a group difference of the mean TMDTs 

between cochlear-implant subjects and normal-hearing subjects would have been 

significant if the age effect had played a role in the measures of TMTFs. However, 

the between-group difference was not observed in the present experiment. In fact, the 

elevated TMDTs in the study of Takahashi and Bacon (1992) were likely due to the 

audibility issue in their older subjects. They found that once they factored out the 

potential influences of reduced audibility, there were no significant age effects. Other 

studies comparing gap detection performance for older and younger listeners with 

normal hearing also found little or no difference between the age groups (He, 

Horwitz, Dubno & Mills 1999; Bertoli, Smurzynski & Probst, 2002). Thus, it is 

possible that an age-related impairment in temporal resolution, completely 

independent of hearing, is observed for only those more complex temporal tasks 

(tasks involving discrimination) in which the auditory system is taxed more heavily 

than in the more traditional measures of temporal resolution (tasks involving 

detection).  Therefore, it is reasonable to conclude that the possible age effect on the 

direct comparison of temporal resolution between cochlear-implant subjects and 

normal-hearing subjects is negligible in the present experiment.  
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Summary. In summary, the data were in solid statistical agreement for 

modulation frequencies between 16 Hz and 64 Hz, indicating that the 

temporal/amplitude resolution for the three stimulation conditions in cochlear-implant 

subjects is similar to that in normal-hearing subjects.  

Correlation 

In the present experiment, the correlations between speech recognition and 

absolute temporal modulation sensitivity in cochlear-implant subjects did not reach 

statistical significance in all three stimulation conditions for both CNC words in quiet 

and AzBio sentences in a competing babble at 10 dB SNR, suggesting that temporal 

modulation detection is not a strong predictor of speech recognition for acoustic, 

electric, and combined electric and contralateral acoustic hearing.   

The electric-stimulation condition. Although there was substantial inter-

subject variability in both cochlear-implant subjects’ modulation detection sensitivity 

(-34 dB - -15 dB) and speech-recognition performance (42% - 76% for CNC words, 

14% - 67% for AzBio sentences) in the electric-stimulation condition, the relation 

between the two measures did not reach a statistical significance. The lack of the 

significance in the present experiment differed from the results of several studies 

showing significant correlations between these two measures in cochlear-implant 

listeners (Cazals et al., 1994; Fu, 2002). Two factors may be responsible for the lack 

of the significant correlation found in the present experiment. One possibility was that 

different methods were used to calculate the correlation between temporal modulation 

sensitivity and speech recognition in the previous studies and in the present 

experiment. In the previous studies, the speech recognition performance was 
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moderately correlated with the rejection factor of the modulation transfer function, 

calculated as the difference between TMDTs at 71 and 400 Hz for the transfer 

function at a medium loudness level (Cazal et al., 1994) and was highly correlated 

with the mean TMDT at a sinusoidal modulation frequency of 100 Hz, calculated 

over each subject's entire dynamic range (Fu, 2002). In the present experiment, the 

mean TMDT, calculated across the modulation frequencies of 16, 32, and 64 Hz at a 

comfortable loudness level, was used to correlate with the speech-recognition 

performance. The distinct methodologies did not allow a direct comparison of the 

results from the previous studies and the present experiment.  

The other factor responsible for the lack of the significant correlation found in 

the present experiment between temporal modulation sensitivity and speech-

recognition performance may be that the mean TMDTs in the electric-stimulation 

condition, calculated across the three modulation frequencies, were not appreciably 

different among the eight subjects, and were also not significantly different from 

those in normal-hearing subjects. Therefore, the temporal resolution measured by 

modulation detection may be sufficient for implant listeners to perceive speech 

information coded in temporal/amplitude envelopes and may not be fully utilized in 

speech pattern recognition at all. In fact, many other studies have found no relation 

between speech-recognition performance and temporal resolution measured by gap 

detection because most of the gap thresholds obtained in cochlear-implant listeners 

are probably sufficient to perceive speech information coded by temporal gaps 

(Shannon, 1989; Busby & Clark, 1999). Therefore, the contribution of the temporal 

processing to speech perception may be much less than that from other electric 
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parameters and the performance of subjects predominantly reflects the processing of 

these other sources of speech information, such as spectral information which is 

coded by stimulation on the different electrodes. 

The acoustic-stimulation condition. Although there is no study reporting 

relation between temporal modulation sensitivity and speech recognition in hearing-

impaired subjects, several previous studies about amplitude modulation detection of 

acoustic stimuli by hearing-impaired subjects have reported variable results, including 

decreased sensitivities and steeper rejection slopes of the modulation transfer 

functions (Bacon & Viemeister, 1985; Formby & Muir, 1988; Bacon & Gleitman, 

1992). These evidences of reduced temporal resolution are largely due to a result of 

the low SL of the stimuli and/or the reduced audible bandwidth of the stimuli. When 

these factors are controlled, hearing-impaired subjects typically perform the task of 

temporal modulation detection as well as normal-hearing subjects. In the present 

experiment, the modulation detection performance between the acoustic-stimulation 

condition in cochlear-implant subjects and the normal-control condition in normal-

hearing subjects was not significant, indicating normal temporal resolution of the 

hearing-impaired ear, which is in agreement with the results from the previous 

studies. Again, the uniformity observed in overall temporal modulation detection 

performance in the acoustic-stimulation condition, ranging from -27 dB for subject S8 

to -18 dB for subject S2, and the lack of the significant correlation between temporal 

modulation sensitivity and speech recognition suggest that the normal or close to 

normal temporal resolution of the hearing-impaired ear may not be fully utilized in 

speech recognition. The contribution of temporal processing to speech perception in 
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hearing-impaired subjects may be much less than those from other factors, such as 

loss of absolute sensitivity and a broadened auditory filter. Therefore, the temporal 

resolution is not a strong predictor of speech recognition in the acoustic-stimulation 

condition. 

The combined-EAS condition. Similar to the uniformity observed in overall 

temporal modulation detection performance, ranging from -31 dB for subject S2 to -

19 dB for subject S4, speech-recognition performance was also highly uniform 

among the eight cochlear-implant subjects, ranging from 80% to 94% for CNC words 

and from 72% to 98% for AzBio sentences in the combined-EAS condition. The lack 

of the significant correlation between these two measures was likely due to a ceiling 

effect of the speech-recognition performance. Again, the results suggest that the 

normal temporal resolution in the EAS condition is not a major limitation for 

cochlear-implant subjects with combined EAS to achieve a high level of speech 

understanding both in quiet and in noise.    

Summary. Overall, the lack of any significant correlations between temporal 

modulation sensitivity and speech recognition in all three stimulation conditions in 

the present experiment suggests that the normal temporal resolution of electric, 

acoustic, and combined hearing seems to provide sufficient speech information linked 

to temporal envelope variations and may not be fully utilized in speech pattern 

recognition. 

Conclusions 

(1) The TMTFs obtained using sinusoidal carriers in cochlear-implant and 

normal-hearing subjects resemble those found by previous researchers. 
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Modulation detection thresholds for low modulation frequencies up to 64 Hz 

reflect the effects of both amplitude resolution and temporal resolution.  

(2) The amplitude/temporal resolution of acoustic hearing, electric hearing, and 

combined electric and acoustic hearing is essentially normal in subjects with 

combined contralateral EAS. The speech-perception benefits observed in 

listeners with combined contralateral EAS are attributable to the normal 

amplitude/temporal resolution of residual acoustic hearing. 

(3) The lack of any significant correlations between temporal modulation 

sensitivity and speech recognition in all three stimulation conditions suggests 

that the normal amplitude/temporal modulation resolution of acoustic, electric, 

and combined electric and acoustic hearing is sufficient to perceive substantial 

acoustic features of speech linked to temporal envelope variations and, 

therefore, is not a strong predictor of speech recognition. 

 

 

 

 

 

 

 

 

 

 



 

 106

Chapter 4. Spectral Modulation Transfer Functions (SMTFs) in Listeners with 

Combined Contralateral EAS 

Introduction 

Current cochlear implants can only provide coarse spectral resolution to 

cochlear-implant listeners. A direct perceptual consequence of reduced spectral 

resolution due to the use of a cochlear implant is that the internal representation of 

spectral envelopes may be “blurred”, making it difficult for a listener to identify the 

spectral cues necessary for speech perception. Therefore, one psychophysical factor 

that is likely to contribute to the speech-perception benefits in listeners with 

combined contralateral EAS is the better spectral resolution of acoustic hearing in the 

nonimplanted ear when compared with that of electric hearing in the implanted ear. 

Although the presence of sensorineural hearing loss typically may decrease spectral 

resolution compared to normal hearing, listeners with sensorineural hearing losses 

still may have better spectral resolution than typical cochlear-implant listeners 

(Henry, Turner & Behrens, 2005). The better spectral resolution from the 

nonimplanted ear may optimize the transmission of the fine spectral details of the 

input signal. This additional information in the spectral domain combined with the 

spectral cues provided by cochlear implants may allow greater accuracy in the 

identification of the spectral cues necessary for speech perception. Also, 

understanding speech in the presence of background noise may be improved with the 

additional spectral information if the listeners are better able to spectrally separate the 

target from the masker. Therefore, it is important to first understand the spectral cues 
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for speech perception and the spectral resolution abilities of hearing-impaired 

listeners and cochlear-implant listeners. The detailed discussion follows. 

Spectral cues for speech perception 

Spectrally, vowels can be identified by relatively steady-state formants. The 

frequency of these formants varies as a function of the speaker’s age and sex 

(Peterson & Barney, 1952). Resolution of the first (F1) and second (F2) formant is 

sufficient to allow a high level of vowel intelligibility (Delattre, Liberman, Cooper & 

Gerstman, 1952). The place-of-articulation contrasts, which differ by the position of 

the articulators in the vocal tract, e.g., /b/ vs. /d/ or /i/ vs. /a/, require resolution in the 

frequency domain. Within stop consonants, either voiced [b, d, g] or unvoiced [p, t, 

k,], place cues are identified by the frequency of the aspiration burst, relative to the 

vowel, and the transition of the second formant. Nasals can be distinguished by their 

2nd formant transitions, with /m/, /n/, and /ŋ/ having successively higher starting 

frequencies for the vowel. Fricatives can be distinguished by their noise band 

frequencies and bandwidth, e.g., [s, z] have higher noise-band center-frequencies than 

[f, v]. Dipthongs (e.g., /aɪ/, /eɪ/), and semivowels (e.g., /w/, /j/, /r/) are distinguished 

not only by their changing formant frequencies, but also by the duration of formant 

movement (Liberman, Delattre, Gerstman & Cooper, 1956).  

Spectral resolution in hearing-impaired listeners 

Spectral resolution refers to the ability of the auditory system to separate or 

resolve the components in a complex sound (Moore, 1998).  Reduced spectral 

resolution in hearing-impaired listeners has been demonstrated in physiological 
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studies, showing broader tuning curves measured from single neurons in the auditory 

nerve of anaesthetised animals with damaged cochleas (e.g., Dallos, Ryan, Harris, 

McGee & Ozdama, 1977; Liberman & Dodds, 1984). Reduced spectral resolution of 

listeners with cochlear loss is also demonstrated with measurements of 

psychophysical tuning curves (PTC’s) (e.g., Zwicker & Schorn, 1978; Carney & 

Nelson, 1983) and measurements of auditory filter shapes using both ripple-noise 

maskers and notched-noise maskers (e.g.,  Wightman, McGee & Kramer,1977; 

Glasberg & Moore, 1986; Trees & Turner, 1986; Dubno & Dirks, 1989). Typically, in 

these experiments, the subject is required to detect a signal such as a sinusoid in the 

presence of a masking background. The results are used to provide a description of 

frequency selectivity (spectral resolution) in the auditory system.  

The bandwidth of auditory filters in listeners with cochlear hearing loss has 

been shown to be up to three to four times greater than that in normal-hearing 

listeners (Glasberg & Moore, 1986). The reduced frequency selectivity or spectral 

resolution associated with sensorineural hearing loss produces a smearing of spectral 

details in the internal representation of complex acoustic stimuli at 

threshold/suprathreshold levels. As a result, hearing-impaired listeners have difficulty 

locating the spectral peaks within stimuli which are important in the identification of 

vowels, as well as consonants that vary only by place of articulation. In addition, the 

reduced frequency selectivity arising from a broadening of the auditory filters leads to 

poorer resolution of the lower harmonics of voice pitch. This has a direct effect on 

hearing-impaired listener’s ability to use F0 differences to separate competing 

sounds, leading to poor speech perception in noise. Overall, the reduced spectral 
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resolution contributes significantly to the speech-recognition deficits observed in 

hearing-impaired listeners (Dubno & Dirks, 1989). 

Spectral resolution in cochlear-implant listeners 

 Spectral resolution in cochlear-implant listeners depends first on the ability of 

a cochlear-implant system to provide spectral details in the signal. The number of 

stimulating channels in current cochlear-implant systems is generally limited to 

between 6 and 22, depending on the device and speech processing strategy, and, 

therefore, these speech processors do not preserve the fine spectral details in the 

speech signal. Second, spectral resolution depends on the ability of an individual 

cochlear-implant listener to perceive this electric representation of spectral 

information. For some listeners, presumably those with good nerve survival and good 

electrode placement, each electrode may be usable as a distinct channel with which to 

represent speech information. Other listeners who may have poor nerve survival 

and/or poor electrode placement may have many fewer effective channels than the 

number of electrodes in their implants. Studies on the effect of the number of 

channels on speech recognition in cochlear-implant listeners indicate that the effective 

number of channels perceived by these listeners is lower than the physical number of 

channels provided. Cochlear-implant listeners show an asymptote in speech 

recognition on average across listeners with between two and seven channels, 

depending on the degree of difficulty of the speech material presented (Dorman & 

Loizou, 1997;  Fishman, Shannon & Slattery, 1997; Friesen et. al., 2001). Therefore, 

the limited number of stimulating channels (6 to 22) in current cochlear-implant 

systems is enough for cochlear-implant listeners to achieve high levels of speech 
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recognition both in quiet and in noise if they can perceive the coarse spectral 

information represented by electric stimulation across the electrodes. However, 

cochlear-implant listeners generally cannot utilize all of the spectral information that 

is provided by cochlear-implant speech processors and multiple electrode arrays. Poor 

spectral resolution is a major factor that limits cochlear-implant listeners from 

utilizing the spectral details of the speech signal for speech perception. 

 Reduced spectral resolution of electric stimulation has been demonstrated in 

physiological studies. Hartmann, Topp, and Klinke (1984) measured discharge 

patterns of cat primary auditory fibers with electric stimulation of the cochlea. The 

frequency tuning properties in response to electric stimulation were relatively broad.  

Similar results were also found in the studies of van den Honert and Stypulkowski 

(1984, 1987), in which spatial maps of electric excitation were constructed by 

comparing electric threshold with acoustic characteristic frequency for large 

populations of auditory nerve fibers in cats. Results showed that stimulation with 

even intracochlear bipolar electrodes produced a relatively broad threshold 

distribution adjacent to the electrodes, indicating poor spatial selectivity.  

 Psychophysical experiments also confirm that cochlear-implant listeners have 

reduced frequency selectivity. Chatterjee and Shannon (1998) measured forward 

masked excitation patterns in four users of the Nucleus Corporation 22-channel 

implant. The resulting excitation patterns were compared to the measurement 

obtained with acoustic stimulation of a normal-hearing listener. The excitation 

patterns of two implanted subjects were slightly broader than normal, whereas one 

subject showed a spatial extent that was more than twice as wide. A fourth showed 
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excitation patterns that were sharp near the tip but which, for some electrode pairs, 

were nonmonotonic at wider masker-probe separations.  

  Other investigators examined place-pitch sensitivity (i.e., the ability to 

distinguish among electrodes on the basis of tonotopically mediated pitch or timbre) 

in cochlear-implant listeners, using psychophysical electrode pitch-ranking and 

electrode-discrimination tasks. The listeners’ task was to listen to the pulse trains 

applied sequentially to each of two electrode channels and state which presentation 

produced the higher pitch, and an answer was scored as correct if this corresponded to 

the more basal channel. Townshend, von Compernolle, and White (1987) were the 

first investigators to examine place-pitch sensitivity in cochlear-implant listeners. 

They showed that some implant listeners exhibited relatively strong place-pitch 

sensitivity consistent with the normal tonotopic organization of the cochlea, whereas 

others perceived little change in pitch as a function of electrode location.  

 Nelson, Van Tasell, Schroder, Soli, and Levine (1995) used an electrode-

ranking procedure to evaluate the ability to distinguish electric stimulation of different 

electrodes in 14 users of the Nucleus cochlear implant 22 device. Performance on the 

electrode-ranking task was defined in terms of d per mm of distance between 

comparison electrodes. Large individual differences were observed among cochlear-

implant listeners. In some subjects, perfect performance was reached with as little as 

0.75 mm between comparison electrodes. In other subjects, perfect performance was 

not reached until the spatial separation between comparison electrodes was over 13 

mm, more than three quarters of the entire length of the electrode array, meaning poor 

place-pitch sensitivity to change in the frequency of an acoustic input.  
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Donaldson and Nelson (1999) evaluated the average place-pitch sensitivity 

across the electrode array as a function of electrode separation in 14 cochlear-implant 

listeners using the Nucleus MPEAK and SPEAK speech processing strategies. The 

results showed considerable variability in subjects’ performance at all electrode 

separations. At the narrowest separation 0.75 mm, corresponding to the distance 

between adjacent electrodes in the Nucleus array, place-pitch sensitivity (d) ranged 

from 0.13 to 1.52.  However, only 3 of 14 subjects achieved performance better than 

d = 1. Performance improved systematically as electrode separation increased from 

0.75 to 4.5 mm for most subjects. Two subjects demonstrated unusually poor pitch-

ranking performance. 

 To summarize the results above, reduced spectral resolution in electric 

stimulation has been demonstrated in physiological studies, showing broader tuning 

curves. Psychophysical studies also confirm poor place-pitch sensitivity with large 

individual differences among cochlear-implant listeners.  

Measures of spectral profile resolution  

The traditional psychophysical measures of spectral resolution in hearing-

impaired listeners and cochlear-impaired listeners described above are generally 

assumed to underlie to some extent their ability to resolve the spectral aspects of the 

speech signal.  However, these measures typically require a listener to detect a signal 

in the presence of a masker (hearing-impaired listeners) or to discriminate between 

stimulation on different electrodes activated individually (cochlear-implant listeners). 

The distinct methodologies do not allow a direct comparison of spectral resolution 

between hearing-impaired and cochlear-impaired listeners. In addition, these 
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measures are time-consuming to conduct since they are multi-point measures, which 

are made at multiple positions along the basilar membrane (hearing-impaired 

listeners) or the electrode array (cochlear-implant listeners). Furthermore, the 

knowledge obtained from a limited set of measures at multiple points across the 

electrode array is unable to predict the perception of a complex spectral profile of 

novel stimuli. Recently, investigators have used a more direct and one-point measure 

of cochlear-implant listeners' ability to perceive the complex spectral envelope or 

spectral contrast (the difference in amplitude between the peak and valley), which 

reflects the spectral profile resolution in hearing-impaired and cochlear-implant 

listeners.   

 A spectral envelope or the relative distribution of acoustic intensity across 

frequency is a principle physical characteristic that distinguishes one sound from 

another. These differences must be maintained in the internal representation of the 

acoustic spectra in order for the identification of vowels and consonants that vary 

only by place of articulation. The perception of spectral envelope or spectral contrast 

in cochlear-implant listeners is likely to be poor because the internal representation of 

the electric spectra of an input signal is smeared due to the reduced spectral resolution 

in cochlear-implant listeners as discussed above. Furthermore, this reduced complex 

spectral contrast is further compromised by the compression from the wide acoustic 

dynamic range to the small electric dynamic range (typically 3–30 dB) used in the 

most current speech processing strategies. This notion has been supported by the 

study of Loizou and Poroy (2001), who found that the minimal spectral contrast 

required for high levels of vowel identification accuracy was 4–6 dB for cochlear-
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implant listeners, while normal-hearing listeners only require a spectral contrast of 

between 1 and 3 dB for reasonably accurate vowel identification (Leek, Dorman & 

Summerfield, 1987; Alcantare & Moore, 1995). 

 To investigate the perception of spectral envelope in cochlear-implant 

listeners, Henry and Turner (2003) used a method that involved the detection of 

sinusoidal spectral modulation. In their experiment, stimuli were broadband noise 

signals and the modulation was generated by systematically varying the amplitude of 

broadband noise signals in the spectral envelope. With this sort of spectral envelope, 

the number of cycles of modulation (modulation density) was increased or decreased 

with the modulation depth held constant. The task involved discriminating between 

two modulated noise stimuli in which the frequency positions of the peaks and valleys 

were interchanged. The minimum modulation density (ripple spacing) at which a 

reversal in peak positions can be detected was determined as the threshold for spectral 

peak resolution. The results showed a significant relationship between spectral peak 

resolution and vowel recognition in cochlear-implant listeners, indicating that 

listeners who can resolve more closely spaced peaks are better at recognizing vowels. 

In Henry, Turner, and Behrens (2005), the measure of spectral peak resolution 

developed by Henry and Turner (2003) was applied in normal-hearing, hearing-

impaired and cochlear-implant listeners. Spectral peak resolution was best, on 

average, in normal-hearing listeners, poorest in cochlear-implant listeners, and 

intermediate for hearing-impaired listeners. There was a significant relationship 

between spectral peak resolution and both vowel and consonant recognition in quiet 

across the three listener groups.  
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Spectral Modulation Transfer Function. Another method using stimuli very 

similar to those used by Henry and Turner (2003) to study the spectral envelope 

perception is to measure the spectral modulation transfer function (SMTF). The 

spectral modulation transfer function is defined as the minimal spectral contrast 

required for detecting sinusoidal spectral modulation as a function of spectral 

modulation frequency (Saoji, Litvak, Emadi & Spahr, 2005).  The idea of SMTF is 

very similar in concept to the temporal modulation transfers function (TMTF) in the 

temporal domain. Figure 11 shows a 3-D schematic representation of TMTF and 

SMTF. The time and amplitude domains are modulated in TMTF while the frequency 

and amplitude domains are modulated in SMTF. Spectral modulation frequency is 

measured in units of cycles per octave (cyc/oct) and successive peaks and valleys are 

separated by multiples or fractions of an octave. Figure 12 shows the schematic 

representation of 1 cyc/oct spectral envelope. The carrier bandwidth is a 6-octave 

wide band of noise from 200 to 12800 Hz. The sinusoidal spectral envelope contains 

six cycles over the six-octave band of noise (i.e., 1 cyc/oct spectral modulation 

frequency). The peak-to-valley difference of the overlaying logarithmic sinusoid 

determines the amount of contrast in dB.  

During the measurement of SMTF, the listener’s task is analogous to the 

temporal modulation detection task, which involves discriminating between one 

modulated noise stimulus in which the modulation depth is varied (with the frequency 

positions of the peaks and valleys held constant) and one unmodulated noise stimulus 

with a flat spectrum. The minimum contrast or peak-to-valley difference necessary to 

discriminate between an unmodulated (flat spectrum) and a modulated spectrum is  
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Figure 11. 3-D Schematic representations of TMTF and SMTF. The time/amplitude 
domains are modulated in the TMTF and the frequency/amplitude domains are 
modulated in the SMTF. 
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Figure 12. A schematic representation of a sinusoidal spectral modulation with a 
modulation frequency of 1 cyc/oct superimposed on a 6-octave wide band of noise 
(200 to 12800 Hz).  The modulation contrast is 20 dB. 
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known as spectral modulation detection threshold (SMDT). It was hypothesized that 

low-frequency modulation would involve across-channel comparisons in the electric-

frequency domain, requiring the listener to compare amplitude across the electrode 

array to build a representation of the envelope. But as the number of modulation 

cycles increased, a point would be reached where the peak and the valley of one or 

more cycles of the spectral modulation would be processed in the same functional 

channel. This would reduce the perceived contrast between the peaks and valleys. 

This test is to provide a direct measure of cochlear-implant listeners’ ability to 

perceive the frequency locations of spectral peaks in a broadband acoustic signal. 

 Litvak, Spahr, Saoji, and Fridman (2005) reported SMTFs in cochlear-implant 

listeners. They measured SMTFs in cochlear-implant listeners at spectral modulation 

frequencies of 0.25, 0.5, 1, and 2 cyc/oct, and correlated the SMDTs with listeners’ 

vowel and consonant recognition scores. The results showed that cochlear-implant 

listeners needed greater spectral contrast to detect the high spectral modulation 

frequencies than to detect the low modulation frequencies, and the spectral 

modulation thresholds corresponding to the lowest spectral ripple frequencies (0.25 

and 0.5 cyc/oct) best related to speech recognition scores (r = 0.76 and r = 0.9, 

respectively). Therefore, SMTF can be used to relate spectral envelope perception to 

vowel and consonant recognition in cochlear-implant listeners.  

The measure of SMTF is also applicable to listeners with acoustic hearing. 

Summers and Leek (1994) measured the threshold of detecting a stimulus containing 

a sinusoidal ripple across its frequency range from a flat-spectrum band-pass stimulus 

for normal-hearing and hearing-impaired listeners. The ripple frequencies ranged 
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from 1 to 9 cyc/oct. They also calculated the excitation patterns for sinusoidal 

modulations superimposed on a log-frequency axis. The results obtained in their 

study showed that the auditory systems with broadened auditory filter bandwidths (as 

in cochlear hearing loss) needed about 5 dB greater peak-to-valley difference or 

contrast than normal-hearing listeners to discriminate the rippled stimulus from the 

flat stimulus, which was consistent with the reduction in frequency selectivity 

revealed in the excitation pattern calculations. These findings suggested that the 

frequency resolution ability of the auditory system was critical to spectral envelope 

perception. Therefore, the measure of SMTF can be applied in the nonimplanted ear 

of listeners with combined EAS. As such, the measure of SMTF provides an 

opportunity to directly compare the spectral peak resolution of residual acoustic 

hearing with that of electric hearing. 

Rationale 

 The spectral resolution of low-frequency residual acoustic hearing presumably 

is better than that of electric hearing (Henry, Turner & Behrens, 2005).  This 

advantage of spectral resolution in low-frequency acoustic hearing may provide 

relative benefits in perceiving spectral features of speech sounds and, therefore, 

leading to improved speech perception both in quiet and in noise in listeners with 

combined contralateral EAS. Psychophysical measurements of SMTFs in the 

acoustic-stimulation, the electric-stimulation, and the combined-contralateral-EAS 

conditions would allow direct comparisons of the spectral resolution among three 

stimulation conditions to test whether the spectral resolution of acoustic hearing is 

better than that of electric hearing. In addition, a comparison of the spectral resolution 



 

 120

between cochlear-implant subjects and normal-hearing subjects would answer the 

question of whether the spectral resolution in three stimulation conditions is normal 

or close to normal. Furthermore, considerable individual variability of the speech-

perception benefits both in quiet and in noise appears in many of the reported studies, 

revealing large differences in using additional acoustic information to identify speech 

sounds in listeners with combined EAS. Therefore, an explanation of individual 

differences in the speech-perception benefits should include variations of basic 

psychophysical sensitivity to spectral modulation. Assessments of the correlation of 

speech recognition and spectral profile resolution would provide insight to the 

relation of the speech-perception benefits with the spectral resolution in three 

stimulation conditions.  

Hypotheses 

The operating hypothesis of Experiment 3 was that the mechanism 

contributing to the speech-perception benefits in listeners with combined contralateral 

EAS would be due to the improved spectral representation of the input signal 

provided by residual acoustic hearing. 

Summary and predictions based on literature review 

Spectral information contributes primarily to the discrimination of the vowel 

formants and the consonant place-of-articulation features. For hearing-impaired 

listeners, reduced spectral resolution arises from a broadening of the auditory filters. 

For cochlear-implant listeners, reduced spectral resolution is due to the smeared 

activation pattern associated with electric stimulation, combined with a limited 



 

 121

number of “independent” function channels. The consequences of reduced spectral 

resolution in both clinical populations are likely to be very similar: a reduced ability 

to utilize the spectral cues for speech perception both in quiet and in noise.   

 Auditory scientists used different experimental procedures to study the 

perception of complex spectral envelope patterns in both hearing-impaired and 

cochlear-implant listeners. In the present experiment, measurement of SMTFs was 

used to characterize the spectral envelope perception of both acoustic and electric 

hearing in listeners with contralateral EAS, which would allow a direct comparison of 

the spectral profile resolution between residual acoustic hearing and electric hearing. 

The results would identify the general relationship between the spectral profile 

resolution and the speech-perception benefits in listeners with contralateral EAS. 

Although the spectral resolution of residual acoustic hearing is typically reduced in 

people with cochlea hearing loss, it may be still better than that of electric hearing. 

Therefore, it is expected that the mechanism contributing to the speech-perception 

benefits in listeners with combined contralateral EAS is likely due to the improved 

spectral representation of the input signal provided by residual acoustic hearing. 

Methods 

Experimental design 

Experiment 3 used a within-subject design with stimulation mode (acoustic-

stimulation alone, electric-stimulation alone, and combined contralateral EAS) and 

modulation frequency (0.5 cyc/oct. and 1 cyc/oct.) as independent variables, and 

SMDT as a dependent variable. A repeated-measures ANOVA was applied to the 

data and the effects of the stimulation mode and the modulation frequency on the 

SMDT were evaluated and analyzed. Speech recognition scores of CNC words in 
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quiet and AzBio sentences in noise at +10 dB SNR from Experiment 1 with a wide-

band input were used to correlate with the SMDTs. The results provided us insight to 

the underlying mechanisms of the contribution of the acoustic input to combined 

contralateral EAS (Aim 2).     

Subjects 
All cochlear-implant subjects except for S5 who participated in Experiment 1 

were recruited in the present experiment.  S5 had difficulty in discriminating between 

the modulated and unmodulated noise stimuli and showed unstable performance after 

an extensive practice. Therefore, S5 was not included in the present experiment.   

Ten normal-hearing subjects participated in the present experiment and they 

ranged in age from 20-53 years (mean age=28.8 yrs; st. dev. = 10.7 yrs). All subjects 

had normal audiometric thresholds ≤ 15 dB HL for octave test frequencies from 250 

to 8000 Hz (ANSI, 2004).  

Each observer provided written informed consent for their participation in this 

research. The research protocol and informed consent statement were approved by the 

Institutional Review Board at the University of Maryland, College Park and Arizona 

State University. Subjects were paid an hourly wage for their participation. 

Cochlear implants 

The electric input of stimuli was presented through a direct input cable to each 

subject’s speech processor. Subjects were tested with their ‘everyday’ device settings 

and each subject’s cochlear implant was checked before modulation detection was 

evaluated at each test session. The volumes and sensitivity settings of the cochlear 

implant were not adjusted in order to maintain the same settings on the cochlear 
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implant for both the combined-contralateral-EAS and the electric-stimulation 

conditions.   

Stimuli 

Stimuli generation. Rippled noise stimuli of 125-5600 Hz bandwidth were 

generated using MATLAB software (Mathworks, 2006). The spectral modulation 

frequencies were 0.5 cyc/oct or 1 cyc/oct. The stimuli were generated in the frequency 

domain assuming a sampling rate of 44,100 Hz. First, the desired spectral shape was 

generated using the equation where F(f) is the amplitude of a bin with center 

frequency 
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f Hz, fc is the spectral modulation frequency ( 0.5 or 1 cyc/oct), and θ0 is the starting 

phase. The desired noise band was synthesized by adding a random phase to each bin, 

and taking an inverse Fourier transform. The starting phases of the individual 

frequency components were randomized for each stimulus to avoid fine-structure 

pitch cues and local increment detection that may be perceptible to listeners. The flat 

noise stimuli were generated using a similar technique, except that spectral contrast C 

was set to 0. The amplitude of each stimulus was adjusted to an overall level of 65 dB 

sound pressure level (SPL). The spectral contrast (difference between spectral peaks 
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and valleys (in dB)) was varied adaptively. The stimuli were of 400 ms duration and 

were gated with each 400-ms observation interval. The rippled noise stimuli were 

output from a standard PC to an Audiophile sound card. The sound card output was 

attenuated separately in two output channels using an inline attenuator such that for 

the electric input of stimuli to the speech processor, the level was equivalent to a 65-

dB-SPL acoustic input to the microphone of the speech processor and the acoustic 

input of stimuli was adjusted on an individual basis as explained below.  

Presentation level. In the electric-stimulation condition, the rippled noise 

stimuli were presented to the each subject via a direct input into the speech processor, 

using a 3.5-mm mono phone plug, which defeated the headset microphone so that no 

external input occurred, while at the same time preserving the microphone pre-

emphasis. The presentation level was set at 65 dB SPL. Up to now, there has been no 

study reporting that spectral modulation detection is sensitive to stimulation level. 

However, the spectral contrast across electrode arrays would have been reduced or 

lost due to either peak clipping (deletion of high intensity information) or center 

clipping (deletion of low intensity information) if the stimuli had been presented at 

either a high or low level and the sensitivity control of the cochlear implant had not 

been adjusted accordingly to capture the entire range of amplitude values in the 

stimuli. Therefore, presenting stimuli at 65 dB SPL, which is usually at a comfortable 

loudness level, is the best way to avoid possible effects of peak clipping and/or center 

clipping on the spectral modulation detection task during the measurement of SMTF. 

The volumes and sensitivity settings of the cochlear implant were not adjusted. 



 

 125

In the acoustic-stimulation condition, the rippled noise stimuli were presented 

to the nonimplanted ear through an insert earphone (Etymotic ER-1). The presentation 

level of the acoustic input was set at the same loudness level as the electric input on 

an individual basis for each subject. A loudness matching method was used to find 

the presentation level of the acoustic input with the same overall loudness as the 

electric input presented at 65 dB SPL. Subjects were instructed to listen to the electric 

stimuli  first with the  implant alone and remember the loudness, then listen to the 

acoustic stimuli with the insert earphone alone, and indicate on a response card 

whether the stimuli were louder or softer than that in the nonimplanted ear. The 

response card was a continuous scale, labeled with “louder” and “softer” at the end 

points and “the same” halfway in between. The experimenter adjusted the 

presentation level of the acoustic input until the stimuli were rated to sound equally 

loud to the electric input presented at 65 dB SPL. 

In the combined-contralateral-EAS condition, the stimuli were output via an 

audio splitter connector with one end connected to an insert earphone (Etymotic ER-

1) and the other one connected to each subject’s speech processor via a direct input 

cable. The presentation level of the electric input was set at 65 dB SPL. The level of 

the acoustic input that sounded equally loud to the electric input was used to facilitate 

the perceptual fusion of the acoustic input and the electric input. The volume and 

sensitivity settings of the cochlear implant were not adjusted in order to maintain the 

same settings on the cochlear implant for both the electric-stimulation and the 

combined-contralateral-EAS conditions. 
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Procedure 

The measurements included the assessment of SMDT as a function of 

modulation frequency in three listening conditions: acoustic stimulation alone, 

electric stimulation alone, and combined contralateral EAS. All subjects were tested 

in a double-walled sound treated room. Prior to data collection subjects received a few 

sample trials for any new condition to familiarize them with the stimuli. 

The SMDTs (dB) were estimated using a cued, two-interval, two-alternative, 

forced-choice (2IFC) paradigm. For each set of three intervals, the first interval 

always contained the reference stimulus, and this cuing or reminder interval was 

helpful in cases where listeners could hear a difference between the signal and the 

standard stimulus but could not identify which was which. The test interval, chosen at 

random from the other two intervals, contained the comparison stimulus. The 

comparison was always a modulated signal with variable spectral contrast, while the 

reference was a flat spectrum noise with bandwidth extending from 125 to 5600 Hz. 

The modulated signal and the second reference were randomly presented in the other 

two intervals. There was an interstimulus interval of 400 ms. Three numerically 

labeled buttons were displayed on a computer screen, corresponding to the three 

intervals, and subjects were instructed to press the button corresponding to the 

interval that sounded "different" (i.e., the one that contained the test stimulus), 

ignoring any loudness variation between intervals. Feedback was given after each trial 

by flashing ‘correct’ or ‘wrong’ on the screen. A run consisted of 80 trials. Each run 

began with the comparison (modulation depth with a peak-to-valley ratio of 

approximately 20 dB) clearly different from the reference, and the modulation depth 
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was varied in a three-down, one-up procedure. The modulation depth of the 

comparison was reduced after three correct responses and was increased after one 

incorrect response. This converged on the modulation depth that produced 79.4% 

correct responses (Levitt, 1971). The initial step size of the change of the modulation 

depth was 2 dB and was 0.5 dB after three reversals. All threshold estimates were 

based on the average of the last even number of reversals, excluding the first three. 

Using the above procedure, SMDTs were obtained for the modulation frequencies of 

0.5 cyc/oct and 1 cyc/oct. Each reported threshold was based upon the average of 

three consecutive runs. Each run of 80 trials of the cued 2IFC task took approximately 

6-7 minutes to complete.  

Results 

Spectral modulation detection 

Figure 13 shows the mean SMDTs and +1 standard deviation, in dB, as a function of 

modulation frequency and as a function of stimulation condition. The mean SMDTs 

as a function of the modulation frequency from ten normal-hearing subjects are also 

shown in the figure with black bars. A repeated-measures ANOVA was performed on 

the raw data for the SMDTs with two within-subjects factors (modulation frequency 

with two levels and stimulation condition with three levels). The analysis revealed 

significant main effects for the stimulation condition (F(2, 14) =18.5, p < 0.001) and for 

the modulation frequency (F(1, 7) = 19.9,  p = 0.003) without a significant interaction 

between these two effects (F(2, 14) = 2.3, p > 0.05). Subsequent post hoc pairwise 

comparison (Fisher’s LSD) revealed that the mean SMDTs in the electric-stimulation  
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Figure 13. Group mean spectral modulation detection thresholds (SMDTs) as a 
function of modulation frequency (0.5 and 1 cyc/oct) for eight cochlear-implant 
subjects with combined contralateral EAS. SMDTs of ten normal-hearing subjects as 
a function of modulation frequency are shown with black bars. Error bars indicate +1 
standard deviation.   
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Condition were significantly higher than those in the acoustic-stimulation and EAS 

conditions for both  0.5 and 1 cycle/octave modulation frequencies (p < 0.05).  

To further investigate the difference of the spectral profile resolution between 

cochlear-implant subjects and normal-hearing subjects, the mean SMDTs of eight 

cochlear-implant subjects in three stimulation conditions were compared separately 

with the mean SMDTs of ten normal-hearing subjects. A repeated-measures ANOVA 

was conducted with a within-subject factor (modulation frequency with two levels) 

and a between-subject factor (subject group with two levels). 

In the acoustic-stimulation condition, a repeated-measures ANOVA analysis 

revealed that there was a significant main effect for subject group (F(1, 16 ) = 41.5, p = 

0.000) but there were no effect for modulation frequency (F(1, 16 ) = 0.6, p > 0.05) and 

no interaction between modulation frequency and subject group (F(1, 16 ) = 4.4, p > 

0.05).  

In the electric-stimulation condition, a repeated-measures ANOVA analysis 

revealed that there were a significant main effect for subject group (F(1, 16) = 44.9, p < 

0.001) and a significant interaction between modulation frequency and subject group 

(F(1,16) = 20.8, p < 0.001) but there was no effect for modulation frequency (F(1,16) = 

3.8, p > 0.05). When the mean SMDTs were collapsed across the two modulation 

frequencies, the mean SMDT in cochlear-implant subjects was significantly higher 

than that in normal-hearing subjects (Independent t-test, p < 0.05). 

In the combined-contralateral-EAS condition, a repeated-measures ANOVA 

analysis revealed that there were a significant main effect for subject group (F(1, 16) = 

15.1, p < 0.001) and a significant interaction between modulation frequency and 
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subject group (F(1,16) = 23.5, p < 0.001) but there was no effect for modulation 

frequency (F(1, 16) = 0.3, p > 0.05). When the mean SMDTs were collapsed across the 

two modulation frequencies, the mean SMDT in cochlear-implant subjects was 

significantly higher than that in normal-hearing subjects (Independent t-test, p < 

0.05). 

Correlation 

The SMDTs at the two modulation frequencies were used to correlate 

separately with the recognition scores of CNC words in quiet and AzBio sentences in 

noise at +10 dB SNR measured in Experiment 1 with a wide-band input in the 

acoustic-stimulation, electric-stimulation, and combined-contralateral-EAS 

conditions. Figure 14 displays the correlation of the CNC word and AzBio sentence 

scores with the SMDTs at 0.5 cyc/oct modulation frequency. Figure 15 displays the 

correlation of the CNC word and AzBio sentence scores with the SMDTs at 1 cyc/oct 

modulation frequency. There was a general trend of negative correlation between the 

speech recognition scores and the SMDTs at the two spectral modulation frequencies 

in the acoustic-stimulation and electric-stimulation conditions. However, due to the 

limited number of subjects included in the present experiment (eight subjects), only 

the AzBio sentence scores in the electric-stimulation condition were significantly 

correlated with the SMDTs at 1 cyc/oct modulation frequency (r = -0.814, p = 0.007).  
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Figure 14. The correlation of CNC word (left column) and AzBio sentence (right 
column) scores with the mean SMDTs at 0.5 cyc/oct modulation frequency.  
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Figure 15. The correlation of CNC word (left column) and AzBio sentence (right 
column) scores with the mean SMDTs at 1 cyc/oct modulation frequency. “*” 
indicates significant coefficient correlation. 
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Discussion 

Spectral Modulation Detection 

The mean SMDTs at two modulation frequencies in the electric-stimulation 

condition were significantly higher than those in the acoustic-stimulation, combined-

EAS, and normal-control conditions. In addition, the mean SMDTs of cochlear-

implant subjects in the acoustic-stimulation condition were significantly higher than 

those of normal-hearing subjects. The overall pattern of results suggests that the 

spectral profile resolution of residual acoustic hearing is not as good as normal but is 

better than that of electric hearing, and the speech-perception benefits observed in 

listeners with combined contralateral EAS are attributable to the better spectral 

resolution of residual acoustic hearing. 

In the electric-stimulation condition, spectral envelopes or spectral contrasts 

are represented by the relative amplitude across channels. During the spectral 

modulation detection task, implant subjects were required to compare amplitude 

across electrode arrays to build a global representation of the spectral profile or 

envelope in order to discriminate between the modulated and unmodulated stimuli. 

The significantly higher spectral SMDTs in the electric-stimulation condition when 

compared to those in the acoustic-stimulation and combined-EAS conditions indicate 

that larger spectral contrast (peaks and valley difference) is needed for cochlear-

implant subjects in order to perform the spectral profile discrimination task in the 

electric-stimulation condition; in other word; the perception of spectral profile is 

poorer in the electric-stimulation condition than that in the acoustic-stimulation and 

combined-EAS conditions. It is likely that the internal representation of the electric 
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spectra of an input signal is smeared due to the reduced spectral resolution in 

cochlear-implant listeners, which is related to patterns of neural survival and function, 

and patterns of current distribution in the cochlea. Furthermore, the “blurred” internal 

representation of the spectral peaks in acoustic signals is further compromised by the 

compression from a wide acoustic dynamic range to a small electric dynamic range 

(typically 3–30 dB) used in most current speech processing strategies (see the 

Introduction). Depending on the neural survival, current distribution in the cochlea, 

and dynamic range of an individual, performance on the spectral modulation 

detection task varied widely among eight cochlear-implant subjects in the electric-

stimulation condition, with the best-performing subject able to achieve a level of 

performance (6.6 dB) close to the range of normal-hearing subjects (4.2-7.5 dB), 

while at the other end of the performance range three subjects showed thresholds of 

approximate 26.3 dB. The overall poor spectral profile resolution observed in the 

electric-stimulation condition is generally consistent with the results of previous 

physiological studies, showing reduced spectral resolution of electric stimulation 

evidenced by broader tuning curves (e.g., Hartmann, Topp & Klinke, 1984), and 

psychophysical studies, showing poor place-pitch sensitivity evidenced by the 

inability of implant listeners to discriminate electrodes and to detect and discriminate 

changes (Donaldson & Nelson, 1999).  

In the acoustic-stimulation condition, spectral envelopes or spectral contrasts are 

represented by the relative amplitude across internal auditory filters. The significantly 

higher spectral profile resolution thresholds in the acoustic-stimulation condition 

when compared to those in the normal-control condition indicate that the spectral 
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profile resolution of residual acoustic hearing is reduced compared to that of normal 

hearing due to a broadening of auditory filters associated with cochlear hearing loss 

and, therefore, produces a smearing of spectral detail in the internal representation of 

complex acoustic stimuli at threshold/suprathreshold levels. However, the mean 

spectral SMDTs in the acoustic-stimulation condition were significantly lower than 

those in the electric-stimulation condition, indicating better spectral profile resolution 

of residual acoustic hearing than that of electric hearing. Figure 16 displays the 

average residual hearing subjects had in the nonimplanted ear and the modulation 

cycles of the modulated noise carrier they had access to at a comfortable listening 

level. The residual acoustic hearing with a limited listening bandwidth had access to 

only one (for 0.5 cyc/oct. modulation) or two cycles (for 1 cyc/oct. modulation) of 

modulation but produced better performance on the spectral modulation detection 

task than electric hearing, which had a full range of listening bandwidth and had 

access to three or six cycles of modulation. The overall better spectral profile 

resolution (but not as good as normal) in the acoustic-stimulation condition observed 

in the present experiment was generally consistent with the results from the previous 

studies, which showed that spectral peak resolution was best, on average, in normal-

hearing listeners, poorest in cochlear-implant listeners, and intermediate for hearing-

impaired listeners (Henry & Turner, 2003; Henry, Turner & Behrens, 2005). Taken 

together, it is reasonable to conclude that the spectral profile resolution of residual 

acoustic hearing is not as good as normal but is better than that of electric hearing. 

In the combined-EAS condition, the mean SMDTs were not significantly 

different from those in the acoustic-stimulation condition but were still significantly  
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Figure 16. displays mean audiogram for eight subjects with low-frequency residual 
hearing and a schematic representation of spectral modulation cycles for modulation 
frequencies of 0.5 and 1 cyc/oct audible for residual acoustic hearing. 
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higher than those in the normal control condition, indicating that adding extra 

modulation information from electric hearing to residual acoustic hearing did not 

further improve the spectral profile resolution. Cochlear-implant subjects mostly 

relied on the region of residual acoustic hearing where the spectral resolution was 

relatively better to resolve the spectral profile difference in order to discriminate the 

modulated stimuli from the unmodulated stimuli. Therefore, accurate performance on 

the spectral profile resolution task did not require broadband analysis of the signal. 

The spectral resolution in the electric-stimulation condition may be overestimated by 

the spectral profile resolution task used in the present experiment. Further research 

using a narrow-band noise carrier is required to determine which frequency regions 

are used by individual listeners to perform the task in the electric-stimulation 

condition. Effective frequency regions may be associated with a higher specificity of 

neural populations activated in electrical stimulation. This may have a potential 

clinical application in terms of specifying the “functional channels” and improving 

the clinical programming of the cochlear implant speech processor. 

Age effect on the measurement of SMTFs. There are histopathological and 

physiological evidences in animals and in humans, showing that aging adversely 

affects outer hair cell (OHC) functioning independent of hearing loss, which is 

responsible for cochlear nonlinearity, e.g., high sensitivity, sharp tuning, and 

enhanced spectral contrasts via suppression (McFadden, Campo, Quaranta & 

Henderson 1997a; McFadden, Quaranta & Henderson, 1997b; Satoh, Kanzaki, O-

Uchi & Yoshihara, 1998; Dorn, Piskorski, Keefe, Neely & Gorga, 1998; Parham, 

Sun & Kim, 1999; Torre & Fowler, 2000). Therefore, there is a concern about a 
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possible age effect on the measures of spectral profile resolution given the age 

difference between cochlear-implant (mean age = 66 yrs; st. dev. = 10.3 yrs) and 

normal-hearing groups (mean age=28.8 yrs; st. dev. = 10.7 yrs) in the present 

experiment. However, most studies designed to examine the age effect on 

psychophysical estimates of cochlear nonlinearity have shown no significant age 

differences in nonlinear cochlear processing (Peters & Moore, 1992; Sommers & 

Gehr, 1998; Lentz, Richards & Matiasek 1999). In fact, a more central auditory 

deficit, likely related to temporal resolution, is a primary factor that contributes to 

the speech-perception difficulties experienced by older individuals (Fitzgibbons & 

Gordon-Salant, 1995, 1998, 2001; Gordon-Salant & Fitzgibbons, 1999). Therefore, a 

significant between-group difference of spectral profile resolution between cochlear-

implant subjects in three stimulation conditions and normal-hearing subjects 

observed in the present experiment does not likely reflect an age effect but rather a 

reduced spectral resolution of electric and residual acoustic hearing when compared 

to that of normal hearing.  

Correlation 

 The electric-stimulation condition. There was significant inter-subject 

variability in both subjects’ spectral profile resolution (6.6 dB - 26.3 dB) and speech-

recognition performance (42%- - 76% for CNC words, 14% - 67% for AzBio 

sentences) in the electric-stimulation condition. Sentence recognition was strongly 

correlated with the spectral profile resolution at 1 cyc/oct modulation frequency (r = -

0.814, p = 0.007). For this fairly small sample of eight subjects, the spectral profile 

resolution can account for a substantial portion (r2 = 66%) of the variance of speech-
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recognition performance in cochlear-implant subjects. These results indicate that 

those listeners who are better able to determine the positions of the spectral peaks and 

valleys in the electric signal, as shown by lower spectral profile resolution thresholds, 

are, on average, more readily able to extract speech information from the signal.  

 Large variability in the ability to understand speech by cochlear-implant 

listeners is commonly reported (e.g., Firszt, Holden, Skinner, Tobey, Peterson, Gaggl, 

Runge-Samuelson & Wackym, 2004). This significant variability in speech 

understanding is thought to be a product of variations among cochlear-implant 

listeners in many factors. For example, identifying variables in postlingually-deafened 

adults related to pre-operative factors, including the duration of deafness, the duration 

of cochlear-implant use, etiology of deafness, and preoperative sentence scores, 

allows some level of prediction of postoperative speech perception ability (e.g., 

Dorman, Dankowski, McCandless, Parkin & Smith 1990; Blamey et al., 1992; 1996; 

Gantz, Woodworth, Knutson, Abbas,  & Tyler, 1993; Battmer et al., 1995; Rubinstein, 

Parkinson, Tyler & Gantz, 1999). Also, there are several hypotheses that have been 

advanced to address the underlying causes of this variability, including the number 

and function of surviving spiral ganglion cells, the placement of the electrodes within 

the scala tympani (e.g., short or long electrode array), patterns of current distribution 

within the cochlea, the status of the central auditory system, and across-subject 

differences in spectral selectivity in cochlear-implant listeners (Glasberg & Moore, 

1986; Summers & Leek, 1994; Baskent & Shannon, 2003; Boex, Kos & Pelizzone, 

2003; Cohen et al., 2003, 2004, 2005; Ferguson, Collins & Smith, 2003; Henry et al., 

2005). As discussed in the Introduction, spectral profile perception is one of the 
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measurements of spectral selectivity. A significant correlation between sentence 

recognition in noise and spectral profile resolution observed in the present experiment 

suggests that spectral resolution is a strong predictor of speech perception in cochlear-

implant listeners. Therefore, the spectral profile resolution test may have a potential 

clinical application in terms of improving the predictive power of models which use 

variables such as duration of deafness and preoperative sentence scores (e.g., 

Rubinstein et al., 1999) to describe the variance in cochlear-implant speech 

recognition. 

 A significant correlation between speech recognition and spectral profile 

resolution observed in the electric-stimulation condition is generally consistent with 

the results from previous studies, which showed a significant correlation between 

spectral profile resolution and both vowel and consonant recognition in quiet in 

cochlear-implant listeners (Henry, Turner & Behrens, 2005; Litvak et. a.l, 2007). 

However, there are several differences observed in the present experiment. First, 

while previous studies reported a strong correlation between spectral resolution and 

speech recognition in quiet, CNC word recognition was moderately correlated with 

spectral profile resolution at 1 cyc/oct modulation frequency (r = -0.564, p = 0.07) in 

the present experiment. The weaker relationship in the present experiment may result 

from assessing the spectral resolution ability of cochlear-implant listeners in a 

relatively small sample size. The relation above would be expected to be strong and 

reach a statistical significance if more data were obtained in a wide range of 

individuals across the clinical populations. Second, a new finding observed in the 

present experiment is that the relation between speech recognition and spectral profile 
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resolution not only applies to recognition in quiet but also to recognition in competing 

backgrounds. In fact, it seems that AzBio sentence recognition in noise is more 

correlated with spectral profile resolution than CNC word recognition in quiet in the 

present experiment, indicating that the spectral profile resolution is likely to be a 

major factor that contributes to the deficits of speech perception in noise in cochlear-

implant listeners. This finding supports the well-known notion that reduced spectral 

resolution in cochlear-implant listeners has a more detrimental effect on speech 

recognition in competing backgrounds than in quiet listening conditions (Turner, 

Gantz, Vidal, Behrens & Henry, 2004; Stickney et. al., 2004).  

 The acoustic-stimulation condition. The inter-subject variability in subject’s 

spectral profile resolution in the acoustic-stimulation condition (6.7 dB - 15.7 dB) 

was relatively small compared to that in the electric-stimulation condition (6.6 dB - 

26.3 dB). Although speech-recognition performance was highly variable among the 

eight implant subjects in the acoustic-stimulation condition (16% - 92% for CNC 

words, 13% - 99% for AzBio sentences), the relation between spectral profile 

resolution and speech recognition did not reach a statistical significance. The lack of 

the significant correlation between speech recognition and spectral resolution differs 

from several studies that have shown significant correlations between these two 

measures in hearing-impaired listeners (e.g., Festen & Plomp, 1983; Lutman & Clark, 

1986; Henry et al., 2005). It seems likely that other perceptual factors except for the 

spectral profile resolution may contribute to the speech-perception deficits in the 

acoustic-stimulation condition. In fact, except for the spectral profile resolution, the 

loss of absolute sensitivity in hearing-impaired listeners is another major factor 
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affecting speech perception. Amplification via the use of hearing aids compensates 

for this only to some extent, especially for those hearing-impaired listeners with 

moderate-to-profound high-frequency hearing losses. Implant subjects in the present 

experiment only had limited residual hearing up to 1000 Hz (except for S7) in the 

nonimplanted ear.  Therefore, the lack of the significant correlation may result from 

the factor of audibility, which may be the primary factor limiting speech perception in 

the acoustic-stimulation condition. 

The combined-EAS condition. Although there was inter-subject variability in 

the subjects’ spectral profile resolution (5.1 dB - 16.5 dB) in the combined-EAS 

condition, speech-recognition performance was highly uniform among the eight 

cochlear-implant subjects, ranging from 80 to 94% % for CNC words in quiet and 

from 72% to 98% for AzBio sentences in noise. The lack of a significant correlation 

between spectral profile resolution and speech recognition is likely due to a ceiling 

effect of speech-recognition performance.    

Conclusions 

(1) The overall results of spectral profile detection suggest that the spectral 

profile resolution of residual acoustic hearing is not as good as normal but is better 

than that of electric hearing. It appears that the speech-perception benefits observed in 

listeners with combined contralateral EAS are attributable to the better spectral 

resolution of residual acoustic hearing.  

(2) A significant correlation between spectral profile resolution and sentence 

recognition in noise in the electric-stimulation condition suggests that the spectral 

profile resolution accounts for a substantial portion of the variance of speech-
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recognition performance, and is a strong predictor of speech perception in cochlear-

implant listeners.  
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Chapter 5. Summary of Results from Three Experiments. 
  

The primary goals of the experiments detailed in Chapters 2 through 4 are (i) 

to investigate the benefits of low-frequency acoustic information to the speech-

perception abilities of individuals with combined contralateral EAS (Experiment 1), 

and (ii) to relate their speech-recognition performance to their underlying 

psychophysical abilities in the region of both acoustic hearing and electric hearing 

(Experiment 2 and 3).  

In Experiment 1, it was hypothesized that the differences in the minimum 

amount of low-frequency acoustic information from the nonimplanted ear available to 

cochlear-implant listeners would affect the speech-perception benefits both in quiet 

and in noise from combined contralateral EAS. Speech-recognition performance of 

CNC words in quiet and AzBio sentences in a competing babble noise at +10 dB 

SNR were measured in three listening conditions: acoustic stimulation alone, electric 

stimulation alone, and combined contralateral EAS. The acoustic stimuli presented to 

the nonimplanted ear were wide band or low-pass filtered at 125 Hz, 250 Hz, 500 Hz, 

and 750 Hz. The electric stimuli presented to the implanted ear were wide band or 

low-pass/high-pass filtered at 250 Hz, 500 Hz, and 750 Hz. The results showed that 

adding low-frequency acoustic information from the nonimplanted ear to electric 

hearing led to an overall improvement in speech-recognition performance for both 

CNC words in quiet and AzBio sentences in noise at +10 dB SNR. This improvement 

was observed even when the acoustic input was low-pass filtered at 125 Hz, 

suggesting that the speech-perception benefits are primarily attributed to the voice-
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pitch information (even one harmonic) from the acoustic input. A further 

improvement in speech-recognition performance for sentences in noise was observed 

when the low-pass cutoff frequency increased from 250 Hz to 750 Hz, suggesting that 

part of the speech-perception benefits are likely due to the improved spectral 

representation of the first formant. The limited low-frequency acoustic hearing in the 

nonimplanted ear functions as an additional “independent” channel, providing 

acoustic cues for speech perception distributing over time mostly in the time and 

amplitude domains of the speech signal, which include envelope cues, periodicity 

cues and temporal-fine-structure cues. Envelope cues and periodicity cues are 

available for residual hearing down to 125 Hz, providing information about word- 

and phoneme-size units, “manner” and “voicing” of consonant articulation, and F0, 

which leads to a substantial improvement in speech-recognition performance for both 

CNC words in quiet and AzBio sentences in noise. Additional temporal-fine-structure 

cues are also available for residual hearing up to 500- and 750-Hz, providing 

information about the first formant, which leads to a further improvement in speech-

recognition performance for sentences in noise. A mechanism that is common to 

improvement both in quiet and in noise is proposed: The information in the acoustic 

signal aids in the recognition of consonant voicing and manner which leads to a large 

reduction of word candidates in the lexicon.    Results from Experiment 1 suggest the 

importance of preserving the residual acoustic hearing in the nonimplanted/implanted 

ear in cochlear-implant listeners.  

As a minor issue, it was also hypothesized in Experiment 1 that reducing the 

overlap in frequency representation in the input filters of the cochlear implant and in 
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acoustic hearing would be beneficial to speech recognition for listeners with 

combined contralateral EAS. Speech-recognition performance of CNC words in quiet 

and AzBio sentences in a competing babble noise at +10 dB SNR was evaluated in 

three listening conditions: acoustic stimulation alone, electric stimulation alone, and 

combined contralateral EAS. The acoustic stimuli presented to the nonimplanted ear 

were wide band or low-pass filtered at 250 Hz, 500 Hz, or 750 Hz. The electric 

stimuli presented to the implanted ear were wide band or high-pass filtered at 250 Hz, 

500 Hz, or 750 Hz.  The results suggest that a reduced frequency overlap between 

acoustic and electric stimulation is not beneficial for patients who use an implant in 

one ear and who have low-frequency hearing in the other ear, due to a speech-

recognition advantage for the full frequency range over the reduced frequency range 

of the electric signal.  

Given the outcomes of significant speech-perception benefits from the limited 

acoustic input (<125 Hz) and no significant speech-perception benefits in the reduced 

frequency overlap between acoustic and electric stimulation in Experiment 1, 

clinicians should always aid the ear contralateral to an implant and use a standard 

cochlear implant programming for patients who have residual hearing on the ear 

contralateral to the implant. 

In Experiments 2 and 3, it was hypothesized that the temporal and/or spectral 

resolution of low-frequency acoustic hearing in the nonimplanted ear would be better 

than that of electric hearing, which may account for the speech-perception benefits in 

listeners with combined contralateral EAS. Psychophysical estimates of TMTFs and 

SMTFs were conducted and compared among the acoustic-stimulation, electric-
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stimulation, and combined-contralateral-EAS conditions. In addition, the temporal 

resolution and the spectral resolution of cochlear-implant subjects were also 

compared to those of normal-hearing subjects. Furthermore, the correlation of 

temporal/spectral modulation sensitivity and speech recognition was assessed 

separately in three stimulation conditions. The overall results suggest that (i) the 

temporal resolution of acoustic hearing, electric hearing, and combined electric and 

acoustic hearing is essentially normal in subjects with combined contralateral EAS; 

(ii) the spectral profile resolution of residual acoustic hearing is not as good as normal 

but is better than that of electric hearing; and (iii) it appears that the speech-

perception benefits observed in listeners with combined contralateral EAS are 

attributable to the normal temporal resolution and the better spectral resolution of 

residual acoustic hearing. The lack of any significant correlations between temporal 

modulation sensitivity and speech recognition in all three stimulation conditions 

suggests that the normal temporal/amplitude resolution of acoustic, electric and 

combined EAS is sufficient to perceive substantial acoustic features of speech linked 

to temporal envelope variations and, therefore, is not a strong predictor of speech 

perception in cochlear-implant listeners. A significant correlation between spectral 

resolution and sentence recognition in noise in the electric-stimulation condition 

suggests that the spectral resolution of electric hearing accounts for a substantial 

portion of the variance of speech-recognition performance, and is a strong predictor 

of speech perception in cochlear-implant listeners.  

The present dissertation research provided important information about the 

benefits of low-frequency acoustic input added to electric hearing in cochlear-implant 
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listeners with some residual hearing. The overall results reinforced the importance of 

preserving residual acoustic hearing in cochlear-implant listeners. 

Future Directions 

The outcomes of Experiment 1 suggest that the low-frequency acoustic 

information from the contralateral ear can provide significant speech-perception 

benefits both in quiet and in noise when that information is from an extremely limited 

frequency range (<125 Hz) and when auditory thresholds in that limited frequency 

range are elevated. Future studies are needed to investigate whether the speech-

perception benefits could be achieved in patients who have less amount of residual 

acoustic hearing, in other words; what are the minimum thresholds at the limited 

frequency range (<125 Hz) necessary for achieving an EAS effect in listeners with 

combined EAS? 

 The outcomes of Experiment 3 suggest that the measurement of SMTF by 

using a broad-band noise carrier is a meaningful way to characterize the spectral 

profile perception for both acoustic and electric hearing. Further research into the 

measurement of SMTF by using a narrow-band noise carrier in cochlear-implant 

listeners is necessary to specify the effective frequency regions associated with a 

higher specificity of neural populations activated in electrical stimulation. This may 

have a potential clinical application in terms of specifying the “functional channels” 

and improving the clinical programming of the cochlear implant speech processor. In 

addition, further research is required to investigate the potential clinical applications 

of the adaptive spectral profile resolution test. The measurement of SMTF may 
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provide a time-efficient and non-linguistic measure which may contribute to the 

prediction of performance in both adult and child cochlear-implant listeners by 

improving the predictive power of models which use variables, such as duration of 

deafness and preoperative sentence scores, to describe the variance in cochlear-

implant speech recognition, via the inclusion of the spectral profile resolution 

threshold as an additional factor. 
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