Analytical solution for the side-fringing fields of narrow beveled heads
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By using conical coordinates, exact analytical solutions for three-dimensional side-fringing fields of
recording heads that are beveled in the down-track direction are found. These solutions are derived
under the assumption of zero gap length. The side-fringing fields for the two limiting cases of
infinitesimally narrow heads and semi-infinitely wide heads are presented and compar&€97©
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INTRODUCTION It is clear that the solution of the boundary value prob-
lem (1)—(3) does not depend an d¥/dr=0. This is because

Recently, the focused ion beam micromachinfRBM) e houndary condition€) and (3) do not depend on. In
technique has been introduced for the patterning of the pOISther words, there is no dimension in the above problem

tips of recording heads. This technique has already demo'};{gainst whichr can be scaled. The above fact can be ex-
strated the ability to achieve very narrow head geometrie loited in order to reduce the 3D boundary value problem
and it is expected to be very instrumental in the patterning 05?1)—(3) to the 2D boundary value problem for the Laplace
various pole tip configurations’ This suggests the impor- equation in the region shown in Fig(R). This reduction is
tance of the analysis of side-fringing fields of very narrow 4 iaved by using the conical coordinates:

heads. In this article, exact analytical solutions for the three-

dimensional side-fringing fields are presented. First, the case _—Z =X
of infinitesimally narrow heads beveled in the down-track ~ “1 " r+y’ %2 r+y

direction is discussed under the assumption of zero gap . . .
length. It is apparent that the side fringing fields of finite nd th‘.a mathgmatlcal o_Ieta_|Is of such a_transformatlon_can be
. found in previous publicatiors? Thus, in terms of conical

width heads may deviate from those which are found for .
o . coordinatese; and «,, the boundary value probleft)—(3)
infinitesimally narrow heads. To estimate the range of these e .

o ) . Can be restated as follows: find the solution to the Laplace
deviations, exact analytical solutions for the three-

dimensional fringing fields of semi-infinitely wide heads are equation

then derived. Finally, differences in the strength and the ¥ ¥

cross track extent of the side-fringing fields for these two T,@JF (97(%:0’ ®)
head geometries are analyzed for various bevel angles.

az=r, (4)

//
INFINITESIMALLY NARROW HEADS

The idealized geometry of such heads is shown in Fig.
1(A). It is assumed thata) the pole tips are semi-infinite in
extent in thex-y plane,(b) the gap length is equal to zero,
and (c) the magnetic scalar potentidf has constant values
of ¥, and —¥, on opposite sides of the gap. The specific
value of ¥, is determined by the ampere turns and the effi-
ciency of the recording head.

It is apparent that the potentidl satisfies the Laplace

equation y
V2P =0 (1) )
in the region outside the magnetic head. This potential is also o,
subject to the boundary conditions:
=0, +io
U= for 6 T 37 5 2 P G
o for 5 o eSSV 2
Y=Y, Y=-¥,
VoW, for 0= =yt m= gt 3 T T *2
=— = —<p<— -tan - L
o for 5 YHoSe<— 3 tan2 tan2
where# and ¢ are spherical coordinates, whijeis the bevel
angle(w/2<y<m). (®)
FIG. 1. (A) The idealized geometry of the infinitesimally narrow hed).
dLaboratory for Physical Sciences, College Park, MD 20740. Its conical-coordinate map.
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subject to the boundary conditions

V=V, for a;=0, —00<a2<—tan%, (6)

V=-V¥, for a;=0, tan%<a2<oo. (7)

The theory of functions of complex variables can now be
used to solve the boundary value probléB—(7). To this

end, we introduce the complex variabl=a,+ia,
i = V=1, and consider the function: e W //}u‘zml
V=Y ——sinY/%

=0 o,

22,
o / =of NPk
V(B)= TO ar{ﬁqL B>—tar? %} —-V,. (8) ;P_(-)1 p =

This function is the imaginary part of the analytical function (B)

W(B) = (2¥,/m)In[B + JB2—tarf(y/2)] — i¥,, and, v,

for this reason, it satisfies the Laplace E5. It is also easy 7 E=v, +iv,

to check that¥(B) given by (8) satisfies the boundary con-

ditions (6) and (7). Thus, it is established that expressi@ /%

is indeed the solution for the boundary value problem oo S o \If-o/ Vo
(5)—(7). By using formulas(8) and (4) and straightforward = " im

(but somewhat lengthytransformations, the following ex-

plicit expressions can be derived for the magnetic field com-

ponentsH,, Hy, andH, in terms of Cartesian coordinates: fig. 2. (a) The idealized geometry of the semi-infinitely wide he. Its
conical-coordinate madC) The resulting conformal map. Shaded regions

(©

| ternal to head.
\/E[Zyr—(y2+zz+yr) A+1+tar|2%/ } map volume external 1o hea
H="o TABI(r +y)2 O
2, 22 U= —w, f T4y, O=6=—
Xtz =—Wo TOor p==5+vy, Usbs=
\/QX(A_ W +tar‘? % 2 2
= and
Hy="o wABI(r+y) ' (10
'n'+ <37T 0 T (15
A ’y$(p _1 = _!
\QXZ(AJr 1+tarf %/ 2 2 2
= 5w T
H.=Wo wABr(r+y)? (1 v=v, for o= 0s0<§
where and
A X2+22 . ¥ 2+ 4XZZ2 1/2 15 37 5 . 16
=S| —— — _— R < —— = —.
(r+y)2 a 2 (r+y)4 ’ ( ) 2 <(P 2 Y 0 2 ( )
2232 y] V2 Again, it is apparent that the solution of the boundary value
=|A+ (r+y)2+tanz 5} (13)  problem (14)—(16) does not depend on: g¥/dr=0. This

suggests that an approach similar to that for the infinitesi-
mally narrow head can be taken to solve the above boundary
SEMI-INFINITELY WIDE HEADS value problem.

As before, by using conical coordinates:
The idealized geometry of such heads is shown in Fig. 4 g

2(A). It is assumed thata) the pole tips are semi-infinite in X Y _

extent in thez direction as well as in the-y plane, (b) the M= T ®2Tgy @sTh (7
gap length is equal to zero, arid the magnetic scalar po-
tential has constant values #f, and —¥, on opposite sides
of the gap. This leads to the boundary value problem o

finding the solution to the Laplace equation

and the symmetry with respect to the plane0, the above
fEID boundary value problem can be reduced to the 2D bound-
ary value problem of finding the solution to the Laplace

equation
V3 =0, (14) P N
. . - 7= (18
subject to the boundary conditions day  daj
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{H,| of zero-width head Comparison of the two heads
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FIG. 3. |H,| of the infinitesimally narrow head decaying over the cross- FIG. 4. H,(zero width/H,(semi-infinite width decaying over for various
track directionz, for various bevel angley, aty,=0.1 um. v, atyy=0.1 um.
in the shaded region of Fig.(R) subject to the boundary Figure 3 presentsl, created by the zero-width head as a
conditions indicated in the same figure. function of z, for various values of the bevel angje Here
To solve the latter boundary value problem, we intro-H, is shown to decay somewhat slower ozeas the bevel
duce complex variables: angle increases.

B=aptiay, £=vytivy. (19 Slnce computat|0n§ glgo show thdy decays slower iz

as vy increases for the infinitesimally narrow head, the ques-
It can be shownthat the functionB(¢) defined by the ex- tion arises as to the purpose of beveling. Computations show
pressions that H, drops off faster inx as vy increases, wher& is

Ttan [N—1\2 z y scaled appropriately to allow the maximum lgf, to be in-

B=— | ——|, A=A /—r’ a=—, (200 dependent ofy. This increase in field gradient allows nar-
1-ah \A+1 1+a%¢ ™ rower transitions to be written in the recording medium,

conformally maps the upper half-plane shown in FigC2  thereby increasing the down-track density. Therefore, the

into the upper half-plane with a sector bulge shown in Figfact that the magnetic fields decrease slower wjitin the
2(B). The boundary conditions foF(¢) are indicated in Fig. ~Cross-track direction and decay faster wighn the down-

2(C). track direction is an issue that must be deliberated when
By invoking the same line of reasoning as before, it canpeveling is considered. o
be demonstrated thalt(¢) is given by the expression Although beveling is a foreseeable application of FIBM,

decreasing the width of thin-film heads has been the main

- 1 5 use of this technique in the patterning of these heads. There-
W)= Yo arg 1-a 21) fore, another issue is the head width dependence of the fring-
T 1 ' ing fields. In Fig. 4, the ratio ofl, created by the zero-width
&+ 32 head toH, created by the semi-infinitely wide head varying

) . ) . overz is displayed. The magnetic field ratio decreases as a
By using the last expression and coordinate transformationg,ction of bevel angle; for=0.5 um, it varies from a rela-

(17), (19), and(20), the magnetic scalar potential and mag-tve difference of about 10% ay=m/2 to a difference of

netic field can be computed in terms of Cartesian coordixpoyt 559 aty=74/8. For a head of finite width, the curves
nates. For the sake of brevity, mathematical details of thesg,1d lie somewhere between unity and the curves of the
calculations are omitted. figure. Also, by showing that the aforementioned ratio in-
creases away from the side of the head, the figure reveals that
NUMERICAL RESULTS the semi-infinitely wide head creates fields that decay more
rapidly in z than the fields created by the zero-width head.

Using the analytical solutions for the magnetic fields de-

rived above for the two head geometries, the writing charac?—rhIS fact must be taken into account when considering the

S - incr f track density.
teristics of the narrow beveled head have been studied. THEC ©25€ © track density
down-track magnetic field components, , have been com-
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rection was considered as a function of bevel angle. Then, 199q.
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