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While model selection is viewed as a fundamental task in data analysis, it imposes 

considerable effects on the subsequent inference. In applied statistics, it is common to 

carry out a data-driven approach in model selection and draw inference conditional on the 

selected model, as if it is given a priori. Parameter estimates following this procedure, 

however, generally do not reflect uncertainty about the model structure. As far as 

confidence intervals are concerned, it is often misleading to report estimates based upon 

conventional 1 α−  without considering possible post-model-selection impact. This paper 

addresses the coverage probability of confidence intervals of logit coefficients in binary-

response logistic regression. We conduct simulation studies to examine the performance 

of automatic model selectors AIC and BIC, and their subsequent effects on actual 

coverage probability of interval estimates. Important considerations (e.g. model structure, 

covariate correlation, etc.) that may have key influence are investigated. This study 

contributes in terms of understanding quantitatively how the post-model-selection 

confidence intervals perform in terms of coverage in binary-response logistic regression 

models.   



A major conclusion was that while it is usually below the nominal level, there is no 

simple predictable pattern with regard to how and how far the actual coverage probability 

of confidence intervals may fall. The coverage probability varies given the effects of 

multiple factors:   

 (1) While the model structure always plays a role of paramount importance, the 

covariate correlation significantly affects the interval’s coverage, with the tendency that a 

higher correlation indicates a lower coverage probability. 

(2) No evidence shows that AIC inevitably outperforms BIC in terms of achieving 

higher coverage probability, or vice versa. The model selector’s performance is 

dependent upon the uncertain model structure and/or the unknown parameter vector θ .  

(3) While the effect of sample size is intriguing, a larger sample size does not 

necessarily achieve asymptotically more accurate inference on interval estimates. 

(4) Although the binary threshold of the logistic model may affect the coverage 

probability, such effect is less important. It is more likely to become substantial with an 

unrestricted model when extreme values along the dimensions of other factors (e.g. small 

sample size, high covariate correlation) are observed.
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Chapter I: Introduction  

Statistical Inference: A Process View 

In theoretical statistics, it is typical that a proposed probability model is given as a 

starting point, following which standard parametric methods are applied to examine 

statistical properties such as an estimator’s asymptotic distribution. In applied statistics, 

however, it is common to carry out a data-driven approach to select a statistical model. 

While the sampling data are collected from a target population, a group of competing 

models, which may or may not be nested in structure, are proposed. With certain stopping 

rules or benchmarks, standard procedures, for instance preliminary hypothesis tests, 

optimization of penalized goodness-of-fit criteria, mixture index of fit, or any cross-

validation methods,  are performed to select a “best” model. Conditional on the selected 

model and following some optimal estimation process such as MLE, inferences with 

regard to the properties of underlying parameters are drawn.  Following Chatfield’s (1995) 

summary on the “whole model building process” and Leeb and Pötcher’s (2005) 

description about model selection, Figure 1 illustrates the usual practices associated with 

model selection and statistical inference. While the upper level is based upon the 

theoretical statistics, the lower level shows the approach in the statistical applications. 

As far as the applied statistics is concerned, while model selection is viewed as a 

fundamental task in data analysis, far less attention has been addressed to how the 

presence of the selection itself impacts parameter estimates. The statistical properties of 

quantities of interest, for example post-model-selection estimators, or confidence 

intervals that are constructed with the standard parametric methods, are often reported as 
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“unbiased” without considering that the same data set has been used for both model 

selection and inferences.  

Data Driven

Model oriented  

Model Formualtion

Model 
Specification

Model Fitting

Model Checking Combination of Data 
From Multiple Sources

Model 
Estimation

Model 
Validation

Theory

Model Selection
Data Driven Approach:
Multiple Hypothesis Testing Scheme;
Optimization of a Penalized Goodness-
of-Fit Criterion;
Mixture Index of Fit;
Cross-Validation Methods, etc.

Data

A Finite Collection 
of Competing 

Models

Inference

Valid?

The figure depicts ideas following Chatfield (1995) and Leeb and Pötcher (2005).

 
Figure 1: Statistical inference: a process view 

 

One problem associated with the process is that researchers ignore, to a large extent, 

structure uncertainty in the selected model. When researchers proceed as if the selected 

model is given a priori, it raises concerns about the validity of the inferences. In such 

cases, however, the effects of model selection are subtle and insidious. Although some 

research studies have been observed in this area, investigations with regard to such 

concerns are still less common and less well understood.  

 
 



 3

As Hodges (1987) and Draper et al. (1987) summarize, for any statistical problem 

there are three major sources of uncertainty (Chatfield, 1995):  

(a) structure of the model;  

(b) estimates of the model parameters assuming (a) is known;  

(c) unexplained random variation in observed variables assuming (a) and (b) are 

known.  

While recognition and research concerned with (b) and (c) have been pervasive for 

decades, comparatively little attention was paid to (a). As Chatfield (1995) claims, “This 

is very strange given that errors arising from (a) are likely to be far worse than those 

arising from other sources” (p. 421). The root of the problem is the failure to distinguish 

between a selected model and a “true” model known a priori, which, from a broader but 

more scrupulous point of view, may still be incorrect or “at best an approximation” ( p. 

421) of the real world situation. Due to the complicated nature of the problem, in the 

following discussions we do not touch the most rigorous portion but assume, at most of 

the time, that the model given a priori is true. Although it is arguable whether such an 

assumption is justifiable, it does not affect our analysis when we try to simulate the 

typical model building practices. 

Sen (1979) explains the issue of model uncertainty from a perspective with regard to 

parameter space:  For a parametric model with the parameter (vector) θ ∈Ω  (where Ω   

defines a parameter space), a usual practice is to obtain the (unrestricted) maximum 

likelihood estimator (MLE) θ%  of θ  by maximizing (over θ ∈Ω ) the likelihood function 

of the sample observations, with the assumption that the underlying distributions are of 

specified forms. Whenω , a proper subspace of Ω , can be identified from certain 
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practical considerations, a restricted MLE θ̂  of θ  may serve as (asymptotically) a better 

estimator than θ%  given θ ω∈ . It is very difficult, however, to establish with 100% 

certainty whetherθ ω∈ . If the answer is negative, “ θ̂  may not only lose its optimality 

but also may be a biased (or even an inconsistent) estimator” (p. 1019). This is often the 

case when a selected model is applied for parameter estimates without sufficient a priori 

evidence.  

As Breiman (1988) suggests, models selected by various data-driven methods can 

produce strongly biased estimates of mean squared prediction error. Miller (1990) calls 

such bias “selection bias” in the estimates of regression coefficients.  It has been well 

established, particularly with studies in recent years (e.g. Leeb, 2002; Danilov & Magnus, 

2004; Kabalia, 2006; among others), that the model selection stage can “severely affect 

the validity” of the following procedures (Hurvich & Tsai, 1990) and that the usual 

practice is “logically unsound and practically misleading” (Zhang, 1992). However, in 

many cases the standard statistical theory is applied prior to the verification of underlying 

assumptions, as if there is no uncertainty about the model structure, or the uncertain 

structure can, without further justification, be assumed as having “a prespecified known 

form” (Chatfield, 1995) following model selection. In statistical applications, very few 

studies take a position as Hocking (1976) states in selecting the best subsets of regressor 

variables: “The properties described here are dependent on the assumption that the subset 

of variables under consideration has been selected without reference to the data. Since 

this is contrary to normal practice, the results should be used with caution.” (p. 5) 

Breiman (1992) comments the wide ignorance of model selection effects as “a quiet 

scandal in the statistical community” suggesting the fact that even the effects are 
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dramatic, post-model-selection estimates serve as the essential objective of data analysis, 

and the validity of reported inferences is often, intentionally or unintentionally, 

overlooked.  

Confidence Intervals 

A confidence interval defines, given a specified probability, a space in which a 

measurement or trial falls. As far as the interval estimates are concerned, a typical 

approach is to construct, with nominal coverage probability of 1 α− , the interval around a 

quantity of interest, θ, based upon the selected model. For a proposed coverage 

probability of 95%, for example, usually it takes the form 

 ˆ ˆ1.96 /S S nθ θ τ∈ ±) )  (1)  

where Ŝ represents the chosen model, n is the sample size, and ˆ /S nτ ) is an estimator of 

the SE for Ŝθ ) , without considering model uncertainty and possibly inflated variance in 

the model selection step.  

Kabaila (2006) and Kabaila and Leeb (2006) refer to this construction as the “naive 

confidence interval,” as most of the time this procedure leads to inaccurate and 

misleading inferences (Kabaila & Leeb, 2006).  Research studies in the relevant areas 

have suggested that the naive confidence interval has an actual coverage probability that 

is less than the nominal 1 α− , and that the usual statistical practices adopted by people 

often result in too optimistic conclusions. Given the fact that the naive confidence 

interval is widely applied in the statistical framework, research concerned with the 

quantification of its post-model-selection coverage probability is still far from adequate. 

Major reasons for this lack of study may include, but not limited to, confounded effects 
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of multiple factors within an incorporated model selection and inference procedure, 

barriers in identifying and distinguishing various types of biases and demanding 

requirements for intensive numerical computations, especially when the number of 

available models for selection becomes large.  

Binary Logistic Regression 

Among the analyses on the coverage probability of naive confidence intervals, most 

investigate the model selection effects with linear regression models. Studies that address 

the problem (including relevant discussions on point estimators) with nonlinear models 

(e.g. logistic regression models), however, are comparatively rare. A couple of examples 

in this category include Pötcher (1991) and Pötcher and Novak (1998), where asymptotic 

distribution of post-model-selection estimators in the context of general nonlinear 

parametric models is derived, following which their properties are studied with small 

samples.  

Following the notation of Hosmer and Lemeshow(1989) and McCullagh and Nelder 

(1989), a binary logit model can be written as 

 , ,
0

ln[ ]
K

k k n
k

Xβ
=

′Ψ =∑  (2) 

where Ψ is the odds ratio ( 1) /[1 ( 1)]
( 0) /[1 ( 0)] 1

P Y P Y
P Y P Y

π
π

= − =
=

= − = −
 , and the outcome parameters 

are the natural logarithm of the odds ratio of the binary variable Y, which is a random n-

vector of responses. The X is a n k× matrix with k linearly independent columns, or 

observed scores on K independent variables, and theβ  is an unknown k-vector of linear 

regression coefficients. In an unstandardized environment, typically 0, 1n nX =  are 
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specified so that 0β indicates an intercept term. Given that the ith subject ( 1,...,i n= ) has 

Bernoulli Response iY  and p-dimensional covariate vector ix , and that the subjects are 

independent, the logistic regression model for subject i is  

 exp( )( | ) Pr( 1| )
1 exp( )

i
i i i i

i

xE Y x Y x
x

β
β
′

= = =
′+

 (3) 

Compared with multiple linear regression models, logistic regression does not 

assume a linear relationship between the dependent variable and the independent variable, 

but assumes that a linear combination of the predictor variables determines the 

probability of outcome response through the link of the logit function.  While the 

covariates in logistic regression can take any form, the dependent variable is not assumed 

to be normally distributed and homoscedastic for each level of the independent variable, 

as would be the case in linear regression. Moreover, logistic regression makes no 

assumption about normally distributed residuals but depends upon large sample theory on 

distribution properties.  

In a post-model-selection scenario, while the relationship between the logit 

coefficients and the outcome variable turns out to be log-linear, the inferences are usually 

drawn based upon the sampling distribution of the ML estimation ˆln( )Ψ .Suppose that the 

quantity of interest,θ , is given as aθ β′= , where ( 0)a ≠  is a known k-vector and β  is 

the logit coefficient. To construct the naive confidence interval for θ  with a pre-specified 

value 1 α−  (e.g. .95), it is usual to first calculate the end points, which are denoted as 

1 2

ˆ ˆ( )z SEαβ β
−

± × , of the confidence interval for the coefficientβ , and then  exponentiate 

the results (Hosmer and Lemeshow, 1989, p. 44).   
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Purpose and Organization 

The goal of this study is to distinguish effects of data-driven model selection, 

specifically on the interval estimates when a binary logistic model is applied in areas such 

as education.  The statistical applications, which entail procedures such as pretests and 

drawing inference with the selected model, always raise concerns with regard to model 

uncertainty. Nevertheless, in applied statistics it is almost infeasible, due to practical 

restrictions, to eliminate the pretest procedures. We do not intend to involve discussions 

on some relevant important problems such as how to modify the model selection stage 

(e.g. the pros and cons for model averaging), or how to provide alternative solutions (e.g. 

split data) to obtain valid confidence intervals, but rather to take an approach from a 

realistic perspective, focusing on the current broadly applied procedures to understand the 

overoptimistic results, and to gauge the gap between the usually obtained conclusions and 

unknown truth. 

This paper is organized as follows: Chapter 2 reviews major research in the relevant 

fields, and summarizes main accomplishments that have been achieved by previous 

studies.  Chapter 3 addresses the research questions and elaborates methods of this study. 

Following Chapter 4, which reports the simulation results, Chapter 5 details data analysis, 

discussions and conclusions.  
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Chapter II: Literature Review 

Preliminary Test Estimator 

Giles and Giles (1993), Chatfield (1995), and Magnus (1999) summarize the 

extensive discussions on the structure uncertainty that is related to model selection and 

pretests. Specifically, Chatfield (1995) provides a broad view of statistical inference and 

reviews various ways of assessing and overcoming the effects of model selection, which 

include simulation, resampling methods and data splitting. Extensive peer discussions on 

the relevant topics such as model formulation, data mining and the subsequent 

consequences on statistical inferences follow Chatfield’s comments. Buckland et al. 

(1997) suggest that the statistical inference should take extra model selection uncertainty 

into account, and recommend different strategies, for example weighting contending 

models, to achieve such goals as modified but more accurate confidence intervals. 

Hoover and Perez (1999) compare various model selection strategies and procedures that 

accommodate the effects of pretest estimators, and recommend general-to-specific 

procedure. Most of the extensive discussions about model uncertainty have originated 

from the study of pretest estimators.  

In estimation theory, it is usual to estimate θ , the parameter (vector) of interest, 

through some optimal procedures such as maximum likelihood estimation. When it is 

undetermined, however, whether the unrestricted MLE θ%  or the restricted MLE θ̂   is an 

optimal estimator, researchers propose to perform a preliminary likelihood ratio test for  

 0 :H θ ϖ∈  (4) 
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where ω ⊂ Ω  is a restricted parameter space. Depending upon whether 0H  is retained or 

rejected, the preliminary test estimator (PTE) *θ  is then identified to be θ̂   or θ% .  

 

Early Studies 

In past decades, the properties of PTE *θ   have been studied along with the 

considerations of model uncertainty. Bancroft (1944), whose work is viewed as one of 

the earliest studies on uncertainty in formulating the statistical model, examines the 

biases when the statistical estimation is based upon pretests. The second example in 

Bancroft’s paper, which deals with a simple linear regression function, 

1 1 2 2y x x eβ β= + +  (where y is the dependent variable, 1 2and x x are independent 

variables, 1 2 and β β  are regression coefficients, respectively, and e stands for the error 

term), is concerned with the estimator properties of the regression coefficient 1β  when it 

is uncertain whether the other independent variable, 2x , should be included in the 

regression. The consideration involves examination of the biased post-model-selection 

parameter estimate. Bancroft indicates that variations of 2β  and ρ , the correlation 

between 1 2 and x x , have direct effects on the bias, or 
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0xI is an expression of an infinite series of 

incomplete integrals of the F distribution, and λ  is the desired percentage point of the F 

distribution, which determines if the term containing 2x  should be included in the model, 
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for 1 and (n-3) degrees of freedom corresponding to some assigned significance level. 

The derivation suggests some significant findings, which include that zero correlation 

between 1 2 and x x  leads to zero bias and that the bias in estimating 1β  is independent of 

the magnitude of 1β . 

Mosteller (1948) extends the study in regression by pooling data conditional on 

whether 2β  equals zero, and calculating the mean square error of the pretest estimator. 

The procedure is later generalized by Huntsberger (1955), who proposes that the pretest 

estimator can be written as a weighted average of the available estimators, following that 

the model is considered as either restricted ( 2 0β = ) or unrestricted ( 2 0β ≠ ) with 

pooling data. Meanwhile, Huntsberger also considers the situation that the parameters of 

interest, 1 2 and θ θ , are equal, where the a pooled estimator g( 1 2
ˆ ˆ,θ θ ) provides better 

estimation for 1θ  than the estimator of 1̂θ  . When it is not certain about whether 1 2and θ θ  

are equal, a statistical test T is conducted on the equality and examined with a weight 

function 

 1 1 2
ˆ ˆ ˆ( ) ( ) [1 ( )] ( , )W T T T gφ θ φ θ θ= + −  (6) 

where ( )Tφ is defined as a function of T with  

 
( ) 0,  and
( ) 1,  
T T A
T T R

α

α

φ
φ

= ⊂
= ⊂

 (7) 

where  and A Rα α  stand for acceptance and rejection regions of the hypothesis 0H  with 

Type I Errorα . Huntsberger suggests that the weight function offers some advantage 

over the estimator of 1̂θ   with either pooling or not pooling data. 
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Sclove et al. (1972) further extend the regression study to a wider multivariate 

analysis, and investigate the non-optimal properties of the preliminary-test estimators.  

Rencher and Pun (1980) study the inflation of 2R  in the best-subsets selection method, 

and examine the validity of standard errors of the selected model. Miller (1984) shows 

that regression estimators are biased and standard hypothesis tests may be invalid when 

the coefficients of subsets of regressor variables are estimated from the data used for 

model selection, and specifically identifies three types of biases, namely those due to 

omission, competition and application of a stopping rule.  

Lovell (1983), in his discussion on the consequence of data mining, compares the 

significance levels of random data given the number of nominally significant explanatory 

variables in a t-test and proposes a rule of thumb, which states that a regression 

coefficient appearing to be significant at the level α̂  should be taken as significant only 

at the level ˆ1 (1 )c kα α= − − , when the best k out of c candidate exploratory variables 

have been selected in a model. Mittelhammer (1984) is concerned with the risk functions 

of the pretest estimators when the model is misspecified. Other studies in this period 

include Leamer (1978), Hjorth and Holmqvist (1981), Hodges (1987), Dijkstra (1988), 

Miller (1990), and the work of Hjorth (1982, 1987, 1989, 1990, 1994).  Bancroft and Han 

(1977) review the practices of unconditional and conditional specification in applied 

statistics, and compile a bibliography of early literatures. Judge and Bock (1978; 1983) 

summarize the findings in the research on pretest estimators, most of which address 

model selection in the field of econometrics. 
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Asymptotic Properties 

Sen (1979) derives the asymptotic bias and dispersion matrix of the pretest 

estimators based on the maximum likelihood estimation and compares the estimator 

expressions when the model is either restricted or unrestricted. Defining MLE θ%   and θ̂  

as the unrestricted and restricted estimators, and *θ as the preliminary test estimator (PTE) 

of the quantity of interest, θ ∈Ω ,   for a sequence of nK  independent samples 

(  =1,....k)i , a comparison among the asymptotic biases of the three estimators 

*ˆ( ), ( ) and ( )β γ β γ β γ%  , which take the form 
1

2 ( )n θ θ′ − (where 0γ =  following null 

hypothesis of (4), and θ ′  stands for *ˆ,  and θ θ θ% , respectively), indicates that under the 

null hypothesis, *{ }nθ  is asymptotically at least as good as { }nθ% . When θ  lies near the 

boundary of ω , *
nθ  has a smaller bias than n̂θ . When || ||γ →∞ (which suggests that the 

null hypothesis is definitely rejected), * ˆ0 and n nθ θ→ →∞ . Therefore, asymptotically, 

*θ always offers some advantageous properties over the unrestricted and restricted 

estimators. 

Following Sen’s work, Pötcher (1991) and Giles and Srivastava (1993) investigate 

the asymptotic properties of pretest estimators. Pötcher (1991) studies consistent model 

selectors with time series models. He derives the asymptotic distribution of a post-model-

selection estimator, both unconditional and conditional on selecting a correct model. For 

the (zero) restricted estimator θ̂  (which can be generalized to restrictions other than the 

zero restriction), Pötcher suggests that the asymptotic distribution of bias 
1

2 ˆ( )n θ θ− is 
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normal with mean 0 and covariance matrix 0
uvD  ( and u v  define size of the matrix with 

u v≤ ) , where  

 0

0 1
10 ( ) 0

0 0
p u

uv

A
D

−
+ −⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

The superscript and subscript “0”s stand for those matrix or statistics corresponding to 

the “true” model. 1
,( ) lim ( )n n PPA n ELθ θ−

→∞=  is a matrix equivalent to the limit of second 

partial derivatives of an objective function ( )nL θ  , from which the estimator is obtained as 

an optimizer.  p defines the parameters in the model pM  with 0 p P≤ ≤ , and P is for the 

full model. Therefore, the model selector, along with the unknown parameterθ , has 

important effect on the bias. Pötcher states that although asymptotically consistent 

selectors such as BIC typically lead to superefficient estimators near the true parameter 

value, there are unpleasant properties with regard to the restricted estimators. The finite 

sample distribution does not uniformly converge to the asymptotic distribution, which is 

undesirable as most statistical applications involve finite samples.   

Pötcher and Novak (1998) evaluate the accuracy of the approximation provided by 

the asymptotic distribution in small samples, and compare the results of conservative and 

consistent model selectors. They consider the bias effects due to underestimation of θ  

and find discrepancies between the large sample and small sample conditional 

distributions when the minimal true model order is selected. Leeb and Pötcher (2001) 

discuss whether the post-model-selection estimators can be uniformly consistent. 

Moreover, Leeb and Pötcher (2003) obtain the uniform approximations to the finite-

sample distributions, unconditional and conditional on selecting a correct model. 

However, as Leeb and Pötcher notice, the uniform approximation and asymptotic 
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distribution cannot be used directly for purposes of inference, as both of them depend 

upon the unknown parameter value of θ . 

Model Averaging 

The philosophy for model averaging methods is that estimators after model selection 

are actually formed as mixtures of estimators from different potential models that may be 

selected with certain probability. Therefore, compared to the traditional method of 

sticking to the estimators of a single model, it is advantageous to smooth estimators 

across models (Hjort & Claeskens, 2003). Buckland et al. (1997) propose a strategy to 

use weighting method in model selection, which is later adopted in Burnham and 

Anderson (2002). Raftery et al. (1993) and Draper (1995) note that, even there is no true 

relationship for randomly generate data, traditional methods of model selection can lead 

to models that appear to have strong predictive power. Both of the research studies 

demonstrate that a Bayesian Model Averaging (BMA) framework, with which the extra 

estimator variability stemming from not knowing the correct model a priori is taken into 

account, can resolve this difficulty.  

The BMA approach is concerned with delivering posterior distribution of interest 

parameters, given that prior probabilities for a list of potential models and those for the 

parameters of each model are set up. In recent years, Bayesian model averaging methods 

have gained considerable attentions (e.g. Schervish & Tsay, 1988; Le et al., 1993; Kass 

& Raftery, 1995; Madigan & York, 1995; Draper, 1995; Chatfield, 1995; among others), 

among which Hoeting et al. (1999) discuss the machinery of Markov Chain Monte Carlo 

(MCMC) in their tutorial, where within the Bayesian framework multiple chains move 

among different potential models. Hjort and Claeskens (2003) indicate major problems 
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associated with the BMA approach such as difficulties in setting up correct priors and 

unclear consequences stemming from the mix of conflicting prior opinions on interest 

parameters, and propose “Compromise Estimators” denoted with the form  

 ˆ ˆ( | )n p
p

c P Dθ θ=∑  (9) 

where ˆ
pθ is the estimator of model pM , which is selected by certain model selection 

criterion, and ( | )nc P D is some form of the weight function with nD being a function of 

discrepancy between the full model and the null model.  

Mean Squared Error 

Following Roehrig’s (1984) work, Magnus and Durbin (1999) assess the relative 

performance of post model selection estimators in linear regression models with the mean 

squared error (MSE). The model under study is a linear regression model 

y X Z eβ γ= + + ,  where X  (which is a n k× matrix) contains explanatory variables that 

are included in the model on theoretical or other grounds, Z  (which is a n m×  matrix) 

contains additional explanatory variables of which the researchers are less certain, β  is a 

vector of nonrandom parameters,  γ  is a vector of nuisance parameters, and e is the 

random vector of unobservable residuals or disturbances that are 2. .  (0, )i i d N σ  . When 

0γ = , the model is restricted.  

By defining the matrices  

 1 1 1 2( )  and ( ) ( )nM I X X X X Q X X X Z Z MZ− − −′ ′ ′ ′ ′= − =  (10) 

and the parameter vector 1 2( )Z MZθ γ′=  , the Least Square Estimators of β and γ are 

represented as ˆ
u rb b Qθ= −  and 1ˆ ( )Z MZ Z Myγ −′ ′= .  The subscripts ‘u’ and ‘r’ stand for 
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‘unrestricted’ and ‘restricted’, respectively. The pretest estimator, b , is proposed as a 

Weighted-Average Least-Squares (WALS) estimator (1 )u rb b bλ λ= + −  from those of the 

unrestricted and restricted models. Let 2ˆ ˆ( , )sθ λ θ θ=% , the Equivalence Theorem shows 

that MSE of the pretest estimator is 

 2 1( ) ( ) ( )MSE b X X QMSE Qσ θ−′ ′= + %  (11) 

where 2ˆ( , )sλ λ θ=  is a scalar function of θ̂  defining weight.   

Magnus and Durbin’s (1999) findings demonstrate that the MSE of b , the WALS 

estimator, is dependent upon the MSE of θ% , as long as a -functionλ can be defined such 

that ˆλθ  is an optimal estimator of θ . One unresolved issue, however, is that there are 2m  

models to consider. With the increase of m , the number of columns in the matrix of Z , 

the number of partially restricted models increases dramatically, which makes the 

settlement of the WALS estimator a more challenging task. 

Danilov and Magnus (2004) derive the first and second moments of the WALS 

estimator and show that the error related to the pretest estimator (and more generally, the 

WALS estimator) vary substantially with different model selection procedures. Following 

the notation above, they call the columns of X  “Focus” regressors and those of  Z  

“auxiliary” regressors.  Danilov and Magnus redefine the estimator of β to be 

( )i ii
b bλ=∑ , where i denotes the ith partially restricted model. With an idempotent 

matrix W , which is determined by ,  X Z and a selection matrix iS , the first and second 

moments are derived as  

 2 1

ˆ( ) ( ),
ˆ( ) (( ) var( )

E b QE W
Var b X X Q W Q

β σ η η

σ η−

= − −

′ ′= +
 (12) 
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and the Mean Squared Error of the estimator can be generalized as 

 2 1 ˆ( ) (( ) ( )) )MSE b X X QMSE W Qσ η−′ ′= +  (13) 

Where η̂  is the optimal estimator of η , the scaled and normalized parameter vector that 

is defined as 1 2( ) /Z MZη γ σ′= .  The generalization establishes a relationship between 

the MSE and the number of “auxiliary” regressors and allows obtaining bounds for the 

error.  

Coverage Probability 

While studies suggest that the naïve confidence intervals have an actual coverage 

probability smaller than the nominal level, results concerned with its quantification after 

model selection are limited. Important literature in this category consists of large-sample 

limit analyses of confidence intervals in Sen (1979), Saleh and Sen (1983), Pötcher 

(1991), Zhang (1992), Kabaila (1995) and Pötcher (1995), Hjort and Claeskens (2003), 

and Kabaila and Leeb (2006). Other studies with regard to coverage probability include 

Kabaila (1998; 2006), who investigate the finite-sample minimal coverage probability of 

confidence intervals with different number of competing models; Arabatzis, Gregoire, 

and Reynolds (1989), Chiou and Han (1995), and Han (1998), who work on conditional 

coverage probability when the preliminary test is rejected (i.e. θ ϖ∉  in (4));  Hurvich 

and Tsai (1990), Regal and Hook (1991),  and Hook and Regal (1997), who perform 

simulation studies on actual coverage probability. Meanwhile, Kabaila (2006) develops a 

Monte Carlo simulator to improve the efficiency in simulating the coverage probability, 

and applies the methodology in model selection procedures with up to 20 candidate 

models.   
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Large Samples 

Large samples results have been discussed along with the studies on asymptotic 

properties on pointwise estimation. In the relevant context, Sen (1979), Saleh and Sen 

(1983), Zhang (1992), Kabaila (1995), Pötcher (1991) and Pötcher (1995) conduct large-

sample limit analyses of confidence intervals after model selection.  

Zhang’s Theorem 

Zhang (1992) studies the fixed-parameter large-sample limit coverage probability. 

According to Zhang’s Theorem 3, for any 0 1α< < :  

 1
ˆlim pr{ ( )} 1n S kα λβ α→∞ −∈ < −  (14) 

where λ is a parameter in defining the generalized final prediction error (FPE) criterion 

(Shibata, 1984), 1S α−  stands for the confidence region of β  at level 1 α− , and the model 

with k̂λ  parameters is selected. With Theorem 3 Zhang states that, for model selected by 

FPE, the large-sample limit coverage probability of a certain naive confidence set is 

strictly below the nominal level, as “…the actual variance-covariance matrix of ˆˆ( )kλβ is 

greater than the variance-covariance matrix of ˆ( )kβ ...” and “if one regards k̂λ  as fixed 

and derives nominal confidence interval…the size of the confidence set is bound to be 

smaller because  a smaller variance term has been used…” (p. 744). As far as the Zhang’s 

statement is concerned, Kabaila and Leeb (2006) argue that in the general context, the 

Theorem only holds in the cases where the overall model is not the most parsimonious 

correct model for the underlying parameter, or the parameter belongs to one of the lower-

dimensional models. 
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Kabaila’s Study on Asymptotic Properties 

Based on Pötcher’s (1991) results, Kabaila (1995) derives the asymptotic properties 

of the confidence regions after model selection. By considering a time series model 

{ }tY whose distribution is determined by 0 0( , )θ ψ (where 0θ  is a parameter vector of 

interest and 0ψ is a nuisance parameter vector, 0 0( , )θ ψ is supposed to belong to some set 

A allowable values), Kabaila suggests there are two conditions. Condition 1 can be 

shown as: for each 0 0( , ) Aθ ψ ∈ , 

 
0 0, 0 1{ ( ,...., )} 1n nn

Lim P r Y Yθ ψ θ α
→∞

∈ = −  (15) 

where , { }P Bθ ψ denotes the probability of the event B when the parameter values are 

( , )θ ψ  , and { }ir is a sequence of set-valued functions that should be satisfied by the 

asymptotic distribution of the estimator 0θ . Kabaila suggests that it is an illusion that 

Condition 1 implies that 1{ ( ,..., )}n nr Y Y is a confidence region for 0θ with minimum 

coverage probability asymptotically approaching1 α− , reason being that no matter how 

large the sample size is, a 0δ > may exist so that there is a 0 0( , ) Aθ ψ ∈  for which 

0 0, 0 1{ ( ,...., )} 1n nn
Lim P r Y Yθ ψ θ α δ
→∞

∈ < − − . Kabaila further indicates that  { }ir  should instead 

be required to satisfy Condition 2:  

 
0 0

0 0
, 0 1( , )

inf { ( ,...., )} 1n nAn
Lim P r Y Yθ ψθ ψ

θ α
∈→∞

∈ = −  (16) 

with an infimum term suggesting that the greatest lower bound is imposed. Kabaila 

illustrates examples to show that the chance Condition 2 is satisfied is very low when 

1{ ( ,..., )}n nr Y Y is determined by a model selection procedure. 
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Hjort and Claeskens’s Alternative Confidence Interval 

For large samples, Hjort and Claeskens (2003) propose an alternative confidence 

interval after model selection based on model averaging approach. The intervals are 

denoted as  

 
ˆˆˆˆ { ( )}/ /

ˆˆˆˆ { ( )}/ /

t
n n n

t
n n n

low D D n uk n

up D D n uk n

μ ω δ

μ ω δ

= − − −

= − − +
 (17) 

where μ̂  is a compromise estimator, and nD  is a function of discrepancy between the full 

model and null model as explained in (9). ˆ( )Dδ is viewed as an estimator of δ  based 

upon D ,ω̂  is an estimator of  ω , function of partial derivatives evaluated at the null 

model 0 0( , )θ γ , k̂  is a consistent estimator of k , standard deviation of the full model, and 

u  is a normal quantile. The confidence interval is claimed as asymptotically precise as 

the intended 1 α−  level. However, Kabaila and Leeb (2006) have a comment on this 

confidence interval, indicating it “is essentially the same as the standard confidence 

interval based on overall model…in the sense that corresponding endpoints of the two 

intervals differ from each other by terms of order (1/ )po n …” (p. 628) More 

discussions on this alternative confidence interval can be referred to Remark 4.2 of 

Kabaila and Leeb (2006). 

Kabaila and Leeb’s Upper Bound 

Leeb and Pötcher (2004; 2005)  identify the problems associated with an incorrect 

view in favor of consistent model selectors, which argues that the selection procedures 

utilize the standard asymptotic distributions and thus do not have significant impact on 

the inference (including the coverage of the interval estimates). With the studies on 
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multiple linear regression models, Kabaila and Leeb (2006) analyze the large-sample 

limit minimal coverage probability of the confidence intervals. Kabaila and Leeb’s (2006) 

major contribution is the derivation of an upper bound for the large-sample limit minimal 

coverage probability when the model is chosen by conservative model selection 

procedure, which is denote as (where 2c =  for AIC):  

 ( , ) inf ( , , )p px R
c x cα αρ ρ

∈
Ψ = Ψ  (18) 

with ( , , )px cα ρΨ defined by  

 
2

22 2 22
, ( , ) 1 , ( )

1 1 1
p p

p p p

x x z ct x c z dz
α

α α

ρ ρ
φ

ρ ρ ρ−

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ + −Δ
⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠

∫  (19) 

where pρ is the correlation coefficient between the first (which is always in the selected 

model) and p th− component of the least-squares estimator for the parameter vector of 

interest, c is a finite constant, ,  and x R R∈  is the user-specified subset of {0,1}p  with 

which a model from the set of competing models ( )rM r R∈  is chosen by the data driven 

model selector,  ( , )a bΔ denotes ( ) ( )a b a bΦ + −Φ − with ( )Φ ⋅ being the standard 

Gaussian cdf,  ( )φ ⋅ is the corresponding Lebesgue-density, and 2tα is the 1 2α− quantile 

of ( )Φ ⋅ . 

Kabaila and Leeb propose that the upper bound is (1) the first analytical result for 

the large-sample limit minimal coverage probability when a “conservative” (or “over-

consistent”) model selection procedure (e.g. AIC) is used; (2) easy to compute 

numerically, even with large amount of potential models in selection; (3) depends only on 

model selection procedure and regressor matrix but not other unknown parameters; (4) 

statistically meaningful even for the simulated relatively small samples. For the 
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conservative model selection procedure, they mathematically prove that the upper bound 

for the large sample limit minimal coverage probability depends only on pρ , the 

correlation between the independent variables.  

Finite Samples 

Leeb and Pötcher (2005, p. 122) assert, 

“…Regardless of whether a consistent or a conservative model selection procedure 

is used, the finite-sample distributions of a post-model-selection estimator are typically 

not uniformly close to the respective (pointwise) asymptotic distributions…The finite-

sample distributions of post-model-selection estimators are typically complicated and 

depend on unknown parameters. Estimation of these finite-sample distributions is 

‘impossible’ (even in large samples)…”  

Therefore, due to the non-uniformity to the large sample distributions, the 

application of the finite sample distributions (for both point and interval estimates) with 

the asymptotic results is limited. It was not until recent years that some studies appear in 

the literature. From a theoretical point of view, Pötcher (1995) and Kabaila (1995) have 

discussions on the construction of valid confidence intervals based on post-model-

selection estimators or more general shrinkage estimators. Leeb and Pötcher (2003) 

obtain limited approximations to the finite-sample distributions with respect to the point 

estimate parameters. Other examples include Arabatzis, Gregoire, and Reynolds (1989), 

Chiou and Han (1995), and Han (1998), where the researchers discuss the conditional 

coverage probability following the rejection of a preliminary test.  For coverage rate of 

confidence regions, Hurvich & Tsai (1990) conduct a Monte Carlo study on linear 

regression models with selection procedures of AIC and BIC. They consider five nested 
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competing models in linear regression with quite small sample sizes (up to 50). Their 

findings suggest that the coverage probabilities are almost all significantly smaller than 

the nominal 1 α− , with AIC performs better than BIC. Based on the results of the 

simulation study, they recommend splitting the data, using a small portion for the model 

selection stage and the rest large portion for parameter estimates. Such an approach is 

similar to the exploratory and confirmatory analysis with different set of data. 

Kabaila’s Modified Confidence Intervals   

Kabaila (1998) proposes modified confidence intervals with the minimum coverage 

probability 1 α−  for simple variable selection procedures involving two competing 

models. Given the unrestricted model Y Xθ ε= + , where X is a known n p× matrix and 

θ  is an unknown vector 1,...,[ ]T
pθ θ with p  parameters, and the restricted model 

Y Cψ ε= + , where C is a known ( 1)n p× − matrix and ψ  is an unknown vector 

1,..., 1[ ]T
pθ θ − with the first ( 1)p −  parameters of the unrestricted model, the naïve confidence 

intervals of the two models (for 1θ )can be denoted as:  

 1 1
ˆ ˆ[ (1), (1)] n p x n p xc S v c S v− −Θ − Θ +  (20) 

 1 1 1 1
ˆ ˆ[ (1), (1)]n p c n p cc S v c S v− + − +Ψ − Ψ +% %  (21) 

where 1 1
ˆ ˆand Θ Ψ are the Least Square estimators of 1θ , S is the estimator of σ , the 

standard deviation for 1θ , av is the (1,1)th element of the 1( )TA A −  with n pc − satisfying 

(| | ) 1n pP T c α−≤ = − , n pT − being the t-distribution with ( n p− ) degrees of freedom.  

The idea to propose modified confidence intervals with minimum coverage probability 

( 1 α= − ) is to first introduce a positive constant q against which the quantity 
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ˆ| | / ( )p xS v pΘ is evaluated. If the quantity is equal to or larger than q , the inferences 

will be drawn based on the unrestricted model, ignoring the fact that the-model has been 

selected by a data-driven procedure, and the confidence interval of (20) applies. If the 

quantity is smaller than q , the inferences will be drawn based on the restricted model, 

and the modified confidence interval is  

 1 1
ˆ ˆ[ (1), (1)]c ccS v cS vΨ − Ψ +% %  (22) 

where c is usually chosen as smaller than  1n pc − +  subject to the modified interval with 

minimum coverage probability 1 α− . It is shown that this interval is preferable given that 

/pθ σ is small, which, while limited, builds a foundation for the study on typically more 

complicated situations that involve selection among more models. 

Kabaila’s Monte Carlo Simulation Estimator   

Kabaila (2006) further proposes that in certain conditions, techniques such as large 

sample results, upper bounds and Monte Carlo estimates can be used to accommodate 

parameter estimates. He derives a Monte Carlo simulation estimator of the coverage 

probability of naïve confidence intervals conditional on variance reduction. By applying 

the “leaps and bounds” algorithm (Furnival & Wilson, 1974), the Monte Carlo 

methodology involves implementation of limited search through the parameter space for 

a relatively small coverage probability, and comparisons between the results and the 

nominal1 α− . It is claimed that the new Monte Carlo method increases the efficiency due 

to the conditioning on variance reduction (Kabaila, 2006; Kabaila and Leeb, 2006). In the 

application with real life data, Kabaila’s results suggest that for the regression parameters, 
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the coverage probability of the naïve confidence interval (.95) is only between .70 

and .80, with the results from AIC higher than those from BIC.   

Generalized Logistic Regression 

For logistic regression models, one relevant domain of studies focus on power-

transformation, which is concerned with introducing an extra shape parameter,λ , or 

multiple parameters, to improve the model fit to data. In the power-transformation family, 

an early literature goes back to Box and Cox (1964). Peers (1965) conducts a study on 

confidence points with regard to different models with focus on the Bayesian probability 

points. More studies on power-transformation appear in Bickel and Doksum (1981), 

Carroll and Ruppert (1981), Aranda-Ordaz (1981), Guerrero and Johnson (1982), Box 

and Cox (1982), Hinkley and Runger (1984) and Taylor (1986). For instance, Aranda-

Ordaz (1981) proposes two families (asymmetric and symmetric) of functions involving a 

linear combination of covariates. The probability of an event (success=1) can be denoted 

as:  

 
11 (1 ) ,     1

Pr( 1| )
1,                             otherwise

X Xe e
Y x

β λ βλ λ′ ′−⎧ − + > −
= = ⎨

⎩
 (23)  

for the asymmetric family and 
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for the symmetric family. Analyses performed conditional on model selection (based 

onλ ) generally reduce bias of the parameter estimates due to the improvement in model 

data fit.  

However, other than those from the vector of parameters of interest, there are 

variations in estimating the additional shape parameters. Consequently the parameter 

variance is inflated. Researchers call the inflation of variance “cost” (e.g. Taylor, 1988) 

or trade-off to achieve smaller bias, as the inferences are drawn conditionally on the 

selected model without considering the fact that the “true” model may be unknown.  

Taylor (1988) studies the inflation in variance caused by including extra parameter in the 

binary-response regression model, and assesses how much the variability is being 

affected. Further related studies include Taylor et al. (1996), which argues that inflation 

in variance associated with adding parameters is “directly proportional to the number of 

parameters”, and Siqueira and Taylor (1999), which  addresses relevant problems on 

treatment effects of the Box-Cox Transformation.  

Given the large amount of applications of log-linear models, the research with 

regard to the actual coverage probability of confidence intervals has appeared to be 

infrequent in the literature. 
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Chapter III: Methodology 

The purpose of this study is to investigate the actual coverage probability of 

confidence intervals after model selection with finite samples, unconditional and 

conditional on selecting the correct or incorrect logistic model. The effect of model 

structure uncertainty is one of the important factors we want to address. Relevant studies 

on large sample (e.g. Leeb, 2005; Kabaila 2006; Kabaila & Leeb, 2006) for linear 

regression models suggest that the upper bound of the coverage probability depends 

“crucially” (Kabaila & Leeb, 2006) on covariate correlation. We are interested in whether 

the relationship applies to logistic models. Moreover, a comparison between the 

conservative (AIC) and consistent (BIC) selection procedures raises concern in at least 

two aspects: (1) to what extent the model selection procedures differ in selecting the 

correct model; (2) what is the difference by using these procedures on the coverage 

probability with regard to the logit coefficient. As a feature of the binary logistic 

regression, whether the threshold in dichotomizing the outcome response influences the 

interval coverage is also investigated. 

Research Design 

The study assumes that the true model is one of the candidate models and that the 

covariates are continuous and normally distributed. With this assumption, we generate 

data from the known true models and focus on 1β , the first component in the vector of 

the logit coefficients. This approach is similar to Hurvich and Tsai’s (1990) study on 
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confidence intervals with linear regression models and Leeb’s (2004) work in simulating 

the effects of model selection on the distribution of a linear predictor. 

Manipulated Factors 

Five factors are incorporated into the design: data-generating model, correlation 

between covariates, model selection procedure, sample size, and an offset term in 

defining the binary threshold. 

Data-Generating Model 
 

The logistic model in the study is typical and widely applied in the educational 

framework. The model is based on McArdle and Hamagami’s (1994) research on 

predicting college graduation of freshman student-athletes with their academic 

performance. In Mcardle and Hamagami’s study, two commonly used covariates, 

ACT/SAT scores and core GPA scores in high school, were chosen for the basic 

prediction model. The standardized model can be denoted as: 

 1 2( )Logit GRADRATE ACTSAT GPACOREβ β= +  (25) 

The significance test indicates that the covariate ACTSAT ( 1x ) always accounts for a 

considerable amount of variance with regard to the probability of success in students’ 

graduation rates, and it is included in all the candidate models. Our model specifications 

mimic the real life situation in that it is not certain whether the covariate GPACORE ( 2x ) 

should be included in the model. We take 8 2 9, ,and M M M  in Table 5 of McArdle and 

Hamagami (1994) as the basis for our study. For simplicity, we rename the models as 

1 2 3, , and M M M . The model of 1M  (which can be viewed as the unrestricted model) 
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contains 1 2 and x x , both predicting to some extent the Logit (GRADRATE). In this study, 

we specify 1 2β = and 2 1β = as the underlying parameters for the unrestricted model.  

Special formulations are addressed in other two models. In 2M , only 1x  predicts the 

outcome variable ( 1 2β = and 2 0β = ). This is typical when a restricted model is 

considered. In 3M , the two β  coefficients are restricted to be of equal size ( 1 2 2β β= = ). 

While most studies attend to the typical restriction with decreased order, 3M  is unique as 

although both covariates are taken into account, it in fact changes the number of 

parameters and degrees of freedom, which directly affect how the model is selected. To 

accommodate the study for 3M , we define an academic variable ACADE as the sum of the 

two covariates ACTSAT and GPACORE. The model of 3 M can then be specified as:  

 1

1

exp( )Prob( 1)
1 exp( )

ACADEGRADRATE
ACADE

β
β

= =
+

. (26) 

In summary, the specifications of the data-generating model are: 

 

 
1

2

3

: ( ) 2* 1*
: ( ) 2* 0*
: ( ) 2* 2* 2*

M LOGIT GRADURATE ACTSAT GPACORE
M LOGIT GRADURATE ACTSAT GPACORE
M LOGIT GRADURATE ACTSAT GPACORE ACADE

= +
= +
= + =

 

In addition, to investigate the effects of the binary threshold an offset term is 

imposed on the models, which is specified in the subsection of Offset.  

Covariate Correlation 

As Kabaila and Leeb (2006) suggest, in linear regression models covariate 

correlation plays a key role in determining the upper bound of the coverage probability. 

Generally speaking, the higher the correlation, the lower the coverage probability. Five 
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levels of covariate correlation, 0.1, 0.3, 0.5, 0.7 and 0.9 are specified to cover a wide 

range of covariate relationship in the context of logistic regression. 

For the restricted models, this manipulation is of particular purpose. In 3M , the 

covariates are restricted to predict the outcome at the same level, no matter what the 

covariate correlation is. The manipulation can generate some interesting results (e.g. 

when the covariate correlation is low). In 2M , although the variable GPACORE does not 

predict the outcome, it correlates with ACTSAT and, in fact, serves as a suppressor 

variable.  A suppressor may increase the total variance explained by the model when it 

only has negligible correlation with the dependent variable. Horst (1966) indicates:  

“A suppressor variable may be defined as those predictor variables  

which do not measure variance in the criterion measures, but which do  

measure some of the variance in the predictor measures which is not found  

in the criterion measure. They measure invalid variance in the predictor  

measures and serve to suppress this invalid variance.” (p. 363) 

Conger (1974) provides another definition of suppressor variables as “...a variable 

which increases the predictive validity of another variable (or set of variables) by its 

inclusion in a regression equation.” (p. 36-37) As the manipulation covers a wide range, 

we consider various conditions when the suppressor is involved in the model. 

Model Selection Procedure 

While model building methods such as stepwise variable selection are available for 

logistic regression, this study analyzes the effects of automatic model selection 

procedures. Being the most popular automatic selectors, AIC and BIC are chosen for the 

study. Both model selectors penalize the log-likelihood by the number of covariates in the 
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model. As suggested by the pervious studies (e.g. Leeb and Pötcher, 2003; Kabaila, 2005), 

although BIC involves the sample size in its penalty term and serves as a consistent 

estimator, with finite samples the distribution of post-model-selection estimators does not 

uniformly converge to the asymptotic distribution. Therefore, to understand how the 

coverage deviates with the finite framework is one objective of the design. 

 For the binary logistic model, the number of levels of the outcome variable is fixed 

to be 2, and the analysis is focused on the results of: 

 (1) AIC [Akaike information criterion; Akaike (1973)] given by: 

 2 ln( ) 2( 1)AIC L p= − + +  (27) 

where L is the maximum likelihood for the model, and  p is the number of covariates 

estimated in the selected model.  

(2) BIC (or SC) [Bayesian information criterion; Akaike (1978) and Schwarz (1978)] 

given by 

 2 ln( ) ln( )( 1)BIC L n p= − +× +  (28)  

where n  is the sample size, and L and p are defined as those in AIC.  

With different penalty terms, automatic model selection procedures can be roughly 

classified as either “conservative” (e.g. AIC), or “consistent” (e.g. BIC) (Leeb, 2005), 

where “consistent” indicates “the probability of choosing the most parsimonious correct 

model converges to one as sample size increases” and “conservative” suggests “not 

consistent but such that the probability of choosing only correct models converges to 

one” (Kabaila & Leeb, 2006, p. 620). By comparing AIC and BIC in terms of their 

impact on the coverage probability, we investigate the effects of conservative and 

consistent model selection procedures. As suggested by the generalized final prediction 
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error (FPE) criterion that minimizes the residual sum of squares (Shibata, 1984), the 

essential difference between these two selection procedures is the parameter λ (Zhang, 

1992). Specifically, while the parameter is 2  for AIC, it equals ln( )n  for BIC, with 

which sample size is explicitly considered in the penalty. 

 

Sample Size 

Sample sizes of 50, 100, 200, 350 and 500 are selected based upon the following 

considerations: (1) for practical purposes, sample sizes of 50 and 100 are typical in many 

empirical logistic regression studies; (2) sample sizes of 200, 350 and 500 are considered 

to investigate, with adequate but not too much distance, robustness of coverage rate when 

sample increases; (3) Although the model selection procedures that involve prediction 

with categorical data  are often engaged with large sample size in the sector of social 

science (e.g. survey, large scale standardized testing, etc.), a pre-study suggests that there 

is no obviously significant difference on the coverage probability when the sample size 

goes up to 1000 or 2000. Meanwhile, Kabaila and Leeb (2006) suggest that the upper 

bound of the coverage probability with the conservative selection procedure is not 

asymptotically dependent upon the sample size. The range from 50 to 500 is adequate to 

approximate the effects of sample size with regard to the finite sample conditions.  

 

Offset 

In applied binary-response logistic regression, it is most common to define the 

binary threshold with arbitrarily specified probability of 0.5. We consider possible 

variations in the dichotomization process so that the threshold can deviate from 0.5, 
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which are observed from time to time in the statistical applications. The approach we take 

is to impose a fixed offset term on the standardized model, which specifies the a priori 

defined component of binary threshold. The offset causes fitting of the model as  

 ( 1)Logit GRADRATE X Wβ ′= = +  (29) 

where W is the offset term without estimated coefficient. As we apply standardized model 

in the study ( 0 0β = ), W, while distinct from the β  parameters, plays a role as an 

intercept. The Logit with specified probabilities is selected as the offset. When all the 

components in β  are zero, W serves as a constant (in this study W is a 1n×  vector) that 

enables the threshold to be equal to the specified π , the binary threshold. As Table 1 

illustrates, when 0.5π = , the logit is 0. As the offset is symmetric for the rest 

probabilities, we select three offset values to examine the effect of binary threshold: 0, 

0.84729786 and 2.197224577, which correspond to the probabilities of 0.5, 0.7 and 0.9, 

respectively. 

 

Table1: LOGIT with different probabilities  

   

π  1 π−  
1
π
π−

 ln
1
π
π

⎛ ⎞
⎜ ⎟−⎝ ⎠

 

0.1 0.9 0.111111 -2.197224577 
0.3 0.7 0.428571 -0.84729786 
0.5 0.5 1 0 
0.7 0.3 2.333333 0.84729786 
0.9 0.1 9 2.197224577 

 

The simulation study is a balanced experimental design with the five factors fully 

crossed. Therefore, there are 3 5 2 5 3 450× × × × = design conditions. Within each 

condition, 1000 random replications are implemented to simulate whether the underlying 
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parameter of interest is covered by the naïve confidence interval that is constructed after 

model selection and parameter estimates. For each replication, two alpha levels (.01 

and .05) are considered in constructing naïve confidence intervals with regard to the logit 

coefficient of interest.   

Data Generation  

 Generation of the Covariates 

SAS 9.1 (SAS Institute, Inc. 2005) was used for data generation and simulation. For 

the covariates (ACTSAT and GPACORE) in the study, the matrix decomposition 

procedure (Kaiser and Dickman, 1962) is applied to generate data from a bivariate 

normal distribution. The procedure imposes a specified correlation matrix on a set of 

otherwise uncorrelated random normal variables, as if the data were sampled from a 

population with specified population correlations as represented by the imposed 

correlations matrix (Fan et al., 2001). With the random generator of RANNOR, we first 

specify a correlation matrix, which can be varied in accordance with the design 

conditions, and generate two random normal uncorrelated variables with the specified 

sample size N. The means and standard deviations (SDs) of the variables are defined as 0 

and 1, approximating McArdle and Hamagami’s (1994) national Z scores. The variables 

are then transformed, with the pre-specified correlation pattern matrix, into correlated 

covariates.  
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Generation of the Outcome variable 

With the pre-specified sample size N, the response of prediction is then generated 

from the assumed true model with the logistic functions (while 1β is equal to 2, 2β  is 

equal to 1 for 1M , 0 for 2M and 2 for 3M ):  

 1 2

1 2

exp( )( 1)
1 exp( )

ACTSAT GPACORE WPROB GRADRATE
ACTSAT GPACORE W

β β
β β

+ +
= =

+ + +
 (30) 

The variable PROB is ranged from 0 to 1. By applying the generator RANUNI, a 

random uniform variable Y is then generated. By comparing the value of PROB and Y for 

each observation, the binary variable GRADRATE is obtained, whose correlations with 

the covariates are driven by the model from which the data is generated. 

Model Selection, Parameter Estimate and Interval Construction 

The three models were used to fit the same data generated in the iteration, after 

which the model selection procedure was conducted. Conditional on the variation of the 

specified factors, the “best” model was selected with minimal AIC and BIC, which may 

or may not correspond to the true model. For the model selected, the PROC LOGISTIC 

statement, which applies Fisher’s scoring method in ML algorithm, was executed to 

estimate the parameters. The 95% and 99% naïve confidence intervals were then obtained 

and compared with the underlying parameter of the true model. Macros were specified 

for iterations in data generation, model selection and parameter estimates. The PROC 

LOGISTIC results of confidence intervals were contained in SAS BASE, and exported 

when the last iteration was converged. Table 2 summarizes the manipulated factors in 

data generation. 
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Table 2: Factor manipulation and data generation 

FACTORS NO. OF CONDITIONS CONDITION SPECIFICATION WITHIN MACRO?
Data-generating Model 3 See * N 
Covariate Correlation 5 .1, .3, .5, .7, .9 N 

Selection Criteria 2 AIC, BIC Y 
Sample size 5 50, 100, 200, 350, 500 Y 

Offset 3 0, 0.8473, 2.1972 N 
Total 450   

    
Alpha Level 2 .05, .01 Y 

 *TRUE MODEL: LOGIT(GRADRATE)=Beta1*ACTSAT+Beta2*GPACORE+W 
M1: LOGIT(GRADRATE)=2*ACTSAT+1*GPACORE+W 
M2: LOGIT(GRADRATE)=2*ACTSAT+0*GPACORE+W 
M3: LOGIT(GRADRATE)=2*ACTSAT+2*GPACORE=2*ACADE+W 
    

Note: (1) The parameter of interest is BETA1 (ACTSAT);  
          (2) The correlations between GRADRATE and the covariates are determined by the true model;  
          (3) 1000 iterations are conducted for each design condition.       

 

Data Analysis 

There are basically two major purposes on analyzing the data: (1) with varied model 

structure, how the automatic selectors perform in choosing the correct (and incorrect) 

model; (2) what is the actual coverage probability of confidence intervals after model 

selection, and how it is affected by various factors including (1).  

While the selectors’ performance is investigated with the success rate on selecting 

correct and incorrect models in the iterative process of model selections, we focus on the 

coverage probability of the confidence intervals around 1_
ˆ

populationβ , the logit coefficient 

for ACTSAT ( 1X ), which is present in all three models. The coverage of the confidence 

interval is defined as 
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 1_ 1_ 1_1 2

ˆ ˆ ˆexp( ) exp[ ( )]population sample samplez SEαβ β β
−

∈ ± ×  (31)  

where 1_
ˆ 2populationβ = , as specified in the true models.  

For the interval coverage, we investigate both the unconditional and the 

conditional coverage probability. The unconditional coverage is defined as the coverage 

of confidence intervals after model selection, without considering if a true model is 

selected. It corresponds to the overall coverage that is reported in most post-model-

selection interval estimates, which do not take model uncertainty into account. The 

conditional coverage is conditional on selecting a correct or incorrect model. From a 

sampling point of view, the unconditional coverage probability can be viewed as a 

weighted average of the conditional coverage probability. To determine the coverage 

probability, the proportion of the naïve confidence intervals that cover the “true” 

parameter is counted for each of the design conditions. 

Unconditional Coverage Probability 

First, we obtain the actual coverage probability, which is counted as the proportion 

of the overall iterations in which the confidence interval covers 1_
ˆ

populationβ . We are 

concerned with the deviation rate of the overall coverage probability from the 

conventional expectations, or how far the actual coverage probability falls below the 

nominal level, given various conditions crossed and combined.  

With the null hypothesis: 0:    1H Actual Coverage probability α= − , the deviation is 

analyzed with z-score, which is calculated based on normal approximation to the 

Binomial Distribution:  
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 (1 )
(1 )

C nZ
n

α
α α

− −
=

−
 (32) 

where C is the count that 1θ  is covered by the confidence interval, n is the number of 

replicates, and1 α−  is the nominal coverage probability (95% and 99%, respectively).  

Conditional Coverage Probability 

With the simulation results, the conditional coverage probability (CCP) is computed 

as the proportion that the confidence interval covers the parameter when the correct 

model (C) or an incorrect model (I) is selected as the best model, or:  

 

( | ) 100%,  and

( | ) 100%

vc sc
C

sc

vi si
I

si

T TCCP
T

T TCCP
T

= ×

= ×
 (33) 

where  sT  stands for count on selecting the correct or incorrect model, vT  stands for count 

on the parameter is covered, with condition either the correct or the incorrect model is 

selected. In this study, the coverage probability conditional on selecting each of the two 

incorrect models is analyzed. 

Generally speaking, when the true model is selected, the conditional coverage 

probability is reasonably close to1 α−  (Leeb and Pötcher, 2003; Hurvich and Tsai, 1990). 

However, when the model is misspecified, the conditional coverage probability is prone 

to fall far below the nominal level, and thus imposes major adverse effects on the overall 

coverage probability. Therefore, the conditional coverage probability differentiates, to 

certain extent, the impact of “successful” and “unsuccessful” model selections.  
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Chapter IV: Results 

The simulation results are grouped into three major categories: the model selector 

performance, the unconditional coverage probability, and the conditional coverage 

probability.  

For the model selector performance, we count the frequency that the selection 

procedures chose the correct and incorrect model, and compare the difference between 

AIC and BIC. As indicated in Chapter III, the unconditional coverage probability is 

standardized with the z-score, with which we gauge the actual coverage rate without 

considering whether a correct or incorrect model is selected. The results are directly 

associated with the validity of those usually reported on naïve confidence intervals. 

Based on selecting the correct or incorrect model, we investigate further the effects on the 

conditional coverage probability, with the correct model being either unrestricted or 

restricted.  

Model Selector Performance 

We first examine how the model selectors of AIC and BIC perform in selecting the 

correct model. As covariate correlation is one of the most important factors that may 

affect the post-model-selection coverage probability, we compare AIC and BIC through 

the main dimension of covariate correlation. When the true model is 1M  (the unrestricted 

model), the difference between AIC and BIC is most evident, and AIC performs 

constantly better than BIC. When the true model is 2 3and M M  (restricted), BIC enjoys a 

higher selection success rate. While the bold values in Table 12 to Table 56 illustrate the 
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numerical results of count on selecting the correct model under various conditions, Figure 

2 to Figure 6 convey aggregated graphic information to facilitate the comparison.   

Corr=0.1 

Figure 2 illustrates the model selectors’ performance in selecting the correct model 

when the covariate correlation is 0.1. When the true model is 1M , sample size plays a 

key role in determining the selection success rate for both AIC and BIC.  With the sample 

size of N 50= and zero offset, AIC selects the correct model for 50.6% of the time, and 

BIC chooses the correct model for 19.6% of the time. The results suggest a considerable 

difference between the two selectors out of the 1000 iterations. When the sample size 

goes up, the selection success rate for both AIC and BIC increases, and the peer 

difference gets smaller. The biggest improvement occurs between N=50 and N=200, 

where at N=200 the selection success rate reaches 98% for AIC and 85.8% for BIC. 

Among the false selections, the model selectors favor 3M . Both selectors achieve 100% 

success rate when the sample size increases to 500.  

When the true model is one of the restricted models ( 2 3or M M ), the role of sample 

size is not so substantial. For instance, when N=50, the selection success rate is 82.4% for 

AIC and 93.3% for BIC ( 2M ), and 81.3% for AIC and 93.1% for BIC ( 3M ), which are 

pretty high compared to the corresponding cases when 1M  is the correct model. In either 

of the restricted models, both selectors do not achieve 100% success rate when N=500, 

with that of AIC being around 84% and BIC being around 98%. Among the false 

selections, both selectors favor 1M , no matter whether 2M or 3M  is true. 
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Figure 2: Model selector performance when covariate correlation is 0.1 
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The effect of the offset is most noteworthy when the correct model is 1M , where the 

more skewed the dichotomization, the lower the success rate. The difference is not 

substantial when one of the restricted models is true. 

 

Corr=0.3 

Figure3 illustrates the model selector performance in selecting the correct model 

when the covariate correlation is 0.3. When the true model is 1M , The role of sample size 

is similar to that when the covariate correlation is 0.1. For instance, with N 50= and zero 

offset, the success rate for selecting the correct model is 34.2% for AIC and 11.1% for 

BIC. When the sample size gets larger, the selection success rate increases substantially, 

and the difference between AIC and BIC is smaller. When N 500= , the success rate for 

both of the selectors is close to 100%, with BIC a little bit lower. 

When the true model is one of the restricted models ( 2 3or M M ), BIC performs 

consistently better, and the role of sample size is minor. Taking 2M as an example, the 

range of selection success rate is between 79% and 85.1% for AIC and between 90.4% 

and 99.2% for BIC (for the case of zero-offset). BIC gains relatively higher selection 

success rate.   

Similar to the corresponding cases when Corr 0.1= , the effect of the response 

dichotomization is observed only when the true model is 1M , where a larger offset term 

indicates a lower success rate. When the sample size is small, it is noticeable that the 

selection success goes down compared to the results of 0.1. The gap is gradually closed 

as the sample size approaches 500. 
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Figure 3: Model selector performance when covariate correlation is 0.3 

 



 45

Corr=0.5 

Figure 4 illustrates the model selector performance in selecting the correct model 

when the covariate correlation is 0.5. As indicated by Figure 4, the success rate in model 

selection is lower when the correlation gets higher. Compared to that when the 

correlation is 0.3, the success rate heads down further, with the results of BIC in small 

sample sizes most impressive. When the true model is 1M , with N 50= and zero offset, 

the rate is 24.6% for AIC and 3.8% for BIC. When N 500= , the success rate for AIC is 

close to 100%, and that for BIC is only 91.6%. The results suggest that AIC outperforms 

BIC in any sample size. 

When the true model is one of the restricted models ( 2 3or M M ), again BIC 

performs consistently better, and the role of sample size is comparatively small. When 

the true model is 2M  (with zero-offset), the range of success rate is between 82% and 

84.8% for AIC and between 88.7% and 99.3% for BIC, for which BIC gains, though 

small, relatively more benefits with a larger sample size.   
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Figure 4: Model selector performance when covariate correlation is 0.5 
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Corr=0.7 

Figure 5 illustrates the model selector performance in selecting the correct model 

when the covariate correlation is 0.7. One most significant change for the zero offset 

condition occurs when the true model is 1M  with N 50= , for which the selection success 

rate falls to 8.3% for AIC and 1.2% for BIC, respectively, which are surprisingly low. For 

AIC the selection success rate increases when the sample size gets larger, achieving 94% 

at N 500= .  The selection success for BIC, however, is severely affected by the high 

covariate correlation with the maximum rate of 69.5%.  When the true model is one of 

the restricted models ( 2 3 or M M ), again BIC performs consistently better, the role of 

sample size is minor, and the success rate is smaller compared to those with lower 

correlation. 

Among the incorrect selections, both AIC and BIC select 3M  more frequently than 

2M  when the true model is 1M  . When 2M  is true, with small sample size the selectors 

favor 3M , and with large sample size the selectors favor 1M .  
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Figure 5: Model selector performance when covariate correlation is 0.7 
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Corr=0.9 

Figure 6 illustrates the model selector performance in selecting the correct model 

when the covariate correlation is 0.9, the extreme value along this dimension. The 

selection success in model selection gets even lower. When the true model is 1M , for AIC 

the rate falls below 20% for any sample size that is smaller or equal to 200. The results 

for BIC, astonishingly, are close to 0%, no matter what sample size is applied. Therefore, 

to increase sample size seems not to improve the selection success rate at all, as most of 

the time BIC favors the incorrect model. The maximum values for AIC and BIC are 

58.3% and 3.8%, respectively. In contrast, when the true model is one of the restricted 

models ( 2 3 or M M ), again BIC performs consistently better and achieves very high 

success rate (96.5% and 98.9%) when N 500=  and Offset 0= . 

Among the incorrect selections, both AIC and BIC select 3M  more frequently than 

2M  when the true model is 1M  . When true model is 2M , AIC favors 3M  with small 

sample size and 1M with large sample size, and BIC always selects 3M more frequently. 

When 3M  is true, AIC favors 1M  (except for N 50= ), and BIC selects 2M  more 

frequently when sample size is small. 
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Figure 6: Model selector performance when covariate correlation is 0.9 
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Summary 

Other than the model selector itself, we notice that three out of four manipulated 

factors have important influence on the success or failure in model selection. First, the 

variation of model structure itself is noteworthy: while AIC performs consistently better 

with the unrestricted model, BIC outperforms AIC with the restricted models. Second, 

high covariate correlation imposes consistently negative effects on the selection success 

rate, the degree of which is related to the true model structure. Third, while a larger 

sample size is generally helpful to improve the selection success, such improvement is 

subject to the constraints of covariate correlation and model structure. While the way to 

dichotomize the response probability has limited effect, such effect is observed when the 

true model is unrestricted, where a larger offset term suggests a lower selection success 

rate. 

Unconditional Coverage Probability 

Generally speaking, the actual unconditional coverage probabilities are below the 

nominal level, indicating that the model selection procedure imposes remarkable impact 

on the coverage probability of the confidence intervals.  

Correct Model = 1M  (Unrestricted) 

When the correct model is the unrestricted model, the unconditional coverage 

probability is severely compromised.  Table 3 to Table 5 (in Appendix A) illustrate the 

coverage probabilities of the naïve confidence intervals when the nominal levels are .95 

and .99, and the corresponding z-scores when 1M  is true. Among the three tables, Table 
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3 depicts the results for offset 0= , Table 4 shows the results for offset 0.8473 = , and 

Table 5 demonstrates the results for offset 2.1972 = . Meanwhile, Figure 7 and Figure 8 

present the coverage probability and the z-score when the symmetric dichotomization is 

considered, which correspond to the results in Table 3. 

 

1-α =0.95 

AIC 

It is apparent that the coverage probability and the covariate correlation are 

negatively correlated. Other than a couple of exceptions (e.g. when Corr .3=  

and N 200= ), the higher the covariate correlation, the lower the coverage probability.  

The change of the z-score indicates that the coverage probability varies slightly when the 

correlation is between 0.1 and 0.3, decreases at a moderate rate when the correlation 

increases from 0.3 to 0.7, and drops sharply thereafter. The extreme z-score (-69.791) is 

observed in Table 4, where the coverage probability is as low as 0.469 with a sample size 

of 200 and covariate correlation of 0.9. 

When the sample size is small (up to 200), all the z-scores are beyond negative three 

SDs (except for the case in Table 4, where the sample size is 200 and the correlation is 

0.1), and most are beyond negative five SDs, suggesting that the null hypothesis is 

rejected at any conventional level, and that the actual coverage probability is significantly 

different from the nominal rate. When the sample size is equal to 350 and 500, the 

coverage probability is close to 0.95 with low covariate correlations (0.1 and 0.3), and 

gets significantly lower when the covariate correlation is larger than 0.5.  
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Figure 7: 95% Coverage Probability when the correct model is 1M (Offset=0) 
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In the tables if we draw a diagonal from the upper left to the lower right, it is clear 

that all those values above the diagonal are bold (significantly lower than 0.95). It is 

noticeable, though, that the increase of sample size alone is not necessarily helpful to 

retain a high coverage probability. As a matter of fact, when the correlation is extremely 

high (0.9), a larger sample size brings about a lower coverage probability. When the 

correlation is 0.7, with the increase of the sample size the coverage probability first goes 

down (with N=100 and 200), and then goes up (when N=350 and 500).  Similar situation 

occurs at Corr 0.3 / 0.5=  in Table 5 (the coverage probability touches the bottom when 

the sample size is 100), where a large offset term is imposed and the model applies a 

highly skewed cut value to dichotomize the response probability.   

 

BIC 

While a higher covariate correlation unanimously suggests a lower coverage 

probability, generally speaking the performance of BIC tends to be worse than AIC, as 

indicated by more cells with bold z-score, and larger absolute values in the corresponding 

cells. With a large sample size and high covariate correlation, the discrepancy of the 

coverage probability between AIC and BIC is particularly evident.  The extreme z-score 

(-122.315) is observed in Table 4, where the coverage probability is as astonishingly low 

as 0.107 with a sample size of 500 and covariate correlation of 0.9.  

It seems that BIC, the consistent model selector, performs better with larger sample 

size only if the covariate correlation is low. Taking the case of N=500  in Figure 7 as an 

example, when the correlation is either 0.1 or 0.3, the coverage probability is very close 

to the nominal level of 0.95 (in contrast most values in the cells of small sample size are 
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significantly below the nominal level). However, when the covariate correlation goes up, 

the larger the sample size, the worse the coverage probability. The results suggest that the 

coverage variability increases with the increase of sample size. 

The effect of the dichotomization threshold is more detectable when we examine the 

results of BIC. Specifically, while in Table 3 we still observe a few cells in which values 

are close to the nominal level (e.g. Corr=0.1 and N=500 ), in Table 5  all the z-scores are 

beyond -3.5.  

 

1-α =0.99 

AIC 

Similar to that with the nominal level of 0.95, the higher the covariate correlation, 

the lower the coverage probability.  In the mean time, the trend of z-score change remains 

the same, where the coverage probability varies slightly when the correlation is between 

0.1 and 0.3, decreases at a moderate rate when the correlation increases from 0.3 to 0.7, 

and drops sharply thereafter. The extreme z-score (-110.602) is observed in Table 5, 

where the coverage probability is as low as 0.642 with a sample size of 350 and covariate 

correlation of 0.9. 

All the z-scores are beyond negative three SDs when the sample size is small (up to 

200), and most are beyond negative five SDs. When the sample size is equal to 350, the 

coverage probability is close to 0.99 with low covariate correlations (0.1 and 0.3), and 

gets significantly lower when the covariate correlation is larger than 0.5, as those 

suggested when the nominal coverage probability is 0.95. When the sample size is 500, 

the coverage probability is close to .99 when covariate correlation goes up to 0.5, and 
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then drops significantly. The pattern that a larger sample size alone does not improve the 

coverage probability is similar to the case when 1 0.95α− = , and a larger sample size 

indicates a lower coverage probability when the correlation is 0.9. When the correlation 

is between 0.5 and 0.7, the coverage probability goes down and then up when the sample 

size constantly increases, indicating that a smaller sample size of N 50= even results in 

better coverage than 100 or 200. Such cases are more frequently observed when a none-

zero offset is imposed. 

 

BIC 

By examining the z-score, the 99% naïve confidence intervals perform even worse. 

In all the three tables only three cells (out of 75 cells) report values close to the nominal 

level. The extreme z-value (-234.234) is observed in Table 4, where the coverage 

probability is as low as 0.253 with a sample size of 500 and covariate correlation of 0.9.  

It seems that the asymptotic benefits (brought by a larger sample size) only present 

provided that at least two conditions are satisfied: (1) the covariate correlation is small 

enough; (2) certain sample size “limit” is bypassed given (1). For instance, when N=50 , 

the coverage probability is never the worst. If the covariate correlation is 0.1, the “limit” 

is around 100 (200 in Table 5); if the correlation is 0.3, the “limit” is 200 (100 in Table 3); 

if the correlation is 0.9, the “limit” is never reached within 500. Moreover, if to bypass 

the “limit” sooner is viewed desirable to achieve asymptotical consistency, the variations 

among different tables suggest that some cost has to be paid for the skewed 

dichotomization: the more skewed, the smaller covariate correlation is required. Such a 

trend also presents when 1 0.95α− = . 
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Figure 8: 99% Coverage Probability when the correct model is 1M (Offset=0) 
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Correct Model = 2M  (Zero-restricted) 

When the correct model is the restricted model of 2M , the confidence intervals 

perform better in terms of unconditional coverage probability than those when the correct 

model is 1M . Compared to that with the unrestricted true model, the variation of the 

coverage probability due to the variation of the covariate correlation is enlarged. Table 6 

to Table 8 illustrate the coverage probabilities of the naïve confidence intervals when the 

nominal levels are .95 and .99, and the corresponding z-scores when 2M  is true. Among 

the three tables, Table 6 depicts the results for offset=0 , Table 7 shows the results 

for offset=0.8473 , and Table 8 demonstrates the results for offset=2.1972 . Meanwhile, 

Figure 9 and Figure 10 present the coverage probability and the z-score when the 

symmetric dichotomization is considered, which correspond to the results in Table 6. 

 

1-α =0.95 

AIC 

While a lower covariate correlation suggests a higher coverage probability, it is 

observable that the confidence intervals perform pretty well when the covariate 

correlation is 0.1 and 0.3.  As a matter of fact, when the response probability is 

symmetrically dichotomized (Figure 9), the coverage probability is close to the nominal 

level even with a correlation of 0.5 (with one exception when N=50). Notice that when 

the unrestricted model is true, the corresponding results in Figure 7 are well below 0.9. 
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Figure 9: 95% Coverage Probability when the correct model is 2M (Offset=0) 
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The change of the z-score indicates that the coverage probability varies slightly 

when the correlation is between 0.1 and 0.3, decreases at a moderate rate when the 

correlation increases from 0.3 to 0.7, and drops sharply thereafter. However, when the 

sample size is 500, such trend is to some extent mitigated. The extreme z-score (-31.341) 

is observed in Table 6, where the coverage probability is as low as 0.734 with a sample 

size of 100 and covariate correlation of 0.9. 

The z-scores beyond negative three SDs are a little bit less than half of the total 

observations, with Table 6 ( offset=0 ) being the least and  Table 8 ( Offset=2.1972 ) being 

the most. Therefore, with the true (zero) restricted model it seems that moderate sample 

size and covariate correlation are adequate to secure the validity of the coverage 

probability. 

 

BIC 

The performance of BIC in terms of coverage probability is significantly different 

from the scenario with the unrestricted true model. Among the three tables there is no 

such situation that all the coverage probability is significantly below the nominal level, 

even when the offset term of 2.1972 is imposed. The bold values indicating beyond 

negative 3.5 SDs of the nominal level are less than half of the total observations. As a 

matter of fact, the unconditional coverage probabilities are not so different from those 

after AIC is applied for the model selection. 

The extreme z-score (-29.164) is observed in Table 6, where the coverage 

probability is as low as 0.749 with a sample size of 100 and covariate correlation of 0.9 

(in contrast to the extreme value of 0.107 with a sample size of 500 in Table 4). The 
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extreme coverage probability is even a little bit larger than that from AIC. The 

aforementioned sample size “limit” does not even exist, or only exists when the covariate 

correlation is 0.9, where the limit is reached at around 100. In general, the coverage 

probability demonstrates asymptotic properties matching the consistent model selector. 

 

1-α =0.99 

AIC 

Similar to the results when the true model is 1M , the absolute values of z-score are 

inflated compared with those under the nominal level of 0.95. However, the inflation is 

relatively modest, which can be examined from the absolute values. The extreme z-score 

(-57.347) is observed in Table 7, where the coverage probability is as low as 0.819 with a 

sample size of 100 and covariate correlation of 0.9.  

 

BIC 

The extreme z-score (-57.208) is observed in Table 6, where the coverage 

probability is as low as 0.810 with a sample size of 100 and covariate correlation of 0.9. 

The extreme value is very close to that resulting from AIC, indicating that the effects of 

model selection procedure are not significantly different. However, Compared with the 

corresponding extreme value in Table 4 (0.253 with 234.234z = − ), tremendous 

difference is observed. Therefore, in the context of BIC, the effect of the true model is 

remarkable. 
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Figure 10: 99% Coverage Probability when the correct model is 2M (Offset=0) 
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Correct Model = 3M  (Equality-restricted) 

When the correct model is 3M , on which an equal restriction is imposed, some 

unusual observations are presented, which is different from the pattern shown in the 

aforementioned models. Compared to that with the true model of 1M , the variation of the 

coverage probability due to the variation of the covariate correlation is enlarged. 

Moreover, it seems that the confidence intervals perform better in terms of unconditional 

coverage probability when BIC is applied in model selection. Table 9 to Table 11 

illustrate the coverage probabilities of the naïve confidence intervals when the nominal 

levels are .95 and .99, and the corresponding z-scores when 3M  is true. Among the three 

tables, Table 9 depicts the results for offset=0 , Table 10 shows the results 

for offset=0.8473 , and Table 11 demonstrates the results for offset=2.1972 . Meanwhile, 

Figure 11 and Figure 12 present the coverage probability and the z-score when the 

symmetric dichotomization is considered, which correspond to the results in Table 9. 

 

1-α =0.95 

AIC 

Generally speaking, the coverage probabilities for the 95% confidence intervals are 

between those for the true models of 1M  and 2M . Although there is a general trend that a 

lower covariate correlation suggests a higher coverage probability, we find more 

exceptions, especially when an offset term is imposed. For instance, from Table 10 and 

Table 11 it is difficult to conclude whether the coverage probability is higher when the 

correlation is 0.3 or when the correlation is 0.5, as the results for different sample size 

vary. The extreme z-score (-24.811) is observed in Table 11, where the coverage 
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probability is as low as 0.779 with a sample size of 50 and covariate correlation of 0.9. 

With a few exceptions, it seems that to increase sample size is helpful to improve the 

coverage probability, which presents a somewhat different picture from the 

aforementioned situations. 

 

BIC 

Again covariate correlation has important impact on the coverage probability, and 

the performance of BIC in terms of coverage probability is significantly better than that 

with the unrestricted true model. The bold values indicating beyond negative 3.5 SDs of 

the nominal level account for two fifth of the total observations. With a couple of 

exceptions, sample size plays important role in improving the unconditional coverage 

probability, which is similar to the situation with the true model of 2M . 

 

1-α =0.99 

For AIC, The extreme z-score (-29.240) is observed in Table 10, where the coverage 

probability is as low as 0.898 with a sample size of 50 and covariate correlation of 

0.9.Taking the negative 3.5 SDs as a cut point, the 99% confidence intervals perform 

better than the 95% confidence intervals, as the cells with bold values are less when    

1-α =0.99. This is particularly evident when the offset term is zero. Compared with the 

results from Table 3 to Table 5, the coverage probability is much higher, demonstrating 

that the uncertainty in determining the true model may have key effect on the 

performance of confidence intervals. For BIC, the results are similar to those with the 

95% nominal coverage. 
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Figure 11: 95% Coverage Probability when the correct model is 3M  (Offset=0) 
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Figure 12: 99% Coverage Probability when the correct model is 3M  (Offset=0)
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Conditional Coverage Probability 

There are two types of conditional probabilities: conditional on selecting the correct 

model and on selecting an incorrect model, which, as suggested by previous studies (e.g. 

Leeb and Pötcher, 2003), may behave with different statistical properties. Although the 

simulation results suggest some small variations due to the dichotomization threshold, 

compared to other factors, these effects are minor. One example is that when 1M  is the 

correct model and the sample size is 50, for both AIC and BIC lower coverage 

probabilities conditional on selecting the correct model are observed with asymmetric 

threshold.    

We report all the simulation results concerned with the conditional coverage 

probability in the Appendix, and detail the comparisons with the conditions that do not 

consider asymmetric response dichotomization (e.g. the results shown in the figures). 

Table 12 to Table 26 illustrate the numerical results for count on coverage and 

conditional coverage probability when the offset term is zero. Specifically, Table 12 to 

Table 16 show the results when the correct model is 1M , Table 17 to Table 21 present the 

results when the correct model is 2M , and Table 22 to Table 26 demonstrate the results 

when the correct model is 3M . In the same way, Table 27 to Table 56 show the 

corresponding simulation outcome when a non-zero offset term is involved.  

 Conditional on Selecting the Correct Model 

The coverage probability conditional on selecting the correct model is high when 

compared to the corresponding probability conditional on selecting an incorrect model. In 
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many cases the probability is close to the nominal level. However, variations are 

observed with specific conditions. To facilitate the comparison, Figure 13 to Figure 15 

provide graphic information on the conditional coverage probability when Offset=0. 

Correct Model = 1M  (Unrestricted) 

Covariate Correlation 

The covariate correlation imposes major impact on the conditional coverage 

probability.  When the correlation is low (0.1 and 0.3), the probability is most likely close 

to the nominal level, as long as the sample size is adequately large ( N 100≥ ). When the 

correlation is 0.5, coverage probability falls moderately subject to the specific sample 

size.  When the correlation goes higher, irregularities are observed. With Corr=0.7  , a 

zero coverage probability (1 0.95α− = ) after the selection of BIC is observed with N=50 . 

Notice that the corresponding success rate on selecting 1M  is low (1.2%). With Corr=0.9 , 

zero coverage probability occurs at the sample size of 100 (1 0.95α− = ) with the 

corresponding success rate on selecting 1M  being 0.5%. Therefore, the irregularities are 

due to extremely low success rate in selecting the correct model. Similarly, the 100% 

coverage probability after selection by BIC in the case of N=350  does not have much 

significance , as it is based on only 0.1% of the selection success rate. In such cases, 

however, we can conclude that the coverage probability conditional on selecting the 

correct model is highly invalid, as the model selectors do not perform effectively in 

selecting the correct model. 
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Figure 13: Coverage Probability conditional on selecting the correct model 1M (Offset=0) 
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Sample Size 

Although the sample size alone does not determine the coverage probability after the 

correct model is selected, it plays an important role to improve the conditional coverage 

probability, as shown in Figure 13.  Even when the covariate correlation is low, a sample 

size of 100 or above is required to approximate the nominal coverage probability 

conditional on selecting the correct model. The prerequisite is more demanding when the 

correlation is high.  

 

Model Selectors 

AIC performs consistently better than BIC in terms of the conditional coverage 

probability. In the meantime, the results from AIC are much more stable than those from 

BIC when a higher covariate correlation strongly distorts the picture of coverage. The 

coverage probability conditional on selecting the correct model based on AIC is most 

likely close to the nominal level, as long as the sample size is reasonably adequate. The 

outcome resulted from BIC, however, is subject to more stringent constraints in sample 

size and covariate correlation in order to obtain commensurate coverage probability as 

AIC. 

Correct Model = 2M  and Correct Model = 3M  (Restricted) 

The results for the correct models of 2 3and M M  are very similar, where high 

coverage close to the nominal 1 α−  is observed. The fluctuations at various levels of the 

manipulated factors are relatively small, demonstrating a totally different picture 

compared to that when the true model is unrestricted. For both of the model selectors, the 

coverage probability of the 95% confidence interval is roughly between 93% and 96%, 
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no matter what the covariate correlation is. The fluctuation of the 99% confidence 

interval is even ignorable considering possible sampling error, suggesting that the 

covariate correlation does not affect the coverage probability conditional on selecting the 

restricted true model.  

AIC and BIC achieve similar results. Moreover, the effect of sample size is also 

small.  Although a sample size of 100 or larger is somewhat more desirable, it seems that 

the sample size of 50 does not hurt much. The results suggest that provided that the true 

model is restricted, the lower-than-expected unconditional coverage probability does not 

stem from the condition when a true model is selected. Therefore, the major source of 

lower coverage is related to the model selectors’ performance in selecting the incorrect 

model. 
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Figure 14: Coverage Probability conditional on selecting the correct model 2M (Offset=0) 
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Figure 15: Coverage Probability conditional on selecting the correct model 3M (Offset=0) 
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 Conditional on Selecting an Incorrect Model 

 While there is a smaller chance the incorrect models are selected, the volatility of 

coverage probability conditional on selecting an incorrect model is apt to be larger than 

that conditional on selecting the correct model. In certain conditions, it is highly possible 

that the chance to select an incorrect model is close to 0 (e.g. when the sample size is 

large), which eliminates the chance to measure the conditional coverage probability. An 

overview suggests that the coverage probability is generally lower compared to that 

conditional on selecting the correct model.  

Correct Model = 1M  (Unrestricted) 

As indicated in the previous section, when an incorrect model is selected, the chance 

to select 3M  is higher. Table 12 to Table 16 contain the coverage probability results 

when the correct model is 1M . While the difference between AIC and BIC is minor, the 

effects of covariate correlation and sample size are noteworthy. 

Covariate Correlation 

We first investigate the cases when 3M  is chosen by the model selectors. When the 

correlation is low, for AIC only at small sample sizes ( N 350< ) the probability is 

observed, which is much lower than the nominal level. Similar observations can be found 

for BIC, where the count to select 3M  increases to some extent.   When the correlation 

moves up, the chance to select 3M  increases, but the coverage probability remains low. 
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The highest coverage probability for the 95% confidence interval is 0.842 for AIC and 

0.848 for BIC. These extreme values are observed when the covariate correlation is high. 

When  2M  is chosen by the model selectors the trend is the other way: the higher 

the correlation, the lower the coverage probability, which is similar to the coverage 

probability conditional on selecting the correct model. However, as the chance to be 

chosen is smaller, the effect on the unconditional coverage probability is less than that 

when 3M  is falsely selected. 

Sample Size 

Sample size imposes some constraints on evaluating the coverage probability, as 

when sample size goes up, it is highly possible that an incorrect model is not selected. 

However, generally the larger the sample size, the lower the coverage probability 

conditional on selecting an incorrect model. Therefore, to increase sample size may not 

necessarily impose positive effects on the unconditional coverage probability. Such 

asymptotic properties conditional on selecting the incorrect model are especially 

undesirable when the covariate correlation is high, where the model selectors are more 

likely to be driven to chose the incorrect models. 

Correct Model = 2M  and Correct Model = 3M  (Restricted) 

The coverage probability is usually much lower than that conditional on selecting 

the correct model. This suggests that the overall lower-than-expected coverage is mainly 

due to this portion of deviation. When an incorrect model is selected, the chance to select 

1M  is higher, with exception in high correlation and small sample size. This is reasonable 
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considering that 1M  offers more flexibility than the rest two models in estimating the 

parameter of 2β .  Table 17 to Table 21 contain the results for conditional coverage 

probability when the correct model is 2M , and Table 22 to Table 26 contain the results 

when the correct model is 3M . 

Covariate Correlation 

When 1M  is falsely chosen, the conditional coverage probability is negatively 

correlated with the covariate correlation. The relationship applies in most conditions, 

even when the chance to falsely select 1M  is small. When another model is selected, the 

effects of covariate correlation display in two aspects: (1) the lower the correlation, the 

less chance that model is selected; (2) given that the model is chosen at certain chance 

(e.g. 5%≥ ), the negative relationship between the coverage probability and the covariate 

correlation applies. The condition for (2) is necessary since if the chance is too small, 

hardly the result can be reliable. In the meantime, the smaller the selection chance, the 

smaller the weight that portion of possible selections can impose on the unconditional 

coverage probability. In general, the outcome suggests that a lower covariate correlation 

is useful to improve the coverage probability, no matter the coverage is conditional on the 

correct or incorrect model selection. 

 

Sample Size  

When 1M  is falsely chosen, the effect of sample size is mixed with that of the 

covariate correlation, which makes the results difficult to interpret. In general, the 

coverage probability is less influenced by the sample size if AIC is applied in the model 
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selection. For BIC, it is noticeable that a moderate sample size (e.g. 350) represents the 

best coverage probability most of time, with a couple of exceptions when the true model 

is 3M and the covariate correlation is extreme (e.g. 0.9 or 0.1), where the chance to 

select 1M  is small.  

When another model (either 3M  or 2M , depending on the true model) is falsely 

chosen, the coverage probability usually falls far below the nominal level. Moreover, the 

larger the sample size, the less likely that model is selected, and the lower the coverage 

probability conditional on that model is selected, which, although still influences the 

unconditional coverage probability, may only have small effects. 

 

Model Selectors 

Some differences are observed between AIC and BIC. Most of the time AIC 

represents a higher coverage probability if 1M  is falsely selected. The most significant 

difference is that the outcome from BIC seems to be more vulnerable to the high 

correlations (e.g. Table 26). A closer examination indicates, however, these cases occur 

when the chance of false selection is small, and therefore does not influence much the 

unconditional coverage probability.   
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Chapter V: Summary and Discussion 

Coverage Probability Summary 

While the coverage probability falls below the conventional 1 α− , the distance of 

the gap fluctuates along the dimensions of the manipulated factors, a combination of 

which make the validation of the actual interval estimates after model selection intricate.  

The most influential factors, which can never be ignored when analyzing the post-model-

selection inference, are the model structure and covariate correlation. 

When the suppressor variable in 2M  or the restriction in 3M  is involved in the model 

formulation, the outcome of the coverage probability significantly departs from the 

corresponding result of 1M , which indicates that the variation of 2β  imposes direct 

impact on the inference. 

The negative relationship between the correlation and the coverage probability 

accounts for a large portion of the coverage probability variance. The simulation results 

demonstrate that the covariate correlation plays a role of great importance in validating 

the coverage probability. Such results are consistent with the previous studies with regard 

to linear models (e.g. Kaibala & Leeb, 2006).  

Unconditional Coverage Probability 

As shown by the comparisons among the three true models, the uncertainty in the 

model structure can lead to highly diverse results, with an underlying unrestricted true 

model attaining lower coverage. In case of the symmetric dichotomization, z-scores in 

Table 3, Table 6 and Table 9 specify such disparity among 1M , 2M  and 3M , respectively. 
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The coverage probability with the true 2M  appears higher (compared to that with 1M  ) 

even when the suppressor variable shares very high correlation with the variable in the 

model. When the restriction involves equality ( 3M ), the situation is more complicated 

with some results difficult to interpret. 

The unconditional coverage probability is closer to the nominal 1 α−  when the 

correlation between the covariates is lower. The coverage probability decreases, at a 

moderate rate from the nominal level when the correlation increases up to around 0.5, and 

drops at an accelerated rate thereafter.  

The coverage variation following sample size needs detailing with other factors: 

when the true model is 1M , with small sample size AIC and BIC prefer selecting the 

incorrect models, and the conditional coverage probability is low. When the sample size 

increases to certain level, the rate to select the true model increases, and the coverage 

probability goes up. The effects are confounded with the variation of covariate 

correlation:  with lower correlation, the coverage probability is closer to nominal level. 

Meanwhile, exceptions occur when the covariate correlation is extremely high, where the 

increase of sample size does not improve the coverage probability. When the true model 

is 2M  or 3M , even with small sample size AIC and BIC enjoy high success rate in 

selecting the correct model, which enhances the coverage. In such cases, the effect of 

sample size on the coverage probability is mitigated. 

The finite sample analysis suggests that the unconditional coverage probability does 

not unanimously follow the usual asymptotic properties of many statistical substances, 

which generally achieve better or more accurate outcome with a larger sample size. The 

performance of sample size is not consistent given various underlying true models and 
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covariate correlations, a fact that sometimes makes the effort to alleviate model selection 

effects through enlarging the sample size ineffective. 

Although there have been many studies on the performance of AIC and BIC, we are 

particularly interested in their difference in affecting the interval coverage. There is no 

universal evidence which model selector is superior, as the comparative advantage differs 

to a large extent across the factor of model structure. When the true model is 1M , AIC 

performs consistently better than BIC in terms of the coverage probability. When the true 

model is 2 3 or M M , the difference from the AIC and BIC is relatively small. However, 

the coverage probability gained through BIC seems to be more volatile. 

As for the dichotomization offset, the effects are mostly secondary, especially when 

the true model is a restricted model.  An exceedingly skewed dichotomization may 

facilitate more extraordinary results when extreme values are observed along the 

dimensions of covariate correlation and sample size. However, if a reasonably moderate 

dichotomization threshold is applied (e.g. 0.7), the effect to the coverage probability is 

not significant. 

Conditional Coverage Probability 

The weighted average of the conditional coverage probabilities establishes a basis to 

assess the validity of the overall coverage. For the confidence intervals conditional on 

selecting the correct model, most of the time the underlying parameter is prone to be 

covered, with which the probability is closer to nominal coverage rate, compared to that 

conditional on selecting an incorrect model. While we observe effects of the covariate 

correlation and sample size when the true model is 1M , with the restricted models such 
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effects are to a large extent lessoned. Considering that only a couple of covariates are 

introduced in this study, a true model involving a large number of parameters seems to be 

more vulnerable to the effects of covariate correlation, sample size and model selection 

procedures. 

As far as the coverage conditional on selecting an incorrect model is concerned, it is 

apparent that this portion contributes negatively to the validity of confidence intervals. 

However, in many cases the selection on incorrect model is relatively rare, which lowers 

the reliability of the measure. A coverage probability of 0 or 1 does not have much 

practical significance if the chance of model selection is only 0.1%. As a result the 

unpredictability of the coverage probability in various conditions is large.  

The actual effects of the conditional coverage probability are highly dependent upon 

the extent to which the incorrect model is likely to be chosen.  Given the confounded 

effects of different factors, it is difficult to summarize and predict to what extent the 

influence is enforced, and the detailed discussion within the specific environment in 

Chapter IV is more meaningful. 

Discussion 

The goal of this research is to investigate, in the context of binary logistic regression, 

how model structure uncertainty imposes important impact on the statistical inferences. 

More specifically, the study measures the contraction of the actual interval estimates 

compared to the nominal coverage of post-model-selection confidence intervals. Three 

important interrelated questions of this study are: (1) how the unawareness of the model 

structure uncertainty puts in force significant consequences; (2) whether the application 
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of different model selectors influences the intervals’ validity; (3) whether the feature of 

logistic regression, specifically the log-linear function through which the probability of 

outcome response is dichotomized, plays a role in the coverage probability. 

To study the first question, we propose three true interconnected models with pre-

specified parameter configurations, based upon which substantial variations of the 

coverage probability are observed. To work on the second question, we investigate two 

major automatic model selectors’ performance in choosing the correct model, and 

measure the subsequent effects on the coverage probability of confidence intervals.  To 

answer the third question, we design varied offsets that are commensurate with applying 

certain dichotomization thresholds, and examine the results.  

Model Structure 

Model structure is one of the most important considerations in shaping the actual 

coverage probability. We investigate the problem through several layers. The first layer, 

which approximates the truth, is that the model is given a priori. Under our assumption, 

we take such a model as true. 

In the real world applications, however, the model structure is unknown to the 

researchers, and the assumption for the first layer mostly likely cannot hold. Under such 

circumstance, the second layer applies, where the model selection procedure determines 

the chance, or the extent to which the researchers are certain about the true model 

structure. Given our assumption, such chance is represented by the selection success rate. 

Needless to say there are losses in model selection, as indicated by the success rate, 

which usually does not achieve 100%. For the finite samples, the simpler models gain 

stable success rate at comparatively high level, and the unrestricted model is more 
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vulnerable to the effects of multiple factors, no matter AIC or BIC is applied in the model 

selection. At this stage we review the overall coverage probability and can see that the 

unrestricted model suffers more.  

The issue is somewhat similar to the analysis of Taylor (1986; 1988) and Taylor et 

al. (1996) on the generalized linear models, where extra parameter(s) are involved to 

improve model data fit. One difference in our study, however, is that we know the model 

structure. i.e. we are certain about λ , the shape parameter(s) in (23) and (24), by 

generating data from the true model. In such circumstance we still observe that a simpler 

(true) model structure enjoys some advantages concerned with the confidence interval 

coverage, even in many cases the coverage is below the nominal level.  

While discussions with such phenomenon are not frequent, there are at least two 

aspects with regard to the effects. First, if the model is true, with more complicated model 

structure, the variance due to sampling error is more likely to be inflated. Such inflation 

presents an illusion on the naïve confidence intervals, which actually achieve even 

narrower coverage.  The second aspect, which is more relevant to this study, is concerned 

with the model selectors’ performance: to enhance selection success is helpful to gain 

higher coverage.  The model selectors impose penalty to more complicated model (even 

the model is not overparameterized), especially when sample size is not adequate. 

Therefore, an unrestricted true model loses more in terms of confidence coverage due to 

comparatively less chance to be selected. 

The third layer is more specific: it details the effects conveyed by selecting the 

correct and incorrect models, a combination of which contributes to the variation of the 

unconditional (overall) coverage probability. While the coverage probability conditional 
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on selecting the correct model is supposed to be close to the nominal 1 α− , the effects of 

other factors are observed most with the unrestricted model, for which the coverage drops 

with small sample size and high covariate correlation. It is noticeable, however, that such 

effects are still closely related to the model selection: the near to ground coverage 

probability is inevitably accompanied by the low selection success rate.  

The effects conveyed by selecting the incorrect models are generally unfavorable to 

the overall confidence coverage as it is negatively influenced. While the conditional 

coverage probability is highly volatile, its negative contribution may or may not be 

important, depending fundamentally upon the chance the incorrect model is selected. For 

the unrestricted model, as the model selection success rate is comparatively low (which 

means the chance to select the incorrect model is high), the coverage probability is 

further compromised. The coverage disparity between the true 2M  and 3M  is not 

substantial, and is mainly driven by the difference of the model selectors, which are 

discussed below.  

Model Selectors 

Among the infrequently observed comparisons between AIC and BIC on the interval 

coverage, Hurvich and Tsai’s (1990) study on linear models concludes that AIC is 

superior to BIC in terms of unconditional coverage probability (overall coverage 

probability in Hurvich & Tsai, 1990), where they investigate the coverage with five 

candidate models, among which two are manipulated as true models( 0 3p =  and 0 4p = , 

respectively, where 0p  stands for the order of the true model). They assert such 

difference as “intriguing” as “BIC is a consistent model order selector and AIC is not” 
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and “BIC is uniformly better than AIC at selecting the correct model for the simulation 

given (in their study).” (p. 215) However, a closer look at Hurvich and Tsai’s (1990) 

results indicate that when 0 3p = (for the restricted model), AIC and BIC are not 

significantly different (with 90%, 95% and 99% confidence intervals, the overall 

coverage probability is .806, .900 and .960 for AIC, and .820, .902 and .958 for BIC, 

which suggest little difference). 

Different from Hurvich and Tsai’s work, this study on logistic model details the 

model specification with various covariate correlations, and applies larger sample sizes 

that cover a wide range of the finite samples’ effects. Considering that Hurvich and Tsai 

work on linear models and use small sample size (20 for the restricted model, 30 and 50 

for the unrestricted model) without considering the correlation of the independent 

variables, we do not compare our outcome with theirs directly.  However, we conclude 

that the superiority of AIC only applies with certain model structure, with high-order 

model favoring AIC. When the true model is a restricted model, the effect of different 

model selection procedures is comparative small.  

To better understand the difference, we look into the model selectors’ asymptotic 

properties. In finite sample analysis, “…conservative model selection procedures are 

more powerful than consistent model selection procedures in the sense that they are less 

likely to erroneously select an incorrect model for large sample sizes”, and “…this 

advantage of the conservative procedure is paid for by a larger probability of selecting an 

overparameterized model” (Leeb & Pötcher, 2005, p. 36). Therefore, when the true 

model is unrestricted ( 1M ), AIC’s advantage is obvious as it gains in the first aspect and 

does not lose in the second aspect. When the true model is restricted, however, such 



 86

tradeoff applies and neutralizes the difference between AIC and BIC. When the true 

model is 3M , BIC even outperforms, especially with a large sample size. In such a case 

the advantage of consistent model order selector seems to appear.  

Dichotomization  

For the binary logistic models, the effect of dichotomization threshold is model 

specific. For a simple true model, different strategies in setting the threshold seem not 

harmful. When the true model is a more complicated model, which involves more 

parameters, the skewed dichotomization may compromise the model selection success 

rate, which in turn imposes detrimental effects on the coverage probability. Such effects 

may be enlarged when extreme values are observed in other factors (e.g. covariate 

correlation, sample size, etc). In real applications, as the true model is unknown, an 

extremely skewed dichotomization (e.g. 0.8/0.2) is not recommended. In most cases a 

balanced threshold (between 0.3 and 0.7) seems more desirable.  

Covariate Correlation and Sample Size 

We have confirmed the importance of covariate correlation at any conventional 

coverage level. It is recommended that a correlation larger than 0.3 can generally be 

taken to trigger a cautious investigation of the coverage probability. If the covariates 

involved in any model share considerable portion in predicting the outcome variable, the 

coverage probability is inevitably compromised. Such a rule applies to models in which a 

suppressor variable does not predict.  

The role of sample size is intriguing. While a larger sample size is helpful to 

improve the model selector performance, it does not necessarily gain advantage on the 



 87

coverage probability. “Regardless of sample size… the sampling properties of post-

model-selection estimators are typically significantly different from the nominal 

distributions that arise if a fixed model is supposed” (Leeb & Pötcher, 2005). Such a 

statement seems also suitable to the coverage of confidence intervals. Coverage does not 

always improve with a larger sample size. It can decline. Therefore, any attempt to 

enhance the coverage with large sample size has to consider carefully multiple factors 

that may influence the ultimate outcome. 

Conclusions 

While it is usually below the nominal level, there is no simple predictable pattern 

with regard to how and how far the actual coverage probability of confidence intervals 

may fall. The coverage probability of confidence intervals varies with multiple factors. 

While the model structure always plays a role of paramount importance, the covariate 

correlation significantly affects the interval’s coverage, with the tendency that a higher 

correlation indicates a lower coverage probability. Meanwhile, no evidence shows that 

AIC inevitably outperforms BIC in terms of achieving higher coverage probability, or 

vice versa. The model selector’s performance is dependent upon the uncertain model 

structure and/or the unknown parameter vector θ  , against which AIC may outperform in 

choosing the correct model, and in turn, this influences the coverage.  The effect of 

sample size is in intriguing, and a larger sample size does not necessarily achieve 

asymptotically more accurate inference on interval estimates. Although the binary 

threshold of the logistic model may affect the coverage probability, such effect is less 

important. It is most likely to become substantial with an unrestricted model when 
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extreme values along the dimensions (e.g. small sample size, high covariate correlation) 

of other factors are observed. 

 

Concluding Remarks 

Logistic regression models are widely applied in educational studies. While the 

statistical model formulation, selection and prediction are viewed as generic means to 

understand and solve problems, the unawareness of model uncertainty after selection is 

not uncommon.  An example is the model involved in this study, with which the original 

literature predicts academic success with such variables as students’ school performance. 

In the original research, detailed analyses are carried out with hypothesis tests on the 

significance of potential variables, model comparison, subsequent inferences and 

minimization of estimate errors. However, very little attention has been paid to relevant 

important problems stemmed from the model structure itself. i.e. what is the implication 

of the model structure uncertainty to the significance of conclusions drawn based upon 

the data-driven model selection, how do model selection procedures affect the validity of 

the parameter estimates, how much do the actual confidence intervals under-perform 

below the expected coverage, etc.  

In other fields that apply similar statistical framework (e.g. econometrics), major 

studies on model uncertainty after model selection have taken linear regression models 

into consideration. However, the usual assumptions for least squares estimators in linear 

regression do not apply, in a general sense, to logistic regression. Meanwhile, the linear 

regression models do not consider categorical dependent variables, which are widely 

observed in social science.  



 89

This study intends to make a progress in the above two aspects. We investigate the 

post-model-selection impact with binary logistic models that are commonly applied in 

educational studies, and try to understand quantitatively how the actual coverage of 

confidence intervals departs from the one without considering model uncertainty. By 

examining the behavior of the model selectors in choosing the “best” model under 

various circumstances, the investigation gains a basis to understand the relationship 

between the selectors’ performance and the coverage probability. By distinguishing the 

deviations that contribute to the distortion of the unconditional coverage probability 

conditional on the success or failure of model selection, the study provides a 

comprehensive view that is helpful to identify and gauge the specific coverage departure 

behind the general lower-than-expected coverage probability.  

The simulation study obtains results that are commensurate with the real life 

applications, the discrepancy between which and the expectations may raise serious 

concern about the confidence intervals’ actual coverage. Given the usual suggestions that 

the coverage rate of naïve confidence intervals is less than1 α− , this study contributes in 

terms of gauging the degree the coverage probability falls, and how it falls given such 

conditions as varied model structure and covariate correlations.   

The study has its limitations: due to the complicated nature of the problem, we only 

consider a small group of three typical models, which involves two types of commonly 

applied model restrictions. The generalization of the empirical research may have to 

entail applicable methods to accommodate a larger number of candidate models, which 

should serve as one of the goals for further study. More complicated cases, which entail 

the selection among non-nested models, need to be investigated. Meanwhile, the 
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unattended issues such as the validity of post-model-selection point estimators in the 

context of logistic models also call for intensive research. Moreover, solutions with 

regard to accommodating such problems as model uncertainty are still far from 

satisfactory, and consistent efforts have to be made in the future. 

No matter how the statistical model is formulated, as suggested by Buckland et al. 

(1997), when there is not yet a perfect solution to minimize the effects of statistical 

uncertainty, one principle is that the statistical inference should incorporate such effects. 

However, we also notice the reality “Estimation of (these) finite-sample distributions is 

‘impossible’ (even in large samples). No resampling scheme whatsoever can help to 

alleviate this situation.” (Leeb & Pötcher, 2005, p. 23) As a gap between the inference 

and the undetermined truth due to the fact of model structure uncertainty has been 

recognized (even the precise distance of the gap is unknown), the statistical inferences 

should be used in a more conservative manner.  
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Appendix A: Results of Simulation 

 

Table 3: Unconditional Coverage Probability when the correct model is 1M with 
Offset 0= . 

 
AIC 1-α=.95  1-α=.99 

N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 
UCP 0.872 0.861 0.843 0.820 0.774  0.951 0.947 0.944 0.932 0.91850 

Z -11.317 -12.913 -15.525 -18.862 -25.537  -12.395 -13.666 -14.620 -18.434 -22.883
UCP 0.887 0.910 0.848 0.765 0.630  0.960 0.951 0.934 0.891 0.832100 

Z -9.141 -5.804 -14.800 -26.843 -46.430  -9.535 -12.395 -17.798 -31.464 -50.216
UCP 0.929 0.924 0.888 0.787 0.485 0.980 0.975 0.949 0.890 0.680200 

Z -3.047 -3.772 -8.996 -23.651 -67.469 -3.178 -4.767 -13.031 -31.782 -98.524
UCP 0.945 0.942 0.919 0.878 0.538  0.987 0.990 0.973 0.919 0.653350 

Z -0.725 -1.161 -4.498 -10.447 -59.779  -0.953 0.000 -5.403 -22.565 -107.106
UCP 0.942 0.961 0.949 0.918 0.613  0.987 0.993 0.988 0.947 0.689500 

Z -1.161 1.596 -0.145 -4.643 -48.897  -0.953 0.953 -0.636 -13.666 -95.664
            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.845 0.851 0.836 0.819 0.779  0.945 0.945 0.941 0.933 0.91850 
Z -15.235 -14.364 -16.541 -19.007 -24.811 -14.302 -14.302 -15.573 -18.116 -22.883

UCP 0.785 0.798 0.746 0.695 0.631  0.904 0.893 0.883 0.866 0.831100 
Z -23.941 -22.054 -29.599 -36.999 -46.285  -27.333 -30.829 -34.007 -39.410 -50.534

UCP 0.859 0.830 0.731 0.545 0.414 0.929 0.917 0.842 0.724 0.640200 
Z -13.204 -17.411 -31.776 -58.764 -77.771 -19.387 -23.201 -47.037 -84.540 -111.237

UCP 0.936 0.902 0.786 0.583 0.210  0.978 0.955 0.847 0.685 0.386350 
Z -2.031 -6.965 -23.796 -53.250 -107.370  -3.814 -11.124 -45.448 -96.935 -191.964

UCP 0.942 0.954 0.885 0.693 0.127 0.987 0.987 0.926 0.747 0.256500 
Z -1.161 0.580 -9.431 -37.289 -119.413  -0.953 -0.953 -20.341 -77.230 -233.281

            
Note:  
(1) N=Sample Size. CORR = Covariate Correlation. UCP =Unconditional Coverage Probability (Overall 
Coverage Probability). Z = z-score based upon normal approximation to binomial distribution with the null 
hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold italic 
values indicate z-scores between -3.0 and -3.5. 

 



 92

Table 4: Unconditional Coverage Probability when the correct model is 1M with 
Offset=0.8473 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.863 0.854 0.846 0.820 0.762  0.973 0.945 0.947 0.945 0.90950 
Z -12.623 -13.929 -15.090 -18.862 -27.278  -5.403 -14.302 -13.666 -14.302 -25.743

UCP 0.900 0.862 0.842 0.768 0.646  0.962 0.952 0.943 0.901 0.830100 
Z -7.255 -12.768 -15.670 -26.407 -44.109  -8.899 -12.077 -14.938 -28.286 -50.851

UCP 0.938 0.924 0.875 0.778 0.469 0.977 0.974 0.937 0.881 0.665200 
Z -1.741 -3.772 -10.882 -24.956 -69.791 -4.132 -5.085 -16.845 -34.642 -103.292

UCP 0.939 0.945 0.918 0.844 0.531  0.988 0.985 0.965 0.914 0.648350 
Z -1.596 -0.725 -4.643 -15.380 -60.795  -0.636 -1.589 -7.946 -24.154 -108.695

UCP 0.945 0.953 0.945 0.897 0.596 0.987 0.988 0.987 0.944 0.673500 
Z -0.725 0.435 -0.725 -7.690 -51.364  -0.953 -0.636 -0.953 -14.620 -100.749

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.844 0.842 0.839 0.819 0.772 0.965 0.945 0.945 0.943 0.90650 
Z -15.380 -15.670 -16.106 -19.007 -25.827 -7.946 -14.302 -14.302 -14.938 -26.697

UCP 0.815 0.768 0.768 0.703 0.651  0.916 0.910 0.913 0.875 0.828100 
Z -19.588 -26.407 -26.407 -35.839 -43.383  -23.519 -25.426 -24.472 -36.549 -51.487

UCP 0.873 0.807 0.703 0.565 0.400 0.930 0.893 0.828 0.766 0.616200 
Z -11.172 -20.749 -35.839 -55.862 -79.802 -19.069 -30.829 -51.487 -71.192 -118.865

UCP 0.933 0.898 0.804 0.570 0.219  0.979 0.950 0.865 0.694 0.402350 
Z -2.467 -7.545 -21.184 -55.136 -106.065  -3.496 -12.713 -39.728 -94.075 -186.879

UCP 0.944 0.942 0.879 0.647 0.107 0.986 0.977 0.930 0.714 0.253500 
Z -0.871 -1.161 -10.302 -43.964 -122.315  -1.271 -4.132 -19.069 -87.719 -234.234

            
Note:  
(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z= z-score based upon normal approximation to binomial distribution with the null 
hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold italic 
values indicate z-scores between -3.0 and -3.5. 
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Table 5: Unconditional Coverage Probability when the correct model is 1M with 
Offset=2.1972 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.863 0.861 0.859 0.853 0.765  0.953 0.959 0.949 0.945 0.90450 
Z -12.623 -12.913 -13.204 -14.074 -26.843  -11.759 -9.852 -13.031 -14.302 -27.333

UCP 0.879 0.837 0.836 0.777 0.668  0.961 0.938 0.922 0.907 0.851100 
Z -10.302 -16.396 -16.541 -25.101 -40.917  -9.217 -16.527 -21.612 -26.379 -44.177

UCP 0.919 0.909 0.878 0.776 0.488 0.973 0.965 0.944 0.880 0.716200 
Z -4.498 -5.949 -10.447 -25.247 -67.034 -5.403 -7.946 -14.620 -34.960 -87.083

UCP 0.945 0.940 0.914 0.827 0.487  0.991 0.982 0.952 0.893 0.642350 
Z -0.725 -1.451 -5.223 -17.847 -67.179  0.318 -2.543 -12.077 -30.829 -110.602

UCP 0.930 0.942 0.937 0.881 0.562 0.978 0.987 0.986 0.926 0.666500 
Z -2.902 -1.161 -1.886 -10.012 -56.297  -3.814 -0.953 -1.271 -20.341 -102.974

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.857 0.863 0.851 0.854 0.776 0.953 0.962 0.949 0.943 0.90550 
Z -13.494 -12.623 -14.364 -13.929 -25.247 -11.759 -8.899 -13.031 -14.938 -27.015

UCP 0.807 0.752 0.789 0.752 0.674  0.932 0.902 0.903 0.888 0.855100 
Z -20.749 -28.729 -23.360 -28.729 -40.046  -18.434 -27.968 -27.650 -32.418 -42.906

UCP 0.827 0.774 0.704 0.561 0.468 0.909 0.888 0.839 0.769 0.695200 
Z -17.847 -25.537 -35.693 -56.442 -69.936 -25.743 -32.418 -47.991 -70.238 -93.757

UCP 0.909 0.848 0.744 0.555 0.269  0.956 0.909 0.830 0.699 0.477350 
Z -5.949 -14.800 -29.890 -57.313 -98.810  -10.806 -25.743 -50.851 -92.486 -163.042

UCP 0.923 0.904 0.809 0.591 0.137 0.969 0.951 0.870 0.693 0.288500 
Z -3.918 -6.674 -20.458 -52.089 -117.962  -6.674 -12.395 -38.139 -94.393 -223.110

            
Note:            

(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z= z-score based upon normal approximation to binomial distribution with the null 
hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold italic 
values indicate z-scores between -3.0 and -3.5. 
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Table 6: Unconditional Coverage Probability when the correct model is 2M with 
Offset=0 . 

 
AIC 1-α=.95  1-α=.99 

N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 
UCP 0.931 0.895 0.898 0.858 0.756  0.980 0.956 0.961 0.937 0.86150 

Z -2.757 -7.980 -7.545 -13.349 -28.148 -3.178 -10.806 -9.217 -16.845 -40.999
UCP 0.937 0.947 0.932 0.888 0.734  0.990 0.994 0.978 0.941 0.810100 

Z -1.886 -0.435 -2.612 -8.996 -31.341  0.000 1.271 -3.814 -15.573 -57.208
UCP 0.949 0.933 0.930 0.929 0.827 0.992 0.988 0.985 0.981 0.872200 

Z -0.145 -2.467 -2.902 -3.047 -17.847 0.636 -0.636 -1.589 -2.860 -37.503
UCP 0.960 0.947 0.961 0.928 0.893  0.992 0.987 0.991 0.982 0.950350 

Z 1.451 -0.435 1.596 -3.192 -8.270  0.636 -0.953 0.318 -2.543 -12.713
UCP 0.938 0.952 0.946 0.942 0.920 0.985 0.994 0.989 0.988 0.974500 

Z -1.741 0.290 -0.580 -1.161 -4.353  -1.589 1.271 -0.318 -0.636 -5.085
            
  

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.930 0.896 0.900 0.861 0.769 0.980 0.955 0.963 0.937 0.86150 
Z -2.902 -7.835 -7.255 -12.913 -26.262 -3.178 -11.124 -8.581 -16.845 -40.999

UCP 0.939 0.943 0.926 0.878 0.749  0.990 0.987 0.973 0.939 0.810100 
Z -1.596 -1.016 -3.482 -10.447 -29.164  0.000 -0.953 -5.403 -16.209 -57.208

UCP 0.948 0.937 0.936 0.933 0.834 0.992 0.988 0.987 0.971 0.875200 
Z -0.290 -1.886 -2.031 -2.467 -16.831 0.636 -0.636 -0.953 -6.039 -36.549

UCP 0.960 0.949 0.964 0.934 0.883  0.992 0.991 0.991 0.984 0.934350 
Z 1.451 -0.145 2.031 -2.322 -9.721  0.636 0.318 0.318 -1.907 -17.798

UCP 0.942 0.955 0.946 0.955 0.922 0.985 0.994 0.989 0.993 0.957500 
Z -1.161 0.725 -0.580 0.725 -4.063  -1.589 1.271 -0.318 0.953 -10.488

            
Note:  
(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z= z-score based upon normal approximation to binomial distribution with the null 
hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold italic 
values indicate z-scores between -3.0 and -3.5. 
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Table 7: Unconditional Coverage Probability when the correct model is 2M with 
Offset=0.8473 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.937 0.923 0.896 0.848 0.771  0.985 0.970 0.957 0.926 0.88350 
Z -1.886 -3.918 -7.835 -14.800 -25.972  -1.589 -6.356 -10.488 -20.341 -34.007

UCP 0.937 0.944 0.920 0.885 0.753  0.985 0.984 0.975 0.939 0.819100 
Z -1.886 -0.871 -4.353 -9.431 -28.584  -1.589 -1.907 -4.767 -16.209 -54.347

UCP 0.945 0.951 0.929 0.932 0.827 0.987 0.989 0.988 0.980 0.870200 
Z -0.725 0.145 -3.047 -2.612 -17.847 -0.953 -0.318 -0.636 -3.178 -38.139

UCP 0.956 0.937 0.930 0.941 0.897  0.990 0.986 0.991 0.992 0.951350 
Z 0.871 -1.886 -2.902 -1.306 -7.690  0.000 -1.271 0.318 0.636 -12.395

UCP 0.946 0.949 0.946 0.944 0.910 0.984 0.984 0.985 0.991 0.972500 
Z -0.580 -0.145 -0.580 -0.871 -5.804  -1.907 -1.907 -1.589 0.318 -5.721

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.938 0.923 0.898 0.853 0.781 0.986 0.970 0.957 0.926 0.88350 
Z -1.741 -3.918 -7.545 -14.074 -24.521 -1.271 -6.356 -10.488 -20.341 -34.007

UCP 0.938 0.937 0.913 0.877 0.768  0.985 0.979 0.969 0.934 0.823100 
Z -1.741 -1.886 -5.369 -10.592 -26.407  -1.589 -3.496 -6.674 -17.798 -53.076

UCP 0.946 0.952 0.937 0.924 0.835 0.987 0.989 0.988 0.967 0.870200 
Z -0.580 0.290 -1.886 -3.772 -16.686 -0.953 -0.318 -0.636 -7.310 -38.139

UCP 0.957 0.937 0.937 0.953 0.894  0.990 0.989 0.993 0.996 0.937350 
Z 1.016 -1.886 -1.886 0.435 -8.125  0.000 -0.318 0.953 1.907 -16.845

UCP 0.947 0.948 0.947 0.952 0.915 0.984 0.987 0.987 0.991 0.959500 
Z -0.435 -0.290 -0.435 0.290 -5.078  -1.907 -0.953 -0.953 0.318 -9.852

            
Note:            

(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z = z-score based upon normal approximation to binomial distribution with the 
null hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold 
italic values indicate z-scores between -3.0 and -3.5. 
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Table 8: Unconditional Coverage Probability when the correct model is 2M with 
Offset=2.1972 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.912 0.900 0.859 0.825 0.788  0.972 0.958 0.951 0.918 0.88650 
Z -5.514 -7.255 -13.204 -18.137 -23.505  -5.721 -10.170 -12.395 -22.883 -33.053

UCP 0.931 0.927 0.910 0.845 0.735  0.985 0.983 0.960 0.907 0.829100 
Z -2.757 -3.337 -5.804 -15.235 -31.195  -1.589 -2.225 -9.535 -26.379 -51.169

UCP 0.946 0.941 0.931 0.931 0.777 0.990 0.984 0.983 0.975 0.833200 
Z -0.580 -1.306 -2.757 -2.757 -25.101 0.000 -1.907 -2.225 -4.767 -49.898

UCP 0.942 0.953 0.947 0.943 0.845  0.991 0.989 0.991 0.991 0.904350 
Z -1.161 0.435 -0.435 -1.016 -15.235  0.318 -0.318 0.318 0.318 -27.333

UCP 0.945 0.959 0.936 0.932 0.920 0.989 0.992 0.987 0.986 0.964500 
Z -0.725 1.306 -2.031 -2.612 -4.353  -0.318 0.636 -0.953 -1.271 -8.263

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.915 0.903 0.864 0.837 0.800 0.973 0.960 0.953 0.919 0.88550 
Z -5.078 -6.819 -12.478 -16.396 -21.764 -5.403 -9.535 -11.759 -22.565 -33.371

UCP 0.929 0.926 0.899 0.848 0.755  0.984 0.977 0.952 0.907 0.830100 
Z -3.047 -3.482 -7.400 -14.800 -28.294  -1.907 -4.132 -12.077 -26.379 -50.851

UCP 0.947 0.941 0.933 0.920 0.787 0.990 0.983 0.980 0.955 0.834200 
Z -0.435 -1.306 -2.467 -4.353 -23.651 0.000 -2.225 -3.178 -11.124 -49.580

UCP 0.944 0.953 0.953 0.952 0.852  0.991 0.986 0.994 0.989 0.905350 
Z -0.871 0.435 0.435 0.290 -14.219  0.318 -1.271 1.271 -0.318 -27.015

UCP 0.945 0.961 0.941 0.943 0.908 0.988 0.993 0.989 0.989 0.937500 
Z -0.725 1.596 -1.306 -1.016 -6.094  -0.636 0.953 -0.318 -0.318 -16.845

            
Note:            

(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z= z-score based upon normal approximation to binomial distribution with the 
null hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold 
italic values indicate z-scores between -3.0 and -3.5. 
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Table 9: Unconditional Coverage Probability when the correct model is 3M  with 
Offset=0 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.911 0.917 0.903 0.894 0.804  0.975 0.982 0.978 0.965 0.90450 
Z -5.659 -4.788 -6.819 -8.125 -21.184  -4.767 -2.543 -3.814 -7.946 -27.333

UCP 0.924 0.927 0.924 0.914 0.850  0.984 0.981 0.980 0.978 0.917100 
Z -3.772 -3.337 -3.772 -5.223 -14.510  -1.907 -2.860 -3.178 -3.814 -23.201

UCP 0.936 0.920 0.924 0.924 0.895 0.978 0.973 0.982 0.992 0.965200 
Z -2.031 -4.353 -3.772 -3.772 -7.980 -3.814 -5.403 -2.543 0.636 -7.946

UCP 0.936 0.943 0.926 0.921 0.924  0.985 0.988 0.985 0.975 0.980350 
Z -2.031 -1.016 -3.482 -4.208 -3.772  -1.589 -0.636 -1.589 -4.767 -3.178

UCP 0.951 0.952 0.939 0.930 0.894 0.991 0.991 0.982 0.985 0.983500 
Z 0.145 0.290 -1.596 -2.902 -8.125  0.318 0.318 -2.543 -1.589 -2.225

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.920 0.920 0.910 0.890 0.812 0.977 0.985 0.976 0.965 0.90350 
Z -4.353 -4.353 -5.804 -8.706 -20.023 -4.132 -1.589 -4.449 -7.946 -27.650

UCP 0.934 0.929 0.931 0.924 0.860  0.985 0.977 0.981 0.975 0.910100 
Z -2.322 -3.047 -2.757 -3.772 -13.059  -1.589 -4.132 -2.860 -4.767 -25.426

UCP 0.939 0.936 0.937 0.937 0.899 0.978 0.977 0.987 0.993 0.945200 
Z -1.596 -2.031 -1.886 -1.886 -7.400 -3.814 -4.132 -0.953 0.953 -14.302

UCP 0.939 0.955 0.939 0.951 0.941  0.989 0.989 0.990 0.982 0.983350 
Z -1.596 0.725 -1.596 0.145 -1.306  -0.318 -0.318 0.000 -2.543 -2.225

UCP 0.955 0.959 0.946 0.957 0.932 0.991 0.993 0.988 0.990 0.986500 
Z 0.725 1.306 -0.580 1.016 -2.612  0.318 0.953 -0.636 0.000 -1.271

            
Note:  
(1) N=Sample Size. CORR= Covariate Correlation. UCP=Unconditional Coverage Probability (Overall 
Coverage Probability). Z= z-score based upon normal approximation to binomial distribution with the null 
hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold italic 
values indicate z-scores between -3.0 and -3.5. 
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Table 10: Unconditional Coverage Probability when the correct model is 3M with 
Offset=0.8473 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.914 0.917 0.904 0.877 0.790  0.975 0.981 0.977 0.958 0.89850 
Z -5.223 -4.788 -6.674 -10.592 -23.215  -4.767 -2.860 -4.132 -10.170 -29.240

UCP 0.916 0.918 0.920 0.933 0.836  0.981 0.975 0.980 0.983 0.919100 
Z -4.933 -4.643 -4.353 -2.467 -16.541  -2.860 -4.767 -3.178 -2.225 -22.565

UCP 0.936 0.919 0.943 0.915 0.908 0.988 0.979 0.989 0.977 0.969200 
Z -2.031 -4.498 -1.016 -5.078 -6.094 -0.636 -3.496 -0.318 -4.132 -6.674

UCP 0.956 0.930 0.924 0.914 0.918  0.989 0.983 0.984 0.977 0.986350 
Z 0.871 -2.902 -3.772 -5.223 -4.643  -0.318 -2.225 -1.907 -4.132 -1.271

UCP 0.933 0.918 0.930 0.927 0.916 0.984 0.979 0.983 0.979 0.981500 
Z -2.467 -4.643 -2.902 -3.337 -4.933  -1.907 -3.496 -2.225 -3.496 -2.860

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.926 0.930 0.911 0.882 0.794 0.977 0.982 0.978 0.959 0.89950 
Z -3.482 -2.902 -5.659 -9.866 -22.635 -4.132 -2.543 -3.814 -9.852 -28.922

UCP 0.925 0.928 0.929 0.943 0.836  0.982 0.976 0.984 0.983 0.914100 
Z -3.627 -3.192 -3.047 -1.016 -16.541  -2.543 -4.449 -1.907 -2.225 -24.154

UCP 0.949 0.932 0.951 0.938 0.906 0.989 0.982 0.989 0.983 0.955200 
Z -0.145 -2.612 0.145 -1.741 -6.384 -0.318 -2.543 -0.318 -2.225 -11.124

UCP 0.958 0.942 0.950 0.931 0.944  0.993 0.986 0.988 0.981 0.985350 
Z 1.161 -1.161 0.000 -2.757 -0.871  0.953 -1.271 -0.636 -2.860 -1.589

UCP 0.943 0.929 0.937 0.934 0.941 0.986 0.983 0.985 0.983 0.984500 
Z -1.016 -3.047 -1.886 -2.322 -1.306  -1.271 -2.225 -1.589 -2.225 -1.907

            
Note:  
(1) N=Sample Size. CORR = Covariate Correlation. UCP=Unconditional Coverage Probability 
(Overall Coverage Probability). Z= z-score based upon normal approximation to binomial distribution 
with the null hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage 
Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  
(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold 
italic values indicate z-scores between -3.0 and -3.5. 
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Table 11: Unconditional Coverage Probability when the correct model is 3M with 
Offset=2.1972 . 

 

AIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.908 0.911 0.900 0.893 0.779  0.967 0.971 0.964 0.959 0.89950 
Z -6.094 -5.659 -7.255 -8.270 -24.811  -7.310 -6.039 -8.263 -9.852 -28.922

UCP 0.935 0.917 0.922 0.900 0.843  0.980 0.981 0.985 0.974 0.914100 
Z -2.176 -4.788 -4.063 -7.255 -15.525  -3.178 -2.860 -1.589 -5.085 -24.154

UCP 0.944 0.926 0.938 0.924 0.900 0.990 0.977 0.983 0.979 0.968200 
Z -0.871 -3.482 -1.741 -3.772 -7.255 0.000 -4.132 -2.225 -3.496 -6.992

UCP 0.940 0.923 0.937 0.929 0.911  0.983 0.988 0.988 0.987 0.986350 
Z -1.451 -3.918 -1.886 -3.047 -5.659  -2.225 -0.636 -0.636 -0.953 -1.271

UCP 0.938 0.932 0.932 0.934 0.896 0.986 0.981 0.985 0.990 0.978500 
Z -1.741 -2.612 -2.612 -2.322 -7.835  -1.271 -2.860 -1.589 0.000 -3.814

            
            

BIC 1-α=.95  1-α=.99 
N CORR 0.1 0.3 0.5 0.7 0.9  0.1 0.3 0.5 0.7 0.9 

UCP 0.915 0.919 0.907 0.897 0.780 0.971 0.973 0.969 0.957 0.90150 
Z -5.078 -4.498 -6.239 -7.690 -24.666 -6.039 -5.403 -6.674 -10.488 -28.286

UCP 0.940 0.936 0.937 0.912 0.850  0.980 0.983 0.985 0.969 0.912100 
Z -1.451 -2.031 -1.886 -5.514 -14.510  -3.178 -2.225 -1.589 -6.674 -24.790

UCP 0.953 0.937 0.946 0.933 0.899 0.991 0.982 0.987 0.979 0.947200 
Z 0.435 -1.886 -0.580 -2.467 -7.400 0.318 -2.543 -0.953 -3.496 -13.666

UCP 0.956 0.939 0.950 0.949 0.929  0.986 0.988 0.991 0.990 0.981350 
Z 0.871 -1.596 0.000 -0.145 -3.047  -1.271 -0.636 0.318 0.000 -2.860

UCP 0.947 0.946 0.948 0.951 0.927 0.988 0.987 0.990 0.991 0.983500 
Z -0.435 -0.580 -0.290 0.145 -3.337  -0.636 -0.953 0.000 0.318 -2.225

            
Note:            
(1) N=Sample Size. CORR = Covariate Correlation. UCP=Unconditional Coverage Probability 
(Overall Coverage Probability). Z = z-score based upon normal approximation to binomial distribution 
with the null hypothesis that the Actual Coverage Probability is equal to the Nominal Coverage 
Probability.  
(2) The Unconditional Coverage Probabilities are obtained across 1000 iterations at the nominal level 
of .95 and .99.  

(3) Bold values (other than the Column Titles) indicate Z scores smaller than or equal to -3.5; bold 
italic values indicate z-scores between -3.0 and -3.5. 
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Table 12: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.1, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 121 506 373 121 506 373 239 196 565 239 196 565
Tv 110 464 298 117 489 345 225 163 457 234 183 528N

=5
0 

CCP 0.909 0.917 0.799 0.967 0.966 0.925 0.941 0.832 0.809 0.979 0.934 0.935
Ts 18 841 141 18 841 141 76 571 353 76 571 353
Tv 18 788 81 18 831 111 74 527 184 76 561 267

N
=1

00
 

CCP 1.000 0.937 0.574 1.000 0.988 0.787 0.974 0.923 0.521 1.000 0.982 0.756
Ts 0 980 20 0 980 20 6 858 136 6 858 136
Tv 0 920 9 0 965 15 6 804 49 6 843 80

N
=2

00
 

CCP . 0.939 0.450 . 0.985 0.750 1.000 0.937 0.360 1.000 0.983 0.588
Ts 0 999 1 0 999 1 0 987 13 0 987 13
Tv 0 945 0 0 987 0 0 935 1 0 976 2

N
=3

50
 

CCP . 0.946 0.000 . 0.988 0.000 . 0.947 0.077 . 0.989 0.154
Ts 0 1000 0 0 1000 0 0 1000 0 0 1000 0
Tv 0 942 0 0 987 0 0 942 0 0 987 0

N
=5

00
 

CCP . 0.942 . . 0.987 . . 0.942 . . 0.987 .
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the Coverage 
Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 13: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.3, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 164 342 494 164 342 494 250 111 639 250 111 639
Tv 151 310 400 161 333 453 232 88 531 247 103 595N

=5
0 

CCP 0.921 0.906 0.810 0.982 0.974 0.917 0.928 0.793 0.831 0.988 0.928 0.931
Ts 31 727 242 31 727 242 121 388 491 121 388 491
Tv 28 699 183 28 722 201 111 367 320 118 383 392

N
=1

00
 

CCP 0.903 0.961 0.756 0.903 0.993 0.831 0.917 0.946 0.652 0.975 0.987 0.798
Ts 0 935 65 0 935 65 10 754 236 10 754 236
Tv 0 892 32 0 929 46 9 715 106 10 748 159

N
=2

00
 

CCP . 0.954 0.492 . 0.994 0.708 0.900 0.948 0.449 1.000 0.992 0.674
Ts 0 999 1 0 999 1 0 948 52 0 948 52
Tv 0 942 0 0 990 0 0 898 4 0 940 15

N
=3

50
 

CCP . 0.943 0.000 . 0.991 0.000 . 0.947 0.077 . 0.992 0.288
Ts 0 999 1 0 999 1 0 989 11 0 989 11
Tv 0 961 0 0 993 0 0 953 1 0 984 3

N
=5

00
 

CCP . 0.962 0.000 . 0.994 0.000 . 0.964 0.091 . 0.995 0.273
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 

(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the Coverage 
Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 14: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.5, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 200 246 554 200 246 554 280 38 682 280 38 682
Tv 177 220 446 192 238 514 246 24 566 268 33 640N

=5
0 

CCP 0.885 0.894 0.805 0.960 0.967 0.928 0.879 0.632 0.830 0.957 0.868 0.938
Ts 51 573 376 51 573 376 185 177 638 185 177 638
Tv 42 542 264 49 564 321 154 159 433 176 169 538

N
=1

00
 

CCP 0.824 0.946 0.702 0.961 0.984 0.854 0.832 0.898 0.679 0.951 0.955 0.843
Ts 0 848 152 0 848 152 20 575 405 20 575 405
Tv 0 814 74 0 840 109 17 547 167 17 570 255

N
=2

00
 

CCP . 0.960 0.487 . 0.991 0.717 0.850 0.951 0.412 0.850 0.991 0.630
Ts 0 961 39 0 961 39 0 781 219 0 781 219
Tv 0 908 11 0 956 17 0 742 44 0 778 69

N
=3

50
 

CCP . 0.945 0.282 . 0.995 0.436 . 0.950 0.201 . 0.996 0.315
Ts 0 996 4 0 996 4 0 916 84 0 916 84
Tv 0 949 0 0 987 1 0 882 3 0 909 17

N
=5

00
 

CCP . 0.953 0.000 . 0.991 0.250 . 0.963 0.036 . 0.992 0.202
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the Coverage 
Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 15: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.7, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 308 83 609 308 83 609 335 12 653 335 12 653
Tv 252 55 513 289 72 571 265 0 554 312 7 614N

=5
0 

CCP 0.818 0.663 0.842 0.938 0.867 0.938 0.791 0.000 0.848 0.931 0.583 0.940
Ts 149 314 537 149 314 537 263 21 716 263 21 716
Tv 101 291 373 126 304 461 166 15 514 223 18 625

N
=1

00
 

CCP 0.678 0.927 0.695 0.846 0.968 0.858 0.631 0.714 0.718 0.848 0.857 0.873
Ts 14 678 308 14 678 308 112 236 652 112 236 652
Tv 7 637 143 11 672 207 62 212 271 88 233 403

N
=2

00
 

CCP 0.500 0.940 0.464 0.786 0.991 0.672 0.554 0.898 0.416 0.786 0.987 0.618
Ts 0 876 124 0 876 124 15 513 472 15 513 472
Tv 0 848 30 0 869 50 2 488 93 9 506 170

N
=3

50
 

CCP . 0.968 0.242 . 0.992 0.403 0.133 0.951 0.197 0.600 0.986 0.360
Ts 0 940 60 0 940 60 0 695 305 0 695 305
Tv 0 911 7 0 933 14 0 671 22 0 689 58

N
=5

00
 

CCP . 0.969 0.117 . 0.993 0.233 . 0.965 0.072 . 0.991 0.190
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the Coverage 
Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 16: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.9, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 367 56 577 367 56 577 376 18 606 376 18 606
Tv 258 30 486 327 43 548 263 4 512 334 9 575N

=5
0 

CCP 0.703 0.536 0.842 0.891 0.768 0.950 0.699 0.222 0.845 0.888 0.500 0.949
Ts 350 22 628 350 22 628 354 5 641 354 5 641
Tv 179 7 444 269 16 547 179 0 452 269 2 560

N
=1

00
 

CCP 0.511 0.318 0.707 0.769 0.727 0.871 0.506 0.000 0.705 0.760 0.400 0.874
Ts 238 144 618 238 144 618 290 0 710 290 0 710
Tv 62 137 286 133 141 406 65 0 349 151 0 489

N
=2

00
 

CCP 0.261 0.951 0.463 0.559 0.979 0.657 0.224 . 0.492 0.521 . 0.689
Ts 86 415 499 86 415 499 228 1 771 228 1 771
Tv 7 406 125 15 415 223 17 1 192 34 1 351

N
=3

50
 

CCP 0.081 0.978 0.251 0.174 1.000 0.447 0.075 1.000 0.249 0.149 1.000 0.455
Ts 26 583 391 26 583 391 192 38 770 192 38 770
Tv 1 562 50 1 580 108 1 32 94 7 37 212

N
=5

00
 

CCP 0.038 0.964 0.128 0.038 0.995 0.276 0.005 0.842 0.122 0.036 0.974 0.275
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the Coverage 
Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 17: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.1, Offset=0 ) 

 

  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 

Ts 824 164 12 824 164 12 933 46 21 933 46 21 
Tv 775 150 6 813 160 7 878 41 11 919 46 15 N

=5
0 

CCP 0.941 0.915 0.500 0.987 0.976 0.583 0.941 0.891 0.524 0.985 1.000 0.714 
Ts 831 169 0 831 169 0 964 35 1 964 35 1 
Tv 782 155 0 824 166 0 911 28 0 957 33 0 

N
=1

00
 

CCP 0.941 0.917 . 0.992 0.982 . 0.945 0.800 0.000 0.993 0.943 0.000 
Ts 844 156 0 844 156 0 978 22 0 978 22 0 
Tv 798 151 0 836 156 0 927 21 0 970 22 0 

N
=2

00
 

CCP 0.945 0.968 . 0.991 1.000 . 0.948 0.955 . 0.992 1.000 . 
Ts 849 151 0 849 151 0 977 23 0 977 23 0 
Tv 814 146 0 843 149 0 938 22 0 969 23 0 

N
=3

50
 

CCP 0.959 0.967 . 0.993 0.987 . 0.960 0.957 . 0.992 1.000 . 
Ts 839 161 0 839 161 0 982 18 0 982 18 0 
Tv 790 148 0 827 158 0 925 17 0 967 18 0 

N
=5

00
 

CCP 0.942 0.919 . 0.986 0.981 . 0.942 0.944 . 0.985 1.000 . 
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 18: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.3, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 

Ts 790 174 36 790 174 36 904 47 49 904 47 49 
Tv 741 150 4 782 165 9 848 35 13 894 41 20 N

=5
0 

CCP 0.938 0.862 0.111 0.990 0.948 0.250 0.938 0.745 0.265 0.989 0.872 0.408 
Ts 832 168 0 832 168 0 959 32 9 959 32 9 
Tv 791 156 0 828 166 0 914 29 0 955 31 1 

N
=1

00
 

CCP 0.951 0.929 . 0.995 0.988 . 0.953 0.906 0.000 0.996 0.969 0.111 
Ts 845 155 0 845 155 0 980 20 0 980 20 0 
Tv 792 141 0 835 153 0 919 18 0 968 20 0 

N
=2

00
 

CCP 0.937 0.910 . 0.988 0.987 . 0.938 0.900 . 0.988 1.000 . 
Ts 833 167 0 833 167 0 982 18 0 982 18 0 
Tv 791 156 0 825 162 0 933 16 0 974 17 0 

N
=3

50
 

CCP 0.950 0.934 . 0.990 0.970 . 0.950 0.889 . 0.992 0.944 . 
Ts 851 149 0 851 149 0 992 8 0 992 8 0 
Tv 811 141 0 845 149 0 949 6 0 986 8 0 

N
=5

00
 

CCP 0.953 0.946 . 0.993 1.000 . 0.957 0.750 . 0.994 1.000 . 
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 19: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.5, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 

Ts 820 116 64 820 116 64 887 36 77 887 36 77 
Tv 773 97 28 807 110 44 833 27 40 874 33 56 N

=5
0 

CCP 0.943 0.836 0.438 0.984 0.948 0.688 0.939 0.750 0.519 0.985 0.917 0.727 
Ts 836 155 9 836 155 9 957 21 22 957 21 22 
Tv 792 139 1 828 149 1 907 16 3 949 19 5 

N
=1

00
 

CCP 0.947 0.897 0.111 0.990 0.961 0.111 0.948 0.762 0.136 0.992 0.905 0.227 
Ts 842 158 0 842 158 0 978 20 2 978 20 2 
Tv 797 133 0 835 150 0 918 18 0 967 20 0 

N
=2

00
 

CCP 0.947 0.842 . 0.992 0.949 . 0.939 0.900 0.000 0.989 1.000 0.000 
Ts 827 173 0 827 173 0 987 13 0 987 13 0 
Tv 800 161 0 820 171 0 953 11 0 978 13 0 

N
=3

50
 

CCP 0.967 0.931 . 0.992 0.988 . 0.966 0.846 . 0.991 1.000 . 
Ts 848 152 0 848 152 0 993 7 0 993 7 0 
Tv 803 143 0 840 149 0 940 6 0 982 7 0 

N
=5

00
 

CCP 0.947 0.941 . 0.991 0.980 . 0.947 0.857 . 0.989 1.000 . 
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 20: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.7, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 

Ts 770 97 133 770 97 133 832 32 136 832 32 136 
Tv 723 81 54 761 92 84 782 22 57 822 28 87 N

=5
0 

CCP 0.939 0.835 0.406 0.988 0.948 0.632 0.940 0.688 0.419 0.988 0.875 0.640 
Ts 829 123 48 829 123 48 916 21 63 916 21 63 
Tv 780 106 2 820 116 5 862 11 5 907 18 14 

N
=1

00
 

CCP 0.941 0.862 0.042 0.989 0.943 0.104 0.941 0.524 0.079 0.990 0.857 0.222 
Ts 815 184 1 815 184 1 962 21 17 962 21 17 
Tv 776 153 0 805 176 0 916 17 0 951 20 0 

N
=2

00
 

CCP 0.952 0.832 0.000 0.988 0.957 0.000 0.952 0.810 0.000 0.989 0.952 0.000 
Ts 831 169 0 831 169 0 981 17 2 981 17 2 
Tv 780 148 0 821 161 0 921 13 0 970 14 0 

N
=3

50
 

CCP 0.939 0.876 . 0.988 0.953 . 0.939 0.765 0.000 0.989 0.824 0.000 
Ts 856 144 0 856 144 0 989 11 0 989 11 0 
Tv 824 118 0 852 136 0 949 6 0 984 9 0 

N
=5

00
 

CCP 0.963 0.819 . 0.995 0.944 . 0.960 0.545 . 0.995 0.818 . 
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 21: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.9, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 

Ts 647 87 266 647 87 266 707 23 270 707 23 270 
Tv 605 60 91 634 80 147 664 11 94 693 18 150 N

=5
0 

CCP 0.935 0.690 0.342 0.980 0.920 0.553 0.939 0.478 0.348 0.980 0.783 0.556 
Ts 691 85 224 691 85 224 752 22 226 752 22 226 
Tv 653 48 33 683 75 52 708 8 33 741 17 52 

N
=1

00
 

CCP 0.945 0.565 0.147 0.988 0.882 0.232 0.941 0.364 0.146 0.985 0.773 0.230 
Ts 792 93 115 792 93 115 876 7 117 876 7 117 
Tv 750 77 0 783 88 1 829 5 0 867 7 1 

N
=2

00
 

CCP 0.947 0.828 0.000 0.989 0.946 0.009 0.946 0.714 0.000 0.990 1.000 0.009 
Ts 860 105 35 860 105 35 939 8 53 939 8 53 
Tv 808 85 0 850 100 0 879 4 0 928 6 0 

N
=3

50
 

CCP 0.940 0.810 0.000 0.988 0.952 0.000 0.936 0.500 0.000 0.988 0.750 0.000 
Ts 847 147 6 847 147 6 965 8 27 965 8 27 
Tv 810 110 0 838 136 0 920 2 0 954 3 0 

N
=5

00
 

CCP 0.956 0.748 0.000 0.989 0.925 0.000 0.953 0.250 0.000 0.989 0.375 0.000 
               
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 22: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.1, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 1 186 813 1 186 813 5 64 931 5 64 931
Tv 1 140 770 1 169 805 4 45 871 5 54 918N

=5
0 

CCP 1.000 0.753 0.947 1.000 0.909 0.990 0.800 0.703 0.936 1.000 0.844 0.986
Ts 0 183 817 0 183 817 0 35 965 0 35 965
Tv 0 154 770 0 178 806 0 27 907 0 33 952

N
=1

00
 

CCP . 0.842 0.942 . 0.973 0.987 . 0.771 0.940 . 0.943 0.987
Ts 0 173 827 0 173 827 0 23 977 0 23 977
Tv 0 154 782 0 165 813 0 16 923 0 20 958

N
=2

00
 

CCP . 0.890 0.946 . 0.954 0.983 . 0.696 0.945 . 0.870 0.981
Ts 0 161 839 0 161 839 0 17 983 0 17 983
Tv 0 145 791 0 156 829 0 14 925 0 17 972

N
=3

50
 

CCP . 0.901 0.943 . 0.969 0.988 . 0.824 0.941 . 1.000 0.989
Ts 0 160 840 0 160 840 0 16 984 0 16 984
Tv 0 146 805 0 158 833 0 14 941 0 16 975

N
=5

00
 

CCP . 0.913 0.958 . 0.988 0.992 . 0.875 0.956 . 1.000 0.991
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 23: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.3, Offset=0 ) 

 

  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 4 164 832 4 164 832 8 54 938 8 54 938
Tv 1 141 775 4 155 823 5 40 875 8 48 929N

=5
0 

CCP 0.250 0.860 0.931 1.000 0.945 0.989 0.625 0.741 0.933 1.000 0.889 0.990
Ts 0 167 833 0 167 833 2 42 956 2 42 956
Tv 0 138 789 0 158 823 1 26 902 2 33 942

N
=1

00
 

CCP . 0.826 0.947 . 0.946 0.988 0.500 0.619 0.944 1.000 0.786 0.985
Ts 0 152 848 0 152 848 0 18 982 0 18 982
Tv 0 125 795 0 145 828 0 13 923 0 16 961

N
=2

00
 

CCP . 0.822 0.938 . 0.954 0.976 . 0.722 0.940 . 0.889 0.979
Ts 0 180 820 0 180 820 0 19 981 0 19 981
Tv 0 159 784 0 176 812 0 15 940 0 17 972

N
=3

50
 

CCP . 0.883 0.956 . 0.978 0.990 . 0.789 0.958 . 0.895 0.991
Ts 0 175 825 0 175 825 0 14 986 0 14 986
Tv 0 155 797 0 169 822 0 10 949 0 13 980

N
=5

00
 

CCP . 0.886 0.966 . 0.966 0.996 . 0.714 0.962 . 0.929 0.994
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 24: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.5, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 10 174 816 10 174 816 18 47 935 18 47 935
Tv 7 135 761 8 162 808 11 27 872 16 37 923N

=5
0 

CCP 0.700 0.776 0.933 0.800 0.931 0.990 0.611 0.574 0.933 0.889 0.787 0.987
Ts 0 160 840 0 160 840 2 30 968 2 30 968
Tv 0 133 791 0 151 829 2 20 909 2 25 954

N
=1

00
 

CCP . 0.831 0.942 . 0.944 0.987 1.000 0.667 0.939 1.000 0.833 0.986
Ts 0 153 847 0 153 847 0 28 972 0 28 972
Tv 0 123 801 0 143 839 0 20 917 0 24 963

N
=2

00
 

CCP . 0.804 0.946 . 0.935 0.991 . 0.714 0.943 . 0.857 0.991
Ts 0 165 835 0 165 835 0 17 983 0 17 983
Tv 0 133 793 0 155 830 0 9 930 0 14 976

N
=3

50
 

CCP . 0.806 0.950 . 0.939 0.994 . 0.529 0.946 . 0.824 0.993
Ts 0 141 859 0 141 859 0 9 991 0 9 991
Tv 0 122 817 0 133 849 0 5 941 0 8 980

N
=5

00
 

CCP . 0.865 0.951 . 0.943 0.988 . 0.556 0.950 . 0.889 0.989
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 25: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.7, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 45 160 795 45 160 795 60 55 885 60 55 885
Tv 25 121 748 40 141 784 30 33 827 52 42 871N

=5
0 

CCP 0.556 0.756 0.941 0.889 0.881 0.986 0.500 0.600 0.934 0.867 0.764 0.984
Ts 3 182 815 3 182 815 13 39 948 13 39 948
Tv 2 140 772 3 170 805 3 26 895 6 34 935

N
=1

00
 

CCP 0.667 0.769 0.947 1.000 0.934 0.988 0.231 0.667 0.944 0.462 0.872 0.986
Ts 0 160 840 0 160 840 0 23 977 0 23 977
Tv 0 131 793 0 155 837 0 17 920 0 22 971

N
=2

00
 

CCP . 0.819 0.944 . 0.969 0.996 . 0.739 0.942 . 0.957 0.994
Ts 0 161 839 0 161 839 0 8 992 0 8 992
Tv 0 123 798 0 151 824 0 6 945 0 6 976

N
=3

50
 

CCP . 0.764 0.951 . 0.938 0.982 . 0.750 0.953 . 0.750 0.984
Ts 0 181 819 0 181 819 0 9 991 0 9 991
Tv 0 146 784 0 173 812 0 5 952 0 7 983

N
=5

00
 

CCP . 0.807 0.957 . 0.956 0.991 . 0.556 0.961 . 0.778 0.992
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 26: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.9, Offset=0 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 179 107 714 179 107 714 185 41 774 185 41 774
Tv 64 68 672 110 92 702 64 19 729 110 32 761N

=5
0 

CCP 0.358 0.636 0.941 0.615 0.860 0.983 0.346 0.463 0.942 0.595 0.780 0.983
Ts 89 97 814 89 97 814 97 15 888 97 15 888
Tv 9 65 776 23 87 807 9 6 845 23 9 878

N
=1

00
 

CCP 0.101 0.670 0.953 0.258 0.897 0.991 0.093 0.400 0.952 0.237 0.600 0.989
Ts 14 163 823 14 163 823 40 13 947 40 13 947
Tv 0 113 782 0 152 813 0 4 895 1 9 935

N
=2

00
 

CCP 0.000 0.693 0.950 0.000 0.933 0.988 0.000 0.308 0.945 0.025 0.692 0.987
Ts 0 160 840 0 160 840 2 13 985 2 13 985
Tv 0 121 803 0 149 831 0 1 940 0 7 976

N
=3

50
 

CCP . 0.756 0.956 . 0.931 0.989 0.000 0.077 0.954 0.000 0.538 0.991
Ts 0 173 827 0 173 827 1 10 989 1 10 989
Tv 0 117 777 0 164 819 0 0 932 0 5 981

N
=5

00
 

CCP . 0.676 0.940 . 0.948 0.990 0.000 0.000 0.942 0.000 0.500 0.992
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 27: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.1, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 155 479 366 155 479 366 278 182 540 278 182 540
Tv 150 419 294 153 467 353 271 130 443 275 170 520N

=5
0 

CCP 0.968 0.875 0.803 0.987 0.975 0.964 0.975 0.714 0.820 0.989 0.934 0.963
Ts 20 828 152 20 828 152 78 518 404 78 518 404
Tv 15 790 95 19 822 121 70 488 257 76 512 328

N
=1

00
 

CCP 0.750 0.954 0.625 0.950 0.993 0.796 0.897 0.942 0.636 0.974 0.988 0.812
Ts 0 973 27 0 973 27 5 842 153 5 842 153
Tv 0 932 6 0 964 13 5 810 58 5 835 90

N
=2

00
 

CCP . 0.958 0.222 . 0.991 0.481 1.000 0.962 0.379 1.000 0.992 0.588
Ts 0 1000 0 0 1000 0 0 988 12 0 988 12
Tv 0 939 0 0 988 0 0 932 1 0 976 3

N
=3

50
 

CCP . 0.939 . . 0.988 . . 0.943 0.083 . 0.988 0.250
Ts 0 1000 0 0 1000 0 0 998 2 0 998 2
Tv 0 945 0 0 987 0 0 944 0 0 986 0

N
=5

00
 

CCP . 0.945 . . 0.987 . . 0.946 0.000 . 0.988 0.000
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 28: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.3, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 182 361 457 182 361 457 292 109 599 292 109 599
Tv 162 325 367 175 344 426 266 83 493 284 95 566N

=5
0 

CCP 0.890 0.900 0.803 0.962 0.953 0.932 0.911 0.761 0.823 0.973 0.872 0.945
Ts 34 701 265 34 701 265 122 357 521 122 357 521
Tv 30 659 173 33 692 227 112 321 335 118 349 443

N
=1

00
 

CCP 0.882 0.940 0.653 0.971 0.987 0.857 0.918 0.899 0.643 0.967 0.978 0.850
Ts 0 936 64 0 936 64 4 730 266 4 730 266
Tv 0 899 25 0 932 42 4 701 102 4 726 163

N
=2

00
 

CCP . 0.960 0.391 . 0.996 0.656 1.000 0.960 0.383 1.000 0.995 0.613
Ts 0 992 8 0 992 8 0 931 69 0 931 69
Tv 0 944 1 0 983 2 0 890 8 0 923 27

N
=3

50
 

CCP . 0.952 0.125 . 0.991 0.250 . 0.956 0.116 . 0.991 0.391
Ts 0 1000 0 0 1000 0 0 982 18 0 982 18
Tv 0 953 0 0 988 0 0 939 3 0 972 5

N
=5

00
 

CCP . 0.953 . . 0.988 . . 0.956 0.167 . 0.990 0.278
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 29: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.5, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 215 223 562 215 223 562 281 46 673 281 46 673
Tv 194 187 465 209 211 527 245 26 568 270 38 637N

=5
0 

CCP 0.902 0.839 0.827 0.972 0.946 0.938 0.872 0.565 0.844 0.961 0.826 0.947
Ts 45 572 383 45 572 383 158 191 651 158 191 651
Tv 35 542 265 41 563 339 134 169 465 150 184 579

N
=1

00
 

CCP 0.778 0.948 0.692 0.911 0.984 0.885 0.848 0.885 0.714 0.949 0.963 0.889
Ts 5 842 153 5 842 153 31 532 437 31 532 437
Tv 3 804 68 4 832 101 23 499 181 30 522 276

N
=2

00
 

CCP 0.600 0.955 0.444 0.800 0.988 0.660 0.742 0.938 0.414 0.968 0.981 0.632
Ts 0 955 45 0 955 45 2 781 217 2 781 217
Tv 0 905 13 0 946 19 2 745 57 2 773 90

N
=3

50
 

CCP . 0.948 0.289 . 0.991 0.422 1.000 0.954 0.263 1.000 0.990 0.415
Ts 0 996 4 0 996 4 0 915 85 0 915 85
Tv 0 945 0 0 987 0 0 873 6 0 907 23

N
=5

00
 

CCP . 0.949 0.000 . 0.991 0.000 . 0.954 0.071 . 0.991 0.271
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 30: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.7, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 311 90 599 311 90 599 343 7 650 343 7 650
Tv 235 66 519 291 82 572 250 1 568 318 3 622N

=5
0 

CCP 0.756 0.733 0.866 0.936 0.911 0.955 0.729 0.143 0.874 0.927 0.429 0.957
Ts 165 306 529 165 306 529 285 21 694 285 21 694
Tv 118 278 372 148 299 454 188 14 501 244 19 612

N
=1

00
 

CCP 0.715 0.908 0.703 0.897 0.977 0.858 0.660 0.667 0.722 0.856 0.905 0.882
Ts 23 642 335 23 642 335 144 200 656 144 200 656
Tv 12 610 156 17 633 231 73 181 311 117 196 453

N
=2

00
 

CCP 0.522 0.950 0.466 0.739 0.986 0.690 0.507 0.905 0.474 0.813 0.980 0.691
Ts 1 852 147 1 852 147 15 504 481 15 504 481
Tv 0 810 34 1 847 66 0 473 97 6 500 188

N
=3

50
 

CCP 0.000 0.951 0.231 1.000 0.994 0.449 0.000 0.938 0.202 0.400 0.992 0.391
Ts 0 938 62 0 938 62 2 653 345 2 653 345
Tv 0 891 6 0 930 14 1 615 31 2 645 67

N
=5

00
 

CCP . 0.950 0.097 . 0.991 0.226 0.500 0.942 0.090 1.000 0.988 0.194
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 31: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.9, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 392 56 552 392 56 552 401 10 589 401 10 589
Tv 266 27 469 344 47 518 269 3 500 348 7 551N

=5
0 

CCP 0.679 0.482 0.850 0.878 0.839 0.938 0.671 0.300 0.849 0.868 0.700 0.935
Ts 337 29 634 337 29 634 343 2 655 343 2 655
Tv 178 13 455 270 21 539 181 0 470 273 0 555

N
=1

00
 

CCP 0.528 0.448 0.718 0.801 0.724 0.850 0.528 0.000 0.718 0.796 0.000 0.847
Ts 273 125 602 273 125 602 333 0 667 333 0 667
Tv 60 116 293 131 122 412 65 0 335 147 0 469

N
=2

00
 

CCP 0.220 0.928 0.487 0.480 0.976 0.684 0.195 . 0.502 0.441 . 0.703
Ts 101 416 483 101 416 483 248 2 750 248 2 750
Tv 10 396 125 27 409 212 17 0 202 49 2 351

N
=3

50
 

CCP 0.099 0.952 0.259 0.267 0.983 0.439 0.069 0.000 0.269 0.198 1.000 0.468
Ts 41 568 391 41 568 391 185 25 790 185 25 790
Tv 2 550 44 10 566 97 3 20 84 20 25 208

N
=5

00
 

CCP 0.049 0.968 0.113 0.244 0.996 0.248 0.016 0.800 0.106 0.108 1.000 0.263
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 32: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.1, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 833 159 8 833 159 8 942 40 18 942 40 18
Tv 786 146 5 825 155 5 892 34 12 934 38 14N

=5
0 

CCP 0.944 0.918 0.625 0.990 0.975 0.625 0.947 0.850 0.667 0.992 0.950 0.778
Ts 825 175 0 825 175 0 964 35 1 964 35 1
Tv 777 160 0 815 170 0 907 31 0 952 33 0

N
=1

00
 

CCP 0.942 0.914 . 0.988 0.971 . 0.941 0.886 0.000 0.988 0.943 0.000
Ts 848 152 0 848 152 0 984 16 0 984 16 0
Tv 804 141 0 837 150 0 943 14 0 974 16 0

N
=2

00
 

CCP 0.948 0.928 . 0.987 0.987 . 0.958 0.875 . 0.990 1.000 .
Ts 832 168 0 832 168 0 984 16 0 984 16 0
Tv 796 160 0 822 168 0 943 14 0 974 16 0

N
=3

50
 

CCP 0.957 0.952 . 0.988 1.000 . 0.958 0.875 . 0.990 1.000 .
Ts 850 150 0 850 150 0 989 11 0 989 11 0
Tv 803 143 0 836 148 0 936 11 0 973 11 0

N
=5

00
 

CCP 0.945 0.953 . 0.984 0.987 . 0.946 1.000 . 0.984 1.000 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 33: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.3, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 805 154 41 805 154 41 910 35 55 910 35 55
Tv 764 138 21 795 149 26 862 29 32 899 32 39N

=5
0 

CCP 0.949 0.896 0.512 0.988 0.968 0.634 0.947 0.829 0.582 0.988 0.914 0.709
Ts 817 182 1 817 182 1 964 24 12 964 24 12
Tv 777 167 0 808 176 0 914 20 3 952 21 6

N
=1

00
 

CCP 0.951 0.918 0.000 0.989 0.967 0.000 0.948 0.833 0.250 0.988 0.875 0.500
Ts 847 153 0 847 153 0 984 16 0 984 16 0
Tv 806 145 0 838 151 0 937 15 0 974 15 0

N
=2

00
 

CCP 0.952 0.948 . 0.989 0.987 . 0.952 0.938 . 0.990 0.938 .
Ts 836 164 0 836 164 0 984 16 0 984 16 0
Tv 788 149 0 826 160 0 922 15 0 973 16 0

N
=3

50
 

CCP 0.943 0.909 . 0.988 0.976 . 0.937 0.938 . 0.989 1.000 .
Ts 831 169 0 831 169 0 985 15 0 985 15 0
Tv 789 160 0 821 163 0 935 13 0 974 13 0

N
=5

00
 

CCP 0.949 0.947 . 0.988 0.964 . 0.949 0.867 . 0.989 0.867 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 34: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.5, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 835 98 67 835 98 67 894 33 73 894 33 73
Tv 781 84 31 820 91 46 836 27 35 878 29 50N

=5
0 

CCP 0.935 0.857 0.463 0.982 0.929 0.687 0.935 0.818 0.479 0.982 0.879 0.685
Ts 847 139 14 847 139 14 949 22 29 949 22 29
Tv 796 124 0 840 133 2 894 15 4 942 20 7

N
=1

00
 

CCP 0.940 0.892 0.000 0.992 0.957 0.143 0.942 0.682 0.138 0.993 0.909 0.241
Ts 818 182 0 818 182 0 967 32 1 967 32 1
Tv 768 161 0 811 177 0 907 30 0 956 32 0

N
=2

00
 

CCP 0.939 0.885 . 0.991 0.973 . 0.938 0.938 0.000 0.989 1.000 0.000
Ts 835 165 0 835 165 0 983 17 0 983 17 0
Tv 775 155 0 828 163 0 920 17 0 976 17 0

N
=3

50
 

CCP 0.928 0.939 . 0.992 0.988 . 0.936 1.000 . 0.993 1.000 .
Ts 858 142 0 858 142 0 989 11 0 989 11 0
Tv 814 132 0 846 139 0 939 8 0 977 10 0

N
=5

00
 

CCP 0.949 0.930 . 0.986 0.979 . 0.949 0.727 . 0.988 0.909 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 35: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.7, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 754 103 143 754 103 143 811 43 146 811 43 146
Tv 715 74 59 747 93 86 770 21 62 802 35 89N

=5
0 

CCP 0.948 0.718 0.413 0.991 0.903 0.601 0.949 0.488 0.425 0.989 0.814 0.610
Ts 815 129 56 815 129 56 911 18 71 911 18 71
Tv 760 118 7 806 123 10 850 14 13 901 15 18

N
=1

00
 

CCP 0.933 0.915 0.125 0.989 0.953 0.179 0.933 0.778 0.183 0.989 0.833 0.254
Ts 847 148 5 847 148 5 969 12 19 969 12 19
Tv 801 131 0 836 144 0 917 7 0 956 11 0

N
=2

00
 

CCP 0.946 0.885 0.000 0.987 0.973 0.000 0.946 0.583 0.000 0.987 0.917 0.000
Ts 830 170 0 830 170 0 985 14 1 985 14 1
Tv 795 146 0 827 165 0 943 10 0 982 14 0

N
=3

50
 

CCP 0.958 0.859 . 0.996 0.971 . 0.957 0.714 0.000 0.997 1.000 0.000
Ts 845 155 0 845 155 0 986 14 0 986 14 0
Tv 805 139 0 838 153 0 942 10 0 978 13 0

N
=5

00
 

CCP 0.953 0.897 . 0.992 0.987 . 0.955 0.714 . 0.992 0.929 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 36: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.9, Offset=0.8473) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 617 105 278 617 105 278 688 29 283 688 29 283
Tv 580 72 119 610 99 174 648 11 122 680 24 179N

=5
0 

CCP 0.940 0.686 0.428 0.989 0.943 0.626 0.942 0.379 0.431 0.988 0.828 0.633
Ts 696 93 211 696 93 211 772 16 212 772 16 212
Tv 661 62 30 687 84 48 733 5 30 762 13 48

N
=1

00
 

CCP 0.950 0.667 0.142 0.987 0.903 0.227 0.949 0.313 0.142 0.987 0.813 0.226
Ts 803 82 115 803 82 115 877 7 116 877 7 116
Tv 765 62 0 793 76 1 833 2 0 865 4 1

N
=2

00
 

CCP 0.953 0.756 0.000 0.988 0.927 0.009 0.950 0.286 0.000 0.986 0.571 0.009
Ts 848 110 42 848 110 42 937 8 55 937 8 55
Tv 807 90 0 844 107 0 891 3 0 932 5 0

N
=3

50
 

CCP 0.952 0.818 0.000 0.995 0.973 0.000 0.951 0.375 0.000 0.995 0.625 0.000
Ts 826 164 10 826 164 10 968 6 26 968 6 26
Tv 783 127 0 815 157 0 914 1 0 955 4 0

N
=5

00
 

CCP 0.948 0.774 0.000 0.987 0.957 0.000 0.944 0.167 0.000 0.987 0.667 0.000
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
 



 125

Table 37: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.1, Offset=0.8473) 

 
  AIC BIC 
  1-a=.95 1-a=.99 1-a=.95 1-a=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 1 170 829 1 170 829 3 48 949 3 48 949
Tv 0 135 779 1 157 817 2 32 892 3 41 933N

=5
0 

CCP 0.000 0.794 0.940 1.000 0.924 0.986 0.667 0.667 0.940 1.000 0.854 0.983
Ts 0 165 835 0 165 835 0 38 962 0 38 962
Tv 0 136 780 0 156 825 0 29 896 0 34 948

N
=1

00
 

CCP . 0.824 0.934 . 0.945 0.988 . 0.763 0.931 . 0.895 0.985
Ts 0 172 828 0 172 828 0 25 975 0 25 975
Tv 0 149 787 0 169 819 0 21 928 0 24 965

N
=2

00
 

CCP . 0.866 0.950 . 0.983 0.989 . 0.840 0.952 . 0.960 0.990
Ts 0 156 844 0 156 844 0 16 984 0 16 984
Tv 0 142 814 0 150 839 0 13 945 0 16 977

N
=3

50
 

CCP . 0.910 0.964 . 0.962 0.994 . 0.813 0.960 . 1.000 0.993
Ts 0 156 844 0 156 844 0 19 981 0 19 981
Tv 0 134 799 0 150 834 0 16 927 0 18 968

N
=5

00
 

CCP . 0.859 0.947 . 0.962 0.988 . 0.842 0.945 . 0.947 0.987
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 38: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.3, Offset=0.8473) 

 
  AIC BIC 
  1-a=.95 1-a=.99 1-a=.95 1-a=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 2 193 805 2 192 806 11 60 929 11 59 930
Tv 1 152 764 2 181 798 8 38 884 11 50 921N

=5
0 

CCP 0.500 0.788 0.949 1.000 0.943 0.990 0.727 0.633 0.952 1.000 0.847 0.990
Ts 0 173 827 0 173 827 0 44 956 0 44 956
Tv 0 145 773 0 163 812 0 29 899 0 37 939

N
=1

00
 

CCP . 0.838 0.935 . 0.942 0.982 . 0.659 0.940 . 0.841 0.982
Ts 0 156 844 0 156 844 0 21 979 0 21 979
Tv 0 129 790 0 149 830 0 13 919 0 18 964

N
=2

00
 

CCP . 0.827 0.936 . 0.955 0.983 . 0.619 0.939 . 0.857 0.985
Ts 0 162 838 0 162 838 0 12 988 0 12 988
Tv 0 136 794 0 153 830 0 6 936 0 8 978

N
=3

50
 

CCP . 0.840 0.947 . 0.944 0.990 . 0.500 0.947 . 0.667 0.990
Ts 0 158 842 0 158 842 0 14 986 0 14 986
Tv 0 134 784 0 151 828 0 8 921 0 13 970

N
=5

00
 

CCP . 0.848 0.931 . 0.956 0.983 . 0.571 0.934 . 0.929 0.984
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 39: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.5, Offset=0.8473) 

 
  AIC BIC 
  1-a=.95 1-a=.99 1-a=.95 1-a=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 10 169 821 10 169 821 22 52 926 22 52 926
Tv 9 135 760 10 161 806 17 36 858 22 47 909N

=5
0 

CCP 0.900 0.799 0.926 1.000 0.953 0.982 0.773 0.692 0.927 1.000 0.904 0.982
Ts 0 148 852 0 148 852 1 39 960 1 39 960
Tv 0 119 801 0 140 840 1 26 902 1 35 948

N
=1

00
 

CCP . 0.804 0.940 . 0.946 0.986 1.000 0.667 0.940 1.000 0.897 0.988
Ts 0 156 844 0 156 844 0 16 984 0 16 984
Tv 0 136 807 0 151 838 0 11 940 0 14 975

N
=2

00
 

CCP . 0.872 0.956 . 0.968 0.993 . 0.688 0.955 . 0.875 0.991
Ts 0 169 831 0 169 831 0 12 988 0 12 988
Tv 0 129 795 0 159 825 0 7 943 0 8 980

N
=3

50
 

CCP . 0.763 0.957 . 0.941 0.993 . 0.583 0.954 . 0.667 0.992
Ts 0 146 854 0 146 854 0 8 992 0 8 992
Tv 0 126 804 0 142 841 0 5 932 0 8 977

N
=5

00
 

CCP . 0.863 0.941 . 0.973 0.985 . 0.625 0.940 . 1.000 0.985
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 40: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.7, Offset=0.8473) 

 
  AIC BIC 
  1-a=.95 1-a=.99 1-a=.95 1-a=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 51 159 790 51 159 790 63 52 885 63 52 885
Tv 23 110 744 40 139 779 27 27 828 49 41 869N

=5
0 

CCP 0.451 0.692 0.942 0.784 0.874 0.986 0.429 0.519 0.936 0.778 0.788 0.982
Ts 4 189 807 4 189 807 15 24 961 15 24 961
Tv 3 161 769 4 183 796 6 16 921 13 21 949

N
=1

00
 

CCP 0.750 0.852 0.953 1.000 0.968 0.986 0.400 0.667 0.958 0.867 0.875 0.988
Ts 0 167 833 0 167 833 1 19 980 1 19 980
Tv 0 130 785 0 157 820 0 12 926 0 16 967

N
=2

00
 

CCP . 0.778 0.942 . 0.940 0.984 0.000 0.632 0.945 0.000 0.842 0.987
Ts 0 145 855 0 145 855 0 16 984 0 16 984
Tv 0 111 803 0 136 841 0 6 925 0 14 967

N
=3

50
 

CCP . 0.766 0.939 . 0.938 0.984 . 0.375 0.940 . 0.875 0.983
Ts 0 154 846 0 154 846 0 13 987 0 13 987
Tv 0 129 798 0 144 835 0 4 930 0 7 976

N
=5

00
 

CCP . 0.838 0.943 . 0.935 0.987 . 0.308 0.942 . 0.538 0.989
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 41: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.9, Offset=0.8473) 

 
  AIC BIC 
  1-a=.95 1-a=.99 1-a=.95 1-a=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 183 116 701 183 116 701 185 42 773 185 42 773
Tv 62 84 644 112 104 682 62 20 712 112 33 754N

=5
0 

CCP 0.339 0.724 0.919 0.612 0.897 0.973 0.335 0.476 0.921 0.605 0.786 0.975
Ts 105 85 810 105 85 810 110 22 868 110 22 868
Tv 15 63 758 39 79 801 15 11 810 39 17 858

N
=1

00
 

CCP 0.143 0.741 0.936 0.371 0.929 0.989 0.136 0.500 0.933 0.355 0.773 0.988
Ts 15 142 843 15 142 843 34 9 957 34 9 957
Tv 0 112 796 0 135 834 0 3 903 1 7 947

N
=2

00
 

CCP 0.000 0.789 0.944 0.000 0.951 0.989 0.000 0.333 0.944 0.029 0.778 0.990
Ts 0 159 841 0 159 841 8 6 986 8 6 986
Tv 0 112 806 0 150 836 0 0 944 0 4 981

N
=3

50
 

CCP . 0.704 0.958 . 0.943 0.994 0.000 0.000 0.957 0.000 0.667 0.995
Ts 0 161 839 0 161 839 0 10 990 0 10 990
Tv 0 120 796 0 155 826 0 2 939 0 7 977

N
=5

00
 

CCP . 0.745 0.949 . 0.963 0.985 . 0.200 0.948 . 0.700 0.987
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 42: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.1, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 206 362 432 206 362 432 294 128 578 294 128 578
Tv 192 303 368 203 338 412 277 83 497 291 106 556N

=5
0 

CCP 0.932 0.837 0.852 0.985 0.934 0.954 0.942 0.648 0.860 0.990 0.828 0.962
Ts 40 732 228 40 732 228 156 365 479 156 365 479
Tv 36 685 158 38 720 203 151 325 331 154 354 424

N
=1

00
 

CCP 0.900 0.936 0.693 0.950 0.984 0.890 0.968 0.890 0.691 0.987 0.970 0.885
Ts 2 953 45 2 953 45 17 756 227 17 756 227
Tv 2 899 18 2 940 31 17 716 94 17 745 147

N
=2

00
 

CCP 1.000 0.943 0.400 1.000 0.986 0.689 1.000 0.947 0.414 1.000 0.985 0.648
Ts 0 993 7 0 993 7 0 933 67 0 933 67
Tv 0 945 0 0 987 4 0 893 16 0 929 27

N
=3

50
 

CCP . 0.952 0.000 . 0.994 0.571 . 0.957 0.239 . 0.996 0.403
Ts 0 999 1 0 999 1 0 984 16 0 984 16
Tv 0 929 1 0 977 1 0 920 3 0 964 5

N
=5

00
 

CCP . 0.930 1.000 . 0.978 1.000 . 0.935 0.188 . 0.980 0.313
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 43: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.3, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 221 249 530 221 249 530 298 63 639 298 63 639
Tv 200 203 458 213 236 510 269 34 560 290 55 617N

=5
0 

CCP 0.905 0.815 0.864 0.964 0.948 0.962 0.903 0.540 0.876 0.973 0.873 0.966
Ts 61 628 311 61 628 311 189 226 585 189 226 585
Tv 55 573 209 60 616 262 174 185 393 187 216 499

N
=1

00
 

CCP 0.902 0.912 0.672 0.984 0.981 0.842 0.921 0.819 0.672 0.989 0.956 0.853
Ts 2 888 110 2 888 110 33 604 363 33 604 363
Tv 2 837 70 2 880 83 32 560 182 33 598 257

N
=2

00
 

CCP 1.000 0.943 0.636 1.000 0.991 0.755 0.970 0.927 0.501 1.000 0.990 0.708
Ts 0 984 16 0 984 16 1 851 148 1 851 148
Tv 0 938 2 0 978 4 1 818 29 1 847 61

N
=3

50
 

CCP . 0.953 0.125 . 0.994 0.250 1.000 0.961 0.196 1.000 0.995 0.412
Ts 0 998 2 0 998 2 0 945 55 0 945 55
Tv 0 942 0 0 986 1 0 897 7 0 936 15

N
=5

00
 

CCP . 0.944 0.000 . 0.988 0.500 . 0.949 0.127 . 0.990 0.273
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 44: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.5, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 265 150 585 265 150 585 309 27 664 309 27 664
Tv 234 125 500 253 140 556 266 8 577 296 18 635N

=5
0 

CCP 0.883 0.833 0.855 0.955 0.933 0.950 0.861 0.296 0.869 0.958 0.667 0.956
Ts 120 447 433 120 447 433 254 87 659 254 87 659
Tv 102 418 316 112 438 372 220 71 498 242 80 581

N
=1

00
 

CCP 0.850 0.935 0.730 0.933 0.980 0.859 0.866 0.816 0.756 0.953 0.920 0.882
Ts 12 786 202 12 786 202 73 408 519 73 408 519
Tv 12 744 122 12 778 154 57 371 276 69 402 368

N
=2

00
 

CCP 1.000 0.947 0.604 1.000 0.990 0.762 0.781 0.909 0.532 0.945 0.985 0.709
Ts 0 923 77 0 923 77 4 683 313 4 683 313
Tv 0 896 18 0 918 34 2 662 80 4 678 148

N
=3

50
 

CCP . 0.971 0.234 . 0.995 0.442 0.500 0.969 0.256 1.000 0.993 0.473
Ts 0 982 18 0 982 18 1 818 181 1 818 181
Tv 0 933 4 0 980 6 0 782 27 0 817 53

N
=5

00
 

CCP . 0.950 0.222 . 0.998 0.333 0.000 0.956 0.149 0.000 0.999 0.293
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 45: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.7, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 325 69 606 325 69 606 350 6 644 350 6 644
Tv 270 49 534 301 61 583 282 1 571 319 3 621N

=5
0 

CCP 0.831 0.710 0.881 0.926 0.884 0.962 0.806 0.167 0.887 0.911 0.500 0.964
Ts 215 208 577 215 208 577 291 15 694 291 15 694
Tv 165 180 432 197 203 507 209 8 535 253 14 621

N
=1

00
 

CCP 0.767 0.865 0.749 0.916 0.976 0.879 0.718 0.533 0.771 0.869 0.933 0.895
Ts 53 549 398 53 549 398 190 95 715 190 95 715
Tv 36 521 219 46 541 293 102 81 378 151 92 526

N
=2

00
 

CCP 0.679 0.949 0.550 0.868 0.985 0.736 0.537 0.853 0.529 0.795 0.968 0.736
Ts 5 784 211 5 784 211 51 386 563 51 386 563
Tv 3 762 62 5 778 110 26 372 157 38 383 278

N
=3

50
 

CCP 0.600 0.972 0.294 1.000 0.992 0.521 0.510 0.964 0.279 0.745 0.992 0.494
Ts 1 901 98 1 901 98 10 558 432 10 558 432
Tv 0 865 16 0 891 35 3 529 59 5 551 137

N
=5

00
 

CCP 0.000 0.960 0.163 0.000 0.989 0.357 0.300 0.948 0.137 0.500 0.987 0.317
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 46: Count on Model Selection and Conditional Coverage Probability (the correct model = 1M , Corr=0.9, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 399 71 530 399 71 530 413 25 562 413 25 562
Tv 283 30 452 353 51 500 291 5 480 363 12 530N

=5
0 

CCP 0.709 0.423 0.853 0.885 0.718 0.943 0.705 0.200 0.854 0.879 0.480 0.943
Ts 354 42 604 354 42 604 366 5 629 366 5 629
Tv 183 12 473 278 27 546 185 1 488 284 4 567

N
=1

00
 

CCP 0.517 0.286 0.783 0.785 0.643 0.904 0.505 0.200 0.776 0.776 0.800 0.901
Ts 297 73 630 297 73 630 320 0 680 320 0 680
Tv 96 62 330 185 71 460 96 0 372 188 0 507

N
=2

00
 

CCP 0.323 0.849 0.524 0.623 0.973 0.730 0.300 . 0.547 0.588 . 0.746
Ts 158 310 532 158 310 532 286 0 714 286 0 714
Tv 26 301 160 60 307 275 34 0 235 83 0 394

N
=3

50
 

CCP 0.165 0.971 0.301 0.380 0.990 0.517 0.119 . 0.329 0.290 . 0.552
Ts 53 499 448 53 499 448 237 6 757 237 6 757
Tv 1 480 81 8 496 162 8 3 126 31 6 251

N
=5

00
 

CCP 0.019 0.962 0.181 0.151 0.994 0.362 0.034 0.500 0.166 0.131 1.000 0.332
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 47: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.1, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 794 162 44 794 162 44 885 52 63 885 52 63
Tv 746 140 26 785 152 35 832 41 42 875 45 53N

=5
0 

CCP 0.940 0.864 0.591 0.989 0.938 0.795 0.940 0.788 0.667 0.989 0.865 0.841
Ts 831 167 2 831 167 2 963 29 8 963 29 8
Tv 770 161 0 817 167 1 899 28 2 949 29 6

N
=1

00
 

CCP 0.927 0.964 0.000 0.983 1.000 0.500 0.934 0.966 0.250 0.985 1.000 0.750
Ts 832 168 0 832 168 0 972 28 0 972 28 0
Tv 789 157 0 825 165 0 922 25 0 964 26 0

N
=2

00
 

CCP 0.948 0.935 . 0.992 0.982 . 0.949 0.893 . 0.992 0.929 .
Ts 842 158 0 842 158 0 988 12 0 988 12 0
Tv 791 151 0 834 157 0 932 12 0 979 12 0

N
=3

50
 

CCP 0.939 0.956 . 0.990 0.994 . 0.943 1.000 . 0.991 1.000 .
Ts 848 152 0 848 152 0 995 5 0 995 5 0
Tv 799 146 0 837 152 0 940 5 0 983 5 0

N
=5

00
 

CCP 0.942 0.961 . 0.987 1.000 . 0.945 1.000 . 0.988 1.000 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 48: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.3, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 789 134 77 789 134 77 869 47 84 869 47 84
Tv 751 106 43 779 121 58 822 31 50 856 39 65N

=5
0 

CCP 0.952 0.791 0.558 0.987 0.903 0.753 0.946 0.660 0.595 0.985 0.830 0.774
Ts 828 160 12 828 160 12 953 24 23 953 24 23
Tv 783 142 2 819 159 5 902 18 6 944 23 10

N
=1

00
 

CCP 0.946 0.888 0.167 0.989 0.994 0.417 0.946 0.750 0.261 0.991 0.958 0.435
Ts 842 158 0 842 158 0 982 16 2 982 16 2
Tv 796 145 0 832 152 0 928 13 0 969 14 0

N
=2

00
 

CCP 0.945 0.918 . 0.988 0.962 . 0.945 0.813 0.000 0.987 0.875 0.000
Ts 844 156 0 844 156 0 991 9 0 991 9 0
Tv 806 147 0 834 155 0 945 8 0 977 9 0

N
=3

50
 

CCP 0.955 0.942 . 0.988 0.994 . 0.954 0.889 . 0.986 1.000 .
Ts 821 179 0 821 179 0 988 12 0 988 12 0
Tv 787 172 0 816 176 0 949 12 0 981 12 0

N
=5

00
 

CCP 0.959 0.961 . 0.994 0.983 . 0.961 1.000 . 0.993 1.000 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 49: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.5, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 759 128 113 759 128 113 838 40 122 838 40 122
Tv 700 99 60 749 115 87 767 28 69 825 32 96N

=5
0 

CCP 0.922 0.773 0.531 0.987 0.898 0.770 0.915 0.700 0.566 0.984 0.800 0.787
Ts 818 143 39 818 143 39 914 24 62 914 24 62
Tv 776 128 6 809 138 13 866 17 16 901 22 29

N
=1

00
 

CCP 0.949 0.895 0.154 0.989 0.965 0.333 0.947 0.708 0.258 0.986 0.917 0.468
Ts 850 147 3 850 147 3 978 13 9 978 13 9
Tv 800 131 0 840 143 0 923 10 0 967 12 1

N
=2

00
 

CCP 0.941 0.891 0.000 0.988 0.973 0.000 0.944 0.769 0.000 0.989 0.923 0.111
Ts 837 163 0 837 163 0 986 14 0 986 14 0
Tv 800 147 0 832 159 0 940 13 0 980 14 0

N
=3

50
 

CCP 0.956 0.902 . 0.994 0.975 . 0.953 0.929 . 0.994 1.000 .
Ts 828 172 0 828 172 0 988 12 0 988 12 0
Tv 783 153 0 819 168 0 932 9 0 977 12 0

N
=5

00
 

CCP 0.946 0.890 . 0.989 0.977 . 0.943 0.750 . 0.989 1.000 .
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 50: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.7, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 721 93 186 721 93 186 784 29 187 784 29 187
Tv 678 60 87 710 83 125 734 15 88 770 23 126N

=5
0 

CCP 0.940 0.645 0.468 0.985 0.892 0.672 0.936 0.517 0.471 0.982 0.793 0.674
Ts 776 112 112 776 112 112 858 21 121 858 21 121
Tv 738 88 19 765 107 35 812 10 26 846 18 43

N
=1

00
 

CCP 0.951 0.786 0.170 0.986 0.955 0.313 0.946 0.476 0.215 0.986 0.857 0.355
Ts 843 142 15 843 142 15 949 13 38 949 13 38
Tv 808 123 0 837 138 0 911 8 1 942 11 2

N
=2

00
 

CCP 0.958 0.866 0.000 0.993 0.972 0.000 0.960 0.615 0.026 0.993 0.846 0.053
Ts 838 162 0 838 162 0 987 9 4 987 9 4
Tv 801 142 0 832 159 0 944 8 0 980 9 0

N
=3

50
 

CCP 0.956 0.877 . 0.993 0.981 . 0.956 0.889 0.000 0.993 1.000 0.000
Ts 864 136 0 864 136 0 993 6 1 993 6 1
Tv 815 117 0 856 130 0 938 5 0 984 5 0

N
=5

00
 

CCP 0.943 0.860 . 0.991 0.956 . 0.945 0.833 0.000 0.991 0.833 0.000
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 51: Count on Model Selection and Conditional Coverage Probability (the correct model = 2M , Corr=0.9, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 602 106 292 602 106 292 668 35 297 668 35 297
Tv 567 68 153 593 97 196 627 17 156 657 28 200N

=5
0 

CCP 0.942 0.642 0.524 0.985 0.915 0.671 0.939 0.486 0.525 0.984 0.800 0.673
Ts 668 101 231 668 101 231 738 25 237 738 25 237
Tv 629 57 49 658 90 81 694 10 51 725 20 85

N
=1

00
 

CCP 0.942 0.564 0.212 0.985 0.891 0.351 0.940 0.400 0.215 0.982 0.800 0.359
Ts 757 85 158 757 85 158 826 15 159 826 15 159
Tv 713 62 2 746 78 9 778 6 3 814 10 10

N
=2

00
 

CCP 0.942 0.729 0.013 0.985 0.918 0.057 0.942 0.400 0.019 0.985 0.667 0.063
Ts 840 78 82 840 78 82 910 7 83 910 7 83
Tv 787 58 0 830 73 1 849 3 0 898 6 1

N
=3

50
 

CCP 0.937 0.744 0.000 0.988 0.936 0.012 0.933 0.429 0.000 0.987 0.857 0.012
Ts 852 128 20 852 128 20 949 4 47 949 4 47
Tv 814 106 0 839 125 0 906 2 0 933 4 0

N
=5

00
 

CCP 0.955 0.828 0.000 0.985 0.977 0.000 0.955 0.500 0.000 0.983 1.000 0.000
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 52: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.1, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 3 193 804 3 193 804 7 63 930 7 63 930
Tv 1 156 751 1 176 790 5 43 867 5 51 915N

=5
0 

CCP 0.333 0.808 0.934 0.333 0.912 0.983 0.714 0.683 0.932 0.714 0.810 0.984
Ts 0 161 839 0 161 839 0 41 959 0 41 959
Tv 0 137 798 0 154 826 0 30 910 0 38 942

N
=1

00
 

CCP . 0.851 0.951 . 0.957 0.985 . 0.732 0.949 . 0.927 0.982
Ts 0 147 853 0 147 853 0 16 984 0 16 984
Tv 0 133 811 0 146 844 0 16 937 0 16 975

N
=2

00
 

CCP . 0.905 0.951 . 0.993 0.989 . 1.000 0.952 . 1.000 0.991
Ts 0 164 836 0 164 836 0 21 979 0 21 979
Tv 0 138 802 0 158 825 0 17 939 0 20 966

N
=3

50
 

CCP . 0.841 0.959 . 0.963 0.987 . 0.810 0.959 . 0.952 0.987
Ts 0 158 842 0 158 842 0 11 989 0 11 989
Tv 0 134 804 0 151 835 0 7 940 0 10 978

N
=5

00
 

CCP . 0.848 0.955 . 0.956 0.992 . 0.636 0.950 . 0.909 0.989
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 53: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.3, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 7 182 811 7 182 811 17 59 924 17 59 924
Tv 5 136 770 6 164 801 14 31 874 15 48 910N

=5
0 

CCP 0.714 0.747 0.949 0.857 0.901 0.988 0.824 0.525 0.946 0.882 0.814 0.985
Ts 0 193 807 0 193 807 0 40 960 0 40 960
Tv 0 158 759 0 182 799 0 30 906 0 34 949

N
=1

00
 

CCP . 0.819 0.941 . 0.943 0.990 . 0.750 0.944 . 0.850 0.989
Ts 0 178 822 0 178 822 0 26 974 0 26 974
Tv 0 146 780 0 166 811 0 15 922 0 20 962

N
=2

00
 

CCP . 0.820 0.949 . 0.933 0.987 . 0.577 0.947 . 0.769 0.988
Ts 0 159 841 0 159 841 0 19 981 0 19 981
Tv 0 131 792 0 153 835 0 14 925 0 16 972

N
=3

50
 

CCP . 0.824 0.942 . 0.962 0.993 . 0.737 0.943 . 0.842 0.991
Ts 0 172 828 0 172 828 0 12 988 0 12 988
Tv 0 146 786 0 163 818 0 10 936 0 11 976

N
=5

00
 

CCP . 0.849 0.949 . 0.948 0.988 . 0.833 0.947 . 0.917 0.988
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 54: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.5, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 25 166 809 25 166 809 32 60 908 32 60 908
Tv 19 115 766 24 139 801 23 30 854 29 43 897N

=5
0 

CCP 0.760 0.693 0.947 0.960 0.837 0.990 0.719 0.500 0.941 0.906 0.717 0.988
Ts 1 176 823 1 176 823 5 34 961 5 34 961
Tv 0 141 781 0 165 820 2 22 913 2 28 955

N
=1

00
 

CCP 0.000 0.801 0.949 0.000 0.938 0.996 0.400 0.647 0.950 0.400 0.824 0.994
Ts 0 163 837 0 163 837 0 16 984 0 16 984
Tv 0 140 798 0 154 829 0 12 934 0 13 974

N
=2

00
 

CCP . 0.859 0.953 . 0.945 0.990 . 0.750 0.949 . 0.813 0.990
Ts 0 166 834 0 166 834 0 17 983 0 17 983
Tv 0 142 795 0 160 828 0 11 939 0 14 977

N
=3

50
 

CCP . 0.855 0.953 . 0.964 0.993 . 0.647 0.955 . 0.824 0.994
Ts 0 160 840 0 160 840 0 11 989 0 11 989
Tv 0 135 797 0 153 832 0 8 940 0 10 980

N
=5

00
 

CCP . 0.844 0.949 . 0.956 0.990 . 0.727 0.950 . 0.909 0.991
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 55: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.7, Offset=2.1972 ) 

 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 60 141 799 60 141 799 69 46 885 69 46 885
Tv 36 106 751 48 123 788 38 25 834 53 31 873N

=5
0 

CCP 0.600 0.752 0.940 0.800 0.872 0.986 0.551 0.543 0.942 0.768 0.674 0.986
Ts 4 181 815 4 181 815 12 38 950 12 38 950
Tv 1 130 769 2 166 806 3 14 895 5 27 937

N
=1

00
 

CCP 0.250 0.718 0.944 0.500 0.917 0.989 0.250 0.368 0.942 0.417 0.711 0.986
Ts 0 170 830 0 170 830 0 26 974 0 26 974
Tv 0 136 788 0 160 819 0 11 922 0 20 959

N
=2

00
 

CCP . 0.800 0.949 . 0.941 0.987 . 0.423 0.947 . 0.769 0.985
Ts 0 152 848 0 152 848 0 13 987 0 13 987
Tv 0 122 807 0 144 843 0 6 943 0 9 981

N
=3

50
 

CCP . 0.803 0.952 . 0.947 0.994 . 0.462 0.955 . 0.692 0.994
Ts 0 144 856 0 144 856 0 14 986 0 14 986
Tv 0 115 819 0 139 851 0 8 943 0 11 980

N
=5

00
 

CCP . 0.799 0.957 . 0.965 0.994 . 0.571 0.956 . 0.786 0.994
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Table 56: Count on Model Selection and Conditional Coverage Probability (the correct model = 3M , Corr=0.9, Offset=2.1972 ) 

 
 
  AIC BIC 
  1-α=.95 1-α=.99 1-α=.95 1-α=.99 

Model M2 M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3

Ts 190 121 689 190 121 689 194 52 754 194 52 754
Tv 57 86 636 123 104 672 57 31 692 124 41 736N

=5
0 

CCP 0.300 0.711 0.923 0.647 0.860 0.975 0.294 0.596 0.918 0.639 0.788 0.976
Ts 108 101 791 108 101 791 110 22 868 110 22 868
Tv 12 82 749 34 98 782 12 16 822 34 21 857

N
=1

00
 

CCP 0.111 0.812 0.947 0.315 0.970 0.989 0.109 0.727 0.947 0.309 0.955 0.987
Ts 20 153 827 20 153 827 47 6 947 47 6 947
Tv 0 113 787 4 144 820 0 2 897 4 4 939

N
=2

00
 

CCP 0.000 0.739 0.952 0.200 0.941 0.992 0.000 0.333 0.947 0.085 0.667 0.992
Ts 1 151 848 1 151 848 7 11 982 7 11 982
Tv 0 112 799 0 145 841 0 2 927 0 8 973

N
=3

50
 

CCP 0.000 0.742 0.942 0.000 0.960 0.992 0.000 0.182 0.944 0.000 0.727 0.991
Ts 0 164 836 0 164 836 1 14 985 1 14 985
Tv 0 110 786 0 150 828 0 1 926 0 7 976

N
=5

00
 

CCP . 0.671 0.940 . 0.915 0.990 0.000 0.071 0.940 0.000 0.500 0.991
              
Note:  
(1) Ts= Count on Model Selection. Tv = Count on the coverage of confidence intervals conditional on model selection. CCP= Conditional 
Coverage Probability. N=sample size. 
(2) Bold values (other than the Row and Column Titles) indicate Count on selecting the correct model; bold italic values indicate the 
Coverage Probability conditional on selecting the correct model. 
(3) The count is based upon 1000 iterations. 
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Appendix B: SAS Code for Simulation 

OPTIONS NODATE PAGENO=1 LINESIZE=80 PAGESIZE=60; 
 
***********************************************************************  
SAS program to simulate the effects of model selection on the coverage 
probability of confidence intervals for binary logistic regression 
models. Factors manipulated include covariate correlation, true model, 
sample size, automatic model selectors and an offset term for 
dichotomization threshold. Following is the sample code for the true 
model of M1 with covariate correlation 0.1 and offset term 0; 
***********************************************************************; 
 
LIBNAME LOGIT1 'C:\DIS TOPIC\SAS'; 
LIBNAME LOGIT2 'C:\DIS TOPIC\SAS'; 
 
* define the true model from which data are generated; 
%LET COVARIATE=ACTSAT GPACORE;  
* underlying parameter for ACTSAT;  
%LET BETA1=2; 
* underlying parameter for GPACORE;      
%LET BETA2=1;  
* offset for dichotomization;     
%LET OFFSET=0;      
 
*to direct the sas log to an external file; 
PROC PRINTTO LOG='C:\DIS TOPIC\SAS\LOGFILE.TMP'; 
RUN; 
 
* Prepare correlated covariates with the matrix decomposition procedure 
(Kaiser and Dickman, 1962).The correlation is varied as .1, .3, .5, .7 
and .9 in accordance with the design conditions; 
***********************************************************************; 
*define population correlation matrix;    
DATA R (TYPE=CORR);_TYPE='CORR'; 
INPUT _TYPE_ $ _NAME_ $ ACTSAT GPACORE;   
CARDS; 
 
CORR ACTSAT   1.000  . 
CORR GPACORE   .100  1.000 
; 
*apply principal component factorization to the population correlations 
matrix and obtain factor pattern matrix for later data generation; 
 
PROC FACTOR N=2 OUTSTAT=FACOUT; 
 
DATA PATTERN; SET FACOUT;   *obtain factor pattern matrix; 
IF _TYPE_='PATTERN'; 
DROP _TYPE_ _NAME_; 
RUN; 
***********************************************************************; 
 
*create a macro for data generation; 
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%MACRO DATA; 
 
PROC IML; 
 USE PATTERN; 
 READ ALL VAR _NUM_ INTO F; 
F=F`;  *F contains principal component factor pattern coefficients; 
 
*generate two random uncorrelated normal variables; 
 
DATA=RANNOR (J(&N,2,0));  
DATA=DATA`;   *transpose for multiplication; 
Z=F*DATA;   *transform uncorrelated variables to correlated; 
Z=Z`;    *transpose sample data matrix; 
ACTSAT=Z[,1]; 
GPACORE=Z[,2]; 
Z=ACTSAT ||GPACORE; 
CREATE B FROM Z [COLNAME={ACTSAT GPACORE }]; 
APPEND FROM Z;      
DATA RESPONSE (DROP=I J Y PROB); SET B; 
 
*for model M3, create an academic variable as sum of the specified 
covariates;  
 
ACADE=GPACORE+ACTSAT;   
 
* generate the response data from the 'true' model; 
 DO I=1 TO &N; 
  PROB=EXP(&OFFSET+&BETA1*ACTSAT+&BETA2*GPACORE)/ 
    (1+EXP(&OFFSET+&BETA1*ACTSAT+&BETA2*GPACORE));  
 END; 
 DO J=1 TO &N; 
  Y=RANUNI(0); 
  IF Y<=PROB THEN GRADRATE=1;   * Dichotomize the variable; 
  ELSE GRADRATE=0;    
 END; 
RUN; 
%MEND DATA; 
 
*to direct the output to an external file; 
 
PROC PRINTTO PRINT='C:\DIS TOPIC\SAS\M&C.TMP'; 
 
*create a macro for model selection, parameter estimates and naive 
confidence intervals construction; 
 
%MACRO SELECTION; 
 
*specify conditions of sample size; 
 %DO S=1 %TO 5; 
 
  %IF &S=1 %THEN %DO; %LET N=50; %END; 
  %IF &S=2 %THEN %DO; %LET N=100; %END; 
  %IF &S=3 %THEN %DO; %LET N=200; %END; 
  %IF &S=4 %THEN %DO; %LET N=350; %END; 
  %IF &S=5 %THEN %DO; %LET N=500; %END; 
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* specify the number of replications; 
  %DO NITER=1 %TO 1000;   
 
* run the data generation macro; 
 %DATA;     
 
*define alpha levels; 
  %DO A=1 %TO 2; 
   %IF &A=1 %THEN %DO; %LET ALPHA=.05;%END; 
   %IF &A=2 %THEN %DO; %LET ALPHA=.01;%END; 
 
* specify the models available for selection; 
   %DO M=1 %TO 3; 
    %LET COVER=COVER&M;  

%LET AIC=AIC&M;  
%LET BIC=BIC&M;  
%LET DATA=DATA&M;  

     %IF &M=1 %THEN %DO;  
      %LET VARIABLES=ACTSAT; 
     %END; 
     %IF &M=2 %THEN %DO;  
      %LET VARIABLES=ACTSAT GPACORE; 
     %END; 
     %IF &M=3 %THEN %DO;  
      %LET VARIABLES=ACADE; 
     %END; 
 
*Direct output to an external file; 
 FILENAME NEWOUT 'C:\DIS TOPIC\SAS\SAMPLEOUT.TMP'; 
 PROC PRINTTO PRINT=NEWOUT NEW; 
 
*run logistic regression with the three models to fit the same sample 
data; 
 PROC LOGISTIC DATA=RESPONSE; 
 MODEL GRADRATE (EVENT='1')= &VARIABLES/ALPHA=&ALPHA CLPARM=PL; 
 RUN; 
 
*direct sas output back to sas output window; 
 PROC PRINTTO PRINT=PRINT; 

RUN; 
 
* extract aic from the fit results; 
 DATA &AIC; INFILE NEWOUT; 
 INPUT PRIOR1 $ @; 
 IF PRIOR1='AIC' THEN DO; 
  INPUT V1 &AIC ; 
  KEEP &AIC; 
  OUTPUT; 
 END; 
 
* extract bic from the fit results; 
 DATA &BIC; INFILE NEWOUT; 
 INPUT PRIOR2 $ @; 
 IF PRIOR2='SC' THEN DO; 
  INPUT V2 &BIC ; 
  KEEP &BIC; 
  OUTPUT; 
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 END; 
 
* extract lower and higher bound of the naive confidence intervals; 
 DATA CI; INFILE NEWOUT; 
 INPUT PAR $ @; 
 IF PAR='ACTSAT'OR PAR='ACADE' THEN DO; 
  INPUT EST LOW HIGH ; 
  KEEP LOW HIGH; 
  OUTPUT; 
 END; 
 
 PROC IML;  
  USE CI; 
 READ ALL VAR _NUM_ INTO I; 
 LOW=I[3,1];HIGH=I[3,2];  
 IL=LOW||&BETA1||HIGH;  
 CREATE IV FROM IL[COLNAME={LOW BETA1 HIGH}]; 
 APPEND FROM IL; 
 
*examine if the nominal confidence intervals cover the parameter for 
ACTSAT; 
 DATA &COVER; SET IV; 
 IF LOW<=BETA1<=HIGH THEN &COVER=1; 
  ELSE &COVER=0; 
  KEEP &COVER; 
  OUTPUT; 
 RUN; 
 
*merge aic, bic and coverage results; 
 DATA &DATA; 
 MERGE &AIC &BIC &COVER; 
 RUN; 
 
   %END; *MODEL1-3; 
 
*comebine results of the three models; 
 DATA LOGIT&A; 
 MERGE DATA1 DATA2 DATA3;  

MINAIC=MIN(OF AIC1-AIC3); 
MINBIC=MIN(OF BIC1-BIC3); 

 N=&N; 
 
 IF MINAIC=AIC1 THEN AMODEL=1; 
 ELSE IF MINAIC=AIC2 THEN AMODEL=2; 
 ELSE AMODEL=3; 
 
 IF MINBIC=BIC1 THEN BMODEL=1; 
 ELSE IF MINBIC=BIC2 THEN BMODEL=2; 
 ELSE BMODEL=3; 
 
 PROC APPEND BASE=LOGIT&A.RESULTS FORCE; 
 RUN; 
 
  %END; *ALPHA1-2; 
  %END; *ITERATION; 
 %END; *SAMPLE SIZE 1-5; 
%MEND SELECTION;  *close the macro; 
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*run the selection macro; 
%SELECTION;  
 
*create macro to export the result; 
%MACRO LOGITRESULTS; 
 
 %DO A=1 %TO 2; 
 
  DATA MODEL&A; SET LOGIT&A.RESULTS; 
  IF AMODEL=1 THEN AMODEL1=1; ELSE AMODEL1=0; 
  IF AMODEL=2 THEN AMODEL2=1; ELSE AMODEL2=0; 
  IF AMODEL=3 THEN AMODEL3=1; ELSE AMODEL3=0; 
 
  IF BMODEL=1 THEN BMODEL1=1; ELSE BMODEL1=0; 
  IF BMODEL=2 THEN BMODEL2=1; ELSE BMODEL2=0; 
  IF BMODEL=3 THEN BMODEL3=1; ELSE BMODEL3=0; 
  RUN; 
 
  PROC SORT; BY N; 
 

DATA CVRATE&A (DROP=COVER1-COVER3 AMODEL BMODEL AIC1-AIC3 
MINAIC BIC1-BIC3 MINBIC); 

   SET MODEL&A; 
  IF AMODEL=1 THEN ACV=COVER1; 
  ELSE IF AMODEL=2 THEN ACV=COVER2; 
  ELSE ACV=COVER3; 

 
IF AMODEL=1 AND COVER1=1 THEN ACONCV1=1; ELSE IF AMODEL=1 
AND COVER1=0 THEN ACONCV1=0;ELSE ACONCV1=.; 
IF AMODEL=2 AND COVER2=1 THEN ACONCV2=1; ELSE IF AMODEL=2 
AND COVER2=0 THEN ACONCV2=0;ELSE ACONCV2=.; 
IF AMODEL=3 AND COVER3=1 THEN ACONCV3=1; ELSE IF AMODEL=3 
AND COVER3=0 THEN ACONCV3=0;ELSE ACONCV3=.; 

 
  IF BMODEL=1 THEN BCV=COVER1; 
  ELSE IF BMODEL=2 THEN BCV=COVER2; 
  ELSE BCV=COVER3; 

IF BMODEL=1 AND COVER1=1 THEN BCONCV1=1; ELSE IF BMODEL=1 
AND COVER1=0 THEN BCONCV1=0;ELSE BCONCV1=.; 
IF BMODEL=2 AND COVER2=1 THEN BCONCV2=1; ELSE IF BMODEL=2 
AND COVER2=0 THEN BCONCV2=0;ELSE BCONCV2=.; 
IF BMODEL=3 AND COVER3=1 THEN BCONCV3=1; ELSE IF BMODEL=3 
AND COVER3=0 THEN BCONCV3=0;ELSE BCONCV3=.; 

  RUN; 
 %END; 
%MEND; 
 
*export results; 
%LOGITRESULTS; 
 
PROC PRINTTO PRINT='C:\DIS TOPIC\SAS\FINAL.TMP'; 
 
*create a macro to tabulate and report results; 
%MACRO RESULT; 
 
 %LET NITER=1000; 
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 %DO A=1 %TO 2; 
  %IF &A=1 %THEN %DO; %LET RESULT=CVRATE1; %END; 
  %IF &A=2 %THEN %DO; %LET RESULT=CVRATE2; %END; 
 
  PROC IML; 
   USE &RESULT; 
  READ ALL VAR {AMODEL1 AMODEL2 AMODEL3} INTO AMM;  
  READ ALL VAR {ACONCV1 ACONCV2 ACONCV3} INTO ACC;  
  READ ALL VAR {ACV} INTO ATC;  
 
  READ ALL VAR {BMODEL1 BMODEL2 BMODEL3} INTO BMM;  
  READ ALL VAR {BCONCV1 BCONCV2 BCONCV3} INTO BCC;  
  READ ALL VAR {BCV} INTO BTC;  
 
  %DO S=1 %TO 5; 
***********************************************************************; 
*AIC; 
   AMM&S=AMM[(&S-1)*&NITER+1:&S*&NITER,]; 
   ACC&S=ACC[(&S-1)*&NITER+1:&S*&NITER,]; 
   ATC&S=ATC[(&S-1)*&NITER+1:&S*&NITER,]; 
   ASELECT&S=AMM&S[+,]; 
   ABCOV&S=ACC&S[+,];  
   ACONCOV&S=ABCOV&S/ASELECT&S;  
   ATOTALCONCOV&S=ATC&S[+,]/&NITER;  
 
   ACI_COVER_RATE&S=ASELECT&S//ABCOV&S//ACONCOV&S; 
*BIC; 
   BMM&S=BMM[(&S-1)*&NITER+1:&S*&NITER,]; 
   BCC&S=BCC[(&S-1)*&NITER+1:&S*&NITER,]; 
   BTC&S=BTC[(&S-1)*&NITER+1:&S*&NITER,]; 
   BSELECT&S=BMM&S[+,]; 
   BBCOV&S=BCC&S[+,];  
   BCONCOV&S=BBCOV&S/BSELECT&S;  
   BTOTALCONCOV&S=BTC&S[+,]/&NITER;  
 
   BCI_COVER_RATE&S=BSELECT&S//BBCOV&S//BCONCOV&S; 
***********************************************************************; 
*TABULATE THE RESULTS; 
 
   CI_COVER_RATE&S=ACI_COVER_RATE&S||BCI_COVER_RATE&S; 
   TOTALCONCOV&S=ATOTALCONCOV&S||BTOTALCONCOV&S; 
 
   TITLE 'TRUE MODEL=M1, COVARIATE CORR=.1, OFFSET=0 '; 
 

PRINT CI_COVER_RATE&S [ROWNAME={TIMES_MODEL_SELECTED 
TIMES_BETA_COVERED BETA_COVERRATE} 
COLNAME={AICMODEL1 AICMODEL2 AICMODEL3 BICMODEL1 
BICMODEL2 BICMODEL3}] 
TOTALCONCOV&S [COLNAME={AIC_TOTAL_COVERRATE 
BIC_TOTAL_COVERRATE}]; 

  %END; 
 QUIT; 
 %END; 
%MEND; 
%RESULT; 
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