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The state of the standard model of particle physics is reviewed focusing on

two of it’s major issues: the hierarchy problem and its inconsistency with observed

neutrino masses. Supersymmetry, an elegant solution to the former, and the seesaw

mechanism in left-right models, a natural solution to the latter, are then introduced.

The work then focuses on a specific supersymmetric left-right models, which has an

additional discrete symmetry allowing a prediction of the seesaw scale at around

1011 GeV—consistent with neutrino oscillation data. It also solves the µ problem

and guarantees automatic R-parity conservation and a pair of light doubly-charged

Higgses which can be searched for at the LHC.

This model has interesting properties in the context of anomaly mediated

supersymmetry breaking (AMSB). After a brief introduction to this topic, it is

shown that this model is an instance of the Pomarol Rattazzi model of deflected

AMSB. The tachyonic slepton problem of AMSB is solved in a combination of two

ways: the right-handed sleptons are saved by their couplings to the low energy



doubly-charged fields while the left-handed sleptons receive positive contributions

from the partially decoupled D-terms. The resulting phenomenology is similar to
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the right-handed selectron can be as massive as the squarks. Finally, this model also

contains a mechanism for solving the EWSB problem of AMSB and a dark matter

candidate.
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Chapter 1

Introduction

1.1 The Standard Model

The most fundamental physical questions are “What are the building blocks

of the universe” and “how do those blocks interact with each other?”. Even though

this question is quite old, it is the underlying question of the relatively young field

of particle physics. The modern answer is summed up in the standard model (SM)

[1, 2, 3].

Matter content in the SM can be broken down into two general categories:

quarks and leptons. Each category can then be further subdivided into 3 genera-

tions with each generation containing 2 different flavors. In the quark sector, the

generations in ascending order are: up and down, charm and strange and top and

bottom; for the leptons: electron and electron neutrino, muon and muon neutrino

and tau and tau neutrino. Each successive generation is a heavier copy of the pre-

vious one.

In general these particles interact through four forces: strong, weak, electro-

magnetic and gravitational; the SM provides a quantum understanding of the first

three. Quarks are the only strongly interacting particles. Both quarks and leptons

experience the weak force and only the neutrinos do not interact electromagnet-

ically. Everyday experiences are limited to the electromagnetic and gravitational
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forces. The strong force plays a role only on the scale of 10−15m because quarks are

confined inside hadrons, e.g. protons and neutrons. The weak force is mediated by

massive particles and therefore have a characteristic scale associated with the mass

of those mediators, also roughly 10−15m.

The SM states that each of these three forces is mediated via spin 1 bosons

called gauge bosons. Gauge boson-matter interaction strengths are proportional

to charge. Strong force charge is called color and has three different values: red,

green and blue. Mediation of the strong force takes place via eight massless glu-

ons, which also carry color charge. Isospin determines weak force interaction. The

weak force carriers are three massive gauge bosons W+,W− and Z0. Finally the

electromagnetic force is mediated by massless, chargeless photons. Particle charges

are summed up in the language of group theory in Table 1.1.

1.1.1 The Standard Model Lagrangian

Mathematically, the description of the three forces is quite remarkable and

links them to a beautiful area of mathematics: group theory. Specifically the SM

forces correspond to local (or gauge) symmetries of the Lagrangian. Therefore it is

necessary to know the symmetry groups, the particle content and its charge under

the groups. The Lagrangian is then just all the operators of dimension four or

less that can be built from the particle content which are invariant under local

transformations of the symmetry groups. The SM forces are the direct product:

SU(3)c × SU(2)L × U(1)Y , with the subscript letters standing for: color, left and

2



hypercharge. Particle representations under this direct product are summarized in

Table 1.1. The electric charge is given by Q = T3 + 1
2
Y where T3 is the isospin

charge and Y the hypercharge. Here the superscript i = 1..3 denotes generation so

Fields SU(3)c × SU(2)L × U(1)Y

Q′i
L (3, 2,+1

3
)

u′iR (3, 1,+4
3
)

d′iR (3, 1,−2
3
)

L′iL (1, 2,−1)

e′iR (1, 1,−2)

H (1, 2,−1)

Table 1.1: Representation assignment for the fermion and Higgs fields of the SM

where the superscript i = 1..3 represents generation, the prime indicates that these

are gauge and not mass eigenstates and the subscript L (R) denotes 2 component

left-handed (right-handed) fermions. The electric charge is given by Q = T3 + 1
2
Y

where T3 is the isospin charge and Y the hypercharge

that for example:

Q′3
L =

t′L
b′L

 L′3L =

ν ′τ
τ ′L

 u′2R = c′R (1.1)

while L (R) represents two component left-handed (right-handed) fermions with

ψR,L = 1
2
(1± γ5)ψ. Also, color degrees of freedom will not be indicated in the rest

of this discussion.
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The SM also includes an SU(2)L scalar doublet, the Higgs:

H =

H+

H0

 (1.2)

with a potential given by:

V = −µ2|H|2 + λ|H|4 (1.3)

Given a µ2 > 0 the trivial vacuum expectation value (VEV) of H leads to an unstable

ground state, i.e. for 〈0|H| 0〉 ≡ 〈H〉 = 0. The stable ground state can be found by

minimizing the potential:

〈H〉 =
1√
2

0

v

 v =

√
µ2

λ
(1.4)

Since a non-zero VEV for a quantum field is not well-defined, it is necessary to shift

H0 → H0 + v. This corresponds to a spontaneous breaking of the gauge symmetry

and leads to massive gauge bosons as can be seen in the covariant derivative. This

is known as the Higgs mechanism [4, 5, 6]. The covariant derivative is defined so

that Dµψ is invariant under the local gauge group. In general the SM covariant

derivative is

Dµ = ∂µ − ig2τ
aW a

µ − i
Y

2
g1Bµ (1.5)

where for the Higgs boson Y = +1. The SU(2)L generators are given by τa = σa

2

where the σa are the Pauli spin matrices.

Once the Higgs field is shifted, the Higgs covariant derivative term produces

4



the following mass terms for the bosons:

W±
µ ≡ 1√

2
(W1 ∓ iW2) MW =

g2v

2
(1.6)

Z0
µ ≡ cos θwW

3
µ − sin θwBµ MZ =

1

2
v
√
g2
1 + g2

2 (1.7)

Aµ ≡ sin θwW
3
µ + cos θwBµ MA = 0 (1.8)

h ≡
√

2
(
<
(
H0
)
− v
)

Mh =
√

2λv (1.9)

where sin θw ≡ g1/
√
g2
1 + g2

2 and Aµ represents the massless photon of electromag-

netism. Colloquially, it is said the gauge bosons have eaten some of the degrees of

freedom of the Higgs to become massive. Three new degrees of freedom exist in

the gauge sector corresponding to each gauge boson that has become massive. This

corresponds to the three scalar Higgs degrees of freedom which no longer appear in

the SM. Furthermore, the masses of the gauge bosons are such that the cross-section

for W pair production does not violate unitarity, as would be true for a theory in

which gauge boson masses are naively inserted.

An important quantity in the SM can now be defined

ρ ≡ M2
W

M2
Z cos θ2

w

(1.10)

which is equal to one at tree level and is sensitive to beyond the SM (BSM) physics.

Experimental verification of this is one of the indicators of the validity of the stan-

dard model.

Fermion couplings to the gauge sector via the covariant derivatives generate

charged and neutral currents. The charged current, J+
µ , is characterized by V − A

interactions and couples to W±. At low energies, where the W boson is integrated
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out, the charged current reduces to the effective Lagrangian responsible for muon

and beta decay. The two neutral currents are: the electromagnetic vector current

coupled to the photon and the current coupled to the Z0. It is important to note

that these do not contain flavor changing neutral currents (FCNC). Such processes

only arise at loop level with W propagators and are therefore small. Experimental

measurements of FCNC are consistent with this framework, another success for the

SM.

While fermion mass terms are not gauge invariant Yukawa interaction terms

between the fermions and the Higgs are possible. Once the Higgs is shifted by its

VEV, fermion mass terms are generated

Lmass =
v√
2

∑
ij

(
yi

ej ē
′
Lie

′j
R + yi

ejū
′
Liu

′j
R + yi

dj d̄
′
Lid

′j
R + h.c.

)
(1.11)

Neutrinos remain massless because of the absence of right-handed neutrinos, which

have not been observed in nature. A given 3 × 3 mass matrix is proportional to

the appropriate Yukawa matrices and is not necessarily diagonal. Diagonalizing

the mass matrices rotates the fermions from gauge eigenstates to the more physical

mass eigenstates. The consequences of this is that while the up-type quark gauge

eigenstates can be identified with the mass eigenstate, the down-type quarks are

related as follows 
d′

s′

b′

 = VCKM


d

s

b

 (1.12)

where the unprimed fields are mass eigenstates and VCKM is a 3× 3 unitary matrix

known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is this mixing that
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allows for charged flavor changing currents at tree level and ultimately FCNC at

loop level.

1.1.2 Standard Model Summary and New Physics Wish List

The success of the SM was hinted at in Section 1.1.1 with the ρ parameter and

FCNC but includes more than that. In fact, almost all particle phenomena to date

fits within the theoretical framework of the SM. Perhaps the most striking example

of this is the discovered of the W and Z bosons at CERN in 1983 with masses

of about 80 and 92 GeV respectively. This is consistent with a VEV, v = 246.3

GeV [7, 8]. Furthermore, the SM unifies the weak and electromagnetic forces into

the electroweak force, which is a consequences of the spontaneous SU(2)L × U(1)Y

breaking.

The SM is truly satisfying theoretically since it’s construction is guided by

the basic principle of gauge symmetries. The resulting operators of the SM are not

only invariant under the gauge groups but also manifest the accidental symmetries

of baryon and lepton number conservation. Furthermore, ’t Hooft showed that all

operators of dimension four or less in the SM are renormalizable. However, despite

all of this phenomenal successes, model builders have been trying to expand on

the SM almost since its inception. Most of these have used the principle of gauge

symmetries and the Higgs mechanism that have made the SM so successful. The

wish list of new physics includes solutions to these issues:

The Gauge Hierarchy Problem: Scalar masses are very sensitive to higher
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physics scales through quantum corrections. Calculation of such a correction must

be proportional to some mass scale squared: the tree level mass of the Higgs or

the scale of new physics, which cuts off the loop momentum integral. A quantum

correction proportional to the Higgs mass would indicate a symmetry forbidding the

Higgs mass: as the Higgs mass went to zero at tree level, quantum corrections would

too. However, no symmetry can forbid the term m2|h|2, therefore the quantum

corrections to the Higgs mass must be proportional to the scale of new physics. For

a Yukawa coupling between the Higgs and the top quark:

Lyukawa ⊃ ytt̄ht (1.13)

a one loop mass correction exists. The contribution from this goes as

δm2
h ∼ −

y2
t

16π2
Λ2 (1.14)

where Λ is the new scale. In the SM, the next scale of physics is possibly the Planck

scale, Λ ∼ 1018 GeV, making this quantum correction quite large.

The physical Higgs mass is given by

m2
h = m2

0 + δm2
h (1.15)

where m2
0 is the bare Higgs mass parameter in the Lagrangian. The physical Higgs

mass must be less than 1 TeV in order to solve the unitarity problem of W pair

production. Therefore, the sum of m2
0 and δm2

h must cancel to one part in 1030.

This is an enormous amount of fine-tuning and while it is not an actual theoretical

problem, it seems to signal some underlying mechanism at work here. This has been

the greatest driving force in BSM model building.
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Neutrino Masses and Oscillations: Around 2000, oscillations between

neutrinos of different gauge eigenstates were experimentally observed. Such oscil-

lations signal massive neutrinos, which are not consistent with the tree level SM

Lagrangian. A naive addition of right-handed neutrinos would lead to neutrino

Dirac masses comparable to the masses of the other fermions, which are too large

(assuming neutrino Yukawa couplings comparable to the Yukawas in the SM).

Dark Matter: Observation of galaxy rotation curves [9] show that the veloc-

ity of stars does not drop off with radius of the galaxy as expected from Newton’s

laws. This can be a result of either a modification of Newtonian gravity or a concen-

tration of a large amount of dark matter in the outer regions of the galaxy. Other

data exists to confirm the latter hypothesis and shows that dark matter makes up

about 23% of the universe. Observations and calculations [10] indicate that dark

matter must be: electric and color neutral, non-baryonic, cold (moving at non-

relativistic speeds) and stable. The most likely SM dark matter candidate, the

neutrino is relativistic and therefore excluded [11].

Charge Quantization and Higher Symmetries: One of the consequences

of quantum corrections is the running of coupling constants with energy. In the

SM, an evolution of the three gauge couplings shows that they almost intersect at

about 1016 GeV. It is very tantalizing to suppose that at this energy scale, a new

gauge symmetry exists which unifies the three forces of the SM into one and whose

matter multiplets unify quarks and leptons. Models that assume such symmetries

are referred to as grand unified theories (GUTs). The unified group would not

include U(1) factors and therefore its quantum numbers would all be quantized.

9



Since electric charge would need to be related to these quantum numbers, it too

would be quantized instead of depending on the seemingly unphysical hypercharge

quantum numbers (which are chosen to cancel triangle gauge anomalies). Other

options, such as relating electric charge to more physical quantum numbers or partial

unification, also exist.

Why Electroweak Symmetry Breaking: While the SM explains how the

mechanism of electroweak symmetry breaking (EWSB) takes place, there is no ex-

planation why. Specifically, why is µ2 positive in Eq. (1.3) making the Higgs doublet

tachyonic thereby destabilizing the trivial vacuum.

Generations and Hierarchy: The SM is a very economical model but the

inclusion of three similar generations, instead of one, seem to challenge this economy.

Furthermore, the mass hierarchy between the different generations is startling. The

top to electron mass ratio is on the order of about 3× 105.

Strong CP Problem The QCD Lagrangian allows for a charge parity (CP)

violating term

Lθ = θ
g2

32π2
εµναβGµνGαβ (1.16)

with θ < 10−9 necessary to agree with the observed electric dipole moment of the

neutron. This is unnaturally small and suggests the existence of a symmetry forbid-

ding this term. The most simple solution, an extra U(1)PQ Peccei-Quinn symmetry

leads to an unobserved pseudo-Goldstone boson, the axion.

This thesis focuses on a type of model which addresses at least two of these
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issues: supersymmetric left-right models (SLRMs). Supersymmetry (SUSY) is a

symmetry between bosons and fermions and provides an elegant solution to the

gauge hierarchy problem by canceling quantum contributions to the Higgs mass

between fermionic and bosonic loops. It will be discussed in Section 1.3. Under

certain circumstances, SUSY also: provides a dark matter candidate, dynamically

triggers EWSB and allows for a true intersection of the gauge couplings at around

1016 GeV.

Left-right models, discussed in Section 1.2, extend the symmetry of the SM

by replacing U(1)Y by SU(2)R×U(1)B−L. The Higgs mechanism is then invoked to

break SU(2)R × U(1)B−L down to U(1)Y . Left-right models are attractive because

they put left-handed and right-handed particles on the same footing and have the

potential to be invariant under parity. Their particle content naturally includes the

right-handed neutrino and can easily facilitate small neutrino masses via the seesaw

mechanism. They can also lead to a natural solution to the strong CP problem and

relate electric charge to the more physical quantum number: baryon minus lepton

number.

1.2 Massive Neutrinos and Left-Right models

Neutrinos produced from weak interactions are gauge eignestates and super-

positions of mass eigenstates weighted by a phase factor of e−iEt E =
√
m2 + p2.

If the masses are different, then the probability that a given neutrino with flavor i

will oscillate into a neutrino with flavor j 6= i is non-zero. Such oscillations were
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first proposed by Pontecorvo in the 1960s and experimentally observed in the 2000s.

They represent the first empirical evidence for BSM physics.

Neutrino oscillations have been measured for two neutrino sources: solar[12,

13, 14] and atmospheric[15, 16]. Solar electron neutrinos are produced through

fusion reactions in the sun but the observed flux through the SNO underground

detector was less than that expected from fusion calculations. The result can be

explained in terms of neutrino oscillations with a mass difference ∆m2
12 ∼ 6 ×

10−5 eV2. Atmospheric muon neutrinos are produced when cosmic ray interact

with the Earth’s atmosphere. The flux is isotropic yet the underground Super-

Kamiokanda detector found less upwards flux then downwards. Since the upward

flux must travel further, it was concluded that the smaller flux is a reflection of

oscillations into tau neutrinos. This reflects a mass difference of about m23 ∼

2.5× 10−3 eV2.

The SM does not allow for tree level masses for the neutrinos to explain these

observations. However non-renormalizable operators

Lν = c
(LH)2

M
(1.17)

can exist, where M is some mass scale. Given that 10−5 ≤ c ≤ 1, as is true for the

Yukawa couplings, and the mass bound mνe ≤ 2 eV from tritium beta decay then

the mass scale for new physics lies in the range

1010GeV ≤M ≤ 1015GeV (1.18)

although c and therefore the mass scale can be smaller. A simple extension of the

SM, well motivated by neutrino masses, is the left-right symmetric model. The
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gauge group is SU(3)c×SU(2)L×SU(2)R×U(1)B−L where B−L is baryon minus

lepton number. When the gL = gR is also assumed parity is also a symmetry of

the Lagrangian. Left-right theories are a natural framework in which to invoke the

seesaw mechanism[17, 18, 19, 20, 21] for small neutrino masses. The particle content

and its SU(2)L×SU(2)R×U(1)B−L representation is given in Table 1.2. where the

Fields SU(2)L × SU(2)R × U(1)B−L

Qi
L (2, 1,+1

3
)

Qi
R (1, 2,+1

3
)

Li
L (2, 1,−1)

Li
R (1, 2,−1)

Φ1 (2, 2, 0)

∆L (3, 1, 2)

∆R (1, 3, 2)

Table 1.2: Representation assignment for the fermion and Higgs fields of the left-

right model where the superscript i = 1..3 represents generation.

∆R is a right-handed triplet which facilitates SU(2)R×U(1)B−L → U(1)Y while the

bidoublet Φ plays the role of the SM Higgs inducing SU(2)L × U(1)Y → U(1)EM .

The VEV structure is:

〈Φ1〉 =

〈φ0
1 φ+

1

φ−2 φ0
2


〉

=
1√
2
e

iα

κ 0

0 κ′

 (1.19)
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〈∆L,R〉 =

〈∆+
√

2
∆++

∆0 −∆+
√

2


L,R

〉
=

1√
2

 0 0

vL,R 0

 (1.20)

with vL < κ′ � κ � vR. Note that in general vL does not have to be small since

terms such as Tr ∆Lφ∆Rφ must be included in the potential which will source ∆L,

however large vL will lead to ρ 6= 1. Therefore vL is highly constrained and must be

less than a few GeV.

1.2.1 The Seesaw Mechanism In Left-Right Models

The seesaw mechanism arises through Yukawa couplings in left-right models

LY ukawa ⊃ yia
QjQ̄LiΦaQ

j
R + yia

LjL̄LiΦaL
j
R (1.21)

+ ifij

(
LiT

L C
−1∆LL

j
L + LiT

R C
−1∆RL

j
R

)
+ h.c.

where a = 1, 2 and Φ2 ≡ τ2Φ
∗
1τ2. The terms in the last line have the same coupling

due to parity. Once the Higgses are VEVed, Eq. (1.21) produces two types of mass

terms for the neutrinos: Dirac with mD ∼ yLκ and Majorana with MR ∼ fvR and

mL ∼ fvL leading to the mass matrix

Mν =

mL mT
D

mD MR

 (1.22)

where the elements of this matrix are 3×3 in generation space. The eigenvalues are

mν = mL −mT
DM

−1
R mD = fvL − κyT

L

1

fvR

κyL (1.23)

mN = MR = fvR (1.24)
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mν is naturally very small given a large MR and is the mass of the observed mostly

left-handed neutrino. N is the mostly right-handed, heavy neutrino. Now the right-

handed scale vR can be identified with the new mass scale M in Eq. (1.17), the mass

of the mostly right-handed neutrino and the seesaw scale. This is the type I seesaw

mechanism.

1.2.2 Motivation and Consequences of Left-Right Models

Left-right models are motivated by more than just neutrino masses. Theo-

retically, gauging B − L is well motivated, since it is the only anomaly free U(1)

symmetry of the Lagrangian, aside from hypercharge, once the right-handed neu-

trino is included. The upshot of this is that the electric charge is now given by

Qem = I3L + I3R +
1

2
(B − L) (1.25)

which is more physically significant than the SM form which depends on hypercharge

quantum numbers. Furthermore, parity symmetry is aesthetically appealing since it

puts left-handed and right-handed fields on equal footing. It also solves the strong

CP problem by forbidding the strong CP violating term linear in θ since θ → −θ

under parity.

Utilization of the seesaw mechanism via left-right models has a variety of

interesting experimental consequences. The Majorana mass term for neutrinos vi-

olates lepton number by ∆L = 2. This ingredient allows for interesting experi-

mental effects such as: neutrinoless double beta decay and lepton flavor violating

processes: µ−, τ− → e−e+e−, muon-electron conversion and muonium-antimuonium
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oscillation—µ+e− → µ−e+. Meanwhile, baryon number continues to be a good

symmetry below the right-handed scale guaranteeing a stable proton.

Right-handed currents lead to possible CP violation in the weak sector. Limits

on new CP violation in various meson systems can be used to put a lower bound on

the mass of the right-handed WR

mWR
∼ 1

2
g2vR & 2TeV (1.26)

where the exact bound is dependent on model details. This translates into a lower

bound on the right-handed scale itself and has implications in the neutrino sector.

1.3 Supersymmetry

Many useful reviews have been written on SUSY [22, 23, 24], which can be

considered the most pleasing solution to the gauge hierarchy problem. It’s success

is easy to understand since quantum corrections to a scalar mass stemming from

fermionic couplings are negative while those from the scalar couplings are positive.

Therefore, if there were some way to relate these couplings to each other in the

correct way they will cancel and the gauge hierarchy problem would be solved. This

is the case when the Lagrangian is invariant under a symmetry whose generators

transform fermions to bosons and vice-versa. Such a symmetry must necessarily have

fermionic generators, but its form is highly constrained by the Coleman-Mandula

theorem which states that the most general Lie algebra cannot contain such oper-

ators. It is possible to side step this theorem by considering so called graded Lie
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algebras. The simplest and the one that will be considered here is:

{
Qα, Q

†
α̇

}
= 2σµ

αα̇Pµ (1.27)

{Qα, Qβ} =
{
Q†

α̇, Q
†
β̇

}
= 0 (1.28)

[Qα, Pµ] =
[
Q†

α̇, Pµ

]
= 0 (1.29)

known as N = 1 SUSY, where N represents the number of fermionic generators,

in this case just Q. P µ is simply the momentum of a supermultiplets and since it

commutes with the SUSY generators P 2 = m2 must be equal for each member of

a multiplet. Finally, σµ ≡ (1, ~σPauli). It can be proved that a given supermultiplet

must have the same number of bosonic and fermionic degrees of freedom.

SUSY can be viewed as an extension of four dimensional space time by four

fermionic or Grassman dimensions, θ and its charge conjugate θ̄. Each have two

degrees of freedom and dimension −1
2
. Superfields can than be expanded in terms of

these fermionic dimensions. Note that because of the fermionic properties θ3, θ̄3 = 0.

Two types of superfields can be defined: chiral (Φ) and vector (V)

Φ = φ+
√

2θψ + θ2F (1.30)

V = −θσµθ̄A
µ + 2iθ2θ̄λ† − 2iθ̄2θλθ2θ̄2D

where φ is a complex scalar, its superpartner is ψ, a Weyl fermion, F is a non-

propagating complex scalar needed for off-shell matching of degrees of freedom, Aµ

is a gauge boson, λ is Aµ’s spin half superpartner and D is non-propagating real

scalar. These fields are in the Wess-Zumino gauge.

Integration over Grassman variables is possible and is fairly straight forward
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with:

∫
dθ2θ2 =

∫
dθ̄2θ̄2 = 1 (1.31)∫

dθ2 =

∫
dθ̄2 = 0

This type of integration can then be used to pick up certain components of prod-

ucts of superfields, say the θ2θ̄2 component of Φ†Φ. This is useful since the highest

component of θ and θ̄ in a given product of of superfields transforms into a to-

tal space-time derivative leaving the action invariant. Therefore, a general SUSY

Lagrangian is given by:

L =

∫
d2θd2θ̄K

(
Φ,Φ†, V

)
+

(∫
d2θ(WαWα +W (Φ) ) + h.c.

)
(1.32)

K
(
Φ,Φ†, V

)
= Φ†Φ + ... (1.33)

W (Φ) = MijΦ
iΦj + YijkΦiΦjΦk (1.34)

Wα = −iλα +

(
δβ
αD −

1

2
i(σµσν)β

α Fµν

)
θβ + θ2σµ

αα̇∂µλ
†α̇ (1.35)

The Kahler Potential, K
(
Φ,Φ†, V

)
, is real and has mass dimensions of two.

The superpotential, W (Φ), is dimension three and is holomorphic meaning it is a

function of Φ and not Φ†. As suggested by Eq. (1.32), the superpotential generates

Yukawa and mass terms. The SUSY field strength is contained in WαWα.

Auxiliary fields such as F and D can be replaced in the Lagrangian using their

equations of motion

−F ∗
i =

∂W (φj)

∂φi

(1.36)

Da
A = −gAφ

i∗T aφi
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where W is understood to be a function of the scalar components of the superfields

and not the superfields themselves. For the D-term, T a are the generators corre-

sponding to the representation of φ and A stands for a specific gauge group so that

for Da
3 is the D term for the ath generator of SU(3)c. The scalar potential in an

unbroken SUSY model is then given completely in terms of F - and D-terms

V =
∑

i

|Fi|2 +
1

2

∑
a,A

(Da
A)2 (1.37)

which can be derived from Eq. (1.32). Yukwawa interactions between the scalar and

fermion components of the different chiral fields are given by:

LY ukawa = −1

2

∑
ij

(
∂2W (φk)

∂φi∂φj

ψiψj

)
−
√

2
∑
A,a,i

gAφ
i∗T aψiλ

a + h.c. (1.38)

where in the first term, the superpotential is again a function of the scalar fields

as in Eq. (1.36) and the second term is a sort of superpartner to the D term in

Eq. (1.36).

Armed with these tools it is now possible to discuss the minimal supersym-

metric standard model (MSSM).

1.3.1 The Minimal Supersymmetric Standard Model

The particle content of the MSSM in terms of superfields and representations

under the SM gauge group are given in Table 1.3, with i = 1..3 indicating genera-

tion. Each superfield is composed of a complex scalar and a two component Weyl

fermion, so that MSSM has about two times as many particles as the SM. All Weyl

fermions are represented as left-handed fermions, e.g the fermion component of uc is
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the charge conjugate of the right-handed Weyl fermion u, itself a left-handed field.

In terms of nomenclature, SM fermion superpartner are called sfermions: squarks,

sleptons, stops, while SM boson superpartners are called bosinos: Higgsino, gluino,

wino and bino. Collectively the superpartners of the gauge bosons are called gaug-

inos.

Fields SU(3)c × SU(2)L × U(1)Y Superpartner

Qi (3, 2,+1
3
) Q̃i

uc
i (3, 1,−4

3
) ũc

i

dc
i (3, 1,+2

3
) d̃c

i

Li (1, 2,−1) L̃i

ec
i (1, 1,+2) ẽc

i

Hu (1, 2,+1) H̃u

Hd (1, 2,−1) H̃d

g (8, 1, 0) g̃

W (1, 3, 0) W̃

B (1, 1, 0) B̃

Table 1.3: Particle content and representation assignment for the MSSM superfields

where the superscript i = 1..3 represents generation. The superfields are composed

of complex scalars and left-handed Weyl fermions

Aside from the doubling of the particle content due to the introduction of

superpartners, the MSSM also introduces a new Higgs superfield. This is necessary
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for anomaly cancellation due to the Higgsino. The Higgs subscript indicates which

couples to the up and which to the down sector.

The most general superpotential based on this particle content can be broken

up into three parts

WMSSM = yj
uiQ

iHuu
c
j + yj

diQ
iHdd

c
j + yj

eiL
iHde

c
j + µHuHd (1.39)

W/L =
1

2
λk

ijL
iLjec

k + λ′kijL
iQjdc

k + µ′iL
iHu (1.40)

W /B = λ′′ijkuc
id

c
jd

c
k (1.41)

where W/L and W /B break lepton and baryon number respectively. This is one of the

consequences of having extra degrees of freedom in the SUSY model. Such terms

are potentially highly disagreeable with experiments, especially the combination of

λ′′ijk and λ′kij , which lead to rapid proton decay. The current lower bound on the

proton lifetime is 1.9× 1029 years. It is important to note though, that even if the

proton lifetime is under control, W/L would lead to LSP decay and therefore no dark

matter candidate.

In order to avoid such problems the MSSM is defined to contain a discrete

symmetry in addition to the SM gauge groups. This symmetry can be viewed as

a symmetry which commutes with SUSY, matter parity, or one which does not,

R-parity. The results are equivalent. Charges under R-parity are

PR = (−1)3(B−L)+2s (1.42)

where s the spin of the particle. This symmetry forbids W/L and W /B while allowing

WMSSM and has interesting phenomenological consequences. One of these is that all
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SUSY partners have a charge of −1 while SM fields have a charge of +1. Since terms

in the Lagrangian must have a charge of +1 to be invariant, SUSY particles must

appear in even numbers in any given term. SUSY particles must then decay into

an odd number of SUSY particles. Decays of the lightest supersymmetric particle

(LSP) to other SUSY particles is kinematically forbidden making the LSP stable

and a dark matter candidate. This is another pleasing feature of SUSY models.

Despite its benefits, SUSY is incompatible with nature since spin 0 versions

of the electrons (or in fact any fundamental scalar fields) have never been observed.

The goal then is to build models with broken SUSY in which the superparticles are

more massive then their superpartners. SUSY breaking can be achieved in one of

two ways: D-term breaking, 〈D〉 6= 0, or F -term breaking, 〈F 〉 6= 0. Utilization

of these techniques with MSSM fields will shift superparticle masses away from the

masses of their SM superpartners but these masses still observe the following sum

rule

STr
(
m2
)
≡ (−1)s (2s+ 1)Tr

(
m2

s

)
= 0 (1.43)

where STr is the supertrace and s is the spin. Given the conservation of lepton

flavor, it is reasonable to assume that the electron sector decouples so that

m2
ẽL

+m2
ẽR

= 2m2
e (1.44)

where ẽL (ẽR) is the superpartner to the left-handed (right-handed) electron. This

is again in violation of empirical data. However this sum rule does not preclude the

possibility of SUSY breaking in a hidden sector, not accessible to experiments. SUSY

breaking can then be communicated indirectly to the visible sector. The resulting
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SUSY Lagrangian must contain only soft parameters (dimension 1 or greater) or the

gauge hierarchy problem would be reintroduced. Also, parameters should on the

order of a TeV, the SUSY scale mSUSY , otherwise the fine-tuning problem starts to

creep back in.

It is possible to parameterize such a Lagrangian in a general way

LSoft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + c.c.

)
(1.45)

−
(
auQ̃Huũ

c + adQ̃Hdd̃
c + aeL̃Hde

c + c.c.
)

− Q̃†m2
Q̃
Q̃− ucm2

ũcũc† − d̃cm2
d̃c d̃

c† − L̃†m2
L̃
L̃

− ẽcm2
ẽc ẽc† −m2

Hu
|Hu|2 −m2

Hd
|Hd|2 − (bHuHd + c.c.)

The first line contains mass terms for the gauginos, the second trilinear scalar cou-

plings (dimension one) analogue to the Yukawa couplings in the superpotential, the

third and fourth have mass terms for all the scalars while the last term is a bilinear

term of dimension two analogue to the Higgs µ term in the superpotential. While

generation indices have been suppressed, it is important to note that all of the tri-

linear a-terms and all of the sfermion and slepton mass terms are 3× 3 matrices in

generation space. Therefore, Eq. (1.45) has 105 free parameters negating the econ-

omy of SUSY. Furthermore, many of these parameters are severely constrained by

data on FCNC and violation of (CP). In order for SUSY to be theoretically satisfy-

ing, there should be a dynamical method of hidden sector SUSY breaking such that

the resulting SUSY breaking Lagrangian relies on only a few parameters and which

predicts the dangerous parameters to be close to zero. This has been the focus of

many SUSY efforts.
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1.3.2 Methods of SUSY Breaking

There are currently three popular scenarios of hidden sector SUSY breaking:

1. gravity mediated SUSY breaking, 2. gauge mediated SUSY breaking (GMSB)

and 3. anomaly mediated SUSY breaking (AMSB).

• Gravity mediation is based on gravity strength interactions (suppressed by

MP ) between the hidden and visible sector. Mass terms stem from terms of

the form

∫
d4θ

zi
j

M2
P

X†XQ†
iQ

j (1.46)

in the Kahler potential, d4θ ≡ d2θθ̄. Here X is a hidden sector field with a

SUSY breaking VEV 〈FX〉 6= 0. Therefore

msusy ∼
〈FX〉
MP

(1.47)

so that 〈FX〉 ∼ 1011 GeV. This has potential issues with FCNC and CP

violation due to the fact that zi
j need not be diagonal in the basis of quark

mass eigenstates and could lead to mass terms such as m2
s̃d̃
6= 0. Such a term

would lead to the K0 − K̄0 mixing and must obey

m2
s̃d̃

m2
Q̃

. 10−3
( mQ̃

500GeV

)
(1.48)

Extra simplifying assumptions can be made with the resulting boundary con-
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ditions at MP for the soft parameters:

M3 = M2 = M1 = m1/2 (1.49)

m2
Q̃

= m2
ũc = m2

d̃c = m2
L̃

= m2
ẽc = m2

ũc = m2
Hu

= m2
Hd

= m2
0

au = A0yu, ad = A0yd, ae = A0ye

This scenario is known as mSUGRA and it is the mostly widely phenomeno-

logically studied SUSY breaking model. The number of free parameters has

been decreased from 105 to three.

• GMSB proposes that the messenger sector is composed of fields charged under

the SM gauge group. These fields couple directly to the hidden sector thereby

gaining SUSY breaking masses. Once these fields are integrated out of the

Lagrangian, they communicate the SUSY breaking to the visible sfermions

(gauginos) via two loop (one loop) diagrams. The important quantity here is

the ratio

Λ =
〈FX〉
Mmess

(1.50)

where Mmess is the mass scale of the messengers and 〈FX〉 6= 0 yields a SUSY

violating mass term. The boundary conditions for the soft terms at the mes-

senger scale in the minimal model are

Ma =
αa

4π
Λ (1.51)

m2
φi

= 2Λ2

((αa

4π

)2

Ca(i)

)
(1.52)

A = 0 (1.53)
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where Ca(i) are the Casimir invariants for the scalar φ. Because SM currents

do not violate flavor, these mass terms won’t either. These terms depend on

two free parameters.

The limitations of the GMSB is related to the gravitino mass which must go

as

m3/2 =
〈FX〉
MP

(1.54)

The messenger scale must be much less thanMP where possible flavor violating

physics will introduce flavor violation into Eq. (1.51). Comparing Eq. (1.54)

to Eq. (1.50) shows that m3/2 � Λ ∼ 16πmsusy. Therefore, the gravitino will

be the LSP and may lead to cosmological problems. Furthermore, it is too

relativistic to be a dark matter candidate.

• AMSB is theoretically very rich and will be discussed in detail in Chapter 3.

For now, the important thing to note is that SUSY breaking in the visible

sector occurs because of the breaking of scale invariance at loop level. There-

fore, the SUSY breaking parameters are functions of the low energy beta and

gamma functions as well as the mass parameter Fφ

m2
φi

= −1

4
|Fφ|2

(
∂γi

∂ga

βga +

(
∂γi

∂yjkl
βyjkl + c.c

))
(1.55)

aijk = −Fφβyijk (1.56)

Ma =
αaba
4π

Fφ no sum over a (1.57)

where ga represents all the gauge couplings, yjkl represents all the Yukawa

couplings and sums over repeated indices are assumed unless otherwise stated.
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Unlike mGSMB and mSUGRA, these relationships apply at any scale—they

are not boundary conditions. Given the loop suppression factor, Fφ should

be of order 30 TeV to produce a viable superparticle spectrum. Note that

since the β- and γ- functions are dependent on known low energy parameters,

AMSB has only one free parameter Fφ, making it very predictable.

A quick test of Eq. (1.55) for the right-handed selectron uncovers a serious

problem. The Yukawa couplings of the selectron are negligible, therefore

m2
ẽc = −1

4
|Fφ|

∂γec

∂g1

βg1 (1.58)

= −
(
|Fφ|
16π2

)2

(Caga)
(
bag

3
a

)
= −

(
|Fφ|
16π2

)2(
6

5
g1

)(
33

5
g3
1

)
= −

(
|Fφ|
16π2

)2(
198

25
g4
1

)

where the MSSM beta and gamma functions are given in Appendix A.3. The

selectron mass squared is therefore negative, the selectron tachyonic and there-

fore the charge conserving vacuum is unstable—a clear violation of the empir-

ical world. This will be true for all the slepton since their mass expression are

dominated by the gauge contributions and because their gauge slope parame-

ter, b is positive (those gauge groups are UV enslaved). This will not be true

for the squarks since SU(3)c is asymptotically free and therefore b3 < 0.

This situation is difficult to remedy because of the lack of free parameters in

AMSB. Still there have been many proposed solutions to this problem, with

the most well studied one being minimal AMSB (mAMSB) where a universal
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parameter m0 is added to all the soft mass terms at some higher scale (two

free parameters in this case). A model to solve this problem will be proposed

in Chapter 4 in the framework of deflected AMSB and based on the work in

Chapter 2.

1.3.3 Minimal Supersymmetric Standard Model Details

If the MSSM is to have the potential to replace the SM, it is crucial that

it break electroweak symmetry. To determine if this happens, it is necessary to

examine the scalar potential for the neutral Higgses. This is the sum of the SUSY

breaking contributions and the SUSY conserving ones

V = VF + VD + Vsoft (1.59)

= |F |2 +
1

2
(D)2 + Vsoft

=
(
m2

Hu
+ µ2

) ∣∣H0
u

∣∣2 +
(
m2

H0
d

+ µ2
) ∣∣H0

d

∣∣2 − (bH0
uH

0
d + h.c.

)
+

1

8

(
g2
1 + g2

2

) (∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2 )2

In order for electroweak symmetry breaking to occur, it is necessary for a linear

combination of Higgses to be tachyonic. This is equivalent to a negative determinant

for the Higgs mass matrix

(
m2

Hu
+ µ2

) (
m2

Hd
+ µ2

)
− b2 < 0 (1.60)

This results for either large b or for either negative
(
m2

Hu
+ µ2

)
or
(
m2

Hd
+ µ2

)
but

not both. As it turns out m2
Hu

is usually driven negative by its renormalization

group equation (RGE), which can potentially make
(
m2

Hu
+ µ2

)
negative. This is
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known as radiative EWSB. In this way, the MSSM can provide a solution to the

question of why EWSB posed in Section 1.1.2.

Using the definitions

〈
H0

u

〉
≡ vu

〈
H0

d

〉
≡ vd tan β ≡ vu

vd

v2
u + v2

d = v2 ∼ (246.3 GeV)2 (1.61)

the minimization of the potential yields the conditions

µ2 = −1

2
M2

Z −
m2

Hd
−m2

Hu
tan2 β

1− tan2 β
(1.62)

b =
sin 2β

2

(
2|µ|2 +m2

Hu
+m2

Hd

)
(1.63)

As in the SM, EWSB will give mass to the W± and Z0 bosons meaning three of

the Higgs degrees of freedom must be eaten. Since at the start there were eight, there

should be five physical Higgs degrees of freedom left. They are given in Table 1.4

The appearance of the gauge boson masses in the mass expressions in Table 1.4 is

Field Linear Combination Mass Squared

A0
√

2(cβ=(H0
u) + sβ=(H0

d)) 2b/s2β

H± cβH
+
u + sβH

−∗
d m2

A0 +M2
W

H0
√

2(sα(<(H0
u)− vu) + cα(<(H0

d)− vd) ) 1
2

(
m̄2 +

√
m̄4 − 4M2

Zm
2
A0c22β

)
h0

√
2(cα(<(H0

u)− vu)− sα(<(H0
d)− vd) ) 1

2

(
m̄2 −

√
m̄4 − 4M2

Zm
2
A0c22β

)
Table 1.4: Physical Higgs degrees of freedom in the MSSM with m̄2 ≡ m2

A0 +M2
Z ,

cθ (sθ) ≡ cos θ (sin θ) and at tree level s2α

s2β
≡ − m̄2

m2
H0−m2

h0

not surprising since Eq. (1.6) states that post symmetry breaking Higgs masses are

related to the quartic coupling times the VEV. In the MSSM, the quartic couplings
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are the gauge couplings whose product with the VEV yield the gauge boson masses.

This leads to a somewhat uncomfortable situation since the expression for the mass

of h0 in Table 1.4 implies

mh0 < |cos (2β)|MZ < 92 GeV (1.64)

while current LEP II bounds state that mh0 > 114.4 GeV. Fortunately, since SUSY

is broken, there are still quadratic corrections to the Higgs. The most relevant term

is

δmh0 =
3

4π2
m2

ty
2
t log

mt̃1mt̃2

m2
t

(1.65)

which can lift the Higgs mass above the LEP II bound.

Sfermions and their masses are discussed in Appendix B.1.1. Their spectrum is

very dependent on the SUSY breaking mechanism although in general it is assumed

that squarks are heavier than sleptons. Bosino masses are noted in Appendix B.1.2.

These are all also dependent on the SUSY breaking scenario. The lightest bosino

is usually the bino and the default LSP in most models. The LSP is important in

collider phenomenology since SUSY particles will cascade decay to it.

1.3.4 Summary and Issues

Despite its highlights: solving the gauge hierarchy problem, radiative EWSB,

dark matter and gauge coupling unification at 1016, SUSY also has some issues:

SUSY Breaking: What is the correct method of SUSY breaking and specif-

ically, how is the lack of new flavor and CP violation explained in the MSSM.
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The µ Problem: The Higgs mass parameter, µ, in Eq. (1.39) must be of

order 1 TeV, around the SUSY scale, for correct EWSB, Eq. (1.62). However, mass

parameters in a superpotential are expected to coincide with other possible SUSY

conserving scales such as the GUT scale, 1016 GeV, or the Planck scale, 1018 GeV.

This coincidence of µ ∼ msusy is known as the µ problem.

The Little Hierarchy Problem: At tree level, the Higgs mass has an upper

bound of the Z mass, Eq. (1.64), lower than the LEP II bound of 114.4 GeV.

Radiative corrections can push the physical mass above this bound and depend on

the log of the stop mass, Eq. (1.65). But the stop mass also tends to increase the

value of |mHu | by feeding into it’s RGE. At the large tan β limit where the bound

in Eq. (1.64) is saturated, Eq. (1.65) becomes:

|µ|2 −m2
Hu
∼ −1

2
M2

Z (1.66)

Therefore, the fine-tuning in the MSSM is approximately calculated as

F ∼ M2
Z

2m2
Hu

∼ 2% (1.67)

for a Higgs mass above the LEP II bound. This means that µ and mHu must cancel

up to two parts in one hundred, large enough to cause some worry.

R-Parity: The need for an extra discrete symmetry is unsatisfying.

1.4 Organization

Of the SM issues mentioned in Section 1.1.2, the most striking theoretical

issue is the gauge hierarchy problem while the existence of neutrino masses is the
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only empirical particle physics phenomena which the SM fails to explain. It is

therefore well motivated to analyze SLRM. However, even in these models, the

right-handed scale is arbitrary and at best, a wide range can be guessed at based on

neutrino mass bounds Eq. (1.18). Chapter 2 examines a minimal SLRM with a Z4

discrete symmetry and shows that the right-handed scale is given by the geometric

mean of two well motivated scales: the Planck scale and the SUSY scale—vR ∼
√
MP ×mSUSY . It also generates a µ term of the right order solving the µ problem.

SUSY breaking can proceed through any of the known mechanisms in this

type of minimal model. However, the model has interesting consequences in AMSB

(AMSB is reviewed in Chapter 3). The shallow potential of this model introduces

new SUSY breaking at the right-handed scale and therefore the AMSB trajectories

are deflected below that scale. The low energy model has new Yukawa couplings

to the right-handed sleptons which can be large enough to save the right-handed

sleptons from their tachyonic fate. The left-handed sleptons are saved by partially

decoupled D-terms, which are decoupled completely in AMSB models. If the model

is extended by a singlet so that the low energy theory is the next-to-minimal SUSY

standard model (NMSSM) instead of the MSSM, then the problem associated with

EWSB problem can also be solved. All of these properties can be seen as a conse-

quence of neutrino masses and will be discussed in Chapter 4.
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Chapter 2

Predicting the Seesaw Scale

2.1 Motivation

One of the simplest ways to understand small neutrino masses is to use the

seesaw mechanism where the fact that the right-handed neutrino is a standard model

singlet allows a large Majorana mass, MR, for it leading to a small effective Majorana

mass for the left-handed neutrino given by mν ∼ −
m2

D

MR
� me,u,d. This is discussed

in Section 1.2.1 in the context of left-right models. While left-right models are not

necessary for implementation of the seesaw mechanism, they do answer the following

two questions associated with the seesaw mechanism

• Is there a natural way for the right-handed neutrino to appear in the theory

rather than just being added to the standard model by hand?

• How large is the seesaw scale MR? In particular, why is MR �MP as required

by observations?

The answers to these questions are connected. To answer the second question,

one may start with the observation that the Majorana masses of the right-handed

neutrinos break the B−L symmetry, and if B−L is a gauge symmetry of nature[25],

then that will explain why MR � MP . The right-handed neutrino is necessary in

SU(2)L × U(1)I3R
× U(1)B−L (G211) or the left-right symmetric group SU(2)L ×
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SU(2)R×U(1)B−L due to anomaly cancellation. So, B−L naturally explains both

the seesaw scale and the presence of νR.

None of these considerations, however, indicate the magnitude of the seesaw

scale, MR and experimental considerations only give a very rough range, 1010GeV ≤

MR ≤ 1015GeV, see Eq. (1.18). The higher value is tantalizingly close to the conven-

tional GUT scale in SUSY theories. As a result, in GUT theories such as SO(10),

one can identify MR with the scale of grand unification. Yet such theories allow

many different values for MR while remaining consistent with the grand unification

of couplings[26, 27, 28]. The choices involved in the symmetry breaking and the

choice of Higgs multiplets prevents this connection between MR and grand unifi-

cation from being unique. Nonetheless, simple one or two step symmetry breaking

SO(10) models have provided a compelling class of models for studying the conse-

quences of the seesaw mechanism for neutrino masses and mixings and need to be

taken very seriously.

This chapter takes an alternative point of view to the understanding of neu-

trino masses by making a minimal extension of the SM to the SLRM [29, 30, 31, 32].

It will show that if in addition to this, a discrete Z-symmetry is added, then the

model predicts MR '
√
MSUSYMP ∼ 1011 GeV. The reasoning for this is straight

forward: the Z-symmetry prohibits bilinear Higgs terms from the superpotential

but allows quartic terms. This would combine with the soft SUSY breaking terms

to produce a potential of the form:

V = −m2
soft|φ|

2 − msoft

MP

φ4 +
1

M2
P

|φ|6 (2.1)
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It then follows that 〈φ〉 ∼
√
msoftMP — which is of the right order of magnitude to

be the seesaw scale. This is the main result of this chapter and is of interest since

it determines the seesaw scale from first principles without the assumption of grand

unification.

Before filling in the details of this discussion, a brief introduction to SLRM will

be given in Section 2.2. Specifically it will be shown that in the class of models con-

sidered here, R-parity is an automatic symmetry of the superpotential. Section 2.3,

will present the minimal SU(2)L×SU(2)R×U(1)B−L model where the seesaw scale

is predicted as the geometric mean of the weak scale and the Planck scale. It will

also analyze the ground state of the theory since including both Z-symmetry and

R-Parity can be dangerous. The Z-symmetry restricts the number of parameters in

the superpotential and R-parity allows a stable charge violating vacuum; therefore,

it is not obvious a priori that this model has a stable, electric charge conserving

vacuum. The effective low-energy theory will also be presented. Verifications will be

made that it contains the MSSM, SU(2)L×U(1)Y breaking is possible and that the

model provides a solution to the µ problem. In Section 2.4 the group theoretical ar-

guments for the low energy extended Higgs spectrum of the model will be discussed.

This sector contains TeV scale doubly charged fermions and bosons—confirming the

results discussed in Section 2.2—as well as new light states. The mass spectrum of

this sector will also be given symbolically and numerically for sample parameters

and checks will be made that there are no tachyonic states. GUT prospects are

presented in Section 2.5.
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2.2 Supersymmetric Left-Right Models

As discussed in Section 1.2.2, left-right models include in their gauge group

U(1)B−L. By restating R-parity charge of Eq. (1.42) in terms of the equivalent

matter parity.

PM = (−1)3(B−L) (2.2)

it becomes clear that gauged B−L automatically guarantees all terms are R-parity

conserving. Early analyzes of the vacuum structure of SLRMs showed that spon-

taneous breaking of parity into a charge conserving vacuum required that R-parity

also be spontaneously broken by 〈ν̃c〉 6= 0. This still excludes rapid proton decay

terms from appearing in the superpotential but the LSP is unstable and therefore

not a dark matter candidate.

Two solutions were discussed on how to break SU(2)R × U(1)B−L while con-

serving automatic R-parity in the low-energy effective theory: adding new B−L = 0

triplets which allow for separate U(1)B−L and SU(2)R breaking scales[33] and SLRM

with non-renormalizable terms[32, 34, 33]. Both of these methods only give VEVs

to fields which are evenly charged under B − L so that their VEVs do not sponta-

neously break R-parity. The models discussed in the rest of this thesis will fall into

the non-renormalizable category and shall be referred to as minimal supersymmetric

left-right models (MSLRM).

The chiral supermultiplet content of MSLRM and its charge under SU(2)L ×

SUR(2)R × U(1)B−L is given in Table 2.1. Note that typically, two bi-doublets are

necessary to reproduce the CKM matrix however, one of these is usually assumed to
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Fields SU(2)L × SU(2)R × U(1)B−L

Qi (2, 1,+1
3
)

Qc
i (1, 2,−1

3
)

Li (2, 1,−1)

Lc
i (1, 2, 1)

Φa (2, 2, 0)

∆ (3, 1, 2)

∆̄ (3, 1,−2)

∆c (1, 3,−2)

∆̄c (1, 3,+2)

S (1, 1, 0)

B (1, 1, 0)

WL (3, 1, 0)

WR (1, 3, 0)

g (1, 1, 0)

Table 2.1: Representation assignment for the chiral supermultiplets of MSLRM

where the superscript i = 1..3 represents generation, a = 1..n the number of bidou-

blets.

decouple below the right-handed scale. This is achieved through some fine-tuning.

The supermultiplets have the following SU(2)L and SU(2)R transformations

Q→ ULQ Qc → URQ
c L→ ULL Lc → URL

c
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∆ → UL∆cU †
L ∆̄ → UL∆̄U †

L Φa → ULΦaU
†
R

∆c → UR∆cU †
R ∆̄c → UR∆̄cU †

R

and therefore may be written in component form as

Q =

u
d

 L =

ν
e



Qc =

 dc

−uc

 Lc =

 ec

−νc



∆ =

∆+
√

2
∆++

∆0 −∆+
√

2

 ∆̄ =

 ∆−√
2

∆0

∆−− −∆−√
2



∆c =

 ∆c−
√

2
∆c 0

∆c−− −∆c−
√

2

 ∆̄c =

 ∆̄c+
√

2
∆̄c++

∆̄c 0 − ∆̄c+
√

2



Φ =

Φ0
d Φ+

u

Φ−
d Φ0

u


These fields form the general superpotential

W = WY ukawa +Wsinglet +WMass +WNR (2.3)

WY ukawa = iya
QQτ2ΦaQ

c + iya
LLτ2ΦaL

c + ifLτ2∆L+ if cLcτ2∆
cLc (2.4)

Wsinglet = S
(
λ∆ Tr

(
∆∆̄

)
+ λ∆c Tr

(
∆c∆̄c

)
−M2

R

)
+ λabS Tr

(
ΦT

a τ2Φbτ2
)

(2.5)

WMass = µ∆ Tr
(
∆∆̄

)
+ µ∆c Tr

(
∆c∆̄c

)
+ µab Tr

(
ΦT

a τ2Φbτ2
)

(2.6)

WNR =
λA

MP

(
Tr
(
∆c∆̄c

) )2
+
λB

MP

Tr(∆c∆c) Tr
(
∆̄c∆̄c

)
(2.7)

+
λab

α

MP

Tr
(
∆c∆̄c

)
Tr
(
ΦT

a τ2Φbτ2
)

+ ...
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Invariance of the theory under the following parity transformations

Q→ −iτ2Qc∗ Qc → iτ2Q
∗

L→ −iτ2Qc∗ Lc → iτ2Q
∗

∆ → τ2∆
c∗τ2 ∆c → τ2∆

∗τ2

∆̄ → τ2∆̄
c∗τ2 ∆̄c → τ2∆̄

∗τ2

Φ → Φ† S → ±S∗

θ ↔ θ̄ W̃L ↔ W̃ ∗
R

B̃ ↔ B̃∗ g̃ ↔ g̃∗

implies that

yQ,L = y†Q,L f = f c∗ λ∆ = ±λ∗∆c

λab = ±λab∗ µab = µab∗ µ∆ = µ∗∆c

λA,B,α = λ∗A,B,α ML = M∗
R MB−L,3 = M∗

B−L,3 (2.8)

where θ and θ̄ are the Grassman dimensions introduced in Section 1.3 andMB−L,L,R,3

are the gaugino mass for U(1)B−L, SU(2)L, SU(2)R, SU(3)c respectively. Note that

the singlet can be either parity odd or even.

MSLRM can now be further subdivided into two classes of theories: those

which contain the singlet S and those that do not. The analysis here will be done

without the singlet since this is more minimal and does not rely on the arbitrary

MR. It will also prove more useful later on. The superpotential is the same as in
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Eq. (2.3) but without Wsinglet. The triplet F -terms are

−F ∗
∆c0 = ∆̄c0

(
µ∆c +

2λA

MP

Tr
(
∆c∆̄c

))
(2.9)

−F ∗
∆̄c0 = ∆c0

(
µ∆c +

2λA

MP

Tr
(
∆c∆̄c

))
−F ∗

∆0 = ∆̄0

(
µ∆ +

2λA

MP

Tr
(
∆∆̄

))
−F ∗

∆̄0 = ∆0

(
µ∆ +

2λA

MP

Tr
(
∆∆̄

))

and can be satisfied with the choice

〈
∆c0
〉

=
〈
∆̄c0
〉

=

√
µ∆cMP

2λA

≡ vR (2.10)

〈
∆0
〉

=
〈
∆̄0
〉

= 0

Note that in general, non-renormalizable operators of the schematic form ∆Φ2∆c

are allowed and source ∆ forcing it to have a non-zero VEV but these will be small

due to the small size of 〈Φ〉 and the large MP suppression. Mass scales associated

with the new particle content should be larger than the electroweak scale to avoid

experimental bounds. Specifically, µ∆c > 100 GeV. This then puts a lower bound

on the right-handed scale

vR ∼
√
µ∆cMP > 1010GeV (2.11)

hence justifying the assumption of large vR in the MSLRM.

Regardless of the singlet, these models allow for a powerful statement: they

always contains light doubly-charged Higgses[32, 34]. This can be argued on the

basis of group theory. The particle content only allows triplets to appear in renor-
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malizable terms with non-zero VEVs in the following manner

〈W 〉 = f
(〈

Tr
(
∆c∆̄c

) 〉 )
(2.12)

These types of terms have an extended complexified global symmetry, U(3) (a U(3)

whose rotational parameters are complex). The right-handed VEV breaks this sym-

metry to a U(2). Therefore, the vacuum is invariant under the four generators of

U(2) and not invariant under 9−4 = 5 broken generators of U(3). This corresponds

to five complex massless degrees of freedom (or ten real massless degrees of freedom)

as dictated by the Goldstone theorem. Three of these degrees of freedom will be

eaten by W±
R and a linear combination of W3R and B. These will be either singu-

larly charged or neutral based on the charges of the now fat gauge bosons. Three

of them will also pick up mass from the D-terms, Eq. (1.36), in a supersymmetric

analogue to the eaten fields. This leaves four massless real degrees of freedom, which

are the two doubly-charged Higgs bosons. Furthermore, since this argument exists

independent of SUSY breaking, the Higgsinos must also obey it.

In total then, there are two massless doubly-charged Higgs bosons and two

massless doubly-charged Higgsinos. This is where the non-renormalizable terms

become important. The λB term in Eq. (2.3) explicitly breaks the U(3) symmetry

and can therefore generate mass of order
v2

R

MP
. The fact that doubly-charged fields

have not yet been observed puts a lower bound of

vR > 1010GeV (2.13)

which is now the bound in the MSLRM and justifies the assumption of large vR in

both derivations.

41



The above analysis shows that realistic SLRMs can be built in which R-parity

is an automatic symmetry of the effective superpotential below the right-handed

scale and that such models can lead to interesting phenomenology such as light

doubly-charged Higgs fields. This means that SLRMs can put SUSY back on the

same footing as the SM by producing a low energy theory with accidental tree-level

baryon and lepton conserving terms. Aside from being aesthetically pleasing, this

also solves a practical issue with the MSSM.

In addition, SLRM with parity has other nice features. For example, the strong

CP problem, Section 1.1.2 is even more severe in SUSY and requires

θ̄ ≡ θ arg det(MuMd)− 3 argM3 < 10−9 (2.14)

in order to satisfy experimental data on the electric dipole moment of the neutron.

However, M3 is real in SLRM with parity due to Eq. (2.8) and parity demands that

the θ → −θ and therefore forbids Eq. (1.16). Furthermore, it can be shown that

both the up and down type mass matrices are real in SLRM, therefore solving the

strong CP problem at tree level. There have been several papers showing how this

solution also extends to loop level [35].

Finally, SLRMs have an advantage over their non-SUSY cousins with regards

to the seesaw mechanism. As argued in Section 1.2, the non-SUSY left-right models

will always have 〈∆L〉, whose size is dependent on the parameters in the scalar

potential. However, in SLRMs, the mixing term which sources ∆L is suppressed by

MP thereby producing a naturally small 〈∆L〉. The seesaw matrix in SLRM is then
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given by

Mν =

 0 mT
D

mD MR

 (2.15)

and depends on one less parameter than Eq. (1.22).

2.3 Theoretical Model And the Seesaw Scale

As mentioned in Section 2.1, the seesaw scale, and therefore the right-handed

scale is arbitrary in SUSY left-right models. The only clue comes from a lower bound

of about 1010 GeV due to the lower bounds on the mass of light doubly-charged

Higgses, as shown Section 2.2. More specifically, in MSLRMs, the seesaw scale

is predicted in terms of arbitrary mass parameters in the superpotential, namely

vR ∼
√
µMP . Is it possible to change this into a prediction instead of a lower

bound?

This would be possible if µ was some well motivated mass scale instead of

being arbitrary. Aside from MP , the only well motivated mass scale in the theory

is the SUSY scale. Typically, if µ ∼ mSUSY then the sum of mSUSY and µ will

appear in the lower bound for vR instead of just µ. Therefore, if the µ terms in the

superpotential Eq. (2.3) can be forbidden then a prediction of vR ∼
√
MPmSUSY

can be made.

One possibility for restricting the µ terms can be borrowed from the next-to

minimal supersymmetric standard model, in which all mass terms are forbidden by

a discrete Z3 symmetry. This is easy to do because of the holomorphic property of
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the superpotential which does not allow terms of the form mφ|φ|2. In this case, a

discrete Z4 is appropriate with:

(∆̄c,∆c,Φ) → eiπ/2(∆̄c,∆c,Φ) (2.16)

(L,Lc, Q,Qc) → e−iπ/4(L,Lc, Q,Qc) (2.17)

Furthermore parity symmetry is assumed to be broken at a high scale so that the

left-handed partner of the ∆c and ∆̄c are not included in the theory. This is done

for simplicity and is not necessary. In addition only one bidoublet will be included,

again for simplicity and because the mixing attributed to the CKM matrix can

be reproduced in SLRMs through SUSY breaking terms. The superpotential is

then that given in Eq. (2.3) without WMass and Wsinglet and is reproduced here for

convenience

W = WY ukawa +WNR (2.18)

WY ukawa = iyQQτ2ΦQ
c + iyLLτ2ΦL

c + if cLcτ2∆
cLc (2.19)

WNR =
λA

MP

(
Tr
(
∆c∆̄c

) )2
+
λB

MP

Tr(∆c∆c) Tr
(
∆̄c∆̄c

)
(2.20)

+
λα

MP

Tr
(
∆c∆̄c

)
Tr
(
ΦT τ2Φτ2

)
+ ...

Several comments regarding this superpotential are in order:

• As planned there are no bilinear terms. This was achieved via a Z4 symmetry

but there may be other motivations for this. This model is then dubbed the

predictive supersymmetric left-right model (PSLRM) and was first discussed

in [36].
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• There is no distinct Tr
(
∆cτ2Φ

T τ2Φ∆̄c
)

in the non-supersymmetric theory.

This is due to the the holomorphic property of the superpotential which only

allows Φ terms in the form ΦT τ2Φ to satisfy SU(2)L invariance. The trans-

pose then forces another τ2 to be involved. This, coupled with the fact that

ΦT τ2Φτ2 = 1·det Φ, gives that Tr
(
∆cτ2Φ

T τ2Φ∆̄c
)

= 1
2
Tr
(
∆c∆̄c

)
Tr
(
ΦT τ2Φτ2

)
.

The Higgs potential can be derived from Eq. (2.18). The F -terms are

−F ∗
∆c0 =

2λA

MP

∆c0∆̄c02 +
λα

MP

∆̄c0 Tr
(
ΦT τ2Φτ2

)
(2.21)

−F ∗
∆̄c0 =

2λA

MP

∆c02∆̄c 0 +
λα

MP

∆c0 Tr
(
ΦT τ2Φτ2

)
(2.22)

It is worth nothing that since 〈∆c0〉 ∼ 1010 ∼ vR GeV while 〈Φ〉 ∼ 200 GeV the

triplet F -terms will be non-zero, F∆c ∼ v3
R

MP
, and therefore will introduce new SUSY

breaking. The potential and its components are

V (Φ,∆c, ∆̄c) = VF + VD + VSoft (2.23)

VF =
4λ2

A

M2
P

∣∣Tr
(
∆c∆̄c

)∣∣2 (Tr|∆c|2 + Tr
∣∣∆̄c
∣∣2 )

+
4λ2

B

M2
P

[∣∣Tr
(
∆̄c∆̄c

)∣∣2 Tr|∆c|2 + |Tr(∆c∆c)|2 Tr
∣∣∆̄c
∣∣2 ]

+
λ2

α

M2
P

∣∣Tr
(
ΦT τ2Φτ2

)∣∣2 (Tr|∆c|2 + Tr
∣∣∆̄c
∣∣2 )+

4λ2
α

M2
P

∣∣Tr
(
∆c∆̄c

)∣∣2 Tr|Φ|2

+

[
4λAλB

M2
P

Tr
(
∆c∆̄c

) (
Tr(∆c∆c)∗ Tr

(
∆̄c †∆c

)
+ Tr

(
∆̄c∆̄c

)∗
Tr
(
∆̄c∆c †))

+
2λAλα

M2
P

Tr
(
∆c∆̄c

)
Tr
(
ΦT τ2Φτ2

)∗ (
Tr|∆c|2 + Tr

∣∣∆̄c
∣∣2 )

+
2λBλα

M2
P

Tr
(
ΦT τ2Φτ2

)∗ (
Tr(∆c∆c) Tr

(
∆̄c∆c †)+ Tr

(
∆̄c∆̄c

)
Tr
(
∆̄c †∆c

))
+ c.c

]
(2.24)
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VD =
g2

R

8

∑
a

[
Tr
(
2∆c †τa∆

c + 2∆̄c †τa∆̄
c − ΦτaΦ

†) ]2 +
g2

L

8

∑
a

[
Tr
(
Φ†τaΦ

) ]2
+
g2

BL

2

[
Tr
(
∆̄c †∆̄c −∆c †∆c

) ]2
(2.25)

VSoft = −m2
∆c Tr

(
∆c †∆c

)
−m2

∆̄c Tr
(
∆̄c †∆̄c

)
−m2

Φ Tr
(
Φ†Φ

)
−
ZAm3/2

MP

[(
Tr
(
∆c∆̄c

) )2
+ c.c.

]
+
ZBm3/2

MP

[
Tr(∆c∆c) Tr

(
∆̄c∆̄c

)
+ c.c.

]
−
Zαm3/2

MP

[
Tr
(
∆c∆̄c

)
Tr
(
ΦT τ2Φτ2

)
+ c.c.

]
(2.26)

with VF being the F -term contribution, VD theD-term, and VSoft the SUSY breaking

terms, the most general soft potential given the superpotential. Here mass terms in

the form mφ|φ|2 are allowed since they cannot be forbidden by any symmetry. VSoft

is necessary in this case since in the SUSY limit the minimum of the potential is

the trivial one.

The minimization conditions, correct up to electroweak order (i.e. neglecting

terms of order v3
wk/MP and smaller), are:

1

∆c0

∂V

∂∆c0
=

1

2

(
g2

BL + g2
R

) (
v2

R − v̄2
R

)
+

1

4
g2

R

(
κ2

u − κ2
d

)
−m2

∆c

−
ZAm3/2

MP

v̄2
R +

λ2
Av̄

2
R

M2
P

(
2v2

R + v̄2
R

)
= 0 (2.27)

1

∆̄c0

∂V

∂∆̄c0
= −1

2

(
g2

BL + g2
R

) (
v2

R − v̄2
R

)
− 1

4
g2

R

(
κ2

u − κ2
d

)
−m2

∆̄c

−
ZAm3/2

MP

v2
R +

λ2
Av

2
R

M2
P

(
v2

R + 2v̄2
R

)
= 0 (2.28)
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1

Φ0
u

∂V

∂Φ0
u

=
1

4
g2

R

(
v2

R − v̄2
R

)
+

1

8

(
g2

R + g2
L

) (
κ2

u − κ2
d

)
−m2

Φ +
λ2

αv
2
Rv̄

2
R

M2
P

− vRv̄R

[
Zαm3/2

MP

− λAλα(v2
R + v̄2

R)

M2
P

]
κd

κu

= 0 (2.29)

1

Φ0
d

∂V

∂Φ0
d

= −1

4
g2

R

(
v2

R − v̄2
R

)
− 1

8

(
g2

R + g2
L

) (
κ2

u − κ2
d

)
−m2

Φ +
λ2

αv
2
Rv̄

2
R

M2
P

− vRv̄R

[
Zαm3/2

MP

− λAλα(v2
R + v̄2

R)

M2
P

]
κu

κd

= 0 (2.30)

where we have taken the vacuum expectation values (VEVs) to be the real part of

the neutral field; that is

vR ≡
〈
Re ∆c 0

〉
v̄R ≡

〈
Re ∆̄c 0

〉
κu ≡

〈
Re Φ0

u

〉
κd ≡

〈
Re Φ0

d

〉
(2.31)

Considering only Eq. (2.27) for the moment, take

vR = v sin θR v̄R = v cos θR κu = κ sin β κd = κ cos β (2.32)

Now, the difference of the squares of vR and v̄R must be of order v2
wk (subtracting

the two equations in Eq. (2.27) will reveal this), so θR must be near π/4. Therefore,

let

θR =
π

4
+
ε

2
(2.33)

and expand to first order in ε (as we shall see, ε ∼ vwk/MP —so ε is quite small).

The sum of the two equations in (2.27) yields a quadratic for v2:

−
(
m2

∆c +m2
∆̄c

)
−
ZAm3/2

MP

v2 +
3

2

λ2
Av

4

M2
P

= 0 (2.34)

and the difference gives an expression for ε:

ε =
v2

R − v̄2
R

v2
=
m2

∆c −m2
∆̄c + 1

2
g2

Rκ
2 cos 2β

(g2
BL + g2

R) v2
(2.35)
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The solution to Eq. (2.34),

v2 =

ZAm3/2 +
√(

ZAm3/2

)2
+ 6λ2

A

(
m2

∆c +m2
∆̄c

)
3λ2

A

MP (2.36)

gives the prediction of the right breaking scale. Since ZA ∼ λA ∼ 1 and m∆c ∼

m∆̄c ∼ m3/2 ∼ vwk, we get the result v '
√
vwkMP . This shows that the seesaw

scale can be determined in terms of two other commonly assumed and well motivated

scales in the theory; i.e. the Planck scale in four dimensions and the supersymmetry

breaking scale (which is of the order of the weak scale to solve the gauge hierarchy

problem). The seesaw scale, then, is MR ' v ∼ 1011 GeV and is a realistic mass

scale in regards to both neutrino masses and the masses of the doubly-charged fields.

From Eq. (2.35), ε . vwk/MP ∼ 10−16.

Now turn to Eq. (2.29)—again using Eq. (2.32) and expanding to first order

in ε, their sum yields an expression for sin 2β:

sin 2β =

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2

λ2
αv4

2M2
P
− 2m2

Φ

(2.37)

and their difference—after using Eq. (2.35) and Eq. (2.37)—gives

cos 2β =

1
2

g2
R

g2
BL+g2

R

(
m2

∆̄c −m2
∆c

)
1
4

(
g2

L +
g2

BLg2
R

g2
BL+g2

R

)
κ2 + λ2

αv4

2M2
P
− 2m2

Φ

(2.38)

Both Eq. (2.37) and Eq. (2.38) are consistent with any value of β and constrain

the parameter space once a value of β has been specified. It is also easy to make an

analogy between them and the usual MSSM results as we now do.
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2.3.1 Effective Theory and the µ Problem

We begin our discussion of the effective low energy theory with the relationship

between our parameters and those in the MSSM. When SU(2)R×U(1)B−L is broken

the Tr
(
∆c∆̄c

)
Tr
(
ΦT τ2Φτ2

)
of Eq. (2.18) will yield a mass term for the SU(2)L

doublets φu and φd; since these are basically the Hu and Hd of the MSSM, this is

the usual µ term. We then have that

|µ| =
∣∣∣∣λαv

2

2MP

∣∣∣∣ ∼ vwk (2.39)

which is of the desired order of magnitude without any extra assumptions and

therefore solves the µ problem

Similar reasoning yields that the SUSY breaking bilinear term, B, will have a

contribution resulting from the Zα term in Eq. (2.26); however, it will also receive

a contribution from the F -term of Eq. (2.24)—specifically the coefficient of λAλα.

Together these give

b =

[
Zαm3/2

2MP

− λAλαv
2

2M2
P

]
v2 (2.40)

Using the expressions for b and µ and examining the minimization conditions

given by Eq. (2.29), we can read off m2
Hu

and m2
Hd

:

m2
Hu

= −m2
Φ +

1

4
g2

R

(
v2

R − v̄2
R

)
(2.41)

m2
Hd

= −m2
Φ −

1

4
g2

R

(
v2

R − v̄2
R

)
(2.42)

Here it is noticed that m2
Hu

6= m2
Hd

despite the apparent symmetry of the

superpotential and the soft-breaking mass term. This splitting is due to theD-terms,

which is reflected in the fact that their difference is proportional to g2
R. Specifically,
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it is the D-term involving τ3 (the ones involving τ1 and τ2 won’t contribute because

when the VEVs are placed in for ∆c and ∆̄c these are zero) that gives a positive

v̄2
R − v2

R contribution to m2
Hu

and a negative one to m2
Hd

.

Using Eq. (2.35) these expressions may be recast into the form

m2
Hu

= −m2
Φ +

1

4

g2
R

g2
BL + g2

R

(
m2

∆c −m2
∆̄c

)
(2.43)

m2
Hd

= −m2
Φ −

1

4

g2
R

g2
BL + g2

R

(
m2

∆c −m2
∆̄c

)
(2.44)

This form is advantageous because we now have that

m2
Hu
−m2

Hd
=

1

2

g2
R

g2
BL + g2

R

(
m2

∆c −m2
∆̄c

)
(2.45)

which, with the masses of the left-handed (standard model) particles

M2
Z =

1

4

[
g2

L +
g2

BLg
2
R

g2
BL + g2

R

]
κ2 (2.46)

M2
W =

1

4
g2

Lκ
2 (2.47)

allows us to write Eq. (2.37) and Eq. (2.38) in the enticing form

sin 2β =
2B

2|µ|2 +m2
Hu

+m2
Hd

(2.48)

cos 2β =
m2

Hu
−m2

Hd

m2
Z + 2|µ|2 +m2

Hu
+m2

Hd

(2.49)

which can be related to the usual minimization expressions of the MSSM, see

Eq. (1.62).

The interesting aspect of this result is that, provided m2
∆c 6= m2

∆̄c , there exists

a region of the parameter space where tan β ≡ κu

κd
� 1. This is an important

feature because it has been noted that for theories involving a single bidoublet[37, 38]
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getting tan β > 1 is difficult. However, it is necessary for realistic quark and lepton

masses and mixings. Since this model does not require additional particles to achieve

tan β � 1 (as opposed to those previously discussed[39, 40]), it is truly a minimal

scheme.

2.3.2 Charge Violation Consideration

The above model is based on VEVs that are consistent with the charge conserv-

ing vacuum. However, it has been noted in earlier works that in SUSYLR models,

the ∆c fields may have a VEV that breaks electric charge conservation[30] unless one

breaks R-parity. In this model though, the existence of non-renormalizable terms

allow for the charge conserving vacuum to have a much lower ground state energy

than the charge conserving one for large regions of the parameter space. This en-

sures that the theory will spontaneously break into the phenomenologically viable

vacuum—the charge conserving one.

To see this we can compare the ground state values of the two potentials, the

charge violating one (CV) and the charge conserving (CC) one. The VEVs for the

CC case have already been discussed, their analogues in the CV case are:

〈∆c〉 =

 0 vR√
2

vR√
2

0

 〈
∆̄c
〉

=

 0 v̄R√
2

v̄R√
2

0


The resulting ground state expressions, to order vR, are:

〈V 〉CV = −1

2
v2
(
m2

∆c +m2
∆̄c

)
+

(ZB − ZA)m3/2v
4

2MP

+
(λA + λB)2 v6

M2
P

(2.50)

〈V 〉CC = −v2
(
m2

∆c +m2
∆̄c

)
−

2ZAm3/2v
4

MP

+
8λ2

Av
6

M2
P

(2.51)
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Where v2 for the CC case was given in Eq. (2.36) and v2 for the CV case is:

v2 =
MP

6(λA + λB)2

(
(ZA − ZB)m3/2

+

√(
(ZA − ZB)m3/2

)2
+ 6(λA + λB)2 (m2

∆c +m2
∆̄c

))
(2.52)

The crucial point here is that the CV ground state expression has a dependence

on both ZB and λB, which do not appear in the CC expression. This means that for

sufficiently large values of these parameters, the CC ground state will be lower. In

the numerical analysis conducted in a later section, this will be taken into account

and the difference between the two ground state values will be compared.

2.4 Mass Spectrum and Numerical Analysis

2.4.1 Mass Spectrum

Once the value of the minimization conditions and the values of the VEVs have

been determined, the mass spectrum can be explored to ensure that all the resulting

physical Higgs bosons have positive mass squares. This is nontrivial because if too

few terms are included in the superpotential, there is no a priori guarantee that

there is a stable minimum instead of a flat direction or an unstable minimum. In

this section only first order in ε is retained.

Before diving into the algebra, it would very profitable to consider the group

theoretical arguments for the mass spectrum, similar to those given in Section 2.2.

Here the analysis is somewhat different due to the lack of a mass term, which means

that before symmetry breaking there are twelve massless degrees of freedom. Once
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the triplets acquire a VEV, the SUSY Higgs mechanism will cause three degrees of

freedom to be eaten: a pseudo scalar and a charged field and three to gain mass

from the D-terms: a scalar and a charged field. This leaves six real massless degrees

of freedom. Four of these are the doubly charged fields. This leaves two massless

degrees of freedom: a scalar and a pseudoscalar since all other degrees of freedom

have been accounted for.

The analyzes begins with Im ∆c 0, Im ∆̄c 0, Im Φ0
u, and Im Φ0

d (the imaginary

components of the neutral fields) since two linear combinations of them are eaten by

gauge bosons (so there are two zero modes). The four by four mass matrix resulting

after the spontaneous symmetry breaking can be split into two by two matrices for

the ∆c’s and the Φ’s:

Vmass ⊃
1

2

(
Im ∆̄c 0 Im ∆c 0

)
M2

I∆c

Im ∆̄c 0

Im ∆c 0

 (2.53)

+
1

2

(
Im Φ0

u Im Φ0
d

)
M2

IΦ

Im Φ0
u

Im Φ0
d


where

M2
I∆c =


ZAm3/2

MP
v2 ZAm3/2

MP
v2

ZAm3/2

MP
v2 ZAm3/2

MP
v2

 (2.54)

M2
IΦ =

1
2

κd

κu

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 1

2

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2

1
2

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 1

2
κu

κd

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2

 (2.55)

The above matrices each have determinant equal to zero, and the remaining

53



non-zero eigenvalues are, respectively,

m2
B0 =

2ZAm3/2

MP

v2 (2.56)

m2
A0 =

λ2
αv

4

2M2
P

− 2m2
Φ (2.57)

where the latter value has been simplified using Eq. (2.37). Here we have introduced

B0 as the axial Higgs boson associated with the ∆c fields and A0 is the usual MSSM

axial Higgs boson.

The mass of B0 will always be positive provided ZA > 0, which means that the

minus sign in front of the ZA term in Eq. (2.26) is crucial for a positive mass-square.

The mass of A0 could easily be positive depending on the value of λα and the phase

of m2
Φ. Furthermore, this will always be light and agrees with the group theoretical

argument at the beginning of this section.

Next we move on to the singly charged fields since they also have two zero

masses. The mass matrix for these fields can not be split apart; however, if we write

Vmass ⊃
(

Φ+
u
∗

Φ−
d ∆̄c+ ∗

∆c−

)
M2

SC



Φ+
u

Φ−
d
∗

∆̄c+

∆c− ∗


(2.58)

then M2
SC can be seen to be three distinct two by two matrices:

M2
SC =

 M2
Φ± M2

Φ∆c±(
M2

Φ∆c±

)†
M2

∆c±

 (2.59)

where

M2
Φ± =

1
4
g2

Rκ
2
d + 1

2
κd

κu
Λαv

2 1
4
g2

Rκuκd + 1
2
Λαv

2

1
4
g2

Rκuκd + 1
2
Λαv

2 1
4
g2

Rκ
2
u + 1

2
κu

κd
Λαv

2

 (2.60)
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M2
Φ∆c± =

 1
4
g2

Rvκd −1
4
g2

Rvκd

1
4
g2

Rvκu −1
4
g2

Rvκu

 (2.61)

M2
∆c± =

1
4
g2

Rv
2(1 + ε′) + 1

2
ΛAv

2 −1
4
g2

Rv
2 − 1

2
ΛAv

2

−1
4
g2

Rv
2 − 1

2
ΛAv

2 1
4
g2

Rv
2(1− ε′) + 1

2
ΛAv

2

 (2.62)

with

Λα ≡
Zαm3/2

MP

− λAλαv
2

M2
P

ΛA ≡
ZAm3/2

MP

− λ2
Av

2

M2
P

ε′ ≡ ε+
κ2

u − κ2
d

v2
(2.63)

Checking the order of magnitude of each of those matrices, it can be seen that

∣∣∣(M2
Φ±

)
ij

∣∣∣ ∼ εv2
∣∣∣(M2

Φ∆c±

)
ij

∣∣∣ ∼ √εv2
∣∣∣(M2

∆c±

)
ij

∣∣∣ ∼ v2 (2.64)

so, M2
SC may be written as  εΛ1v

2
√
εΛ2v

2

√
εΛ†2v

2 Λ3v
2

 (2.65)

where each element of each Λ matrix is of order one. This matrix structure is exactly

that of the neutrino mass matrix in the type II singular seesaw scenario with the

associations1

δ2mL →M2
Φ± δmD →M2

Φ∆c± MR →M2
∆c± . (2.66)

Since the determinant of M2
∆c± is zero, there is only one large eigenvalue given

by

m2
D+ =

1

2
g2

Rv
2 (2.67)

1for a review of the type II singular seesaw mechanism see Appendix B.2
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the resulting mass matrix for the lighter fields is then read directly from the Seesaw

formula:
1
4
g2

Lκ
2
d − 1

2
κd

κu

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 1

4
g2

Lκuκd − 1
2

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 0

1
4
g2

Lκuκd − 1
2

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 1

4
g2

Lκ
2
u − 1

2
κu

κd

[
Zαm3/2

MP
− λAλαv2

M2
P

]
v2 0

0 0 0

 .

(2.68)

Evidently zero is one of the eigenvalues, and the determinant of the remaining

two by two is also zero. These correspond to the two modes that are eaten by the

charged gauge bosons. The trace of the two by two is then the non-zero eigenvalue,

which corresponds to the MSSM charged Higgs Boson h+. So, after using Eq. (2.37)

m2
h+ =

1

4
g2

Lκ
2 +

λ2
αv

4

2M2
P

− 2m2
Φ (2.69)

Note that the first term of the right-hand side is just m2
W and that the last

two terms sum to the aforementioned m2
A0 . We can therefore rewrite Eq. (2.69) as

m2
h+ = m2

W +m2
A0 (2.70)

which matches the MSSM result and will be positive if m2
A0 is.

The remaining charged fields—the doubly charged Higgs bosons—can only

consist of ∆c and ∆̄c, so this mass matrix is a two by two. For these fields we have

Vmass ⊃
(

∆̄c++ ∗ ∆c−−
)
M2

∆c±±

(
∆̄c++

∆c−− ∗

)
(2.71)
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where

M2
∆c±± = 

g2
Rv

2ε− 1
2
g2

R(κ2
u − κ2

d)

+ 1
2
ΛAv

2 + λB(λA+λB)v4

M2
P

(
ΛB − 1

2
ΛA

)
v2

(
ΛB − 1

2
ΛA

)
v2

−g2
Rv

2ε+ 1
2
g2

R(κ2
u − κ2

d)

+ 1
2
ΛAv

2 + λB(λA+λB)v4

M2
P


(2.72)

with

ΛB ≡
ZBm3/2

MP

+
λAλBv

2

M2
P

. (2.73)

The eigenvalues are

m2
D++/d++ =

(
1

2
ΛA +

λB(λA + λB) v2

M2
P

)
v2 (2.74)

±

√(
−g2

Rεv
2 +

1

2
g2

R(κ2
u − κ2

d)

)2

+

[
ΛB −

1

2
ΛA

]2

v4.

These eigenvalues are of order v2
wk as expected from the group theoretical argument.

Furthermore, they are positive for sufficiently large λB corresponding to charge

conserving vacuum for large λB.

Finally, we come to the real neutral fields. These fields, like the singly charged,

require use of the seesaw mechanism (as discussed in Appendix B.2). If we write

Vmass ⊃
1

2

(
Re Φ0

u Re Φ0
d Re ∆̄c 0 Re ∆c 0

)
M2

RN



Re Φ0
u

Re Φ0
d

Re ∆̄c 0

Re ∆c 0


(2.75)
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where

M2
RN =

 M2
ΦΦ M2

Φ∆c

(M2
Φ∆c)

†
M2

∆c∆̄c

 (2.76)

with

M2
∆c∆̄c = 1

2
(g2

BL + g2
R) v2(1− ε) +

λ2
Av4

M2
P

−1
2
(g2

BL + g2
R) v2 − ΛAv

2

−1
2
(g2

BL + g2
R) v2 − ΛAv

2 1
2
(g2

BL + g2
R) v2(1 + ε) +

λ2
Av4

M2
P

 (2.77)

M2
ΦΦ =  1

4
(g2

L + g2
R)κ2

u + 1
2

κd

κu
Λαv

2 −1
4
(g2

L + g2
R)κuκd − 1

2
Λαv

2

−1
4
(g2

L + g2
R)κuκd − 1

2
Λαv

2 1
4
(g2

L + g2
R)κ2

d + 1
2

κu

κd
Λαv

2

 (2.78)

M2
Φ∆c =

 1
2
√

2
g2

Rvκu − 1
2
√

2
g2

Rvκu

− 1
2
√

2
g2

Rvκd
1

2
√

2
g2

Rvκd

 (2.79)

and make the associations

δ2mL →M2
ΦΦ δmD →M2

Φ∆c MR →M2
∆c∆̄c (2.80)

we have that the single large eigenvalue of M2
∆c∆̄c is given by

m2
D0 =

(
g2

BL + g2
R

)
v2 (2.81)

58



then the resulting mass matrix for the lighter fields is

1
4

[
g2

L +
g2

BLg2
R

g2
BL+g2

R

]
κ2

u

+ 1
2

κd

κu
Λαv

2

−1
4

[
g2

L +
g2

BLg2
R

g2
BL+g2

R

]
κuκd

− Λαv
2

0

−1
4

[
g2

L +
g2

BLg2
R

g2
BL+g2

R

]
κuκd

− Λαv
2

1
4

[
g2

L +
g2

BLg2
R

g2
BL+g2

R

]
κ2

d

+ 1
2

κu

κd
Λαv

2

0

0 0
[

3λ2
Av2

M2
P
− ZAm3/2

MP

]
v2


(2.82)

Clearly one of the eigenvalues can be read off, it is

m2
d0 =

[
3λ2

Av
2

M2
P

−
ZAm3/2

MP

]
v2 (2.83)

of electroweak order and corresponds to the light scalar field in the group theoretical

argument.

The remaining two by two matrix has the eigenvalues

m2
H0/h0 =

1

2

[
m2

Z +m2
A ±

√
(m2

Z +m2
A)

2 − 4m2
Zm

2
A cos 2β2

]
(2.84)

where we have used Eq. (2.57) and Eq. (2.46) to simplify this expression. Note that

these also match MSSM expressions.

That completes the Higgs spectrum analysis. The additional fermionic content

of the theory is composed of three light fermions: two doubly charged and a neutral

one. All of the fermions has a mass in the electroweak range. The neutral one is

the superpartner of the d0.

Also of note is the fact that sfermion soft masses will receive D-term contri-

butions, δm2 proportional to the differences in the right-handed VEVs squared and
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the charge of that field. This is not a new contribution and is present in general

when gauge symmetries are broken. The contributions are listed in Table 2.2 where

D ≡ 1

4π

(
m2

∆c −m2
∆̄c

αB−L + αR

)
(2.85)

Field δm2
B−L δm2

R

Q̃ −π
3
αB−LD 0

ũc π
3
αB−LD −παRD

d̃c π
3
αB−LD παRD

L̃ παB−LD 0

ẽc −παB−LD παRD

Hu 0 παRD

Hd 0 −παRD

Table 2.2: D-term contributions to soft masses due to the breaking of SU(2)R ×

U(1)B−L. The last two terms corresponding to the electroweak Higgses have already

been accounted for in Eq. (2.41) with D ≡ 1
4π

m∆c−m∆̄c

αB−L+αR
.

2.4.2 Numerics

The purpose of this subsection is to validate the above arguments with numer-

ical analysis. Specifically, our purpose is simply to show that the general arguments

about the positivity of the Higgs masses can be supported in the parameter space.

Other values of interest are also reported including: vR, tan β, and the difference in
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the ground state values of the CC and CV potentials (as mentioned earlier we need

〈V 〉CV − 〈V 〉CC > 0, so this is verified in that last column of Table 2.5).

We will keep six of the dimensionful parameters constant (in GeV)

m∆c = 350 m∆̄c = 450 m3/2 = 450 κ = 250 MP = 2.44× 1018

and three of the coupling constants at:

gR = 1.2 gL = .65 g1 = .38

We vary the remaining according to Table 2.3.

Case λA λB λα ZA ZB Zα m2
Φ(GeV2)

1 0.9 0.8 0.99 0.65 0.3 1.29 3002

2 0.5 0.45 0.1 0.54 0.3 0.16 −1002

3 0.4 0.4 0.2 0.36 0.3 0.29 1002

4 0.2 0.3 0.1 0.18 0.3 0.14 1002

5 0.9 0.85 0.2 0.54 0.3 0.25 −1002

Table 2.3: Points in parameter space used to evaluate the Higg masses

These values yield the following tree level masses for the Higgs Bosons (in

GeVs) and the vacuum defining parameters respectively:

2.4.3 Implications

The TeV scale theory in this model differs from MSSM in that we have several

new particles in the 100 GeV–TeV range. These particles are : d++, D++, d0, d̃++,
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Case D++ d++ D+ H+ D0 d0 H0 h0 B0 A0

1 990 160 3.4× 1010 190 5.0× 1010 920 170 93 620 170

2 1100 240 4.8× 1010 190 7.1× 1010 980 170 90 800 170

3 1200 210 5.2× 1010 190 7.8× 1010 950 170 90 720 170

4 1600 560 7.4× 1010 190 11× 1010 950 170 93 710 170

5 990 170 3.3× 1010 190 4.9× 1010 900 170 93 550 170

Table 2.4: The Higgs masses at tree level based on parameters from Table 2.3. The

masses are given in GeV. As predicted previously, the doubly charged particles (D++

and d++) have masses in the electroweak range.

Case vR (GeV) ε tan β 〈V 〉CV − 〈V 〉CC (GeV4)

1 2.8× 1010 5.0× 10−17 ∞ 1.7× 1027

2 4.0× 1010 2.5× 10−17 9.9 4.0× 1027

3 4.4× 1010 2.1× 10−17 9.9 5.4× 1027

4 6.1× 1010 1.0× 10−17 50 18× 1027

5 2.8× 1010 5.2× 10−17 50 1.6× 1027

Table 2.5: Vacuum related parameters based on parameters from Table 2.3. The

second column shows vR and as can be seen is the correct order of the seesaw

scale. The last column presents the difference in the ground state energy of the

charge violating and the charge conserving vacuum. A positive value in this column

indicates that the charge conserving vacuum is the stable one.
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D̃++ and d̃0. The charged particles lead to spectacular signatures in colliders due to

their decay modes: d++ → `+`+, d̃++ → `+`+χ0
1 . On the other hand, the neutral

particles will be hard to produce in the laboratory because of their low coupling

values to MSSM matter content. Their dominant decay channel is via d0 → χ0
1χ

0
1

with decay lifetimes of the order 10−10 sec for generic values of the parameters.

It is worthwhile to mention that d0 and d̃0 would have been present in the early

stages of the universe, but would have decayed away before the era of Big Bang

nucleosynthesis and therefore do not alter our understanding of this period.

2.5 Grand unification prospects

Since the effective TeV scale theory in our model is very different from MSSM

(due to the presence of a pair of doubly charged fields), it is interesting to explore

whether there is grand unification of couplings. This question was investigated in

[41], where it was noted that if there are two pairs of Higgs doublets (corresponding

to two bidoublets φ1,2(2, 2, 0)), at the TeV scale, the gauge couplings unify around

1012 GeV or so. This raises an interesting point: if there is a grand unified theory at

1012 GeV, then this theory must be very different from conventional GUT theories.

This is because limits on the proton life time require that the scale of grand unifica-

tion be 1015 GeV. Our GUT theory, should it exist, must conserve baryon number

due to the low unification scale.

An example of such a theory is the SU(5) × SU(5) model discussed in [42],

which embeds the left-right symmetric group we are discussing. We do not discuss
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the details of this theory here, but rather indicate the basic features: we envision

SU(5) × SU(5) to be broken[42] down to SU(3)c × SU(2)L × SU(2)R × U(1)B−L

by a Higgs multiplet belonging to the representation Φ ≡ (5, 5̄) with vev as follows:

〈Φ〉 = diag(a, a, a, 0, 0). This is then subsequently broken to the standard model.

The fermions in this model belong to the (5̄,1) ⊕ (10,1) ⊕ (1, 5̄) ⊕ (1,10)

representation as follows:

FL =



Dc

Dc

Dc

ν

e


TL =



0 U c U c u d

−U c 0 U c u d

−U c −U c 0 u d

−u −u −u 0 E+

−d −d −d −E+ 0


(2.86)

and similarly for the right chiral fields.

Implementation of the seesaw mechanism in this model requires the addition

of the Higgs representation (15,1) ⊕ (1,15) along with their complex conjugate

representations. The multiplet b(1,15) plays the role of ∆c of the left-right model.

When the νcνc component of (1,15) acquires a vev, it gives mass to the right handed

neutrino fields triggering the seesaw mechanism. The doubly charged Higgs fields

are part of the right handed (1,15) Higgs representation. Symmetry breaking and

fermion masses in this model are briefly touched on in [42].
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2.6 Conclusion

Left-right models are well motivated for various reasons including the natu-

ralness of the seesaw mechanism for neutrino masses in SLRM, providing a solution

to the strong CP problem and the gauging of B − L, which allows a relationship

between electric charge and the physical B − L quantum numbers. Certain SUSY

versions of these models have the added advantages of automatic R-parity, a solution

to the SUSY strong CP problem, and a seesaw mechanism which depends on fewer

parameters and does not allow for a large left-handed triplet VEV. In addition, if

the superpotential of the model is assumed to obey an Z-symmetry, then the B−L

breaking scale (seesaw scale) can be predicted to be around 1011 GeV—a phenom-

enologically acceptable value for this scale. This model also solves the µ problem of

the MSSM and predicts two TeV scale doubly charged bosons and fermions which

couple to like sign dileptons and like sign lepton-slepton respectively. Such particles

have been searched for in various existing experiments and will be searched for at

the LHC and other future colliders[43]. Additionally, the model predicts unstable

neutral bosons and fermions which can not be easily probed by experiment, but

which would have been produced in the early universe.

Finally the conclusions of this paper can be equally applied to the group

SU(2)L×U(1)I3R
×U(1)B−L, with the mass spectrum being identical except for the

lack of light doubly charged particles and a heavy singly charged particle.
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Chapter 3

Anomaly Mediated Supersymmetry Breaking, A Review

This chapter is a more in depth look into AMSB than the one given in Sec-

tion 1.3.2. It starts with a brief introduction to superconformally invariant super-

gravity in Section 3.1. Section 3.2 shows how the soft terms are generated by the

loop-level breaking of the superconformal invariance and the independence of the

soft terms to thresholds are verified in Section 3.3. The issues with AMSB are

quickly discussed along with proposed solutions in Section 3.4 and the deflected

AMSB scenario is expanded upon in Section 3.5. The last section, Section 3.6 dis-

cusses D-terms in both defltected and pure AMSB scenarios. The work presented

here is not new but simply acts as background for Chapter 4.

3.1 Superconformal Invariance

Utilizing gravity in the mediation of SUSY breaking effects is attractive due to

the ubiquity of gravity and because it is unnecessary to appeal to some messenger

sector like in GMSB. Gravity mediation discussed in Section 1.3.2, takes advantage

of this by coupling heavy fields with large VEVs to the MSSM with an MP suppres-

sion. Once these are integrated out, the soft Lagrangian is generated. AMSB[44, 45]

is a more sophisticated approach in that SUSY breaking is communicated via the

light supergravity multiplet itself, which is sourced by the hidden sector. The con-
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tributions in AMSB are most easily understood in the context of superconformal

invariance of the supergravity Lagrangian. This formalism is analogous to the proce-

dure in which the Einstein Lagrangian is made locally scale invariant by introducing

an unphysical scalar field (the conformal compensator), which can be gauged away

to recover the original theory. The benefit of this approach is that the superconfor-

mal invariance severely restricts the Lagrangian making it relatively easy to write.

Once the the gauge freedom is taken away, the left-over theory is the more difficult

to postulate supergravity theory.

In SUSY, the superconformal invariance is a product of both the scale in-

variance and a U(1)R symmetry. The conformal compensator now becomes an

unphysical chiral supermultiplet, the superconformal compensator. It has a Weyl

weight dW (φ) = +1, corresponding to the scale invariance, and a U(1)R charge of

+2/3[46, 47]. It is given by

φ = η +
√

2θχ+ θ2Fφ (3.1)

where in the original theory, Fφ is an auxiliary field in the supergravity super-

multiplet. As such, it is analogous to the D-terms of the MSSM gauge groups.

For 〈Fφ〉 6= 0, SUSY is broken in an analogous fashion to D-term breaking and is

then communicated to the visible sector, which is charged under gravity, of course.

Specifically

〈φ〉 = 1 + θ2Fφ (3.2)

The form of the SUSY breaking contributions are then very closely related to

superconformal invariance and understanding the form of the latter facilitates an
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dW R

θ −1
2

+1

θ̄ −1
2
−1

dθ +1
2
−1

dθ̄ +1
2

+1

Table 3.1: Weyl weight and R charges of superspace coordinates

dW R

K +2 0

W +3 +2

Table 3.2: Derived Weyl weight and R charge assignments for the Kähler and Super

Potentials

understanding of the former. This can be done by starting with a general Lagrangian

L =

∫
d4θ K(Dα, Q,Wα) +

(∫
d2θ W(Q,Wα) + h.c.

)
(3.3)

where Q collectively represents the matter content and W is a sum of the superpo-

tential and WαW
α, where the latter contains the superfield strength. Note that the

dependence of K on D̄α̇, Q†, etc. has been suppressed

The superspace coordinate charge assignments (See Table 3.1) force the Kähler

potential and superpotential to have the charges shown in Table 3.2. Given dW (Q̃) =

dW (W̃α) = R(Q̃) = R(W̃α) = 0 (with Q̃ being the matter fields and W̃α the gauge
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fields, but not in the canonically normalized form), then

W = W̃XW K = K̃XK (3.4)

where the “tilded” potentials are functions of only the “tilded” fields. Since the

“tilded” fields have no charges, the resulting potentials don’t either; hence all the

transformational weights belong to the Xn:

dW (XK) = +2 dW (XW) = +3

R(XK) = 0 R(XW) = +2

Now because the Xn carry charges, they can only depend on the conformal

compensator φ (we’ve already removed any other fields’ dependence into the poten-

tials). Therefore invariance necessitates

XK = φ†φ XW = φ3 (3.5)

We can now write the most general superconformal invariant lagrangian. It is

given by

L =
1

2

∫
d4θ φ†φK̃

(
D̃α, Q̃, W̃α

)
+

∫
d2θ φ3W̃

(
Q̃, W̃α

)
+ h.c. (3.6)

This picture explicitly demonstrates the φ couplings as required by supercon-

formal invariance. It is possible to return to the usual fields by defining

Q = φQ̃ Wα = φ3/2W̃α (3.7)

To illustrate how these definitions return the canonical fields, the potentials must
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be rewritten schematically as

K̃ = ZQ̃†
e

W Q̃+ . . . = ZQ̃†Q̃+ . . . (3.8)

W̃ = LQ̃+MQ̃2 + Y Q̃3 +
λ

Λ
Q̃4 + . . .+ W̃α 1

4g2
W̃α + . . . (3.9)

where Z is the wave-function renormalization for Q and g is the gauge coupling

associated with Wα, where the canonical gauge field Aµ has been transformed Aµ →

gAµ. It is then clear that the Lagrangian of Eq. (3.6), combined with the field

redefinitions Eq. (3.7), leads to

L =

∫
d4θ Z

[
Q†Q+ . . .

]
+

(∫
d2θ

[
Lφ2Q+MφQ2 + Y Q3 +

λ

Λφ
Q4 + . . .+Wα 1

4g2
Wα + . . .

]
+ h.c.

)
(3.10)

Terms with dimensionful couplings break tree-level superconformal invariance and

therefore introduce a φ into the superpotential—something relevant for the MSSM

because of the µ term. Non-renormalizable terms always contain the pair Λφ to some

power. As these terms usually result from a threshold, this form will be important

when discussing intermediate thresholds. The tree-level superconformal invariance

breaking directly translates into tree-level SUSY breaking:

LSoft = 2LFφ +MFφ −
λFφ

Λ
+ ... (3.11)

Scalar mass, trilinear-a and gaugino mass terms correspond to the dimensionless

couplings Z and 1
g2 , which do not break the superconformal invariance at tree-level

and therefore do not lead to their SUSY breaking counterparts at tree-level. How-

ever, a Lagrangian of the form Eq. (1.45) can still be generated since loop-level
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calculations force the introduction of a dimensionful parameter, µ the renormaliza-

tion scale, which break the scale invariance.

3.2 Superconformal Invariance Breaking and Soft Terms

When evaluating loop order calculations, some type of regulator is required,

which can be chosen to be a cutoff Λ. This regulator is convenient to use because it

has already been established that such a cutoff must be paired with φ should it give

rise to non-renormalizable terms of the form in Eq. (3.10) (the ultraviolet (UV) cut-

off gets paired with a φ independent of whether or not it yields non-renormalizable

terms; however, it is a convenient illustration here). Therefore, renormalized quan-

tities (Z and 1
g2 )will be functions of the form

ln

(
Λ|φ|
µ

)
(3.12)

From this, it is understood that all of the SUSY breaking can be parameterized by

µ→ µ

|φ|
= lnµ− 1

2

(
θ2Fφ + h.c.

)
(3.13)

where the expression to the right of the equal sign is the expansion of the natural

logarithm around µ. To utilize this, it is necessary to analytically continue Z and 1
g2

into superspace, making them superfields. A general superfield for the wave function

renormalization is

Zi(µ) → Zi(µ) = Zi(µ) +
(
Bi(µ) θ2 + h.c.

)
+ Ci(µ) θ2θ̄2 (3.14)
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where i represents a specific field Qi. Upon substitution into Eq. (3.10), it can be

seen that this can be expressed in a more convenient fashion

lnZi(µ) = lnZi(µ) +
(
Ai(µ) θ2 + h.c.

)
−mi(µ)2 θ2θ̄2 (3.15)

where m2
i is the soft mass for Qi and Ai contributes to trilinear a-terms, e.g. for

atQHut
c, at = yt(AQ + AHu + Atc). The relationship between the Z and Z is

Zi(µ) = Zi

(
µ

|φ|

)
(3.16)

and lnZi

(
µ
|φ|

)
can be expanded around lnµ for φ = 1. This yields

lnZi(µ) = lnZi(µ) +
∂ lnZi(µ)

∂lnµ

∣∣∣∣
φ=1

(
lnµ− 1

2

(
θ2Fφ + h.c.

)
− lnµ

)
(3.17)

+
1

2

∂2 lnZi(µ)

∂ lnµ2

∣∣∣∣
φ=1

(
lnµ− 1

2

(
θ2Fφ + h.c.

)
− lnµ

)2

= lnZi(µ)− 1

2
γi(µ)

(
θ2Fφ + h.c.

)
+

1

4

∂γi(µ)

∂ lnµ
|Fφ|2 θ2θ̄2

where γi ≡ ∂ ln Zi(µ)
∂ln µ

is the anomalous dimension of Qi and all higher order terms are

zero. Comparing eqns. 3.15 and 3.17 yields

Ai(µ) = −1

2
γi(µ)Fφ (3.18)

m2
i (µ) = −1

4

∂γi(µ)

∂ lnµ
|Fφ|2 = −1

4
|Fφ|2

[
βga

∂γi

∂ga

+

(
βya

∂γi

∂ya

+ h.c.

)]
(3.19)

where the last expression in Eq. (3.19) is derived using the chain rule and a sum

over all gauge couplings, ga and Yukawa couplings ya, is implied. Also, βx ≡ ∂x
∂ln µ

.

The gauge coupling must be promoted into a chiral superfield because it ap-

pears in Eq. (3.10) in the dθ2 integral.

1

2
g−2

a (µ) → Ra(µ) =
1

2
g−2

a (µ)− iΘa

16π2
− Ma

g2
a

θ2 (3.20)
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where Ma is the mass for the gaugino associated with the a gauge group. Using

R(µ) =
1

2
g−2

a

(µ
θ

)
(3.21)

µ

θ
= lnµ− Fφθ

2

Expanding g−2
a

(
µ
θ

)
around µ

Ra(µ) =
1

2
g−2

a +
1

2

∂g−2
a

∂lnµ

∣∣∣∣
φ=1

(
lnµ− Fφθ

2 − lnµ
)

(3.22)

=
1

2
g−2

a − 1

2
βg−2

a
Fφθ

2

Comparing eqns. 3.20 and 3.22 yields

Ma =
g2

a

2
βg−2

a
Fφ =

baαa

4π
Fφ (3.23)

where βg−2
a

= ba

8π2 has been used and there is no sum over a.

Eqns. 3.23, 3.18 and 3.19 are the AMSB expressions for the soft terms. They

are renormalization scale invariant since they were derived for an unspecific renor-

malization scale, µ. The name anomaly is employed since the generation of these

terms are associated with the anomalous breaking of the superconformal invariance.

Note that compared to the tree-level SUSY breaking terms in Eq. (3.11), they are

suppressed by 16π2 per dimension (this suppressions are contained in the β- and γ-

functions, both of which contain a factor of 1
16π2 ). This means that Fφ & 20 TeV for

soft terms of the right order and therefore, in the MSSM, the tree-level soft term

b = µFφ ∼ 16π2msusyµ, is too large for EWSB. This indicates that the MSSM is not

compatible with AMSB.
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3.3 Decoupling Thresholds

The AMSB soft expressions, eqns. 3.23, 3.18 and 3.19, are very interesting

because they are independent of thresholds. To understand this, assume there is a

threshold M such that Λ � M � Fφ and that this threshold does not introduce

any new SUSY breaking effects, as would be possible with light singlets. Once the

heavy fields have been integrated out, the leading effects of M can only appear as

logarithms via quantum corrections: no positive powers can exist. It is then possible

to make an analogy to the previous situation. M is a threshold and must always

appear with a factor of φ. Therefore Eq. (3.12) becomes

ln

(
Λ|φ|
µ

)
→ C+ ln

(
Λ|φ|
M |φ|

)
+ C−

(
M |φ|
µ

)
(3.24)

where C± are parameters related to physics above/below the threshold M . The sec-

ond term on the right-hand side is the new threshold term and the first term on the

right-hand-side will figure into the boundary value at M . Of course, the φ depen-

dence cancels in the boundary value term and so the wave function renormalization

and gauge couplings have the following dependences:

Zi

(
µ

|φ|
,M

)
, g−2

a

(
µ

|φ|
,M

)
(3.25)

The only difference between these terms and eqns. 3.16 and 3.21 is the presence

of the threshold, which has been suppressed in the latter two equations and which

has been renamed to M in the former. Expansions would follow as they do in eqns.

3.17 and 3.22 yielding the same results as eqns. 3.23, 3.18 and 3.19, the AMSB soft

term expressions therefore proving the decoupling of the threshold.
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This decoupling analysis applies to both mass thresholds, such if there exists

a vector-like pair of heavy quarks, or to thresholds generated through some spon-

taneous symmetry breaking. The condition of no new SUSY violation in the latter

case corresponds to a VEV of the superfield

〈X〉 = Mφ (3.26)

As long as this is true, the soft terms will continue on their AMSB trajectories below

M .

3.4 Problems and Solutions

The EWSB problem associated with AMSB has been briefly mentioned in

Section 3.2, which can be potentially cured by applying AMSB to the NMSSM

instead of the MSSM. In the NMSSM, the µ term is understood as a VEV of a

singlet field, µ = 1√
2
λ〈N〉. The Higgs superpotential is

W = λNHuHd +
1

3
κN3 (3.27)

and has no dimensionful parameter and therefore no tree-level SUSY breaking.

The tachyonic slepton problem was demonstrated in Eq. (1.58) and exists for

all sleptons. Many solutions to this problem have been proposed [48, 49, 50, 51, 52,

53, 54, 55, 56, 57, 58] despite the fact that solutions to this problem are hard to come

by due to the independence of higher thresholds. Two of these solutions are: new

low energy particle content with Yukawa couplings to the leptons and introduction

of new SUSY breaking, in addition to AMSB, so that soft masses are deflected from

their AMSB trajectories.
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Solutions involving new Yukawa couplings have the advantage of retaining

the AMSB trajectories. However, they typically lack justification since they are

normally just an ad hoc addition of fields. There are some exceptions, such as

Yukawa couplings due to R-parity violation in the lepton sector[53]. While this is a

pleasing minimal model with no new fields, it does push the value of Fφ very high (∼

200 TeV, exasperating the little hierarchy problem) because of the stringent lepton

number constraints . A different approach is to utilize the Yukawa couplings of the

naturally light doubly charged Higgses in MSLRMs[59, 58]. This has the advantage

of being well-motivated and that typical scales of Fφ can be used. However, it

requires that the doubly-charged fields have a mass on the order of Fφ, which is a

bit of a coincident problem since they may be as massive as the GUT scale.

Scenarios in which new SUSY breaking is introduced can be divided into the

two types: F -term[51] and D-term[54]. The former case is due to some SUSY

breaking threshold, M , in a shallow potential, which produces light singlets. These

allow the mass scale M to appear as a linear term in the Lagrangian below the

threshold. For instance

K ⊃
∫
d4θ

(
S†S +

(
cMφS† + h.c.

)
+ . . .

)
(3.28)

This would lead to a large SUSY breaking F -term for the singlet S

FS = −cMFφ (3.29)

Depending on the value of c, this new contribution can be significant compared to

the AMSB contribution. If this is the case, the AMSB trajectories will be deflected,

the threshold will not fully decouple and the sleptons masses can potentially be
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U(1)X

X −2

X̄ +2

Ψ +1

Ψ̄ −1

S 0

Table 3.3: The U(1) charges and particle content of a toy model that demonstrates

decoupling/deflection of thresholds in AMSB

saved. Further details of this scenario as well as a toy model will be discussed in

Section 3.5.

3.5 Deflected Anomaly Mediation

Deflected AMSB was introduced by Pomarol and Rattazzi using the superpo-

tential:

WPR = fXΨΨ +
λ

Λφ

(
XX̄

)2
(3.30)

with charges under a U(1)X local gauge symmetry given in Table 3.3. The only

source of SUSY breaking in this theory is AMSB and is reflected in the appearance

of the factor of φ in Eq. (3.30). The F -terms and corresponding F -potential for the

77



X superfields assuming that the Ψ superfields are VEV-less, are given by

−F ∗
X =

∂W

∂X
=

2λ

Λ
xx̄2 (3.31)

−F ∗
X̄ =

∂W

∂X̄
=

2λ

Λ
x2x̄ (3.32)

VF =
4λ2

Λ2
x2x̄2

(
x2 + x̄2

)
(3.33)

where the lower case letters are the scalar components of the corresponding upper

case superfields. From Eq. (3.31) it is clear that if the x fields acquire a VEV it

will be SUSY breaking since the F -terms will be non-zero. In order to investigate

if this happens, it is necessary to consider the tree-level SUSY breaking associated

with the non-renormalizable term. It contributes

VSoft =
λFφ

Λ
x2x̄2 (3.34)

Defining

〈x〉 ∼ 〈x̄〉 ∼M (3.35)

and minimizing the potential yields

M =

√
−FφΛ

6λ
(3.36)

It is now possible to investigate the F -terms more closely, using Eq. (3.31) and

Eq. (3.36)

−F ∗
X ∼ −F ∗

X̄ =
1

3
FφM = MFφ + FM (3.37)

and

FM ≡ rMFφ (3.38)

r ≡ −2

3
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where the right-hand side of Eq. (3.37) is useful since it separates the two sources

of SUSY breaking. The first contribution, MFφ is simply the traditional AMSB

contribution, which will lead to a decoupling threshold. It is possible to think of it

as the VEV of a two superfields:

〈XD〉 = Mφ = M +MFφθ
2 (3.39)

in line with Eq. (3.26). Again this leads to the same decoupling discussed in Sec-

tion 3.3. The second contribution is new:

〈XND〉 = M = M − 2

3
MFφθ

2 6= M̃φ (3.40)

where M̃ is some mass scale. This makes it clear that new SUSY breaking has been

introduced and r is a measure of the additive deviation from the AMSB contribu-

tion. Since the decoupling associated with AMSB is related to the contribution in

Eq. (3.39), the contribution from Eq. (3.40) will not decouple and will lead to new

SUSY breaking contributions proportional to r.

These contributions will be GMSB. This is because the SUSY violating super-

VEVM will introduce mass splittings between heavy fermionic and bosonic degrees

of freedom in the X fields related to −2
3
MFφ. Once these heavy fields are integrated

out, this SUSY breaking will be relayed to the visible sector fields by the messenger

Ψ fields assuming that the visible sector is also charged under U(1)X .

Derailment from the AMSB trajectory has its consequences. It is no longer

possible to calculate the solutions to the RGEs as functions of the low energy β- and

γ-functions, rather it is necessary to find the value at the threshold (which depends

on high energy physics) and then evolve it to the necessary scale using RGEs. The
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boundary conditions are calculated in a similar fashion to the AMSB expressions

given in eqns. 3.23, 3.18 and 3.19 by expanding the supercouplings. However, it

is now necessary to expand around the threshold, M, instead of an arbitrary µ

value. The key is an understanding of how SUSY breaking is parameterized in the

wave function renormalization and the gauge coupling comparable to Eq. (3.24).

Since it has already been established that the SUSY-conserving threshold, M , is

unimportant, it is just necessary to focus on M and φ. This translates into simply

replacing M by M in Eq. (3.24):

ln

(
Λ|φ|
µ

)
→ C+ ln

(
Λ|φ|
M|φ|

)
+ C−

(
M|φ|
µ

)
(3.41)

Since all SUSY breaking in a quantity can be picked out by the derivative ∂2

∂θ2 ,

understanding Eq. (3.41) allows the identification:

∂2

∂θ2
→ rFφ

∂

∂ lnM
− Fφ

∂

∂ lnM
(3.42)

given Eq. (3.40). The result will therefore depend on parameters associated with

the higher scale, C+ and lower scale C− physics and is calculated to be

Ma(M) =
αa

4π
Fφ

[
r
(
b+a − b−a

)
− b−a

]
(3.43)

AQ(M) =
1

2
Fφ

[
r
(
γ+

Q − γ−Q
)
− γ−Q

]
(3.44)

m2
Q(M) = −1

4
|Fφ|2

∑
ga

[
r2

(
β+

ga

∂γ+
Q

∂ga

− 2β+
ga

∂γ−Q
∂ga

+ β−ga

∂γ−Q
∂ga

)
(3.45)

−2r

(
β+

ga

∂γ−Q
∂ga

− β−ga

∂γ−Q
∂ga

)
+ β−ga

∂γ−Q
∂ga

]

where Q represents some superfield. These equations share some general interesting

features. In the limit r → 0, only the last term in each equation remains and agrees
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with the AMSB contributions eqns. 3.23, 3.18 and 3.19 as expected. In the limit

that Fφ → 0 such that rFφ remains constants, the equations reproduce the GMSB

results with Λ =
Fφ

M
. The second term in Eq. (3.45) is a cross-term between AMSB

and GMSB. Furthermore, the GMSB contributions in each of these equations in

some sense indicates the amount of particle content that has been integrated out,

as can be seen by the difference in quantities above and below the scale. Therefore,

sectors of the theory that do not couple strongly to the heavy fields will remain more

or less on their AMSB trajectories. Lastly, since deflected AMSB has introduced

a dependence on higher energy physics, it must be assumed that the threshold lies

below any sort of flavor physics to conserve the solution to the SUSY flavor problem.

This is yet another price to pay for the deflection.

3.6 D-Terms

This phenomena of a partially decoupled threshold has implications even for

the D-terms, which have not yet been discussed in the context of AMSB. In general,

it is expected that a broken gauge group will lead to D-term contributions to soft

masses (Table 2.2 shows such contributions for MSLRM). However, such contribu-

tions are zero in AMSB. Taking a detour to explore a concrete AMSB preserving

model will help shed some light on this and the issues discussed earlier. To start,

examine a theory with the same particle content as Table 3.3 but without a shallow

potential:

WAMSB = fXΨΨ + yS
(
XX −M2φ2

)
(3.46)
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In the SUSY limit, the scalar components of X and X acquire a VEV equal to M

thus introducing a threshold. At this point all the fields, except Ψ̄, gain a mass of

M � Fφ. The VEV structure is

〈x〉 = M (3.47)

〈x̄〉 = M (3.48)

〈FX〉 = MFφ (3.49)

〈FX〉 = MFφ (3.50)

〈s〉 = −
F †

φ

y
(3.51)

〈D〉 =
1

2g

(
m2

X
−m2

X

)
= −|Fφ|2

4g

∂γ+
X

∂f
βf (3.52)

with the D-term acquiring a VEV because X couples to Ψ and X does not; hence,

the AMSB expression for their scalar masses are not equal.

Above the threshold M , Ψ has a scalar mass given by AMSB

(
m2

Ψ

)+
= −5

4
g4

(
Fφ

16π2

)2

(3.53)

while below M there is no gauge group and W−
AMSB = 0 so that AMSB predicts

(
m2

Ψ

)−
= 0 (3.54)

The fact that AMSB predicts Ψ’s scalar mass to be zero below M raises two

questions: how the contribution of the gauge group given by Eq. (3.53) disappeared,

and why the D-term VEV—acquired at the threshold—vanished. Both questions

are resolved by noting that the Ψ’s act as messengers giving a GMSB contribution

at the threshold M . This is because the lagrangian from Eq. (3.46) contains the
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term ∫
d2θ WAMSB ⊃ f〈FX〉ΨΨ = fMFφΨΨ = MΨFφΨΨ (3.55)

which appears in loops.

For example, the scalar Ψ couples to the Ψ’s through the D-term potential

VD =
1

2
g2

[(
|X|2 −

∣∣X∣∣2 )2

+ |Ψ|2
(
|X|2 −

∣∣X∣∣2 )
− |Ψ|2

(
|X|2 −

∣∣X∣∣2 )+
1

4

(
|Ψ|2 −

∣∣Ψ∣∣2 )2
]

(3.56)

leading to the diagram

Ψ Ψ

Ψ
Ψ

Ψ

ΨΨ

g2 g2

f 〈F ∗
X〉

f 〈FX〉

∼ g4f 2|FX |2

(16π2)2M2
Ψ

= g4 |Fφ|2

(16π2)2 (3.57)

which is exactly the same structure and size as the AMSB contribution above the

threshold. In fact, Eq. (3.57), along with the other diagrams involving gauge fields,

yields (
m2

Ψ

)−
=
(
m2

Ψ

)+
+
(
m2

Ψ

)
GMSB

= 0 (3.58)

The GMSB diagrams such as Eq. (3.57) cancel the higher-scale AMSB con-

tributions to Ψ’s scalar mass; however, they do not remove the D-term portion

acquired at the threshold. Rather, this term’s cancellation can be seen as a re-

sult of the D VEV actually being zero below the threshold—GMSB diagrams like

Eq. (3.57), with Ψ replaced by X, X cause the scalar masses of these fields to be

zero below M resulting in the VEV of D vanishing.
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Now it is possible to turn back to the model with a partially decoupled thresh-

old, specified by Eq. (3.30), and examine the D-terms. Once again, the splitting

executed in Eq. (3.37) is advantageous because then the 〈FX〉ΨΨ term in the la-

grangian splits apart as∫
d2θ WPR ⊃ f〈FX〉ΨΨ = fMFφΨΨ + fFMΨΨ (3.59)

so that the diagram of Eq. (3.57) cleaves into

Ψ Ψ

Ψ
Ψ

Ψ

ΨΨ

g2 g2

f 〈F ∗
X〉

f 〈FX〉

=

Ψ Ψ

Ψ
Ψ

Ψ

ΨΨ

g2 g2

fF ∗
M

fFM

︸ ︷︷ ︸
This diagram is from the new SUSY

breaking and so it must survive below M

+ Ψ Ψ

Ψ
Ψ

Ψ

ΨΨ

g2 g2

fMF †
φ

fMFφ

︸ ︷︷ ︸
This diagram is the GMSB contribution
that cancels the higher scale AMSB part

so it has no net effect below M

(3.60)

By defining FM the net result of Eq. (3.60) is that the higher-scale AMSB portion

(which is canceled below M) is factored out and all that remains are the contribu-

tions to due to FM:

(
m2

Ψ

)−
M =

(
m2

Ψ

)+
AMSB

+
(
m2

Ψ

)
GMSB︸ ︷︷ ︸

this is just (m2
Ψ
)
−

AMSB
=0

+
(
m2

Ψ

)
M (3.61)

This is true for the Ψ field, but it is also true for the X and X scalar masses.

The latter point is important because the VEV ofD, which depends on the difference
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of the scalar masses of X and X, will consequently also be non-zero:

〈D〉 =
1

2g

[(
m2

X

)
M −

(
m2

X

)
M

]
∼ 1

4g

∣∣∣∣FMM
∣∣∣∣2 f 4 (3.62)

The last expression of Eq. (3.62) follows from the fact that the only difference

between X and X is the coupling f .

Now, as 〈D〉 6= 0, there is an additional contribution to the Ψ scalar mass from

this term: (
m2

Ψ

)−
=
(
m2

Ψ

)
M +

(
m2

Ψ

)
D

(3.63)

This new contribution will simply be the old typical non-AMSB contributions mul-

tiplied by a factor of r2. Therefore, deflected AMSB leads to new contributions both

from the boundary conditions and D-terms.
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Chapter 4

Predictive Supersymmetric Left-Right Model and Anomaly

Mediation

The model discussed in Chapter 2 can be embedded in any SUSY breaking

scenario and studies have been done on the effects of the light-doubly charged Higgs

on the SUSY spectrum in mSUGRA and GMSB scenarios[41, 60] as well as the

GUT prospects for such models. However, MSLRM have a more interesting effect

in AMSB models. Section 4.1 points out that PSLRM is an instance of the deflected

AMSB scenario and that the slepton masses are made non-tachyonic by a combi-

nation of new Yukawa couplings to the doubly-charged fields for the right-handed

sleptons and partially decoupled D-terms for the left-handed ones. Section 4.2 then

discusses the phenomenology of this model including slepton and squark masses and

the consequences of the LSP in both collider and astro physics.

4.1 The Theory

Comparing WPR in Eq. (3.30) to the PSLRM superpotential, Eq. (2.18) makes

it clear that PSLRM can be viewed as an instance of the Pomarol Rattazzi model.

It has the necessary ingredients: a shallow potential that gives rise to light singlets,

Section 2.4.1, and F -terms that introduce new SUSY breaking, Eq. (2.21). Further-

more, it is in line with the conformal invariance at the renormalizable-level. The
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superpotential is

WPSLRM = WY +WNR +WN (4.1)

WY = iya
QQ

T τ2ΦaQ
c + iya

LL
T τ2ΦaL

c + ifcL
cT τ2∆

cLc (4.2)

WN = λabN Tr
(
ΦT

a τ2Φbτ2
)

+
1

3
κN3 (4.3)

WNR =
λA

MPφ
Tr2
(
∆c∆̄c

)
+

λB

MPφ
Tr(∆c∆c) Tr

(
∆̄c∆̄c

)
(4.4)

+
λab

α

MPφ
Tr
(
∆c∆̄c

)
Tr
(
ΦT

a τ2Φbτ2
)

+
λab

β

MPφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

+
λN

MPφ
Tr
(
∆c∆̄c

)
N2 + · · ·

where a = 1..2 runs over Φ generations. Eq. (4.1) has several differences compared

to Eq. (2.18):

• An additional Φ has been introduced for a realistic CKM matrix. Using the

soft terms for this purpose is no longer an option since they will be constrained

by deflected AMSB.

• Non-renormalizable terms that previously were used to solve the µ problem,

schematically λ
MP

∆c∆̄cΦ2, can no longer do so since they would lead to b =

µeffFφ which is too large for EWSB. This will be expanded on in Section 4.1.3.

• A singlet, N , has been introduced so that the low energy theory is the NMSSM

Eq. (3.27). This allows for a solution to the µ problem via the VEV of N and

does not involve terms that break the conformal invariance at the renormaliz-

able level.

• To guarantee that the low energy theory is the NMSSM, an R-parity symmetry
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must also be enforced:

(∆c,Φ, N) → −(∆c,Φ, N) (4.5)

∆̄c → i∆̄c (4.6)

(Q,Qc, L, Lc) → (Q,Qc, L, Lc) (4.7)

This will keep N light.

• Regardless of the presence of low energy NMSSM, a problem still exists with

EWSB. It and it’s solution will be briefly addressed in Section 4.1.3.

In spite of these differences, modifications to the vacuum structure of the

theory, as discussed in Section 2.3, are due to AMSB, which constrains the SUSY

breaking potential

VSoft = m2
∆c Tr

(
∆c †∆c

)
+m2

∆̄c Tr
(
∆̄c †∆̄c

)
+
(
m2

Φ

)ab
Tr
(
Φ†

aΦb

)
+

(
aab

λ N Tr
(
ΦT

a τ2Φbτ2
)

+
1

3
aκN

3 + h.c.

)
+

(
λAFφ

MP

Tr2
(
∆c∆̄c

)
+
λBFφ

MP

Tr(∆c∆c) Tr
(
∆̄c∆̄c

)
+ · · ·+ h.c.

)
(4.8)

Comparing Eq. (4.8) to Eq. (2.26) allows the identifications

−ZA = λA ZB = λB m3/2 = Fφ (4.9)

Fφ � m∆c ,m∆̄c , since the latter two are loop suppressed, the minimum given by

Eq. (2.36) simplifies to

v2 =
−2MPFφ

3λA

(4.10)
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so that

〈
∆c0
〉

=

√
−MPFφ

6λA

(4.11)

where 〈∆c0〉 ≡
√

2vR and v2 = 2v2
R. As a result, the prediction of the seesaw scale

is now slightly modified, MR ∼
√
FφMP ∼ 1011, larger than the previous result. In

regards to the Pomarol Rattazzi model, Eq. (4.11) is the same as Eq. (3.36) and the

results from Section 3.5 can be used here and

r = −2

3
. (4.12)

However, there is an important new phenomena here: the messengers Ψ are

replaced by the right-handed neutrinos. Unlike the Ψ fields, the right-handed neu-

trinos have direct coupling to the light right-handed sleptons through the seesaw

term. These couplings will then also mediate SUSY breaking resulting in a mixed

Gauge and Yukawa mediated SUSY breaking. Eqns. 3.44 and 3.45 already take

these contributions into account. Throughout the rest of chapter, a reference to

GMSB also implies the Yukawa mediated contributions.

These Yukawa contributions can save the masses of the right-handed sleptons

as in [58, 59]. However, the left-handed contributions will not have a corresponding

mechanism. This is why the deflection is important. As argued earlier, this will

cause only a partial decoupling of the threshold and will allow for non-zero D-term

contribution to the slepton masses. The important question is: will they be of

the right sign and magnitude? The next two subsections will quickly explore both

the masses of the right- and left-handed masses to see whether they can be made
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positive. If they can, this would be a realistic and well-motivated instance of a

Pomarol Rattazzi model.

4.1.1 Right-Handed Sleptons

Now that the theoretical groundwork has been laid out, it is important to

investigate the nature of the slepton masses. Specifically, can this scenario provide

for non-tacyhonic sleptons? For the right-handed sleptons, this can be ascertained

from the mass boundary condition, Eq. (3.45). As mentioned in Section 3.5 this

equation contains both the AMSB contributions, GMSB-like contributions and a

mixture. The AMSB contribution will usually be the largest contributor since the

other terms involve differences in β-functions.

The easiest mass to study is that of the right-handed selectron. It has new

Yukawa couplings due to the light doubly-charged Higgses:

WDC = fce
c∆c−−ec (4.13)

Its mass will depend on the fc, which is a 3 × 3 matrix in generation space and

on the gauge couplings for SU(2)R, U(1)B−L and U(1)Y . In order to simplify the

analysis, the following assumptions are made:

f i
cj = fδi

j and (4.14)

αR = αB−L = 2α1 ∼ 0.044, (4.15)

where

α−1
1 = α−1

R + α−1
B−L (4.16)
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has been used in Eq. (4.15), a result of the right-handed symmetry breaking structure

and since α1 ∼ 0.022 is weakly dependent of the parameter space.

Seperating Eq. (3.45) into its AMSB, GMSB and mixed contributions yields

m2
ẽc = m2

AMSB +m2
mixed +m2

GMSB (4.17)

m2
AMSB =

1

144π4
F 2

φ

(
63

2
f 4 − 108πα1f

2 − 18π2b1α
2
1

)
(4.18)

m2
mixed =

1

144π4
F 2

φ

(
12f 4 − 96πα1f

2 + 24π2α2
1(b1 − bR − bB−L)

)
(4.19)

m2
GMSB =

1

144π4
F 2

φ

(
3f 4 + 100πf 2α1 − 8π2α2

1(b1 + bR − bB−L)
)

(4.20)

where the γ- and β-functions above the vR scale are given in Appendix A.1 and

below in Appendix A.2 and and all quantities are evaluated at the right-handed

scale. Each of these term appears with a positive quartic dependence on f . As

f is increased, it quickly dominates the negative gauge contributions (given that

α1(vR) ∼ 0.02) and yields positive terms. Figure 4.1 indicate that this happens at

around f & 0.6. For this figure, Fφ = 36 TeV, but the result is independent of the

overall scale. The largest contribution in this positive regime comes from the AMSB

term, which has the largest prefactor to the f quartic. Finally, the non-tachyonic

nature of these masses will be preserved to the SUSY scale since the slepton masses

run very slowly. Therefore, this analysis shows that the right-handed slepton masses

can be made positive in this scenario.

4.1.2 Left-Handed Slepton Masses and D-Terms

New large Yukawa couplings in the left-handed slepton sector do not exist in

this model. Therefore Eq. (3.45) will still give tachyonic left-handed sleptons as the
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Figure 4.1: The mass of the right-handed selectron at the right-handed scale broken

up into the AMSB, mixed and GMSB contributions with Fφ = 36 TeV and α1 =

0.02. The AMSB contribution dominates and is positive for f > 0.6.

right-handed scale. Since these values do not run much, they will also be tachyonic

at the SUSY scale. The only hope for saving these masses are the D-terms, which

only partially decouple as discussed in Section 3.6. The question is, will these D-

terms be of the right sign and magnitude?

Table 2.2 shows that the D-term contribution to m2
L̃

is

δm2
L̃

=
1

4

αB−L

αR + αB−L

(
m2

∆c −m2
∆̄c

)
(4.21)

Clearly, the sign of the contribution depends on the sign of m2
∆c −m2

∆̄c . In AMSB,

this is predicted based on the couplings of ∆c and ∆̄c. Both have identical gauge

couplings, which will vanish from their difference. However, ∆c also has the seesaw

Yukawa coupling, f that is the only term that will survive the difference. Using the
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same simplifying assumptions as in Eq. (4.15) in addition to yL = 0 yields

δm2
L̃

=
3

512π4
r2F 2

φ

(
9f 4 − 40πα1f

2
)

(4.22)

where as mentioned in Section 3.6, the D-term does not fully decouple because

of the deflection from AMSB parameterized by r. Therefore, the D-term value

below the threshold is suppressed by r2 but is clearly positive for large enough f .

This is very important since there was no freedom for the sign here based on the

seesaw mechanism. It is a fascinating accident that AMSB predicts positive D-terms

contributions for the left-handed sleptons which would otherwise be tachyonic.

The boundary condition is independent of f and is calculated to be about

−90000 GeV2. The sum of these two contributions at Fφ = 36 TeV is plotted in

Figure 4.2. Here a value of f > 0.85 is needed for positive squared mass, larger than

the value needed for right-handed selectrons. Again this is independent of Fφ. Note

that at the right-handed scale, f . 3.5 based on perturbativity.

Once again, the value of the squared mass does not run much, therefore, for

large enough f, the left-handed sleptons have also been saved.

4.1.3 Below the Right-Handed Scale

Once SU(2)R breaks around the seesaw scale of 1011 GeV, the effective theory

contains the NMSSM, an extra set of higgs doublets and the doubly-charged fields

and will be referred to as the NMSSM++. The non-renormalizable terms of Eq. (4.1)

also influence the form of the lower scale theory and produce some important effects

that aid in construction of a realistic low-energy theory. One significant contribution
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Figure 4.2: The squared mass of the left-handed selectron at the right-handed scale

with Fφ = 36 TeV and α1 = 0.02. At f > 0.85, the D-terms cause the square mass

to be positive. The boundary condition is independent of f and corresponds to the

f = 0 part of the curve.

comes from the higher dimensional operators: the generation of a SUSY mass term

for N . Specifically non-renormalizable term involving N generate a superpotential

term of µN

φ
N2 when ∆c and ∆̄c get a VEV.

This explicit mass term produces a SUSY breaking bilinear term proportional

to Fφ, bN given as

bN = µNFφ '
v2

R

MP

Fφ. (4.23)

This term will be shown to play an important role EWSB.

The doubly charged fields will also get an effective µ term on the order of

v2
R

MP
. As will be discussed in Section 4.2.3, this term must be of order Fφ, mean-

ing the doubly-charged fields will decouple at this scale. Furthermore, the non-

renormalizable terms can also be used to simplify the low-energy theory, though
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this is not necessary. Consider the terms involving Φ in Eq. (4.1) which yield a low

energy mass matrix that is not symmetric between Φ1 and Φ2 (due to the λβ term).

The asymmetry could generate an operator of the form:

W ⊃ iMHu2τ2Hd1 (4.24)

without the corresponding Hu1Hd2 term. This allows a for a possible fine tuning

that can lead to a doublet-doublet splitting mechanism at around Fφ. The upshot

of which is that one doublet set will be heavy (Hu2 and Hd1 with mass of about Fφ,

while the other is massless in the limit of 〈N〉 = 0). The light set is then just the

regular Higgses of the MSSM/NMSSM and the theory below Fφ is the NMSSM with

an the additional µ term for the singlet.

This µ term is important because the low-energy NMSSM cannot achieve

a realistic mass spectrum—the singlet N would get a very small VEV, and the

Higgsino would be lighter than allowed by experiment[61]. The origin of this problem

is best illustrated with a toy model. Consider a superpotential given by

Wtoy =
1

3
κN3 (4.25)

where N is a singlet field . The resulting scalar potential, including SUSY breaking,

is

Vtoy = κ2|N |4 +
1

3

(
aκN

3 + a∗κN
∗3)+m2

N |N |
2 . (4.26)

Taking account for the complex phases by letting

N = |N | eiδN κ = |κ| eiδκ aκ = |aκ| eiδaκ , (4.27)
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the minimization condition for the phase δN is

sin(3δN + δaκ) = 0. (4.28)

The resulting minimum condition for |N |,

0 = 2|κ|2 |N |2 + |aκ| |N | cos(3δN + δaκ) +m2
N

= 2|κ|2 |N |2 + |aκ| |N |+m2
N , (4.29)

is then independent of any phases leaving 〈N〉 real. The solution to Eq. (4.29) states

〈N〉 =
−|aκ| ±

√
|aκ|2 − 8|κ|2m2

N

2|κ|2
(4.30)

where the soft couplings aκ and mN are determined by AMSB via Eqs. 3.18 and

3.19 (note that since the singlet does not couple significantly to the messengers, this

argument would hold in PSLRM as well):

aκ =
Fφ

16π2
6κ3

m2
N =

|Fφ|2

(16π2)2 12κ4.

(4.31)

Substituting these into Eq. (4.30) gives

〈N〉 =
|Fφ|
16π2

|κ|
4

(
−6±

√
−60

)
(4.32)

yielding a contradiction: 〈N〉 must be real, but the large negative under the radical

demonstrates this can not be so.

The same problem carries over to the full NMSSM, as pointed out in [61]. In

this model, the additional coupling of N to Hu and Hd adds a linear term to the

potential, aλvuvdN . The induced linear term shifts the trivial minimum away from
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zero, but keeps it small. Given this limitation of the NMSSM, it is desirable to

explore methods that either alter the relative strengths of the terms or yield a large

tadpole term for N . The former may be done by adding vector-like matter (as in

[48]), while the latter was explored in [61] by introducing a linear term for N . The

solution used here is different and is already present in this model: utilizing the bN

term. This was discussed in [58].

The size of bN is quite conveniently around the SUSY breaking scale and will

serve for turning the net mass-square of N negative. To establish this property we

now turn to the minimization condition for N .

m̃2
N + κ2n2 +

1

2
λ2v2 +

nãκ√
2
− 1

2
v2

(
ãλ

n
√

2
+ λκ

)
sin 2β = 0 (4.33)

The tilded variables are introduced to display the deviations from the usual NMSSM.

The definitions are

ãλ ≡ aλ + λµN (4.34)

ãκ ≡ aκ + 3κµN (4.35)

m̃2
N ≡ m2

N + µ2
N − bN (4.36)

The variable m̃2
N can be approximated as

m̃2
N = m2

N + µ2
N − µNFφ

≈ m2
N − µNFφ

'
(

λ4

(16π2)2Fφ − µN

)
Fφ

The second line follows from the fact that µN ∼ O
(

M2
SUSY

Fφ

)
∼ O

(
Fφ

(16π2)2

)
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and therefore the µ2
N term is negligible compared to the the other terms. The last

line uses the AMSB expression for the square of the scalar mass, assuming it is

dominated by the λ contribution. As can be seen, due to the λ4 suppression, it is

relatively easy to adjust µN to a value to make m̃2
N negative and therefore induce

a singlet VEV of the correct size. Given that λ(MSUSY) . 0.5 (from constraints of

perturbativity to the right-handed scale) and that µ = λn√
2
, it is only necessary for

n & 300 GeV to achieve chargino masses above the LEP II bound. The resulting

spectrum is similar to the NMSSM given in [62].

4.2 Phenomenology

In the following sections, the numerical values are based on the parameter

running scheme used and some simplifying assumptions. The gauge coupling values

from are evolved from the electroweak scale to the right-handed scale taking the

Fφ threshold into account by decoupling the doubly-charged fields and extra Higgs

doublet. Yukawa couplings are then inputs at the right-handed scale: the third

generation values for the SM couplings (yQ, yL) and all three generations of the

seesaw couplings (fc). These are evolved down to the SUSY scale using [63, 64].

The seesaw coupling is assumed to be diagonal to agree with lepton flavor violating

constraints given in [65]. It is also assume it is proportional to the identity for

simplicity. As usual the MSSM Yukawa couplings are assumed to have a non-zero

value only in the three-three position in generation space.
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4.2.1 Sfermions

The arguments given in sections 4.1.1 and 4.1.2 show that this model can

solve the tachyonic slepton problem of AMSB by the seesaw Yukawa couplings for

the right-handed sleptons and the D-terms for the left-handed ones. However, the

D-terms can lead to problems of its own. Examining Table 2.2 once more shows that

negative D-term contributions to masses exist for the left-handed squark field due to

U(1)B−L, the right-handed up squark due to SU(2)R and the right-handed selectron

due to to U(1)B−L. This should be expected since D-terms are proportional to

charge, therefore particles of charge opposite of L will get negative contributions.

The right-handed selectron will be non-tachyonic because it also receives a positive

contribution from SU(2)R D-terms and because its boundary condition is quite

large when f > 0.6. The right-handed up squark may also be safe because it gets

positive contributions from U(1)B−L D-terms. Therefore, the only field that has

purely negative contributions to its squared mass is the left-handed squark field,

which brings its mass into conflict with that of the left-handed sleptons: the larger

the D-term the larger the left-handed slepton mass but the smaller the left-handed

squark mass.

To study this situation, it is sufficient to examine the lightest first generation

masses. The only difference between these and those of the third generation is the

lack of Yukawa couplings in the latter which usually help the situation. Figure 4.3

plots the mass of the lightest down squark, up squark and selectron at the SUSY

scale (1 TeV) verses f at the right-handed scale using the same assumptions as in
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Section 4.1.1. The lightly shaded region is the excluded region for squark masses

based on Tevatron data and the darker region is excluded slepton masses based on

LEP II data as well. The dashed line is the mass of the LSP. In order for the LSP

to be a dark matter candidate, all SUSY masses must be heavier than the LSP.
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Figure 4.3: The squared mass of the lightest down squark, up squark and selectron

at the SUSY scale (1 TeV) with Fφ = 36 TeV and α1 = 0.02 verses f at the

right-handed scale. The light shaded region is excluded for squark masses from the

Tevatron and the darker shaded region is excluded for slepton masses from LEP

II. The dashed line is the mass of the LSP. In order for it to be the dark matter

candidate, all SUSY masses must be above it. The allowed parameter space is about

0.8 ≤ f ≤ 1.2.

The strongest constrain to come from the up squark and the selectron masses

although they admit some parameter space? The down squark mass has an inter-

esting sharp increase at around f = 0.75. Below this, the lightest down squark

is right-handed because the low values of f cause the contributions in Table 2.2
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to have the opposite signs of the ones shown, i.e. the left- (right-) handed down

squark gets a positive (negative) contribution. After this point, the composition of

the lightest eigenstates switches to the left-handed down squark which falls as −f 4.

The right-handed down squark has the opposite behavior growing quickly as f 4.

The same behavior can be seen for mũ1 . Meanwhile, mẽ1 increases rapidly with f

as argued above.

A similar plot can be constructed for the other parameter which influences

these mass terms: αR at the right-handed scale (vR ∼ 1010 GeV), Figure 4.4. Here

f = 1 at the right-handed scale.

The behavior of the plots in Figure 4.4 is a bit more complex but is worth

tabulating here. First it is helpful to keep in mind the behavior of D-term con-

tributions. Since f is held constant here, the D-terms are simply proportional to

the ratios of gauge couplings: the U(1)B−L contribution goes as αB−L

αB−L+αR
and the

SU(2)R contribution goes as αR

αB−L+αR
. Their behavior in terms of αR are shown in

Table 4.1. It is also worth recording the schematic behavior of the mass boundary

condition at the right-handed scale in terms of the gauge couplings. This is given

in Table 4.2 along with the sign of the D-term contributions.

αR αB−L U(1)B−L D-term SU(2)R D-term

αR → α1 ∞ 1 0

αR →∞ 1 0 1

Table 4.1: Behavior of αB−L and the U(1)B−L and SU(2)R D-term contributions

for different limits of αR. Remember that α1 ∼ 0.022.
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Figure 4.4: The squared mass of the lightest down squark, up squark and selectron

at the SUSY scale (1 TeV) with Fφ = 36 TeV and f = 1 at the right-handed scale

verses αR at the right-handed scale. The light shaded region is excluded for squark

masses from the Tevatron and the darker shaded region is excluded for slepton

masses from LEP II. The dashed line is the mass of the LSP. In order for it to

be the dark matter candidate, all SUSY masses must be above it. The allowed

parameter space is 0.75 ≤ f ≤ 1.22.

It is possible to systematically step through the rows of Table 4.2 and Table 4.1

these to understand Figure 4.4. The lightest selectron will always be the left-handed

slepton in this case because the value of f pushes the right-handed slepton to be

quite massive. At low αR close to the value of α1, the mass is dominated by the

−α2
B−L contribution which pushes it toward large negative values. At larger values

of α1, the U(1)B−L D-term contribution approaches zero asymptotically returning

the selectron mass to it’s negative value once more.

The content of the lightest squarks actually flip back and forth explaining
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Field Mass at vR Sign of B − L Sign of R

L1 ∼ −α2
B−L + 0

ec ∼ −α2
B−L − α2

R − +

Q1 ∼ −α2
B−L − 0

uc ∼ −α2
B−L − α2

R + −

dc ∼ −α2
B−L − α2

R + +

Table 4.2: Schematic behavior of the mass boundary condition of various fields and

the sign of their D-term contributions

the maxima seen in Figure 4.4. For low αR both the right-handed and left-handed

squarks get large negative contributions from α2
B−L but the right-handed ones also

have negative contributions from α2
R hence making the lightest squark right-handed.

At moderate values of αR, the D-terms help boost the right-handed mass above the

left-handed ones so that the content switches. This process is more prevalent in the

down squark since it has two positive contributions from the D-terms. Finally, as

αR increases, the boundary conditions dominate once more driving the right-handed

squark masses toward zero as −α2
R (but not the left-handed squarks). Therefore, in

this regime, the lightest eigenstates are once more right-handed. This happens at

about αR = 0.07 for the down squark and αR = 0.03 for the up squark.

Figures 4.4 and 4.3 hint at the available parameter space but a plot in αR− f

space is more useful for this purpose. This is given in Figure 4.5 for Fφ = 36TeV

taking into account the collider constraints used in the previous two figures and in

Figure 4.6 where the the selectron is more massive than the wino making the wino
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the LSP. The space is constrained on the left due to tachyonic/light sleptons, to the

right because of tachyonic/light squarks, below because αB−L is non-perturbative

and above because of tachyonic squarks. The plot makes an interesting prediction

that f needs to be very close to 1 at the right-handed scale (translating to about

0.6 at the Fφ scale). It also severely restricts the αR space. Figure 4.6 pushes the

value f up by about 5% so that the selectron is heavier than the wino.

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

f

αR

Figure 4.5: The allowed parameters space in the αR − f plane taking into account

the collider limits used in the previous figures. Here Fφ = 36 TeV.

The parameter space allows for some interesting situations. Consider Fig-

ure 4.7 which shows both up squark eigenvalues as a function of αR. For large αR,

this plot shows that a large hierarchy exists between the two eigenstates. This quite

atypical since models such as mSUGRA, GMSB and AMSB all predict same flavor

squark masses that are quite degenerate since the contributions to those masses are

dominated by α3 and is independent of handedness. Hierarchies for the down squark

is also possible and a hierarchy exists through most of the parameter space for the
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Figure 4.6: The allowed parameters space in the αR − f plane taking into account

the collider limits used in the previous figures and that the wino is the LSP. Here

Fφ = 36 TeV.

slepton, although this latter trait also exists in GMSB.

Finally, Table 4.3 presents masses corresponding to the center area of the

parameter space in Figure 4.5 (f = 1, αR = 0.05) with Fφ = 36 TeV. Only the first

generation masses are shown since the other generations introduce a dependence on

extra parameters. Masses are at the SUSY scale, 1 TeV. A large hierarchy can be

seen in the slepton sector. Furthermore, the down squark is heavier than the up

which is a general feature due to its D-term contributions and mẽ2 is comparable to

squark masses.

4.2.2 Bosinos and The LSP

Because all superpartners eventually decay into the LSP, its makeup is an

important part of SUSY collider phenomenology and dark matter prospects and
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Figure 4.7: Plot of mũ1 and mũ2 , the latter being the heavier one for f = 1 and

Fφ = 36 TeV. The line at about 250 GeV correspond to Tevatron limits as in the

plots show in Figures 4.3 and 4.4.

understanding that makeup is an important task. Cosmological constraints rule

out a charged or colored LSP [66], hence limiting the choices to the sneutrino or

the lightest neutralino. The former, in typical models, makes a poor dark matter

candidate (relic abundances are too light; much of its mass range ruled out by direct

detection [67, 68]. It is therefore more interesting to consider the lightest neutralino

as the LSP, the candidate in common SUSY scenarios (except in mGMSB where it

is the next to lightest SUSY particle but has the same collider significance [69]).

The lightest neutralino will be some mixture of the wino, bino and Higgsino.

Its gaugino composition follows from the gaugino mass ratio which is easily calcu-

lated and relatively independent of the point in parameter space. It is worthwhile

to compare this ratio in PSLRM to the mAMSB where M3 : M2 : M1 ∼ α3b3
α2b2

: 1 :

α1b1
α2b2

∼ 8 : 1 : 3.5. In PSLRM the gluino is also is still on its AMSB trajectory how-
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Field Lightest State (GeV) Heaviest State (GeV)

ẽ 370 760

ũ 490 670

d̃ 670 810

Table 4.3: Masses of the first generation sfermions at Fφ = 36 TeV , f = 1 and αR =

0.05. A large hierarchy in the selectron can be seen as well as the fact that the

selectron can be as massive as the squarks.

ever, b2 = 2 instead of 1 because of the extra Higgs doublet below the right-handed

scale. This makes the wino about twice as massive as in mAMSB. Furthermore,

the bino picks up a similar sized contributions since the doubly-charged particle

content almost double b1. In addition, there are also boundary terms which add to

the AMSB contributions (see Eq. (3.43)) which increases its value. The ratio is then

calculated to be 4 : 1 : 3, making the wino the lightest and therefore the dominant

gaugino content of the LSP. This is very different from mSUGRA where the ratio is

given by 3 : 1 : 0.3 and the bino is the lightest because in mSUGRA the mass ratios

depend only the gauge couplings and not on the gauge coupling RGE slopes (see

Table 4.4 for b values in this model below the vR scale, compared to the minimal

case).

The Higgsino contribution is not independent of other parameters however in

general it is significantly larger than M2 since it must be comparable in size to mHu

or mHd
to allow for EWSB, see Eq. (1.62), and mHu receives large contributions

from the top Yukawa coupling. Therefore, the LSP will be predominantly wino as
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in the mAMSB case. It is interesting that this scenario is different from the deflected

AMSB model by Pomarol and Rattazzi where the wino gets extra mass contribution

from a messenger sector charged under SU(2)L and is therefore not the LSP.

b1 b2 b3

MSSM 33
5

1 −3

PSLRM 60
5

2 −3

Table 4.4: Values for the b parameter in the MSSM and PSLRM.

In this case, it is important to note that Winos form isospin triplets. Therefore

when they play the role of the lightest neutralino there is a very small mass difference

between the lightest neutralino and the lightest chargino on the order of 100s of

MeVs. This value includes leading radiative corrections. Analytically, this mass

difference can be approximated at tree-level as (see [49, 70, 71]):

∆χ ≡ mχ̃± −mχ̃0
1

=
M4

W tan2 θW

(M1 −M2)µ2
sin2 2β (4.37)

which is suppressed for large tan β, large M1 and large µ. The mass splitting is so

small that radiative corrections have to be considered. In the limit M2 �MW , this

reduces to

∆χ =
αMW

2(1 + cos θw)

(
1− 3

8 cos θw

M2
W

M2
2

+O
(
M3

W

M3
2

))
(4.38)

where α, the fine structure constant, is about 1
128

at the relevant scale. This value

asymptotes to 165 MeV for large M2 and reflects the Columb contributions to the

self-energy of W̃± which does not exist for W̃ 0.
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4.2.3 Doubly-Charged Higgs and Low Energy Phenomenology

The doubly-charged superfields have an effective µ term below the right-

handed scale

WDC Mass =
µDC

φ
∆c−−∆̄c++ (4.39)

where µDC ∼
v2

R

MP
∼ Fφ. This is the mass term for the Higgsinos, so they decouple

there. However, the doubly-charged fields also pick up a SUSY breaking bDC

VSoft DC Mass = µDCFφ∆
c−−∆̄c++ (4.40)

therefore, bDC ∼ F 2
φ . The mass matrix for the doubly-charged Higgses is:

MDC = µ2
DC

 1 1− εDC

1− εDC 1

 (4.41)

with εDC = 1 − Fφ

µDC
. The eigenvalues of this mass matrix are m2

DC = εDCµ
2
DC and

M2
DC = 2µ2

DC . Since εDC depends on µDC , and µDC on the couplings λA and λB, it is

possible that one doubly-charged Higgs is light and therefore accessible at the LHC.

Its presence would also be felt indirectly in upcoming muonium-antimuonium oscil-

lation experiments since the couplings to first and second generation leptons must

be large. Current bounds on these couplings and the masses of the doubly-charged

field are experimentally constrained from the most recent muonium-antimuonium

oscillation data [72] to be

fc1fc2

4
√

2m2
DC

. 3× 10−3GF ; (4.42)

Given that f has a quasi-fixed point value of around 0.5, this bound roughly
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translates to

mDC & 1000 GeV. (4.43)

4.2.4 Collider Signatures

The small size of ∆χ̃1 from Eq. (4.38) can be problematic at a collider because

the soft decay products, X, in the process χ+
1 → Xχ0

1, cannot be tagged. This is a

feature shared by all models with a Wino LSP and in some cases with a Higgsino LSP.

Such situations have been analyzed for general (non-AMSB) cases in lepton colliders

[73, 74] where it was shown that successful discovery could be made for triggers of

photons with energy greater than 10 GeV and vetoing other energetic particles. The

most significant background is e+e− → γνν where the neutrinos mimic the missing

energy of the LSP. An analysis more specific to AMSB was conducted [49] which

discussed the gamma signals as well as possible leptonic signals in different parts of

the parameter space.

General analysis for hadron colliders (the Tevatron) been have also done [70,

75, 71]. In [70] it was shown that for the mAMSB parameter space ∆χ̃ > mπ+

causing the chargino to have a decay length less than 10 cm and usually less than

1 cm. This excludes the possibility of it reaching the muon chamber. It is then

argued that the best route is to trigger on hard jets and missing energy and then

look for the chargino track in the detector. Because of the similarity of the LSP in

this scenario to mAMSB, these analyzes would also apply here.

The reason for the difficulty in detection is that typical SUSY discovery scenar-
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ios are based on left-handed squark decays to mostly wino charginos and neutralinos

(the wino is not the LSP in this case). These in turn can decay leptonically pro-

ducing trilepton signals or same sign dilepton signals [76, 22], both of which have

potentially manageable backgrounds. However, when the wino is the LSP, no such

signals exist since the chargino decays to a soft pion. One must then adopt the trig-

gers mentioned above or investigate other leptonic signals from bino decays. Binos

would be produced in the decay of right-handed squarks and would decay lepton-

ically but would not produce the trilepton and same sign dilepton signals. LHC

studies of such scenarios in mAMSB still found the reach to be significant [77, 78].

Again, this would apply in PSLRM.

If any of the signals mentioned here are found, discriminating this model from

others would have to based on mass differences. As was shown in Section 4.2.1, there

is a potential for a large mass difference in the squark sector not possible in other

models. Furthermore, Table 4.3 shows that the heavier selectron can have mass as

high as that of the squarks. This is in general true in this model. This is yet another

discriminating factor since it is not possible in GMSB, mSUGRA or mAMSB. Such

a discovery may have to await the International Linear Collider though. Aside from

the sfermion sector, the real smoking gun for this model would be a discovery of the

doubly-charged Higgs, if it is light enough. At the LHC production would be proceed

via sea-quark annihilation into a virtual γ and would lead to the production of a

pair of doubly-charged fields. Many phenomenological studies have been conducted

on various doubly-charged fields, [79, 80, 81, 82, 83, 84].
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4.2.5 Dark Matter

As noted in the previous section, the LSP in PSLRM model is a predominantly

wino as is true in mAMSB. Conventionally the annihilation rate for such an LSP is

too large and its relic density is not sufficient to explain the observation that 23%

of the universe is dark matter (the wino self annihilates via a t-channel chargino

exchange). This issue has been discussed in [85]. In this paper, the authors show

that due to the large mass of the gravitino, Fφ & 20 TeV, it decays in the late stage of

the universe: before big bang nucleosynthesis and after the freeze out of the wino. Its

wino decay products will then be non-thermal and can exist with sufficient density

to make the wino a viable dark matter candidate. Furthermore [85] scanned the

parameters and found that such dark matter does evade current bounds on direct

detection by CDMS Soudan and EDELWEISS but will be detectable by future

experiments. Since the wino sector in PSLRM is indentical to that in mAMSB, all

of these arguments also apply to the wino here making it a promising dark matter

candidate.

4.3 Conclusion

PSLRM gives appropriate masses to the neutrinos, predicts the seesaw scale,

guaranteesR-parity conservation, predicts the presence of light doubly-charged fields

which, through their couplings to the right-handed sleptons, cause those particles

to be non-tachyonic and allows for non-tachyonic left-handed sleptons via partially

decoupled D-terms. The best part is that all this is a result of looking at a minimal
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seesaw SLR model with an extra Z-symmetry.

It is intersting to compare this model to [59], which solves the tachyonic slep-

ton problem with light doubly-charged and left-handed triplets fields in the context

of MSLRM and pure AMSB. The latter retains the renormalization scale invariance.

It also solves the strong CP problem. However, there is a coincidence problem asso-

ciated with the mass of the light fields. This model losses the possibility of solving

the strong CP problem but the coincidence problem is solved by the prediction of

the right-handed scale. Furthermore, the GUT potential is better since it does not

contain the light left-handed triplets. In this sense, it is also more economical.
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Chapter 5

Conclusion

This thesis has focused on a specific MSLRM which contains an additional

discrete symmetry. In general this leads to a prediction of the right-handed scale

of about 1011 GeV which is consistent with neutrino oscillation data. It also solves

the µ problem and introduces light neutral fields in addition to the typical doubly-

charged fields associated with MSLRM.

While SUSY breaking can be implemented in a variety of ways in this model,

AMSB takes on a special form here. Specifically, this model can be used as a

specific instance of the Pomarol Rattazzi model of deflected AMSB. The necessary

ingredients for this already exist in the model: a shallow potential leading to light

singlets. As such, it is well motivated due to neutrino masses. The right handed

neutrinos play the roll of messengers instead of the arbitrary fields serving this

purpose. The new SUSY breaking fields are the right-handed triplets which are

necessary for the seesaw mechanism and the breaking of SU(2)R instead of being

arbitrary singlets.

Most importantly, the slepton masses are saved from their non-tachyonic fate

by a combination of two mechanisms. The right-handed sleptons are saved due to

the extra Yukawa couplings (f) to the light doubly-charged fields. This is inde-

pendent of the deflection. The left-handed sleptons get positive contributions from
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the partially decoupled D-terms which are intimately connected to the deflection of

AMSB. Furthermore, the sign of the D-term contribution is positive in the regime

where f is large enough to save the right-handed sleptons. It is important that

there was no freedom here and is quite interesting that the sign works out the way

it does. The dependence on D-terms also adds an interesting constraint to the

f − αR parameter space since they contribute negatively to the masses of the up

squarks.

The model at low energy is the NMSSM which solves the µ problem and also

contains the means to solve the EWSB problem of AMSB, which exists even in

the NMSSM. This solution is achieved through non-renormalizable terms in the

superpotential, which allow for an effective µ and b terms for the singlet. The latter

can help trigger a VEV for the singlet which would otherwise have been too small

leading to an unacceptable chargino spectrum. This mechanism exists a priori in

this theory, disposing of the need for ad hoc colored triplets.

Phenomenologically, the doubly-charged doublets might be visible in collider

experiments such as the LHC and in future muonium-antimuonium oscillation ex-

periments. The model also provides a realistic dark matter candidate: the LSP

which is mostly wino. Furthermore, its gaugino structure is similar enough to the

mASMB case so that previous mAMSB studies can applied here.

The sum total of these indicate that this is an interesting model and a con-

tender for SUSY BSM physics. Furthermore, it is an appealing addition to the work

already done on exploring the remarkable relationship between neutrino masses and

AMSB [59, 86, 58].
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Appendix A

The Predictive Supersymmetric Left-Right Model

This appendix contains relevant technical information for PSLRM including

gamma functions and Yukawa beta functions in the different energy regimes of the

model.

A.1 Above the Right-Handed Scale

The superpotential is reproduced here:

WPSLRM = WY +WNR +WN (A.1)

WY = iya
QQ

T τ2ΦaQ
c + iya

LL
T τ2ΦaL

c + ifcL
cT τ2∆

cLc (A.2)

WN = λabN Tr
(
ΦT

a τ2Φbτ2
)

+
1

3
κN3 (A.3)

WNR =
λA

MPφ
Tr2
(
∆c∆̄c

)
+

λB

MPφ
Tr(∆c∆c) Tr

(
∆̄c∆̄c

)
+

λab
α

MPφ
Tr
(
∆c∆̄c

)
Tr
(
ΦT

a τ2Φbτ2
)

+
λab

β

MPφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

+
λN

MPφ
Tr
(
∆c∆̄c

)
N2 + · · ·

The gauge coupling b values are:

b3 = −3 b2 = 2 bR = 6 bB−L = 10 (A.4)

where no GUT based normalization has been imposed on bB−L. A general gauge

coupling RGE is given by

∂αA

∂t
=
bAα

2
A

2π
(A.5)

116



no sum over A. The gamma functions for the particle content are

16π2γQ3 = −4
∣∣ya

Q

∣∣2 + 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γQ1 = 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γQc

3
= −4

∣∣ya
Q

∣∣2 + 8π

(
8

3
α3 +

3

2
αR +

1

18
αB−L

)
16π2γQc

1
= 8π

(
8

3
α3 +

3

2
αR +

1

18
αB−L

)
16π2γL3 = −4|ya

L|
2 + 8π

(
3

2
α2 +

1

2
αB−L

)
16π2γL1 = 8π

(
3

2
α2 +

1

2
αB−L

)
16π2γLc

3
= −4|ya

L|
2 − 12|fc3|2 + 8π

(
3

2
αR +

1

2
αB−L

)
16π2γLc

1
= −12|fc1|2 + 8π

(
3

2
αR +

1

2
αB−L

)
16π2γΦb

Φa
= −6ya

Qy
b∗
Q − 2ya

Ly
b∗
L − 8λacλcb∗ + 8πδab

(
3

2
α2 +

3

2
αR

)
16π2γN = −4κ2 − 16

∣∣λab
∣∣2

16π2γ∆c = −4|fc3|2 − 4|fc2|2 − 4|fc1|2 + 8π(4αR + 2αB−L)

16π2γ∆̄c = 8π(4αR + 2αB−L) (A.6)

under the convention γφ ≡ ∂ ln Zφ

∂ln µ
. It is assumed that: fc = diag(fc1, fc2, fc3) and

the remaining 3 × 3 Yukawa matrices are only non-zero for the three-three entry.

Second generation γ-functions are the same as first generation ones accept for the

right-handed leptons where fc1 → fc2. The Φ generational index, a = 1..2. The
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β-functions for the Yukawa couplings are then given by

∂ya
Q

∂t
= −1

2

(
ya

Q

(
γQ3 + γQc

3

)
+ yb

Qγ
Φa
Φb

)
∂ya

L

∂t
= −1

2

(
ya

L

(
γL3 + γLc

3

)
+ yb

Lγ
Φa
Φb

)
∂λab

∂t
= −1

2

(
λabγN + λacγΦb

Φc
+ λcbγΦa

Φc

)
∂fci

∂t
= −1

2

(
fciγ∆c + 2fcjγLc

j

)
∂κ

∂t
= −1

2
(3κγN) (A.7)

where i, j = 1..3 represent generation indices.

A.2 Below The Right-Handed Scale

The effective superpotential between vR and Fφ is given by:

WNMSSM++ = WY +WN +WMass + · · ·

WY = iya
uQ

T τ2Huau
c + iya

dQ
T τ2Hdad

c + iya
eL

T τ2Φae
c + fce

c∆c−−ec

WN = λabN Tr
(
ΦT

a τ2Φbτ2
)

+
1

3
κN3

WMass =
µ∆c

φ
∆c−−∆̄c++ +

1

2

µN

φ
N2 + · · · (A.8)

with

ya
u = ya

d = ya
Q (A.9)

ya
e = ya

L (A.10)

at the right-handed scale. The gauge coupling b values are:

b3 = −3 b2 = 2 b1 = 20 (A.11)
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where no GUT based normalization has been imposed on b1. A general gauge

coupling RGE is given by

∂αA

∂t
=
bAα

2
A

2π
(A.12)

no sum over A. The gamma functions for the particle content are

16π2γQ3 = −2|ya
t |

2 − 2|ya
b |

2 + 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γQ1 = 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γtc = −4|ya

t |
2 + 8π

(
8

3
α3 +

8

9
α1

)
16π2γbc = −4|ya

b |
2 + 8π

(
8

3
α3 +

2

9
α1

)
16π2γuc = 8π

(
8

3
α3 +

8

9
α1

)
16π2γdc = +8π

(
8

3
α3 +

2

9
α1

)
16π2γL3 = −2|ya

τ |
2 + 8π

(
3

2
α2 +

1

2
α1

)
16π2γL1 = 8π

(
3

2
α2 +

1

2
α1

)
16π2γτc = −4|ya

τ |
2 − 8|fc3|2 + 8π(2α1)

16π2γec = −8|fc1|2 + 8π(2α1)

16π2γHub
Hua

= −6ya
t y

b∗
t − 8λacλcb∗ + 8πδab

(
3

2
α2 +

1

2
α1

)
16π2γHdb

Hda
= −6ya

b y
b∗
b − 2ya

τy
b∗
τ − 8λacλcb∗ + 8πδab

(
3

2
α2 +

1

2
α1

)
16π2γN = −4κ2 − 16

∣∣λab
∣∣2

16π2γ∆c−− = −4|fc3|2 − 4|fc2|2 − 4|fc1|2 + 8π(8α1)

16π2γ∆̄c = +8π(8α1) (A.13)
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under the convention γφ ≡ ∂ ln Zφ

∂ln µ
. It is assumed that: fc = diag(fc1, fc2, fc3),

ya
u = diag(0, 0, ya

t ), y
a
d = diag(0, 0, ya

b ) and ya
e = diag(0, 0, ya

τ ). Second generation

γ-functions are the same as first generation ones accept for the right-handed leptons

where fc1 → fc2. The β-functions for the Yukawa couplings are then given by

∂ya
t

∂t
= −1

2

(
ya

t (γQ3 + γtc) + yb
tγ

Hua
Hub

)
∂ya

b

∂t
= −1

2

(
ya

b (γQ3 + γbc) + yb
bγ

Hda
Hdb

)
∂ya

τ

∂t
= −1

2

(
ya

τ (γL3 + γτc) + yb
τγ

Hda
Hdb

)
∂λab

∂t
= −1

2

(
λabγN + λacγHdb

Hdc
+ λcbγHua

Huc

)
∂fci

∂t
= −1

2

(
fciγ∆c + 2fcjγec

j

)
∂κ

∂t
= −1

2
(3κγN) (A.14)

where i, j = 1..3 represent generation indices.

A.3 Below Fφ

The effective superpotential between Fφ and vR is the NMSSM with a singlet

mass term and is given by:

WNMSSM = WY +WN +WMass

WY = iyuQ
T τ2Huu

c + iydQ
T τ2Hdd

c + iyeL
T τ2Hde

c

WN = λabN Tr
(
ΦT

a τ2Φbτ2
)

+
1

3
κN3

WMass =
1

2

µN

φ
N2 (A.15)

where in general the Yukawa couplings here are some linear combination of the ones

above Fφ but based on the doublet-doublet splitting described in the Section 4.1.3
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and used in Section 4.2

yu = y1
u

yd = y2
d

ye = y2
e

λ = 2λ12 (A.16)

where the superscripts here indicate a Φ generation and not exponentials. The gauge

coupling b values are:

b3 = −3 b2 = 1 b1 = 11 (A.17)

where no GUT based normalization has been imposed on b1. A general gauge

coupling RGE is given by

∂αA

∂t
=
bAα

2
A

2π
(A.18)
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no sum over A. The gamma functions for the particle content are

16π2γQ3 = −2|yt|2 − 2|yb|2 + 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γQ1 = 8π

(
8

3
α3 +

3

2
α2 +

1

18
αB−L

)
16π2γtc = −4|yt|2 + 8π

(
8

3
α3 +

8

9
α1

)
16π2γbc = −4|yb|2 + 8π

(
8

3
α3 +

2

9
α1

)
16π2γuc = 8π

(
8

3
α3 +

8

9
α1

)
16π2γdc = +8π

(
8

3
α3 +

2

9
α1

)
16π2γL3 = −2|yτ |2 + 8π

(
3

2
α2 +

1

2
α1

)
16π2γL1 = 8π

(
3

2
α2 +

1

2
α1

)
16π2γτc = −4|yτ |2 + 8π(2α1)

16π2γec = +8π(2α1)

16π2γHu = −6|yt|2 − 2|λ|2 + 8π

(
3

2
α2 +

1

2
α1

)
16π2γHd

= −6|yb|2 − 2|yτ |2 − 8λacλcb∗ + 8π

(
3

2
α2 +

1

2
α1

)
16π2γN = −4κ2 − 4|λ|2 (A.19)

under the convention γφ ≡ ∂ ln Zφ

∂ln µ
. It is assumed that: yu = diag(0, 0, yt), yd =

diag(0, 0, yb) and ye = diag(0, 0, yτ ). Second generation γ-functions are the same as

the first generation ones. The MSSM γ-functions can be calculated by setting λ and

κ to zero in Eq. (A.19). The β-functions for the Yukawa couplings are then given
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by

∂yt

∂t
= −1

2
(yt(γQ3 + γtc + γHu) )

∂yb

∂t
= −1

2
(yb(γQ3 + γbcγHd

) )

∂yτ

∂t
= −1

2
(yτ (γL3 + γτcγHd

) )

∂λ

∂t
= −1

2
(λ(γN + γHd

+ λγHu) )

∂κ

∂t
= −1

2
(3κγN) (A.20)

where i, j = 1..3 represent generation indices. These are also given in [87].
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Appendix B

Masses

B.1 Masses in the Minimal Supersymmetric Standard Model

B.1.1 Sfermion Masses

The third generation left-handed sfermions potentially mix with the right-

handed ones due to Yukawa couplings although this is usually only substantial in

the top sector. The mass matrices are

m2
t̃ =

 m2
Q3

+m2
t +DũL

v(a∗t sin β − µyt cos β)

v(at sin β − µ∗yt cos β) m2
tc +m2

t +DũR

 (B.1)

m2
b̃

=

 m2
Q3

+m2
b +Dd̃L

v(a∗b cos β − µyb sin β)

v(ab cos β − µ∗yb sin β) m2
bc +m2

b +Dd̃R

 (B.2)

m2
τ̃ =

 m2
L3

+m2
τ +DẽL

v(atau
∗ cos β − µyτ sin β)

v(atau cos β − µ∗yτ sin β) m2
τc +m2

τ +Dd̃R

 (B.3)

where Dφ = (T3(φ)−QEM(φ) ) cos(2β)M2
Z represents electroweak D-term

contributions to the mass of scalar φ. The masses for the first and second gen-

eration sfermions are typically assumed to be equal and are simply the sum of the

appropriate mass term and the D-term contributions m2
φ +Dφ. The lightest (heav-

iest) sfermion of a given flavor is denoted with a subscript 1 (2).
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The sfermion mass spectrum is heavily dependent on the soft parameters and

therefore the SUSY breaking mechanism. Since the popular models relate soft

masses to gauge couplings or because of the effects of gauge couplings in RGEs,

it is usually assumed that the squarks are the heaviest sfermions and that mostly

left-handed sfermions are heavier than mostly right-handed ones.

B.1.2 Bosino Masses

Bosinos can be subdivided into neutralinos and charginos fields. There are

four neutralinos in the MSSM and their mass matrix in the
(
B̃, W̃ , H̃0

d , H̃
0
u

)
basis

is

Mχ̃0 =



M1 0 −cβswMz sβswMz

0 M2 cβcwMz −sβcwMz

−cβswMz cβcwMz 0 −µ

sβswMz −sβcwMz −µ 0


(B.4)

where cw (sw) ≡ cos θw (sin2 θw ∼ 0.22). The mass eigenstates are χ̃0
1..χ̃

0
4 from

lightest. The lightest neutralino usually turns out to be mostly bino (mSUGRA and

mGMSB).

The chargino mass matrix in the
(
W̃+, H̃+

u , W̃
−, H̃−

d

)
basis is

Mχ̃± =

 0 XT

X 0

 X ≡

 M2

√
2sβMW

√
2cβMW µ

 (B.5)

Winos form a nearly degenerate isospin triplet (mass differences are on the

order of 100 MeV or so) while the Higgsinos form nearly degenerate isospin triplet
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although a larger mass difference exists in this case because of larger mixings, ∼

1GeV .

The LSP is usually assumed to be the lightest neutralino since dark matter

candidates must be neutral and the sneutrinos do not have the correct properties in

minimal models. However, satisfying the bounds is non-trivial since the amount of

dark matter depends on how quickly the LSP self annihilates in the early universe.

The bino self-annihilates slowly often leading to a universe with too much dark

matter (over closed) while the wino and Higgsino self-annihilate too quickly leading

to a dark matter abundance that is too low. Some mix is sometimes necessary.

The LSP is also usually important in collider phenomenology since produced

particles will cascade decay to the LSP. At the LHC then, a gluino or squark might

be pair produced and the resulting cascade decays would include jets, missing energy

from the LSP, which does not register on the detector and possibly leptons.

B.2 Type II Singular Seesaw Mechanism

We start with a mass matrix of the form

M =

δ2mL δmD

δm†
D MR

 (B.6)

where δ carries the relative order of magnitude of the elements of each of the three

(n×n) matrices mL, mD, and MR—i.e. there is a hierarchy which can be thought of

as either
∣∣∣(MR)ij

∣∣∣ � |(δmD)k`| �
∣∣∣(δ2mL)pq

∣∣∣; or, alternatively, δ � 1,
∣∣∣(MR)ij

∣∣∣ ∼
|(mD)k`| ∼

∣∣∣(mL)pq

∣∣∣ ≡ v.
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It is not assumed, however, that all the eigenvalues of MR are of this high

scale v, so in the limit δ → 0, it is possible that detMR = 0. Therefore, to exploit

this hierarchy it is necessary to extract those smaller eigenvalues. This is done as

follows:

First, diagonalize MR through an (n× n) rotation R via

R =

1 0

0 R

 (B.7)

so that

RMRT =

 δ2mL δmDR
T

δRm†
D Md

 (B.8)

with Md ≡ RMRR
T which is a diagonal matrix. The matrix R should be chosen so

that the first k eigenvalues of Md are the small ones—thus, for 1 ≤ i ≤ k

(
δ2µR

)
ii
≡ (Md)ii = δ2λiv

2 (B.9)

where λi ∼ 1 and (δ2µR)ij = 0 for i 6= j. The remaining (large) eigenvalues are then

placed in a separate matrix:

∆R ≡ diag
(
(Md)k+1,k+1 , (Md)k+2,k+2 , . . . , (Md)n,n

)
(B.10)

Also define

δµ1 ≡



0 col1
(
δmDR

T
)
· · · colk

(
δmDR

T
)

row1

(
δRm†

D

)
0 · · · 0

...
...

. . .
...

rowk

(
δRm†

D

)
0 · · · 0


(B.11)
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δ2µ2 ≡

δ2mL 0

0 δ2µR

 (B.12)

δµD ≡

colk+1

(
δmDR

T
)

colk+2

(
δmDR

T
)
· · · coln

(
δmDR

T
)

0 0 · · · 0

 (B.13)

With those definitions we may write

RMRT =

δµ1 + δ2µ2 δµD

δµ†D ∆R

 (B.14)

Now a matrix P is chosen so that it block diagonalizes RMRT . This P is

implemented through P which, to order δ2, is given by

P =

1− 1
2
δ2PP † −δP

δP †
1− 1

2
δ2P †P

 (B.15)

The matrix P is then determined by the requirement

PRMRT P† =

m 0

0 M

 (B.16)

with m the (n + k) × (n + k) mass matrix of interest and M = ∆R + O(δ). The

off-block-diagonal condition yields

P = µD∆−1
R (B.17)

and then using that P , the mass matrix for the light eigenstates can be determined:

m = δµ1 + δ2µ2 − δ2µD∆−1
R µ†D (B.18)
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