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This thesis is about dimensionality reduction for hyperspectral data. Special

emphasis is given to dimensionality reduction techniques known as kernel eigenmap

methods and manifold learning algorithms. Kernel eigenmap methods require a

nearest neighbor or a radius parameter be set. A new algorithm that does not

require these neighborhood parameters is given. Most kernel eigenmap methods use

the eigenvectors of the kernel as coordinates for the data. An algorithm that uses

the frame potential along with subspace frames to create nonorthogonal coordinates

is given. The algorithms are demonstrated on hyperspectral data. The last two

chapters include analysis of representation systems for LIDAR data and motion

blur estimation, respectively.
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Chapter 1

Introduction

1.1 Problem overview

In many applications of machine learning, data mining, and image processing,

high dimensional data is collected. Although the collected data is high dimensional,

often it is the case that the data is intrinsically low dimensional. We think of this

data as lying in a subspace or a manifold1 embedded in the larger space. Dimension-

ality reduction is the transformation of this data lying in a high dimensional space to

a low dimensional space. Hopefully, the transformation creates a representation of

the data that is low dimensional yet still preserves certain properties of the original

data. Often in dimensionality reduction, the goal is to find the minimum number

of parameters (dimensions) necessary to classify and account for the data.

1Formally, a topological manifold is a second countable Hausdorff space that is locally home-

omorphic to Euclidean space. However, if it helps, just think of a manifold as a space in which

every point has a neighborhood that looks like Rn, although globally, the manifold may be curved.
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1.2 Examples

1.2.1 Face recognition

As an example of dimensionality reduction, Belkin and Niyogi consider a cam-

era rotating around its subject while simultaneously taking a picture [2]. If each

picture has n2 pixels, then each image can be considered a point in Rn2
. In this

example, the data collected lies in Rn2
yet intrinsically it has a dimension of one, this

being the one parameter necessary to describe the motion of the camera. Ideally,

a dimensionality reduction algorithm would be able to take these images as high

dimensional input and then represent and classify these images according to their

corresponding angle of rotation, i.e., a one dimensional space. This can be seen in

Figure 1.1, in which seven distinct rotations of a face are randomly given and then

the data is organized by angle of rotation.

Figure 1.1: Capturing the angle of rotation of a face.

1.2.2 Manifolds

Saul and Roweis gave a more geometric explanation of dimensionality reduc-

tion using the Swiss roll [41]. Here, we have the Swiss roll, a two dimensional

manifold embedded in R3. This is Figure 1.2A. In practice we do not know the

2



dimensionality of the manifold. All that we have is our data consisting of samples

lying in R3, Figure 1.2B. Our goal in trying to reduce the dimensionality of the Swiss

roll is to transform the data into two dimensions in such a way that the atlases of

the manifold are preserved. Figure 1.2C shows how the manifold in R3 is taken into

R2 in such a way that preserves the neighborhood structure.

Figure 1.2: An artificial example. Reducing the Swiss roll from three to two dimen-

sions.(Courtesy Saul and Roweis)

1.2.3 Hyperspectral data

Hyperspectral sensors and data will be discussed in more detail later. However,

for now, it suffices to consider hyperspectral data as an image stacked on top of

itself D times. Here, we use D to represent the spectral dimension of the data. The

only difference between each image is the spectrum of light from which data are

collected, e.g., for dimension 1 the data may come from light with a wavelength of

approximately 400 nano-meters whereas for dimension 200 the data may come from

3



light with a wavelength of approximately 2, 500 nano-meters. The hyperspectral

data forms a data cube which can be seen in Figure 1.3.

Figure 1.3: A hyperspectral data cube. (Courtesy NEMO Project Office, United States Navy)

Each pixel in the hyperspectral cube has its own spectral signature. One of the

goals of hyperspectral imaging is to identify the materials in the image by looking

at the spectral signatures of the pixels. The goal of dimensionality reduction for

hyperspectral data is to reduce the number of spectral bands from D to d ≤ D

and still have spectral signatures that allow for image clustering and classifcation.

This is an oversimplification of hyperspectral data and there are a host of problems

associated with performing dimensionality reduction on hyperspectral data that will

be discussed in more detail later.
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1.2.4 Data mining and search engines

Dimensionality reduction is also used for classifying and retrieving documents.

The basic idea is that each document corresponds to a vector of length n. Here n

is the cardinality of the set of keywords that is being considered. Each entry in a

vector is the number of times the keyword occurs in the document, e.g., vi is the

number of times that the ith keyword occurs in the document. Different metrics

are used for these vectors; however, one of most common metrics is vector angle.

Vector angle computes the angle between the two vectors using the Euclidean inner

product. Once the documents are given coordinates in Rn and the distance between

the documents is computed, it becomes possible to store and retrieve documents

that are related to each other in an efficient manner.

1.3 Various techniques

Because of the nonlinear nature of the Swiss roll and many other data sets,

linear methods for dimensionality reduction such as Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) perform poorly on this type of data.

As a consequence of this, many nonlinear dimensionality reduction methods have

been created. A team of researchers at Maastricht University in the Netherlands

has done a comparative review of dimensionality reduction techniques and created a

MATLAB toolbox that implements twenty-seven different dimensionality reduction

algorithms [46]. Dimensionality reduction techniques range from neural networks,

genetic algorithms, statiscal approaches to kernel methods.

5
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The kernel dimensionality reduction algorithms can mostly be divided into two

categories. There are techniques that preserve the global properties of the manifold

and there are techniques that preserve the local properties of the manifold.2 One

subfamily of local dimensionality reduction techniques is known as kernel methods.

My work with dimensionality reduction involves using local kernel methods to reduce

the dimension of hyperspectral data.

1.4 Mathematical formulation

The problem of dimensionality reduction is as follows. Given n data samples

in RD, xi for i = 1, ..., n, they form a D x n matrix, X. Dimensionality reduction

algorithms transform this data, X, to a new set of data, Y . Y is a d x n matrix

where d ≤ D. Column yi of Y corresponds to the data point xi which is the ith

column of X. Ideally, this transformation would find the intrinsic dimensionality of

2For some methods the distinction between being global or local depends on the choice of the

kernel or parameters used to create the kernel

6



the data and preserve the geometry or relevant properties of the manifold.

1.5 My contribution

The main contribution of this thesis is a new method for constructing a graph

from the data in chapter 7 and the use of frames instead of eigenmaps for representing

the reduced coordinates in chapter 5. Currently, a graph is constructed from the

data with a user defined input such as k-nearest neighbors or radius. However, with

many types of data, there is no intuitive or natural way to choose number of nearest

neighbors or the radius. Example 7.1 demonstrates that constructing an inaccurate

graph for the data can lead to erroneous reduced dimension results. The algorithm

described in section 7.1 for graph construction relies on the geometry of the data

instead of user defined input.

For many kernel eigenmaps methods, the final step is to diagonalize the kernel

matrix and take the eigenvectors, called eigenmaps, as the new coordinates for the

data. In example 11, I give a motivating example suggesting that eigenmaps may

not be ideal. If the new coordinates are allowed to be nonorthogonal elements of

a frame, then they may outperform eigenmaps. A new algorithm in section 5.3 is

described for constructing frame coordinates using the frame potential and subspace

frames.

An analysis of several representation systems for LIDAR data is given in chap-

ter 8. Special emphasis placed on directional filter banks. The main conclusion of

this work is that contourlets perform better than other representation systems on

7



urban LIDAR data and that the Terrain Structural Simiilarity Index is a better

metric for evaluating image quality than other currently used metrics.

An algorithm that combines ceptstral methods with the Radon tranform for

estimating motion blur is given in chapter 9. This method outperforms directional

filters and purely cepstral methods for estimating the point spread function that

causes blurring.

8



Chapter 2

Hyperspectral data

2.1 Data collection

The technology for hyperspectral sensors was first developed in the 1970s.

NASA’s Jet Propulsion Laboratory demonstrated one of the first examples of an

airborne hyperspectral sensor in 1982 [28]. One of the main applications of hy-

perspectral sensors is to remotely identify materials from their spectral signatures.

Many scientific, commercial, and military groups are interested in hyperspectral

data and have created their own tools for collecting and analyzing the data.

A normal color image records the intensity of light in three spectral bands or

channels, red, green, and blue. A hyperspectral image is similar except that many

bands are collected across a wider range of the light spectrum. The spectral range

for a hyperspectral sensor usually starts at a wavelength of 400 nanometers and can

extend beyond the limits of human perception, 700 nanometers, all way up to the

near-infrared region with wavelength of 2, 500 nanometers. Figure 2.1 demonstrates

the colors and wavelengths for visible light. It should be noted that the intensity of

light is not uniform; the intensity is at a maximum in the green bands and smoothly

decreases away from the maximum.

Other important parameters for a hyperspectral sensor include: the altitude of

the sensor, the number of bands, the ground pixel size, and the ground swath. The

9



Figure 2.1: The visible region of the light spectrum.

ground pixel size gives the resolution of the sensor and the ground swath describes

the typical size of the region being sensed perpendicular to direction of motion.

Table 2.1 gives some examples of hyperspectral sensors and their corresponding

parameters.

Table 2.1: Examples of hyperspectral sensors

Sensor Altitude Spectral Range Number Ground Ground
(wavelength) of bands pixel size swath

AIS 4 km 1,200-2,400 nm 128 8 m 0.3 km
HYDICE 6 km 400-2,500 nm 210 3 m 1 km
Hyperion 705 km 400-2,500 nm 200 30 m 7.5 km

One can see from the resolution size of the data that different materials prob-

ably do exist within the same pixel of the image. This gives rise to pixels having

a mixed spectral signature, i.e., the collected spectral signature is mixture of the

“pure” spectral signatures on the ground. This will be discussed in more detail
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later. There are other problems associated with data collection such as upwelling

and downwelling. The light that is collected at the sensor may have been reflected

from the atmosphere and never reached the ground. Or the light that is collected at

the sensor may have been reflected several times from objects that may be outside

the resolution area.

There are two type of hyperspectral data, radiance and reflectance. The type

of data that has just been described is radiance data. For reflectance data, the effects

of the atmosphere are removed. The atmospheric effects are modelled as a filter that

is convolved with the spectral signatures. The goal then becomes to deconvolve the

radiance data and approximate the “true” reflected spectral signatures.

2.2 Working with hyperspectral data

Sometimes when hyperspectral data is collected certain bands are unusable.

The bands may be unusable because water in the atmosphere absorbed too much

radiation at a certain wavelength or for various other reasons. One of the first steps

in working with hyperspectral data is to either remove or fill-in values for these

“bad” bands. In our work, we have removed the bad bands. Also, to apply kernel

methods it is necessary to reshape the datacube, n × m × D, where the first two

coordinates are the pixel location and the last coordinate is the spectral response.

Reshaping is done by collapsing each column, 2nd coordinate, below the previous

column. Thus, a n ×m matrix becomes a nm × 1 vector. Only in our case, each

entry in the vector is the spectral signature of a pixel, thus we have a nm × D

11



matrix. Many people like to think of the spectral signature of a pixel as a column

vector, so the transpose of this matrix is taken creating a matrix of size D × N

where N = nm.

2.2.1 Endmember dectection as a type dimensionality reduction

There are various notions of what it means to be an endmember. One notion

is that an endmember is the spectral signature of a “pure” material, i.e., an object

that does not consist of materials giving different spectral signatures. Using this

notion, an endmember is often measured under laboratory conditions. This is not

what we mean by endmember. For us, an endmember of a datacube is the spectral

signature of a pixel that is used to build other spectral signatures in the datacube,

i.e., each pixel in the datacube is represented as a linear combination of endmembers.

In reality, most spectral signatures in a datacube cannot be reconstructed perfectly

as a linear combination of endmembers because of noise. There is a relationship

between the amount of noise and how well endmembers can be used to reconstruct

spectral signatures. The data, X, a D × N matrix, is factored approximately as

the product of two matrices, X ≈ EA [37]. Here E is a D × k endmember matrix

where each column is the spectral signature of a pixel taken from the image, k is

the number of endmembers. A is a k × N abundance matrix. Each pixel in the

datacube, i.e., column of X, is represented a linear combination of endmembers
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with some physical constraints,

Xj ≈ EAj

k∑
i=1

Aij = 1 ∀j = 1 . . . N,

Aij ≥ 0 ∀i = 1 . . . k, j = 1 . . . N.

The idea here is that no endmember can contribute negatively to a spectral

signature; this makes physical sense. The percentage that the ith endmember con-

tributes to the jth pixel’s signature is Aij, a number between zero and one. This is

why A is referred to as the abundance map; it gives the abundance of the materials

at each pixel. In this formulation, we would like endmembers to correspond to a

pure, identifiable materials. Also, in order for this model to be of use in dimention-

ality reduction, the total number of endmembers, k should be less than D. The new

coordinates for the data is the abundance matrix A, Xj 7−→ Aj for all j = 1 . . . N .

The endmember approach above has the added benefit of using distortion as

a metric. The distortion between the datacube, X, and its approximation, EA, is

‖X − EA‖2. Letting the number of endmembers vary allows a distortion curve to

be generated. Using this curve, it is possible to quantitatively measure how well

the datacube is approximated. The next section demonstrates why it is difficult to

determine how well dimensionality reduction algorithms perform on hyperspectral

data. Since dimensionality reduction algorithms do not reconstruct the data, it does

not make sense to use disortion as a metric.
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Figure 2.2: Color image of the urban data set (Courtesy Robert Pazak, U.S. Army Corps of

Engineers.)

2.3 Our data, urban HYDICE sensor imagery

Our datacube comes from Hyperspectral Digital Imagery Collection Experi-

ment (HYDICE). The urban data set is 16 bit, reflectance data of an urban terrain

with 307 × 307 pixels and 210 bands. The urban data set is one of the standard

nonartificial data sets used for testing dimensionality reduction algorithms. A color

image of the datacube is show in Figure 2.2.

As can be seen from the color image of the data there are classes in the

datacube, such as trees, grass, asphalt, soil and roof tops. In Figure 2.3 the spectral

signature of a pixel from each of these classes is shown.

The gaps in the curves correspond to unusable bands. One interesting aspect

of these spectral curves is that most of the variation occurs beyond 700 nm, in the

infrared region beyond human perception.
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Figure 2.3: Examples of spectral signatures for different materials

My team at the NWC has worked with National Geospatial-Intelligence Agency

(NGA) on testing various algorithms using the urban terrain data set. Image An-

alysts for the NGA identified twenty-three classes in the datacube. This count did

not include outliers. The classes included trees, asphalt, soil, grass vegetation, and

a number of roof tops. In Figure 2.4 the soil and grass vegetation class are dis-

played. The sharp rise in the spectral curve for grass vegetation is characteristic of

vegetation. I have been told that this comes from chlorophyll absorbtion.

One of the goals of dimensionality reduction for hyperspectral data is to pre-

15



Figure 2.4: Two example classes of data (Courtesy Jesse Sugar-Moore)

serve pixels that are in the same class while separating them from pixels of a differing

class. This means that pixels xi and xj are in class C if and only if yi and yj are in

class C. Accomplishing this class preservation and separation can be difficult. As

can be seen from Figure 2.5 and Figure 2.6 many classes have considerable spectral

overlap and for some classes the variance in the spectral signature is large.
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Figure 2.5: The grass vegetation class and tree class (Courtesy Jesse Sugar-Moore)

2.4 Classification

There are many techniques that attempt to determine the classes within a

datacube and whether two pixels are in the same class or not. Vector angle and

mean distance are two of the simplest classifiers. The idea behind vector angle is as

follows. Fix a pixel, p, in the datacube and an angle, θ. Sp stands for the spectral

signature of p. A pixel, q, in the datacube is in the same class as p if the angle

between their spectral signatures is less than θ. Equation 2.1 gives the vector angle
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Figure 2.6: A class with small variance and a class with large variance (Courtesy Jesse

Sugar-Moore)

between p and q.

ϕ = arccos

(
Sp · Sq

‖Sp‖2 ‖Sq‖2

)
(2.1)

The mean distance classifier is computed by fixing p and a radius r. A pixel q

in the datacube is in the same class a p if ‖Sp − Sq‖2 < r.

As can be seen in the figures, many classes have similar spectral signatures and

some classes have a large variance of spectral signatures. This makes using vector

angle and mean distance classifiers problematic. Both of these methods depend

heavily on the initial pixel chosen and the angle or radius being used. Often there
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are false negatives and false positives because of the parameters and the nature of

the class.

The problem of dimensionality reduction for hyperspectral data is as follows.

Given a datcube of size n × m × D with k classes. The goal is to transform the

datacube, X 7→ T (X), into a datacube of size n×m× d where d is as smallest pos-

sible spectral dimension that preserves the class structure. By preserving the class

structure, one means that if a pixel, p, in the original datacube is determined, by

whichever metric used, to be a mixture of classes Cp1 , . . . , Cpm then its correspond-

ing pixel in the transformed datacube, T (p), should have the same mixture for the

transformed classes. In practice, it is difficult to implement this notion to determine

whether the data was sucessfully reduced. There are infintely many metrics that

can be used to determine classes, many of the classes themselves are dependent on

the initial pixel chosen to represent the class. In theory, one would have to test

the data using all metrics and classes generated by pixels in the datacube. This is

not feasible. The numerical results contained in chapter 6, explain our approach at

measuring the success of each dimensionality reduction algorithm.
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Chapter 3

Operators on graphs

In order to cover the basics of kernel eigenmap methods, it is first necessary

to understand a few facts about graphs and operators on graphs. Most of what is

presented here is comes from Fan Chung’s book on “Spectral Graph Theory ” [15].

3.1 Graphs

Definition 1 (graph). A graph G is an ordered pair of sets, G = (V,E), where V

is the set of vertices or nodes and E is a set of pairs of vertices called edges.

If x and y are nodes in the graph, G, then an edge from x to y is denoted by

(x, y). If there is an edge between x and y, then x and y are said to be neighbors or

adjacent. We use the notation x ∈ V (G) to denote a vertex in G and (x, y) ∈ E(G)

to denote an edge in G. We consider only finite graphs, i.e., G = (V,E) such that

|V | is finite.

Definition 2 (undirected edge). An edge, (x, y) ∈ E(G) is undirected if (y, x) is

also an edge in G.

Definition 3 (undirected graph). A graph G is undirected if every edge in G is

undirected.

Definition 4 (weighted graph). A graph G is a weighted graph if for every edge

there is a positve number, i.e., weight, assigned to the edge.
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Definition 5 (degree). The degree of x ∈ V (G), where G is an undirected graph, is

dx =
∑

(x,y)∈E(G)

Wxy where Wxy is the weight of edge (x, y). If G is unweighted, then

dx is just the number of edges connecting to x.

Definition 6 (k-regular graph). A graph G is a k-regular graph if every node has

k neighbors.

Definition 7 (complete graph). A graph G is complete if there is an edge between

every two nodes.

3.2 Laplacian

The Laplacian of an unweighted graph without loops and multiple edges1 is a

matrix, L, such that

Lij =


di if i = j

−1 if i 6= j and ∃ edge (i, j)

0 otherwise.

(3.1)

The Laplacian is symmetric for undirected graphs.

Definition 8 (adjacency matrix). An adjacency matrix for an undirected graph G

is a matrix, A, such that Aij = 1 if (i, j) ∈ E(G) and Aij = 0 otherwise.

Let D be a diagonal matrix for a graph G such that Dii = di. Then the

Laplacian of G is L = D − A.
1A loop is an edge that starts and ends at the same node. We say there is a multiple edge from

x to y when there is more than one edge from x to y.
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The normalized Laplacian, L, is defined as

Lij =



1 if i = j

−1√
didj

if i 6= j and ∃ edge (i, j)

0 otherwise.

(3.2)

D−1/2 is the diagonal matrix defined such that D
−1/2
ii = 1√

di
if di 6= 0 and

D
−1/2
ii = 0 otherwise. With this definition, it can be shown that L = D−1/2LD−1/2.

Since L = D − A, this implies L = I −D−1/2AD−1/2.

The Laplacian is thought of as an operator that acts on functions defined on

the graph, G. If g : V (G)→ R, then

Lg(i) =
∑

(i,j)∈E(G)

Lijg(j). (3.3)

Since L is symmetric and positive semi-definite, all the eigenvalues of L are

real and nonnegative. In fact, the Rayleigh quotient, infg 6=0
〈g,Lg〉
〈g,g〉 , shows that 0 is

always an eigenvalue of L with corresponding eigenvector D1/2~1, where ~1 is the

vector of all ones.

infg 6=0
〈g,Lg〉
〈g, g〉

= infg 6=0
〈D−1/2g,LD−1/2g〉

〈g,g〉

= infD1/2f 6=0
〈f,Lf〉

〈D1/2f,D1/2f〉

= infD1/2f 6=0

∑
u∈V (G)

f(u)
∑

(u,v)∈E(G)

(f(u)− f(v))∑
u∈V (G)

f(u)2du

= infD1/2f 6=0

∑
(u,v)∈E(G)

(f(u)− f(v))2

∑
u∈V (G)

f(u)2du
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Here, the last summation is over all unordered edges in E(G). The number of

connected components of a graph is the multiplicity of the zero eigenvalue.

3.2.1 Example: Laplacian operator on the circle

Consider the nodes of our graph, G, as the samples of a circle that is uniformly

sampled n times. G is an undirected, 2-regular graph. The adjacency matrix for G

is A with elelments Aij such that

Aij =


1 if j = (i+ 1)mod(n) or i = (j − 1)mod(n)

0 otherwise.

(3.4)

The matrix D is D = 2In×n. The Laplacian is L = D−A and the normalized

Laplacian is L = I −D−1/2AD−1/2. The eigenvalues of L are λk = 1− cos(2πk
n

) for

k = 0, . . . , n − 1. The eigenvectors are sampled sinusoids in which the frequency

increases with increasing λ.

3.3 Diffusion

The diffusion equation is ∂tu−∆u = 0. The kernel for the diffusion equation

is K = et∆. The operator ∆ is a negative semi-definite operator. Our Laplcian

above, L, is positive semi-definite therefore substituting L for −∆ and using series

notation gives

e−tL = I − tL+
t2L2

2!
− t3L3

3!
+ . . . . (3.5)
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Setting the time step t = 1 and using a first order approximation of e−tL yields

K = e−L

≈ I − L

= I − (I −D−1/2AD−1/2)

= D−1/2AD−1/2.

K = D−1/2AD−1/2 is an approximation to the diffusion operator on the graph.

If the graph is k-regular, then it is easy to see that K = D−1A.

This definition of the diffusion operator on the graph is not standard. In [16, 5],

the diffusion operator is defined in terms of a transition matrix. Given a graph,

G = (V,E), and a symmetric, nonnegative mapping, W : V (G) × V (G) −→ R, we

can assign weights to the edges of the graph. If (x, y) ∈ E(G), then W (x, y) can

be thought of as a measure of how similar node x is to node y. For each x ∈ V (G)

define d(x) =
∑

(x,y)∈E(G)

W (x, y). The diffusion operator on the graph is then defined

as

K(x, y) =
W (x, y)

d(x)
(3.6)

All the entries of K are nonnegative and the rows of K sum to one. K is a transition

matrix. K(x, y) can be thought of as the probability of transitioning in one time step

from node x to node y. Kt(x, y) := (Kt)(x, y) is then the probability of transitioning

from node x to node y in exactly t time steps.

The main difference between these diffusion operators are the diagonal ele-

ments. Since the adjacency matrix is zero along the diagonal, the first defintion of
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a diffusion operator has zeroes along its diagonal. The transition matrix definition

of the diffusion operator does not necessarily have zeroes along the diagonal. In

practice the diagonal element tends to be the largest entry in the row.

3.4 Weighted graphs

For a weighted graph without loops, G = (V,E,W ), the Laplacian becomes

L = D−W where D is the diagonal matrix such that Dxx = dx and W is the matrix

of edge weights. The normalized Laplacian is then given by L = I −D−1/2WD−1/2.

Thus, L(i, j) is given by:

Lij =



1 if i = j

−Wij√
didj

if i 6= j and ∃ edge (i, j)

0 otherwise.

(3.7)

The eigenvalues of the weighted graph can be computed using the Rayleigh

quotient. If f = D−1/2g, then computations similar to those above give:

infg 6=0
〈g,Lg〉
〈g, g〉

= infD1/2f 6=0

∑
(u,v)∈E(G)

(f(u)− f(v))2Wuv∑
u∈V (G)

f(u)2du
.
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Chapter 4

Kernel eigenmap methods

One of the oldest techniques for dimensionality reduction is principal compo-

nent analysis (PCA). Since kernel eigenmap methods come from PCA, we briefly

review PCA [43] and discuss similarities between the two techniques.

4.1 Principal component analysis

Suppose our data is X ∈ RD×n where D is the spectral dimension and n is the

number of pixels. We think of an experiment measuring variables di, i = 1 . . . D

being ran n times. The mean of the data is given by the vector m such that

mi = 1
n

n∑
j=1

Xij. To mean center the data points {xi}ni=1, i.e., the columns of X,

m is subtracted from each data point. Thus, the new data points are {xi −m}ni=1.

Assume X is mean centered otherwise since PCA is a linear transformation we can

translate the data to the origin, perform the transformation, and then translate the

data back. The first step of PCA involves computing the covariance matrix1

C =
1

n− 1
XX? (4.1)

C is a symmetric, positive semi-definte matrix that measures the similari-

ties or correlations amongst the variables. More formally, Cij measures the linear

relationship between the variables di and dj. Since C is symmetric and positive

1The normalization 1
n−1 gives a less biased estimate than 1

n for small sample sizes.
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semi-definite the eigenvalues of C are real and nonnegative and the eigenvectors of

C are orthonormal. Let V be the matrix of eigenvectors of C. The kth column of

V is the eigenvector corresponding to the kth largest eigenvalue. These eigenvectors

become the new, principal axes for the data. The new coordinates for the data are

the projections of X onto V , i.e., V ?X. Figure 4.1 demonstrates data points and

the principal axes that come from PCA.

Figure 4.1: Data points with principals axes.

As can be seen from the figure, PCA transforms the data so that if the data

is projected along any axis, the greatest variance lies on the first eigenvector, i.e.,

principal component. This is the line of best fit for the data. The next principal

component gives the second greatest variance of all vectors that are orthogonal to

the first principal component. The first two principal components together give the

plane of best fit for the data. Continuing in this fashion, all D principal components

are determined.
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The Karhunen-Loeve theorem proves that the principal components are an

optimal basis for the data. More precisely, suppose P is a projection operator onto

a k-dimensional subspace of RD. The distortion is then given by

Distortion(P ) =
N∑
j=1

‖xj − Pxj‖2
`2
.

If λ1 ≥ λ2 ≥ . . . ≥ λD are the eigenvalues corresponding to the correlation

matrix2 for the data and {vi}Di=1 are our principal components. The minimizer of

the distortion is the projection operator projecting onto the subspace spanned by

{vi}ki=1, and the distortion is given by

P{vi}ki=1
= arg minDistortion(P ).

Here the arg min is taken over all rank k projections. The distortion of the

arg min is

Distortion(P{vi}ki=1
) =

D∑
j=k+1

λj.

Often it is the case that only the first d eigenvalues are significant. Most of the

variance is captured by projecting onto the first d eigenvectors. In this sense, the

data is said to be intrinsically d dimensional. The dimensionality reduction follows

by allowing the new coordinates for the data to be the projection onto the subspace

of the first d principal components,

X 7−→ P{vi}di=1
X.

2The correlation matrix is the same as the covariance matrix except each variable xi is divided

by its standard deviation xi

SD(xi)
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PCA can also be thought of as an application of the singular value decomposi-

tion (SVD). The SVD states that if X? is an n×D matrix, then X? can be factored

as the product

X? = UΣV ?. (4.2)

Here, Σ is a n×m diagonal matrix and U and V are n×n andD×D unitary matrices,

respectively. The columns of V are precisely the eigenvectors of the covariance

matrix of X. Thus, the new coordinates for the data are given by X?V or more

efficiently by UΣ.

PCA does not work well for all types of data. If the data does not have a

Gaussian distribution then the principal components may not do a very good job of

capturing the underlying basis for the data, Figure 4.2.

Figure 4.2: PCA fails to capture the underlying basis. (Courtesy Jonathon Schlens)

Also, if the data is nonlinear then PCA may not capture the underlying basis

well. In Figure 4.3 we consider a circle; here a natural basis is the angle θ coming
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from polar coordinates. When PCA is performed the data is projected along a line

through the center of the circle. Even though the circle is one dimensional, projecting

the data onto its first principal component does not preserve the neighborhood

structure of the circle.

Figure 4.3: PCA fails to capture angular nature and neighborhood structure of the

circle.

We would like to be able to perform dimensionality reduction on non-Gaussian

and nonlinear data. This is a major reason behind the creation of kernel eigenmap

methods.

4.2 Kernel Eigenmap Methods

Kernel methods were first introduced by Aizerman et al. in 1964 [1]. Most

kernel eigenmap methods consist of the following two steps:

1. Construction of a n× n symmetric, positive semi-definite kernel K.
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2. Diagonalizing K and selecting the d most significant eigenvectors v1, . . . , vd ∈

Rn. These eigenvectors are also called eigenmaps.

The dimensionality reduction comes from mapping the each data point xi ∈

RD to yi ∈ Rd, where d ≤ D and

xi 7→


vm1(i)

...

vmd(i)


{yi}ni=1 are the new coordinates for the data.

The idea behind kernel methods is to express correlations or similarities be-

tween vectors in the data space X in terms of a symmetric, positive semi-definite

kernel function K : X ×X 7→ R. Since K is symmetric and positive semi-definite,

Mercer’s theorem proves that K(x, y) can be expressed as an inner product in a

high, possibly infinite, dimensional space,

K(x, y) = Φ(x) · Φ(y),∀x, y ∈ X. (4.3)

Here Φ : X 7→ H where H is the high dimensional inner product space also known as

the feature space. The importance of this comes from the fact that many algorithms

for data analysis only use the dot product between data points. The data is mapped

to a high dimensional space and then the inner products, 〈Φ(x),Φ(y)〉, are computed.

Equation 4.3 allows for the algorithm to run without actually mapping the data into

H and computing 〈Φ(x),Φ(y)〉.

Example 9 (Feature space for the Gaussian). One of the standard kernels to use
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is the Gaussian,

K(x, y) = e−
‖x−y‖2

σ ∀x, y ∈ X. (4.4)

Here σ ∈ R, is not necessarily related to the standard deviation of the data; σ is

a parameter that the designer of the kernel can tune. The feature map Φ for the

Gaussian can be derived as follows,

K(x, y) = e−
‖x−y‖2

σ

= e−
〈x−y,x−y〉

σ

= e−
〈x,x〉
σ e−

〈y,y〉
σ e2

〈x,y〉
σ

= e−
‖x‖2
σ e−

‖y‖2
σ

(
1 +

2 〈x, y〉
σ

+
(2 〈x, y〉)2

2!σ2
+ . . .

)

= e−
‖x‖2
σ e−

‖y‖2
σ

1,

√
2 〈x, y〉
σ

,

√(
2 〈x, y〉

2!σ

)2

, . . .

 ·
1,

√
2 〈x, y〉
σ

,

√(
2 〈x, y〉

2!σ

)2

, . . .


for the sake of clarity and to avoid introducing multi-index notation,

we do this next step in one dimension.

= e−
‖x‖2
σ

(
1,

√
2

σ
x,

√
2

2!σ
x2, . . .

)
· e−

‖y‖2
σ

(
1,

√
2

σ
y,

√
2

2!σ
y2, . . .

)
= Φ(x) · Φ(y).

The above shows that the feature space for this kernel is infinite dimensional.

One motivation for mapping data into a higher dimensional space is that the

kernel allows distinct classes to be separated and keeps elements within the same

class together. An easy example of this can be seen by considering two distinct

classes of points in R2. The points in the first class form a disk surrounded by the
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points of the second class, i.e. the points in the second class form the boundary of

the disk. It is not possible to separate these classes using vector angle or Euclidean

distance. The popular technique from support vector machines of separating the

classes with a hyperplane does not work here either. However, if we take a function,

Φ, that maps the interior of the disk into R3 and keeps the boundary of the disk

fixed to the R2 plane embedded in R3, then these classes will have been separated.

Vector angle and the hyperlane will then be able to classify this data.

Another reason for using kernels is that they allow for more complex, non-

linear relationships between the data. The Gaussian kernel demonstrates that it

can preserve the neighborhood structure of the circle. First, some kernel eigenmap

methods are reviewed.

4.2.1 Kernel PCA

Kernel PCA was first used in 1995 for support vector machines; [42] gives a

brief introduction to kernel PCA and its applications.

Suppose our data is X = {xi}ni=1 ⊆ RD and there is a mapping Φ : X 7→ H.

Kernel PCA is PCA performed in the feature space. The covariance in the feature

space is given by

CΦ =
1

n− 1

n∑
i=1

Φ(xi)Φ(xi)
?. (4.5)

Assume here that the data is centered in the feature space. Just as with PCA, the

covariance is diagonalized. Let the columns V ∈ Rn×n be the eigenvectors of CΦ.

If v is an eigenvector of CΦ, then the following calculations show v is in the span
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{Φ(x1), . . . ,Φ(xn)}

λv = CΦv

=
1

n− 1

n∑
i=1

Φ(xi)Φ(xi)
?v

=
1

n− 1

n∑
i=1

aiΦ(xi).

Here ai = Φ(xi)
?v for all i = 1, . . . , n. Multiplying the eigenvector equation, λv =

Cv, by Φ(xj) allows for the construction of the kernel, K.

Φ(xj) · λv = Φ(xj) · CΦv (4.6)

= Φ(xj)
?CΦ

n∑
i=1

ãiΦ(xi) (4.7)

= Φ(xj)
? 1

n− 1

n∑
l=1

Φ(xl)Φ(xl)
?

n∑
i=1

ãiΦ(xi) (4.8)

Define the kernel, K,

Kli = Φ(xl) · Φ(xi) = Φ(xl)
?Φ(xi). (4.9)

Thus, Equation 4.8 equals

Φ(xj)
? 1

n− 1

n∑
l=1

Φ(xl)Φ(xl)
?

n∑
i=1

ãiΦ(xi) =
1

n− 1

n∑
i,l=1

KjlKliãi

=
1

n− 1

n∑
i=1

(K2)jiãi

=
1

n− 1
K2ã.
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Similarly,

Φ(xj) · λv = λΦ(xj)
?

n∑
i=1

ãiΦ(xi)

= λ
n∑
i=1

ãiΦ(xj)
?Φ(xi)

= λKjiãi

= λKã.

Therefore, combining these two results gives

(n− 1)λKã = K2ã. (4.10)

Assuming K is one-to-one 4.10 can be rewritten as

(n− 1)λã = Kã. (4.11)

It is easy to see that K is positive semi-definite,

〈z,Kz〉 =
n∑
i=1

zi

n∑
j=1

Kijzj

=
n∑
i=1

zi

n∑
j=1

Φ(xi)
?Φ(xj)zj

=

〈
n∑
i=1

Φ(xi)zi,
n∑
j=1

Φ(xj)zj

〉
≥ 0.

To arrive at the new coordinates for the feature data, {Φ(x1), . . . ,Φ(xn)}, we

must project this data onto the eigenvectors of CΦ. The new coordinates of Φ(xi)

are V ?Φ(xi) for all i = 1 . . . n.

In terms of dimensionality reduction, it should be noted that if n ≥ D then the

new coordinates for the data may have more dimensions than the original data. Here
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it is important to represent the feature data in terms of the chosen d ≤ D significant

eigenvectors. All the results for PCA and X can be translated into analagous results

for kernel PCA and Φ(X). Also, like PCA, if the mapping Φ is invertible then its

corresponding Kernel PCA is invertible.

4.2.2 Locally linear embedding

Locally linear embedding (LLE) [41] was developed by Saul and Roweis in

2000. LLE was one of original kernel methods. The basic idea behind LLE is as

follows.

1. Construct a graph. Consider the data points xi for i = 1, ..., n as the nodes of

our graph. The edges and weights for each edge are created in step 2.

2. Express each data point xi as a linear combination of its neighbors. There are

different notions of what constitutes being a neighbor. The two most common

methods are either

(a) fix an integer k and choose the k-closest points to xi or

(b) fix an ε > 0 and consider all the points within ε of xi as neighbors.

Regardless of how we choose the defintion of neighbor, not every data point

can be represented as a linear combination of its neighbors. This is why it is

necessary to minimize a functional, F , that projects each data point onto the

space spanned by its neighbors.

arg min
W

F ({xi}ni=1) = arg min
W

n∑
i=1

|xi −
∑
j∈N(i)

wijxj|2 (4.12)
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N(i) = {xj : j ∈ {1, 2, ...j − 1, j + 1, ...n} and xj is a neighbor of xi}

(4.13)

This creates a hyperplane through each node in the graph.

3. The functional in step 2 is invariant to rotations and rescaling of the data, X.

If we add the condition that

∑
j

wij = 1 for i = 1, ..., n (4.14)

then this functional becomes invariant to translations. This invariance means

that any linear transformation that maps a hyperplane to a lower dimensional

space must preserve the weight matrix created in step 2. LLE preserves the

local geometry of the manifold. We want to find new coordinates, Y , that

maintain the local geometry, W . This is done by minimizing the following

functional:

arg min
Y

Γ(Y ) = arg min
Y

n∑
i=1

|yi −
∑
j∈N(i)

wijyj|2. (4.15)

Here each vector yi ∈ RN and is a column of Y . Γ(Y ) can be written as a

quadratic form,

Γ(Y ) =
∑
ij

Kij(yi · yj), (4.16)

where K = (I − W )∗(I − W ). This assertion is verified by expanding the

square terms to give

∑
i

[
(yi −

∑
j

wijyj)(yi −
∑
j

wijyj)
∗
]
. (4.17)

Note that the first factor, I −W , is analogous to the Laplacian operator on

the graph, only now a “weighted” adjancey matrix is used. Expanding 4.17
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gives

Kij = δij − wij − wji +
∑
k

wkiwkj. (4.18)

The optimal embedding - up to a global rotation of the embedding space - is

found by computing the bottom d+1 eigenvectors of the matrix, K. The eigen-

vector with corresponding eigenvalue 0 is discarded, giving a d-dimensional

representation.

The kernel for LLE is K = (I −W )∗(I −W ). This is the square of the Lapla-

cian on the graph constructed from the data points and the chosen neighborhood

structure. The new coordinates for the data come the d eigenmaps corresponding to

the d smallest nonzero eigenvalues. The smallest are chosen because the functional

Γ is being minimized.

4.2.3 Laplacian eigenmaps

In their paper Laplacian Eigenmaps for Dimensionality Reduction and Data

representation [2], Belkin and Niyogi construct a Laplacian on the data points con-

sidered as a graph. Briefly, the motivation for doing this is as follows. The data

points are viewed as samples of a d-dimensional manifold, M , that is embedded in

a higher dimensional space. The goal is to look at functions, f : M 7→ R, such that

points close to each other on the manifold get mapped to points close to each other

in R. Functions , f : M 7→ R, that satisfy the Mean Value Theorem

|f(xi)− f(xj)| ≤ ‖xi − xj‖ ‖∇f‖+ o (‖xi − xj‖) ,
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are considered3. This leads us to consider minimizers of the functional
∫
M
|∇f |2,

i.e., we want to solve the following minimization problem

fi = arg min
‖f‖L2(M)=1

∫
M

|∇f |2. (4.19)

Here fi is orthogonal to fj for j < i. Assuming the manifold is without boundary

and applying integration by parts demonstrates that harmonic functions on the

manifold are minimizers of this functional. Thus we solve for f , such that

fi = arg min
‖f‖L2(M)=1

∫
M

f∆f. (4.20)

The first d eigenfunctions become our new coordinate system for the data.

The algorithm first considers the data as a graph G = (V,E) and assigns

weights to the edges. Each data point, xi is vertex i of the graph. If xi is connected

to xj then Wij is the weight of the edge from vertex i to vertex j, it is given by

Wij = e−
‖xi−xj‖2

σ . (4.21)

Here σ is in R and the matrix, W , is symmetric and easy to compute. If If xi

and xj are not connected then Wij = 0. The final step requires solving a generalized

eigenvector problem.

Lf = λDf

3Technically, some justification should be given explaining why it acceptable to consider the

Euclidean distance in the high dimensional space as opposed to the Riemannian metric on the

manifold. I omit the details here, see [2] for a detailed explanation.
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Here, L = D − W is the Laplacian and D is a diagonal matrix such that Dii =
n∑
j=1

Wij. The first d eigenmaps become our new coordinate system for the data.

It is interesting to note that although LLE and Laplacian Eigenmaps have

similar results, i.e., they consider the Laplacian of the graph, they are derived from

very different frameworks. Belkin and Niyogi use the geometry of the manifold and

the eigenfunctions for the Laplacian operator on the manifold to motivate computing

eigenvectors. Instead of using geometry, Saul and Roweis create a functional that

minimizes the `2-norm while keeping W invariant to rotations, translations and

dilations of the data.

Example 10 (Laplacian eigenmaps for pure data). It is instructive to see how di-

mensionality reduction using Laplacian eigenmaps works for “pure” data. Pure data

can be explained as follows. Suppose our hypercube, X, contains pixels {xi}ni=1 ∈ RD

and m classes, {C1, . . . , Cm} ∈ RD. We say the data is pure if for each xi there

exists a Cj such that xi = Cj.

The kernel is K : X ×X 7→ R such that

K(x, y) = e−
‖x−y‖2

σ ∀x, y ∈ X. (4.22)

The matrix form of the kernel is K[i, j] such that K[i, j] = K(xi, xj). If one con-

siders the kernel acting on the pure data, X above, then since there are at most

m(m−1)
2

+ 1 unique entries in the matrix K, this matrix has a very special form.
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K11 K12 . . . K1m

... K22 . . . K2m

...
. . .

...

Kmm


Here each Kij is a submatrix of size |Ci|× |Cj| with all of the entries being the

same nonzero constant. The constant for the diagonal submatrices, Kii is 1. If one

assumes that each submatrix has a unique constant then the kernel, K, is of rank

m. More importantly, if the number of classes is greater than two then only one

eigenvector is necessary to separate the classes. This says that the transpose of the

first eigenvector, i.e., corresponding to the largest eigenvalue, of K will be of the form

v1, v1, . . . v1,︸ ︷︷ ︸
|C1| times

v2, v2, . . . v2,︸ ︷︷ ︸
|C2| times

. . . vm, vm . . . vm︸ ︷︷ ︸
|Cm| times

,

with each of vi being unique. This eigenvector gives perfect classification. All the

elements of the ith class, and only elements of the ith class, were mapped to vi for

all i = 1, . . . ,m. The kernel separated and preserved the classes.

It is interesting to note that if there are only two classes, then above reasoning

fails because the first eigenvector is ~1. It is then necessary to look at the second

eigenvector to separate classes. Also, the above is only true for pure data. Once the

data has mixed pixels then determining the target dimension, d, becomes much more

complex.
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4.2.4 Diffusion maps

The Diffusion Maps algorithm models diffusion as a transition operator on the

graph. First a graph for the data is chosen using k-nearest neighbors or a radius.

The weights are assigned to the edges using

Wij = e−
‖xi−xj‖2

2
σ . (4.23)

Note, although there are no loops in the graph, Wii = 1, for all i = 1 . . . n and

W is symmetrized by defning xj to be a neighbor of xi if xi is a neighbor of xj.

The diffusion operator, T , is created by normalizing W to be doubly stochastic,

i.e., that is the rows and columns sum to one. Thus, T = D−1/2WD−1/2, where

Dii =
n∑
j=1

Wij. All the entries of T are nonnegative and the rows and columns of T

sum to one. In practice, it is necessary to iterate this normalization several times

so that the column and row sums converge to one. T is a transition matrix. T (x, y)

can be thought of as the probability of transitioning in one time step from node x

to node y. T t(x, y) = (T t)(x, y) is then the probability of transitioning from node x

to node y in exactly t time steps.

Once the diffusion operator, T , is constructed it is diagonalized and the eigen-

vectors corresponding to the d largest eigenvalues are taken as the new coordinates.
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Chapter 5

Frame based approach

Kernel eigenmaps methods represent the data in terms of the eigenvectors of

the kernel. It’s a two step process.

X

1 ''

++
Y

K
2

FF

The steps consist of the following processes:

1. Create an N ×N positive semi-definite, symmetric kernel K.

2. Diagonalize K and select the d most significant eigenvectors v1, . . . , vd ∈ RN .

Our transformed data points are then yj =


v1(i)

...

vd(i)

 ∈ Rd.

There is empirical evidence to suggest that eigenvectors might not be ideal for

representing the data. The basic reasoning is as follows [30]. Classes of data in the

hyperspectral image are not orthogonal to each other and they do not necessarily

have norm one. Ideally, a kernel would transform the data to a higher dimensional

feature space in which the classes are orthogonal. This would allow for the data to

be separated using a metric such as vector angle. However, constructing a kernel to

orthogonalize the classes is difficult. As we have seen in the hyperspectral chapter,
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the classes themselves often overlap and have similar profiles.

An alternative approach to this dilemma is to relax the orthonormality con-

dition. Frames allow us to do this. The data can be represented by vectors that

are not necessarily orthogonal or norm one. The hope here is that each class will

be mapped to its own dimension, i.e., element in the frame. Here is an example

motivating the above discussion.

Example 11. The following example comes from Matt Hirn [26]. Figure 5.1 is a

tile with three classes of data, grass, asphalt, and trees. The data is not pure in the

sense that the pixels may be mixed and there is also some soil in the image too. This

tile is 32 × 32 pixels in the Urban data set discussed above.

Figure 5.1: The tile has grass vegetation class, asphalt class, and tree class.

Ideally, a successful dimensionality reduction would map the data in such a

way that the classes can be separated. In practice, this is difficult to achieve. The

LLE algorithm creates eigenmaps for the data that do not correspond to classes.
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(a) (b) (c)

Figure 5.2: LLE eigenmaps on the tile (a) first eigenmap (b) second eigenmap (c)

third eigenmap

(a) (b) (c)

Figure 5.3: Frame bands for the tile, (a) band 1 (road) (b) band 2 (trees) (c) band

3 (grass vegetation)

This does not allow for successful pixel classification using vector angle or Euclidean

distance. Figure 5.2 shows the first three bands, i.e., eigenmaps, of LLE being ran

on the tile.

In Figure 5.2, one can see that the eigenmaps are not separating distinct classes

well. Frames do a better at separating classes in this tile. In Figure 5.3, the frame

spans the same space as the three eigenmaps above. This frame was chosen because

its coefficients had mimimun `1-norm in the representation formula. This will be

explained in more detail below.

45



5.1 Introduction to frames

Let Φ = {ϕj}sj=1 ⊂ CN , where s ≥ N . Φ is a finite frame for CN if there exist

constants A,B > 0 such that

A‖f‖2 ≤
s∑
j=1

|〈f, ϕj〉|2 ≤ B‖f‖2, ∀ f ∈ CN . (5.1)

The numbers A,B are called the frame bounds. It is a well known fact that any

spanning set is a frame for CN , while every frame is indeed a spanning set. A frame

is tight if one can choose A = B in the definition, i.e., if

s∑
j=1

|〈f, ϕj〉|2 = A‖f‖2, ∀ f ∈ CN . (5.2)

Finally, a frame is unit norm if

‖ϕj‖ = 1, ∀ j = 1, . . . , s. (5.3)

If Φ satisfies (5.1), (5.2), and (5.3), then we say Φ is a finite unit norm tight frame

(FUNTF) for CN . In this case, the frame bounds satisfy A = B = s/N . In particu-

lar, if Φ is a FUNTF with frame bounds A = B = 1, then Φ is an orthonormal basis.

Assume now that Φ = {ϕj}sj=1 is a frame for CN . The analysis operator of Φ

is defined as follows:

L : CN → Cs, Lf := {〈f, ϕj〉}sj=1.

The synthesis operator is given by:

L? : Cs → CN , L?{cj}sj=1 =
s∑
j=1

cjϕj.
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One obtains the frame operator by composing L? with L:

S : CN → CN , Sf = L?Lf =
s∑
j=1

〈f, ϕj〉ϕj

Some important properties of S are the following:

(i) S is invertible and self-adjoint.

(ii) Every f ∈ CN can be represented as

f =
s∑
j=1

〈f, S−1ϕj〉ϕj =
s∑
j=1

〈f, ϕj〉S−1ϕj. (5.4)

(iii) Φ is a tight frame if and only if S = AI.

Based on equation (5.4), one defines the dual frame of Φ as Φ̃ = {ϕ̃j}sj=1 :=

{S−1ϕj}sj=1; the frame operator of Φ̃ is S−1. If Φ is a tight frame for CN , then

S−1 = 1
A
I, and the representation formula is simple:

f =
1

A

s∑
j=1

〈f, ϕj〉ϕj =
1

A

s∑
j=1

〈f, ϕj〉ϕj.

5.2 Frame potential

Define the frame potential of a finite unit norm frame Φ = {ϕj}sj=1 for CN as:

FP(Φ) :=
s∑
j=1

s∑
k=1

|〈ϕj, ϕk〉|2.

In [3] a characterization of FUNTFs is given in terms of the frame potential:

Theorem 12 (Benedetto and Fickus 2002). For a given N and s, let SN−1 denote

the unit sphere in CN and consider:

FP : SN−1 × · · · × SN−1︸ ︷︷ ︸
s times

→ [0,∞).

Then:
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1. Every local minimizer of the frame potential is also a global minimizer.

2. If s ≤ N , the minimum value of the frame potential is s, and the minimizers

are precisely the orthonormal sequences in CN .

3. If s ≥ N , the minimum value of the frame potential is s2/N , and the minimizer

are precisely the FUNTFs for CN .

5.2.1 Subspace frames

Let Φ = {ϕj}sj=1 ⊂ CN and let W be a subspace of CN of dimension r < N .

We say Φ is a finite subspace frame for W if span(Φ) = W . It is clear from this

definition that there exist constants A,B > 0 such that

A‖f‖2 ≤
s∑
j=1

|〈f, ϕj〉|2 ≤ B‖f‖2, ∀ f ∈ W. (5.5)

We note that if we had instead used (5.5) as our definition, then it would not nec-

essarily imply that span(Φ) = W but rather that span(Φ) ⊇ W . The unit norm

property as well as the notion of a tight frame remain similar in this setting. More

specifically, if we can take A = B in (5.5) then we call Φ a tight subspace frame.

Finally, if Φ is a finite unit norm tight subspace frame, then we say Φ is a subspace

FUNTF.

We define L, L?, and S exactly the same as in section 1, however we note that

the properties of these maps change for subspace frames. In particular, we see:

(a) L : CN → Cs is no longer injective, but rather ker(L) = (CN \W ) ∪ {0}.
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(b) L? : Cs → CN is no longer surjective, but rather image(L?) = W .

(c) Based on (a) and (b), we see that S : CN → CN is no longer invertible.

Because of (c), none of properties (i) - (iii) from section 1 hold for subspace frames.

The question then becomes: in what sense do subspace frames satisfy properties (i)

- (iii) above? Theorems below show that subspace frames satisfy natural modifica-

tions of the above properties.

Let Won be a set of r orthonormal vectors such that span(Won) = W . We

will also consider Won as an N × r matrix where the columns of this matrix are the

vectors in the set Won. We define ΦW to be the r× s matrix whose columns are the

coordinates of Φ in Won; that is:

ΦW := W ?
onΦ, (5.6)

where we have implicitly used the matrix form of Φ, that is the N × s matrix whose

columns are the elements of Φ. The jth column of ΦW is the projected W -subspace

coordinates of Φ.

Proposition 13. The set ΦW consisting of the columns of the matrix ΦW is a frame

for Cr.

Proof. Since span(Won) = W , we have ker(W ?
on) ∩ W = {0}. Therefore, since

span(Φ) = W as well, we see that W ?
onΦ has rank r.

We denote the analysis, synthesis, and frame operators of ΦW by LW , L?W ,

and SW , respectively. In terms of the analysis operator, L, for Φ, LW = LWon. By
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proposition 13 we see that SW will satisfy (i) - (iii).

Theorem 14. Φ is a subspace FUNTF for W with frame bound A if and only if

ΦW is a FUNTF for Cr with frame bound A.

Proof. We do the forward direction first: let g ∈ Cr, then:

〈SWg, g〉 = 〈LWg, LWg〉

= 〈Φ?Wong,Φ
?Wong〉

=
s∑
j=1

|〈Wong, ϕj〉|2

= A‖Wong‖2

= A〈Wong,Wong〉

Therefore we have:

〈SWg, g〉 − A〈Wong,Wong〉 = 0 =⇒

〈SWg, g〉 − A〈W ?
onWong, g〉 = 0 =⇒

〈g, (SW − AI)g〉 = 0 =⇒

SW = AI

For the reverse direction, let f ∈ W . There exists g ∈ Cr such that Wong = f .
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Therefore,

A‖f‖2 = A〈f, f〉

= A〈Wong,Wong〉

= 〈Ag, g〉

= 〈SWg, g〉

= 〈W ?
onL

?LWong, g〉

= 〈LWong, LWong〉

= 〈Lf, Lf〉

=
s∑
j=1

|〈f, ϕj〉|2

We define the dual frame of ΦW in the usual way, that is Φ̃W = S−1
W ΦW . We

now define the dual subspace frame of Φ as follows:

Φ̃ := WonΦ̃W = WonS
−1
W W ?

onΦ. (5.7)

As the name implies, the set Φ̃ = {ϕ̃j}sj=1 = {WonS
−1
W W ?

onϕj}sj=1 will have the

following properties:

Proposition 15. Φ̃ is a subspace frame for W .

Proof. This follows from proposition 13.

Theorem 16. Every f ∈W can be represented as

f =
s∑
j=1

〈f, ϕ̃j〉ϕj =
s∑
j=1

〈f, ϕj〉ϕ̃j.
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Proof. The first representation formula is ΦΦ̃?f = f for all f ∈ W . Letting f =

Wong for some g ∈ Cr, we have:

ΦΦ̃?f = Φ(WonS
−1
W W ?

onΦ)?f

= ΦΦ?Won(S−1
W )?W ?

on(Wong)

= SWonS
−1
W g

= SWon(W ?
onSWon)−1g (5.8)

Since WonW
?
on is the identity on W ,

(5.8) = WonW
?
onSWon(W ?

onSWon)−1g

= Wong

= f

The second representation formula is Φ̃Φ?f = f for all f ∈ W .

Φ̃Φ?f = (WonS
−1
W W ?

onΦ)Φ?f

= Won(W ?
onSWon)−1W ?

onSWong

= Wong

= f

The following commutative diagram illustrates the above ideas:
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Φ subspace frame for W ⊂ CN

(subspace FUNTF for W ⊂ CN )
WonS−1

W W ?
on //_________

W ?
on

��

Φ̃ subspace frame for W ⊂ CN

(subspace FUNTF for W ⊂ CN )

ΦW frame for Cr

(FUNTF for Cr)
S−1

W // Φ̃W frame for Cr

(FUNTF for Cr)

Won

OO

The following theorem is a trivial generalization of theorem 12:

Theorem 17. For a given N and s, let W be a subspace of CN of dimension r < N

and consider the resctricted frame potential:

FP|W : (SN−1 × · · · × SN−1)︸ ︷︷ ︸
s times

→ [0,∞).

Then:

1. Every local minimizer of the restricted frame potential is also a global mini-

mizer.

2. If s ≤ r, the minimum value of the restricted frame potential is s, and the

minimizers are precisely the orthonormal sequences in W .

3. If s ≥ r, the minimum value of the restricted frame potential is s2/r, and the

minimizer are precisely the subspace FUNTFs for W .

Theorem 17 shows that the minimum value of the frame potential depends on

the dimension of the subspace W .
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Proof. Let Won be a set of r orthonormal vectors such that span(Won) = W and

consider it as an N × r matrix. If Φ = {ϕj}sj=1 is a finite unit norm set of vectors

in W , then the coordinates of Φ in Won are given by the r× s matrix ΦW = W ?
onΦ.

In [3] it is shown that FP(Φ) = Tr(S2), where S is the frame operator of Φ. Using

the previous two statements we then have:

FP|W (Φ) = Tr(S2)

= Tr([(WonΦW )(WonΦW )?]2)

= Tr([ΦWΦ?
W ]2)

= Tr(S2
W )

= FP(ΦW )

Since ΦW is a finite unit norm set of vectors in Cr, we can apply theorem 12

to get (1) and (2). Combining theorem 12 along with theorem 14 gives (3).

5.3 Dimensionality reduction with frames

We combine frames with dimensionality reduction by projecting the columns

of the kernel onto a subspace V . Here V = {v1, . . . , vr}, are the r most significant

eigenvectors of K. This gives new r-dimensional coordinates for the data, K̃ = V ?K.

X

1 &&

,, A

K
2

22 V, K̃
3

EE

A FUNTF, Φ = {ϕj}sj=1, for Rr is found using the frame potential. Note that the
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user chooses the number of frame elements, s. Solve the following minimization

problem for each column of K̃:

argmin‖Ai‖1 subject to ΦAi = K̃i, (P1)

for all i = 1, . . . , N . K̃ = ΦA, where the ith column of A is Ai above. The new

coordinates for an original data point xi are Ai. In order to achieve dimensionality

reduction, we select the d most significant rows of A. Thus, if rows {m1, . . .md}

of A are chosen then then data points of X are transformed to rows of A, xi 7→

(Am1 , . . . , Amd).

Note, it is not necessary to use the eigensubspace of K. We are currently inves-

tigating other methods for selecting subspaces. The `1-minimization step comes from

recent compressed sensing results. Ideally, we would like to solve the `0-minimization

problem:

argmin‖Ai‖0 subject to ΦAi = K̃i, (P0)

for all i = 1, . . . , N . The `0-norm of a vector is the number of nonzero entries in the

vector; it gives the sparsest representation of the vector with respect to the frame.

The motivation for finding a sparse representation is as follows. The number

of classes in the data is typically much smaller than the number of data points. Each

data point corresponds to an area depending on the resolution of the sensor. Within

this area, there are most likely a small number of classes, e.g., soil, asphalt. The

spectral signature of the pixel is then a combination of the classes within the given

area. Since there are small number of classes in this area, the spectral signature

should have a sparse representation with respect to “class representation”. If each
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class can be represented by a frame element, then we can apply known compressed

sensing results to determine a sparse representation for the spectral signature of

the pixel. One result of compressed sensing is that under certain conditions, the

solutions to (P0) and (P1) are equal. Ideally, we would like to solve (P0); however,

this is computationally infeasible. We solve the `1-minimization instead and assume

our data satisfies the necessary conditions for (P0) and (P1) equivalence. Namely,

each data point, i, must satisfy ‖Ai‖0 ≤ C log(r)
r

where C is a known constant and r

is as above.

In the last step of the algorithm each row of A is reshaped into an image of

size n×m. The rows that perform the best at separating and preserving classes are

selected. This selection is done by visual inspection. We are currently investigating

methods for automating the visual inspection process.
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Chapter 6

Numerical examples

Our data is one of the standard urban data sets used for hyperspectral imag-

ing. The data is provided by the U.S. Army Corps of Engineers; it is available to

the public on their website. The data was collected using HYDICE sensor imagery.

The data are 307×307×210, in which D = 210 are the spectral bands representing

reflectance data stored as unsigned 16 bit integers. Because of memory and compu-

tational constraints, the data is divided into 32×32 tiles Figure 6.1. After disabling

unusable bands, the algorithms run on a tile consisting of 32×32 spatial dimensions

and 162 spectral dimensions.

Figure 6.1: Color representation of the gridded urban data.
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(a) Tile five from the top, three

from the right

(b) Pixels classified as building

Figure 6.2: Example tile

The chosen tile for this example is three tiles from the right edge and five

tiles down from the top, Figure 6.2 (a). Pixel (5,2) was chosen to classify the

building using vector angle with a tolerance of 0.15. The resulting classification is

shown in Figure 6.2 (b). There are 175 pixels classifed as building pixels when the

classification is done using all 162 spectral bands.

6.1 Methodology

In this section, I compare LLE, Laplacian Eigenmaps, Diffusion Maps, and the

frame based approach previously outlined. The first three methods are run on the

above tile with varying numbers of neighbors and with a target dimension of four.

Four was chosen as the target dimension because this gave the best classification

results. Once the data is reduced, vector angle is again performed on the reduced

data with the same pixel, (5,2), being used. A count of the number of false positives

and false negatives is then kept. A pixel is a false positive if it is classified as a
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building pixel in the reduced data set but not in the original data set. Similary, a

pixel is a false negative if it is classified as a building pixel in the original data set

but not in the reduced data set.

There are several problems with performing this type of analysis. First and

foremost amongst these is the fact that the original classification may be incorrect.

Since there is no ground truth data, it is necessary to take classification performed

on the nonreduced data set as ground truth. Using classification performed on

the original tile as a reference, it is then possible to evaluate classification on the

reduced data set. Second, the reference pixel chosen, (5,2), may not be the ideal

representative of the building class. In the hyperspectral section above, it was

demonstrated that many classes have a large variance. If the chosen pixel is not

close to the mean of its class, then vector angle may perform poorly when using

that pixel as the class representative. The results below should take these two

factors into consideration.

6.2 Results

LLE was run on the above tile with a neighbor setting varying from 2 neigh-

bors to 98 neighbors incrementing each time by 4. The target dimension was four.

The following figures are examples of classification that was performed for various

neighbor settings; they can be compared with original classification above. For LLE

the best classification was performed with 46 neighbors giving 27 false positives and

11 false negatives. This is out of 1,024 pixels in which 175 of the pixels are classified
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as building.

Laplacian Eigenmaps was run on the above tile with a neighbor setting varying

from 2 neighbors to 98 neighbors incrementing by 4 each time. The target dimension

was four. The following figures are examples of classification that was performed for

various neighbor settings; they can be compared with original classification above.

For Laplacian Eigenmaps the best classification was performed with 34 neighbors

giving 16 false positives and 12 false negatives.

Diffusion Maps was run on the above tile with a neighbor setting varying from

2 neighbors to 98 neighbors incrementing by 4 each time. The target dimension

was four. The following figures are examples of classification that was performed for

various neighbor settings; they can be compared with original classification above.

For Diffusion Maps the best classification was performed with 46 neighbors giving

27 false positives and 11 false negatives.

It is interesting to note that the relationship between the number of neigh-

bors chosen and the number of false positive and negatives is complex. Figures

6.6, 6.7, 6.8 plot the number of false positives and false negatives per number of

neighbors. This result shows that one cannot interpolate when choosing the num-

ber of neighbors. If there are f1 false positives when n1 neighbors are chosen and

f3 false positives when n3 neighbors are chosen, n1 < n3, then one cannot conclude

the number of false positives is between f1 and f3 when n2 neighbors are chosen,

n1 < n2 < n3. Also, it is interesting to note how Diffusion Maps and Laplacian

Eigenmaps are more stable than LLE.

The frame approach to dimensionality reduction, outlined above, was run on
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(a) 6 neighbors (b) 10 neighbors

(c) 18 neighbors (d) 46 neighbors

(e) 90 neighbors (f) 98 neighbors

Figure 6.3: LLE classification with various neighbors
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(a) 2 neighbors (b) 6 neighbors

(c) 34 neighbors (d) 98 neighbors

Figure 6.4: Laplacian Eigenmaps classification with various neighbors
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(a) 2 neighbors (b) 6 neighbors

(c) 10 neighbors (d) 98 neighbors

Figure 6.5: Diffusion Maps classification with various neighbors
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Figure 6.6: LLE false positive and negatives per number of neighbors

the above tile using LLE for the kernel construction with a neighbor setting of 10.

The target dimension was four. Figures 6.9 (a), (b), (c), and (d) display the frame

bands. The frame approach gives 12 false positives and 13 false negatives, Figure

6.9 (e). This is a slightly lower classification error rate than the other dimensionality

reduction techniques.
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Figure 6.7: Laplacian eigenmaps false positives and negatives per number of neigh-

bors
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Figure 6.8: Diffusion Maps false positives and negatives per number of neighbors
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(a) frame band 1 (b) frame band 2

(c) frame band 3 (d) frame band 4

(e) frame classification

Figure 6.9: Four chosen Frame bands for example tile

67



Chapter 7

Geometric neighborhood analysis

Manifold kernel eigenmap methods such as Locally Linear Embedding (LLE)

[41], Hessian LLE [22], Laplacian Eigenmaps [2], and Diffusion Wavelets [17] are

popular techniques for performing dimensionality reduction on high dimensional

data. Each of these techniques requires that a neighborhood parameter be set

in order to construct the neighborhood for each data point. In particular, if the

given data are {xj}nj=1, there are the two standard approaches for determining the

neighborhood of a data point, N (xi):

1. (k-nearest neighbors) Fix k ∈ N, define N (xi) to be the set of k-closest data

points to xi, not including xi. With this definition, neighborhoods are not

necessarily symmetric, i.e., xj could be a neighbor to xi but xi may not be

a neighbor of xj. It is possible to symmetrize the neighborhoods by simply

defining xj to be a neighbor of xi if xi is a neighbor of xj. This is done after

the k-closest neighbors are chosen, hence a neighborhood may have more than

k elements.

2. (radius r) Set the radius, r > 0, define N (xi) = {xm : d (xm, xi) < r} \ {xi}.

Here d is the metric on the data points.

There are problems associated with both of these methods. In many cases, the

data are not understood well enough to knowledgeably set the k-nearest neighbors
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or radius parameters. For the k-nearest neighbors method, if k is chosen to be

too large, then the neighborhood of xi will contain points that should not be in

there. Conversely, if k is chosen to be too small, then the neighborhood of xi will

not contain all of its neighbors. These same problems persist if a radius parameter

is set. Choosing the correct, k, for the k-nearest neighbors parameter or radius

parameter, r, is important for constructing the correct graph around xi.

One of the main ideas behind manifold kernel methods is that if the correct

graph structure for the data is chosen and an operator on this graph is constructed,

e.g., Laplacian, then the eigenmaps of this operator give a good representation for

the data. Dimensionality reduction follows by choosing a subset of the eigenmaps to

represent the data. However, if the neighborhood parameter is set incorrectly, then

the wrong graph will be constructed and the eigenmaps for operator on the graph

will not be a good representation of the data. Consider a circle with sample 64

times. If the correct number of neighbors is chosen, k = 2, then the reconstruction

using the first two eigenmaps give almost perfect reconstruction, Figure 7.1 (a),(b).

The reconstruction rotates and rescales the data. However, when the number of

neighbors is chosen to be 3, the eigenmaps fail to reconstruct the circle, 7.1 (c).

In what follows, I outline a geometric technique for constructing the neigh-

borhood for a data point. The motivation behind this technique is that locally

manifolds are flat like Euclidean space and the assumption that the data is sampled

from a manifold. The manifold, M , is d-dimensional and embedded in the higher

dimensional space RD 1. The neighbors of a data point, xi, should be the points,

1Technically, the dimension of the manifold can vary from neighborhood to neighborhood.
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(a) Original circle sampled

64 times

(b) Reconstructed circle us-

ing 2 neighbors

(c) Reconstructed circle us-

ing 3 neighbors

Figure 7.1: Choosing neighbors for the circle

{xj}kj=1, such that the geodesic distance, dM(xi, xj) is approximately the same as

the Euclidean distance, dE(xi, xj). Since we are dealing with data points sampled

from a manifold, the geodesic distance between two points is approximated by the

shortest path connecting the points. A path connecting points is constructed using

a notion of what it means for a data point to be between two data points in higher

dimensions.

Definition 18 (between). Let the distance between two points, x and y be denoted

by ρ(x, y). A point y is between(x, z) if ρ(x, y) ≤ ρ(x, z) and ρ(y, z) ≤ ρ(x, z).

Note that this definition is symmetric in the sense that if y is between(x, z) then y

is between(z, x). Figure 7.2 displays a two-dimensional region of potential between

points. Also, this defintion is equivalent to the definition of between in 1 dimension,

x ≤ y ≤ z.
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Figure 7.2: The shaded region is two-dimensional representation of points between

x and y.

7.1 Algorithm

This is the concept behind computing the neighborhood structure of a data

point. The actual implementation of the algorithm is different because of optimiza-

tion.

Algorithm 19 (Flat neighborhood graph algorithm). Suppose data points {xi}ni=1

and a metric, ρ, are given. Let the matrix A (xj) represent the local adjacency

matrix around xj. If the neighborhood graph algorithm determines that there should

be an edge between xj and xn, then A (xj) (j, n) = ρ(xj, xn). A (xj) is constructed

as follows:

1. Compute and sort in ascending order the distances between the other data

points and xj. Let ρ (xjk , xj) be the distance between xj and xj’s k
th-closest

data point. Here, k = 1, . . . , n− 1.

2. Define A (xj) (j, j1) = A (xj) (j1, j) = ρ(xj, xj1).
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Define N (xj) = {xj1}.

3. (For loop) For k = 2, . . . , n− 1

(3.1) Set B = {xm ∈ N (xj) : xm is between(xj, xjk)}.

(3.2) If B is empty then

A (xj) (j, jk) = A (xj) (jk, j) = ρ(xj, xjk)

N (xj) = N (xj) ∪ {xjk}.

(3.3) k = k + 1

4. Estimate the dimension of manifold, d, around xj. This is done by perform-

ing principal components analysis on a set of points in a D-dimensional ball

centered at xj. The radius of the ball is distance from the last element in N

to xj.

5. Construct d linearly independent tangent vectors, {v1, . . . vd}, at xj. Let V =

span {v1, . . . vd}.

6. Let {xNk}
|N(xj)|
k=1 = N (xj). For each XNk that is not approximately in V ,

remove the data point from N (xj) and set A (xj) (j,Nk) = A (xj) (Nk, j) = 0.

Here are several points regarding the algorithm:

1. Steps 1-3 may construct too many neighbors for the data point. Data points

that are not close to the tangent plane at xj can be selected as neighbors of

xj. This is why steps 4-6 are used to remove these points.
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2. There are many methods for estimating the dimension: Hausdorff, box count-

ing, packing numbers. Principal component analysis with a setting that cap-

tures 97.5 percent of the variance has performed the best for my data [30].

3. Technically, step 6 should remove a neighbor, xi, whose vector, vi, is not

in the tangent plane. However, the constraint of removing vectors that are

orthogonal to the tangent plane, has performed better.

7.2 Results

Below are data sets on which the flat neighborhood graph algorithm has been

run. The pixel xj above is red and the neighboring pixels are solid blue. It is inter-

esting to note that the k-nearest neighbors and the radius methods for neighborhood

construction would give different results.

Figure 7.4 demonstrate the results of algorithm steps 1-3 being run on the

Swiss roll. Note how there is an incorrect neighbor. Factoring in the tangent plance

in steps 4-6 of the algorithm remove the incorrect neighbor.

The algorithm was applied to the hyperspectral data tile show in Figure 6.2

(a). The resulting graph differs significantly from that which would come from k-

nearest neigbors or the radius method. The results demonstrate that different data

points may have a different number of neighbors and that there is no relationship

between class and the number of neighbors. Figure 7.5 (a) gives a histogram of the

number of neighbors for the data points. Figure 7.5 (b) can be compared with 6.2

(a) to demonstrate the lack of relationship between class and number of neighbors.
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Figure 7.3: Neighborhood for a point on the sphere.
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Figure 7.4: Incorrect neighborhood for a point on the Swiss roll.
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(a) Histogram of the number of neighbors

(b) Number of neighbors per data point

Figure 7.5: Hyperspectral neighbors76



Chapter 8

Representation systems for urban terrain elevation data

Throughout the year of 2006 and until June of 2007, I worked as a research

assistant for the Norbert Wiener Center (NWC) on a project for the United States

Army Corps of Engineers’ Topographic Engineering Center. Below is a summary of

work conducted jointly with John Benedetto, Chris Flake, Ioannis Konstantinidis,

Diego Maldonado, and Jeff Sieracki.

8.1 Introduction

Light detection and ranging (LIDAR) data is collected by using a laser pulse

and a sensor onboard an airplane. The airplane passes over an area of interest and

measures the distance to the first object on the laser pulse’s path. The collected

data is a vector with three components, (x, y, z), where (x, y) is the location on the

ground and z is the height of the object above the ground1. Figure 8.1 demonstrates

the swaths of data collected by an airplane passing over Fort Belvoir.

The LIDAR data, which is also known as point cloud data, is gridded. The

output of this gridding is a data elevation matrix (DEM), M , in which the (x, y)

position in the matrix is the ground coordinate and M(x, y) is the height of the

1Technically, LIDAR measures the distance from the airplane to the object. However, the

difference of the height of the airplane above ground level and the measured distance of the LIDAR

pulse is the z value.
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Figure 8.1: Airplane swaths and LIDAR coordinates for data collection over Fort

Belvoir (Courtesy U.S. Army Corps of Engineers)

object at (x, y). Figure 8.2 demonstrates the point cloud data overlayed with the

gridded data.

There are many applications of LIDAR data such as cartography, 3-dimensional

cartography, and feature discrimination. Sometimes LIDAR data is coupled with

hyperspectral data to help identify the material on the ground. An example of fea-

ture discrimination is line of sight. Line of sight allows a person on the ground to

know from which buildings they can be seen and targeted. Although these appli-

cations are nice, there are some problems associated with LIDAR data. One of the

main problems is file size. Currently, the data sets are so large that they cannot

be transmitted in a reasonable amount of time. As a consequence of this, research

is being done to determine optimal representation systems for compressing LIDAR

data sets.

The goal of this project was to determine how well some representations sys-
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Figure 8.2: Area of point cloud data overlayed on the DEM (Courtesy U.S. Army Corps of

Engineers)

tems, that are well-known for images, perform on LIDAR data. Standard repre-

sentations such as JPEG and JPEG2000 have been used along with lesser known

filter banks that have a directional component such as curvelets, contourlets, and

ridgelets. Directional filter banks capture the edges of buildings, roads, and other

features that are important in an urban terrain battle environment. Another goal

of the project was to determine metrics for measuring the success of compression

results. Because in many applications the enduser is a person, it is important to

have metrics that are comparable to the human eye.
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8.1.1 Contributions and results

My contributions and results are briefly summarized here.

1. LIDAR data sets are not images. Even though the DEM that comes from

LIDAR data looks like an image, it behaves differently under standard imaging

techniques. This may motivate someone to develop a representation system

that is “tailored” for LIDAR data.

2. A modified version of the SSIM index for LIDAR data corresponds better to

the human eye than other commonly used metrics. This result is not surpris-

ing, there is an analagous result for images. This means that SSIM is one of

the best quantitative measures of how well a compressed reconstruction looks

to the human eye. This allows for varying the rate of compression based on

the result of the SSIM index.

3. Contourlets with a 9/7 filter bank compressed the data the best with respect

to the Terrain structural similarity index (TSSIM). However, the directional

aspect of contourlets was not used. Depending on the DEM, either a one-level

or two-level contourlet transform gave the optimal results.

8.2 The data

We consider two LIDAR data sets: a 5100 × 5100 meter square tile of terrain

elevation data from the city of New Orleans and a 6019 × 6019 meter square

tile of terrain elevation data from Fort Belvoir. Both tiles are 1-Meter DEM and
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Figure 8.3: Tiling the 5100 × 5100 New Orleans DEM. Fifteen subtiles were chosen,

S1-S15. (Courtesy U.S. Army Corps of Engineers)

were obtained from first return LIDAR scanning. For computational optimality

and subsequent statistical analysis, these tiles were segmented into subtiles of size

512 × 512. The segmentation was chosen to be representative of different local

terrain types such as industrial areas, urban areas, water and suburban residential

neighborhoods of varying tree density. See Figure 8.3 and Figure 8.4.

8.3 Representation systems

Five representation systems were studied. These are:

• The Discrete Cosine Transform (DCT)
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Figure 8.4: Tiling the 6019 × 6019 Fort Belvoir DEM. Twenty-five subtiles were

chosen, T1-T25. (Courtesy U.S. Army Corps of Engineers)

• 5/3 and 9/7 Discrete Wavelet Transforms (DWT)

• Curvelets

• Contourlets

• Ridgelets

The DCT is one of the main components of JPEG compression and was se-

lected as a natural comparison to determine how standard image processing tech-

niques would fare when applied to DEMs. As described below, the DCT differs from

more modern representations in that it is a time-frequency rather than time-scale

decomposition. The 5/3 and 9/7 DWTs have also been extensively applied in image
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processing and are associated with the JPEG2000 standard. With regard to JPEG

and JPEG2000, we note that our analysis is with respect to the underlying math-

ematical foundation of these methods and does not consider the quantization and

coding that are used in these standards.

Curvelets, contourlets, and ridgelets comprise new, generalized transforms that

can be combined with any of the filter banks used in the standard DWT. These

methods are not in common usage nor are they part of any engineering standards.

These methods were explored with different parmeters and configurations; some of

which are discussed below.

8.3.1 Discrete Cosine Transform

For our DCT representation we used the standard MATLAB 2-dimensional

Discrete Cosine Transform. This transformation can be described as follows: Given

a natural number n, define the n× n matrix T by

Tij =



1√
n

if i = 0,

√
2
n

cos
(

(2j+1)iπ
2n

)
if i > 0,

where i, j = 0, . . . , n − 1. Let A be an n × n matrix, i.e, A = {aij}n−1
i,j=0. Then the

Discrete Cosine Transform of A is the matrix D = T tAT (here T t is the transpose of

T ). The DCT is the real-valued version of the Discrete Fourier Transform (DFT). As

such, D codes the frequency behavior of the elements of A. The upper-left quarter

of D codes the Low-Low frequency (coarser scale) aspects of A, while the lower-right

quarter of D codes the High-High frequency (fine scale) aspects of A.
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The fundamental fact behind the applications of these types of transformations

is that the naked eye is more sensitive to variations of the low frequency coefficients

than those of the high frequency coefficients. Thus, the physiology of the eye allows

for ad-hoc manipulations in the elements of the matrix D. If D̃ represents D after

these manipulations, the Inverse DCT is performed to obtain a matrix Ã close (in

an appropriate sense) to the original matrix A. Since T is an orthogonal matrix,

i.e., TT t = Id, the Inverse DCT is also easily implemented. The DCT lies in the

core of the JPEG compression standard, which makes it a strong reference point.

8.3.2 Discrete Wavelet Transform

As shown above, the DCT is based on the Cosine function. The periodicity

of this function implies its lack of localization. In other words, the Cosine funtion

is “all over the place”. As a consequence, if a matrix A is perturbed or modified

in a few of its entries, then all of its DCT coefficients will be notably affected by

such perturbation. Thus, a local perturbation in A generates a global response in

its DCT. This is an inherent drawback of the DCT.

In order to circumvent the local-global perturbation scheme, classes of well-

localized functions were considered as bases of the spaces of interest (mostly L2).

These classes are obtained by translations and dilations of a fixed profile function

called a wavelet.

The DWT is implemented by means of filter banks. The mathematical equiv-

alence between the DWT, the Multi-resolution Approximations (MRA), and the
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Filter Bank theory has been one of the major accomplishments in Wavelet Theory

[33]. This theory has been developed during the last two decades and it has seen an

enormous range of applications.

A scaling function ϕ, also called the father wavelet, is a function whose

dilations and translations form an orthonormal basis of an approximating space

Vj ⊆ L2(R).

Vj = span{2−j/2ϕ(2−j(t− n))}n∈Z

A wavelet ψ is a function of zero mean, that can be derived from ϕ, such that the

family

{2−j/2ψ(2−j(t− n))}(j,n)∈Z2

is an orthonormal basis of L2(R). These approximating spaces, Vj, are the core of

the multi-resolution approximations. Given a signal x ∈ L2(R), its approximation

at scale j is given by

Aj(x)(t) =
∑
n∈Z

a(j)[n]2−j/2ϕ(2−j(t− n)),

where, given the integers j and n, the n-th approximating coefficient of x at scale j

is

a(j)[n] =

∫
x(t)2−j/2ϕ(2−jt− n) dt.

Assuming that J is the finest scale, we can approximate a(J)[n] by the samples x[n].

Next, x will be decomposed into an approximating signal and a detail signal. This is

done by means of filter banks. A filter is just a finite sequence {s[n]}Nn=−N that will

act as a convolution factor. Wavelets have naturally associated a couple of filters
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{h[n]}Nn=−N and {g[n]}Nn=−N . The filter g is related to ϕ and is called a low-pass

filter, while h is related to ψ and it is called the high-pass filter. The coefficients for

the approximating and detail signal are given, respectively, by

a(J+1)[n] =
N∑

m=−N

g[m− 2n]a(J)[m]

and

d(J+1)[n] =
N∑

m=−N

h[m− 2n]a(J)[m].

In order to reconstruct x = AJ(x) we retrieve the coefficients a(j)[n] by computing

a(J)[n] = a(J+1)[n] + d(J+1)[n]

=
N∑

m=−N

g[n− 2m]a(J+1)[m] +
N∑

m=−N

h[n− 2m]a(J+1)[m].

The key aspect of this approach is that it can be iterated by using the approximation

signal as a base signal. Moreover, the subsequent wavelet coefficients are obtained

recursively. Namely, when k goes from J+1 up to some limit value M (that depends

on the size N), we compute

a(k+1)[n] =
N∑

m=−N

g[m− 2n]a(k)[m]

and

d(k+1)[n] =
N∑

m=−N

h[m− 2n]a(k)[m].

The coefficients a(k)[n] represent the approximation the signal x at scale k,

while the coefficients d(k)[n] represent the details of the signal at scale k.

The DWT is a decomposition method that replaces the time-frequency analysis

(as in the DCT) by a time-scale analysis. The signal x can be retrieved from the
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coarsest approximation and the detail coefficients in a similar computational way,

i.e., by means of filters and up-sampling.

Although this description deals with a one-dimensional signal x, in the case of

image processing (two-dimensional signals) all of the above is iteratively applied to

the (one-dimensional) rows and columns of the images to analyze.

We paid special attention to two classes of filters: the 9/7 and 5/3 filters. In

the case of the 9/7 filter protocol we have

g =[.037828455506995,−.023849465019380,−.11062440441842,

.37740285561265, .85269867900940, .37740285561265,

− .11062440441842,−.023849465019380, .037828455506995]

and

h =[−.064538882628938,−.040689417609558, .41809227322221,

.78848561640566, .41809227322221,−.040689417609558,

− .064538882628938]

In the case of the 5/3 filter protocol we have

g =
1

4
√

2
[−1, 2, 6, 2,−1]

and

h =
1

2
√

2
[1, 2, 1]

The Discrete Wavelet Transform using the 9/7 filter is the main component

of the lossy JPEG2000 compression standard, while the 5/3 filter is the main com-
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ponent of the lossless JPEG2000 compression standard. This makes 9/7 and 5/3

filters a state-of-the-art reference point.

For the 5/3 and 9/7 wavelet filter bank decompositions we used the software

implementation from the DIPUM toolbox. Available at http://www.imageprocessingplace.com

DIPUM stands for Digital Image Processing Using MATLAB.

8.3.3 Discrete curvelet transform

The Discrete Curvelet transform is a recently developed two-dimensional multi-

scale transform that generalizes the Wavelet transform. It has the advantage of

representing images at different scales and different angles. The Discrete Curvelet

Transform has strong directional character (angle sensitivity) in which elements are

highly anisotropic at fine scales, with effective support shaped according to a cer-

tain parabolic scaling. It was introduced by Emmanuel Candes and David Donoho

[8, 12, 11, 10, 9].

The one-dimensional Wavelet transform is very sensitive to point singularities

of one-dimensional signals. In the two-dimensional Wavelet transform the frequency

plane is decomposed into dyadic rectangles whose axis are parallel to the coordinate

axis. This makes the two-dimensional Wavelet transform sensitive to singularities

along horizontal, vertical, and diagonal lines. Since the singularities of an image

are its edges, the two-dimensional Wavelet transform has a good response (sparse

representation) when the images considered have horizontal, vertical, or diagonal

edges. However, when the edges are more general geometrical curves, the DWT
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needs many coefficients to describe those edges.

In the Curvelet transform the frequency plane is decomposed into dyadic an-

nuli, these annuli are in turn split into wedges in such a way that the length of the

base of each wedge is the square root of the width of the corresponding annulus

(parabolic scaling).

Each wedge w supports the Fourier transform of a smooth function ψw. The

translations of ψw do not form an orthonormal basis of L2 anymore, but they are

still a good generating set. Namely, the family

{ψw(t1 − n1, t2 − n2)}w,(n1,n2)∈Z2

is a frame for L2. We can decompose now any signal x as

x(t1, t2) =
∑

w,n1,n2

a[w, n1, n2]ψw(t1 − n1, t2 − n2),

where the coefficients a[w, n1, n2] are easily computed by means of inner products.

The Discrete Curvelet Transform algorithm has been coded by the Curvelet.org

team: E. Candes, L. Demanet, D. Donoho, and L. Yingis. Available, after free

registration, at

http://www.curvelet.org/software.html.

8.3.4 Discrete contourlet transform

The Discrete Contourlet Transform, introduced by Minh-Do and Martin Vet-

terli in [18] and [19], shares the same tiling principle as in the Discrete Curvelet

Transform. However, in this case pyramidal directional filter banks are shown to
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Figure 8.5: Tiling of the frequency plane in the Contourlet Transform

provide an effective method to implement the digital curvelet transform [20]. Also,

instead of using annuli, the frequency plane is tiled using sheared rectangles, Figure

8.5.

The Contourlets decomposition algorithm has been coded by Minh-Do and it

is available at

http://www.ifp.uiuc.edu/ minhdo/software.

8.3.5 Discrete ridgelet transform

The Ridgelet transform was introduced by Candes and Donoho in 1999 [6,

7] as a new multi-scale representation scheme for images that are smooth away

from discontinuities along lines. In this aspect, they improve on the performance

of the two-dimensional Wavelet transform by combining wavelets and the Radon

transform.
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The approximation system called ridgelets in the pioneering work by Candes

(1997, 1998) refers to a ridge function

ψa,b,θ(t1, t2) = a1/2ψ(a(t1 cos(θ) + t2 sin(θ))− b),

where ψ is a wavelet. In order to obtain a method of series representation, Candes

constructs ‘ridgelet frames’, see [6, 7]. This representation is sparse when it describes

images with linear edges.

The Finite Ridgelet Transform (FRIT) was created by Minh-Do and Martin

Vetterli [21]. The FRIT adapts the ideas of Candes and Donoho to the case of

discrete signals. Also, the MATLAB code for the FRIT has been written by Minh-

Do and it is available at

http://www.ifp.uiuc.edu/ minhdo/software/

8.4 Reconstructions

During this project many DEMs were transformed using one of the above

transforms, the coefficients were then threshed, and the reconstruction DEMs were

created. Many of the transforms have several parameters that can be set and this,

coupled with the fact that there are many tiles and different ways of threshing,

generated a lot of data. There is too much data to display here; the reconstructions

below are just a small sampling of what was generated.

The tile S10 from the New Orleans LIDAR data, see Figure 8.6, was trans-

formed. This tile was chosen for its urban properties.

Below is a series of reconstructions of S10 using twenty-five percent of the orig-
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(a) (b)

Figure 8.6: The original S10 tile, (a) top-down view (b) view with 25 degree angle

of elevation.

inal coefficients. Several of the transforms are redundant, therefore it is important

to use the original number of coeffients when comparing transforms. It is interesting

to note the different artifacts given by the various transforms. Also, sometimes a

reconstruction will look acceptable from a top-down view; however, when viewed at

an elevation artifacts can be seen. Also, please note that one can see in the recon-

structions a spike towards the upper, left corner. This is not an artifact; this spike

is in the original data as well.

8.5 Metrics and SSIM

Several norms were used in comparing the reconstructed DEMs against the

original DEMs. These norms included the `1-norm, `2-norm, `∞-norm, and the
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(a) (b)

Figure 8.7: The S10 tile reconstruction using the contourlet transform with a 9/7

filter bank and no directional component, (a) top-down view (b) view with 25 degree

angle of elevation.

total variation semi-norm. The SSIM index is not a norm; however, it gave better

visual results than the other norms.

Briefly, here are defintions of the norms and the SSIM index.

The `p-distance between two DEMs A = {aij}Ni,j=1 and B = {bij}Ni,j=1 comes

from generalizations of the Euclidean distance. Given p ≥ 1 we define the `p-distance

between A and B is

‖A−B‖`p = sup
x:‖x‖`p=1

‖(A−B)x‖`p

Here x = {xn}Nn=1 is a vector and

‖x‖`p =

(
N∑
n=1

|xn|p
)1/p

.
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(a) (b)

Figure 8.8: The S10 tile reconstruction using the DWT with the 5/3 filter bank, (a)

top-down view (b) view with 25 degree angle of elevation.

If p =∞ we write

‖x‖`∞ =
N

sup
n=1
|xn|.

In the case p = 2, this is the usual Euclidean distance. Basic results of numerical

analysis allow the `1-norm to be computed easily by considering the maximum

column sum, where the column sum is the sum of the magnitudes of the elements

in a given column. An analagous result holds for the `∞-norm, only with column

replaced by row.

The Total Variation (TV) semi-norm finds many applications in image pro-

cessing. Given a signal f(t), its TV semi-norm is given by

‖f‖TV =

∫
|∇f(t)|dt.

This is just the `1-norm of the derivative of f . In practice, for a vector, the
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(a) (b)

Figure 8.9: The S10 tile reconstruction using the DWT with the 9/7 filter bank, (a)

top-down view (b) view with 25 degree angle of elevation.

derivative is quantized giving

‖f‖TV =
n−1∑
i=1

|f(xi+1)− f(xi)|.

For a DEM the total variation is taken over each row and column and then

summed.

The SSIM index is slightly more involved. The SSIM index was first introduced

in the image processing literature [48, 49, 50, 47] as an alternative to norm-based

comparison measures. It appears to better approximate judgments of similarity by

the human eye on natural images. It combines three different quality index: lumi-

nance l, contrast c, and correlation s that are applied locally over a sliding window

and then averaged across all pixels in the image. The SSIM index is a statistical

measure. It is computed based on the moments of the pixel value distribution.

Assume that X and Y are n × n images embedded in Rn2
. An M ×M window
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(a) (b)

Figure 8.10: The S10 tile reconstruction using the curvelet transform with a 9/7

filter bank, (a) top-down view (b) view with 25 degree angle of elevation.

(sub-image) of the image X can be realized as a vector of dimension N = M2. Let

a = {ai}Ni=1 and b = {bi}Ni=1 be the pixels of X and Y corresponding to this window,

centered on the target pixels of X and Y , respectively. First, given a weight w, the

weighted means µa =
∑N

i=1 wiai and µb =
∑N

i=1wibi are computed. The luminance

comparison between the two target pixels is defined by

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1

,

where C1 is included for numerical stability. Next the variances σa =
∑N

i=1wia
2
i −µ2

a

and σb =
∑N

i=1wib
2
i − µ2

b . Contrast is now defined by

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2

.

The third component, correlation, is based on the cross-correlation σa,b =
∑N

i=1wiaibi−
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(a) (b)

Figure 8.11: The S10 tile reconstruction using the DCT, (a) top-down view (b) view

with 25 degree angle of elevation.

µaµb, and defined by

s(a, b) =
σa,b + C3

σaσb + C3

.

Again, C2 and C3 avoid small denominators. Now set

SSIM(a, b) := l(a, b)× c(a, b)× s(a, b)

In our experiments we fixed w to be an 11×11 Gaussian weight and used a MATLAB

implementation of the SSIM adapted from the one by Z. Wang. This adaptation is

based on the fact that we chose to discard the luminance component, considering

that absolute mean elevation differences pay little role in evaluating the similarity

of urban terrain DEMs. The index thus modified is referred to as TSSIM (Terrain

SSIM) and, in a given window, it takes the form

TSSIM(a, b) =
σa,b + C

σ2
a + σ2

b + C
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(a) (b)

Figure 8.12: The S10 tile reconstruction using the finte ridgelet transform, (a) top-

down view (b) view with 25 degree angle of elevation.

where C is adapted to the dynamic range of the images under consideration. Finally,

TSSIM(X, Y ), the TSSIM index between X and Y , is obtained as the average of

the TSSIM(a, b)′s over the sliding window. Clearly, the TSSIM is not a distance.

TSSIM is a number between 0 and 1, the closer (visually) two images X and Y are

from one another, the closer TSSIM(X, Y ) is to one.

8.6 Quantitative results

The above transforms were performed on many DEMs. The norms of the

difference between the original and reconstructed DEM was taken for many norms,

semi-norms, and the TSSIM index. These error estimates were averaged over the

DEMs and quantitative results were produced. Below is a small sampling of the

quantitative results. Please note, that in the last graph, contourlets with a 9/7
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filter bank is giving the best TSSIM results. This is why we believe this method

would give the best compression.

(a) (b)

Figure 8.13: The `2-norm and `∞-norm versus number of coefficients retained, (a)

`2-norm (b) `∞-norm .

Also pleae note, if one looks closely at the TSSIM graph a small “knee” appears

for one version of contourlets being run. This is not a mistake. This was actually

quite an interesting result regarding TSSIM, contourlets with a high directional

component, and urban data. Basically, the knee appeared with tiles that contained

a large number of structures, e.g., buildings, houses, . . . etc. This is a type of feature

discrimination that we did not intend to find. When this transform is performed on

images of building from airplanes and satellites, not DEMs, the knee is not present.

This leads us to believe that image processing for DEMs may require some significant

differences than image processing for images.
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(a) (b)

Figure 8.14: The total variation semi-norm and the TSSIM index versus number of

coefficients retained, (a) total variation (b) TSSIM.

8.7 Epilogue

After the above work was completed, we investigated adaptive techniques for

compressing DEMs. Donoho’s algorithm [23], wedgelets, is an adaptive scheme that

partitions the DEM along edges and uses linear regression to find the optimal coef-

ficient for each wedge of the image. The optimal representation is defined to be the

minimizer of a functional that has both, `p norm and coefficient count. Results have

shown that wedgelets gives better compression than other representations. How-

ever, the computational time of wedgelets is significantly higher than non-adaptive

transformations.
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Chapter 9

Motion deblurring

In August of 2006, I spent time at the University of Minnesota’s Institute for

Mathematics and its Applications. Below is a summary of the work that my team

accomplished on image deblurring. This is joint work with Felix Krahmer1 , Youzuo

Lin2 , Bonnie McAdoo3 , Katharine Ott4, Jiakou Wang5. Our mentor for the project

was Brendt Wohlberg6.

9.1 Introduction and Problem overview

Motion blur occurs when there is relative motion between the camera and

the object being captured. In this section we study motion blur, that is, blur that

occurs when the motion has constant speed and a fixed direction. The goal is to

identify the angle and length of the blur. Once the angle and length of the blur are

determined, a point spread function can be constructed. This point spread function

is then used in direct deconvolution methods to help restore the degraded image.

1New York University
2Arizona State University
3Clemson University
4University of Virginia
5Pennsylvania State University
6Los Alamos National Laboratory
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The process of blurring can be modeled as the following convolution

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y), (9.1)

where f(x, y) is the original image, h(x, y) is the blurring point spread function,

n(x, y) is white noise and g(x, y) is the degraded image. The point spread function

for linear motion blur with a length of L and angle θ is given by

h(x, y) =
1

L
δ(
−→
L ), (9.2)

where
−→
L is the line segment of length L oriented at an angle of θ degrees from the

x-axis.

Taking the Fourier transform of (9.1) we obtain

G(u, v) = F (u, v)H(u, v) +N(u, v). (9.3)

The Fourier transform of the function h(x, y), defined in (9.2), is a sinc function

oriented in the direction of the blur.

g(x, y)=f(x, y)∗h(x, y)+n(x, y)
F−→ G(u, v)=F (u, v)H(u, v)+N(u, v)

F−→

We multiply this sinc function by F (u, v) in the frequency domain, so the

ripples of the sinc function are preserved. We wish to identify the ripples in G(u, v)

to estimate the blur angle and blur length.
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In this report, we describe various algorithms for determining point spread

function parameters in the frequency domain. First we examine three methods for

estimating blur angle, then two methods for estimating blur length. We compare the

accuracy of the algorithms using artificially blurred images with different amounts

of noise added. Finally, we use the estimations as parameters in MATLAB’s decon-

volution tools to deconvolve the images.

9.2 Three methods for angle estimation

9.2.1 The cepstral method

A method for identifying linear motion blur is to compute the two-dimensional

cepstrum of the blurred image g(x, y). The cepstrum of g(x, y) is given by

C (g(x, y)) = F−1 (log |F(g(x, y))|) . (9.4)

An important property of the cepstrum is that it is additive under convolution.

Thus, ignoring noise, we have

C (g(x, y)) = C (f(x, y)) + C (h(x, y)) . (9.5)

Biemond shows in [4] that C (h(x, y)) = F−1 (log{|H(x, y)|}) has large negative

spikes at a distance L from the origin. By the additivity of the cepstrum, this

negative peak is preserved in C (g(x, y)), also at a distance L from the origin.

If the noise level of the blurred image is not too high, there will be two pro-

nounced peaks in the cepstrum, as show in Figure 9.1. To estimate the angle of
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(a) (b)

Figure 9.1: The cepstrum of an image blurred at length 20 and θ = 80. In (a) we

see the two prominent negative peaks and in (b) the line through these two peaks

appears to have an angle of 80 degrees.

motion blur, draw a straight line from the origin to the first negative peak. The

angle of motion blur is approximated by the inverse tangent of the slope of this line.

9.2.2 Steerable filters method

Oriented filters are used to detect the edges in an image. A steerable filter is

a filter that can be given an arbitrary orientation through a linear combination of

a set of basis filters [24]. In this method, we apply a steerable filter to the power

spectrum of the blurred image to detect the direction of motion.

The steerable filter we use is a second derivative of the Gaussian function. The

radially symmetric Gaussian function in two dimensions is given by

G(x, y) = e−(x2+y2). (9.6)
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It can be used to smooth edges in an image by convolution. The second derivative

of G(x, y) will detect edges. By the properties of convolution,

d2(G(x, y) ∗ f(x, y)) = d2 (G(x, y)) ∗ f(x, y). (9.7)

We denote the second derivative of the Gaussian oriented at an angle θ by Gθ
2.

The basis filters for Gθ
2 are

G2a = 0.921(2x2 − 1)e−(x2+y2) (9.8)

G2b = 1.843xye−(x2+y2) (9.9)

G2c = 0.921(2y2 − 1)e−(x2+y2). (9.10)

Then the response of the second derivative of the Gaussian at any angle θ, denoted

RGθ
2, is given by

RGθ
2 = ka(θ)RG2a + kb(θ)RG2b + kc(θ)RG2c, (9.11)

where

ka(θ) = cos2(θ) (9.12)

kb(θ) = −2 cos(θ) sin(θ) (9.13)

kc(θ) = sin2(θ). (9.14)

To detect the angle of the blur, we look for the θ with the highest response

value [39]. That is, we convolve RGθ
2 with the Fourier transform of our blurred

image. For each θ, we calculate the L2 norm of the matrix resulting from the

convolution. The θ with the largest L2 norm is the estimate for the angle of motion

blur.
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9.2.3 Radon transform method

Given a function f(x, y), or more generally a measure, we define its Radon

transform by

R(f) (x, θ) =

∞∫
−∞

f(x cos θ − y sin θ, x sin θ + y cos θ)dy. (9.15)

This corresponds to integrating f over a line in R2 of distance x to the origin and

at an angle θ to the y-axis.

To implement the Radon transform, we first assume that I is a square image.

The content of I is assumed to be of finite support against a black background.

Let g(x, y) be the blurred image, and let θ be a vector of t equally spaced values

from 0 to 180(1− 1/t). For each j = 1, . . . , t compute the discrete Radon transform

for θ(j). Call this matrix R. Now determine the angle θ(j) for which the Radon

transform assumes its greatest values. Finally, we find the five largest entries in

the jth column of R, for each j = 1, . . . , t, and sum them. The result is a vector v

of length t, where each entry corresponds to an angle θ. The maximum entry of v

provides the estimate for θ.

This method of angle detection has several shortcomings. Here, we offer three

possible obstacles and present modifications to improve the versatility and robust-

ness of the preceding algorithm.

1. If I is an m by n image where m 6= n, the axes in the frequency domain will

have different lengths in the matrix representation. Calculating the angles in

the frequency domain will thus lead to distortion. For example, the diagonal
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(a) (b)

Figure 9.2: The original image (a) and the image after windowing (b).

will not correspond to an angle of 45 degrees. To correct this, we let θ̃ =

tan−1( n
m

) tan(θ) and then run the algorithm replacing θ with θ̃.

2. The preceding algorithm works for an image where the support of the content

is finite, and the background is black. When the background is not black, or

when there are objects close to the boundary of the image, the sharp edges

will cause additional lines in the spectral domain at 0 degrees. The Radon

transform will detect these edges. To avoid this effect, we smoothen out the

boundaries of the image using a two dimensional Hann window. The values

of this windowed image will decay towards the image boundary, as in Figure

9.2, so the edge effects disappear.

3. The Radon transform takes integrals along lines at different angles in a rectan-

gular image. The length of the intersection between these lines and the image

depends on the angle. The length is the longest at 45 degrees, so the integral

will pick up the largest amount of noise contributions along this line. Thus

the algorithm often incorrectly selects the angles of 45 and 135 as the angle
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(a) (b)

Figure 9.3: The Radon transform of the original image (a) and the normalized

Radon transform (b).

estimate. To correct this, we normalize by dividing the image pointwise by

the Radon transform of a matrix of 1’s of the same dimension as the image.

9.2.4 Results

In this section we present results for angle estimation. The tests were run on

the mandrill image seen in Figure 9.4. The image was blurred using the MATLAB

motion blur tool with angles varying from 0 to 180. The results were recorded

for images with both a low level of noise and a high level of noise added. The

measurement for noise in an image is the signal-to-noise ratio, or SNR. The SNR

measures the relative strength of the signal in a blurred and noisy image to the

strength of the signal in a blurred image with no noise. An SNR of 30 dB is a low

noise level, while an SNR of 10 dB is a high noise level.

The cepstral method is very accurate at all lengths when there is a low level

of noise. The Radon transform also accurately predicts the blur angle, especially at

longer lengths. The results are displayed in Figure 9.5. In the presence of noise the

108



(a) (b)

Figure 9.4: The original mandrill image (a) and an example of a blurred image (b)

with no noise. Here the length of the blur is 25 and θ = 30.

(a) (b)

Figure 9.5: The average error in angle estimation for the cepstral and Radon trans-

form methods with SNR = 30 dB. In (a) the length is 10 and in (b) the length is

50.
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(a) (b)

Figure 9.6: The average error in angle estimation for the cepstral and Radon trans-

form methods with SNR = 10 dB. In (a) the length is 10 and in (b) the length is

50.

cepstral method breaks down. At an SNR of 10 dB it performs poorly at all lengths.

The Radon transform angle estimation, at this same noise level, is not accurate at

small lengths but is very accurate at longer lengths, as depicted in Figure 9.6.

The steerable filters had a large amount of error in angle detection even with

no noise. When the length was large, between roughly 40 and 70, the algorithm

produces moderately accurate results, as in Figure 9.7.

A possible explanation why the Radon transform method fails for small blur

lengths is that there is always a discretization necessary and the PSF looks less

like a line segment. In fact, for a small length, the lines in the power spectrum of

the PSF implemented in MATLAB are not very prominent. We attempted to solve

these problems using an alternative approach for modeling the PSF following Choi

[14], but this did not lead to better results.
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Figure 9.7: The average error in angle estimation for the steerable filter method

with no noise.

9.3 Length Estimation

9.3.1 Two Dimensional Cepstral Method

As outlined in Section 9.2.1, the cepstrum of a blurred image shows two signif-

icant negative peaks at a distance L from the origin. An estimate for the length of

motion blur is this value L. The cepstral method for angle detection is more suscep-

tible to noise than the Radon transform method. Hence, we improve the result for

the length detection by first estimating the angle via the Radon transform method

in Section 9.2.3.

First, we de-noise the cepstrum of the noisy image using a Gaussian filter.

Then we rotate the cepstrum by the angle θ estimated using the Radon transform.

Assuming this angle estimate is reasonable, the peaks will lie close to the horizontal

axis. Any peaks outside a small strip around the x-axis are caused by noise effects;

we only need to look for the peaks inside the strip. Furthermore, the peaks should
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appear at opposite positions from the origin. Thus we can amplify them by reflecting

the image across the y-axis and then adding it. The result is that the peaks will

add up and, in the rest, some noise will cancel.

Once we have made these corrections for noise, the estimated length of the

motion blur is the distance between the negative peak and the y-axis, multiplied by

an appropriate geometric correction factor.

9.3.2 One Dimensional Cepstral Method

The one dimensional cepstral method for length estimation uses the estimate

of θ obtained from Section 9.2.1, 9.2.2 or 9.2.3. The idea is to collapse the log of the

two dimensional power spectrum, log |F(g(x, y))|, onto a line that passes through

the origin at an angle θ. Since the spectrum is collapsed orthogonal to the direction

of motion, the resulting signal has the approximate shape of a sinc function [39].

Once the power spectrum is collapsed into one dimension, we take the inverse Fourier

transform and then locate the first negative peak. We use the x coordinate of this

peak to estimate the length.

Recall the definition of the cepstrum from (9.4). Note that in this method we

essentially take the one dimensional cepstrum of the blurred image.

One algorithm to collapse the two dimensional power spectrum into one di-

mension is to calculate for each point (x, y) in the spectral domain the value

d = x cos(θ) + y sin(θ). (9.16)

In the continuous case, the value P (x, y) would then be projected onto the line
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at a distance d from the origin. However, in the discrete case this value d is not

necessarily an integer. Thus, we discretize by splitting the value of P (x, y) onto

two points, bdc and bdc+ 1, and weighting the distribution of P (x, y) according the

distance between d and bdc as in [40].

Another weighting method is to use the Radon transform. By taking the

Radon transform of a constant matrix of 1’s, we find the weights to assign to each

point on the line passing through the origin at an angle θ. Take the Radon transform

along the line that passes through the origin at an angle θ. This gives us the

summation of all values P (x, y) that contribute to each point on the line. Divide

pointwise by these weights and now the power spectrum has been collapsed from

two dimensions into one.

Following the preceding algorithm, one must compute a coordinate transfor-

mation correction factor. Let d0 be the x-coordinate of the first negative peak in

the 1D cepstrum, the length of which is denoted by D. The length d represents the

estimated length in the image of size 256× 256, and is given by

d = 256
d0

D
. (9.17)

9.3.3 Results

The two dimensional cepstral method for length estimation provides more

accurate results than the one dimensional method. In Figure 9.10 we see that for no

noise and low levels of noise, SNR of 20 dB and SNR of 30 dB, the two dimensional

cepstral method averages less than a pixel in error for lengths between 10 and 60.
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(a) (b)

Figure 9.8: Example of a collapsed 1D power spectrum (a) and the 1D cepstrum

(b), with θ = 0 and no noise. The actual blur length is 10; the estimated length of

the blur by (b) is 11.

Figure 9.9: Error estimates in length estimation for 1D cepstral method.
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(a) (b)

Figure 9.10: Error estimates in length estimation for 2D cepstral method. In (a) we

compare no noise, SNR = 30 dB and SNR = 20 dB. In (b) the error is much higher

for an SNR = 10 dB.

At high noise levels, SNR of 10 dB, the method is relatively accurate for lengths

between 20 and 50, but breaks down at small and large blur lengths.

9.4 Deblurring with MATLAB’s deconvolution method

In this section we implement restoration tests based on the orientation and

length estimates computed in the preceding algorithms. We hope to minimize the

effects of the restoration algorithms as much as possible in order to focus on the

effects of our algorithms. The most frequently used image restoration algorithms

are Wiener filters, Lucy-Richardson and regularized methods. Image restoration is

a typical inverse problem and the well-posedness of the problem is critical. After

imposing Gaussian noise in the test image, Wiener filters perform poorly because

of the ill-conditioning of the problem. The regularized restoration algorithm is
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(a) (b)

Figure 9.11: The blurred and noisy image (a) and the restored image (b).

(a) (b)

Figure 9.12: The blurred and noisy image (a) and the restored image (b).

designed to minimize the least squares error between the estimated and true images

in the condition of preserving certain image smoothness, which is usually named as

Regularization Technique. In other words, such a technique could change the ill-

conditioned restoration problem to a well-posed problem and provide a reasonable

solution. Hence, we decided to use this method to combine it with our estimates.

Our first test image, in Figure 9.11, is blurred and noised by a PSF with

length 15, angle 72 degrees and an SNR of 24 dB. The restored images shows edges

resulting from missing information (content was moved out of the picture). However,
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the image quality has improved, image features are more distinctly visible. The

second test image, in Figure 9.12, is blurred and noised by a PSF with length 15,

angle 110 degrees and an SNR of 10 dB. In this example, the 2D cepstral method

estimated a blur length of 90. Because the estimation for length is so inaccurate,

the performance of the restoration algorithm is very poor.

However, this case was one of very few cases where the algorithm broke down

for a short blur length. In most cases, the method led to noticeable improvements

compared to the original image, even though the angle estimates given by the Radon

transform were often slightly off. For a longer blur length, the results were not as

satisfactory. However, the angle and length estimates were about right, so at least

part of the problem is due to lacking accuracy of the deblurring method for longer

blur lengths.

9.5 Conclusions

The deblurring results of Section 9.4 showed noticeable improvements in the

image quality. Although the SNR of the deblurred image – even when restricted

to the central part – still shows great differences from the original image, from the

viewer’s perspective the blur seems to have been at least partly removed. It is

interesting to note that this holds true despite the error of a few degrees that occurs

in the Radon transform method for a small blur length. Only when the length

estimates go wrong due to increased noise contributions or for longer blur length,

the deblurring gives worse results.
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For a small blur length, the cepstral method performed better than the Radon

transform method for estimating the angle. Further improvements might be achieved

by using the Radon transform method to estimate the angle, the two dimensional

cepstral method to estimate blur length, and then if the resulting blur length is

small, refine the angle estimate using the cepstral method. In any case, starting

with a coarse estimate and then refining close to that estimate can allow us to

attempt higher precision levels without a great increase in computation time.

The image content may have an impact on the angle that is detected by the

algorithms described. To combat this, using the algorithm on various blocks within

the image is a possibility. However, performing initial experiments on a block de-

composition rather than the whole matrix did not lead to better results. Better

improvements might occur for higher noise levels and bigger images.

Another possibility to improve the result is to actually use the functional that

is minimized in the regularized deconvolution method to judge the quality of the

estimated point spread function. Determine several candidates for the PSF and then

compare the minimum values for the associated functionals. If the estimations are

far off, the functional will not assume values as small as for the actual PSF.

After optimizing the blur identification using these techniques, the next step

will be to try the method on real world images. Looking at the spectral image of a

blurred picture in Figure 9.13, one can see faint lines in the blur direction. However,

it is not a priori clear if these lines will be picked up as well as for artificially blurred

images.
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(a) (b)

Figure 9.13: The real blurred image (a) shows faint lines in its power spectrum (b).
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