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The work described here aims at improving the performance of three building

blocks of visual surveillance systems: foreground detection, object tracking and

event detection.

First, a new background subtraction algorithm is presented for foreground de-

tection. The background model is built with a set of codewords for every pixel. The

codeword contains the pixel’s principle color and a tangent vector that represents

the color variation at that pixel. As the scene illumination changes, a pixel’s color

is predicted using a linear model of the codeword and the codeword, in turn, is

updated using the new observation. We carried out a number of experiments on se-

quences that have extensive lighting change and compare with previously developed

algorithms.

Second, we describe a multi-resolution tracking framework developed with ef-

ficiency and robustness in mind. Efficiency is achieved by processing low resolution

data whenever possible. Robustness results from multiple level coarse-to-fine search-



ing in the tracking state space. We combine sequential filtering both in time and

resolution levels int a probabilistic framework. A color blob tracker is implemented

and the tracking results are evaluated in a number of experiments.

Third, we present a tracking algorithm based on motion analysis of regional

affine invariant image features. The tracked object is represented with a probabilistic

occupancy map. Using this map as support, regional features are detected and

matched across frames. The motion of pixels is then established based on the feature

motion. The object occupancy map is in turn updated according to the pixel motion

consistency. We describe experiments to measure the sensitivity of our approach to

inaccuracy in initialization, and compare it with other approaches.

Fourth, we address the problem of visual event recognition in surveillance

where noise and missing observations are serious problems. Common sense domain

knowledge is exploited to overcome them. The knowledge is represented as first-

order logic production rules with associated weights to indicate their confidence.

These rules are used in combination with a relaxed deduction algorithm to construct

a network of grounded atoms, the Markov Logic Network. The network is used

to perform probabilistic inference for input queries about events of interest. The

system’s performance is demonstrated on a number of videos from a parking lot

domain that contains complex interactions of people and vehicles.
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Chapter 1

Introduction

1.1 Visual Surveillance

Visual surveillance is a major research area in computer vision with many

practical applications such as monitoring passenger movement patterns in airports,

traffic conditions on highways, or security in subway stations. A surveillance sys-

tem often consists of three levels: low level component usually deals with object

detection and classification, mid-level component tracks the movement of objects

through space. The extracted object tracks or scene states are then provided to the

high level components for analysis and interpretation. Below is an overview of my

contributions to these components.

1.2 Background Subtraction

Using background subtraction to detect foreground objects involves building

a background model from a training sequence (often using an empty scene). New

frames are then compared and ”subtracted” from the background model, so that

what remains is the foreground. The background model consists of a description

of the color distributions for each pixel in the image. Usually, each distribution

is modelled with a Gaussian, mixture of Gaussians ([79]) or a set of codewords as
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in VQ approaches ([40]). One of the main challenges in background modelling is

the adaptation of these distributions to lighting changes. My work considered the

responses of the camera and object surfaces to incident lighting in designing a new

background model that adapts better to color variation, and thereby is able to deal

with extensive illumination changes.

1.3 Object Tracking

Tracking algorithms determine the state (location) of objects across frames.

The typical implicit goal is given a video sequence It to estimate the states Xt of

the tracked object as accurately as possible for all t. However, there are situa-

tions where other criteria might be relevant. For example, when tracking people in

surveillance scenarios, we might require more accuracy only when people approach

one another (for example, to determine if they make any interaction). In such situa-

tions, we could track at high resolution when it is needed, while maintaining track at

lower spatial resolution at other times. My work proposed a coherent probabilistic

framework that allows a tracker to operate at multiple levels of spatial resolution to

achieve efficiency and robustness.

Traditionally, an adaptive tracking system consists of two major components:

object representation and a searching algorithm. When the object moves in the

scene, its appearance usually changes due to the variation in object pose or lighting.

It is important that the object representation adapts to these changes so that object

state can be determined accurately. Many adaptive modelling approaches have been

2



proposed in the literature ranging from modelling object appearance with mixtures

of Gaussians ([30], [92]) to learning the complete object appearance manifolds ([21]).

Even with the best modelling technique, it is still difficult to accurately determine

the state of the object. Therefore, besides deterministic searching procedures such

as mean-shift, probabilistic approaches such as Kalman filter or particle filters are

also popular in tracking. Despite its long history, robust object tracking is still a

challenge to computer vision. In my work, instead of directly modelling the object

appearance, I represent the object with an occupancy map, and reduce the tracking

problem to establishing object occupancy maps across frames. The occupancy map

construction is carried out based on feature and pixel motion analysis.

1.4 Event Modelling and Recognition

At the highest level, we would like our surveillance system to ”understand”

interesting interactions that occur in a scene. This involves a number of steps

including identifying what are the events of interest, how to model them, and how

to recognize them from the video observations. Two of the main challenges are,

first, to recognize events that are complex and, second, to do so in the presence of

noise.

There are numerous frameworks that have been proposed for event recogni-

tion. In declarative approaches (e.g. [66]), events are represented with declarative

templates. Events are typically organized in a hierarchy, starting with individual

primitive events at the bottom and composite events on top. The recognition of

3



a composite event proceeds in a bottom-up manner. While events with complex

structures can be captured using these approaches, uncertainty is often not mod-

elled and so they are generally not robust to noise. In probabilistic frameworks,

such as HMMs (e.g. [57]), events are represented with probabilistic models. Event

recognition is usually performed using maximum likelihood estimation given obser-

vation sequences. Probabilistic approaches are often robust to noise. However, their

representations often lack flexibility (e.g. number of states or actors needs to be

known in advance) and hence it is difficult to use them in dynamic scenes.

My work used a combination of logical and probabilistic reasoning and utilized

commonsense knowledge to overcome noise or gaps in observations. Logic provides

us the compositional power to describe many complex relationships or events, while

probability provides us methods to deal with uncertainty.
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Chapter 2

Adaptive Background Subtraction with Prediction Models

2.1 Introduction and Related Works

Background subtraction is a key component in visual surveillance. It offers

a simple and often effective approach to detect foreground objects. In background

subtraction, the foreground is extracted from the current video frame through com-

parison with a previously constructed background model. Common approaches to

background modeling construct a probability distribution for a pixel’s color val-

ues or for some local image features. For simple situations with little noise and

change in lighting, a single-mode distribution such as a Gaussian is often sufficient.

For more complex settings with high levels of noise or with periodic background

motion (e.g. from tree leaves blowing in the wind) a multi-modal distribution is

required. Here, a mixture of Gaussian (MOG) ([79]) is typically employed. Kim

([40]) introduced a computationally simpler, but comparably effective, approach

based on vector quantization of color values observed during training of the back-

ground model. Dealing with illumination changes is a challenge for these methods,

especially if fast response to illumination changes is required. For example, in the

MOG approach, data is added to the mixture model and old data is removed using

a time-varying weight. However, this inevitably leads to lag in accommodating to

illumination change during which the system is effectively ”blind.” Adaptation using

5



a) frame]1 b) frame]394

Figure 2.1: Two frames of an outdoor sequence with large changes in lighting when

under direct sunlight and when a cloud passes by.

a Kalman filter approach such as [39] also has similar difficulties, notably the lag

problem. Additionally, these methods can also absorb stationary foreground objects

into the background model. In the vector quantization approach, the codewords

constructed by the VQ algorithm represent regions in color space characterizing

the background distribution. [40] used simple pixel-wise autoregressive models to

shift these codewords towards or away from the origin of color space as illumination

changes; however, as we will see, this is based on a physically incorrect model of how

background color changes as illumination varies for real cameras. Here, we employ

the VQ approach to background modeling, and motivate the use of a locally linear

model to predict and update pixel color codebook values. Our approach is able to

deal with large illumination changes using only a small number of codewords per

pixel. Training can be done even while foreground objects are moving in the scene.

A full range of illumination conditions is not needed during training.

6
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Figure 2.2: a) Illustration on R-B plane of the response of the camera sensor to

changes in lighting intensity. b) Prediction errors and distances in brightness dC

and dB in color

2.2 Background Modeling using the Codebook Representation

There are two main observations that motivate our approach. First,in natural

outdoor scenes, different surfaces have different irradiant responses when the illu-

mination is changed. To accurately adapt the background model to such changes,

a single global set of adaptive parameters, such as suggested by [42], is insufficient.

Instead, for each pixel we use a separate set of parameter values that are updated

independently as lighting changes. Second, as lighting changes, the color values of

individual pixelsdo not lie on a color line passing through the origin of color space,

as assumed by [40] and others. Since camera sensors have limited range [0-255], the

response is necessarily saturated at the limits so that locally, changes in color as a

function of illumination change will not point toward the color space origin. This is

illustrated in Figure 2.2. At low light levels all pixels fade to black. At sufficiently

high light levels they all tend to white. Between those two extremes they follow a

7



curved trajectory between black and white depending on the reflectance properties

of the corresponding surface point. We point out that reaching saturation is quite

common, especially for scenes that are under direct and strong sunlight (Figure 2.1).

Models for background adaptation under illumination change have to take a typical

camera’s non-linear responses into account.

We construct a locally linear model to update codeword colors as illumination

changes. So, at each pixel, we use a tangent vector to that pixel’s color trajectory

to represent the rate and direction of its color variation. As the lighting changes,

both are adjusted to better model the local behavior of a pixel’s color.

The overview of our background model adaptation is as follows.

• For each pixel, a codeword model is learned during a training period. Each

code word contains a principle color values and a tangent vector .

• When scene illumination changes, the change is measured through a gain in a

global index value. This gain, in combination with the mean and tangent of

a codeword, produces a prediction of the code word color under the changing

lighting condition.

With some additional updating based on secondary technical considerations, these

predictions constitute our updated background model. Further details are given

below.

8



2.2.1 Background Model Construction

Due to possible variations in the background during training, the color distri-

bution at a background pixel may consist of several clusters. We use a codeword

for each cluster. The collection of these code words forms our codebook (CB) back-

ground model.

Similar to [40], we represent a codeword w with an 8- tuple (m, ∆, σB, σC , f,mnrl, tfirst, tlast),

where

• m is the mean color of the cluster,

• ∆ is the rate of (color) change at m when there is a unit change in the global

index (∆ > 0),

• σB and σC are the codeword variances in brightness and color respectively,

• f is the occurrence frequency of the current codeword,

• mnrl is the maximum negative running length, which is the maximum period

during the training period over which the code word was not observed

• tfirst and tlast respectively are the first access time and the last access time to

the code word.

The variable mnrl is used for temporal filtering to eliminate foreground code words

during training.

Let It ← (Rt + Gt + Bt)/3, and let CB(x) be the set of code words at a pixel.

The algorithm for updating the codebook is presented in Figure 2.2.1. Details are

explained below.

9



Initialization CB ← ∅,

Repeat Step 1 and 2 till the end of the training sequence, t = 1 → N

Step 1. Compute the gain a in the global index using It and It−1

Step 2. For every pixel x = (r, g, b),

1. Predict the color of every code word w in CB(x),

m = mp + a∆ (2.1)

2. Get the closest codeword to x, w∗

3. Compute the distance D between x and w∗

4. If D < θ, update w∗ using x (eqn. 2.8 and 2.9)

w∗ ← (m′, ∆′, σ′B, σ′C , f + 1, max(t− tlast,mnrl), tfirst, t) (2.2)

Else create a new codeword and add to CB(x)

w ← (x, ∆0, σ
0
B, σ0

C , 1, t− 1, t, t) (2.3)

5. Update the remaining codewords in CB(x)

m′ = βa∆ + m (2.4)

Wrap up the maximum negative running length

mnrl = N − tlast + tfirst − 1 (2.5)

Perform temporal filtering to eliminate foreground code words.

Figure 2.3: The Codebook Construction Algorithm10



In the absence of prior knowledge about the locations of foreground objects,

there is inherent uncertainty in how a given background pixel varies in color. How-

ever, under the assumptions that the foreground covers only a small fraction of the

image and that there is a single source of lighting, such as the sun, we can employ

a global gain measurement to infer local lighting variation. Here, we use the dif-

ference of medians of brightness energy over time; i.e. the gain, a = median(It) −

median(It−1). To account for the possibility that the foreground size is significant,

pixels with very high frame difference are excluded from the median computation.

Given this global gain, every code word is shifted to a new location using the

previously learned mean and tangent, ∆, using linear prediction; i.e. mp = m+a∆.

If a pixel observed color, x, is close to the predicted mean mp of the codeword w,

then x is used to update w; otherwise, it is used to initialize a new code word.

The distance between a code word mean, m, and a new color measurement, x,

is measured as the sum of distances in two directions - one along and the other

perpendicular to the local tangent direction ∆,

d2(x,m) = (dB/σB)2 + (dC/σC)2 (2.6)

Here dB = ∆/‖∆‖(x−m) is the projection of x−m on the current tangent direction,

and represents the deviation in brightness between x and the codeword. dC is

measured in the direction from x to the tangent - it represents the deviation in

color. See Figure 2.2.b for an illustration. σB and σC are the variances in brightness

and color of the current code word.

When a new code word is created, its mean is the current observation, x. The
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direction of the tangent vector ∆0 is initialized toward the origin. Specifically,

∆0 =
1

2
σ0

B

x

‖x‖ (2.7)

When the distance between a code word, w, and the current observation, x, is less

than a threshold θ, w is updated as,

∆′ = β∆ cos α(x−m)/a + (1− β∆)∆ (2.8)

m′ = βm sin αε + mp (2.9)

where α is the angle between mp−m and x−m; ε is the prediction error, ε = x−mp;

β∆ and βm are constants controlling the adaptation rates of ∆ and m. The mean and

the tangent involve six parameters that need to be updated; however, x provides

only three observation values. The extra degrees of freedom means that there is

flexibility in distributing the adaptation to the mean and the tangent ∆. When the

angle, α, is large we mainly update the mean, while when α is small, the adaptation

is shifted to changing ∆. This is to prevent the direction of ∆ from fluctuating due

to small measurement noise. Hence, sin α and cos α are selected as the weights in

equations 2.8 and 2.9.

σB and σC are updated as σ′B = (fσB+dB)/(f+1) and σ′C = (fσC+dC)/(f+1)

For all other code words associated with a pixel, the mean is shifted toward

the predicted value. The tangents ∆ are rotated toward the origin. This approach

is ad-hoc, since in this case, the information to update un-accessed codewords (i.e.

codewords that don’t have observations) is not available. Possible improvements

with complete modeling of the color variation curve are discussed in chapter 4.

12



2.2.2 Foreground Detection

Scene illumination will, of course, also change after training the codebook is

completed. Therefore, we keep updating the background model in parallel with fore-

ground detection. The algorithm is the same as in Figure 2.2.1 with the exception

that in step 2.2.14, when D > θ , instead of creating a new code word, we mark

that pixel as belonging to the foreground. It is important to note that since we

keep adjusting the background model up to date, it would be more accurate if the

lighting condition at the start of the detection period is close to that at the end of

the learning period. This requirement can be relaxed if we experienced all light-

ing conditions during learning (which we don’t assume here), and build complete

variation trajectories in the color space for every pixel.

2.3 Results

In this section we compare the performance of our algorithm with the ap-

proaches described in [40] and in [39]. [40] also used a vector quantization approach

and codebook representation, but did not use the local linear model and index-based

prediction as we do here. To deal with illumination change, they used a cache of

codewords and a codeword is considered to belong to the background if it is accessed

continuously for a certain long period of time. [39] adapted the background model

with a Kalman filter style update (first order autoregressive model).

In the three approaches considered here, as well as in many other approaches

in background subtraction, a distance threshold, rD, is used to reject or accept if a
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pixel belongs to the background (foreground) or not. The value of this parameter

has a direct effect on the detection performance of each method. To make the three

methods comparable, we used the same value of rD for all of them, both during

training and detection. Extensive evaluation of the sensitivity of the detection rate

to the distance thresholds is an ongoing part of this work.

The first experiment is on an outdoor sequence where the lighting changed

extensively during both the training and detection periods. The first 150 frames are

used for training. No foreground objects are present during that period. Figure 2.4

shows the results on three frames from the testing sequence. As we can see, with

the same distance threshold, both of the approaches in [40] and [39] produce more

false alarms than ours. Note that reducing rD to exclude false alarms also leads to

a reduction in detection rate (i.e. producing more holes in the foreground regions).

For example, in [40]’s result for frame ]400, the foreground (true positive) starts to

disappear while the background (false alarms) has not been completely eliminated

yet. Increasing the adaptation rate also does not necessarily lead to improvements

in detection. Figure 2.5 shows the result of such adjustment for [39] and [40] on

frame ]400.

Next, we test our algorithm on an indoor sequence. The lighting from a single

white light source is controlled with a dimmer. The variation of lighting intensity

is gradual but arbitrary. The first 100 frames are used for training. The scene is

empty during the training period. The training frames cover the major range of

lighting variation, but not all. Figure 2.6 show the testing results at frame ]101,

]200 , and ]300.
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Frame ]1 Frame ]400 Frame ]1000

[39]

[40]

Ours

Figure 2.4: The first row shows three frames of the testing sequence. The remaining

rows respectively show the result of [39], [40] and our methods on those three frames.
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Figure 2.5: Increasing the adaptation rate for [39] (left) and [40] (right) does not

necessary improve their results.
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Frame ]1 Frame ]50 Frame ]100

Frame ]101 Frame ]200 Frame ]300

[39]

[40]

Ours

Figure 2.6: Results on the indoor sequence. The first row shows three frames of the

training sequence. The second row shows three frames of the testing sequence. The

remaining rows show the results of [39], [40], and our methods at these three frames.
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Chapter 3

Object Tracking at Multiple Levels of Spatial Resolutions

3.1 Introduction

Tracking is a problem that has been extensively studied in computer vision.

The typical implicit goal is given a video sequence It to estimate the states Xt of the

tracked object as accurately as possible for all t. However, there are situations where

other criteria might be relevant - for example, when tracking people in surveillance

scenarios, we might require more accuracy only when people approach one another

(for example to determine if they come close enough to interact). In such situations,

we could track at high resolution when it is needed, while maintaining track at lower

spatial resolution at other times.

Tracking at low resolution is less expensive computationally and, in some sense,

less sensitive to noise. At the same time, high resolution tracking is needed for accu-

rate estimation of object state. Therefore, a method is needed for moving back and

forth between resolution levels in both the data and the tracking state space, while

maintaining tracking over time. The crucial issue, then, is how to make inferences

across different levels of the tracking state space so that the tracking process is con-

tinuous. Here, probabilistic modeling and sequential Bayesian filtering are used to

solve this problem, providing a means to choose suitable levels of resolution as the

tracking progresses in time.
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3.1.1 Related Works

We review here work that is most relevant to our approach. Coarse-to-fine

searching, or hierarchical searching, is a common method to deal with large search

spaces and has been widely applied in computer vision (see e.g. [11], [1]). The

exploration of the state space can be attacked from two perspectives: searching and

modeling. In [19], at a given time, the state space of the object is searched by

propagating particles through multiple layers of simulated annealing. They do not

sub-sample the original data and so the amount of computation is nearly the same

for all layers. It is well-known that in tracking, especially tracking of large objects,

computing particle likelihoods is often the computational bottleneck of the tracking

system ([64], [82]). One of our goals is to track efficiently through reducing this

burden as much as possible.

With layered sampling in [82], the state space is explored by decomposing

the state variable Xt into the sum of several others, Xr
t , r = 1, 2 . . .. Each Xr

t is

responsible for sampling at a spatial range r. Coarser pdf’s are used to guide the

sampling of finer ones through importance sampling. It is implicitly assumed that

the decomposed variables are independent, and thus there is no modeling of the

dependence between Xr
t ’s. In our approach, we explicitly model the dependence of

an object’s state at different resolution levels s and s′.

In addition to stochastic searching, hierarchically pruning of the search space

can be done through the use of explicit models. This typically leads to the construc-

tion of a hierarchy of state models. In [27], a hierarchy of templates was defined
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for the problem of recognition through template matching. The state space was

then explored by traversing this tree structure of templates. In a similar vein, but

in the context of tracking, [80] defined a fixed tree-based structure whose different

levels partition the state space at different levels of granularity. Bayesian filtering

(in time) is applied to each level of the tree. The state space is pruned for the low

level nodes based on the probability density of their (coarser) parent partitions. In

contrast to our approach, the interaction between levels of the tree is not modeled

with Bayesian filtering and the observation is not multi-resolution.

In [31] a dynamic Bayesian network with a nonparametric propagation scheme

is used for multi-scale object tracking. They also sub-sample the observation to

multiple scales, but the number of scales is equal to the number of layers of the

network, which is fixed (three). In contrast, the number of scales in our algorithm

is dynamic, and in theory can have an arbitrary range.

The chapter is organized as follows. The next section establishes the basis for

Bayesian filtering along the spatial and temporal dimensions. Section 3.3 describes

different components of the tracker and strategies for controlling it. Section 3.4

shows experimental results of the tracker on a number of video sequences. Section

3.5 concludes the chapter with a discussion.
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3.2 Sequential Bayesian Filtering in Spatial and Temporal Dimen-

sions

In this section, we first describe temporal Bayesian sequential filtering and

then its extension to include sequential propagation across scales. Some important

differences of our approach compared to previous ones are pointed out. The moti-

vation and strategy for adapting the tracker’s scale are briefly introduced at the end

of the section.

3.2.1 Filtering in Time

Consider a system with the following state and observation models,

Xt+1 = ft(Xt) + Wt (3.1)

Zt = ht(Xt) + Vt (3.2)

where Wt and Vt are respectively the state and measurement noise models at time

t (typically, Wt ∼ N(0, Qt), Vt ∼ N(0, Rt)) and ft(Xt) and ht(Xt) are state and

observation models. Given the observation sequence Z1:t, the state Xt (position,

orientation, scale. . . ) of the object at time t is characterized by a pdf p(Xt|Z1:t)

and is estimated from the prior density distribution, p(Xt−1|Z1:t−1), using the two

steps-prediction and updating (Chapman-Kolmogorov equation, see e.g. [20]),

p(Xt|Z1:t−1) =
∫

p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1 (3.3)

p(Xt|Z1:t) ∼ p(Zt|Xt)p(Xt|Z1:t−1) (3.4)
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)|( 1:11 tt ZXp )|( 1:1 tt ZXp )|( :1 tt ZXp

)|( 1tt XXp )|( tt XZp

prediction update

Figure 3.1: Sequential temporal filtering

where p(Xt|Xt−1) and p(Zt|Xt) are respectively the assumed state and observation

likelihood models. This two-step propagation can be illustrated with the diagram

in Figure 3.1

This process is iterative, starting from the assumed prior p(X0). When the

system is linear, an analytic solution can be derived such as in Kalman filtering.

In the general case, approximation using Gaussian mixtures ([29]) or a weighted

particle set ([33]) is often used.

3.2.2 Filtering across Scales

Now, we extend the above formulation when the state and observation are

measured at multiple levels of resolution. Our system now can be written as,

Xs′
t′ = f s

t (Xs
t ) + W s

t (3.5)

Zs
t = hs

t(X
s
t ) + V s

t (3.6)

where the superscript s and s′ are used to denote resolution levels, typically, s =

s′, s′ ± 1 andt = t′, t′ + 1.. Filtering across scales can be done in a similar manner

as filtering in time (3.3), (3.4). For example, to get p(Xs
t |Z1:s

1:t ) from p(Xs−1
t |Z1:s−1

1:t )
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Figure 3.2: Illustration of upward propagations from (t− s, s− 1) to (t, s)

given Zs
t , we proceed as follows

p(Xs
t |Z1:s−1

1:t ) =
∫

p(Xs
t |Xs−1

t )p(Xs−1
t |Z1:s−1

1:t )dXs−1
t (3.7)

p(Xs
t |Z1:s

1:t ) ∼ p(Zs
t |Xs

t )p(Xs
t |Z1:s−1

1:t ) (3.8)

where p(Xs
t |Xs−1

t ) is modeled based on the transformation of the state variables

as the scale is changed - typically a simple re-scaling of the state variables by the

relative scales, with the addition of some white noise (i.e. Xs′
t = f(s, s′)Xs

t + U

where U ∼ N(0, Σ) and f(s, s′) measures the relative scaling between two level s

and s′.

Other movements along the two dimensions, temporal and spatial resolution,

can be performed similarly. The diagram in Figure 3.2 provides an illustration of the

propagation of probabilities across resolutions levels. In particular, it shows paths
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from (t− 1, s− 1) to (t− 1, s) and from (t− 1, s− 1) to (t, s). The latter case is a

diagonally upward move and can be done when the model p(Xs
t |Xs−1

t−1 ) is assumed

for Xs
t |Xs−1

t−a . In the opposite direction, when we move downward in scales from s

to s′ < s, the state update can be determined not by probabilistic filtering but by

deterministic transformations such as Xs′ = f(s, s′)Xs. The reason is that since

the data at higher resolution s is assumed to be more accurate than the data at a

lower level, the state estimation at higher level is often more accurate. Therefore,

a probabilistic update step with the less accurate observation at scale s′ < s is not

needed. A simple projection operation is sufficient.

Here, we try to estimate the state Xt of the object at a specific scale s at a

given time t. This is different from other multi-scale attempts such as [31], [80] or

[3] where the probability distribution of the state Xt at a time t is estimated for

all scales. Several disadvantages for maintaining multiple layers in parallel are as

follows. First, the concurrent interaction between layers is often complicated and

simplifying assumptions needs to be made. For example, in [31], the dynamic models

corresponding to different scales are assumed to be independent. In other words,

object motions at different scales are assumed unrelated. Second, the number of

scales is often limited and fixed at the onset (up to three, [31] and [3]). This

assumption is made principally due to concerns over computational costs. As a

results, when there are only few layers, the relative scale between two consecutive

layers s+1 and s has to be large (e.g. at least two) and therefore it becomes harder

to model the relation between Xs ad Xs+1 accurately. Whereas in our approach, the

number of scales can be very large and the relative scale between two consecutive
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levels of resolution can be small (e.g. 1.2).

3.2.3 Scale Adaptation

The filtering framework described above supports the ability to control the

tracker to move up and down in spatial resolution and in time. We discussed here

several principles for controlling scale adaptation. Adaptation strategies for our

particular tracker are detailed in Section 3.3.3.

First, our goal here is to track efficiently, therefore we would like to track

the object at the lowest scale possible while still maintaining robustness. In [14]

robustness is achieved by searching for the most discriminative feature from a pool

of features. Here we increase the discriminative power of the tracker by increasing

the tracking resolution. The underlying assumption is that when we have a more

detailed observation, we are able to make a better estimate of the state of the object

and hence can track the object more robustly.

Second, in theory, at a given point (t, s), we can move to any other scale at time

t or t + 1. However, large jumps often lead to poor sequential estimates. Therefore,

we change the resolution gradually when we move upward. As mentioned in the

previous section, in the downward direction we can make large jumps, e.g. from

(t, s) to (t, s′), s′ << s, without affecting the state estimation quality. However,

practically, we also would like to move downward gradually so that the tracking

conditions can be monitored continuously.

Third, there are cases when, even at the highest resolution, we still don’t
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have enough information to distinguish the object from its surrounding cluttered

background. Then, we should have a tracker that supports multi-modal tracking

so that the tracking can be continued successfully. Here we choose the particle

filter for this fail-safe, fall-back case. In particular, if the sample covariance doesn’t

reduce with increasing scale, our tracker keeps moving up in scale. If, at the highest

resolution, the sample covariance is still large, most probably due to multi-modality,

the tracker just proceeds with the particle filter tracker at full resolution (Section

3.3). Note that our multi-resolution tracker is not designed to be more accurate

than a full resolution tracker, but more efficient.

3.3 The Multi-Resolution Color-Based Tracker

Any probabilistic tracker can be integrated into the framework developed in

Section 3.2. We describe one here that tracks color blobs at multiple level of reso-

lutions from smin to smax. It is based on particle filtering ([33], [64]). At any given

time instance, t, only one set of Np particles (Xs
t (i), w

s
t (i)), i = 1−Np that samples

the object’s state space corresponding to the current spatial resolution level s is

maintained.

3.3.1 Observation Models

The appearance model we use is similar to [64]. The state variable is Xs
t =

(xc, yc, w, l, o)s
t , where xc, yc, w, l and o respectively denote the blob’s center co-

ordinates, its width, length, and orientation. The appearance Zs
t of the object is
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then the N -bin HSV histogram [64] of the pixels in the projected layout Prj(Xs
t ),

Zs
t = Z(Is

t , P rj(Xs
t )) where Is

t is the image at time t and spatial resolution s. We

obtain Is
t by nearest-neighbor sub-sampling of the image at the highest spatial res-

olution smax. The observation likelihood p(Zs
t |Xs

t ) is then modeled as p(Zs
t |Xs

t ) ∼

exp(−λD2(Zsmax
0 , Zs

t )), where λ is a constant, Zsmax
0 is the (initial) target his-

togram, and D(Z0, Z) is the distance based on the Bhattacharyya coefficient ([15]),

D2(Z0, Z) = 1 − ∑N
i=1

√
pi(Z)pi(Z0), where pi is the value of the i-th bin in the

histograms.

One drawback with the histogram is the loss of spatial information. In [64],

the authors divide Zs
t and Zsmax

0 into a fixed number,K, of parts and histograms

are computed and correspondingly compared for each part. Here, we also di-

vide the tracked object into sub-regions. However, instead of fixing the number

of parts, we adapt this number with resolution level, K = K(s), with K be-

ing smaller at lower resolution levels. The likelihood is computed as p(Zs
t |Xs

t ) ∼

exp(−λ
∑K(s)

j=1 D2(Zsmax
0 (j), Zs

t (j))), where Zsmax
0 (j) and Zs

t (j) are the histograms of

the corresponding j-th sub-regions in the target and image region. This likelihood

function tends to become more peaked when resolution s increases and is smooth

when s decreases. This implies accuracy at high resolution and robustness at low

resolution.
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3.3.2 State Models

In addition to the state evolution in time, we also need to specify the modeling

of state across spatial resolution levels. They are defined as follows.

For Xs
t |Xs

t−1, X
s
t = Xs

t−1 + Wt, where Wt ∼ N(0, Qt) is the noise for the

state model along the temporal dimension. Qt = diag(σt2x, σt2y, σt2w, σt2l , σt2o) and

is kept constant for all s and t except when the tracker is resolving a lost track.

For Xs
t |Xs−1

t , Xs
t = AsXs−1

t + Ws, where is Ws ∼ N(0, Qs) the noise for the state

model along the spatial resolution dimension. Qs = diag(σs2
x, σs2

y, σs2
w, σs2

l , σs2
o) is

also kept constant for all s and t. As = diag(β, β, β, β, 1) where β = f(s, s − 1) is

constant. Making β constant has been shown to be a good choice in [82]. Note that

we don’t change orientation values across resolution levels. For Xs
t |Xs−1

t−1 , Xs
t =

AsXs−1
t−1 + Ws′ , where Ws′ ∼ N(0, Q′). If we consider this diagonally upward

movement as a combination of the two previous ones, then Q′ = Qt + Qs. For

Xs−1
t |Xs

t , X
s−1
t = (As)−1Xs

t , is a deterministic projection. And finally, for Xs−1
t |Xs

t−1, X
s−1
t =

(As)−1Xs
t−1 + W s−1

t . This diagonally downward move is seen as first a deterministic

decrease in spatial resolution and then a stochastic move forward in time. This

order may be reversed.

Here the state models are simplified to Gaussian noise processes, i.e. effec-

tively without dynamic or motion models. Modeling the object’s motion is only

useful when its movement follows the patterns captured in the motion model, and is

particularly difficult to model in the case of moving cameras. On the other hand, an

obvious disadvantage of the noise model is that, given a fixed number of particles,
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the sampling range is usually not large enough for the tracker to follow the tracked

object even when its angular velocity is not very large. Fortunately, working at mul-

tiple levels of resolution helps in this case. Roughly speaking, if a set of particles

at level smin is used to sample a volume Vmin = (rsmin
)d, where rsmin

= 3Q1/2
s is

the radius and d is the number of dimensions, then through the sequential filtering

across multiple scales, we can effectively sample high likelihood portions of a volume

Vmax = (rsmax)
d where rsmax = f(smax, smin)rsmin

. In practice, rsmax is usually tens

of rsmin
. This makes the avoidance of dynamic or motion model a reasonable choice,

and the tracker becomes more general with regard to the tracked object’s motion

patterns.

3.3.3 Scale Adaptation Criteria and Rules

To track the object efficiently, we follow the adaptation schemes laid out in

section 3.2.3: track the object at the lowest scale possible, while monitoring to ensure

good tracking condition. If the condition starts to deteriorate, the tracker needs to

increase resolution to gain more discriminative power. To realize such a scheme, we

need a good set of measurements that is indicative of the tracking condition.

Practically, in particle filtering, there are two indicators, the particle likelihood

and the sample covariance Σs
t , for situations when the observation is not available

(due to occlusion or lost track) and when the observation is available but confused

(due to distracting objects or background), respectively.

• Dealing with confusion. When there is no confusion the likelihood distribution

29



typically peaks around some mode, and Σs
t thus will be small. When there

is tracking confusion with another object or features in the background, the

likelihood will contain several separated peaks, and Σs
t becomes large since

samples are spread around these different peaks. Therefore the following stable

continuous adjustment rule can be employed to deal with various tracking

confusions: Let Cs
var be ||Σs

t − Qsmax
0 || ≤ αvar. When Cs

var is violated, change

the spatial resolution level to s′ = s+1, until it is satisfied. The threshold αvar

is established at the initialization of the tracking process with the assumption

that there is no confusion at smin at that time, αvar = ||Σsmin
0 − Qsmax

0 || + ε,

where ε is a small constant (e.g. ε ∼ 0.001). Note that when the maximum

scale is reached, the tracker simply returns to the full-resolution tracker with

all of its strengths (or weaknesses).

• Dealing with a lost track. This can be detected using particle likelihoods.

When a track is lost, the likelihood values of all particles and hence their

maximum wmaxs
t are substantially small. On the other hand, with methods

for preventing sample degeneracy applied (see e.g. [20]), when the true state

is within the sampling scope, wmaxs
t is quite large. The following control rule

can be applied when loss of track occurs: Let Cs
max be rmaxs

t > αmax. When

Cs
max is violated, change the spatial resolution to s′ = smin and proceed with

tracking, where rmaxs
t is the ratio wmaxs

t/wmaxs
0, and αmax is empirically

established (e.g. 0.25). Note that in contrast to the previous rule, this one

makes a large downward jump across resolution levels. Such a move is either
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for waiting for the object to reappear, in case of occlusion, or for broadening

the sampling range, in case of lost track caused by the actual state swiftly

moving out of the current sampling volume.

Putting these rules together, and setting Cs
max’s priority over Cs

var’s, our overall

control procedure can be summarized as follows. While moving forward in time,

progressively reduce the resolution level s to s′ = s− 1. If Cs
max or Cs

var is violated,

resolve them using the rules above.

3.4 Experimental Results

For all the experiments in this section, the number of particles is set to 150.

The full resolution of images is 640× 480. The algorithm is written using C++ and

run on a 2.8GHz P4 Windows machine with 1GB RAM.

Accuracy

In this experiment, we test the algorithm’s ability to regain the best accuracy at

specified times while tracking at lower resolution at other times. We tracked a blob

in a medium-cluttered sequence, with known ground truth. Two trackers: a full-

resolution tracker tracks the object at highest resolution smax at all times (except for

a short initialization period) where as the multi-resolution tracker reduces resolution

whenever possible. The lowest value for the scale is 0.086 which is determined by

requiring that the size of the tracked blob is at least 5 × 5. It is required that we

move up to smax regularly at an interval of 4T = 30 frames. This is done by adding

some constraint to the control rules in section 3.3.3 so that the tracker is able to
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Figure 3.3: Resolutions and errors vs. time. The blue solid line is for the full-

resolution tracker, and red dotted one is for the multi-resolution tracker. Where

val(s) mean the normalized value of the scale s, val(smax) = 1

move up to smax on time.

Figure 3.3.a shows how the resolution s varies with time. Figure 3.3.b shows

the mean error of all particles weighted by their weights. Figure 3.3.c shows the error

of the particles with maximum likelihood (which is often, but not necessarily, the

ones closest to the ground truth). We can see from these results that at the needed

time points (i.e. after every 4T ) there is virtually no difference in errors between

the full-resolution tracker and the multi-resolution tracker. This is stably true for

a long period of time. So, while tracking at low resolution, we can practically move
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(a) (b) (c)

(d)

Figure 3.4: A test sequence: a) first frame (t = 0, low res.), b) an occluded occasion

(t = 313, high res.), c) a later frame (t = 380, low res.), d) resolution s vs. time t.

up to highest resolution and accurately estimate the state of the object on demand.

Robustness and Efficiency

In the sequence used in this experiment (about 1000 frames of ) the tracked object

gets occluded many times, for periods as long as 20 frames. The results in Figure

3.4 show that the tracker is able to track through such situations and follow the

object closely. For this sequence, the multi-resolution tracker runs at approximately

40-45 frames per second. The full-resolution tracker runs at 7 frames per second.

Tests on a variety of different sequences give similar results. The abilities to deal

with both lost track and confusion (section 3.3.3) give the tracker good robustness

Figure 3.5 shows several frames from the tracking of the red spotted tennis

ball which contains occlusions and confusion. The two tennis balls, which are very

similar at low resolution, are clearly distinguishable only at high resolution. The

33



a) a full res. frame b) frame]20

c) frame]85 d) frame]109

e) frame]147

Figure 3.5: The tennis sequence
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tracking is also complicated by the fact that the red color on the spotted ball is

similar to the reddish color in the background. Without spatial division in the

histogram calculation (section 3.3.1), a red region in the sweater can mix with other

regions on the other tennis ball and produces a histogram that looks very similar

to that of the spotted ball. Figure 3.5.a shows an input frame at full resolution

(648 × 480), i.e. at the normalized scale smax = 1. Figure 3.5.b shows frame ]40

which is at a working resolution s = 0.05 (1/20 of the full resolution). When the

distracting ball approaches the tracked ball, the tracker increases the resolution

to s = 0.35 (1/3 of the full resolution), to distinguish them (Figure 3.5.c - frame

]85). When the tracked ball gets completely occluded, the tracker jumps to the

smallest resolution smin = 0.04 (Figure 3.5.d - frame ]109). Figure 3.5.e shows that

the tracker resumes tracking of the object at low resolution again when there is no

distracting object (frame ]147). Figure 3.6 shows the distribution of particles when

there is confusion at low resolution (left, s = 0.065). The confusion is then resolved

at higher resolution (right, s = 0.35). Darker color means lower likelihood weight

and vice versa. As we can see, when the resolution is increased, more information

is brought in, and therefore the confusion decreases.

3.5 Conclusion

We proposed a coherent probabilistic framework that allows a tracker to op-

erate at multiple levels of spatial resolution to achieve efficiency and robustness.

Probabilities are propagated across spatial resolution using sequential Bayesian fil-
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Figure 3.6: Particle distribution at low (left) and high (right) resolution. Darker

color means lower likelihood weight and vice versa. The red rectangle is the mean.

tering, similar to temporal filtering. With the added dimension, the multiple resolu-

tion filtering framework provides a rich number of opportunities for controlling the

tracker to achieve desired system goals. Based on this model, we built a color blob

tracker and devised a set of strategies to control the tracker. That the tracker can

track object(s) with a substantial saving in computation cost, and that it is able to

regain tracking robustly even in a number of difficult situations show the strength

and potential of our approach.
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Chapter 4

Robust Object Tracking with Regional Affine Invariant Features

4.1 Introduction

Tracking is a fundamental vision problem, with many applications in higher

level tasks such as activity analysis, recognition and surveillance. Developing robust

tracking algorithms is challenging due to factors such as noisy input, illumination

variation, cluttered backgrounds, occlusion, and object appearance change due to

3D motion and articulation.

There are numerous frameworks for tracking. In contour or curve tracking,

the object is represented as a (closed) contour or a curve. The object’s location and

shape evolution over time can be recovered using probabilistic propagation methods

([32]) or local evolution methods such as level sets. Curve tracking typically degrades

in clutter. In local feature tracking, the tracked object is represented as a collection

of features, often corners or line segments, and tracking is based on establishing

feature correspondences between frames. It has been used widely in Shape-from-

Motion, or in 2D or 3D tracking with models ([60]). Local feature tracking also

degrades in high clutter or noise. Region, blob or template tracking is less sensitive

to clutter because more spatial context is used for feature representation (see e.g.

[30] [52]). In this chapter, we address the problem of updating the model of an

object during tracking when the object is represented by a collection of such regional
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features. In the special situation in which the object to be tracked is known a priori,

such appearance changes can be learned off-line and used during tracking. This was

first done by Waxman and Siebert ([68])using a neural network approach; more

recent learning based approaches include Black and Jepson([5]) and Ozuysal et. al.

([60]).

We describe a regional-feature based tracking algorithm designed to cope with

large changes in object appearance. The tracking algorithm estimates a time-varying

occupancy map of the tracked object which is updated based on local motion models

of both the object and the background. The regional features we employ are the

MSER features ([51]) that have been used previously for object recognition and

wide-baseline stereo matching (see [54]). They are more stable from frame to frame

than local features such as corners or lines, making it easier to match them for

motion modeling.

We represent the tracked object with a probabilistic occupancy map that rep-

resents the changing image shape of the tracked object as it moves through the scene.

Figure 4.1 contains examples of regional features and occupancy maps for frames

from some sequences that will be used to illustrate and evaluate the algorithm.

The chapter is organized as follows. Related work is reviewed in section 4.2.

Section 4.3 provides details of the tracking method including establishing feature mo-

tion, expansion for pixel motion and occupancy map updating. Section 4.4 includes

experimental comparisons between the proposed tracking algorithm and recently

described adaptive appearance based tracking methods.
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Figure 4.1: Examples of object features (left) and occupancy maps (right) in the

car and coke sequences. The red dots are the centers of regional features with high

likelihood matches.

4.2 Related Works

There is a vast literature on tracking, and we restrict ourselves to recent ap-

proaches related to our research. To address appearance changes, adaptive modeling

of object appearance is typically employed. In [89], object appearance is modeled

with a mixture of a fixed number of color-spatial Gaussians. Each mixture is consid-

ered as a particle in a particle filter system. This representation is quite similar to

the object model used earlier in [30], where a variable number of Gaussian kernels

is used. The set of kernels is updated between frames using Bayesian sequential

filtering. The Gaussian approximation makes these approaches deal very well with

gradual appearance changes. However, similar to [35], they have difficulties with
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rapid changes or when changes include both occlusion and dis-occlusion, such as

when an object rotates (even slowly).

In approaches including [14], [3], . . . , background modeling is used to improve

the reliability of tracking, essentially by giving more weight to object features that

are more prevalent in the object than in the local background. In [14], the appear-

ance of both the object and its local background are updated during tracking. At

any given frame, a feature that best discriminates the object from the background

is chosen to compute a likelihood map, which predicts the position of the object

in the next frame. In [3], the object and background are modeled in the form of

an ensemble of weak classifiers. Adaptation is done through the addition of newly

trained classifiers and the removal of old ones with high error rates. The approach

as formulated does not support scale changes. Our approach, instead of modeling

background appearance, models background motion.

Another related tracking paradigm is feature tracking, which constructs and

analyzes feature tracks over long periods of time (e.g. [10]). For point features, main-

taining tracks over many frames is quite difficult, while more stable features, such

as those employed in recent track-by-detection approaches ([60]) need wide-baseline

matching or training with the tracked objects. Moreover, they demand feature de-

tection as well as matching to be accurate. In contrast, the feature matching we

employ is done on frame-to-frame basis, so no construction of long feature tracks is

required. The paper by Donoser et. al. ([?]) tracks a single MSER feature, with

focus on efficient detector implementation. We employ MSER features, but they

could be replaced by other regional features such as IBR, Scale Saliency, etc.([54]).
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4.3 Technical Approach

Our approach is motivated by the simple assumption that any image element

(feature, pixel . . . ) that is close to the object and moves consistently with the

object is, with high probability, part of the object. Our approach to updating the

model of a tracked object is, then, based on motion of image elements as opposed

to appearance matching. We begin by motivating the use of motion analysis for

object model updating. As discussed in the literature review, previous research has

focused on appearance-based methods for updating. However, these methods face

a difficult trade off between conservatively maintaining an incomplete, but correct,

appearance model and aggressively updating the model (but potentially including

background elements into the updated model). Conservative updating schemes have

difficulty tracking an object whose appearance changes rapidly, even when using a

model that allows jumps, such as the WSL model ([35]). On the other hand, a

more aggressive appearance updating scheme is more likely to include unwanted

elements from the background, which would eventually result in tracking failure,

especially in cluttered images. Attempts to resolve this trade-off, such as in [61],

employ learning on specific objects or object classes (such as pedestrians). Finally,

it is very challenging to update the model correctly if the newly appearing parts

bear no appearance similarity to previously seen parts of the object.

Instead, we use motion similarity to update the object model. Consider the

idealized situation illustrated in Figure 4.2, where the leftward rotation of object At

results in occlusion and dis-occlusion on its left and the right sides, respectively. If
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Figure 4.2: The object rotates leftwards. Actual object areas are shown in white.

appearance similarity is employed, the object’s location at time t + 1 is predicted

based on the similarity of At and the observation at It+1. Generally1 , the best

estimated location from tracking shifts towards the left as depicted in Figure 4.2;

i.e., it is difficult to identify the dis-occlusion of the part of the object labeled ’e’

or ’f ’. Gradually, this will make the estimate of the object’s location, drift away

from its true location, as has been observed in previous work ([30], [35], [61]). Even

keeping a first-time reference template, such as [52] did, would not help in this

situation. However, the motion of newly appearing parts such as ’e’ or ’f ’ does

provide a cue for dis-occlusion identification. In particular, they are considered to

be the newly revealed parts of the object if they move consistently with the known

parts of the object (e.g. ’d’ or ’c’) and, at the same time, distinctively with respect

to the background. This motivates our approach, which utilizes both the motion of

the background and foreground to update the object model during tracking.

1Except when the background has a very different appearance from the object or when the

similarity measure ignores all spatial information, as in histogram matching
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Figure 4.3: Overview of our tracking algorithm

The summary of our approach is as follows. We represent the object with a

probabilistic occupancy map and reduce the problem of tracking the object from

time t to t + 1 to that of constructing the object occupancy map at t + 1 given the

occupancy map at time t. We start by computing probabilistic motion models for

detected features at time t conditioned on that they belong to the foreground or the

background. Feature motion distributions are computed based on the occupancy

map at time t and feature similarities across frames (Section 4.3.2.1). From these

feature motions, a probabilistic motion model for each pixel is constructed (Section

4.3.2.2). The construction starts from the center of the regional features and expands

out to cover the entire image. Finally, pixel motion fields are used to construct the

object occupancy at t + 1 (Section 4.3.2.3). Figure 4.3 shows the flowchart of our

tracking algorithm. Details of each step are explained in the following sections.

4.3.1 Object Features

We employ regional features (MSER - Maximum Stable Extreme Region ([51]))

for tracking. The spatial extent of such features are approximated using ellipsoids,
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which are represented by a vector (xc, a, b, α), specifying the center, major and

minor axis length and orientation. Internal feature appearance is represented using

the popular SIFT descriptors ([48]).

4.3.2 Feature Motion and Pixel Motion Expansion

4.3.2.1 Feature Motion

We discuss next the computation of the motion distribution for each feature

from frame It to frame It+1. Let Ft = {fi}N
1 and Ft+1 = {fj}M

1 denote the two

detected feature sets in It and It+1 respectively. A feature fi ∈ Ft may or may

not be re-detected in It+1. When it is re-detected, it will ordinarily match with

at least one feature fj ∈ Ft+1. Its motion vector, m(fi), is then determined as

m(fi) = xcj − xci, where xci and xcj are the centers of fi and fj respectively. Let

M = {m(fi)} denote the set of all N ×M possible feature motions. In the sequel,

M will be used as the finite (discrete) domain for motion vectors of both features

and pixels.

Let Dt+1(fi) denote the event that fi will be re-detected in frame It+1. The

probability that a feature fi belongs to the object and has motion m(fi) is then

determined as follows,

p(m(fi), fi ∈ Obj|OCt, It, It+1) =

p(m(fi), fi ∈ Obj, Dt+1(fi)|OCt, It, It+1) +

p(m(fi), fi ∈ Obj, Dt+1(fi)|OCt, It, It+1) (4.1)
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= p(m(fi), fi ∈ Obj,Dt+1(fi)|OCt, It, It+1) =

p(m(fi), fi ∈ Obj|Dt+1(fi), OCt, It, It+1)p(Dt+1(fi)|It)

The second term of (4.1) can be dropped since if the feature is not re-detected, it

would not take on any motion vector from M . The second term of the last expression

is the re-detection probability of a feature fi. It is modelled with a sigmoid function

of the feature’s stability score ([51]). Intuitively, the more stable the feature is,

the more it is likely to be re-detected in the next frame. For MSER, the stability

score can be defined based on feature area variation when the detection threshold

are varied ([?]). With some independence assumptions, e.g between fi ∈ Obj and

Dt+1(fi),

p(m(fi), fi ∈ Obj|Dt+1(fi), OCt, It, It+1) =

p(m(fi)|fi ∈ Obj, Dt+1(fi), OCt, It, It+1).

p(fi ∈ Obj|Dt+1(fi), OCt, It, It+1) =

p(m(fi)|It, It+1).p(fi ∈ Obj|OCt) (4.2)

The second term of (4.2) is the probability that a feature belongs to the object given

the occupancy map at time t, OCt. p(fi ∈ Obj|OCt) = 1/A(fi)
∑

x∈fi
OCt(x), where

A(fi) is the feature’s area - the number of points in the ellipsoid corresponding to

fi. Recall that m(fi) = xcj − xci, where xcj is the center of the target feature, fj.

The first term measures how likely feature fi matches feature fj,

p(m(fi)|It, It+1) ∝ exp(−d2(fi, fj)/σ
2
o)e

H
ij (4.3)

where d(fi, fj) is the distance between the two SIFT descriptors of fi and fj, σo
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is the empirically determined variance for feature distances, and eH
ij is the error of

the match w.r.t. a global motion model H. The distance in the descriptor space

accounts for the mismatch in appearance, and the global motion error accounts for

the mismatch in location. The latter is introduced based on the observation that

object features typically move in a coherent manner. Let f̂i = H(fi) be the predicted

location of fi under H, then,

eH
ij ≡ e(f̂i, fj)

= sqrt( (xci−xcj)
T (xci−xcj)

(si+sj)
+4(A(f̂i), A(fj))) (4.4)

where 4(A(f̂i), A(fj)) = |(A(f̂i) \A(fj))∪ (A(fj) \A(f̂i))|/|A(f̂i)∪A(fj)| measures

the difference in area of the two features when aligned and si and sj are feature

sizes. Section 4.3.3 describes how the motion model H is constructed.

The motion distribution of a background feature, fi, is computed similarly,

with the exception that in (4.3), there is no error term since there is no reason

to establish a global motion for all background features, and p(fi ∈ Bgr|OCt) =

1− p(fi ∈ Obj|OCt).

4.3.2.2 Expansion for Pixel Motion

Given the set of features Ft, each of which is associated with some motion

distribution computed as described in the previous section, we next evaluate the

motion distribution for each pixel, x, in frame It. The derivation is shown here for

the case where x ∈ Obj, similar arguments are used when x ∈ Bgr. Let m(Ft)
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represent some motion assignment for all features in Ft,

p(m(x), x ∈ Obj|OCt, It, It+1) =

∑

m(Ft)

p(m(x), x ∈ Obj,m(Ft), Ft ⊂ Obj|OCt, It, It+1) (4.5)

=
∑

m(Ft)

p(m(x), x ∈ Obj|m(Ft), OCt, It, It+1).

p(m(Ft), Ft ⊂ Obj|OCt, It, It+1) (4.6)

The summation in (4.5) omits the term for Ft ⊂ Bgr, since it is then assumed that

they would not affect the motion of a foreground pixel. When a global motion H

(whose effects are accounted for in (4.3)) is given, motion of individual features can

be assumed independent,

p(m(Ft), Ft ∈ Obj|It, It+1)

=
∏

fi∈Ft

p(m(fi), fi ∈ Obj|OCt, It, It+1)

The first term in (4.6) is the probability that a pixel x takes motion m(x) given

that the motion of the features set is m(Ft). It is modelled as follows, up to a

normalization factor,

p(m(x), x ∈ Obj|m(Ft), It, It+1)

∝ ∑

fi

K(d2(x, fi))p(m(x)|m(fi), It, It+1) (4.7)

where d(x, fi) = xci − x is the distance between x and the center of the feature fi.

This is essentially the aggregation of support from multiple features in Ft, where

each individual contribution is weighted by a Gaussian kernel, K.

Direct, accurate modelling of the dependency between m(x) and m(fi) in

(4.7) is difficult. Instead, we make use of the motion distribution of the points in
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between. In particular, we determine p(m(x)|m(f), It) through spatial sequential

filtering starting from the center x0 ≡ xci of fi and ending at the point xn ≡ x.

p(m(x0)|m(fi), It) = p(m(fi)|It) (4.8)

The Bayesian filtering process goes through two steps (see e.g. [30]), prediction

and update, described below. The entire observation would be It and It+1. Let Dn

denote the relevant observations at a step n, Dn ⊂ (It, It+1). The prediction step is

then (the Chapman-Kolmogorov equation),

p(m(xn)|D0:n−1) =

∑

m(xn−1)

p(m(xn)|m(xn−1), D0:n−1)p(m(xn−1)|D0:n−1)

=
∑

m(xn−1)

p(m(xn)|m(xn−1))p(m(xn−1)|D0:n−1)

where the state model p(m(xn)|m(xn−1)) ∝ exp(−(m(xn) −m(xn−1))
2/σ2

m). Next,

the updating step to find the posterior is

p(m(xn)|D0:n)

∝ p(Dn|m(xn), D0:n−1)p(m(xn)|D0:n−1)

= p(Dn|m(xn))p(m(xn)|D0:n−1)

where p(Dn|m(xn)) is the observation model. Let NCC(xn, xn + m(xn)) denotes

the normalized correlation score between two image patches: the first one is taken

around xn in It and the second one is taken around xn + m(xn) in It+1,

p(Dn|m(xn)) ∝ exp(−d2(NCC(xn, xn + m(xn)))/σ2
obs) (4.9)

Thus from feature motion, we obtain a pixel motion distribution through a

filtering process that expands from feature centers. Other alternatives to propagate
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information from m(f) to m(x), such as MRF or other graphical models, are possi-

ble. Here, we choose sequential filtering mainly for efficiency. Expansions that start

from a sparse affine invariant feature matching to pixel-wise correspondence have

been used, with different formulations, in [?] for image exploration and in [?] for

growing local features.

4.3.2.3 Occupancy Updating

We describe next the construction of the object occupancy map at time t + 1,

OCt+1, from the motion field computed above and the previous occupancy map.

Consider the occupancy at a point x in frame It+1. Let S(x) denote the set of

points x′ in It that can possibly move to x at time t+1; let FG(x) denote the event

that x is occupied by at least one of the points x′ ∈ S(x) where x′ ∈ Obj at time t,

p(FG(x)) = p(
⋃

x′∈S(x)

(x′ → x, x′ ∈ Obj)) =

1− p(
⋂

x′∈S(x)

(x′ → x, x′ ∈ Obj)) =

1− ∏

x′∈S(x)

(1− p(x′ → x, x′ ∈ Obj)) =

1− ∏

x′∈S(x)

(1− p(m(x′), x′ ∈ Obj)) (4.10)

where m(x′) = x − x′. Given the pixel motion fields computed in the previous

section, independence in pixel motion can be assumed in the derivation of (4.10).

The last expression can be evaluated using (4.6). Similar computation is applied for

p(BG(x)) which represent the probability that x is occupied by a background pixel.

Finally, for a given pixel x at time t + 1, there are four possible events cor-

responding to whether foreground or background pixels move to that pixel or not:
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FG(x)∧BG(x), FG(x)∧BG(x), FG(x)∧BG(x) and FG(x)∧BG(x). Expanding

on this set of events, we have

OCt+1(x) ≡ p(x ∈ Obj) =

p(x ∈ Obj, FG(x) ∧BG(x)) + p(x ∈ Obj, FG(x) ∧BG(x)) +

p(x ∈ Obj, FG(x) ∧BG(x)) + p(x ∈ Obj, FG(x) ∧BG(x))

Each of these terms can be evaluated as follows, e.g.,

p(x ∈ Obj, FG(x) ∧BG(x)) =

p(x ∈ Obj|FG(x) ∧BG(x))p(FG(x) ∧BG(x)) =

p(x ∈ Obj|FG(x) ∧BG(x))p(FG(x))p(BG(x))

The second and the third terms are computed using (4.10). The first term is the

probability that the pixel x belongs to the object at time t + 1 given that both

foreground and background can possibly move to that pixel. It is reasonable to

set its value to 0.5 to represent this uncertainty. Probabilities associated with the

remaining three events can be assigned similarly, (i.e., in order, 0, 1, 0.5).

4.3.3 Implementation Details

4.3.3.1 Motion Model

The global model for object feature motion that is used in equation (4.3) is a

2-D affine (translation, rotation and scaling) motion. An affine model is employed

for the following reasons:
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1. It adequately reduces the likelihood of gross matching errors. More subtle

matching errors are further suppressed during the motion expansion stage

discussed previously.

2. More complex motion models, such as a general rigid motion, are difficult

to estimate accurately because: (a) Object displacement between consecutive

frames is small, and achieving accurate rigid motion estimation in such small

baseline cases is difficult. (b) Detection errors, such as center shifting, in

regional feature detectors are often significant compared to the feature motions

themselves. (c) A rigid model with low error tolerance is sensitive to even slight

deformations in the surface of the object.

For these reasons, a simple 2D-affine motion model is used to weigh down ’outliers’

in foreground feature matching.

A weighted RANSAC algorithm is used to determine this motion, where the

weight for a match is wij = P (fi ∈ Obj)exp(−d2(fi, fj)/σ
2
o). In hypothesis gen-

eration, at each iteration, we use k feature matches. Each match contributes four

constraints on the center location, and major and minor axes’ length. Local fea-

ture orientation is ignored since its estimation for near-circular features is often not

reliable. In hypothesis verification, the matching error between any two features is

measured using (4.4). Note that in this formulation, shape information is utilized in

both stages of RANSAC. The predicted error of a motion hypothesis H on a feature

fi is then

eH(fi) = e(H(fi), f
∗
j ) (4.11)
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where f ∗j = arg minfj∈Ft+1
e(H(fi), fj).

A match is considered to be good if e(fi, fj) < θ for some pre-defined θ. The

total weight of good matches under H is the goodness score of this hypothesis. The

motion model found is used to update the likelihood of every pair of matches in

(Ft, Ft+1) as in (4.3).

4.3.3.2 Dealing with Low Feature Response

The performance of a robust feature-based tracker is degraded if the links

among features between two frames are weak. This may be due to low feature

response or poor feature distance measurement. However, as observed in the litera-

ture, descriptors such as SIFT work very well on a wide range of image conditions.

Therefore, the likely reason that we obtain only few strong feature matches is the

number of detected features is small. This happens either when the object is too

small or when its appearance is almost homogeneous in texture (a single-color blob).

In such (rare) cases, to keep tracking the object, we simply substitute a blob tracking

module.

4.4 Experimental Results

We demonstrate the performance of our tracking algorithm through a number

of experiments. We first test the sensitivity of the tracker’s performance with re-

spect to the degree of accuracy of the initial delineation of the object to be tracked.

Trackers are either initialized by hand or by detection methods like independent mo-
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tion detection that provide rough bounding box approximations to the objects. For

a variety of reasons these initial occupancy maps can either over or underestimate

the true spatial extent of the object. A second set of experiments are designed to

illustrate how the tracking algorithm adapts to appearance changes due to occlusion

and dis-occlusion. For display, all of the occupancy maps are thresholded at 0.5.

The first experiments illustrate sensitivity of appearance updating trackers to

the initial object occupancy map. We initialize the tracker in two ways:

1. First, we assume that the rough location of the object is given and then a disk

whose radius is approximately half of the size of the tracked object is centered

about this point. This underestimates the true extent of the object. Any

detected local feature that intersect significantly or is contained within this

disk is assumed to belong to the object. The initial occupancy map is then the

union of these initial features’ areas and weighted by a Gaussian mask centered

at the initial location. Figure 4.4, top, shows the results of our tracker using

this initialization method on a video sequence with a moving background. The

occupancy maps are overlaid on the images. Since the radius of the disk was

small, only a few features are selected to construct the initial occupancy map.

Nevertheless, after 20 frames (Figure 4.4.b), the map evolved to be close to

the true shape of the moving object.

2. In the second method, we used motion detection, specifically frame differ-

encing, to initialize the tracking. Frame differences are first binarized, then

dilated and eroded. Any local feature that intersects significantly with this
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binary map is assumed to belong to the object. By doing this, we obtain a clus-

ter of features which usually include both object and the nearby background.

This method tends to overestimate the true extent of the object. As before,

the initial occupancy map was the union of these features’ areas weighted by

the distance transform of the binarized frame difference. Figure 4.4, bottom,

shows the tracking result on a video sequence using this second initialization

method. For this sequence, the camera was stationary at the time that the

frame differencing was performed, but moved after that. After approximately

70 frames (Figure 4.4.b), the occupancy map approaches the true shape of the

object. Since the person moved more slowly than the car did in the previous

experiment, the occupancy map approaches the object shape at a slower rate.

In general, the better the distinction in motion, the quicker the uncertainty in

the occupancy map is removed.

To more systematically evaluate the robustness of our approach to inaccuracy

in initialization we carried out the following experiments. We compared our tracker

with in [30] and [14] - two recent high quality trackers that attempt to update

object appearance models during tracking - on a 100-frame video sequence under a

number of different initialization conditions. A surveillance video was selected such

that when the initialization is correct (i.e., the specified occupancy map coincides

with the true spatial extent of the object to be tracked), all three trackers could

track the object through the entire sequence without significant errors. There were

also no noticeable shadows or artifacts in the video. The tracked object moves in a
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a) frame]1 b) frame]20

c) frame]1 d) frame]70

Figure 4.4: Under-selection (top) and over-selection (bottom) in initialization. Oc-

cupancy maps are overlaid (highlighted).
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frontal parallel direction since the algorithm in [14] cannot cope with significant scale

changes. The background was cluttered with some distracting objects passing by the

tracked object during tracking. The ground truth in a frame was an object bounding

box Oi that was manually marked. The tracking outputs were also rectangular boxes

Ti. The error in the i-th frame is measured as e = |(Ti \ Oi) ∪ (Oi \ Ti)|/|Ti ∪ Oi|.

The total tracking error E is averaged over all ei in the last two thirds of the frames

in the sequence (i.e. the first third is discarded). We converted the occupancy

maps to bounding boxes with a binarization step followed by several morphological

operations. Two methods for varying initial conditions were used here.

• In the first, the location and size of the initial bounding box T1 is chosen as

the translation of the ground truth bounding box O1 (Figure 4.5, left, the

top picture) and a tracking session was performed for each position of T1.

The average tracking errors for [30], [14] and our tracker as a function of

the translation distance, d, are presented in Figure 4.5 (the left chart). The

horizontal axis shows the ratio r = d/w, where w is the width of O1. As we can

see, our tracker was able to track the object well and consistently. Trackers

that make committed appearance modeling at the beginning such as [30] are

usually sensitive to initialization inaccuracies.

• In the second method, we re-scale the initial window T1 while keeping its center

fixed (Figure 4.5, left, the bottom picture). The tracking errors for different

sizes of T1 are presented in Figure 4.5 (the right chart). The horizontal axis

shows different scales of the width (or height) of T1 w.r.t. the width (height)
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of O1. Again, our tracker performed quite well in this case and produces stable

tracking results for the whole range of initialization variation.

Next, we illustrate our tracker’s ability to deal with two challenging situations.

As reported in [35] and [61], most trackers have difficulty when the tracked object

rotates in front of a cluttered background, such as the coke sequence in [5]. Accom-

modation for both occlusion and dis-occlusion is required here. Figure 4.6 shows

the result of [30], [14] and our tracker on the coke sequence. The trackers from [30]

and [14] failed early in the sequence. However, ours was able to incorporate newly

appearing parts of the object and tracked it successfully even though the object

appearance changed completely during the sequence. Note that since the hand and

the shadow moved consistently with the can, they were also included in the occu-
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a) frame]1-Initial b) ]100-[30]’s c) ]100-[14]’s

d) ]100-Ours e) ]150-Ours f) ]200-Ours

Figure 4.6: Tracking results on the coke sequence. a) Initial selection for all trackers,

b) Results of [30], c) [14] and d) e) f) our tracker. Note the hand and the shadow

are also included.

pancy maps constructed by our algorithm. Figure 4.7 shows the tracking results on

a surveillance video from published domains1(rough bounding boxes are shown for

better visualization). The challenges in this sequence include cluttered background,

partial occlusion, large object shape and size changes as the car turns and moves

away.

Rapid illumination changes pose another challenge for robust visual tracking.

In general, for appearance-based approaches, when faced with extensive change, illu-

mination modelling has to be added, such as in [38]. Figure 4.8 shows the advantage

of using our motion-based occupancy map method instead of an appearance-based

1The ETI-SEO and VACE-CLEAR07 tracking evaluation projects
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a) ]1 b) ]90 c) ]206

d) ]1 e) ]90 f) ]188

g) ]1 h) ]90 f) ]206

Figure 4.7: Tracking result on the car sequence. Results of [30] (top), [14] (middle)

and our tracker (bottom).
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technique on a sequence from a published domain1. The challenges come from the

overall poor lighting condition that creates low contrast between the tracked person

and the surrounding and from the abrupt lighting changes as the tracked person

walks under different light sources placed along the corridor. Our tracker was able

to track the object through all of these changes, while the others failed very early.

Note that the other two trackers lost track well before the size of the object changed

significantly. A basic mean-shift-based or template correlation-based tracker per-

forms even more poorly on this sequence.

Our tracker is implemented in Matlab and all experiments were run on a 2.8

GHz, 1GB Pentium 4 PC. The tested videos are sequences of 640×480 color images.

The average frame rate when the object is small, e.g. 50 × 50 pixels, is 2Hz, and

when the object is larger, e.g. 200×200 pixels, is around 0.2 Hz. The corresponding

numbers for [14] (in C) and [30] (in Matlab) are 30, 10 and 0.5, 0.01 Hz respectively.

4.5 Discussion

We described a tracking approach that is based on feature matching and pixel

motion expansion. The occupancy map representation makes the tracker robust

under a wide variety of tracking conditions. Motion expansion makes the tracker

less sensitive to errors in initialization and able to incorporate newly appearing parts

of the tracked object in spite of potential visual dissimilarity to the previously visible

object surfaces.

Since the expansion step in 4.3.2.2 is based on the motion of image elements,
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a) ]1-[30]’s b) ]100 c) ]130

d) ]1-[14]’s e) ]68 f) ]118

g) ]1-Ours h) ]100 k) ]130

l) ]178

Figure 4.8: Tracking result on the corridor sequence. Results of [30] (first row), [14]

(second row) and our tracker (the rest).
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there are several points to note here. First, we assume that the tracked object moves

with respect to the surrounding background. In practice, for example in surveillance

of pedestrians, many times the tracked object remains almost stationary against the

background, providing no motion distinction. Fortunately, it is fairly easy to detect

such a situation, e.g. using optical flow or, more concretely, using the feature motion

established in 4.3.2.1. In such cases, we can avoid expanding when there is only a

weak difference between the tracked object’s and the background’s motion. Second,

if there is a large and nearly homogeneous untextured patch nearby the object,

its object’s occupancy map usually gets combined with this patch, since pixels in

that region do not provide strong motion cues. However, this diffusion does not

progress far into the uniform region because such uniform regions have few features

to support that expansion.

Even though we did not assume a prior for occlusion probability for pixels

in Section 4.3.2.2, occupancy values of the occluded parts of the object typically

degrade quickly since they do not exhibit motion consistency with any strong feature

motion. Therefore, partial occlusion can be accounted for as demonstrated in the

experiments in the previous section. However, to obtain a more stable tracking

performance in the case of very severe occlusion or motion confusion, it would be

better to incorporate occlusion, shape or appearance priors, which our current model

does not include. Finally, even though multi-hypothesis tracking is not the point of

research here, we believe our approach could be embedded into a multi-hypothesis

tracker. One simple extension would be to employ a one-against-all approach, i.e.

treating in turn each object as the foreground and the rest as background.

62



Chapter 5

Event Modeling and Recognition using Markov Logic Networks

5.1 Introduction

We consider the problem of event modeling and recognition in visual surveil-

lance and introduce an approach based on Markov Logic Networks ([65]) that natu-

rally integrates common sense reasoning with uncertain analyses produced by com-

puter vision algorithms for object detection, tracking and movement recognition.

We motivate and illustrate our approach in the context of monitoring a parking lot,

with the goal of matching people to the vehicles they arrive and depart in.

There are numerous frameworks for event recognition. In declarative ap-

proaches (e.g. [57]), events are represented with declarative templates. Events

are typically organized in a hierarchy, starting with primitive events at the bottom

and composite events on top. The recognition of a composite event proceeds in a

bottom-up manner. These approaches have several drawbacks. First, a miss or false

detection of a primitive event, which occurs frequently in computer vision, especially

in crowded or poorly illuminated conditions, often leads to irrecoverable failures in

composite event recognition. Second, uncertainty is often not modeled and so these

methods are generally not robust to typical errors in image analysis.

In probabilistic frameworks, such as HMMs (e.g. [91]), or DBNs ([57]), events

are represented with probabilistic models. Event recognition is usually performed
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using maximum likelihood estimation given observation sequences. While these

approaches provide robustness to uncertainty in image analysis, their representations

often lack flexibility (e.g. number of states or actors needs to be known in advance)

and hence it is difficult to use them in dynamic situations. Furthermore, their

performances often degrades significantly when missing observations occur.

In general, the problems of noise or missing observations always exist in real

world applications. Our contention is that common sense knowledge, specific to the

domain under consideration, can provide useful constraints to reduce uncertainties

and ambiguities. Having a good knowledge base (KB) and an effective reasoning

scheme helps to improve event recognition performance.

Technically, we address uncertainty in observations and representational rich-

ness of event specification by a combination of logical and probabilistic models.

1. Domain common sense knowledge is represented using first order logic state-

ments. Both negation and disjunction are allowed.

2. Uncertainty of primitive event detection is represented using detection prob-

abilities. Uncertainty of logical relations (including event models or logical

constraints) is represented with a real-valued weight set based on, for exam-

ple, domain knowledge.

3. Logical statements and probabilities are combined into a single framework

using Markov Logic Networks ([65]).

Our system maintains an undirected network of grounded atoms which correspond

to events that have occurred in the video. At any moment, primitive events are
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Figure 5.1: Overview of our system

detected with associated detection probabilities. They are then used to ground

logical rules in the KB, which generally leads to generating more grounded events.

Next, these grounded logical rules are added to the Markov network. The network

parameters or structures are revised with these updates. The marginal probability

of any (composite) event can be determined using probabilistic inference on this

network. Fig. 5.1 shows the overview of our system.

The chapter is organized as follows. Section 5.2 reviews related work; section

5.3 discusses the tasks needed to solve our problem though an example in visual

surveillance; section 5.4 reviews the MLN framework; sections 5.5 and 5.6 describe

our knowledge representation and network construction; section 5.7 gives implemen-

tation details and experiments; section 5.8 concludes the paper with a discussion.
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5.2 Related Work

Visual event detection from video has a long history in computer vision. We

review here only approaches that are most relevant to ours. Logic has been used

for visual event recognition in a number of works. In [66], Rota et al presented an

elegant treatment for representing activities using declarative models. Recognition

was performed effectively using a constraint-satisfaction algorithm. In [57], Nevatia

et al also used a (hierarchical) declarative language but additionally addressed the

uncertainty in primitive event detection. Inexact logical inference, which is impor-

tant for reasoning with commonsense knowledge, was not addressed in these works.

In [69], Shet et al used a multi-valued default logic for the problem of identity

maintenance. Default reasoning was conducted on a bi-lattice of truth values with

prioritized default rules. Identity maintenance rules are prioritized mainly based

on domain knowledge. A continuous bi-lattice was used in [70] for human detec-

tion. Here, instead of using a multi-valued logic, we use a combination of logic and

probability to handle inexact inference including identity maintenance. Each level

of prioritization can be mapped to our framework using a rule weight.

A probabilistic network for identity maintenance was used in [59] where Nillius

et al successfully linked identities of soccer players from track segments over long

periods of time. However, similar to many approaches to multi-hypothesis tracking,

the identity maintenance is based on pure matching of object appearances. As

pointed out in [69], domain knowledge can be used to improve identity maintenance.

For example, ownership of an item can link two identities together over a gap in
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observation - two ”identities” who appear similar and ”possess” some common item

are likely to be the same person. This was illustrated with a person exiting and

later entering the same vehicle. Such domain-dependent identity maintenance rules

can be easily added to our knowledge base and used for inference using the methods

discussed in section 5.5.2.4.

The combination of probability and (first order) logic has been pursued exten-

sively in AI and led to the emergence of Statistical Relation Learning (SRL, [28]).

SRL representations often involve unrolled or grounded graphical models (directed

(Bayesian) as well as undirected (Markov) ones), which are constructed using a

frame-based or a logic-based approach. They have been used for human activity

recognition (although not in vision-based systems). In [45], Liao et al recognized

human activities based on the information about locations they visited provided by

GPS sensors worn by users (location-based). Probabilistic inference is performed

on an unrolled Markov network formed from a Relational Markov Network, which

essentially encodes high-level domain knowledge. Relation weights can be learned

using a MAP estimation technique. In [63], Pentney et al recognized human ac-

tivities based on objects used. The objects were RFID tagged and identified using

RFID readers worn by the users (object-use based). Logical rules are grounded and

linked to form a probabilistic network within a single time slice. In general, these

approaches are intrusive. They require users to wear additional sensors. Therefore

their application to general surveillance tasks is limited. Here, we work with vi-

sual input and use common sense knowledge to complement limitations in visual

perception.

67



Figure 5.2: A frame from a parking lot sequence and its corresponding foreground

regions detected using background subtraction. Here, parked cars introduce signifi-

cant occlusion and door openings lead to many false alarms.

5.3 Sample Problem

We motivate our approach with the surveillance problem of monitoring a parking lot

and determining which people enter or leave in which cars (Fig. 5.2). In a parking

lot, cars of various shapes and sizes can park close together. Occlusion is not only

unavoidable but sometime severe. This leads to many difficulties in tracking people,

since their corresponding foreground blobs may change from complete to fragmented

or become totally missing as they move between parked cars. It is often difficult

to determine the exact moment a person enters a car, or even which car a person

enters. Pure declarative, bottom-up approaches (e.g. [57], [66]) that rely on accurate

capture of primitive events will not work well here. Probabilistic action recognition

(e.g. HMMs([91])) might fail as well since, locally, an observation may be missing

altogether. For more robust event recognition, we propose to use common sense

knowledge about the domain under consideration. The knowledge base will contain
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rules that range from definite ones such as ”if a car leaves, there must exist some

person driving it” or ”a person can drive only one car at any time” to weaker rules

such as ”people walking together usually enter the same car” or ”if a person puts a

bag into the trunk of a car, he or she is likely to enter that car”. We represent these

rules using first order logic augmented with probabilities to represent the degree of

confidence for each rule. Additionally, the recognition of actions or primitive events

such as ”walking together” or ”put a bag into a car” is uncertain. Probability theory

provides a convenient method to handle these also. We then need an approach that

combines logic and probabilistic elements in a coherent framework.

Briefly, we achieve this by using 1) first order logic formulae to represent

domain knowledge, 2) a real-valued weight to represent the confidence in each logic

rule, 3) probability to model uncertainty for primitive event and action recognition,

4) a probabilistic logic network, namely the Markov Logic Network, to connect

(detected) ground atoms and to perform probabilistic inference (e.g. determine the

probability that a person enters some car, given the input sequences). The following

sections discuss in detail these aspects for our particular surveillance problem as well

as for general surveillance contexts.

5.4 Background on Markov Logic Networks

Markov Logic Network (MLN, [65]) is one of the unrolled graphical models

developed in SRL([28]) to combine logical and probabilistic reasoning. In MLN,

every logic formula Fi is associated with a nonnegative real-valued weight wi. Every
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instantiation of Fi is given the same weight. An undirected network, called a Markov

Network, is constructed such that,

• Each of its nodes correspond to a ground atom xk.

• If a subset of ground atoms x{i} = {xk} are related to each other by a for-

mula Fi, then a clique Ci over these variables is added to the network. Ci is

associated with a weight wi and a feature fi defined as follows

fi(x{i}) = 1, if Fi(x{i}) is true, (5.1)

= 0, otherwise .

Thus first-order logic formulae in our knowledge base serve as templates to construct

the Markov Network. This network models the joint distribution of the set of all

ground atoms, X, each of which is a binary variable. It provides a means for

performing probabilistic inference.

P (X = x) =
1

Z
exp(

∑

i

wifi(x{i})). (5.2)

where Z is the normalizing factor, Z =
∑

X∈X exp(
∑

i wifi(x{i})). If φi(x{i}) is the

potential function defined over a clique Ci, then log(φi(x{i})) = wifi(x{i}).

5.4.0.3 Inference

Based on the constructed Markov network, the marginal distribution of any

event given some evidence (observations) can be computed using probabilistic in-

ference. Since the structure of the network may be very complex (e.g. containing
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undirected cycles), exact inference is often intractable. MCMC sampling is a good

choice for approximate reasoning ([65]). In MLN, the probability that a ground

atom Xi is equal to xi given its Markov blanket (neighbors) Bi is

P (Xi = xi|Bi = bi) =

exp(
∑

fj∈Fi
wjfj(Xi = xi, Bi = bi))

exp(
∑

fj∈Fi
wjfj(Xi = 0, Bi = bi)) + exp(

∑
fj∈Fi

wjfj(Xi = 1, Bi = bi))
.(5.3)

where Fi is the set of all cliques that contain Xi and fj is computed as in Eq. 5.1.

Basic MCMC (Gibb sampling) is known to have difficulty dealing with de-

terministic relations, which are unavoidable in our case. It has been observed that

using simulated tempering ([50], [41]) gives better performance than the basic Gibb

sampling ([41]). Simulated tempering is a MC method that is closely related to sim-

ulated annealing. However, instead of using some fixed cooling schedule, a random

walk is also performed in the temperature space whose structure is predetermined

and discrete ([50]). These moves aim at making the sampling better at jumping out

of local minima.

5.5 Knowledge Representation

In this section, we will describe our approach to represent knowledge and

its associated uncertainty. In our framework, object states and their interactions

(including the so-called events, actions or activities as they are interchangeably

referred to in other work, e.g. [57], [66]) are all represented with first order logic

predicates. A predicate is intensional if its truth value (for a certain grounding of

its arguments) can only be inferred (i.e. cannot be directly observed) ([55]). A
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predicate is extensional if its truth value can be directly evaluated by a low-level

vision module. It is strictly extensional if this is the only means to evaluate it (i.e.

it can only be observed and not inferred).

5.5.1 Logical Representation

In [65], the Markov network is constructed using an exhaustive grounding

scheme, which can lead to an explosion in the number of ground atoms and net-

work connections. Most of them are irrelevant and create significant difficulties for

inference. A more efficient scheme was proposed in [74], which essentially grounded

only clauses that can become unsatisfied using a greedy search. It is not clear

if this approach could handle dynamic domains that involve, for example, time

and location. Here, we represent our knowledge in the form of production rules,

production → conclusion, and use deduction to ground (and add to the Markov

network) only literals (including both positive and negative atoms) that are possi-

bly true.

In traditional deductive systems (e.g. [55]), production rules in the form of

Horn clauses are used extensively. However, Horn clauses cannot represent negations

and disjunctions, which are often required to capture useful commonsense knowl-

edge. To increase our system’s representational ability, we allow the following rule

forms,

(
∧

i ai) → b Definite (i.e. Horn) clauses are used to define a composite event from

sub-events (similar, for example, to multi-thread event definition in [57]),
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causal and explanatory relationships between observations and underlying ac-

tions (e. g. use(Bowl) → make(Cereal) or at(Resstautrant) → have(Dinner)

in object-use based [63] and location-based frameworks [45])

(
∧

i ai)(
∧

j ¬bj) → c Many events can only be described with a rule that has nega-

tive preconditions, for example, at(C, S, t) ∧ ¬stopped(C, t) → violate(C, S, t)

where C is a car and S is a stop sign. Identity maintenance ([69], [73]) also of-

ten leads to formulae with negative preconditions, for example, own(H1, Bag)∧

take(H2, Bag) ∧ ¬eq(H1, H2) → theft(H2, Bag).

(
∧

i ai) → ¬b This form is often used to describe an exclusion relation. For exam-

ple, the rule ”a person P belongs to only one group G” can be written as

belongto(G1, P ) ∧ ¬eq(G1, G2) → ¬belongto(G2, P ). When such a rule fires,

negative atoms are added to the ground atom database. As a result, the

database will consist of both negative and positive literals.

(
∧

i ai) → (
∨

j bj) Disjunctions are used when a single conclusion cannot be made.

For example, use(Cup) → (drink(Coffee) ∨ drink(Tea)). When it fires, all

atoms in the conclusion are added to the ground atom database. Disjunctions

also arise from existential quantifiers (next section).

These forms, of course, are not the most general ones in First Order Logic. However,

practically, they are sufficiently rich to represent a wide range of common sense

knowledge and to capture complex events in surveillance domains.
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5.5.2 Uncertainty Representation

Uncertainty is unavoidable in practical visual surveillance applications. We

consider two classes of uncertainty: logical ambiguity and detection uncertainty.

Their sources and ways to represent them are described below.

5.5.2.1 Incomplete or Missing Observations

Occlusion and bad imaging conditions (e.g. dark, shadowed areas of the scene)

are two common conditions that prevent us from observing the occurrence of some

actions. In some cases, even if a unique conclusion cannot be made, some weaker

(disjunctional) assertion might still be possible. Rules with disjunctive effects are

often needed then. For example, the statement ”if a bag b is missing at some

time interval t and location L, then someone must have picked it up” could be

formalized as missing(b, l, t) → (∃p passBy(p, l, t) ∧ pickUp(p, b, t)). Here the ac-

tion pickUp(p, b, t) can be inferred when its direct detection is missed. This type

of formulae involves an existential quantifier and will be expanded to a disjunction

of conjunctive clauses when grounded. For example, suppose that passBy(P1, L, T )

and passBy(P2, L, T ) are true for two persons P1 and P2 (i.e. two persons P1 and

P2 passed by when the bag went missing), then the grounding of this rule would be

missing(B, L, T ) → (passBy(P1, L, T ) ∧ pickUp(P2, B, T )) ∨ (passBy(P2, L, T ) ∧ pickUp(P2, B, T )).

This expansion obviously is not suitable for infinite domains. However, in practice,

most object domains are finite (e.g. number of people or cars is finite) therefore

the expansion is feasible for surveillance. As evidence arrives, previously expanded
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domains may need to be updated (section 5.6.1).

5.5.2.2 Non-perfect Logical Statements

Common sense statements in the KB are not always true. We use a real-

value weight to represent the confidence of each rule in the KB. Rules with absolute

certainty, such as ”a person can drive only one car at a time”, are given an infinite

weight. In practice, such a hard clause is ”softened” with a maximum weight,

MAXW , to facilitate the inference process. Rules that are almost always true, such

as ”a person interacts with only one car”, are given strong weights. Weak weights

are assigned to rules that describe exceptions (i.e. situations that are possibly true

but not common such as ”a driver might enter a car from the passenger side”).

5.5.2.3 Extensional Evaluation Uncertainty

The evaluation of an extensional predicate, E, by the low-level vision module

might return answers with absolute certainty or with some associated (detection)

probability, pD(E = true). For the first case, whether the result is true or false,

we make E an evidence variable and add it to the Markov network. For the second

case, a method to integrate E and its detection probability for high-level logical

reasoning are needed.

One approach would be to add this grounded, single-atom clause, (E, w ∝ pD)

and its complement, (E,w ∝ 1 − pD) to the Markov network. (Note that using

only one of these clauses is not sufficient). This way, the marginal probability,
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p(E = true), is fixed to pD. However, evidence from other sources may change the

probability p(E = true), especially when E is not strictly extensional. Therefore,

it would be better to add an observation variable O and use these two formulae:

(observe(O) → E, w ∝ pD) and (observe(O) → E, w ∝ 1− pD). The variable O has

a fixed value that represents the corresponding measurement. It is specific to this

grounding. The predicate observe(O) will not take part in any logical deduction

and is always assumed true. This formulation allows evidence from related sources

(beside O) to have their effects on p(E = true).

Extensional predicates can be of various kinds depending on the domain under

consideration. Two classes and their associated uncertainty that we consider are

object recognition and action detection (see section 5.7.1).

• Object Detection Human and car detection are performed using methods de-

scribed in [85]. Since humans and cars often move, at least for some period of

time, we eliminate false detections by keeping only hypotheses that are tempo-

rally stable. Hence, we assume that there is no uncertainty with the remaining

hypotheses. For other objects such as bag, package, or tools, we consider only

specific object detection. (Object class detection is not the focus of our work).

Detection probability is calculated based on the matching between the color

histogram and shape of the observed foreground and those of targets. (Scale

is assumed known approximately based on rough layout of the scene).

• Action Recognition We detect two kind of actions: shakehand(h1, h2) and

openTrunk(c, h). The first action is detected when two persons stand close
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but separate and there is a foreground area (located along the torso of each

person) that connects them together. The detection probability is measured

using the similarity between this area and the stored target templates. The

open trunk action is detected by comparing the motion histogram of the trunk

area against the stored exemplars when the person stands next to the trunk.

5.5.2.4 Identity Maintenance

Identity maintenance is necessary when there exist multiple identities that

actually refer to the same object([69], [73]). In surveillance, it is caused by lack

of visual information (appearance, shape. . . ) to make unique identity connections

across observation gaps. Solving this problem is critical to recognizing complex

activities, which often span over extend periods of time and in different parts of the

scene. In [[69], Shet et al addressed it using a default logic. Our approach here is

similar to the one proposed in [73] for entity resolution in relational databases ([28]),

with a slightly more concise formulation.

Identification of two objects A and B is represented by a predicate eq(A,B).

It comes with the following set of axioms (with infinite weights):

• Reflexive: eq(A,A) .

• Symmetry: eq(A,B) ↔ eq(B,A) .

• Transitivity: eq(A,B) ∧ eq(B, C) → eq(A,C) .

• Predicate Equivalence: P (X1, Y ) ∧ eq(X1, X2) → P (X2, Y ). (For two-ary
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predicates but can be similarly stated for n-ary predicates).

The last axiom is important since omitting it may lead to incompleteness. For

example, without this axiom, the rule P1(X)∧P2(X) → P3(X) would not fire to gen-

erate P3(X1) or P3(X2) given the ground atom database {eq(X1, X2), P1(X1), P2(X2)},

as it should. In practice, only the third and the fourth rules are grounded and en-

tered into the Markov network, while the first two rules are used only for making

deductions. This is to avoid overcrowding the network, which affects the inference

performance.

The equivalence predicate can be extensionally evaluated or intensionally in-

ferred. Extensional evaluation of eq(A,B) is done using appearance matching. The

probability p(eq(A,B) = true) is calculated based on a matching score. Intensional

deduction of eq(A,B) can be done using the above axioms and commonsense rules

in the KB. Several prioritized rules in [69], such as ”possession of some special ob-

jects (e.g. car keys) determines owners’ identity”, can be used here, where each

prioritizing level is mapped to a corresponding weight.

5.6 Network Construction

This section describes our deduction algorithm that uses the production rules

in the KB (section 5.5.1) to deduce grounded atoms for the Markov network. Due to

noise or incompleteness in observations, some events that have not actually occurred

might get grounded and added to the ground atom database (ADB). Our procedure

is thus a relaxed version of logical deduction and may not be logically consistent.
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5.6.1 Deduction Algorithm

Typically, with definite clauses, deduction is performed via forward chaining.

In our system, logic rules take richer forms that require us to additionally deal with

negative preconditions and disjunctive conclusions. Following are several prelimi-

naries for our algorithm.

• Close World Assumption(CWA) Since it is usually not convenient and some-

times impossible to detect (consistently) events that are not happening, such

as the notstopped(Ci, t) event (for all cars at all time points), the CWA is

used to check for negative preconditions: what is not currently known to be

true is assumed false. Then, forward chaining is still used, but is divided into

two phases: the first for rules that do not have negative preconditions and the

second for the remaining rules. This is to delay, for example, the conclusion

that ¬a is true using CWA until all possible ways of deducing a have been

tried.

• Context-dependent Preconditions Consider the predicate nearby(P, loc, t) in

the formula happenAt(E, loc, t)∧nearby(P, loc, t) → witness(E, P ). It would

be cumbersome to evaluate nearby(P, loc, t) and add it to the ADB for all

people P , all locations loc and all times t. Instead, it should only be evaluated

after happenAt(E, loc, t) is true with specific bindings of loc and t. In this case,

the satisfaction of the first precondition serves as the context that enables the

lazy evaluation of the second one. Generally, we use lazy evaluation for an

extensional predicate when it would be expensive to evaluate otherwise due to
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the large size of the domain (e.g. ones that involve time or location).

• Disjunction Domains Generally, in our system, disjunctions need no special

treatment. However, when they are in the scope of an existential quanti-

fier, domain expansion and several bookkeeping steps are required. Con-

sider the statement ”if a person H disappears at some location L at time

T , that person must enter a car C that is close to L”. It can be formalized as

disappears(H,L, T ) → ∃C close(C,L, T ) ∧ enters(C, H, T ). If close(C, L) is

evaluated to true, for example, for only two cars C1 and C2 given some location

L and person H, then this clause can be grounded as disappears(H, L, T ) →

((close(C1, L, T ) ∧ enters(C1, H)) ∨ (close(C2, L, T ) ∧ enters(C2, H))). Here,

the predicate close(C, L) limits C to the set {C1, C2} and the existential quan-

tifier is expanded over the entirety of this domain. In general, we eliminate

the existential quantifier by considering that the conclusion has two parts, one

for defining the object domain (close(C,L)) and the other for describing the

actual conclusion (enters(C, H)). In other words, our general production rule

would be precondition → (∃x domaindefx ∧ conlusionx). An empty clause

domaindefx implies that the domain consists of all instantiations of x.

During deduction, we may need to expand domains as new objects that satisfy

domain predicates are discovered. In such cases, the previous ground formula

is replaced with the new one and the Markov network is modified with the

new clique.

• Generation of Extensional Predicates Usually, extensional predicates are gen-
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erated by the low-level module. However, logical constraints might be formu-

lated in a way that leads us to generate extensional predicates using deduc-

tion. For example, consider the constraint ”if a person h is occluded by a car

c, then that person has to appear when the car leaves” which can be formal-

ized as occluded(c, h, t1) ∧ carleave(c, t2) ∧ less(t1, t2) → appear(h, t2). Here

appear(h, t2) is strictly extensional. It should not be entered into the ADB

unless it has been directly observed or an appear(h′, t2) has been observed for

some h′ and eq(h′, h) is true (i.e. h′ is actually h, but, due to some break-

down in identity maintenance, it is assigned a different identity). To capture

this, generally, for a strictly extensional predicate P (X1) we add the following

domain-independent rule to our KB

P (X1) → (observe(PX1) ∨ (∃X2 eq(X1, X2) ∧ P (X2)))

where, again, PX1 is a ”dummy” observation variable and eq(X1, X2) defines

the domain for the existential quantifier.

The deduction procedure is shown in Fig. 5.3. In step 1(a), when grounding a clause,

if context-independent preconditions are satisfied then context-dependent predicates

will be extensionally evaluated. Instances that are evaluated to true will be added

to the ADB. In step 1(b), all atoms in the conclusion as well as their complemented

literals (i.e. E and ¬E) are added to the ADB. If an existential quantifier is involved,

we need to check and update, if necessary, its previously expanded domain. Step 2

essentially repeats step 1 with the addition of the CWA. For a precondition, ¬E,

if we are unable to observe or deduce E, ¬E is assumed true. If the related clause
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Ground Atom and Formulae Deduction

◦ Input ADB - ground atom database; KBpos - set of definite rules; KBneg - set

of rules that have negative preconditions

◦ Output ADB - with new ground atoms added; GS - the set of grounded

clauses.

Repeat until no new ground atom is generated

1. Repeat until no new atom

For ∀R ∈ KBpos, instantiate R w. r. t. ADB and for each instantiation r,

(a) If all context-independent preconditions are satisfied, then evaluate all

context-dependent preconditions and add the newly evaluated atoms to

ADB.

(b) If all succeeded, get effects and add to ADB.

(c) GS ← GS ∪ r .

2. Similar to step 1 for R ∈ KBneg with CWA added during instantiation of

rules.

Figure 5.3: The algorithm for deducing new ground atoms
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ends up being grounded (i.e. all other preconditions are evaluated to true) then the

literal ¬E is added to the ADB.

All ground clauses are then added to the Markov network. This construction

procedure is performed whenever there is a new event generated. It can be done

incrementally by deriving only deductions that originate from new events.

5.6.2 An Example

Suppose that we are monitoring a scene with a parked car C1. At time T0,

person P1 appears. Then at T1, P1 disappears behind C1. Shortly after that, at

time T2, C1 leaves and a person appears from behind C1. This person might be a

new person P2 or could be the person, P1, previously seen. We would like to know

how likely it is that the person P1 was occluded or that he entered car C1 (and left

with it). Assume that we have a knowledge base that consists of the rules shown in

Fig. 5.4.

Here, extensional predicates are carleave(c, t), less(t1, t2), nearby(c, l, t),

disappear(h, l, t), observe(o), eq(h1, h2) and appear(h, t) (all strictly extensional);

intensional predicates are occluded(c, h, t) and enter(c, h, t). Given the above sce-

nario, we will now show how our Markov network is constructed according to the

algorithms presented in the last section, and how probability distributions are up-

dated as more evidence arrives.

At time T0 Event appear(H1, T0) is constructed by the low-level vision module. The

database of ground atoms is updated as ADB = {appear(H1, T0)}. No rule is
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F1 If a person h disappears, then either h is occluded by a nearby car or h has

entered a nearby car (nearby(c, l, t) defines the domain for the quantifier)

disappear(h, l, t) → (∃ c (nearby(c, l, t) ∧ occluded(c, h, t)) ∨ (nearby(c, l, t) ∧

enter(c, h, t)))

F2 Entering a car and being occluded by that car are mutually exclusive

enter(c, h, t) → ¬occluded(c, h, t)

F3 If person h enters a car c at t1, h will not reappear for all t2 > t1

enter(c, h1, t1) ∧ appear(h2, t2) ∧ less(t1, t2) → ¬eq(h1, h2)

(if h gets into c temporarily and gets out of it, h is not considered to have

entered c, just being occluded)

F4 If person h is occluded by a car, then h should become visible when the car

leaves occluded(c, h1, t1) ∧ carleave(c, t2) ∧ less(t1, t2) → appear(h1, t2)

F5 (Implicit - domain independent) If a strictly extensional predicate is generated,

either we have to observe it or it comes from the predicate equivalence axiom.

E.g.

appear(h, t) → (observe(HT ) ∨ ∃ h′ (appear(h′, t) ∧ eq(h, h′)))

where HT is the observation associated with this extensional predicate, unique

to each grounding

Figure 5.4: The knowledge base for our example. All rules Fi have the maximum

weight.
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Figure 5.5: Left: the ground network, after T1, a ”clique” formed from rule F2 is

also shown. Evidence nodes are shaded. Right: after T2. Predicate equivalence

atoms and clauses are omitted for clarity.

grounded (i.e. the network is empty).

At time T1 Event disappear(H1, L1, T1) is constructed by the vision module. Rule

F1 is then fired by the deduction module. The predicate nearby(c, L1, T1) is

contextually evaluated and a domain for c is established Dc = {C1} (i.e. C1 is

the only car near location L1). The grounded rule would be disappear(H1, L1, T1) →

(nearby(C1, L1, T1) ∧ occluded(C1, H1, T1))

∨ (nearby(C1, L1, T1) ∧ enter(C1, H1, T1)). The ADB is updated, ADB ←

ADB ∪ {disappear(H1, L1, T1), nearby(C1, L1, T1),±enter(C1, H1, T1),

± occluded(C1, H1, T1)}. Rule F2 is grounded with C1 and H1, e.g.

enter(C1, H1, T1) → ¬occluded(C1, H1, T1) The grounded network is visualized

in Fig. 5.5(left).

Running queries for p1(occluded(C1, H1, T1) = true) and p2(enter(C1, H1, T1)

= true) gives the results p1 = 0.5 and p2 = 0.5. This shows that given no

85



further evidence, we cannot conclude if H1 entered C1 or is occluded by it.

At time T2 Two extensional events carleave(C1, T2) and appear(H2, T2) are con-

structed. eq(H1, H2) is evaluated with the appearance of H2. Suppose the

evaluation leads to p3(eq(H1, H2) = true) = 0.8, the following rule and its

complement(section 5.5.2) are generated, observe(H1H2) → eq(H1, H2),w5 =

p3MAXW , where observe(H1H2) = true is the evidence variable. Vari-

ables of this type are not added to the ADB since they will never be used

for deduction. Equivalence axioms are also grounded with MAXW , e.g.,

eq(H1, H2) ↔ eq(H2, H1). Below, for clarity, ground atoms and rules that

come from predicate equivalences are omitted from the ADB and figures.

Next, the temporal constraint less(T1, T2) is satisfied and rules F3 and F4

are grounded with MAXW . E.g. occluded(C1, H1, T1) ∧ carleave(C1, T2) ∧

less(T1, T2) → appear(H1, T2). The database of ground atoms is then ADB ←

ADB ∪ {±eq(H1, H2),±eq(H2, H1), appear(H2, T2),±appear(H1, T2),

carleave(C1, T2)}. Note that we do not add the temporal relation less(T1, T2)

to ADB. Since appear(H1, T2) is derived, rule F5 is fired with its correspond-

ing ground atoms. observe(H1T2) is considered an evidence variable and is

set to false, since it has not been observed (not in ADB). The ground net-

work now becomes the one shown in Fig. 5.5. Note that evidence nodes

do not contribute significantly to network complexity. Now, running queries

p1(occluded(C1, H1, T1) = true) and p2(enter(C1, H1, T1) = true) gives p1 =

0.81 and p2 = 0.21. Intuitively, since H2 appears similar to H1, the sys-
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tem inclines toward concluding that H1 did not enter C1 but was initially

occluded by C1. Now, suppose that H1 and H2 look quite different, e.g.

p3(eq(H1, H2) = true) = 0.3. Modifying the weights w5 and w6 appropri-

ately, and rerunning the queries we obtain p1 = 0.28 and p2 = 0.72. This

matches our belief that the H1 entered C1 and that H2 is a new person. (To

further explain where H2 came from requires more rules to be added to our

KB. We do not address this here).

By using (relaxed) deduction, numerous irrelevant ground predicates such as occluded(C1, H1, T2),

enter(C1, H1, T2) and disappear(H1, L1, T2) were not added to the network. Com-

pared to a complete grounding (28 nodes)([65]), this deduction-based grounding

certainly simplifies the network structure (16 nodes, including ones that are gener-

ated by predicate equivalence - not shown in Fig. 5.5) and hence reduces the burden

on inference significantly.

This example illustrates how our system was constructed and adapts as new

information arrives. We can identify a number of issues that would pose challenges

to previous approaches. First, uncertainty such as the uncertainty associated with

eq(H1, H2) is commonplace in visual surveillance. Clearly, a purely logical framework

would not be able to deal with this. Second, rules with disjunctive effects such as

F1 are often necessary to capture events. However, they are often not allowed in

traditional deductive systems due to strict logical consistency requirements. Third,

in a probabilistic approach such as HMMs or dynamic Bayesian networks, it is

difficult to model variations in the number of agents (such as the number of cars
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or persons in our example) which often arise in surveillance scenarios. Identity

maintenance would even present more challenges to them. Our system, on the other

hand, possesses mechanisms to deal with these issues, as illustrated in the example.

5.7 Implementation and Experiments

5.7.1 Implementation

We describe here some basic elements needed to address the parking lot ap-

plication: object set, predicate set, their evaluation and the KB. Three types of

objects are considered: cars (denoted as Ci), humans (Hi) and locations (Li). Time

is represented using atomic intervals with granularity of nI frames (e.g. nI = 30,

approximately 2 seconds). Each primitive event or action is assumed to be true

within one time interval. Below, time labels are omitted for clarity. Our vocabulary

consists of the following predicates:

• Extensional: inTrunkZone(C,H), inLeftZone(C, H), inRightZone(C,H),

disappear(H, L), equal(H1, H2), shakeHand(H1, H2) and carLeave(C) (context-

independent), openTrunk(C, H) (context-dependent).

• Intensional: enter(C, H) and drive(C,H)

Additionally, we have measurement objects and their corresponding predicates (Sec.

5.5.2.3), observe(O).

Background subtraction, human detection and tracking (see e.g. [18]) tech-

niques were first applied to identify and track object locations. The orientation and
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direction of each car were estimated simply using its corresponding foreground blob

and parking lot layout. Fig. 5.6.1 shows the estimated layouts of the three detected

cars during one experiment.What is critical to inference is locating the left, trunk

and right zones of a car when it comes to a halt.

A spatial predicate, for example, inTrunkZone(C, H), is generated when the

foot location of person, H, intersects significantly with the trunk zone of the car,

C, for a sufficiently long period of time; disappear(H, L) is generated when we

lose track of H. Identity maintenance predicates are evaluated using the distance

between color histograms of the two participating objects. shakeHand(H1, H2) is

modeled by analyzing the connecting area between two standing separate persons.

openTrunk(C,H) is evaluated base on the motion pattern in the trunk area of car

C. The rules that constitute our knowledgebase are listed in the appendix. The

maximum weight, MAXW , is set to be proportional to the network’s size (number

of ground atoms [41]). The range 0−MAXW is uniformly discretized to five levels

corresponding to very strong, strong, medium, weak and very weak certainties.

These values are assigned to rules according to our confidence in them, based on

domain knowledge.

5.7.2 Experiments

We analyzed a set of parking lot videos that involve a number of people entering

different cars as listed in Table 5.1. A typical scenario is as follows. Initially, three

cars, C1, C2 and C3, park next to each other. A person H1 appears, walks up to C2,
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Table 5.1: Four sequences used in our experiments

] of people ] of cars Durations

seq 1 6 3 2 min 10 sec

seq 2 5 3 3 min

seq 3 4 2 1min 30 sec

seq 4 6 3 4 min

opens its trunk (Fig. 5.6.2), puts something in, closes the trunk and then disappears

between C1 and C2 (Fig. 5.6.3). Then two persons, H2 and H3, walk close to each

other near the parked cars. They shake hands (Fig. 5.6.4) and disappear between

C2, C3 and around the left of C3 respectively (Fig. 5.6.5). Person H4 walks to C1

and disappears from the passenger side of C1 (Fig. 5.6.5). A person H5 follows a

similar path (Fig. 5.6.6). Person H6 walks to the cars and disappears between C2

and C3 (Fig. 5.6.7). Then C1 pulls out and leaves. Finally, C2 and C3 follow in

order (Fig. 5.6.8). This scenario consists of a number of interesting interactions

and we would like to query the system about who entered or drove which car. The

challenges arise mostly due to noise and occlusion, which lead to loss of track well

before a person enters a car.

As the scenario unfolds, new events are generated and our ground network

evolves accordingly. We can query our system at any instant of time. Here, we ran

queries after all cars had departed. Detection probabilities for openTrunk(C2, H1)

and shakeHand(H2, H3) were respectively 0.9 and 0.5. Identity confusion is not
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1 2 3

4 5 6

7 8

Figure 5.6: 1) Estimated layouts of the parked cars. 2-8) Key frames from the

scenario. Foreground and human detection results are also shown. Irrelevant people

and cars are removed.
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Figure 5.7: Right, probabilities of entering cars for individual persons,

p(enter(c, h) = true). Left, probabilities of driving cars, p(drive(c, h) = true).

Darker means being lower in value

significant so no related ground atom is generated. Fig. 5.7 shows the results for

our queries, the probabilities p(enter(c, h) = true) and p(drive(c, h) = true) for all

cars Ci’s and human Hi’s.

These results can be explained intuitively as follows. Person H1 disappeared

between car C1 and C2, so he could have equally entered either of them (with

p = 0.5). But since he was observed to open C2’s trunk, the probability that he

entered C2 increased to 0.86. Person H2 could have entered either C2 or C3 (each

with p = 0.5). But he had been detected shaking hands with H3 (and so probably

saying ”goodbye”), who entered C3 with high certainty. Hence, the probability of

H2 entering C3 was reduced and entering C2 was increased. However, since the

detection probability was not very high (p = 0.5), the increase was not as much as

for the first person. Persons H3, H4 and H5 entered cars C3, C1 and C1 respectively

with high certainties since there was only a single car close to them when they

disappeared. Person H6 disappeared between cars C1 and C3. Since there is no

further supporting evidence, the probabilities for entering C1 and C3 should be the
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same. The observed discrepancy is due mainly to sampling approximation.

H1 and H3 drove C2 and C3, respectively, with high certainty since they had

been observed to enter their cars from the driver side and there was no competing

alternative. For car C1, H4 and H5 were observed to enter it from the passenger

(right) side. The only person who could possibly enter it from the driver side

was H1. But it was strongly believed H1 entered and drove C2. Hence, no one

entered C1 from the driver side. This led to the conclusion that either H4 or H5

had moved from the passenger side to drive C1. This reasoning was made possible

because of the low-weight rule 5, which states that, although unlikely, drivers can

enter a car from the passenger side (the driver side may be blocked). In general,

this type of rule is added to increase the system’s ability to handle exceptional

cases. They bear some of the flavor of default reasoning in the sense that in the

absence of supporting evidence for ”normal” rules, rules with low weights will be

activated to explain the situation under consideration. Note that rule 5 was also

applied to other persons, such as H2 and H6, but produced negligible effects since

competing hypotheses were much stronger. Therefore, the probabilities that H2

and H6 drove any car were still close to zero. We examine next how inference

results change as we vary rules in our KB. First, suppose that the complement rule

(section 5.5.2.3) obseved(O) → E, w = MAXW (1 − pD) is omitted and hence the

ground formula obseved(SHKHAND) → shakeHand(H2, H3) is dropped from our

network. A rerun of the queries showed that p(enter(C2, H2) = true) = 0.99935

(everything else was unchanged) which essentially meant that person H2 entered

car C2 with very high certainty. The result would also be the same no matter how
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the detection probability for the shake-hand action was hypothetically adjusted as

long as w > 0. This is obviously undesirable for this particular case since we would

expect p(enter(C2, H2) = true) to increase proportionately to the increase in the

confidence of detecting the shake-hand action. Replacing the complement rule makes

the system operate as expected.

In the initial querying, our system was able to conclude that either H4 or H5

drove car C1 but was unable to determine which of them did. Consider adding to the

KB a very weak rule stating that among the persons entering a car from the passen-

ger side, whoever enters it first is its driver (no new extensional predicate evaluation

is needed). When we do this and re-evaluate the queries, p(drive(C1, H4) = true)

increased to 0.60 while p(drive(C1, H5) = true) dropped to 0.23, which matched

the observation that H4 entered C1 before H5 and drove it away. This example

is intended to illustrate that domain knowledge can be easily added to our system

to improve its performance. This would not be so easy in a purely logical system,

because a significant amount of consistency checking is required before admitting

a new piece of knowledge. Also, it would not be straightforward in a purely prob-

abilistic system, since adding complicated structures involves cumbersome changes

to the internal structure of the system.

Our system is implemented using C++ and runs in Windows and Cygwin on

an Intel Pentium Dual-Core 1.6 GHz machine with 1GB RAM memory. The aver-

age running time for background subtraction, human detection and object tracking,

on 640x480 RGB frames, are 5 frames per second.Primitive event detection time is

negligible since events that are expensive to evaluate occur sporadically. Average
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running time when performing inference for all queries presented here is approx-

imately thirty seconds (maximum number of MCMC step is set to 5000). The

number of ground predicates nodes) in the first test is 80, out of which 24 nodes are

evidence. The corresponding number of ground clauses (cliques) is 120. Physical

memory usage for the ground network was small(less than 2MB).

5.8 Discussion

We described how a combination of a probabilistic graphical model, the Markov

Logic network, and first-order logic statements can be used for event recognition in

surveillance domains, where unobservable events and uncertainties in detection are

common. Logic provides a convenient mechanism to utilize domain knowledge to

reason about the unobservable. Probabilistic models give us a coherent framework to

deal with uncertainty. The combination brings us the ability to capture interesting

interactions in complex domains.

Obtaining a sufficient and efficient knowledge base (KB) is important to our

recognition performance. This issue is also receiving increasing attention in the

area of human activity understanding([63], [45], [46], [81] . . . ). Approaches that use

efforts from open communities to build common sense KB have been proposed such

as Open Common Sense and Open Indoor Initiatives ([46], [81]). Large databases of

rules are now available to the public ([46]). Automated rule extraction and weight

learning from them have been attempted (e.g. [63]). At its current stage, for visual

surveillance, rules and facts collected from such open databases are more often than
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not irrelevant and not useful. For example, a query for ”parking lot” would output

relations such as it is ”a place for parked cars”, ”would be hot in the summer”,

”may or may not be empty”. . . ([46]). However, as these knowledge bases grow

and, possibly, specialize ([81]), their application to our framework seems promising.

Exploiting them is part of our future investigation.
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Chapter 5

Summary and Potential Research Directions

We have presented in this thesis approaches for robust foreground detection,

object tracking and event recognition which are the main components of a visual

surveillance system.

• The background model is built with a local linear prediction model. It allows us

to accurately capture the variation of background color and hence improves the

performance of background subtraction in the presence of extensive lighting

change.

• The tracking problem was posed as the construction and updating of object

occupancy maps. The motion of robust features is used as the basis for finding

the motion of every pixel in the image, which is then used to determine the

occupancy map. Experimental results show that the new tracker is quite

insensitive to inaccuracy in initialization and robust to large appearance or

lighting changes.

• A combination of probabilistic and logic reasoning is proposed for high-level

event understanding. Commonsense knowledge is used to reduce uncertain-

ties and ambiguities. They are represented with weighted first order logic

formulae. A Markov network of ground atoms is constructed and updated

as evidence arrives. Probabilistic reasoning is performed on this undirected
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graphical model to determine the probability of interested (queried) events.

The combined advantages of both logic and probability is demonstrated in a

number of experiments.

Following are a number of potential research directions that based on the

current work.

5.1 Background Subtraction

First, both indoor and outdoor scenes have been used to evaluate our method

but only with a limited number of settings. A more extensive evaluation for the

proposed method are needed. In addition to ROC analysis, PDR ([84]) can be used

here.

Second, the global index is an important factor for the accuracy of the pre-

diction models. It is currently computed as the median RGB value taken over all

pixels of the input frame. This may lead to inaccuracies if the area of the foreground

become significant compared to the area of the background. To deal with such sit-

uations, we might need a more selective (sparse) sampling approach. Manual scene

masking can be used but automatic selection of representative sample points is more

interesting.

Third, if objects come and stay still in the scene for a long time, it would be

natural to incorporate them into the background model so that moving objects can

be detected more accurately. This is useful in many situations in visual surveillance,

for example, in a parking lot or in a street where there are many cars arriving,
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parking or leaving. Currently there is no adaptive mechanism for such situations

and an approach, possibly with layered background models, is needed. We may

need to perform regional analysis and/or object detection instead of staying at the

pixel level as we currently do. Approaches to this problem exists in the literature,

but there are still open challenges.

5.2 Object Tracking

First, to make the tracker more robust, we need to explicitly handle occlusion,

which has not been addressed explicitly in our current tracker. Currently, a partial

occlusion of the tracked object would lead to shrinking of its occupancy map. Es-

sentially, this will result in only some part of the object to be tracked; the remaining

part would be ignored. An example is shown in Figure 5.1. The tracked object is

occluded most at frame ]17. Its occupancy map is not accurately recovered by the

tracker until frame ]64. We want to restore the actual occupancy map as quickly

as possible. This problem is related to the second problem, multi object tracking.

Currently, if a set of objects move close to each other, their occupancy maps can be

confounded. Coordinating the tracking of multiple objects can help to prevent such

merging and maintain the identity of each object.

5.3 Event Modelling and Recognition

Temporal models. In complex domains, interrelated events often occur at

different time points with possibly different spans. Currently, time is represented
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frame]6 frame]17

frame]64

Figure 5.1: Example of tracking with significant partial occlusion at frame ]17. It

takes long time to recover the object’s occupancy (till frame ]64)
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with points and intervals and used only for constraint checking. More sophisticated

temporal models and reasoning are needed to model activities or events with complex

temporal orderings or constraints.

Complex queries. The queries demonstrated in Chapter 4 are on the truth

values of individual ground atoms. In general, queries can be more complex (e.g.

formed by a conjunction and/or disjunction of the grounded predicates) and can

involve quantification, for example ”find every person Hi where P (Hi) is true” for

some predicate P . These kind of queries cannot be extracted readily from the

Markov network. To answer them we may need a conversion procedure or augmented

structures for the current Markov network.

Incremental probabilistic inference. Currently, inference for every query

is performed from scratch. In particular, if the MCMC or MC-SAT is used, we

re-generate the sample set every time a query is run. Even though the inference

times on the networks in our experiments were small, it is still desirable to have

faster inference, in case intensive querying occurs or when the network size is sig-

nificantly large. There exist several effective incremental SAT solvers that can be

used. Generally, we need to deal with several types of incremental changes: 1) the

truth values of some previously evaluated extensional predicates are changed, 2)

new rules are grounded, which leads to local changes in the network structure and

3) the knowledge base is revised, which leads to possible changes in the network

potentials.

Automatic rule learning. The set of first order logic rules used in Chap-

ter 4 is derived manually based on commonsense knowledge about the parking lot
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and related activities. Obviously, this set of rules is quite domain specific and for

different domains, different sets of rules are needed. This might be often acceptable

since we need to construct a rule set only once for a given domain. Nevertheless,

automatic derivation of relevant domain knowledge and automatic weight learning is

still desirable. These may be possible based on exploiting large-scale commonsense

knowledge bases that are publicly available.
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Appendix A

Logic Rules

List of rules and their corresponding weights used for the parking lot problem

(see problem description in Sec. 5.3).

1. If a person disappears, he/she enters a nearby car, w = 4
5
MAXW

disappear(h) → (∃c (inLeftZone(c, h) ∨ inRightZone(c, h)) ∧ enter(c, h))

2. If a person opens the trunk of a car, he/she will (likely) enter that car

disappear(h) ∧ openTrunk(c, h) → enter(c, h), w = 4
5
MAXW

3. A person enters only one car: enter(c1, h)∧¬equal(c1, c2) → ¬enter(c2, h), w =

MAXW (if h gets into c temporarily and gets out of it, h is not considered

to have entered c, just being temporarily occluded)

4. A person entering a car c from the left (driver) side will (likely) drive c

inLeftZone(c, h) ∧ enter(c, h) → drive(c, h), w = 4
5
MAXW

5. A person entering a car c from the right (passenger) side will (less likely) drive

c

inRightZone(c, h) ∧ enter(c, h) → drive(c, h), w = 1
5
MAXW

6. Two persons shaking hand with each other will (likely) not enter the same

cars.

shakeHand(h1, h2) ∧ enter(c1, h1) → ¬enter(c1, h2), w = 4
5
MAXW
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7. For a car to drive away, it needs a driver: carLeave(c) → (∃ h enter(c, h) ∧

drive(c, h)), w = MAXW

8. A car has only one driver: drive(c, h1) ∧ ¬equal(h1, h2) → ¬drive(c, h2), w =

MAXW

9. A person can drive only one car: drive(c1, h)∧¬equal(c1, c2) → ¬drive(c2, h), w =

MAXW

10. A person has to enter a car to drive it: drive(c, h) → enter(c, h), w = MAXW
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