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Introduction 

 Scholars of algebra education have long lamented that few students become 

competent in the subject despite years of exposure in school.  For instance, Kieran 

(1983) states that algebra “is known to be a school subject which presents many 

cognitive obstacles to the student encountering it for the first time” (p. 162).  

Similarly, Booth (1984), after conducting a major study of student algebra 

proficiency, reports that “items representing the highest level of understanding were 

answered successfully by only a small percentage of children, and that in many cases 

the level of understanding … improved relatively little as the child progressed” (p. 2).  

Herscovics (1989) surveys data about student achievement in algebra and concludes 

that “only a minority of pupils completing an introductory course achieve a 

reasonable grasp of the course content” (p. 60).  Lee & Wheeler (1989) reach a 

similar conclusion, which they report with alarm: “It is tempting to describe high 

school algebra as it is unveiled in our research as a disaster area” (p. 53). 

In this paper, I will propose some instructional strategies that I believe can 

modestly improve student performance on some algebra tasks.  These proposals stem 

jointly from my experience as a classroom teacher and from empirical findings and 

theoretical frameworks in the scholarly literature. 

 I have deliberately chosen the word “modestly” to describe the hoped-for 

improvement in student algebra performance.  Much evidence – both scientific and 

anecdotal – suggests that symbolic algebra will always be somewhat difficult for 

many students.  There is no all-encompassing solution to the problems of algebra 

education. 
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 Nonetheless, I am optimistic about the possibility of real, measurable 

improvements in student ability to master certain aspects of symbolic algebra.  We 

are only just beginning to understand the cognitive tasks involved in learning algebra 

and doing algebra.  Insofar as our understanding of human cognition is still evolving, 

it is perhaps not only possible but indeed likely that there are distinctly better ways to 

teach algebra that are yet to be discovered and implemented. 

 In this paper, I offer some instructional strategies to help students avoid 

common errors while performing the algebra task called transforming expressions.  

Evidence shows that transforming expressions is a major stumbling block for many 

algebra students.  Using Sfard’s (1991) theory of reification, I will highlight the 

important roles that the process of parsing and the notions of subexpression and 

structural template play in competent expression transformation.  Based on these 

observations, I argue that one reason students struggle with expression transformation 

is the inattentiveness of traditional curricula to parsing, subexpressions, and structural 

templates – or, more generally, to structure.  We will see, however, that simply 

refocusing attention on these ignored aspects of algebra will not alone ensure that 

students avoid the common pitfalls.  After examining evidence that students are very 

prone to overgeneralize, I will argue for a connectionist view of how people’s minds 

work when they are learning algebra.  Utilizing these additional insights, the 

instructional strategies I ultimately recommend are strategies that focus on structure, 

but in ways that will make structure a winning competitor for student attention. 
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What is expression transformation? 

 In algebra, an expression is a single number, a single variable, or multiple 

numbers and/or variables linked by one or more arithmetic operations.  If the 

expression contains at least one variable, then it is an algebraic expression.  If it 

contains only numbers, then it is a numeric expression.  These definitions are 

consistent with those used by many student texts in recent decades (e.g. Stein, 1956; 

Payne et al., 1972; Dolciani et al., 1983; Foerster, 1994).  Note that expressions are 

not statements: they cannot be true or false.  In particular, they do not contain relation 

symbols like the equal sign.  Expressions are simply numbers, unknowns, and 

operations strung together.  In this study, we will only consider expressions in which 

the operations are limited to the basic arithmetic operations of addition, subtraction, 

multiplication, division, exponentiation, and root-taking; we will not consider 

logarithms, trigonometric functions, or other more advanced “functional” operations. 

 Transforming an expression is a relatively complex task to describe precisely.  

It will be necessary first to describe two simpler tasks of algebra. 

Two of the most basic activities of elementary algebra are simplifying numeric 

expressions and evaluating algebraic expressions.  Simplifying a numeric expression 

consists of performing the indicated operations in a proper sequence to obtain a single 

number.  Evaluating an algebraic expression consists of replacing each of the 

variables in the expression with given numbers and then simplifying the resulting 

numeric expression.  Examples A and B below show typical instances of the sorts of 

exercises one encounters early in many algebra textbooks, as well as the sort of 

simplification work that a competent student might perform: 
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Example B 

 

Evaluate xyx 25 2 −  using 2−=x  and 3−=y . 

 

Example A 

 

Simplify 2)64(52 −+− . 
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Two algebraic expressions are said to be equivalent if they yield identical 

numerical results upon being evaluated for any allowable value of the variable.  For 

instance, the expressions xyx 243 ++  and yxy 35 ++  are equivalent: both 

expressions yield the number 22 when evaluated with 2=x  and 3=y ; both 

expressions yield the number 58−  when evaluated with 6−=x  and 7−=y ; and so 

on.  This characterization of expression equivalence is the one in use in many 

textbooks (e.g. Payne et al., 1972; Dolciani et al., 1983). 

Transforming an algebraic expression consists of replacing that expression 

with an equivalent expression.  For instance, one might transform xyx 243 ++  into 

the equivalent yxy 35 ++ , or perhaps into the equivalent yx 45 + , which requires 

fewer symbols to write.  Context or instruction will dictate what sort of equivalent 

expression is appropriate.  Simplifying an algebraic expression and factoring an 

algebraic expression are two common types of transforming, but it is not necessary to 

elaborate here precisely what those terms mean.  Note that thus far I have not 

described how to transform an expression but only what expression transformation is. 

 

Evidence that students have difficulty with expression transformation 

 While teachers and researchers have identified algebra in general as an area of 

difficulty for many students, they have reported expression transformation as an area 

of particular difficulty.  Because of the frequency and rule-like regularity with which 

students are prone to make certain errors, Sleeman (1984) and others refer to these 

“classic” errors as mal-rules.  The central aim of this paper is to contribute research-
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based instructional strategies to help students master the skill of expression 

transformation and avoid producing these well-known errors. 

 Marquis (1988) is a good example of someone who has collected some of 

these common errors together into one article.  She describes the universality of a 

certain set of errors made by students who are attempting to transform algebraic 

expressions.  She provides a list of twenty-two such errors: 
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Marquis emphasizes that the regular occurrence of such mistakes in algebra is 

strikingly independent of context: “After a few years of teaching mathematics courses 

in high school, teachers know which concepts and manipulations will cause difficulty 

for students.  From year to year, class to class, students often make the same algebraic 

mistakes over and over” (p. 204).  She also emphasizes the stubborn persistence of 

these errors.  Student use of these mal-rules, according to Marquis, does not seem to 

be merely an appropriate developmental step on the path to eventual mastery; on the 

contrary, she explains that “in upper-level mathematics courses, students’ indication 

of mastery of the new concepts may be obscured by common algebraic errors” (p. 

204). 

 Many teachers corroborate Marquis’ observations about the universality and 

persistence of the sorts of errors on Marquis’ list.  Grossman (1924), for instance, 

provides the following examples of “cancellation” errors: 

 

Grossman describes such mistakes as commonplace:  

Every teacher of experience knows that a great many of his algebra 

pupils all the way from the first year in high school up to college 

continue with almost comical regularity to make strange mistakes in 

the subject of “cancellation” in fractions—mistakes that show clearly 

that the essence of the matter has escaped them. (p. 104) 
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Schwartzman (1977) provides the following examples of “distribution” errors: 

 

He confirms that “these are three mistakes that my students frequently make” (p. 

594), echoing others in noting the persistence and universality of such mal-rules.  

Martinez (1988), too, describes common algebra errors of this sort.  He provides a 

“list of students’ common errors” which he takes to be “representative of the kinds of 

difficulties that seem to be correlated with students’ misunderstanding of factors and 

terms” (p. 747).  Nearly all of the errors on his list are very similar to the errors 

Marquis included: 

 

Algebra beginners are not the only students who fall victim to these mal-rules; Parish 

& Ludwig (1994) provide a list of twenty “typical mathematical errors made by high 

school and lower division college students” (p. 235).  They write that “the 
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mathematics and science teaching professions are well aware of the fact that certain 

types of mathematical errors are continually repeated by students.  Large numbers of 

typical errors are documented in the literature” (p. 235).  This sampling of teacher 

observations typifies a broader awareness in the profession that algebra students are 

universally prone to persistently make “mal-rule” errors. 

 The authors of some major textbooks also seem to show an awareness that 

students are prone to making these sorts of errors when transforming expressions.  

Stein’s 1956 text is typical in this regard.  In this text, each lesson beings with a 

“Procedure” that provides precise step-by-step instructions for performing the skill 

under consideration.  For the lesson on “Reduction of Fractions” (p. 146), however, 

Stein departs from the usual format by including a step in the procedure for what not 

to do (emphasis mine): 

 

I.  Aim: To reduce algebraic fractions to lowest terms. 

II.  Procedure 

 1.  Find the largest common factor of both numerator and denominator.  

If the numerator, or denominator, or both are polynomials, factor them 

if possible. 

 2.  Divide both numerator and denominator by the largest common 

factor. 

 3.  Do not cancel term with term.  See sample solutions 6, 7, and 8. 

 4.  Check by going over the work again or by numerical substitution. 

(p. 146) 
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Stein repeats the warning against canceling terms in his commentary (p. 146) 

to Sample Solution 6 (emphasis mine): 

 

Foerster’s (1994) Algebra 1 text shows a similar awareness of student susceptibility 

to this and other common errors.  In a lesson on “Simplifying Rational Algebraic 

Expressions,” Foerster includes the following warning: “Do not read more into the 

definition of canceling than is there!  For instance, in 
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x’s” (p. 461).  To reinforce the point, Foerster includes a set of exercises with the 

instruction “Can canceling be done?  If so, what can be canceled?” (p. 462).  

Elsewhere, Foerster includes the following exercise designed to draw student 

attention to a mal-rule frequently followed when squaring a binomial: “Explain the 

error in the work below: 16)4( 22 +=+ xx ” (p. 199).  The newer Core-Plus 

Mathematics Project texts also show awareness of common student algebra errors.  

For instance, Coxford et al. (2003) includes the following reflection question (p. 205): 
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Elsewhere, the same authors include the following writing prompt: “When beginning 

students are asked to expand expressions like 2)( ax + , one very common error is 

often made.  What do you think that error is, and how could you help someone avoid 

making the error?” (p. 214).  The Teacher’s Guide’s suggested response begins as 

follows: “Students often forget the middle term and expand 2)( ax +  to 22
ax + ” (p. 

T214).  Thus, evidence from teachers and from textbooks makes clear that students 

are particularly prone to have difficulty with the task of expression transformation.  In 

particular, they are universally prone to make certain predictable and persistent errors. 

 

Simplifying numeric expressions and evaluating algebraic expressions 

To help students overcome the transformation errors described above, we 

need to diagnose what goes wrong when students produce these common 

transformation errors.  Before trying to diagnose the problem, however, I will 

You’ve found that there are some common errors that occur when 

people operate on symbolic expressions in an effort to produce 

equivalent but more useful forms.  What advice would you give to help 

someone understand why each of the following pairs of expressions is 

not equivalent? 

a.  )( bxa +  is not equivalent to bax + . 

b.  bx −  is not equivalent to xb − . 

c.  ))(( bxax  is not equivalent to abx . 

d.  )( bx −−  is not equivalent to bx −− . 
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characterize competent performance of expression transformation.  In order to give a 

precise account of competent performance of this skill, I must first give a more 

precise account of the two simpler algebraic skills mentioned earlier, namely 

simplifying numeric expressions and evaluating algebraic expressions. 

Simplifying numeric expressions and evaluating algebraic expressions are not 

trivial tasks for novices.  Reexamining Examples A and B above, we can isolate three 

distinct competencies involved in successful performance of these skills.  First, 

students need to correctly perform arithmetic operations.  For instance, in Example A, 

the simplifier needed to know that five times four equals twenty.  Second, students 

need to successfully interpret and use algebraic syntax, that is, the symbolic notation 

of algebra.  For instance, in Example A, the simplifier needed to know that the 

juxtaposition of 5 and 2)64( −  indicates multiplication.  Similarly, in Example B, the 

evaluator needed to introduce an appropriate notation for multiplication other than 

juxtaposition once x and y were replaced with negative numbers. 

The third competency is determining an appropriate order of precedence for 

the operations in the expression.  When multiple operations – or even multiple 

instances of the same operation – are indicated in an expression, different numerical 

results are sometimes obtained depending upon which operations are given 

precedence over which others.  Consider, for instance, Examples C and D below: 
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In Example C, the simplifier treated the addition as more precedent than the 

multiplication.  In Example D, the simplifier treated the multiplication as more 

precedent than the addition.  Two different answers result.  If expressions containing 

multiple operations are to have unambiguous meaning, then it is necessary for all 

users of algebra to make the same (or equivalent) decisions about operation 

precedence. 

 Several researchers (e.g. Sleeman, 1984; Ernest, 1987; Thompson & 

Thompson, 1987; Kirshner & Awtry, 2004) have illustrated the notion of operation 

precedence using tree diagrams, which do not allow for the ambiguity present in 

standard algebraic notation.  In a tree diagram, a more precedent operation appears 

lower on the tree than a less precedent one.  Here are tree diagrams illustrating the 

precedence decisions of the simplifiers in Examples C and D above: 

 
EXAMPLE C 

 

Simplify )5(32 + . 

EXAMPLE D 

 

Simplify )5(32 + . 
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 For virtually all multi-operation expressions written in standard (i.e. non-tree) 

notation, mathematical conventions dictate an agreed-upon order of operation 

precedence, thereby eliminating ambiguity and determining a unique interpretation.  

Some of the conventions that determine operation precedence involve the use of 

notations that appear on the page, while others do not involve visible notations.   

 

The non-notational precedence conventions: The hierarchy of operations 

 Some teachers (e.g. Schwartzman, 1977; Rambhia, 2002) describe the non-

notational conventions for operation precedence by referring to the six basic 

operations (addition, subtraction, multiplication, division, exponentiation, and root-

taking) as occupying levels in a hierarchy of operations.  Kirshner (1989) provides the 

following table of the hierarchy of operations: 

 

In this hierarchy, exponentiation and its inverse (root-taking) occupy the level of 

highest precedence; multiplication and its inverse (division) occupy the middle level; 

and addition and its inverse (subtraction) occupy the level of lowest precedence.  
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Revisiting the expression )5(32 +  from Examples C and D above, we see that 

according to this hierarchical convention, it is standard to interpret the multiplication 

as more precedent than the addition in the expression.  Thus, Example C above is 

incorrect while Example D is correct, according to convention.  This hierarchical 

convention is non-notational in that knowledge external to the written form of an 

expression dictates the order of precedence.  (We will see later, however, that 

Kirshner (1989) identifies hints present in standard algebraic notation regarding the 

hierarchical precedence order.) 

 The core of the hierarchy – that exponentiation is more precedent than 

multiplication, which is in turn more precedent than addition – has deep mathematical 

underpinnings and is universally accepted.  Miller (2006), in a study of mathematical 

notations, indicates that this basic convention was followed “in the earliest books 

employing symbolic algebra in the 16th century.”  Similarly, Peterson (2000) affirms 

that the basic hierarchy of precedence “appears to have arisen naturally and without 

much disagreement as algebraic notation was being developed in the 1600s and the 

need for such conventions arose.”  This history indicates that the order of precedence 

is not simply the sort of convention adopted willy-nilly that could have been 

otherwise; rather, it reflects something essential and deep about the operations 

themselves.  Peterson posits that distributive relationships among the operations make 

this hierarchy the only natural one: exponents and radicals distribute over 

multiplication and division, while multiplication and division distribute over addition 

and subtraction.  Both Peterson and Wu (2007) explain that since polynomials – 

primary objects of study in symbolic algebra – are sums of products, the easy 
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representation of polynomials in symbolic notation naturally motivated a convention 

in which multiplication is understood to be more precedent than addition.  Thus, 

although teachers often present the hierarchy as a convention designed strictly to 

eliminate ambiguity (e.g. Rambhia, 2002), historical evidence belies this conclusion 

and points to something mathematically deep and essential about this “convention.” 

 While the core notion of exponentiation-precedes-multiplication-precedes-

addition is uniformly accepted, its application becomes slightly more controversial 

when dealing with two related situations: the presence of any of the three inverse 

operations, and the appearance of multiple operations from the same hierarchical 

level in the same expression.  Typically, the convention is stated in a manner similar 

to Kirshner (1989, p. 276): “In case of an equality of levels, the left-most operation 

has precedence.”  In other words, perform all exponents and/or roots from left to 

right, then all multiplications and/or divisions from left to right, then all additions 

and/or subtractions from left to right.  Yet a case can be made that this manner of 

stating the convention over-specifies the order.  For one thing, in an expression such 

as )2)(3( +− xa , it makes no difference whether the subtraction or addition is 

performed first because the precedence of the intervening multiplication.  In tree 

notation, it is easy to see the independence of these two operations in the separateness 

of the tree’s two main “branches”: 

 

 
* 
 

– + 
 

   a          3       x            2 
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Moreover, since addition and multiplication are associative operations, it truly does 

not matter in expressions like cba ++  (or abc ) which addition (or multiplication) is 

performed first, even without the presence of an intervening higher-precedence 

operation.  And, while Miller (2006) affirms that most “modern textbooks seem to 

agree that all multiplications and divisions should be performed in order from left to 

right,” he acknowledges that as recently as 1929 there was no agreement as to 

whether this was so or whether all multiplications should precede all divisions.  

Rather than overspecify unnecessarily, Wu (2007) prefers to avoid the question of 

what to do about multiple occurrences of operations from the same level of the 

hierarchy.  His simpler formulation of the convention is “exponents first, then 

multiplications, then additions” (p. 2), but the cost of this economical formulation is 

the elimination of the inverse operations as independent operations, requiring a more 

sophisticated understanding of subtraction as addition of the opposite, division as 

multiplication by the reciprocal, and root-taking as raising to a fractional power.  

Thus, in formulating the details of the hierarchy of operation precedence, there is a 

trade-off between precision and accessibility to beginners. 

 

Notational precedence conventions: Grouping symbols 

 Notational conventions for indicating operation precedence are syntactical 

indications in the written form of an expression.  These include use of parentheses, 

brackets, and braces (often called grouping symbols); for instance, compare )3(2 +x , 

in which the addition understood as precedent, and 32 +x , in which the 

multiplication is understood as precedent.  Notational precedence conventions also 
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include use of the horizontal fraction bar and the radical symbol; for instance, 

compare 
2

3+x
 (addition more precedent) with 

2

3
+x  (division more precedent), and 

3+x  (addition more precedent) with 3+x  (root-taking more precedent).  

Kirshner (1989) points out that raised notation also indicates precedence; for instance, 

compare 32 +n  (addition more precedent) with 32 +n  (exponentiation more 

precedent).  If there are multiple operations within a grouped or raised portion of an 

expression, the conventional hierarchy of operations determines precedence. 

 Wu (2007) points out that there is a trade-off between utilizing notational and 

non-notational conventions to indicate operation precedence.  On the one hand, a 

well-placed set of parentheses can help stave off parsing errors, and so grouping 

symbols are sometimes written even when formally unnecessary.  Redundant 

parentheses, such as those in ( ) ( ) 5104103 2 +⋅+⋅ , can serve to reinforce the usual 

precedence hierarchy rather than to override it.  Taken to the extreme, the use of 

notational precedence indicators could obviate the need for learning a hierarchy of 

operations.  For instance, the expression 2)64(52 −+−  from Example A above could 

be written as the formally-equivalent )))64((5(2 2−+− .  But, as Wu points out, our 

current algebraic conventions make for a “notational simplicity” (p. 2) in comparison 

to such parentheses-laden expressions, despite the fact that these conventions place a 

certain demand upon the user to memorize and apply the operation hierarchy. 

 

 

 



 19 

Parsing: Implicit activity versus explicit activity 

We are now ready to define parsing.  The term “parsing” comes from 

computer science and linguistics, where it is used to describe the process of breaking 

down a sequence of symbols or words into component parts.  Many researchers (e.g. 

Sleeman, 1984; Kirshner, 1989; Jansen, Marriott, & Yelland, 2007; Landy & 

Goldstone, 2007a) have written about parsing as an important component of algebraic 

ability.  In the context of algebra, parsing an expression means breaking the 

expression into pieces using the precedence conventions.  We can therefore say that, 

along with performing arithmetic operations and interpreting and using algebraic 

syntax, parsing is the third component of competent performance of simplifying 

numeric expressions, as in Example A, and evaluating algebraic expressions, as in 

Example B. 

Note, however, that in written performances like Examples A and B, the act of 

parsing is itself invisible.  We can usually infer what parsing decisions were made 

from what is visible; at least one parsing decision is implicit in each step.  But each 

step also involves performance of arithmetic and interpretation of syntax.  Moreover, 

students sometimes perform more than one operation per step, in which case their 

parsing decisions are even less apparent. 

We can contrast the implicitness of the parsing in Examples A and B with 

more explicit forms of parsing.  One explicit form of parsing would involve inserting 

the redundant parentheses.  Drawing an expression tree is another explicit way to 

parse an expression.  Both inserting redundant parentheses and drawing expression 

trees involve indicating visibly the order of operation precedence. 
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Transforming expressions 

Now that we have considered competent performance of the two more basic 

skills of simplifying a numeric expression and evaluating an algebraic expression, we 

are ready to return to the primary skill under consideration in this paper, namely 

expression transformation. 

Thus far, I have only described the result of transforming an expression: when 

an expression is transformed correctly, an equivalent expression is produced.  I have 

also shown examples of “classic” incorrect expression transformation.  It is time to 

identify exactly what skills and concepts are involved in correctly transforming an 

expression.  How does one go about finding an appropriate equivalent expression? 

The following account builds upon writings in the information processing 

tradition, such as Matz (1980), Kirshner (1985), and Ernest (1987).  Note that the 

following explanation of expression transformation is an idealization of algebraic 

behavior.  I am not, in fact, making any claims about what actually transpires in the 

brains of users of algebra. 

 

Generalization, and the two “faces” of algebra 

To explain how one goes about the relatively complex task of transforming an 

algebraic expression, I must first say a bit about how algebraic symbolism is used for 

the purpose of generalization.  In the process of describing algebra’s capacity for 

generalization, I will elaborate upon two mutually reinforcing and codependent 

aspects of algebra, which I will call the referential and structural aspects of algebra. 
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In contrast to expression transformation, which certainly resides within the 

realm of algebra, the two more simple skills discussed fall basically within the realm 

of arithmetic.  True, the two do involve algebraic syntax for indicating operations, 

and they do involve algebraic conventions for operation precedence.  Evaluating even 

involves variables, albeit briefly.  However, we can characterize these activities as 

arithmetic rather than as algebra because they do not involve generalization.  More 

than anything else, it is generalization – and not the presence of variables – that 

demarcates the territory of algebra. 

Kaput (1995) describes two ways in which algebra functions as a tool for 

generalizing.  First, algebra can generalize arithmetic facts.  For instance, each of the 

arithmetic facts 505 =+ , 12012 =+ , and 707 −=+−  are instances of the 

algebraic generalization mm =+ 0 .  Second, algebra can generalize relationships 

among varying quantities.  For instance, the relationship between the perimeter p of a 

rectangle and its base b and height h can be described by the generalization 

hbp 22 += . 

When algebra is used to generalize arithmetic facts or relationships among 

quantities, its variables and expressions refer to numbers or quantities.  These 

“referred to” numbers or quantities have an existence that is independent of the 

algebra symbolism used to express the generalizations on paper. 

Yet algebraic symbolism is powerful not only because of its capacity for 

symbolically capturing generalizations.  Algebraic symbolism’s power resides also in 

its ability to be considered without referential context.  For instance, while the 

expression hb 22 +  can be considered in the context of rectangle and perimeter, it 
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also can be considered divorced from this context as a string of syntactically-related 

symbols.  The task of transforming an expression is naturally performed while 

operating in such a decontextualized framework, as I will explain below. 

We can idealize the importance of algebra in human activity as follows: first, a 

real situation about related quantities is generalized using algebraic symbolism; then, 

the symbolism is transformed into an equivalent form that is somehow different from 

the original form; and finally, the new form is usefully related back to the context that 

generated it.  In the idealized description just provided of how people use algebra, the 

first and last phase of the process are alike in their focus on external referents, while 

the middle phase differs from the other two in its focus away from external referents 

and toward formal use of the symbolic language.  Many researchers have therefore 

pointed out that it is possible to speak about two “aspects” (e.g. Kaput, 1995) or 

“faces” (e.g. Kirshner, 2006) of algebra, one focused on external referents and one 

focused away from them.  Kirshner, for instance, describes the two faces of algebra as 

follows: 

The empirical face points outward toward domains of reference, 

toward modeling phenomena in the world, toward application, toward 

number, quantity, and shape.  The structural face points inward to the 

logical infrastructure, to the grammar of rules and procedures 

abstracted from external realms of interpretation. (p. 13) 

Henceforth, I will describe these two aspects or faces of algebra as referential and 

structural. 
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 Referential and structural algebra are co-dependent.  Both are essential 

functions of algebra in human activity.  Kirshner (2006) affirms the complementarity 

and necessity of the referential and structural aspects of algebra: “Internal structure 

and external reference are complementary and equally vital aspects of algebraic 

knowledge” (p. 14).  Kaput (1995) agrees that the two aspects are complementary, 

touting both “the traditional power of algebra [that] arises from the internally 

consistent, referent-free operations that it affords” (p. 76) and the importance of the 

“semantic starting point where the formalisms are initially taken to represent 

something” (p. 76).  Indeed, both algebra’s referential function and its structural 

function are powerful and necessary for algebra to be important for people. 

  

The rules of algebra 

Expression transformation is one of the tasks for which the structural aspect of 

algebra evolved.  The proces of transforming an expression can naturally be described 

by disregarding contextual referents and approaching algebraic symbolism formally.  

That said, in order for algebra to function in this decontextualized realm, one must 

have a supply of previously accepted generalizations of arithmetic facts.  These 

previously accepted generalizations are often simply referred to as the rules of 

algebra. 

 There is no “official” list of the rules of algebra.  Nearly all algebra texts 

would include any commutative, associative, identity, and distributive properties of 

the basic arithmetic operations as rules of algebra.  They might also include properties 
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of exponents and properties of fractions.  The rules are usually stated as equations, as 

shown here: 

 

Note that each rule comprises two expressions, which we shall refer to as the rule’s 

expressions. 

A thoroughly formal and axiomatic approach to algebra would designate a 

minimal number of these rules as postulates and then regard the other rules as proven 

theorems.  Postulates are arithmetic generalizations accepted empirically and 

inductively without proof.  Theorems, on the other hand, are derived from known 

rules.  In practice, however, competent users of algebra need not concern themselves 

with the distinction between postulate and theorem.  In fact, even expert users of 

algebra are not necessarily aware of the distinction: the rule 00 =⋅m  is typically 

regarded as a theorem in formal treatments of algebra, yet for most users of algebra 

this rule is simply an empirical generalization of known arithmetic facts.  Since we 

are describing the use of algebra, we need not concern ourselves with any distinction 

between postulates and theorems, but can simply regard all previously and 

canonically accepted conclusions as rules. 

 

 

Examples of rules of algebra 

 

Commutative Property of Multiplication:   nmmn =  
 
Distributive Property of Multiplication over Addition: mpmnpnm +=+ )(  

 

Cancellation Property of Fractions:    
n

m

np

mp
=   
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Transforming an expression: Matching given expressions to rule expressions 

 The rules of algebra can be used to transform expressions in three distinct 

ways.  I will describe the most basic way here; the other two will be described a bit 

later. 

The basic way to use a rule to transform an expression involves matching the 

given expression to one of the expressions in a rule.  Suppose, for instance, that a 

person encounters the expression )3(2 +x  and wishes to transform it.  That person 

would compare the expression to each known rule of algebra, searching for a rule 

expression of which )3(2 +x  is an instance.  That person might select )( pnm + , one 

of the expressions in the Distributive Property of Addition over Multiplication 

mpmnpnm +=+ )( .  In this case, 2 is playing the role of m, x is playing the role of 

n, and 3 is playing the role of p.  After making this match, the person would turn to 

the rule’s second expression – in this case mpmn +  – and substitute 2, x, and 3 for m, 

n, and p respectively, obtaining )3(22 +x .  The result, )3(22 +x , is equivalent to the 

given expression )3(2 +x . 

 In the preceding example, )3(2 +x  was an instance of the rule expression 

)( pnm +  in the most basic of ways: each variable in the rule expression )( pnm +  

corresponded directly with either a number or a single variable in the given 

expression )3(2 +x .  Tree diagrams make the simplicity of the match even more 

apparent: 
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The trees of the two expressions have identical branch patterns and identical 

operations at the nodes of the branches; the only difference between the two 

expressions is that one’s tree terminates in 2, x, and 3 while the other’s tree terminates 

in a, b, and c. 

 Were such one-to-one matching of given expression to rule expression the 

only method of expression transformation, then it would indeed be a limited activity, 

for it would only be usable if one were lucky enough to know a rule with an 

expression that constituted a one-to-one match to the given expression.  Were one-to-

one matching the only method of expression transformation, then in order to be 

prepared for all the possible expressions one might need to transform, one would need 

to memorize many, many rules. 

 Fortunately, such one-to-one matching is not the only way to transform 

expressions.  The extraordinary power of expression transformation resides in the fact 

that it often can be carried out when the given expression and the rule expression do 

not match in this one-to-one fashion.  There are two additional ways in which one can 

transform expressions.  Both depend upon a careful characterization of subexpression 

and structural template. 

 

Tree diagram for )3(2 +x :   Tree diagram for )( pnm + : 

 
  *      * 
 
 2  +    m  + 
 
 
  x  3    n  p 
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Subexpressions and structural templates 

Tree diagrams provide a useful medium for illustrating the notion of a 

subexpression.  Consider, for instance, the following tree, which shows the 

expression 232 yx + :

  

A subexpression of 232 yx +  is an expression obtained by considering any of the 

tree’s numbers, variables, or operations and the portion of the tree lying below it.  

Thus, if we take the leftmost of the two multiplication signs and everything below it, 

we obtain the subexpression x2 .  If we take the rightmost of the two multiplication 

signs and everything below it, we obtain the subexpression 23y .  If we take the 

exponentiation sign and everything below it, we obtain the subexpression 2y .  If we 

take just the 3, we obtain the subexpression consisting only of the number 3.  The 

complete list of subexpressions of 232 yx +  is: 2; x; 3; y; 2y ; x2 ; 23y ; 232 yx + . 

 We come here to a crucial observation: to determine an expression’s 

subexpressions, one must be able to parse that expression.  Parsing, in other words, is 

a prerequisite skill for determining subexpressions.  One cannot identify 

subexpressions unless one knows how to parse according to the conventions about 

operation precedence.  2y  is a subexpression of 232 yx +  because when the 

Tree diagram for 232 yx + : 

+ 
 

*              * 
 

2            x        3            ^ 
 

       y    2 
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operations of 232 yx +  are performed according to the order of precedence, 2 and x 

are multiplied.  On the other hand, even though 3+x  and y3  are perfectly good 

expressions in their own right, and even though these symbol strings occur in 

232 yx + , neither is a subexpression of 232 yx + . 

 We also need to define a set of notions that are closely related to the notion of 

subexpression.  The dominant operation of an expression (or of a subexpression) is 

the least precedent operation of that expression (or subexpression).  For example, 

addition is the dominant operation in the expression 32 +x  while multiplication is the 

dominant operation in the expression )3(2 +x .  When addition (or subtraction) is the 

dominant operation, then the subexpressions created by that addition (or subtraction) 

are called terms.  So the terms of 32 +x  are the subexpressions x2  and 3.  When 

multiplication is the dominant operation, then the subexpressions created by that 

multiplication are called factors.  So the factors of )3(2 +x  are 2 and 3+x .  When 

division is the dominant operation, then the first subexpression is the numerator and 

the second is the denominator.  When exponentiation is the dominant operation, then 

the first subexpression is the base and the second is the exponent. 

 We can also define the notion of the possible structural templates for an 

algebraic expression.  For our purposes, a structural template for an expression is 

another expression containing only variables and operations (i.e. no numbers) that 

possesses a very particular sort of “top-down” identicalness to the original expression.  

More specifically, some of the two expressions’ least precedent operations and their 

indicated order of precedence must be exactly the same.  For example, returning to 

the expression 232 yx + , we see that all of the following are possible structural 
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templates for 232 yx + : ba + , bca + , d
bca + , cab + , cdab + , e

cdab + , and even 

simply a .  Again, tree diagrams provide a very useful medium for illustrating the 

possible structural templates of an expression.  Consider again the tree diagram of 

232 yx + , shown several times below side-by-side with the tree diagram of one of its 

structures.  In each 232 yx +  diagram, the subexpressions playing the roles of the 

template’s variables are circled.  This circling makes evident the sense in which the 

original expression is “identical” to the structural template:  

 

 

Tree diagram for cdab + : 
+ 
 

*              * 
 

a            b        c            d 

 
     
   

Tree diagram for bca + : 
+ 
 

a              * 
 

        b            c 

 

  

Tree diagram for 232 yx + : 

+ 
 

*              * 
 

2            x        3            ^ 
 

    y    2 

Tree diagram for 232 yx + : 

+ 
 

*              * 
 

2            x        3            ^ 
 

             y    2 
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 It is important to emphasize that most expressions have several possible 

structural templates.  Depending upon the context, one might choose a structural 

template including either more or fewer of its operations, embedding fewer or more 

of the least precedent operations within variables. 

 Again, determining the possible structural templates for an expression 

depends directly upon one’s ability to parse.  For this reason, we might instead refer 

to a structural template of an expression as a parse of that expression, forming a noun 

out of the verb.  Also, henceforth I will use the term structure to refer to the 

component of algebraic knowledge that concerns understanding of parsing, 

subexpressions, and structural templates. 

 

Transforming an expression: Using subexpressions 

Now that I have precisely defined all of the structural notions described 

above, I can proceed to describe the two remaining ways, along with straightforward 

matching of expression to rule, to transform an expression.  Both of these ways to 

transform an expression depend heavily upon the notion of an expression’s 

subexpressions. 

Tree diagram for ba + : 
+ 
 

a              b 

Tree diagram for 232 yx + : 

+ 
 

*              * 
 

2            x        3            ^ 
 

    y    2 
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The second way to transform expressions utilizes the capacity of a variable in 

a rule to stand for an entire subexpression of a given expression.  Consider again the 

expression )3(2 +x .  Suppose again that a person wishes to transform this expression.  

This time, suppose the person selects the expression mn  from the Commutative 

Property of Multiplication nmmn = .  Although mn  is not a one-to-one match for 

)3(2 +x  in the way that )( pnm +  was, mn  is a structural template for )3(2 +x .  In 

this case, 2 is playing the role of m and the entire subexpression 3+x  is playing the 

role of n.  Here is the match in tree diagrams, with the subexpression 3+x  circled to 

emphasize that we are treating it as a single entity matched with n: 

 

After making this structural match, the person would consider the rule’s second 

expression – in this case nm  – and substitute 2 and 3+x  for m and n, respectively, 

obtaining 2)3( +x .  The result, 2)3( +x , is equivalent to the given expression 

)3(2 +x . 

 The third way to transform expressions involves finding a subexpression of 

the given expression for which a rule expression is a structural template.  Consider 

once more the expression )3(2 +x .  Suppose again that a person wishes to transform 

this expression.  This time, suppose the person selects the expression nm +  from the 

Tree diagram for )3(2 +x :   Tree diagram for mn : 

 
  *      * 
 
 2  +    m  n 

 
 
  x  3     
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Commutative Property of Addition mnnm +=+ .  Although nm +  is not a 

structural template for the given expression, it is a structural template for the 

subexpression 3+x .  In this case, x is playing the role of m and 3 is playing the role 

of n.  In tree diagrams, to see the match one must ignore part of one tree and focus on 

a subexpression only, which is circled here:  

 

After making this structural match, the person would turn to the rule’s second 

expression – in this case mn +  – and substitute x and 3 for m and n, respectively, 

obtaining )3(2 x+ .  The result, )3(2 x+ , is equivalent to the given expression 

)3(2 +x .  In tree diagrams, it is easy to see that only a subexpression is affected by 

the transformation; a portion of the tree is unchanged by the transformation: 

 Before the transformation:   After the transformation: 

 

Tree diagram for )3(2 +x :   Tree diagram for nm + : 

 
  *       
 
 2  +      + 

 
 
  x  3    m  n 

 

 

          ×  
 
 
          2        + 
 
 

   x    3 

 

          ×  
 
 
          2        + 
 
 

   3    x 
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Clearly, expression transformation is extremely powerful.  It allows us to 

transform all of an expression or just a part of an expression.  Moreover, the capacity 

of variables to stand for subexpressions renders unnecessary the memorization of 

many individual rules like mpnpnm )()( +=+ , ))(())(( nmqpqpnm ++=++ , and 

so on; the single rule nmmn =  suffices to generalize these and infinitely other more 

specific instances.  We can therefore transform all sorts of expressions while 

memorizing only a relatively limited set of rules. 

 

Using reference as support for expression transformation 

Before completing our description of expression transformation, we need to 

consider the role that referential algebra plays in the process. 

In our idealized description of how people use algebra, we located expression 

transformation squarely within its structural aspect.  Thus far in our description of 

expression transformation, we have regarded the rules of algebra as givens, and 

therefore the process of transforming an expression has been a purely formal process 

of using and following rules – the conventions of operation precedence and the rules 

of algebra – precisely.  We have been regarding algebraic expressions as mere symbol 

strings to be interpreted and operated upon while ignoring their possible referential 

meanings. 

It is also possible to incorporate referential interpretations into the process of 

expression transformation.  These interpretations provide support for the formal 

structural decisions that occur during the transformation process described above.  
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Here is an example from the Core-Plus Mathematics Project of how 

referential interpretations can be used to support the structural transformation process.  

Coxford et al. (2003, p. 188) describe a situation involving profit and expenses for 

production of a CD: 

 

Letting x represent the number of CDs sold, students form a generalization: for any 

number x of CDs sold, the expression 000,365)52.081.0( −+ xx  represents the profit 

made from these sales.  Forming this generalization is clearly an act of referential 

algebra.  Now, suppose the students want to transform this expression.  Certainly 

students could transform the expression to the equivalent 000,36533.1 −x  using the 

rules of algebra as described above.  However, students can also reach the same 

conclusion by thinking about the situation and forming a new generalization.  

Specifically, it should be clear to students that while the positive component of the 

profit can be computed by individually multiplying the number of CDs sold by the 

royalty income and the publishing rights income and then adding, this profit can also 

 

Suppose that when a new band recorded its first album with a major 

label, it had to deal with these business conditions: 

• Expenses of $365,000 for the recording advance, video 

production, touring, and promotion (to be repaid out of 

royalties) 

• Income of $0.81 per CD from royalties 

• Income of $0.52 per CD for publishing rights 
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be computed by adding the royalty income per CD and the publishing rights income 

per CD and then multiplying by the number of CDs sold.  Depending upon the 

experience of the student, such referential reasoning could inform the student’s 

thinking about the symbol manipulations.  The Teacher’s Guide explains that students 

can reach the conclusion about the equivalence of 000,365)52.081.0( −+ xx  and 

000,36533.1 −x  by applying “contextual knowledge to make sense of rearrangements 

of symbols” (p. T188).  Elsewhere, the Teacher’s Guide explains how empirical 

evidence from tables of values or from graphs can be used as referential support for 

expression transformation decisions. 

Although referents can, as illustrated by these examples, be used as supports 

during expression transformation, this paper deals primarily with student learning of 

expression transformation as a structural task.  Henceforth, whenever I refer to 

expression transformation, unless I specifically indicate otherwise, I will be 

describing a purely structural approach to expression transformation that utilizes the 

known rules of algebra without any further referential support. 

 

Diagnosing student difficulties with expression transformation 

 Our overall goal in this paper is to derive some instructional strategies to help 

students overcome some common difficulties that they have when transforming 

algebraic expressions.  In the previous section, I provided a careful description of 

competent performance of expression transformation.  In particular, I uncovered the 

crucial roles for expression transformation of a procedure called parsing and of a set 

of structural concepts, especially subexpression and structural template. 
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 Now we will begin to diagnose what goes wrong when students transform 

expressions incorrectly.  In other words, we will begin to identify how the idealized 

description of competent expression transformation so often fails to become reality.  

Since an understanding of structure is so fundamental for competent expression 

transformation, I give the following initial diagnosis of student difficulties: The 

traditional algebra curriculum fails to provide students with the necessary 

experiences to develop a full understanding of critical structural notions. 

To make this diagnosis credible, I will utilize Sfard’s (1991) framework for 

the relationship between processes and objects in mathematics.  We will see that 

Sfard’s framework nicely captures the relationship between the process of parsing 

and the objects known as subexpressions.  Her framework also provides insight as to 

how students can eventually come to understand mathematical objects.  With Sfard’s 

insights in mind, we will examine the traditional algebra curriculum and expose its 

superficial treatment of the very objects upon which expression transformation is 

performed. 

 

Reification: Mathematical objects as compressed processes 

 As we have seen, knowing how to parse an expression is a prerequisite skill 

for simplifying numeric expressions and for evaluating algebraic expressions.  

Moreover, understanding the notion of a parse (or structural template) of an 

expression is a prerequisite concept for transforming algebraic expressions.  For the 

simpler skills, parsing is a procedure to be performed.  For the more advanced skill of 

expression transformation, a parse is a thing to be understood conceptually.  What is 
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the relationship between knowing how to parse and understanding the notion of a 

parse? 

 This question really pertains to the relationship between the procedural 

knowledge of how to parse and the conceptual knowledge of what is a parse.  To 

answer it, we will briefly examine a small part of the extensive literature about the 

relationship between procedural knowledge and conceptual knowledge in 

mathematics. 

While current debates about curriculum might lead one to believe that the two 

are in opposition, scholars tend to agree that procedural knowledge and conceptual 

knowledge are both vital and necessary components of mathematical proficiency.  For 

instance, Kilpatrick (1988) argues that “some balance needs to be found between 

meaning and skill” (p. 274).  Similarly, Rittle-Johnson, Siegler, & Alibali (2001) 

conclude that “competence in a domain requires knowledge of both concepts and 

procedures” (p. 359) and that the two are mutually reinforcing: “The relations 

between conceptual and procedural knowledge are bidirectional and … improved 

procedural knowledge can lead to improved conceptual knowledge, as well as the 

reverse” (p. 360).  To cite one more example, Star (2005), in discussing procedural 

and conceptual knowledge, claims that “both are critical components of students’ 

mathematical proficiency” (p. 406). 

 Sfard (1991) goes one step further.  Like the researchers cited above, Sfard 

regards procedures and concepts as necessary and mutually reinforcing.  However, 

she takes the additional step of claiming that the two types of knowledge (she calls 
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them “operational” and “structural”) are “inseparable, though dramatically different, 

facets of the same thing” (p. 9). 

Sfard’s claim – that procedures and concepts are two facets of the same thing 

– hinges upon her careful explanation of the notion of a mathematical object.  In 

mathematics, Sfard explains, processes are usually performed upon one or another 

sort of “thing” or object.  For instance, addition can be performed upon the objects 

known as natural numbers, composition can be performed upon the objects known as 

functions, and so on.  According to Sfard, many of these fundamental mathematical 

objects are themselves simply processes which, through repetitive familiarity, become 

condensed in the mind of their users into static “things” or objects.  For instance, 

Sfard argues that while rational numbers are mathematical objects, this object-

perception of rational numbers as static entities grows out of and complements a 

process-perception of rational numbers as the comparing or dividing of two natural 

numbers.  She provides many other examples of mathematical “things” that possess 

this process-object duality. 

According to Sfard, process-perception necessarily precedes object-

perception, both in the historical development of mathematics and for the student 

learning mathematics.  One must, Sfard argues, learn how to perform a process before 

one can step back and look at the result of that process as an entity in its own right.  

The concept of a rational number as a static “thing,” for instance, emerges out of the 

process of forming ratios of natural numbers. 

Sfard uses the term reification to describe the moment in which one shifts 

from a process-perception to an object-perception and forms a static, conceptual 



 39 

understanding of a mathematical object.  For example, the moment when a person 

shifts from only being able to regard 5 divided by 12 as a process to also being able to 

regard the ratio 5:12 as an object is a moment of reification.  Sfard uses the terms 

interiorization and condensation to describe earlier stages in which the process 

gradually “condenses” for the learner.  According to Sfard, interiorization and 

condensation are gradual processes; however, she regards reification not as a process 

but rather as a sudden change in perspective, in which a process is finally grasped all-

at-once as an object.  

While Sfard regards the process-perception as necessarily preceding the 

moment of reification and its object-perception, she also regards the object-perception 

as necessary – for an understanding of even more advanced processes.  From a 

historical perspective, Sfard explains, the mental demands of performing more 

advanced processes on the objects of simpler processes is what has necessitated 

reification and its ensuing object-perception.  Let us continue to use rational numbers 

as an example.  As long as simply comparing natural numbers to one another was the 

goal, there was no need to conceive of these ratios as objects in their own right.  

However, once people developed needs to compare, add, and multiply ratios, it 

became expedient to be able to treat individual ratios as objects – hence the reification 

of rational numbers into independent entities.  Mathematical objects, therefore, serve 

as necessary “pivot points,” or, as Sfard says, “way-stations” (p. 29) between one 

procedure and a more advanced procedure. 

Sfard regards this process-object-process sequence as repeating itself 

iteratively in humanity’s development of more and more advanced mathematics.  
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Over and over again, she explains, “various processes had to be converted into 

compact static wholes to become the basic units of a new, higher level theory” (p. 

16).  The process repeats itself, she explains, as one newly reified object itself 

becomes the object of more advanced processes: 

When we broaden our view and look at mathematics (or at least at its 

big portions) as a whole, we come to realize that it is a kind of 

hierarchy, in which what is conceived purely operationally at one level 

should be conceived structurally at a higher level.  Such hierarchy 

emerges in a long sequence of reification, each one of them starting 

where the former ends, each one of them adding a new layer to the 

complex system of abstract notions. (p. 16) 

Sfard provides the following diagram to illustrate the process-object-process-object-

process structure of mathematical knowledge: 
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Returning again to the example of rational numbers will help illustrate the meaning of 

this diagram.  Here is how the diagram would depict the relationship between the 

object of rational number to the simpler processes that produce rational numbers and 

to the more complex processes for which rational numbers are the objects: 
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Sfard of course knows that she is oversimplifying the complex history of the 

emergence of mathematical concepts.  Nonetheless, she regards this account as a 

good approximation of not only the historical development of mathematics but also of 

its development for the individual learner. 

 

Subexpressions and structural templates as mathematical “objects” 

Sfard’s theory of reification has profound implications for student learning of 

algebra.  In a 1994 sequel entitled “The Gains and Pitfalls of Reification: The Case of 

Algebra,” Sfard & Linchevski explore the implications of the theory of reification for 

algebra in particular. 

Sfard and Linchevski begin by showing that algebraic expressions possess the 

sort of process-object duality described by the theory of reification.  They use the 

Natural 
numbers 
(concrete 
objects) 

Forming 
ratios 
(process 
on 
concrete 
objects) 

Rational 
numbers 
(new 
objects) 

Multipli-
cation of 
rational 
numbers 
(new 
process) 
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expression  1)5(3 ++x  as an example.  On the one hand, this expression describes a 

“computational process” to be performed upon a variable x: take x, then add 5, then 

multiply by 3, then add 1.  On the other hand, this expression is an object in and of 

itself.  Sfard and Linchevski mention three different ways to view this expression as 

an object.  One involves viewing it structurally, in other words, viewing it “as a mere 

string of symbols” (p. 88).  They note the power of this sort of object-perception for 

the tasks of structural algebra: “Although semantically empty, the expression may 

still be manipulated and combined with other expressions of the same type, according 

to certain well-defined rules” (p. 88).  The other two ways to treat the expression as 

an object involve viewing it referentially, either as a name for a “certain number” or 

else as a “function.” 

Interestingly, although Sfard and Linchevski mention the “semantically empty 

string-of-symbols” perspective of conceiving of an expression as an object – which is 

the way most suited for expression transformation – in the remainder of the article 

they focus on the “function” perspective.  For example, they consider student 

understanding of relatively advanced algebraic tasks such as solving the inequality 

012 >++ xx , for which a function object-perception is particularly appropriate. 

After reviewing a variety of empirical evidence, the authors conclude that 

reification of algebraic expressions into function-objects is particularly elusive.  They 

regard the process-concept duality inherent in algebraic expressions to be very 

counterintuitive for novices: “Our intuition rebels against the operational-structural 

duality of algebraic symbols” (p. 199).  In fact, they go so far as to suggest that this 

particular leap of reification is too difficult for some students to ever make: 
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The data we collected up to this point provided sufficient evidence that 

reification is inherently very difficult.  It is so difficult, in fact, that at a 

certain level and in certain contexts, a structural approach may remain 

practically out of reach for some students.  (p. 220) 

Thus, upon applying the theory of reification to the case of algebra, Sfard and 

Linchevski are discouraged by their findings regarding the potential for student 

understanding of algebra. 

I maintain, however, that can draw more encouraging conclusions from an 

application of the theory of reification to the learning of algebra.  This more 

optimistic perspective, however, involves applying the theory to algebra in a different 

way that Sfard and Linchevski apply it.  Sfard and Linchevski have chosen to focus 

on the most advanced of all possible object-perceptions of an algebraic expression, 

namely the perception of an expression as a function.  As Herscovics (1989) has 

shown, however, the concept of function brings along its own set of cognitive 

obstacles for the novice.  Moreover, as we have shown above, expression 

transformation – one of the most central and most notoriously difficult algebraic tasks 

– depends solely on an object-perception of expressions as “strings-of-symbols” 

parsed according to known conventions. 

Moreover, there is a second and perhaps equally important application of the 

theory of reification to algebra that Sfard and Linchevski do not identify.  In addition 

to regarding algebraic expressions themselves as objects, it is important for students 

to be able to regard structural templates as objects.  In fact, Sfard’s description of 

process-concept complementarity perfectly captures the relationship between the 
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process of parsing and the concept of structural template.  An expression’s structural 

templates are nothing but the results of parsing that expression.  When one parses, 

one determines possible structural templates.  Moreover, an expression’s possible 

structural templates are themselves the objects of the more advanced process of 

comparing structural templates and forming matching with rule expressions.  The 

mathematical objects known as subexpressions and structural templates therefore 

occupy the pivot point between two procedures in the sense described by Sfard.  To 

illustrate: 

 

This application of the theory of reification to algebra does not involve cognitively 

complex objects like functions.  Instead, the objects here are “empty” structural 

Expressions 
(objects) 
 

Parsing 
(process 
on 
objects) 
 

Structural 
templates 
(new 
objects) 

Compar-
ing 
structural 
templates 
(new 
process) 
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objects.  Insofar as an understanding of an expression’s possible structures is essential 

to the task of expression transformation, it is therefore worth exploring to what extent 

the traditional algebra curriculum provides the sort of experiences that are likely to 

foster reification of the concepts of subexpression and structural template. 

 

PEMDAS: Structure (or lack thereof) in the traditional curriculum 

 Recall Sfard’s contention that process-perception necessarily precedes object-

perception.  One consequence, therefore, of viewing the relationship between parsing 

and structural templates through the lens of Sfard’s theory of reification is an 

implication for learning: students need to parse first in order to arrive later at a full 

understanding of structure.  When we examine traditional algebra curricula, however, 

we find two striking absences.  First, structure is considered only superficially; 

second, the parsing process that ideally reifies into an object-perception of structural 

template is also treated superficially. 

 Traditional texts do not typically deal with structural notions explicitly.  The 

word “subexpression” does not typically appear in a traditional algebra textbook.  Nor 

do the words “structural template” in the sense we have used it here.  Many texts do 

define specific structural notions such as “factor,” “term,” and so on.  However, 

rarely do these texts provide exercises that require the student to discriminate among 

these structural notions.  We have seen that structural notions play a critical role in 

competent expression transformation.  The absence of attention to structural notions 

is all the more striking because expression transformation is perhaps the most central 

activity in the traditional algebra textbook.   Foerster (1994), for instance, includes 
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chapters on “Distributing: Axioms and Other Properties,” “Some Operations with 

Polynomials and Radicals,” “Properties of Exponents,” “More Operations with 

Polynomials,” “Rational Algebraic Expressions,” and “Radical Algebraic 

Expressions.”  Each of these six chapters (out of a total of fourteen) is devoted nearly 

entirely to expression transformation.  Thus, despite the extensive focus of traditional 

textbooks on expression transformation, students learning algebra from those books 

might never encounter the structural notions the understanding of which is essential to 

transfer expressions competently. 

 Moreover, traditional algebra textbooks include only superficial exposure to 

parsing as a process, making it even more unlikely that students will attain the object-

perception of structural template.  On the one hand, typical algebra texts do very 

much require students to perform exercises that demand implicit demonstration of 

parsing abilities.  Simplifying numeric expressions and evaluating algebraic 

expressions are standard fare in beginning algebra.  On the other hand, algebra 

textbooks typically do not require explicit demonstration of parsing ability, as through 

insertion of parentheses or drawing expression trees.  They also typically do not 

include exercises designed to push students from the process-perception of parsing to 

the object-perception of structural template. 

 The parsing instruction traditional algebra texts do include typically falls 

under the rubric of instruction in the “order of operations.”  Foerster’s 1994 text is 

typical in this regard.  Section 1-4 of the text is entitled “Order of Operations.”  He 

introduces the topic as follows: 
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You have learned that symbols of inclusion can be used to tell which 

operation is to be performed first in an expression.  If there are more 

than three operations, there would be so many parentheses and brackets 

that the expression would look untidy, like this: 

]7)85[(])6)39[(4( −×+÷×+ . 

To avoid all this clutter, users of mathematics have agreed on an order 

in which operations are to be performed.  Parentheses are used only to 

change this order. (p. 18) 

Foerster then goes on to state the agreed-upon “order of operations” as follows (p. 

19): 

 

In the exercises following this presentation, Foerster’s text provides many examples 

of numerical expressions to be simplified and algebraic expressions to be evaluated. 

 Some teachers (e.g. Schrock & Morrow, 1993), and even some algebra texts, 

present a mnemonic device for helping students learn the order of operations.  In the 

United States, this mnemonic is usually PEMDAS, which stands for Parentheses, 

Exponents, Multiplication, Division, Addition, and Subtraction.  To remember the 

ORDER OF OPERATIONS 

If there are no parentheses to tell you otherwise, 

operations are performed in the following order: 

1. Evaluate any powers first. 

2. After powers, multiply and divide, in order, from left to 

right. 

3. Last, add and subtract, in order, from left to right. 
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acronym, some students learn the phrase “Please Excuse My Dear Aunt Sally.”  In 

some other English speaking countries, the acronym is either BEMDAS (with B for 

“Brackets”), BIMDAS (with I for “Indices”), or BOMDAS (with O for “Of,” as in 

“power of” or “root of”). 

 Many teachers, however, have discovered pitfalls of teaching students to rely 

on PEMDAS and similar mnemonics.  Nurnberger-Haag (2003), for instance, notes 

that parentheses are only one type of grouping symbol that students encounter in 

algebra, and that the PEMDAS mnemonic overlooks brackets, fraction bars, and other 

notational parsing indicators: “Teaching students about only one special case of 

grouping symbols is analogous to teaching only a special case of exponents for the 

second step (such as squaring)” (p. 235).  Moreover, several teachers (e.g. Rambhia, 

2002; Nurnberger-Haag, 2003) point out that the PEMDAS mnemonic seems to 

imply that addition and subtraction occupy successive levels in the operation 

hierarchy (and similarly with multiplication and division), when in fact these 

operation pairs have the same degree of precedence.  Rambhia cautions that as a 

result of PEMDAS-focused instruction, “many students come to believe … that 

multiplication is done before division and that addition is more important than 

subtraction” (p. 194).  Thus, PEMDAS and similar mnemonic devices hinder as well 

as assist the learning of order of operations. 

 In critiquing the traditional treatment of parsing, I am critiquing much more 

than a mnemonic device whose shortcomings are already famous.  I have argued that 

understanding of structural template as a mathematical object is essential to the 

competent performance of a skill – expression transformation – that is the primary 
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content of traditional algebra instruction.  The use of PEMDAS in classrooms across 

the United States is only a symptom of a much larger lack of attention to structure.  I 

have argued that the necessary object-perception of structural template can only arise 

out of extensive experience parsing algebraic expressions, and I have argued that the 

traditional curriculum does not require students to parse other than implicitly.  The 

net result is the following partial diagnosis for student difficulty transforming 

expressions: The traditional algebra curriculum fails to provide students with the 

necessary experiences to develop a full understanding of algebraic structure. 

 

Diagnoses that support or overlap with mine 

 Some teachers and researchers who have written about student difficulty 

transforming expressions have arrived at diagnoses similar to the one I have argued 

for here. 

Several teachers have blamed transformation errors on student confusion 

about the meaning of specific structural notions, especially the notions of term and 

factor.  Martinez, for instance, in an article entitled “Helping Students Understand 

Factors and Terms,” concludes, after examining many instances of mal-rule behavior, 

that “in each instance the error is caused by students’ misunderstanding of factors and 

terms” (p. 747).  Similarly, Laursen (1978) points out that some errors stem from the 

confusion of factors and terms: 

Many of the theorems in elementary algebra relate specifically to either 

terms or factors, but not to both.  For example, 

169)16)(9( =  
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But 

169169 +≠+ .   (p. 195) 

One more example comes from Grossman (1925), who diagnoses fraction 

cancellation errors as stemming from students’ lack of understanding of what a factor 

is: 

This is the real source of many of the mistakes in cancelling fractions.  

A pupil may understand all that has gone before and still cancel 

wrongly through not understanding how far the division effect of the 

cancellation of a factor extends.  The essence of the idea is that it 

extends as far as the multiplying effect of the factor itself extends. (p. 

107) 

These teachers identify student confusion about factors and terms as responsible for 

many student transformation errors, consistent with my claim that the traditional 

curriculum does not attend sufficiently to structure. 

Others have identified students’ difficulty with the process-object duality of 

algebraic expressions as responsible for student transformation errors.  Barnard 

(2002a), for instance, writes: 

It can be argued that algebra starts when the things one is talking and 

thinking about have become mentally manipulable objects.  At the 

heart of many errors is the failure to conceive the objects of 

manipulation (e.g. ¾, 7− , 52 +x , 12 +r ) as meaningful ‘things’ in 

their own right. (p. 10). 
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He goes on to explain how student inability to perceive expressions as objects can 

lead to mal-rules like baba +=+ 22 : 

If pupils are able to see an expression like 22
ba +  as one complete 

object, not only will they not feel the need to ‘work it out’ further 

(perhaps incorrectly replacing it with ba + ), but also they will be able 

to move it around in an equation just as easily as they could move 

around a single letter or number.  Stumbling blocks are often caused by 

the appearance of unsimplifiable expressions that have no meaning for 

pupils.  (p. 11) 

Booth (1984) also identifies student difficulty treating unsimplifiable expressions as 

objects.  While these diagnoses are similar to mine, my diagnosis goes into more 

detail about the roles of subexpressions and structural templates in competent 

expression transformation and the failure of the traditional curriculum to help 

students understand these structural notions. 

 Still others have diagnosed student difficulties with expression transformation 

as stemming from students feeling that algebra is entirely lacking in “objects.”  Sfard 

and  Linchevski (1994), in their discussion of reification in algebra, make just such a 

diagnosis.  After asserting that many students fail to grasp algebraic expressions as 

objects, they conclude that students will have difficulty learning to operate on 

expressions beyond what they can memorize from a purely procedural perspective: 

The process of learning is doomed to collapse: without the abstract 

objects, the secondary processes will remain ‘dangling in the air’ – 

they will have to be executed … on nothing.  Unable to imagine the 
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intangible entities … which he or she is expected to manipulate, the 

student [uses] pictures and symbols as a substitute … In the absence of 

abstract objects and their unifying effect, the new knowledge remains 

detached … from the previously developed system of concepts.  In 

these circumstances, the secondary processes must seem totally 

arbitrary.  The students may still be able to perform these processes, 

but their understanding will remain instrumental.  (p. 221) 

In other words, Sfard and Linchevski attribute student difficulty operating upon 

algebraic expressions to student failure to perceive these expressions as objects.  

Chazan (2000) also points to the lack of explicit “objects” in the traditional algebra 

curriculum as partly responsible for student difficulties with the subject. 

 Each of these prior diagnoses overlaps with and to some extent supports my 

diagnosis.  However, my diagnosis specifically designates subexpressions and 

structural templates as the objects about which students are lacking conceptual 

understanding. 

 

The role of overgeneralization 

 Thus far, we have identified expression transformation as an area of student 

difficulty in algebra.  We have seen that understanding structure is critical for 

competent expression transformation.  Using Sfard’s theory of reification, we have 

identified parsing as an activity whose performance naturally leads to an 

understanding of structure in algebra.  We have diagnosed student difficulties with 

expression transformation as at least partly due to the traditional curriculum’s 
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superficial treatment of structure.  Finally, we have collected some related diagnoses 

that support our diagnosis, although ours goes into more detail in its articulation of 

what it means to understand structure in algebra. 

 If this were the whole story, then I would now proceed to recommend a less 

superficial treatment of parsing and of structure.  However, two related facts remain 

mostly unexplained.  One fact is the striking uniformity of student errors: we have 

seen that teachers report predictable wrong responses, and lack of understanding of 

how to proceed correctly does not explain the uniformity in how many students 

proceed incorrectly in the same way.  A second fact is that while some prior writings 

support my diagnosis, many other teachers and researchers identify a different culprit 

as responsible for student difficulties with expression transformation, namely a strong 

tendency for students to overgeneralize. 

Schwartzman (1986) provides examples of overgeneralization.  In an article 

entitled “The A of a B is the B of an A,” he writes about how students have difficulty 

restraining themselves from overgeneralizing the notion of the distributivity of one 

operation over another.  He provides a list of twenty non-equivalencies that students 

are prone to assume.  These include nnn baba +≠+ )(  , 
baba

111
+≠

+
, and 

nnn baba +≠+ .  All of these examples are variations on true distributive 

statements, such as “the power of a product is the product of the powers” (p. 181).  

However, they are overgeneralizations in that the student who accepts them is 

assuming fewer constraints on which operations distribute over which others than 

actually exist. 
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 In this section, we will examine what Matz (1980) and Kirshner & Awtry 

(2004) have to say about the role of overgeneralization in producing common 

transformation errors.  In the following sections, I will argue that overgeneralization 

is not merely a strategy that students use in the absence of structural understanding 

but is something that algebra curricula need to address even if they give structure its 

due.  In other words, I will argue that our initial diagnosis for why students make 

common algebra errors is only a partial diagnosis and that a full diagnosis needs to 

anticipate students’ strong tendencies to overgeneralize. 

 

Matz: Overgeneralizing rule-revision strategies 

 In her 1980 paper on common algebra errors, Matz sets out to provide an 

account of the processes that lead to the many universally predictable errors in 

algebra.  Among the initial observable facts that demand explanation, she includes the 

“striking regularity of the answers produced” when students make mistakes while 

learning symbolic algebra.  She strives for a theory of error with broad explanatory 

power: she laments that “previous studies of high school algebra errors have been 

essentially extensive lists” (p. 155), such as the one complied by Marquis, and aims to 

provide an explanation for algebraic behavior that accounts for these diverse errors in 

a unified framework. 

 According to Matz, students encountering an algebra task often resort to a 

strategy that she calls revising a rule.  Revising a rule involves taking one of the 

known rules of algebra and modifying it to fit a given problem to which it does not 

directly apply.  Matz subdivides examples of revising a rule into two categories: 
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revising a rule “by generalization” and revising a rule “by linear application.”  Matz 

claims that students are prone to resort to these strategies because these strategies 

have been successful in the past.  In fact, sometimes when students use these 

strategies, they obtain correct results.  However, while sometimes applicable, these 

inductive strategies are not part of the deductive process of transforming expressions 

using known rules of algebra.  When students incorrectly revise a rule, they are 

overgeneralizing their applicability. 

 Revising a rule by generalization involves taking a known rule, deciding that 

one of its components (i.e. a number or an operation) is incidental rather than 

essential to the rule, and then replacing that component with another.  Matz describes 

this technique as follows: “Generalization bridges the gap between known rules and 

unfamiliar problems by in effect revising a rule to accommodate the particular 

operators and numbers that appear in a new situation” (p. 105).  Matz provides 

examples of rule generalization as a successful strategy, such as the fact that “‘minus’ 

can be substituted for the ‘plus’ operator in the distributive law” (p. 105).  She also 

provides examples of incorrect rule generalization.  These include many of the 

incorrect distributing errors discussed by Schwartzman (1986) and referred to above, 

but they also include instances of incorrectly generalizing specific numbers to 

arbitrary numbers, such as revising “ 0))(( =−− bxax  implies 0=− ax  or 

0=− bx ” to the incorrect “ kbxax =−− ))((  implies kax =−  or kbx =− .” 

 Revising a rule by linear application involves assuming that if an expression 

can be transformed in a particular way, then its parts can be transformed in an 

identical way, regardless of what the parts are.  Linearity, Matz explains, 
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describes a way of working with a decomposable object by treating 

each of its parts independently.  An operator is employed linearly when 

the final result of applying it to an object is gotten by applying the 

operator to each subpart and then imply combining the partial results. 

(p. 111) 

Again, Matz emphasizes that linearly applying an operator or a procedure is often 

correct: 

Most of a students’ previous experience is compatible with a linearity 

hypothesis.  In arithmetic, the immense number of occasions that 

students add and use the distributive law very likely reinforces their 

acceptance of linearity.  This trend continues with early algebra 

problems.  (p. 111) 

However, Matz goes on to show how a linearity strategy can lead to incorrect results 

in algebra.  For instance, all of the distributive errors discussed earlier reflect not only 

incorrect generalization but also an erroneous linearity assumption.  Moreover, Matz 

regards fraction cancellation errors as also falling under the rubric of errors flowing 

from false linearity assumptions: 

Cancellation errors also fit neatly into this theoretical framework.  

Errors of the form 

BA
YX

BYAX
+⇒

+

+
 

can be reproduced using the extrapolation-by-iteration strategy.  Here 

the (iterated) base rule is probably 
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A
X

AX
⇒ . 

According to this derivation, students notice two instances of the base 

rule in the new problem.  This leads them to linearly decompose the 

expression, iteratively cancel, and then simply compose the partial 

results.  (p. 118) 

Thus, according to Matz, students frequently revise rules by assuming that they can 

be applied linearly in more sorts of situations than those in which they actually can be 

applied. 

 Over and over again, Matz emphasizes that students are drawn toward these 

two rule-revision strategies – generalization and linear application – because they 

have prior experience of these techniques yielding correct results.  In arguing that 

these two strategies account for much errant algebraic behavior, she points not only to 

the fact that generalization and linear application describe the errors themselves but 

also to the fact that student successes with these strategies make their incorrect 

extension plausible: 

They are descriptively adequate in that we can use them to reproduce 

common errors.  But in addition to their purely descriptive value … 

these techniques are the obvious ones since they are methods that 

worked well for the student in prior mathematical experience.  Both 

linearity and generalization have this characteristic: they are useful, 

often encountered techniques that apply correctly in many situations.  

(p. 129) 
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Thus, Matz diagnoses common transformation errors as resulting from strong student 

tendencies to overgeneralize the context of application of two strategies – 

generalization and linear application – that worked successfully for them in the past. 

 

Kirshner & Awtry: Overgeneralizing memorable visual sequences 

 Like Matz, Kirshner & Awtry (2004) explain many diverse common 

transformation errors with a single theory.  Also like Matz, they identify 

overgeneralization as the heart of the problem.  However, whereas Matz bases her 

account on overgeneralization of rule-rewriting strategies, Kirshner and Awtry base 

theirs on overgeneralization of particularly memorable visual sequences. 

 Kirshner and Awtry’s study of transformation errors begins with an 

observation about the appearances of algebraic rules in standard printed notation.  

The authors notice that some rules possess a certain “visual coherence that makes the 

left- and right-hand sides of the equations appear naturally related to one another” (p. 

229).  Kirshner and Awtry borrow the term “visual salience” from the psychology of 

perception to describe this quality of some algebraic rules.  They provide the 

following examples of rules which they deem visually salient and rules they deem 

lacking in this quality: 
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Visually salient rules:    Non-visually salient rules: 

  

 

Kirshner and Awtry admit that visual salience cannot be defined rigorously: “The 

quality of visual salience is easy to recognize but difficult to define” (p. 229).  They 

liken a visually salient rule to “an animation sequence in which distinct visual frames 

are perceived as ongoing instances of a single scene,” allowing us to “see the 

immediate connection between right- and left-hand sides as stemming from a sense 

that a single entity is being perceived as transformed over time” (p. 229).  In other 

words, a visually salient rule is one for which the eye easily perceives a temporal 

narrative relating the left side of the rule to the right side of the rule: “the x was 



 61 

distributed,” “the fractions were smushed together,” and so on.  The visually salient 

rules have a narrative “sense” to them apart from their truth as generalizations of 

arithmetic.  In contrast, the non-visually salient rules appear to connect two 

expressions with little obvious visual relationship; their only “sense” comes from the 

semantics of arithmetic, which is not visually obvious. 

 After classifying the rules of algebra as either visually salient or non-visually 

salient, Kirshner and Awtry observe that virtually all of the common transformational 

mal-rules themselves possess the quality of visual salience.  Moreover, they observe 

that the mal-rules are very similar in appearance to correct visually salient rules.  For 

instance, the mal-rule 
b

a

xb

xa
=

+
+

 possesses visual salience (‘the x’s were cancelled’), 

and it is very similar in appearance to the correct visually salient rule 
b

a

bx

ax
= .  They 

provide the following table to show the visual similarity between visually salient mal-

rules and correct visually salient rules: 

 



 62 

Thus, unlike Matz, who observes that many transformation errors can be described as 

overuse of generalization or linearity, Kirshner and Awtry observe that many 

transformation errors can be described as visual mimicking of correct rules. 

 Kirshner and Awtry conduct an empirical research study to test the hypothesis 

that students tend to overgeneralize visually salient rules.  In the study, students with 

no previous algebra schooling were taught ten algebra rules, including five visually 

salient rules and five non-visually salient rules.  They were taught the rules purely 

structurally, without any reference to contextual situations.  After instruction, students 

were given “recognition tasks” that tested their “ability to identify routine 

applications of the rules” and “rejection tasks” that tested their “ability to constrain 

overgeneralizing the context of application of the given rules” (p. 242).  (All of these 

tasks involved only simple one-to-one matches and did not require the use of 

subexpressions.)  The results of the study confirm Kirshner and Awtry’s hypothesis 

that visually salient rules are relatively easy for students to remember but also 

relatively easy for students to overgeneralize: 

Percentage correct scores for recognition tasks were significantly 

higher for visually salient rules than for non-visually-salient rules.  

Such scores for rejection tasks were significantly lower for the 

visually salient rules. (p. 242) 

As a control, other groups of students were taught the same rules using tree diagrams 

that uniformly lack any of the visual narrative sense that is sometimes present in 

standard notation.  Significantly, the absence of standard algebraic notation affected 

the results: unlike their peers who learned the rules using standard notation, students 
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who learned the rules using tree notation did not find the visually salient rules easier 

to recognize or easier to overgeneralize. 

 

The vicious circle of reification 

Competent expression transformers certainly know not only the rules of 

algebra but also know which of their components are essential and which can be 

generalized away.  What educational implications, then, can be derived from Matz’s 

account and from Kirshner & Awtry’s account of transformation errors?  Should we 

regard these accounts of students overgeneralizing merely as explanations of how 

students produce “filler” in the absence of the necessary structural understanding?  If 

so, then educators could ignore these tendencies to overgeneralizing and assume that 

they will go away once they have remedied the lack of attention to structure in the 

traditional algebra curriculum. 

I now present two reasons why it would be a mistake to dismiss these 

overgeneralizing behaviors as lacking in educational significance.  The first reason 

stems from a situation that Sfard calls the “vicious circle of reification.”  The second 

reason flows from Kirshner’s argument for a connectionist view of mind. 

 

The pragmatic value of reification 

Recall, for a moment, Sfard’s diagram showing the progress of mathematics 

toward ever-more abstract objects.  Recall, too, that mathematical objects, in Sfard’s 

scheme, serve as pivot points between a more basic process and a more advanced 

process.  We have already discussed Sfard’s contention that a student must first 
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understand the simpler process before reification of the process into an object can 

occur. 

One might naturally assume, given the layout of Sfard’s diagram, that learning 

can and should proceed in a neat, stepwise fashion: process, reified object, new 

process, new reified object, and so on.  If that neat alternation prevailed, then the 

educational implications for algebra would be that students should first learn how to 

parse, next attain an object-perception of structural templates, and only then begin to 

learn to transform expressions by comparing and matching structural templates with 

rule expressions. 

However, Sfard posits the existence of something she calls the “vicious circle 

of reification,” a situation that makes reification inherently difficult and renders neat 

sequential learning nearly impossible.  According to Sfard, there is an inherent 

difficulty in advancing up the hierarchy of mathematical understanding.  She 

describes this difficulty as stemming from the circularity that obtains between 

understanding a mathematical object and understanding the higher processes 

performed upon that object.  On the one hand, reification and its object-perception is 

a prerequisite for fully understanding the higher process: one cannot truly understand 

a process if one does not first understand the objects upon which one is performing 

that process.  On the other hand, engagement with a higher process is precisely what 

motivates reification and its attendant object-perception: the higher process provides 

the pragmatic value for the object-perception.  In other words, Sfard regards 

understanding a mathematical object and understanding the processes performed 
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upon that object as prerequisites of one another, hence the “vicious” circularity.  

Crucially, then, the moment of reification is typically difficult for students to attain: 

On the one hand, a person must be quite skillful at performing 

algorithms in order to attain a good idea of the ‘objects’ involved in 

these algorithms; on the other hand, to gain full technical mastery, one 

must already have these objects, since without them the processes 

would seem meaningless and thus difficult to perform and remember. 

(p. 32) 

One implication for student learning is that understanding of mathematical objects 

must be encouraged simultaneously from two directions: the object-perception can 

only develop from sufficient experience performing both the more basic process (of 

which the object is the result) and the more advanced process (which is performed 

upon the object).  For instance, understanding of rational numbers as objects must be 

encouraged by simultaneously engaging students in the more basic process of 

dividing two natural numbers (from which rational numbers result) and the more 

advanced process of comparing ratios (which takes rational numbers as its objects).  

For convenience, I will – based on Sfard’s diagram – speak of the need to induce 

reification vertically and horizontally. 

 

The vicious circle and algebra: A window for overgeneralization 

 How does the vicious circle of reification play out in the learning of algebras?  

Recall that we have been regarding structural templates as mathematical objects.  

Recall further that we have been regarding these objects as the results of the simpler 
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process of parsing and the objects of the more advanced process of comparing and 

matching structural templates for expression transformation. 

 The vicious circle of reification implies that conceptual understanding of 

structural template, on the one hand, and procedural ability to find matches in 

structure and transform expressions, on the other hand, are prerequisites for another.  

It is impossible, according to Sfard’s theory, to proceed sequentially from the process 

of parsing to the concept of structural template to the process of comparing structure 

for transforming expressions.  As a result, students must necessarily engage not only 

in the more basic process of parsing but also in the more advanced process of 

comparing structures before fully attaining an object-perception of structural 

template. 

This situation creates an opening – a window – for student tendencies to 

overgeneralize to interfere with student learning of expression transformation.  

During the messy time before reification of structural concepts has occurred, students 

will be engaged in processes like expression transformation requiring a full 

understanding of those very structural concepts!  Lacking this full understanding but 

still of necessity engaged in these more advanced processes, students will tend to 

overgeneralize, making common errors.  The vicious circle of reification is one factor 

that limits the possible improvement in student algebra performance: Understanding 

the objects of algebra is inherently difficult, and strong tendencies to overgeneralize – 

whether in response to past successes, or in response to memorable visual sequences, 

or both – are likely to interfere even given a curriculum that attends adequately to 

structure. 
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Competing impulses: The connectionist view of mind 

 There is a second reason that instruction cannot ignore student tendency to 

overgeneralize.  In a series of papers, Kirshner (1989, 1993, 2001, 2004, 2006) builds 

a case for looking at the mind of the algebra learner from the perspective of a school 

of thought in cognitive psychology called connectionism.  Connectionism regards the 

mind as inherently ill-suited to formal reasoning tasks, like those involved in 

expression transformation, and stubbornly inclined to incorporate formally irrelevant 

information, such as visual patterns, into its decision-making process.  In another 

series of papers, cognitive scientists Landy & Goldstone (2007a, 2007b, 2007c) 

support Kirshner’s connectionist perspective on algebra learning.  Their research 

indicates that as novices work toward an understanding of algebraic structure, that 

understanding will necessarily be in competition with non-rational impulses, such as 

overgeneralizing tendencies. 

 

Kirshner on the role of spacing in parsing decisions 

 When Kirshner makes his fullest case for connectionism in a 2006 paper, he 

cites both his and Awtry’s 2004 study discussed above and a 1989 study about 

parsing. 

 Kirshner’s 1989 study is motivated by an observation about algebraic 

notation: in standard printed algebra, there is a correlation between the degree of 

precedence of an operation and the type of spacing used to indicate that operation.  

While students are encouraged to memorize PEMDAS as a rule, they likely get a 
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silent “assist” from the spacing around operations in standard algebra notation.  

Specifically, Kirshner observes that the least precedent operations (addition and 

subtraction) are indicated by “wide spacing”; the next least precedent operations 

(multiplication and division) are indicated by a closer “horizontal or vertical 

juxtaposition”; and the operations with the highest precedence (exponentiation and 

root-taking) are indicated by “diagonal juxtaposition” (p. 276).  He provides the 

following table to illustrate the distinctive spacing conventions of each operation 

level: 

 

Thus, as mentioned parenthetically earlier in this paper, Kirshner challenges the 

notion that the “exponents before multiplication before addition” convention is 

completely non-notational; rather, spacing provides clues about an operation’s level 

in the precedence hierarchy. 

 Kirshner’s observation that “operation levels correspond with distinctive 

visual characteristics” (p. 276) causes him to question commonsense assumptions 

about student parsing abilities.  As we have seen, parsing is a prerequisite skill for 

evaluating algebraic expressions.  Common sense would seem to indicate that a 

student who repeatedly demonstrates success at evaluating algebraic expressions must 

therefore know the rules of operation precedence.   Kirshner, however, hypothesizes 

that while some students who can evaluate algebraic expressions correctly may 
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actually know the rules of precedence, others may depend upon the visual spacing 

cues of standard notation to make correct parsing decisions.  This latter group may 

use spacing cues in the same manner that parentheses are meant to be used: as 

visually present indicators of how to parse. 

 To test this hypothesis, Kirshner conducts an experiment involving a 

nonstandard “nonce” notation.  In this nonce notation, capital letters indicate 

operations in place of the usual symbols +, –, and so on.  For example, 3A5 means 

53+ .  The experiment involves both a “spaced nonce” and an “unspaced nonce” 

notation.  The spaced nonce notation is designed to mimic standard notation by 

correlating proximity of symbols with precedence of operation.  Kirshner’s table 

illustrates these alternative notations: 

 

Kirshner hypothesized that if students spontaneously use spacing cues to make 

parsing decisions, then many students would correctly parse expressions presented in 

the spaced nonce notation, which mimics the visual assist of standard algebra 

notation, yet be unable to parse expressions presented in the unspaced nonce notation, 

even though both nonce notations technically contain all the information algebraically 

needed to parse: 

It was reasoned that the ability to correctly parse algebraic expressions 

presented in the unspaced nonce notation would indicate the presence 
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of propositionally based syntactic knowledge.  Conversely, inability to 

transfer competent behaviors from standard notation to the nonce 

setting would indicate a dependence on the surface cues of ordinary 

notation. (p. 277)  

Indeed, Kirshner’s results did show that a significant number of students had more 

difficulty with the unspaced nonce notation than with the spaced nonce notation: 

Almost all the subjects participating in the study were able to evaluate 

expressions such as 231 x+ , for 2=x , when presented in standard 

notation.  It proved, however, to be significantly more difficult to 

transfer this ability to the unspaced nonce notation than to the spaced 

nonce notation.  These two notations differ only in the spacing of the 

symbols, the latter notation having been devised, specifically, to mimic 

spacing features of ordinary notation.  Thus it seems necessary to 

conclude that for some students the surface features of ordinary 

notation provide a necessary cue to successful syntactic division.  (p. 

282) 

Kirshner therefore infers that the way operations are spaced on the printed page in 

standard algebraic notation functions as a notational parsing cue for some students.  

Moreover, he infers that for some students, spacing is a necessary cue: their ability to 

order operations according to convention depends not upon declarative knowledge of 

the conventional rules but rather upon having this visually present spacing cue, and 

they are unable to parse correctly without it.  Because the visual crutch is embedded 

in the way students usually encounter algebra problems, there is no way to 
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discriminate between the student who really understands the structure and the stduent 

who is using this crutch.  

 

Kirshner on connectionism 

 Although Kirshner’s two research experiments (1989, 2004) pertain to 

different skills, he draws similar conclusions from the two studies.  In both studies, 

Kirshner concludes that successful performance of a skill (evaluating expressions in 

the one, transforming expressions in the other) does not necessarily indicate mastery 

of the formal rules that constitute true competence.  In both cases, novices rely upon 

visual features of standard written algebra (spacing in the one, memorable animation-

like visual sequence in the other) to make successful decisions.  In both cases, 

introducing new notations that lack these helpful visual features (the unspaced nonce 

in the one, the tree notation in the other) is shown to reduce student ability to perform 

the skill, even though all of the technical information needed to perform the skill is 

still present in the alternate notation. 

 In reflecting upon these findings, Kirshner adopts a connectionist view of 

cognition that rejects the analogy of the mind to computer.  Connectionism does not 

view the mind as a neat and orderly machine with a centralized rule-processing 

apparatus: “Connectionist psychology posits dramatic redundancy and a 

superabundance of active elements, in contrast to the neat, linear processes of rule-

based systems” (2001, p. 90).  Connectionism, Kirshner explains, considers cognition 

to be spread out rather than centralized: “In analogy to the neurology of the brain, 

connectionism asserts that cognition is parallel and distributed, rather than serial and 
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digital” (p. 90).  Kirshner uses an analogy to inputs and outputs to explain the 

connectionist view of how the mind does work: “Typically connectionist systems 

include input nodes corresponding to features of the domain to be mastered and 

output nodes related to actions that can be taken or decisions that can be reached, as 

well as hidden units that intermediate between input and output nodes” (2006, p. 7).  

According to the connectionist view, these different inputs are “competing” at all 

times, and the relative weight of their input – not a formal rule process – determines 

which input or inputs win out and result in an output: 

When a certain threshold of activation is reached, the node sends 

signals to those other nodes to which it is connected.  …  

Connectionism models cognitive skills as weighted correlations among 

a large number of input, output, and intermediate nodes.  No 

centralized rule based program runs the show.  (p. 7) 

 Connectionism therefore sees the mind as ill-suited for sequential rule-

processing tasks and well-suited for tasks involving making judgments based on 

many related and competing sets of input criteria.  Kirshner (2001) explains the 

connectionist view of what the human mind does best: 

The primary cognitive functions are pattern matching and associative 

memory, not logic or rule following.  Connectionism notices that the 

long chains of extended reasoning that serial digital computers do best, 

are hardest for humans.  Things that humans do best, like recognizing 

faces in different situations and from different angles, are the most 
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difficult feats to simulate on serial computers, but the easiest to 

implement in connectionist architectures.  (p. 90). 

A connectionist view does not regard a person’s understanding of formal rules as 

non-factors in the person’s cognition, but merely as one of many parallel factors 

competing to produce action: “It is too extreme to argue that rules play no role in 

competent performance, but it is an ancillary role informing cognition rather than 

constituting it” (p. 95). 

 In particular, Kirshner sees connectionism as dovetailing nicely with his 

empirical observations about how students learn algebra.  Kirshner’s two research 

studies both suggest that some student algebra behavior can be explained as responses 

to visual features of standard printed algebra, despite the fact that the visual 

appearance of algebraic expressions is a mere accident of our notation and not 

inherent to the structural content of algebra.  For Kirshner (2001), connectionist 

theories incorporate such observations naturally: “The connectionist framework 

seems, in general terms, to afford the possibility of an alternative account of algebraic 

symbol skills that is more faithful to our observation as educators that students’ work 

in algebra is non-reflective and pattern-based” (p. 90).  Moreover, connectionism 

explains the stubbornness with which students cling to visual approaches to algebra 

skill acquisition, for it asserts that “learning always is grounded in perception and 

pattern matching as embedded in practices, not in abstraction and rule following” (p. 

95). 
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Landy & Goldstone’s research on formally irrelevant distractions 

 Kirshner, as we have seen, posits a connectionist understanding of cognition.  

Connectionism helps to explain Kirshner’s findings that students seem to 

spontaneously utilize visual regularities and memorable visual features of algebraic 

notation when learning algebra, despite the fact that such visual cues are not part of 

the formal, rule-based apparatus for making decisions in algebra. 

 In a series of recent papers, Landy & Goldstone (2007a, 2007b, 2007c) 

describe a set of experiments designed explicitly to test the role of formally irrelevant 

visual cues in the performance of algebraic tasks.  In particular, their paper “How 

Abstract Is Symbolic Thought?” (2007a) has substantial implications for our 

consideration of how students learn to transform expressions.  In this paper, Landy 

and Goldstone describe four research experiments, each designed to measure the 

effect of a formally irrelevant visual “distracter” on a person’s ability to determine 

whether an expression has been transformed correctly or incorrectly.   

The first of these four experiments gives a sense of the gist of their work.  In 

this experiment, spacing was the manipulated visual feature.  Subjects were asked to 

judge the correctness of equivalences like the following: 
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Note that in some of these equations, such as the very first one, spacing has been 

manipulated so that the very wide spacing is correlated with less precedence (as in 

standard algebra notation), while in other equations, such as the very last one, spacing 

has been manipulated so that the very wide spacing is correlated with more 

precedence.  Subjects were timed on their responses, and subjects were informed 

immediately of any incorrect responses.  Landy and Goldstone found, like Kirshner, 

that subjects tended to use wide spacing as an indication of lower operation 

precedence, even when the wide spacing was around multiplication.  In other words, 

they found that spacing, while irrelevant from a formal perspective, nonetheless 

influenced subjects’ syntactic judgments: “The physical spacing of formal equations 

has a large impact on successful evaluations of validity” (p. 724). 

 While the first study involved manipulating spacing – a formally irrelevant 

factor that authentically plays a role in standard algebra notation – the remaining 

three studies involved manipulating more contrived visual factors.  While also 

formally irrelevant, these other visual factors do not typically arise as distracters in 

actual algebra usage.  The manipulated visual feature in the second experiment was 

an oval-shaped region in the background of the equations: 
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The manipulated visual feature in the third experiment was the internal structure of 

the rearranged terms: 

 

The manipulated visual feature in the fourth experiment was alphabetical proximity 

of the variables: 
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Thus, Landy and Goldstone go quite a bit further than Kirshner.  They consider the 

effects of a variety of formally irrelevant factors on people’s parsing decisions. 

 Their overall findings support Kirshner’s connectionist perspective.  

Repeatedly, they conclude that formally irrelevant features can distract people who 

otherwise make correct parsing decisions into making incorrect ones.  They conclude 

that “a reasoner’s syntactic interpretation may be influenced by notational factors that 

do not appear in formal mathematical treatments” (p. 721).  Like Kirshner, they deem 

these findings significant because of how they challenge standard assumptions about 

how people make decisions in rule-based mathematical environments.  It is standard, 

they explain, to assume that when students operate with good faith in a rule-based 

environment like structural algebra, they make all decisions based only on their 

understanding of the rules of the domain: “Cognitive conceptions of abstract formal 

interpretation generally follow formal logics by assuming that reasoners explicitly 

represent rules of combination, and apply those rules to symbolic expressions” 

(2007c).  Those who assume students learn algebra solely by learning and applying 

rules will also, by implication, regard mistakes as evidence of misunderstandings of 

the rules.  Landy and Goldstone see their results as disproving this assumption that 

people who perform algebra tasks in good faith make their decisions based only on 

their understanding of the rules: 
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Fundamentally these results challenge the conception that human 

reasoning with formal systems uses only the formal properties of 

symbolic notations, and that errors are driven by misunderstandings of 

those properties.  Instead, people seem to use whatever regularities—

formal or visual, rule-based or statistical—are available to them, even 

on an entirely formal task such as arithmetic.  The engagement of 

visual features and processes indicates that formal reasoning shares 

mechanisms with the diagrammatic and pictorial reasoning processes 

with which it is normally contrasted. (2007c) 

Put another way, Landy and Goldstone join Kirshner in concluding that student 

performance on algebra tasks is best modeled not by computer-like rule-following 

machines but rather by the sort of associative reasoning captured by connectionist 

frameworks of mind. 

 More impressively, Landy and Goldstone demonstrate that formally irrelevant 

features can persist in influencing algebraic decision-making even when the person 

making the decisions actually knows the correct rules.  Their interviews with study 

participants reveal “that some participants realized that they were affected” by 

formally irrelevant features and that “participants knew that responding on the basis 

of space, alphabetic formality, and similarity of notation were incorrect, but they 

continued to be influenced by these factors” (2007a, p. 730).  Furthermore, 

participants persisted in using formally irrelevant features in their decision-making 

even while receiving feedback during the experiment itself: 
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One might have argued that participants were influenced by grouping 

only because they believed that they could strategically use superficial 

grouping features as cues to mathematical parsing.  However, constant 

feedback did not eliminate the influence of these superficial cues.  This 

suggests that sensitivity to grouping is automatic or at least resistant to 

strategic, feedback-dependent control processes.  Grouping continued 

to exert and influence even when participants realized, after 

considerable feedback, that it was likely to provide misleading cues to 

parsing.  (p. 730) 

Landy and Goldstone cite other psychological research on non-mathematical rule-

based domains that also shows “that people may use perceptual cues instead of rules 

even when they know that the rules should be applied” (p. 731).  Ultimately, their 

findings indicate that a person’s knowledge of algebraic structure competes with 

other inputs during algebraic decision-making, even when those other inputs are 

irrelevant from a formal perspective.  Transformation errors are not necessarily 

symptoms of lack of structural understanding but rather of the fact that structural 

understanding competes for attention alongside formally irrelevant visual features.  

Their research therefore implies that students’ strong tendency to overgeneralize is 

not just in play when students do not understand necessary structural concepts. 

 

Other examples of competition in algebra performance 

 Other instances of “competition” between formally relevant and formally 

irrelevant features support these conclusions.  We will examine two such instances. 
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Wong (1997) provides one example of structure in competition with other 

factors.  She observes that students who can perform a transformation task involving 

only variables sometimes have difficulty performing a structurally identical task 

involving both numbers and variables.  For instance, Wong observes that some 

students who successfully transform nhk)(  into nn
kh ⋅  will consistently err when h is 

replaced with a number, transforming nma )2(  into mn
a2 , 43)2( x  into 122x , and so on.  

Her general conclusion is that students who have learned “to transform algebraic 

expressions according to some standard procedures” will sometimes “fail to do the 

transformation correctly when the familiar letters are replaced by numbers,” despite 

the fact that the replacement leaves the structure of the expression unchanged (p. 

286).  Wong explicitly links her findings to a connectionist framework, noting “the 

importance of the degree of strength between the connections of information items in 

learning situations,” and concludes that students sometimes “fail to activate the 

appropriate information items in their mind” (p. 289). 

 Linchevski & Livneh (2002) describe situations in which structure competes 

with specific number combinations for student attention.  In a study, they found that 

certain biasing number combinations can override student structural knowledge and 

lure students into parsing errors.  For instance, they find that students who repeatedly 

parse expressions of the form pnm +−  correctly are somewhat more prone to parse 

this expression incorrectly when presented with 3030267 +− .  In this example, the 

repetition of 30 draws student attention to the addition first, despite what students 

“know” about how to parse expressions with this structure generally.  The authors 

conclude that “the particular number combination in the expression competes with the 
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algebraic structure” for the student’s attention.  While from a structural point of view, 

the particular numbers in an addition expression are irrelevant, in practice the 

particular numbers involved can lead to a greater or lesser frequency of particular 

parsing errors.  Student knowledge and understanding of structure competes with 

other stimuli for student attention. 

 

Instructional strategies 

 Earlier, we attributed student difficulty transforming expressions to their 

insufficient experience parsing and to insufficient exposure to the structural notions 

that underlie the expression transformation process.  However, we then saw that 

several teachers and researchers attribute the uniformity and persistence of common 

transformation errors to student tendencies to overgeneralize.  We asked whether 

overgeneralization is merely a strategy that students adopt when they lack structural 

understanding or whether it has deeper educational implications.  We have now seen 

two reasons why overgeneralization merits educational consideration: (1) Because of 

the vicious circle of reification, students should start operating on subexpressions and 

structural templates before they attain a reified object-perception of those objects, 

opening a window for overgeneralizing tendencies to influence student decision-

making; (2) Connectionism suggests that student understanding of structure is not all-

or-nothing but rather in competition with other impulses, especially with the impulse 

to incorporate formally irrelevant visual cues into algebraic decision-making. 

 What would instructional strategies for improving student ability to learn 

expression transformation look like?  From the conclusions about the centrality of 
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parsing reached earlier in this paper, we can derive the following instructional 

principle: Algebra curricula need to give explicit attention to parsing and to structure.  

However, from the conclusions about overgeneralizing and associative reasoning 

reached more recently in this paper, we can modify the instructional principle so as to 

incorporate our findings about student receptivity to the visual: Algebra curricula 

need to give explicit attention to parsing and to structural notions in ways that will 

make structure a strong competitor for perceptual salience among the many impulses 

competing for student attention. 

 

Instructional strategies for helping students achieve the process-perception of 

parsing 

 As we have discussed repeatedly, the process-perception of parsing 

necessarily precedes the object-perception of parsing: students need to parse before 

they can attain an object-perception of parsing as creating structural template.  Since 

students ultimately need to attain the object-perception of parsing in order to 

transform expressions, curricula ought to make certain that students learn how to 

parse.  However, as discussed earlier, traditional algebra texts treat parsing 

superficially, presenting the order of operations and then testing student ability to 

parse only implicitly through activities like numeric expression simplification. 

 My first instructional proposals, therefore, are for activities and exercises that 

ask students to parse expressions explicitly.  For instance, students could be required 

to draw expression trees: 
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Such exercises reveal explicitly for the teacher the extent to which students 

understand the parsing conventions. 

 While Exercise Set A requires students to resort to an alternative tree notation 

to parse an expression, an instructional strategy that I call “surgery” provides students 

with the opportunity to parse expressions physically and visually right on their 

standard worksheets.  Here is how the surgery approach to parsing involves students 

in actively breaking expressions into their component parts.  First, I tell students that 

they have two “knives”: the Addition Knife and the Multiplication Knife.  The 

Addition Knife is the primary one and is used for underlining, and the Multiplication 

Knife is secondary and is used for “slashing.”  The rule for using the Addition Knife 

is as follows: start underlining from the beginning of the expression, and start a new 

underline for each plus or minus sign that is outside of grouping symbols.  For 

instance, if I told students to underline the expression 253 2 ++ xx  using their 

Addition Knife, I would expect the following result: 

 

Similarly, if I told students to slash apart the first “underline” using their 

Multiplication Knife, I would expect the following result: 

253 2 ++ xx  

Exercise Set A 

 

Draw an expression tree for each expression. 
 
1.  52 +x      2.  )5(2 +x  

 

3.  253 2 ++ xx     4.  2)1(3)32)(2(4 ++++ xxx  
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23x  

 

In essence, the underlining provides visual support to the role of addition and 

subtraction as the least precedent of all operations, and the slashing provides visual 

support to the role of multiplication as more precedent than exponentiation. 

 Performing “surgery” on an expression reinforces correct parsing decisions 

and helps students avoid defaulting to a left-to-right order of operations.  For 

instance, recall Example A, which asked students to simplify 2)64(52 −+− .  Here is 

how a student might proceed to write the work using underlining and slashing to 

parse the expression visually: 

 

Example A 

 

Simplify 2)64(52 −+− . 
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The underlines effectively serve as grouping symbols, making it very unlikely for 

students accidentally to proceed left to right and obtain the incorrect 2)64(3 − . 

 

Instructional strategies for inducing reification of structure vertically 

 Thus far, I have proposed activities for helping students achieve procedural 

mastery of parsing.  Procedural mastery of parsing necessarily precedes an object-

perception of structural notions.  In this subsection and in the next one, I propose 

instructional strategies for helping students achieve this object-perception.  Here I 

propose activities that lead toward object-perception of structural template and 

subexpression by gradually helping students to “compress” the results of the parsing 

processes into objects.  Earlier, we have called this inducing reification vertically.  In 

the next subsection I will propose activities that urge students toward reification by 

illustrating the pragmatic value of an object-perception of structure.  We have called 

this inducing reification horizontally. 

 First, it is worth noting that the “surgery” approach to parsing discussed above 

already goes a long way toward helping students transition from parsing as process to 

parse as object.  When students simplify numeric expressions, as in Example A, 

without underlining and slashing, parsing for them is just a decision-making process 

used to determine what to do first, second, and so on.  When students underline and 

slash in the process of the same simplification task, they transform parsing into an 

activity that makes subexpressions visible.  Students gradually are able to transition 

from thinking of underlining as something they do to thinking of the “underlines” or 

terms as things they can see.  Underlining and slashing, therefore, not only help 
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students make correct parsing decisions; they also move students toward seeing 

subexpressions as objects. 

 Exercises that explicitly use names of various types of subexpression can 

further this process-to-object transition even further.  Consider, for instance, Exercise 

Set B: 

 

These questions explicitly engage students with structural notions and structural 

vocabulary.  However, if students do not yet have a solid understanding of factors and 

terms as objects, they can continue to use the “surgery” method to parse the 

expressions and locate the desired subexpression.  For instance, for the third question 

in Exercise Set B, I would instruct students first to underline to identify the first term 

of the expression, after which they can ignore the part of the expression that is not the 

first term.  Then I would instruct students to slash to find the second factor, and so on 

until they finally locate the requested structural entity.  Here is how I would model 

this process: 

Exercise Set B 

 

1. What is the second term of )2(43)52(3 ++++ nxynnxx ? 

2. What is the second term of the third factor of )3)(2(4 ++ xnmn ? 

3. What is the first factor of the second term of the second factor of the first term 
of mnnmnmnmx 4))(5)2)((4(3 ++++++ ? 
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Such exercises, which ask the students to hunt for various subexpressions by name, 

use the parsing process to guide students toward an object-perception of the various 

sorts of subexpressions as static “things.” 

 While the surgery strategy, combined with exercises like the previous ones, 

push students toward an object-perception of particular subexpressions, the questions 

in Exercise Set C push students toward an object-perception of structural template.  

This exercise set also utilizes Kirshner’s alternative notation for operations, for such 

occasional forays into alternative notations can combat students’ tendency to lean on 

visual features of standard notation for behavioral cues: 

 

mnnmnmnmx 4))(5)2)((4(3 ++++++  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 88 

 

This exercise set gently encourages students to see the result of parsing an expression 

as an object in its own right.  By thinking about how to preserve the answer resulting 

from the process of evaluating the expressions, students are forced to think about 

parsing in a condensed way – to think about how to preserve the structure of the 

expression.  

 

Instructional strategies for inducing reification of structure horizontally 

 Now I will proceed to outline some instructional strategies that seek to induce 

reification of the object-perception of structural notions by making students aware of 

the pragmatic value of this perspective.  Ultimately, the object-perception is needed 

for expression transformation.  However, the traditional curriculum leaps quickly into 

expression transformation, and students are strongly prone to overgeneralize if they 

transform expressions without understanding structure.  I therefore will propose 

instructional strategies to induce reification horizontally that are more resistant to 

overgeneralizing tendencies and that make structure a visually salient competitor for 

student attention. 

Exercise Set C 

 
Lefty is confused about the order of operations.  He believes that all operations 
should be performed from left to right unless parentheses indicate otherwise.  
Rewrite each expression with just enough additional sets of parentheses so that Lefty 
will perform the operations in the same order as someone following the order of 
operations.  If the expression does not need to be rewritten, write fine.  (Note: E 

indicates exponentiation, M indicates multiplication, and A indicates addition.) 
 

1. 23MxA      2. MxA35  

 

3. MxExM )34(      4. 2)52( EAxA  
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 As we have seen, comparing structural templates and determining matches is a 

prerequisite skill for expression transformation that the traditional curriculum does 

not isolate as a skill in its own right.  Typically, this skill is taught only implicitly by 

requiring students to transform expressions.  Exercise Set D isolates this activity as a 

skill in its own right:  

  

The capital letter variables are meant to be suggestive of the fact that these variables 

might stand for subexpressions rather than just numbers.  This exercise set demands 

an object-perception of structure.  For the student who has not yet achieved this 

object-perception and is somewhere in the vicious circle of reification, this exercise 

set can motivate reification, yet it does not tempt the student to fall victim to 

competing impulses to overgeneralize like traditional expression transformation 

exercises do. 

 Expression transformation exercises also have the potential to induce 

reification horizontally.  However, if we instruct students in expression 

transformation tasks prior to their achieving a fully-reified object-perception of 

structure, then we need to take care to make structure visually and conceptually 

Exercise Set D 

 
A list of structural templates is provided below.  For each expression, select all of the 
structural templates from the list that describe the expression. 
 

List:  PNM )( + ,  PMN + ,  PM N ,  )( PNM + ,  

NM + ,  MN ,   NPM + , PNM ++  
 

1. )3()3(2 2 wxx +++     2. wx ++ 5)3(  

 

3. 22 ++ wmx      4. )()4( 2 fmaa ++  
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salient so as to win the competition for student attention against their strong 

overgeneralizing tendencies. 

 One instructional strategy is to explicitly study the rules of algebra from a 

structural perspective.  For instance, let us consider the Cancellation Rule for 

Fractions, 
n

m

np

mp
= , whose linear misapplication accounts for notorious fraction 

cancellation errors.  We can make the structure of this rule salient by inviting students 

to perform “surgery” on the rule itself: 

 

This active, visual parsing of the rule can lead students to formulate a verbal 

description of the requirements for cancellation: one of the factors of the numerator 

needs to be the same as one of the factors of the denominator. 

 Then, having invited students to visually parse this rule, I would next present 

students with a variety of expressions and invite them to determine the applicability 

of this rule by visually parsing the given expressions.  Exercise Set E, for instance, 

invites students to determine whether or not cancellation is possible: 

n

m

np

mp
=  
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Students could “slash” numerators and denominators to determine whether or not 

they possess the correct sort of identity in structure to 
np

mp
.  Here is what I would 

expect students to write: 

1. 

a

a

8

3
      2. 

x

x

7

3+
 

 

 

3. 

m

m

+

+

5

4
     4. 

wx

w

8

27 +
 

 

The visual parsing supports the correct structural interpretation and helps students 

avoid erroneous cancellation.  Only in the first question is there an identical 

expression in numerator and denominator between two factor slashes.  In the fourth 

question, for example, student recognition that w is a factor of the term w7  but not of 

the entire numerator is supported by the visual appearance of the slashes.  Exercises 

such as these can help students come to understand the importance of engaging with 

transformation tasks as structural tasks rather than as visual tasks.  They can help 

students resist the urge to overgeneralize spontaneously.  Perhaps most importantly, 

Exercise Set E 

 

Simplify each fraction by dividing the numerator and denominator by a common 
factor.  If the numerator and denominator do not have a common factor, write can’t. 
 

1. 
a

a

8

3
      2. 

x

x

7

3+
 

 

3. 
m

m

+

+

5

4
      4. 

wx

w

8

27 +
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by revealing to students the pragmatic value of the ability to determine identity in 

structure, such exercises can help to induce reification of structural notions, lift the 

student out of the vicious circle of reification, and install structural understanding in 

the student’s mind so that it will permanently be a viable and salient competitor 

among the many behavioral impulses influencing algebraic behavior. 

 

Some supporting and overlapping curricular recommendations 

Finally, I will examine some other teachers’ proposed instructional strategies 

that overlap to a certain extent with those I have presented above. 

I am not the first to advocate making structure visibly present for students.  

Teachers offer a variety of strategies for helping students “see” the structure of an 

expression, much like my “surgery” approach.  Rambhia (2002), for instance, teaches 

students that when confronted with a numeric expression to simplify, they “can 

separate the problem into parts by drawing lines” (p. 194).  Here he describes this 

strategy in detail: 

A slightly more difficult problem would be the equation: 

____)16(5)8(4)53(6 =++−+  

Some students feel overwhelmed by such problems until I remind them 

to separate the problem into parts.  They start to understand that 

because addition and subtraction are done last, those operations are the 

keys to breaking down the problem.  Specifically, the addition or 

subtraction signs that are not enclosed in grouping symbols partition 
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the problem.  The problem above, for example, has three parts, as 

shown below: 

 

This advice is clearly along the lines of my proposal to underline terms.  Barnard 

(2002b) offers the following suggestions for helping students to perceive structure 

visually: 

• Write different parts of expressions in different colors. 

• Use highlighters to shade different parts of expressions. 

• Close brackets [parentheses] into bubbles: )52( +x  � 52 +x … 

• Always draw boxes around terms in an equation.  This stresses that the 

important sign is the one in front of the term.  Students are very happy 

that missing signs are positive. 

x3+     5−  =     7+     x9+  (p. 41) 

Pierce & Stacey (2007) also recommend helping students focus on visual structure: 

Students must learn to read the clues to the structure of symbolic 

expressions and equations.  Putting the spotlight on the structure of the 

expression 
32

3

−

+

y

y
 highlights the division of two linear expressions, 

)53(6 +  – )8(4   + )16(5 +  = 

 )8(6   – )8(4   + )7(5  = 

 48  – 32  + 35 = 

 48  – 32  + 35 = 51 (p. 194) 
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which hence have to be treated as units and cannot be broken up and 

cancelled out like this: 1
2

1

3

3

232

3
−=

−
+=

−

+

y

y

y

y
. 

 Simple techniques, such as writing the basic substructures (in this case, 

numerator and denominator) in different colors, can draw attention to 

the structure and in time minimize errors of this nature. (p. 14) 

Pierce & Stacey then go on to show “three simple graphical devices for highlighting 

the structure of an expression” (p. 14): 

 

In different ways, all of these teachers are recommending student-driven annotations 

to standard algebraic notation that can help make structure visually salient for 

students. 

 Kirshner (2006) proposes a curricular approach to structural algebra called the 

Lexical Support System (LSS), which shares with my curricular proposals a focus on 

structural awareness.  The LSS is a program for involving students in structural 

discourse – that is, in a setting in which precise structural language is used by teacher 

and student to describe the pieces of algebraic expressions.  According to Kirshner, 

the LSS’s goal is “providing a structural vocabulary that enables more rigorous 
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description of algebraic rules and procedures” (p. 13).  The LSS first introduces 

students to the rules of operation precedence.  Then, Kirshner explains, “upon the 

foundation of order of operations is erected the basic lexical elements” (p. 15) of the 

structural discourse of algebra.  He goes on to explain how he would rigorously 

define “principal operation,” “principal subexpression,” “next-most principal 

subexpression,” “factor,” “term,” and other structural notions.  Kirshner cites personal 

experience that such an explicit immersion in structural discourse can help students 

not only parse expressions but also talk intelligently about the pieces of those parsed 

expressions. 

 Kirshner provides an extended example of a hypothetical interaction between 

student and teacher in an LSS curriculum classroom.  I will include this example in its 

entirety because it vividly illustrates Kirshner’s understanding of how the LSS would 

function.  Here is the example in full: 

The following contrived episode, similar to many I’ve engaged in when 

using the LSS approach, illustrates the sort of communicational 

possibilities opened up by these more rigorous discursive practices.  

This interaction involves a student’s erroneous cancellation of the 3s in 

2

1

23

13 22

−
+

=
−
+

y

x

y

x
 

Teacher: What rule are you using in this step? 

Student: The cancellation rule for fractions. 

Teacher: Can you remind me what that rule is? 



 96 

Student: It’s the rule that allows canceling a common factor of 

the numerator and denominator of a fractional 

expression. 

Teacher: Okay, let’s take a look at it.  What have you canceled? 

Student: The threes, because they’re factors, they’re multiplied. 

Teacher: Good, they are indeed factors, but are they factors of 

the numerator and denominator?  Let’s check.  What is 

the principal operation of the numerator? 

Student: Let’s see, there’s an exponentiation, a multiplication, 

and an addition.  So the principal operation is addition, 

the least precedent one according to the hierarchy of 

operations. 

Teacher: Good, now what are the principal subexpressions called 

in this case? 

Student: They’re called terms.  …Oh, I see, it has to be a factor 

of the whole numerator and denominator to be 

canceled; not just part of it. 

Such communicative possibilities can be contrasted with traditional 

algebra instruction in which students and teachers talk past each other 

as they use words like “term” and “factor” without structural 

grounding. (p. 18) 

In this way, Kirshner shows the ways in which he imagines that the LSS would help 

students avoid common algebra errors. 
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 While my curricular proposals share Kirshner’s structural emphasis, mine also 

take advantage of the very thing that Kirshner’s research uncovers: student receptivity 

to the visual.  The success of the teacher’s intervention in the previous discussion 

depends upon the student already having access to fully reified structural notions like 

“factor of the numerator.”  As we have seen, however, reification is difficult to 

achieve and needs to be induced horizontally as well as vertically.  While the above 

intervention could succeed for a student who has achieved the object-perception of 

these structural notions, it might not succeed if the student making the cancellation 

error is still negotiating Sfard’s vicious circle.  I propose the following sort of 

intervention as more likely to succeed for students whose structural understanding is 

still in formation and who are therefore very susceptible to overgeneralizing 

tendencies: 

Teacher: What are you doing in this step? 

Student: I am cancelling. 

Teacher: Can you remind me what we do before we cancel? 

Student: We slash the top and bottom? 

Teacher: Good.  Okay, so let’s do that.  Take out your 

Multiplication Knife and parse the numerator and 

denominator. 

Student writes  

23

13 2

−
+

y

x
   then stops. 
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Student: Oh, I see.  We can’t slash all the way because of the 

plus.  Really it’s like this: 

Student writes  

23

13 2

−
+

y

x
. 

Teacher: That’s correct!  3 is a factor of the first term of the 

numerator, but 3 is not a factor of the entire numerator. 

Student: So we actually can’t cancel at all because when you 

slash the numerator you just get the numerator, and 

that’s not the same as what you get when you slash the 

denominator? 

Teacher: Exactly.  The numerator and denominator have no 

common factors. 

This discussion illustrates how the teacher can use visual parsing techniques to 

communicate structural content to the student while student understanding of 

structure is still solidifying.  While this student lacks the precise formal language for 

describing structure that Kirshner’s student possesses, this student’s understanding of 

structure is nonetheless progressing, aided by the visual parsing cues that make 

structure visually salient. 

 

Conclusion and implications 

 In this paper, we have considered student learning of the algebra skill known 

as expression transformation.  We have examined evidence that students are 
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universally prone to make certain common and persistent errors while transforming 

expressions, and I have diagnosed student difficulties as stemming in part from 

insufficient attention on the part of the traditional curriculum to the activity of parsing 

and to important structural concepts.  We have also seen that students are strongly 

prone to err by overgeneralizing, and I have argued that these tendencies to 

overgeneralize are not just strategies adopted due to lack of structural understanding 

but impulses that are likely to compete with correct structural understanding at all 

times when the student is doing algebra.  I have proposed a variety of instructional 

strategies and exercises designed to help students perceive structure in algebra – 

conceptually and visually.  I believe that sustained use of such strategies in the 

algebra classroom can modestly improve student learning of expression 

transformation and help students avoid notoriously persistent common errors. 

 Before concluding, I want to acknowledge the presence in the literature of 

another diagnosis for these difficulties with expression transformation.  This is the 

view that student difficulties with structural algebra stem from lack of sufficient 

referential support for symbol manipulations.  There are two ways to frame this set of 

views.  One way is to frame it around content: students find structural algebra hard 

because decontextualized symbol manipulation without frequent review of its 

referential meaning is inherently hard.  That is, students find it hard because they lack 

good answers to the question “What is this about?”  Another way is to frame this set 

of views around motivation and affect: students lack interest in algebra because they 

have insufficient exposure to its applications.  That is, students find it hard because 
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they lack good answers to the question “What is this good for and why should I 

care?” 

 This view is popular and represents something of a consensus among 

contemporary researchers of algebra education.  Kaput (1995), for instance, expresses 

this view that difficulties with algebra stem from insufficient attention to referential 

connections: 

Acts of generalization and gradual formalization of the constructed 

generality must precede work with formalisms – otherwise the 

formalisms have no source in student experience.  The current 

wholesale failure of school algebra has shown the inadequacy of 

attempts to tie the formalisms to students’ experience after they have 

been introduced.  It seems that, ‘once meaningless, always 

meaningless.’  (p. 76) 

Similarly, Resnick, Cauzinille-Marmeche, & Mathieu (1987) argue that if students 

were better able to “understand algebra expressions as having referential as well as 

formal meaning,” those students would then “be in a position to use what they already 

know about the semantics of situations and of fundamental mathematical concepts to 

constrain their formal constructions” (p. 201) and avoid common algebra errors.  This 

supposition leads these authors to criticize the lack of referential content in the 

traditional curriculum: “It seems likely that if algebra is to be well learned by 

children, algebra expressions and laws of transformation must be related to the 

reference situations that might generate them, as well as to the mathematical 

constructs that they represent” (p. 201).   
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 I do not deny that affect and motivation play a critical role in determining 

student behavior, particularly in a subject that involves decontextualized reasoning 

and abstraction, and particularly when the students are adolescents.  However, were 

motivation the sole problem, we might expect a random assortment of varying errors.  

The universality of these errors, the striking identicalness of these errors across 

settings and decades (during which algebra has been taught at different grade levels), 

and the persistence of these errors among students taking higher-level math courses 

all suggest that affect and motivation alone do not account for them. 

 Moreover, the research of Kirshner and of Landy & Goldstone makes a 

formidable case that visual cues and other formally irrelevant factors influence 

decision- making spontaneously and persistently, even for individuals who are 

motivated to learn, intent on success, and aware of the rules.  In other words, even if 

one believes, as I do, that referential approaches can contribute to improved 

performance on structural tasks, this research suggests that there are other reasons 

besides lack of referential context that students have difficulty with structural tasks – 

reasons that will not go away no matter how much referential context students take 

in. 

 When Kirshner invites us to consider “A New Curriculum for Structural 

Understanding of Algebra,” as in the title of his 2006 paper, he is not downplaying 

the importance of referential algebra.  Rather, he is simply asserting that referential 

and structural goals are sufficiently independent so as to sometimes warrant separate 

attention: “It is sensible for us to focus curricular attention on this face independently, 

to ensure that algebraic structure is properly represented for our students” (p. 14).  
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Indeed, the National Council of Teachers of Mathematics, in its Principles and 

Standards for School Mathematics (2000), retains decontextualized symbol 

manipulation as a desired outcome for students: 

Students should be able to operate fluently on algebraic expressions, 

combining them and reexpressing them in alternative forms.  These 

skills underlie the ability to find exact solutions for equations, a goal 

that has always been at the heart of the algebra curriculum. (p. 301) 

Insofar as decontextualized symbol manipulation is prized as one of the outcomes of 

algebra education, the research discussed here is relevant to curriculum and 

instruction.  Therefore, although this paper focuses in on acquisition of structural 

skills, only one face of a subject with two faces, it ought to be of interest to all who 

are in the business of teaching algebra. 

 Perhaps the most significant implication of this research is the notion that the 

difficulties of algebra are inherent to the human minds that learn it.  Sfard points out 

the inherent difficulty of achieving reified understanding of mathematical objects 

because of the vicious circle.  The psychological research of Landy & Goldstone 

suggests that humans naturally consider formally irrelevant visual features while 

making decisions in rule-governed domains, even when they know they should not do 

so.  It seems clear that there is no easy “answer” for student struggles to master 

symbolic algebra.  But any effective instructional strategies that do constitute a partial 

answer will, like those offered here, help make structure visually salient for students.   
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