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Not a waste: Wastewater
surveillance to enhance public
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Pharmacy, Chapman University, Orange, CA, United States, 4TAILOR Labs, Molecular Virology and
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Domestic wastewater, when collected and evaluated appropriately, can provide
valuable health-related information for a community. As a relatively unbiased and
non-invasive approach, wastewater surveillance may complement current practices
towards mitigating risks and protecting population health. Spurred by the COVID-19
pandemic, wastewater programs are now widely implemented to monitor viral
infection trends in sewersheds and inform public health decision-making. This
review summarizes recent developments in wastewater-based epidemiology for
detecting and monitoring communicable infectious diseases, dissemination of
antimicrobial resistance, and illicit drug consumption. Wastewater surveillance, a
quickly advancing Frontier in environmental science, is becoming a new tool to
enhance public health, improve disease prevention, and respond to future epidemics
and pandemics.

KEYWORDS

wastewater-based epidemiology, infectious diseases, illicit drugs, antimicrobial resistance,
viruses, public health

1 Introduction

The concept of wastewater-based epidemiology (WBE) was first proposed in 2001 to
monitor illicit-abused drugs (Daughton, 2001). Recently, the COVID-19 pandemic has
helped to renew public health interest in WBE, further facilitating the general recognition
that wastewater and population health are interconnected. Wastewater, specifically for
municipalities, is a combination of domestic (both gray and black water), industrial and
commercial sources. Water is flushed or drained through a network of underground sewer
pipes, which carry it to a municipal wastewater treatment facility (WWTF) where it
undergoes a multi-stage treatment process (coagulation, flocculation, sedimentation,
filtration, and disinfection) before being discharged. This wastewater is a complex
matrix, consisting of approximately 99.9% water with the remaining .1% including
microbes (e.g., viruses, bacteria, protozoa, fungi, and helminths), organic and
inorganic materials, indigestible food matter, and nutrients (Wastewater-What Is It?,
2017) (Figure 1A). After several treatment stages, the majority of solids, microorganisms,
and organic materials are removed, resulting in a water product of improved quality that is
safe for the environment and human health.

OPEN ACCESS

EDITED BY

Xianzhen Xu,
Qingdao University, China

REVIEWED BY

Jishi Chen,
Qingdao University, China
Mingli Shan,
Zibo Vocational Institute, China

*CORRESPONDENCE

Fuqing Wu,
fuqing.wu@uth.tmc.edu

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Environmental Chemical Engineering,
a section of the journal
Frontiers in Chemical Engineering

RECEIVED 30 November 2022
ACCEPTED 21 December 2022
PUBLISHED 09 January 2023

CITATION

Gitter A, Oghuan J, Godbole AR,
Chavarria CA, Monserrat C, Hu T, Wang Y,
Maresso AW, Hanson BM, Mena KD and
Wu F (2023), Not a waste: Wastewater
surveillance to enhance public health.
Front. Chem. Eng. 4:1112876.
doi: 10.3389/fceng.2022.1112876

COPYRIGHT

© 2023 Gitter, Oghuan, Godbole,
Chavarria, Monserrat, Hu, Wang, Maresso,
Hanson, Mena and Wu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemical Engineering frontiersin.org01

TYPE Mini Review
PUBLISHED 09 January 2023
DOI 10.3389/fceng.2022.1112876

https://www.frontiersin.org/articles/10.3389/fceng.2022.1112876/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.1112876/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.1112876/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fceng.2022.1112876&domain=pdf&date_stamp=2023-01-09
mailto:fuqing.wu@uth.tmc.edu
mailto:fuqing.wu@uth.tmc.edu
https://doi.org/10.3389/fceng.2022.1112876
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://doi.org/10.3389/fceng.2022.1112876


Human pathogen detection in wastewater has been in practice for
nearly a century (Paul et al., 1939; Moore, 1951; Kelly et al., 1957).
During the poliomyelitis epidemics in 1939, John R. Paul, James D.
Trask, and C. S. Culotta demonstrated for the first time the presence of
the poliomyelitis virus in wastewater. Two wastewater samples were
inoculated intraperitoneally into two monkeys, both of which
developed experimental poliomyelitis with an incubation period
7–8 d (Paul et al., 1939). Following that discovery, polioviruses and
enteroviruses were monitored and isolated from wastewater samples
in multiple countries during 1960s–1990s. Similarly, after successful
detection of SAR-CoV-2 in wastewater, surveying wastewater has been
utilized as a non-invasive approach to track viral infection trends in a
designated sewershed (Ahmed et al., 2020; Medema et al., 2020; Wu
et al., 2020). The value of wastewater monitoring data to supplement
clinical case data has been investigated globally, with wastewater data
typically preceding reported COVID-19 case data by 3 days to 3 weeks
(Peccia et al., 2020; Róka et al., 2021; Wurtzer et al., 2021; Galani et al.,
2022). Moreover, wastewater surveillance provides an unbiased
sampling of infected individuals including asymptomatic and pre-
symptomatic cases, and individuals who have the disease but do not
seek healthcare. Those cases may be missed or not identified in time by
clinical surveillance when testing capacity is limited.

Antimicrobial resistance (AMR), another global crisis, presents a
significant threat to human, animal, and environmental health. AMR
exposure can result in adverse medical outcomes including increased
morbidity and mortality due to the limited number of effective
medications available for treatment (World Health Organization,
2020). Bacteria with AMR are resistant to antibiotics and have
been found extensively in the environment (soil, water, and air)
(Pärnänen et al., 2019). With the increasing emergence of
antibiotic resistance, it is estimated that AMR infections will be the
most common cause of death by the year 2050 and at a total cost of
trillions to world economies (Thompson, 2022).

Besides microbiological agents, the utilization of wastewater for
tracking illicit drugs and opioids has also gained attention due to the
increased health concerns associated with exposure to the synthetic
opioid fentanyl (Gushgari et al., 2019). Illicit drug use is widespread in
many countries, including Europe and United States, where opioid
overdose related deaths have significantly increased since 2018

(Understanding the Epidemic | Drug Overdose | CDC Injury
Center, 2022). Given it is challenging to obtain population-wide
data on opioid consumption, which is important for formulating
effective strategies to combat this health crisis, wastewater
surveillance serves as a complementary tool to track illicit drug
consumption within a sewershed (Gushgari et al., 2019; Endo et al.,
2020; Kumar et al., 2022) and understand the societal burden at
population level.

Here, we briefly review the applications of wastewater in the three
public health issues: infectious diseases, antimicrobial resistance, and
illicit drugs.

2 Monitoring of viral diseases

Typically, spatial-temporal disease monitoring consists of
questionnaires, hospital admissions, mortality and morbidity rates,
and clinical and sentinel (by medical professionals) surveillance for
specific infectious diseases (Sims and Kasprzyk-Hordern, 2020).
However, these tools can have limited success largely due to a lack
of responses, dependence on symptomatic cases, and constrained
testing capacity, therefore causing underreported data (Diamond
et al., 2022). Pathogens which are shed through feces or urine, and
can persist in sewage, are optimal targets for wastewater monitoring.
Compared to bacterial pathogens, viral pathogens may be a more
suitable target given their inability to replicate outside of living cells
(Figure 1B). Three viruses of significant public health concern are
reviewed including SARS-CoV-2, Monkeypox and enteroviruses.

2.1 SARS-CoV-2

The COVID-19 pandemic starkly revealed the impacts a global
infectious disease can have on all aspects of society, let alone the
cascading effects on public safety, health, and accessibility to healthcare
(Daughton, 2020). Tracking the transmission, dispersion, and evolution
of COVID-19 at population-wide scales is challenging, especially given
the urgent need to evaluate and estimate the distribution of the virus in
a timely manner. Detecting SARS-CoV-2 in wastewater is not only a

FIGURE 1
(A) Wastewater surveillance for public health. (A) Constituents of wastewater. Wastewater is mostly composed of water (~99.9%), with .1% of solids,
nutrients, organic, and inorganic compounds, and microorganisms. (B) Applications of wastewater in public health. Wastewater sample is collected and
processed, with the resulting supernatant and pellet being utilized to detect and quantify human pathogens, illicit drugs, and antimicrobial resistance.
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non-invasive tool, but also provides an earlier snapshot of active
infections than those in clinics due to virus shedding in stool which
may precede the onset of symptoms (Bibby et al., 2021). Various studies
have shown that increased SARS-CoV-2 concentrations in wastewater
were found to precede spikes in clinical cases (Peccia et al., 2020; Saguti
et al., 2021;Wu et al., 2022c; Karthikeyan et al., 2022). SARS-CoV-2 was
detected in wastewater from a nursing home in Spain before an
outbreak was declared, with the lag time between wastewater data
and cases ranging from 5 to 19 days (Bonanno Ferraro et al., 2021). A
wastewater surveillance program implemented at the University of
California-San Diego used an automatic wastewater notification system
to alert residents in buildings of positive wastewater samples
(Karthikeyan et al., 2021). The system successfully led to early
diagnosis of nearly 85% of all COVID-19 cases on the University
campus, and increased testing rates by 1.9 to 13×. However, wastewater
data may not serve as a leading indicator when clinical testing capacity
is adequate. A study in Massachusetts determined that wastewater data
had a lead time before reported cases during the first wave of the
pandemic (March-August 2020), but not during the second wave (after
August 2020), as testing capacity increased (Xiao et al., 2022).

The emergence of SARS-CoV-2 variants, especially variants of
concern (VOC), necessitates the need for variant-targeted wastewater
surveillance, such as through next-generation sequencing (NGS) or
VOC-specific polymerase chain reaction (PCR)-based assays (Table 1)
(Bar-Or et al., 2021; Izquierdo-Lara et al., 2021; Karthikeyan et al.,
2021). Genomic sequencing of wastewater samples has detected viral
lineages circulating within a population that had not yet been detected
by clinical specimen sequencing (Crits-Christoph et al., 2021). A
recent study sequenced wastewater samples in New York City and
found an increasing frequency of novel cryptic SARS-CoV-2 lineages
containing mutations belonging to the Omicron variant as well as
mutations that had been rarely observed in clinical samples (Smyth
et al., 2022). The SARS-CoV-2 variants, Alpha and Delta, were
detected in the University wastewater samples up to 2 weeks before
detection through clinical genomic surveillance (Karthikeyan et al.,
2022). It is worthwhile to mention that bioinformatic pipelines
customized for wastewater sequencing data processing are also
important due to the ‘composite’ nature of wastewater samples.
Researchers recently developed an end-to-end analysis pipeline to
reconstruct the infection dynamics of different VOCs fromwastewater
sequencing data, and validated on multiple datasets (Schumann et al.,
2022). Additionally, allele-specific PCR assays are also widely used to
quantify the distribution of VOCs in the sewersheds (Heijnen et al.,
2021; Lee et al., 2021; Lee et al., 2022). Thus, wastewater surveillance
integrated with genomic sequencing and mutation-specific
technologies are critical for tracking specific viral strains and
emerging variants in the population.

2.2 Monkeypox virus

Monkeypox virus, recently renamed as “Mpox” by WHO, is an
enveloped, double-stranded DNA virus. Mpox has been found in infected
individuals’ feces, urine, skin, semen, nasal secretions, and saliva (Peiró-
Mestres et al., 2022). Current efforts to use PCR-based tools to detect
Mpox DNA in wastewater has been successful (Tiwari et al., 2023). Mpox
monitoring in wastewater has the potential to detect trends before the
onset of symptoms and laboratory confirmation of cases, even given the
limiting factors associated with viral shedding length times,

environmental persistence, and sensitivity of analytical methods (Chen
and Bibby, 2022). Eight out of nine publicly operated WWTFs (with a
total of 287 samples collected) in California had positive detection for
Mpox DNA using the CDC’s G2R_G (targeting the OPG002 gene for all
Mpox) and G2R_WA (targeting the OPG002 gene for the West Africa
clade) assays (Wolfe et al., 2022). A study in Amsterdam qualitatively
detected Mpox in 31% of samples from five districts, 56% samples from
two WWTFs, and 26% of samples from the Schiphol airport using both
assays (de Jonge et al., 2022). Primer and probe mismatches have also
been identified in the CDCMpox generic real time PCR assay and seven
other Mpox and orthopoxvirus diagnostic assays (Wu et al., 2022b),
suggesting the need for careful evaluation of those assays before testing.
Further investigation is warranted to optimize analytical methods in
Mpox detection, improve clinical/biological understanding of viral
shedding dynamics, evaluate the overall effectiveness of Mpox
vaccines, and quantify viral recovery efficiency in wastewater, which
are crucial for using WBE data for epidemiological inference.

2.3 Enteric viruses

Enteric viruses are also frequently detected in wastewater. Enteric
pathogenic viruses are shed in high concentrations (105–1012 viral
particles per gram of fecal matter) (Gerba, 2000) and tend to have low
infectious doses (e.g., rotavirus and norovirus can be infectious at doses of
10–100 virus particles) (Yezli and Otter, 2011; Santiago-Rodriguez, 2022).
Wastewater surveillance, as part of the “Global Polio Eradication
Initiative,” was implemented in multiple countries to monitor
poliovirus in the population before 2000 (Hovi et al., 2012). However,
poliovirus has re-emerged as an infectious disease of concern in the
United States after an unvaccinated adult in Rockland County, New York
suffering from paralytic poliomyelitis tested positive for the vaccine-
derived poliovirus type 2 (VDPV2) in July 2022 (Ryerson, 2022).
Wastewater samples from 48 sewersheds in Rockland and
surrounding counties were then tested for poliovirus from 9 March to
11 October 2022, with 8.3% of the 1,076 samples (from 10 sewersheds)
having detectable concentrations of the virus (Ryerson, 2022). Routine
wastewater surveillance (April to July 2022) in Jerusalem, Israel detected
and identified an increase of vaccine-originated poliovirus type 2 even in
the absence of oral polio vaccine (Zuckerman et al., 2022).

Besides poliovirus, other enteroviruses have also been detected in
wastewater. A targeted population study in Clermon-Ferrand, France
examined wastewater, using a two-step procedure of polyethylene
glycol precipitation and tangential flow ultrafiltration, to detect an
array of viruses including norovirus, adenovirus, rotavirus, enterovirus
(EV), hepatitis A and E viruses (Bisseux et al., 2018). All 54 samples
analyzed were positive for at least one virus; and of the samples EV-
positive, it was determined that EV-D68 quietly circulated throughout
the community in September 2015 (Bisseux et al., 2018). A study in
Naples, Italy identified detectable concentrations of human
enteroviruses in treated effluent samples at three WWTFs (Pennino
et al., 2018), posing a concern for environmental contamination.

2.4 Public health implications

Virus detection in wastewater or water sources is critical given the
potential transmission risks and severe health outcomes associated with
the exposure of waterborne pathogens, especially for the elderly,
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children, and immunocompromised individuals (Teunis et al., 2010;
Bogler et al., 2020). Quantitative viral tracking data in wastewater
further helps identify or confirm “ongoing,” either silent or
recognized, outbreaks and reflect infection patterns in the sewershed.
Such data can be further used in dynamic models for epidemiological
inference and prediction (McMahan et al., 2021; Phan et al., 2023). On
the other hand, deep sequencing of wastewater samples could further
provide genetic information, such as single nucleotide polymorphisms
to understand viral evolution at the population level. Quantitative
wastewater data provide a complementary perspective to understand
the transmission of infectious diseases and inform public health
decision-making for epidemic and pandemic responses. Thus, we
believe that successful public health monitoring of viral pathogens
requires a multi-prong approach of both wastewater and clinical
surveillance, not only to detect emerging infectious diseases, but to
enhance surveillance of seasonal diseases. And integration of wastewater
and clinical surveillance will be also cost-effective for mass surveillance
(Wu et al., 2022a), disease management, and interventions.

3 Illicit drugs and opioids

Wastewater surveillance has also been used to detect human
health-related biomarkers, specifically those that are associated with
illicit drugs and opioids (Figure 1B) and evaluate community
exposures and health risks. A range of illicit compounds have been
detected in wastewater, including cocaine, heroin, MDMA,
methamphetamine, cannabis, morphine, oxycodone, fentanyl, and
methadone (Gushgari et al., 2019; Endo et al., 2020). The
utilization of wastewater for tracking illicit compounds has also
gained attention recently due to the increased health concerns
associated with exposure to synthetic opioid fentanyl (Gushgari
et al., 2019) and the continued increase in drug-related overdose

deaths in the United States, especially during the beginning of the
COVID-19 pandemic (Friedman and Akre, 2021).

3.1 Detection and analysis of drugmetabolites
in wastewater

Drugs and their metabolites in wastewater tend to be in low
concentration due to dilution, therefore requiring highly sensitive and
specific detection methods. High-performance liquid chromatography
tandem mass spectrometry (LC-MS/MS) has become the gold standard
tool to detect and quantify illicit drug compounds in wastewater (Table 1).
LC-MS/MS is regarded as the definitive approach to determine specific
drugs because of its high sensitivity, selectivity, and reproductivity (Harper
et al., 2017; Liu et al., 2018). However, it also requires sample extraction
and preparation, well-trained personnel, and advanced facilities (Harper
et al., 2017), making this a challenging method to adopt for high-
throughput WBE programs. Other detection techniques include gas
chromatography–mass spectrometry (GC-MS), surface-enhanced
Raman spectroscopy (SERS), lateral flow immunoassay, and carbon
nanotube electrode, which efficiently detected illicit drugs in complex
matrices (Angelini et al., 2019; De Rycke et al., 2020; Dragan et al., 2021;
Azimi and Docoslis, 2022; Makanye et al., 2022). Recently, advances in
sensor technology, specifically with aptamer sensors (aptasensors, Table 1)
have shown promise as a new analytical tool that is selective, stable,
automatic, and easy to use with low cost (Mao et al., 2020; Kumar et al.,
2022). Aptasensor is generally composed of an artificial single stranded
nucleic acid for specific binding of the targeted drug compound and a
reporter system to signal the binding. The aptasensor-based assay can be
further integratedwith portable devices for point-of-care detection such as
for cocaine and norfentanyl (Mao et al., 2017; Kumar et al., 2022).
However, the performance of aptasensors may be impaired by the low
concentration and non-specific binding of drug compounds in

TABLE 1 Main methods for the detection of viral diseases, illicit drugs, and antimicrobial resistance in wastewater.

Targets Detection methods Targets—example Main characteristicsa References

Virus Quantitative PCR (real-time; digital
PCR; droplet digital PCR)

SARS-CoV-2
Mpox virus
Poliovirus

(+): Quantitative; sensitive; fast and high
throughput (real-time PCR)

(-): Sensitivity and specificity depend on
designed primers/probe; limited targets

Wu et al. (2020), Heijnen et al. (2021),
de Jonge et al. (2022), Ryerson (2022)

Metagenomic and genomic
sequencing (e.g., Next-generation/

Nanopore)

SARS-CoV-2
Rotavirus
Bocavirus
Herpesvirus

(+): Non-targeted; high throughput
(-): Potential limitation in sensitivity;
expensive; need bioinformatic support

Bibby and Peccia (2013),
Crits-Christoph et al. (2021),
Karthikeyan et al. (2022)

Illicit drug
compounds

Mass spectrometry-based (e.g., LC-
MS/MS; GC-MS)

Fentanyl
Morphine
Codeine

Noroxycodone

(+): Quantitative; high analytical specificity;
sensitive

(-): Expensive; need advanced facility and
well-trained personnel

Gushgari et al. (2019), Endo et al.
(2020), Makanye et al. (2022)

Aptasensor (e.g., nanomaterial-
based; paper-based)

Cocaine
Noroxycodone
Norfentanyl

(+): Fast; easy-to-use; low cost; qualitative; can
apply on portable devices

(-): Limited sensitivity and selectivity

Mao et al. (2017), Mao et al. (2020),
Kumar et al. (2022)

Antimicrobial
resistance (AMR)

Metagenomic sequencing >1600 ARGs found (+): Non-targeted; high throughput
(-): Need bioinformatic support; limited

information regarding the host of the AMR
genes

Hendriksen et al. (2019); Dai et al.
(2022)

PCR-based (e.g., high-throughput
quantitative PCR; digital PCR)

>168 unique ARGs
quantified

(+): Targeted AMR genes; fast; sensitive;
quantitative

(-): Sensitivity and specificity depend on
designed primers/probe; limited targets

Jiao et al. (2017), Gao et al. (2018)

a(+) and (-) indicate the pros and cons of the method, respectively.
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wastewater, which requires further tests on the assay’s specificity and
robustness.

Detection and quantification of drugs in wastewater sheds light on the
illicit drug usage and spatiotemporal consumption patterns at the
population level. A multi-city study in Croatia analyzed wastewater
samples and identified that most illicit drugs consumed included
cannabis, heroin and cocaine (Krizman et al., 2016). Drug consumption
patterns identified in wastewater data indicated regional and seasonal
variations between coastal and continental cities, with associations with
summer tourist visits. Such regional and temporal differences of illicit drugs
and pharmaceuticals in wastewater were also widely observed in other
countries (Zhang et al., 2019; González-Mariño et al., 2020; Guzel, 2022).
Oxycodone and tramadol, as opposed to illicit drugs such as heroin and
fentanyl, were the most commonly measured opioids within an American
Indian Reservation (Driver et al., 2022), suggesting that prescribed opioids
may be a greater health concern as opposed to illicit drugs in some areas.
Furthermore, the flexibility in sampling offered by wastewater analysis
permits specific research scopes for illicit drug use to be pursued, such as
detecting trends during weekends, holidays, and social events (Gerrity et al.,
2011; Ort et al., 2014; Krizman et al., 2016).

Quantitative wastewater data can be further used to estimate the
number of illicit drug consumption rate and overdoses. For example,
the target compound’s concentration in wastewater (e.g., ng/mL) can
be converted to the total load (e.g., ng/day) through multiplying the
influent flow, and then utilized to estimate the consumption rates (mg/
day/1,000 people) (Gushgari et al., 2019; Endo et al., 2020). The
consumption rate can then be used to estimate drug-overdose
deaths, which aligned well with the number of reported opioid
deaths or prevalence estimates (Zuccato et al., 2008; Gushgari
et al., 2019). However, those back-calculation estimates are
impacted by multiple factors including loss rate in sewer lines,
degradation of drug and corresponding metabolites in wastewater,
total flows, population size in the sewershed, and the purity of street
products, as discussed elsewhere (European Monitoring Centre for
Drugs and Drug Addiction., 2016; Gracia-Lor et al., 2016; Margetts
et al., 2020). Thus, further studies in characterizing those factors (e.g.,
quantification of compounds’ stability and standardization of
calculation methods) will improve the inference from wastewater data.

3.2 Public health implications

Due to challenges in gathering data regarding actual opioid and illicit
drug usage, wastewater analysis offers a complementing approach to gauge
the consumption rates at the population level. TheseWBE data can further
inform new policies and programs to mitigate drug abuse, track the long-
term impact of interventions on community health, and perform
educational outreach to specific populations (Gushgari et al., 2019;
Driver et al., 2022). Accurate detection of which drugs and their
concentrations are being used in a specific community may address
knowledge gaps and limitations associated with survey health
assessments. Longitudinal sampling at upstream locations (e.g.,
manholes) or WWTFs can further indicate the temporal characteristics
of illicit drug and opioid use in the sewershed. Geographical sampling could
help identify communities or subgroups with higher consumptions and
suggest a more targeted public health intervention. Finally, the WBE data
can be further combined with clinical data such as overdose-related
hospitalizations and deaths to understand the pattern and burden of
opioid and illicit drug use in the sewershed.

4 Antimicrobial resistance

The WWTF is a reservoir and source for antibiotic resistant genes
(ARGs). Wastewater received by a WWTF harbors an array of
antibiotic resistant bacteria (ARB) and ARGs from both human
and animal excretions (e.g., hospitals, industries, livestock, etc.),
providing the opportunity for ARGs to congregate closely on
mobile genetic elements and generate complex resistance regions.
Bacteria can acquire plasmids that may confer multidrug resistance
during this process (Nguyen et al., 2021). The influent entering a
WWTF is expected to reflect, at least partly, the microbiome
characteristics representative of the community served by the
WWTF (Pärnänen et al., 2019). Although treatment systems are
typically employed in municipal WWTFs to mitigate the
environmental release of ARGs, high abundance of core ARGs are
still observed in wastewater effluents entering the environment (Raza
et al., 2022). Thus, monitoring ARGs (Figure 1B) in wastewater
provides a second platform for us to understand the burden,
transmission, and persistence of antibiotic resistance in society.

4.1 Diversity of antimicrobial resistance genes
in wastewater

Due to the limited scope and time delay of phenotyping pathogens
from human clinical infections (Hendriksen et al., 2019), efforts to
characterize AMR from wastewater has drastically increased.
Metagenomic sequencing techniques, utilizing both long and short
reads, facilitate ARGs profiling in the sample (Table 1), compared to
culture-based methodologies. Short-read next-generation sequencing
data has the ability to identify and quantify thousands of ARGs and
associated bacterial taxa, virulence genes, and pathogens (Hendriksen
et al., 2019). However, these short reads are susceptible to assembly
errors and make it challenging to identify the original organism with
specific ARGs (Arango-Argoty et al., 2018; Garner et al., 2021). Long-
read sequencing with a typical read length 10–30 kilobases (Ardui
et al., 2018) provides a greater insight regarding ARGs genetics such as
genome assembly, mapping certainty, and locations (plasmid or
chromosome) (Amarasinghe et al., 2020; Dai et al., 2022). Other
techniques for evaluating ARGs in wastewater include primarily
culture independent methods: single-cell fusion PCR, digital PCR,
high-throughput quantitative PCR, 16S rRNA amplicon sequencing
and correlation analysis, fluorescence-activated cell sorting and
sequencing, and genomic cross-linking (Nguyen et al., 2021).
Details on the advantages and disadvantages of each method are
discussed elsewhere (Ishii, 2020; Nguyen et al., 2021).

ARGdiversity and abundance has been found to vary between different
locations and even within WWTF biotreatment compartments. A
significant difference in AMR gene abundance was identified between
high-income countries (Europe/North and America/Oceania) and low-
income countries (Africa/Asia/South America) (Hendriksen et al., 2019).
For example, Brazil, Vietnam, and India were identified to have the most
divergent distribution of AMR genes, suggesting that these countries could
be hot spots for the emergence of new ARGs. AMR gene abundance was
found to be associated with several parameters regarding health sanitation,
including female child mortality rates, infection and malnutrition, and
number of physicians, among others. Another study determined that within
the same WWTF, the microbial communities and ARGs were found to be
significantly different in both liquid phase effluent and recycled activated
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sludge (Quintela-Baluja et al., 2019). The recycled activated sludge had a
lower ARG richness than the liquid effluent and downstream receiving
waters. Spatial differences in ARG abundance and diversity in WWTF
effluent have also been reported in China and Hong Kong (Zhang et al.,
2016; Yin et al., 2022). The results indicated the spatiotemporal dynamics of
ARGs in wastewater and its relevance with socioeconomic, health, and
environmental factors.

4.2 Public health implications

WWTFs are considered a critical component in AMR monitoring
and mitigation, due to their roles as reservoirs for ARGs and ARG
exchange, as well as a barrier by limiting the environmental release of
ARGs through treatment processes (Nguyen et al., 2021). The discharge of
treated wastewater into the environment also poses an increased risk of
exposure for humans viamultiple routes such as contaminated food (e.g.,
irrigated produce) and biosolid reuse in agriculture. The transfer of ARGs
into human pathogens is also an emerging public health concern.

While ARG detection and monitoring is critical both nationally
and globally for addressing the global burden and transmission of
AMR, how to interpret the wastewater data for antibiotic stewardship
and infection prevention should be considered. Stewardship can be
directed through the ARG data measured in wastewater. If AMR is
increasing in certain urban areas, for example, genes associated with
extended-spectrum beta-lactamases, physicians might limit or modify
their prescriptions accordingly. Additionally, it will alert healthcare
systems to be on guard because these infections may be challenging to
treat. One example of this importance is the potential detection of an
antimicrobial resistance gene of public health importance upon
importation into a new geographic area. The early detection of this
resistance gene can influence and inform clinical surveillance and may
enable public health intervention and mitigation before the wide
spread of resistance gene in the sewershed. The rise of novel
variants of AMR bacteria are extremely concerning and may be
identified in wastewater long before they appear clinically. Analysis
of ARG in wastewater used for urban agriculture can be also used to
understand the AMR transmission risk among humans and animals
(Bougnom et al., 2019), particularly in locations where ARG leaks into
densely populated areas. In addition, identifying exposure thresholds,
such as through quantitative microbial risk assessment (Pruden et al.,
2018), by which ARGs and ARB may adversely impact human health
need to be quantified. Public health efforts for managing AMR via
wastewater is primarily focused on characterization, but future work
incorporating quantitative AMR and ARG data into mathematical
modeling could further inform and implement mitigation strategies.
While there is plenty work left to do in ARG surveillance in
wastewater, it holds great promise in increasing our knowledge of
the dissemination and asymptomatic carriage of resistant pathogens.

5 Conclusion

Wastewater surveillance is an advancing Frontier in
environmental science to combat the three ongoing epidemics
including viral diseases, antibiotic resistance among bacterial
pathogens, and opioid misuse and overdoses. This renewed tool
can further enhance public health research and practice in multiple
facets. First, most wastewater surveillance studies are from developed

countries, however, how to develop appropriate WBE programs for
areas with limited sewerage connection rates and failing
infrastructures remains understudied. Second, analytical
methodologies have improved to detect and monitor human-
related biomarkers even at low concentrations, but how to use the
wastewater data for epidemiological inference still requires
considerable efforts to explore and discuss. Third, the connections
between wastewater and public health prompts a question about how
to treat the wastewater more efficiently and reduce transmission
risks in wastewater treatment facilities, which also act as a source of
human pathogens and ARGs to the environment. Developing
effective experimental protocols, thresholds, and standard
analytical methods to examine, monitor, and estimate the societal
burdens in the sewershed is a critical step in addressing those public
health threats (Nguyen et al., 2021).

WBE campaigns can be costly, time intensive, and require skilled
personnel and labor, but the potential benefit of this tool in the “public
health toolbox” should not be dismissed. For the three applications
discussed above, wastewater data can be integrated with clinical testing
results for a better understanding of population health. Such integration of
WBE and clinical surveillance can also be more cost-effective for mass
surveillance for endemic diseases and future pandemics (Wu et al., 2022a).
While rapid advancement has been achieved for retrieving data from
wastewater samples, further developments in data validation and
translation into real public health actions remain largely unexplored
and need wide collaborations with healthcare officials and local public
health departments.

In summary, wastewater surveillance holds promise for addressing
current public health challenges in infectious diseases and illicit drugs and
opioids. Ultimately, within a single sample of wastewater, an array of
analytical tests can be conducted to gather health information regarding
the entire community, while not being hindered by testing willingness,
capacity, or personal consent.
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