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Lean manufacturing is an operations management philosophy that advocates eliminating 

waste, including work-in-process (WIP) inventory. A common mechanism for controlling 

WIP is “pull” production control, which limits the amount of WIP at each stage.  

The process of transforming a system from push production control to pull is not well 

understood or studied. This dissertation explores the events of a production control 

transition, quantifies its costs and develops techniques to minimize them. Simulation 

models of systems undergoing transition from push to pull are used to study this transient 

behavior.  

The transition of a single stage system is modeled. An objective function is introduced 

that defines transition cost in terms of the holding cost of orders in backlog and material 

in inventory. It incorporates two techniques for mitigating cost: temporarily deferring 

orders and adding extra capacity. It is shown that, except when backlog costs are high, it 



  

is better to transform the system quickly. It is also demonstrated that simulation based 

optimization is a viable tool to find the optimal transition strategy. 

Transition of a two-stage system is also modeled. The performance of two simple multi-

stage transition strategies is measured. In the first, all of the stages are transformed at the 

same time. In the second, they are transformed one at a time. It is shown that the latter 

strategy is superior. Other strategies are also discussed. 

 A new modeling formalism, the Production Control Framework (PCF), is introduced to 

facilitate automated searches for transition strategies in more complex systems. It is a 

hierarchical description of a manufacturing system built on a novel extension of the 

classic queue server model, which can express production control policy parametrically.   

The PCF is implemented in the form of a software template and its utility is shown as it is 

used to model and then find the optimal production control policy for a five stage system.  

This work provides the first practical guidance and insight into the behavior and cost of 

Lean production control transition, and it lays the groundwork for the development of 

optimal transition strategies for even the most complex manufacturing systems. 
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Chapter 1  Introduction 

Lean manufacturing is an operations management philosophy focused on reducing waste 

in a manufacturing system. Lean identifies many different types of waste, among them 

the waste of overproduction – making products and building inventories for which there 

is no current demand. Installing pull production control policies is an important part of 

implementing Lean manufacturing in high-volume, repetitive manufacturing systems. 

Production control policies, which dictate when manufacturing resources should work, 

affect important measures of manufacturing system performance, including cycle time 

and work-in-process inventory. Pull production control policies have been shown to 

improve manufacturing system performance by linking production control to customer 

demand. However, transforming a system governed by push to one controlled with pull 

has not been studied extensively. The different ways to transform a system, the behavior 

of a system during transformation and the real world costs of Lean transition have never 

been measured. As a result, risk-averse manufacturers have been slow to adopt Lean 

practices. Using simulation models of manufacturing systems, one can study the effects 

of different types of production control rules on performance metrics. One can also study 

the behavior of a system undergoing Lean transition. In doing so, this research aims to 

shed light on the transformation process, giving a would-be practitioner tools and 

techniques for Lean transition and realistic expectations of system performance during 

the transformation. 
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1.1  Lean Manufacturing  

Lean manufacturing is a western adaptation of the Toyota Production System, developed 

by the Japanese carmaker and most famously studied (and the term “Lean” coined) in The 

Machine That Changed the World (Womack, 1996). Taiichi Ohno, the engineer 

commonly credited with development of the Toyota Production System, and therefore 

Lean, identified seven types of waste: defective products, unnecessary finished products, 

unnecessary work in process, unnecessary processing, unnecessary movement (of 

people), unnecessary transportation (of products) and unnecessary delays. Lean focuses 

on eliminating these wastes from a manufacturing system. In particular, this work is 

interested in the second and third types – unnecessary finished goods and work in 

process. The Lean answer to these wastes is to link production at each step in the process 

with the subsequent process (or the consumer for finished goods). At Toyota, they use 

kanban (a Japanese word for “shop sign”) cards attached to each sub-assembly that are 

sent back to the producer each time one is used. The cards then become a signal to 

produce one more. As a result, the number of cards in the system controls the amount of 

work in process. 

1.2  Production Control Policies 

Understanding production control policies is critically important to effecting Lean 

transition. Push production control is similar to make-to-order; while pull production 

control is similar to make-to-stock.  In practice, many facilities use hybrid production 
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control, which combines push and pull policies.  Properly implementing Lean 

manufacturing requires information not only about what the production control policies 

should be (where to go) but also about the best production control transition strategy 

(how to get there).  The transition strategy defines how the manufacturing system will 

produce parts during the change from the existing production control scheme to the new 

one. 

Despite the wide acceptance of the fundamental principles of Lean manufacturing, its 

implementation in American manufacturing enterprises has been slow.  Reasons offered 

to explain this disconnect vary from the technical to the cultural and philosophical.  One 

technical obstacle that must be overcome in order to implement Lean manufacturing 

more widely is its seeming incompatibility with materials requirements planning (MRP), 

the most common production management system used in American factories.  Although 

some authors describe ways to use pull production techniques and MRP together, none 

address the issue of the transition from push to pull in more than anecdotal form. Because 

this transition has the potential to be very costly, few manufacturers are willing to 

commit their systems to such a poorly understood change.  

1.3  Production Control Transition 

The objective of Lean production control policy is to move the interface for customer 

orders from the beginning of the production line towards the end of the production line.  

This interface is sometimes called the “push-pull interface” or “inventory/order interface” 
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(Hopp and Spearman, 2000).  This change reduces the average time that customers wait 

for fulfillment of their orders.  

The fundamental element of this transition is the conversion of a single processing stage 

from push (production based on customer demand) to pull (production based on the status 

of the downstream operations, using kanban cards as a signaling mechanism). This 

requires that the stage produce items to which the kanban cards can be attached; however, 

no customers have requested the items.  Therefore, during this transition, the stage 

experiences a surge in its workload as it attempts to build a kanban inventory while it is 

also processing regular customer orders. The surge may overwhelm the capacity of the 

station, resulting in a backlog that would adversely affect customer lead times. To 

prevent this, I propose two temporary mitigating techniques – adding more resources or 

deferring some of the customer orders.  

1.4  Simulation  

Simulation modeling offers a reasonable approach for studying this transition process and 

a laboratory in which to explore different transition strategies.  However, because 

simulation software (based on simple servers and queues) has been designed to make it 

easy to model push production control systems, modeling hybrid production control 

schemes is difficult and modifying them is time-consuming.  In order to use simulation to 

study the design and implementation of production control policies for Lean 
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manufacturing systems, new simulation modeling techniques are needed. 

I propose that a new modeling framework is necessary to fully describe a system 

controlled by Lean production control. Such a framework enables simulation modeling 

and optimization of both the final state of the system and the trajectory of changes 

necessary to reach it.  

1.5  Motivation 

This research is motivated by the view that manufacturing systems research has not yet 

provided a complete understanding of Lean manufacturing implementation.  There is a 

great deal of writing about how the system should work after the transition from push to 

pull, but little about the transition process or the associated costs.  The primary sources 

are anecdotal accounts and analytical models that represent only special cases of 

production control.  While these provide some insight, better understanding is needed, 

especially for managers who are changing production control policies in order to 

implement Lean manufacturing.   

Moreover, this research is motivated by my personal experience as a practitioner of Lean 

principles in real world manufacturing systems. Lean principles are radically different 

from the way most factories operate day-to-day. As a result, they are often received with 

a fair amount of suspicion and mistrust. Many Lean case studies focus on the miraculous 

turnaround of businesses on the brink of disaster. Businesses in such a situation are much 
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more willing to gamble on radical change. The Lean literature has little to offer a 

reasonably successful, risk-averse manufacturing enterprise seeking to weigh the costs 

and benefits of implementing Lean practices. This is especially true when considering 

how transforming the manufacturing system will disrupt normal operations and how 

much the transformation itself will cost. How much does Lean cost? This is the question 

that I ask, and I believe simulation of Lean transition is the answer. 

1.6  Objectives 

The objective of this dissertation is to use simulation models of systems undergoing 

changes in production control policies, especially those used for Lean, in order to better 

understand the mechanisms and costs of those changes, to develop techniques to mitigate 

those costs and to employ simulation-based optimization to find the least expensive 

change strategy.  

To do so, new simulation modeling techniques will be developed. Discrete event 

simulation can represent a wide variety of production control techniques, including Lean 

production control. However, current approaches are not adequate. Simulation 

methodology and software are designed to exclude transient behavior – the focus of this 

work. Techniques will be developed to model and measure manufacturing systems in 

transition. 

The costs of production control transition will be clearly defined. Once measurement of 
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systems undergoing transition is possible, those measurements must be related to an 

objective function that is meaningful to manufacturing system stakeholders.  

Simple systems undergoing transition will be modeled and their behavior under various 

transition policies will be measured. Using the new, transient domain simulation 

modeling techniques, and with the aid of a meaningful objective function, the 

effectiveness of different transition strategies and mitigation techniques will be evaluated. 

New simulation model objects will be developed to model elements of a manufacturing 

system with production control as a parametric feature. To do so, a new modeling 

paradigm will be introduced that considers the flow of information and demand as well as 

material through a manufacturing system. Simulation software will be developed to 

implement these new objects. 

It will be demonstrated that simulation-based optimization, combined with new 

simulation model objects above, make it possible to find the optimal production control 

configuration for a general system.  

The remainder of this dissertation is as follows:  Chapter 2 reviews relevant literature.  

Chapter 3 explores the transition of a single stage system from push to pull. Chapter 4 

extends the single stage lessons to a multi-stage system. Chapter 5 begins the discussion 

of a simulation modeling framework and introduces the Production Control Framework 

(PCF). Chapter 6 describes how the PCF can be used to optimize production control of a 
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simple system. Chapter 7 summarizes my findings and addresses extensions of this 

research. 
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Chapter 2  Literature Review 

Although Lean Manufacturing is a relatively new discipline in the West, it is based on 

well-understood operations management principles. As a result, one can look to the 

literature for a broad foundation upon which to base this discussion. 

2.1  Production Control 

Production control policies have an important impact on manufacturing system 

performance and production control is the mechanism through which this work brings 

about Lean transformation. It is an area of study well-addressed in the literature. This 

section briefly reviews literature on different types of production policies and dynamic 

scheduling techniques.  (Methods that create and update production schedules are beyond 

the scope of this research.) 

Dynamic scheduling does not create production schedules.  Instead, decentralized 

production control methods dispatch jobs when necessary and use information available 

at the moment of dispatching.  Such schemes use dispatching rules or other heuristics to 

prioritize jobs waiting for processing at a resource (Church and Uzsoy, 1992; Fang and 

Xi, 1997; Perkins and Kumar, 1989).  Some authors refer to dynamic scheduling schemes 

as on-line scheduling or reactive scheduling (Sabuncuoglu and Karabuk, 1999; Li, Shyu 

and Adiga, 1993; Olumolade and Norrie, 1996). 

Dispatching rules and pull mechanisms are used to control production without a 

production schedule.  When a machine becomes available it chooses from among the jobs 
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in its queue by using a dispatching rule that sorts the jobs by some criteria.  Common 

dispatching rules employ processing times and due dates in simple rules and complex 

combinations.  Some dispatching rules are extensions of policies that work well on 

simple machine scheduling problems (e.g. Shortest Processing Time and Earliest Due 

Date).  The computational effort of dispatching rules is low when simple rules (like SPT 

or EDD) are used.  However, some dispatching rules require a large amount of 

information, and the job priorities must be recalculated at every dispatching decision.  

Panwalkar and Iskander (1977) provide an extensive list of dispatching rules.  They 

categorize these rules into five classes: simple dispatching rules, combination of simple 

rules, weighted priority indexes, heuristic scheduling rules, and other rules. 

Green and Appel (1981) examine the problem of job shop scheduling by asking the 

following questions: What traditional dispatching rules do experienced schedulers select?  

Would dispatch rule selection be influenced by urgency?  Would schedulers select a 

dispatch order based on organizational influence or peer pressure?  The authors asked 

schedulers in a number of plants to denote which of the following rules they used: due 

date, slack, operation due date, slack per operation, shortest processing time, first come 

first served, program in greatest trouble, or friend needs a favor.  The authors report that 

influence systems affect scheduling.   The program in greatest trouble rule (a coalition 

rule) was highly valued, but friend needs a favor (an individual rule) was rejected.  

Traditional and theoretical rules were not highly valued. 
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Pull mechanisms such as kanban cards and constant inventory (CONWIP) order release 

policies add production authorization cards to the system so that a resource can work only 

when both material and cards are available.  Hopp and Spearman (2000) provide a good 

introduction to these topics.  Buzacott and Shanthikumar (1993) analyze a generalized 

production authorization system that includes a variety of traditional schemes as special 

cases. 

Dynamic scheduling is closely related to real-time control, since decisions are made 

based on the current state of the manufacturing system.  Controlling a manufacturing 

system so that it maintains a desired inventory position (in work-in-process or finished 

goods) is a common strategy when there is steady demand for each product.  There may 

be multiple process flows (routes), but they are known, and each one has a steady 

throughput of jobs following that flow.  This consistency makes kanban, other pull-based 

mechanisms, hedging points, and base stock policies feasible.  The system works to 

maintain a low level of work-in-process, but the consistent demand insures that this 

inventory turns over regularly.  See, for example, Hopp and Spearman (2000), Gershwin 

(1994), and Bispo and Tayur (2001).  

Gershwin (1994) reviews literature of control theoretic models of manufacturing systems.  

The models are used to develop rules for deciding which action to take and when to take 

it in response to random disruptions.  For instance, these control policies can be 
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implemented as dispatching rules or hedging-point policies. 

A number of papers (e.g., Perkins and Kumar, 1989; Kumar, 1994; Chase and Ramadge, 

1992) have studied the control of dynamic manufacturing systems.  Specifically, they 

have described classes of dispatching rules that identify which waiting job a resource 

should process next.  For machines without setup times, the proposed dispatching rules 

are a class of least slack policies that prioritize each job by the difference between its due 

date (or some surrogate) and the expected amount of time until the job is completed.  For 

resources with setup times, the proposed dispatching rules focus on completing all 

waiting jobs of one type before performing a setup and processing jobs of another type.  

All of the rules studied keep a machine working if there are any jobs waiting for 

processing.  (That is, the machine cannot ignore waiting jobs.)  Kumar (1994) 

summarizes the results of work on the stability and performance of these policies.  This 

important work demonstrates why certain classes of dispatching rules work well and 

provides guidance when selecting dispatching rules.  However, there exist dynamic 

manufacturing systems for which these types of dispatching rules are inappropriate or 

suboptimal.  For example, Chase and Ramadge (1992) demonstrated that there exist 

idling policies that have superior performance.  For a single machine operating in a 

dynamic, stochastic environment, Markowitz and Wein (2001) present dynamic cyclic 

policies that minimize the long-run expected average costs of earliness, tardiness, 

holding, and setups. 
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There are many good reasons to implement pull production control schemes.  However, 

there have been few direct comparisons of push and pull schemes.  Hopp and Spearman 

(2000) state that (compared to push production control) pull mechanisms can reduce the 

amount of inventory needed to achieve a specified throughput and that pull mechanisms 

are more robust (small changes have less impact on overall system performance).  These 

results are based on analysis of open and closed queueing networks.  Statements 

regarding more general hybrid production control schemes do not exist, to my 

knowledge. 

All of these references describe different methods for production control of a 

manufacturing system. However, none of them describe a general framework in which 

these production control techniques can be related and described with respect to each 

other. To find the optimal production control policy for a general system, a framework 

must be created that allows all of these techniques to be described, preferably in a 

numerical format that can be easily manipulated by computerized searches of the 

production control domain. This dissertation will propose such a framework. 

2.2  Simulation Modeling 

Simulation modeling is the principal means of exploring production control used in this 

research. Numerous sources describe the use of simulation for predicting performance, 

comparing alternatives, and optimizing system designs.  Law and Kelton (1991), a well-

known text on discrete-event simulation, discusses the simulation of manufacturing 
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systems.  In many cases, simulation studies have been used to gain insight into the 

behavior of manufacturing systems under different types of control policies (e.g., 

different dispatching rules) or to determine the accuracy of analytical models.  Vollmann, 

Berry, and Whybark (1997) review a number of results, for instance. 

These references demonstrate the utility of simulation to analyze the steady-state 

performance of production control policies. Simulation in general is focused on steady 

state performance of models. Modern simulation methodologies and software tools are 

specifically designed to limit transient effects on measurements. This work is concerned 

exclusively with transient behavior of systems undergoing a change from one production 

control policy to another. To study such systems using simulation models, this 

dissertation introduces new techniques to set up and conduct experiments and to collect 

performance data during transient behavior.  

2.3  Lean Manufacturing and the Toyota Production System 

Lean Manufacturing, also known as just-in-time manufacturing, is a Western adaptation 

of the Toyota Production System, a business philosophy developed by that Japanese 

carmaker in the 1950’s. Originally conceived as a way to maximize the use of the 

company’s limited post-war manufacturing resources, it spread beyond just 

manufacturing and became a central tenet of their corporate culture to eliminate waste in 

all processes. Numerous books and articles have appeared to discuss the topic and its 

roots in the Japanese automotive industry (e.g., Schonberger, 1982; Womack and Jones, 
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1996; Hopp and Spearman, 2000; Askin and Goldberg, 2002).  For controlling 

manufacturing operations, this philosophy advocates pull production control policies such 

as kanban.  However, Lean manufacturing advocates other techniques such as employee 

cross-training, job rotation, continuous improvement, just-in-time purchasing, setup and 

other variability reduction, production smoothing, cellular layouts, and total quality 

management.   

Liker (1997) describes a sequence of phases that a manufacturing facility must visit to 

become Lean: process stabilization, continuous flow, synchronous production, pull 

authorization, and level production.  Such anecdotes are useful advice for managers and 

provide a general framework for becoming Lean, although they do not provide specific 

strategies for changing production control schemes. 

The Lean literature, though large and ever-growing, is incomplete due to its focus on the 

description of Lean systems in steady state operation, ignoring the challenge and costs of 

Lean implementation in non-Lean systems. This research focuses exclusively on this 

neglected, but critically important facet of Lean practice. It proposes methods to find both 

the optimal steady state Lean production control configuration, but also the optimal 

implementation strategy. Objectives for these optima are stated in monetary terms, rather 

than in broad generalities. 
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2.4  Lean Transition 

Although much has been written about how Lean Manufacturing systems should work, 

very little is said about how to change an ordinary system to make it Lean. The literature 

is nearly silent on the subject. Most Lean books are anecdotal at best and deal principally 

with cultural change management. There has been little scientific study applied to the 

mechanisms and effects of Lean transition on existing manufacturing systems. 

The transient behavior of manufacturing systems is rarely studied.  Most researchers 

focus on the steady-state behavior.  Analyzing the transient behavior of a queueing 

system (for instance) is sometimes feasible but remains complicated and too specialized.  

Simulation studies often deliberately ignore the transient behavior by letting simulation 

runs finish a warm-up period before collecting statistics.   

The study of discrete event systems has yielded techniques like Markov chains for 

determining, given an initial state, the probability distribution of the system state as the 

system changes over time.  See Cassandras and Lafortune (1999) for an introduction to 

these topics. 

Hopp and Spearman (2000) discuss the mechanics of push and pull production control, 

their role in Lean transition and even sketch out a Lean transition scheme. However, they 

limit their analysis to the “before” and “after” steady state conditions. In fact, to my 

knowledge, there is no discussion of the transient effects of Lean production control 
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transition in the literature.  

Queueing literature though does discuss the effects of non-stationary arrival rates on 

system performance. Hall (1991) discusses ways to model systems with non-stationary 

arrival rates. He explains that the size of changes in arrival rate relative to capacity dictate 

which modeling technique to use. For systems in which the arrival rate is always much 

lower than capacity, steady state approximations can be used. In systems where the 

arrival rate is much larger than capacity, a fluid flow approximation is more appropriate. 

For systems where the arrival rate is close to capacity, he suggests that only simulation 

can accurately model system performance. 

Meerkov and Zhang (2008) recently presented the first meaningful work in the area of 

transient behavior of manufacturing systems. They studied the effect of different levels of 

reliability on the time a system takes to reach steady state from a standing start with 

varying levels of initial buffer occupancy. Their work is a compelling start, but they did 

not address transient effects due to changes in the manufacturing system itself, nor did 

their work attempt to address the cost of transient effects. While they provide good 

advice for how to manage a static system subject to periodic interruptions (shift changes), 

this work is focused on how to manage dramatic one-time changes to the manufacturing 

system. 



 

 

18 

 

2.5  Optimizing Production Control Transition Strategies 

This research studies the effects of changing the production control policy of a 

manufacturing system.  These types of changes are important to manufacturers 

implementing Lean manufacturing initiatives. It proposes doing so by using simulation 

based optimization to find not only the optimal end condition production control policy, 

but also the series of interim production control policies, each optimized for lowest cost.   

Simulation models provide only approximate measures of manufacturing system 

performance.  As a result, automated optimization algorithms for use with simulation 

models must be carefully designed in order to provide credible results.  Simulation 

optimization refers to techniques that use simulation to solve stochastic optimization 

problems. This may be done because it is impossible (or difficult) to evaluate the 

objective function explicitly. For reviews of simulation optimization techniques, see 

Banks (1998), Fu (1994), and Pflug (1996). For instance, Pflug identifies two classes of 

methods: black box methods and white box methods. Black box methods use simulation 

to estimate the objective function and an optimization algorithm to search for the best 

solution. White box methods use a more sophisticated simulation program that can 

estimate gradients. Consequently, the optimization algorithm is a gradient-based 

technique. 

Most of the techniques presented consider solutions with continuous variables. For 

instance, finite difference stochastic approximation (FDSA), introduced by Kiefer and 
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Wolfowitz (1952), has been applied extensively for continuous optimization. Spall (1998) 

describes the implementation of simultaneous perturbation stochastic approximation 

(SPSA) for continuous optimization problems. 

Local search techniques move from one feasible point to another in search of the optimal 

solution. These techniques vary in the choice of the neighborhood structure, the decision 

strategy when moving from the current alternative to the next alternative and the method 

for obtaining estimates of the optimal solution. See, for instance, Andradottir (1995, 

1996), Alrefaei and Andradottir (1995, 1999), and Yan and Mukai (1992). 

The gradient-based discrete optimization techniques obtain estimates of the gradient of 

the expected system performance, with respect to a discrete parameter. The common 

techniques for estimating the gradient include finite differences and simultaneous 

perturbation methods. Gerencser, Hill and Vago (1999) proposed a fixed gain version of 

SPSA and applied it to a class of discrete resource allocation problems formulated by 

Cassandras, Dai and Panayiotou (1998). 

These references show that simulation based optimization is a powerful tool for finding 

the optimal design of manufacturing systems. However, this tool has never been applied 

to systems undergoing transient behavior. This dissertation will employ simulation based 

optimization to reduce the effect and/or cost of transient behavior in a manufacturing 

system. 
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2.6  Summary 

This work is intended to provide practitioners with a better understanding of the Lean 

transition and unambiguous guidance and/or tools to minimize the cost of implementing 

Lean.  

To do so, a clearer understanding of the cost of transition is necessary. The Lean 

literature rarely mentions cost during transition, and to the best of my knowledge, has 

never attempted to quantify it. An explicit definition of the cost(s) of transition is 

required so that it can be measured and ultimately controlled.  

Simulation modeling provides a useful tool with which explore the costs of transition and 

test mechanisms with which to control it. However, simulation modeling is typically used 

to study systems in steady state. In fact, the simulation literature addresses transient 

behavior as a factor to be eliminated. By its nature, this work is interested in the transient 

behavior of systems. Thus, a new simulation technique is needed to study a system 

exhibiting exclusively transient behavior.  

If it can be shown that simulation is a viable tool for studying Lean transition, new 

modeling techniques will be required to facilitate experimentation with different 

production control schemes. Push type production control is relatively easy to simulate, 

but pull is much more complex. Like its real-world counterpart, it requires much more 

interaction between its elements. New modeling objects are needed to ease the 
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programming burden of modeling different production control schemes. 

Simulation applications today almost all come equipped with powerful optimization 

engines that could be used to find the optimal production control scheme for a system. 

However, these engines typically can change only parametric features of a model. Thus, a 

new modeling technique that can express production control schemes parametrically is 

required in order to unlock the power of simulation-based optimization of production 

control. 

If the existing literature can be extended in these ways, Lean practitioners will finally 

have the tools they need to make informed decisions about how best to manage the cost 

of changes to their systems.  
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Chapter 3  Production Control Transition, Single Stage 

The atomic element of Lean transition is the conversion of a single stage manufacturing 

system from push production control to pull. This chapter examines that conversion – the 

events that characterize such a transformation, the costs incurred, techniques to mitigate 

those costs and the effect of business considerations on the optimal transition of a single 

stage. 

3.1  Introduction 

Firms that implement Lean principles commonly adopt pull production control 

techniques (especially kanban cards) to limit work-in-process inventory and coordinate 

production activities.  At the same time, they are moving the interface for customer 

orders from the beginning of the production line towards the end of the production line.  

This interface is sometimes called the “push-pull interface” or “inventory/order interface” 

(Hopp and Spearman, 2000).  This change reduces the average time that customers wait 

for fulfillment of their orders.   



 

1 A 2 B

customer orders

(a)

(b)

1 A 2 B

customer orderskanban signals

 
Figure 1. A two-stage manufacturing system.  (a) The inventory/order interface is at the raw material buffer 
1.  Customer orders trigger work at workstation A using raw material.  Items that workstation A completes 
then go to buffer 2, where workstation B processes them.  (b)  The inventory/order interface is at the work-
in-process buffer 2.  Customer orders trigger work at workstation B, which removes items from buffer 2, 

which sends production authorization signals to workstation A. 

The fundamental element of this transition is the conversion of a single processing stage 

from push (production based on customer demand) to pull (production based on the status 

of the downstream operations, using kanban cards as a signaling mechanism). This 

requires that the stage produce items to which the kanban cards can be attached; however, 

no customers have requested the items.  Therefore, during this transition, the stage 

experiences a surge in its workload as it attempts to build a kanban inventory while it is 

also processing regular customer orders. The surge may overwhelm the capacity of the 

station, resulting in a backlog that would adversely affect customer lead times. To 

 

23 

 



 

 

24 

 

prevent this, we propose two temporary mitigating techniques – adding more resources or 

deferring some of the customer orders. The purpose of this chapter is two-fold; to 

determine the best way to model this transition process and, using this model, to explore 

optimal mitigation policies to reduce the cost of Lean transition. 

The Lean literature unanimously advocates the transition of push production control to 

pull where possible (Hopp and Spearman, 2000; Liker, 2004; Shingo, 1989; Slack, 1997; 

Womack, Jones and Roos, 1991), but very little is written about the mechanics of the 

transition process or the behavior of systems in Lean transition. Hopp and Spearman 

(2000) discuss the mechanics of push and pull production control, their role in Lean 

transition and even sketch out a Lean transition scheme. However, they limit their 

analysis to the “before” and “after” steady state conditions. In fact, to our knowledge, 

there is no discussion of the transient effects of Lean production control transition in the 

literature. Queueing literature though does discuss the effects of non-stationary arrival 

rates on system performance. Hall (1991) discusses ways to model systems with non-

stationary arrival rates. He explains that the size of changes in arrival rate relative to 

capacity dictate which modeling technique to use. For systems in which the arrival rate is 

always much lower than capacity, steady state approximations can be used. In systems 

where the arrival rate is much larger than capacity, a fluid flow approximation is more 

appropriate. For systems where the arrival rate is close to capacity, he suggests that only 

simulation can accurately model system performance. 



 

 

25 

 

The remainder of this chapter is organized as follows.  Section 3.2 describes the problem 

and gives an example.  Section 3.3 describes the modeling approach for different cases 

and compares the performance of the models.  Section 3.4 presents the results of an 

optimization study.  Section 3.5 concludes the chapter. 

3.2  Problem Setup 

In this work we study a single stage of a production system as it transitions from push 

production control to pull and moves the customer order interface from immediately 

before this stage to immediately after it.  The stage currently receives customer orders 

(one item per order) at a rate of λa orders per unit time, but orders could be deferred.  The 

order deferral rate, a decision variable, is λd orders per unit time. There is a never-ending 

supply of raw material.  The stage has r resources to manufacture items, but more 

resources could be added. The number of resources added, a second decision variable, is 

denoted by r+. Each resource processes items at a rate of μr items per unit time. The 

resource will process an item only if there are orders or kanban cards that have arrived 

but have not been completed.  The total processing rate of the stage is rμr items per unit 

time. Thus, the stage can be modeled as a G/G/m queueing system (Hopp and Spearman, 

2000). This notation says that the distribution of the interarrival and service times are 

general, hence G/G, and that the system has m servers. Hopp and Spearman (2000) 

provide approximations to describe the behavior of such a system.  

We characterize the transition from push to pull in terms of three events. The first event 
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is the arrival of the first kanban card, which occurs at time t = t0. We assume that the 

number of kanban cards, nk, is predetermined. The kanban arrival rate, the third decision 

variable, is constant so that one card arrives every 1/λk time units. The last kanban card 

arrives at t1 = t0 + (nk - 1) / λk. Clearly t1 is greater than t0. The total arrival rate for t0 < t < 

t1 is λk+ λa - λd. If λk+ λa – λd > (r + r+)μr then a backlog of customer orders and kanban 

cards accumulates during this time (t0 < t < t1). The final transition event occurs at t2 

when the item for the last kanban card is completed.  At this point, the stage can be 

converted to pull production control because customer orders can now be satisfied from 

the downstream buffer that is now full of items (with kanban cards).  

If λk+ λa- λd << (r + r+) μr, then t2 could be as little as t1 + 1/μr. However, if λk+ λa- λd >> 

(r + r+) μr, and a backlog of size nb orders forms, then t2 could be as large as nb / ((r + r+) 

μr - λa+ λd).  

We are interested in how the system behaves during this transient phase and how the 

three decision variables affect the performance of the system.  

3.2.1  Decision Variables 

There are three decision variables for managing the transition process. Since the number 

of kanban cards is assumed to be fixed, the first decision variable is the rate of their 

introduction λk, where 0 < λk <  ∞. (As an alternative, one could specify the length of the 

transition, t1-t0, where λk = (nk-1)/ (t1-t0).)  The second decision variable is the number of 



 

additional resources r+, where r+ is an integer on 0 ≤ r+ < ∞. The third decision variable is 

the deferral rate of customer orders λd, where 0 ≤ λd ≤ λa. 

3.2.2  Transition Cases 

From this, we can identify three distinct conditions under which transition takes place 

based on the ratio of arrival rate and processing rate. This ratio, also called the traffic 

intensity, is central to our discussion, so we define the transition traffic intensity as ρ, 

where  

 ( ) r
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We may then define our transition cases with respect to traffic intensity, since it directly 

affects how much of the transition time occurs before and after t1.  

• CASE 1: Arrival Rate is Lower than Processing Rate: 0 < ρ << 1  

In this case, the increased arrival rate does not completely consume the available 

capacity, and no backlog is created during transition. The kanban cards are 

processed as they arrive and the transition is nearly complete at t1, minimizing t2.   

• CASE 2: Arrival Rate is Higher than Processing Rate: ρ >> 1  

In this case, the increased arrival rate completely consumes the available 

capacity, and a backlog of kanban cards and customer orders is created during 
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transition. Here t1 may be minimized as more, possibly all, of the kanban cards 

are processed after the final arrival. 

• CASE 3: Arrival Rate is Equal to Processing Rate: ρ ≈ 1  

In this case, the increased arrival rate nearly equals the available capacity. A 

backlog of customer orders and kanban cards may be created. When arrivals and 

capacity are nearly in balance, the formation of a backlog becomes more 

dependent on variation in processing times. For this condition, t1 may be at any 

point between t0 and t2. 

An interesting feature of this problem is the fact that there are decision variables within 

this identification scheme, meaning that the nature of the problem itself is a function of 

the inputs.  

3.2.3  Transition Objective 

Holding customer orders and kanban cards in a backlog, holding completed items (with 

kanban cards) in inventory, adding resources, and deferring orders all incur costs. Our 

goal is to find the values for the decision variables that minimize the total cost, which we 

denote as Ctot: 

 Ctot = Cd + Cr + Ci + Cb (2.) 

where Cd is the cost of deferring orders, Cr is the cost of adding resources, Ci is the cost 



 

of holding items with kanban cards in the downstream queue, and Cb is the cost of 

holding customer orders and kanban cards waiting for processing in the backlog. We can 

further define these cost components in terms of the system variables we have already 

defined: 

 Cd = λd (t2 – t0) cd (3.) 

 Cr = r+ (t2 – t0) cr (4.) 

 Ci = (nk/2) (t2 – t0) ci (5.) 

 Cb = cb  (6.) ( )∫
2

0

t

t

dttQ

In the equations above, cd is the cost of a deferred order, cr is the cost per unit time of an 

additional resource, ci is the cost per item per unit time of holding a processed item, and 

cb is the cost per order (or card) per unit time of holding customer orders and kanban 

cards waiting for processing.  Q(t) is the backlog, the number of customer orders and 

kanban cards waiting for processing in the upstream queue, at time t during the transition 

period. We note that, as the deferral rate λd increases, the deferral cost increases, but the 

other costs decrease due to the smaller backlog and shorter transition time. Similarly, as 

r+ increases, the resource cost increases, but the other costs decrease due to the smaller 

backlog and shorter transition time.  Increasing the kanban introduction rate λk should 
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reduce the transition time unless it is too large, in which case excessive demand increases 

the backlog. 

3.2.4  Example 

To illustrate these concepts, consider the following example. Table 1 lists the key 

parameters of a manufacturing system. 

Table 1.  Example for Comparison 

Parameter Value 
Order arrival rate λa  75 items per unit time 

Service rate μr  10 items per unit time 
Number of resources r 10 

Kanban cards to be introduced nk 240 
Decision Variable Value 

Number of resources added r+ 10 
Order deferral rate λd 0 

 

Before it transitions from push to pull, traffic intensity is 0.75. In this case, a downstream 

kanban buffer of 240 units is desired, which equates to 2.4 time units worth of buffer 

between this system and a downstream process. The nature of the transition is dictated by 

the rate at which the kanban cards are introduced since the system must process the cards 

at the same time it addresses new customer orders. To observe these effects and gain 

more insight into the transient behavior of a system in transition, we built a simulation 

model of this manufacturing system that provides time plots of queue lengths and 

resource availability. We consider three different transition scenarios. 
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If we introduce the cards very slowly, the impact on the system performance might be 

negligible, but time required to complete the transition stretches out, which bears its own 

cost. If the cards are introduced at a rate of 5 per unit time, the combined order and card 

arrival rate equals 80 items per unit time. Thus, traffic intensity during kanban 

introduction equals 0.8. Even without adding extra resources during the transition, this 

increase in traffic intensity will have only a modest impact on system performance. 

However, the transition will take 48 time units. During that time, the inventory waiting 

with kanban cards after being processed will incur a holding cost of Ci = 5760 ci. Figure 2 

shows the output plot from the model showing the number of orders in backlog as the 

inventory buffer fills. In the plot, the pink line shows the number of orders in backlog, the 

blue line indicates the number of processing resources in use at a given time and the 

yellow line shows the number of parts in the kanban inventory. One can see that there is 

little visible difference in backlog or resource utilization before and after the start of 

kanban card introduction begins at t = 2. As predicted, the kanban inventory fills at about 

t = 50, 48 time units after the start of transition. 
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Figure 2. A plot of quantity in queue versus time for a single-stage transition, λk = 5 

If the kanban cards are introduced at a higher rate, we observe a situation where the 

system may be overloaded if not for the addition of extra resources. By introducing the 

cards at a rate of 60 per unit time, the traffic intensity climbs to 1.35. Without additional 

resources, the system will see a quickly increasing backlog throughout the 4 time unit 

card introduction phase, followed by a slow reduction in the backlog over a period of 5 to 

6 time units. System performance will be severely degraded during the entire period. 

However, if r+ = 4 additional resources are employed, the traffic intensity will decrease to 

0.96. System performance will still suffer, but the effects will be substantially mitigated, 

and the transition duration will be shortened. Figure 3 shows the plot for this scenario, 

without resource mitigation. One can see that the backlog increases steadily after the 

kanban cards are introduced until the inventory is filled. Once the inventory is filled, the 
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backlog disappears at roughly the same rate at which it first appeared. During the entire 

overload period, all ten of the resources remain busy. At about t = 16 the backlog and 

resource utilization return to pre-transition levels.  

This effect is even more pronounced if the cards are introduced all at once or at an 

extremely high rate, which has the same effect.  If the cards are introduced all at once, 

there is an immediate spike of backlog that gradually tapers back to the initial steady 

state. The addition of extra resources would change the result by increasing the rate at 

which the backlog is served, but would not change the fact that new customer orders that 

arrive during the transition would wait in line behind all of the kanban cards. In Figure 4, 

which illustrates this scenario, the introduction of the kanban cards causes an immediate 

jump in the backlog, followed by a steady decrease. As in the previous example, the 

transition ends at about t = 16, but with a very different backlog profile, which could 

result in radically different transition costs. 
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Figure 3. A plot of quantity in queue versus time for a single-stage transition, λk = 60 
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Figure 4. A plot of quantity in queue versus time for a single-stage transition, λk = ∞ 

By varying the kanban card arrival rate, we can observe a range of transition traffic 
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intensities and measure the transition costs. Figure 5 illustrates the results of this exercise. 

It shows the change of each cost component and the transition duration as the traffic 

intensity during the kanban introduction period changes. The backlog was measured as 

the average number of orders in queue to be processed. The inventory was measured as 

the average number of items with kanban cards in the downstream kanban queue. For a 

relative comparison, the cost rates are all set to 100.  
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Figure 5. Transition cost and time versus traffic intensity 

When the arrival rate is exactly balanced with the processing rate of the system (i.e., ρ is 

close to 1), the transition cost curve flattens and may even be at a minimum. When the 
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kanban arrival rate is too low, the processing resources are underutilized and transition 

time is needlessly lengthened. When the kanban arrival rate is too high, the backlog and 

inventory costs increase the overall cost. We see here that the effect of backlog and 

resource costs are small compared to the contribution of inventory, but a real-world 

system with real cost rates could be quite different and drastically change these 

relationships.  

We wish to develop a tool to find the optimal transition policy for any system undergoing 

push to pull transition. Since we wish to employ simulation based optimization, which 

will run a model at many different values of the decision variables, we need models that 

don’t require a long run time.  

3.3  Modeling Approach 

We consider three different techniques to model this process: steady state approximation, 

deterministic fluid flow approximation and discrete event simulation. Hall (1991) 

proposed that these three modeling techniques are the best candidates for analyzing 

systems with non-stationary arrival rates. Hall’s categorization of these systems 

corresponds with our case definitions discussed above.  The following sections describe 

the models. 

3.3.1  Case 1: Steady State Model, Arrivals << Capacity 

First, we consider the case where the increased arrival rate is much smaller than the 



 

capacity of the resource. That is, where ρ is greater than zero, but less than one. In this 

case we use a stochastic steady state (SSS) approximation. For t < t0, we assume the 

system is in a steady state. For t0 < t < t2 we assume that the system switches to a second 

steady state. For t > t2, the system reverts to a third steady state similar to the first. Since 

the surge never exceeds capacity, there is no significant backlog to deal with at the end of 

the transition and t2 = t1 + CTq + 1/μr, where CTq is the average time an order spends in 

the queue before being served.  To estimate CTq, we assume that the system has had time 

to reach steady state at t = t1 and choose to use the approximation given by Hopp and 

Spearman (2000) for a G/G/m server. A G/G/m server is one where the variability of both 

the interarrival and processing times can be described generally (hence the G/G for 

General/General) using their respective coefficients of variation, ca and ce, respectively 

and where the number of servers is m. Using this approximation we can derive the 

following expression for t2: 
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Using the same assumptions, we can approximate the average backlog before t1 by 

substituting the approximation for CTq into Little’s Law: 
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For the period between t1 and t2, the backlog at t1 disappears (by the definition of t2), but 

more customer orders arrive.  The expected number of new arrivals is Q(t2) = λa(t2 - t1).  

The average backlog between t1 and t2 is therefore the average of Q(t1) and Q(t2). We can 

then approximate the total backlog as follows: 
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Thus we have a way to estimate the cost of Case 1 transitions. 

3.3.2  Case 2: Fluid Flow Model, Arrivals >> Capacity  

Next, we consider the case where the increased arrival rate is much greater than the 

processing capacity. That is, where ρ is greater than one. To model this transition, we use 

a deterministic model called a fluid flow approximation model. A deterministic fluid flow 

(DFF) approximation model is one in which the flow of arrivals and departures are 

modeled as continuous variables.  

Figure 6 shows a fluid approximation model of our system in transition.  In this figure, 

the blue line represents the cumulative number of customer order and kanban card 

arrivals during the transition. The red line shows the cumulative number of completed 

items. The slopes of these lines are equivalent to the arrival rate and processing rate.  

Evaluating this model is straightforward geometry. We address the transition in two 

phases; t0 < t ≤ t1 and t1 < t ≤ t2. Recall that t1 = t0 + (nk - 1) / λk. In the first phase, the 
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backlog is building. In the second phase it is being consumed. We first solve to find the 

backlog, Q(t1). 
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We can then use this result to find t2: 
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And substituting Q(t1) from above: 
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Because the accumulation and consumption of the backlog are linear in this 

approximation, the total backlog is simply half of the maximum backlog, which occurs at 

t1, applied over the entire transition period. 
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These equations provide a straightforward way to calculate the cost of Case 2 transitions. 

 

39 

 



 

 
Figure 6. Deterministic fluid flow (DFF) approximation model 

3.3.3  Case 3: Simulation Model, Arrivals ≈ Capacity 

Finally, we address the case where the arrival rate is approximately equal to capacity.  

That is, where ρ is approximately one. In this condition, Hall (1991) recommends the use 

of simulation to model the system. Simulation is a very powerful, but computationally 

expensive, modeling technique. We did build a simulation model of our system using 

Arena (Kelton, Sadowski and Sturrock, 2004). Figure 7 shows the simple system as 

modeled.  

The simulation model itself is fairly straightforward, but collecting good performance 

data from a potentially short, transient period requires careful setup of the replication 
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parameters. My model uses a warm-up period of 10,000 times the order processing time, 

which it repeats for each replication. It maintains a count of how many kanban cards are 

in the system and it stops the replication when the last card exits. I use 100 replications. 

To evaluate performance we used the default reports which provide statistics on number 

of orders in backlog and replication length. 

Order  Arr iv a ls Proc es s ing D is c ard

Modific ations
Trans ition
Trigger for

Var iables
C hange Alter

Res ourc e 1

Arr iv a ls
Kanban Card

Order  D eferral
True

Fa ls e

0      

0      

0      

0     
     0     0

 0
Figure 7. Simulation model of a single stage system, modeled using Arena 

3.3.4  Comparison 

In order to compare the models, we used them to estimate the performance of a system 

over a range of transition arrival rates centered about the capacity of the system. For this 

comparison, we consider again the example from Section 2.   

We varied the kanban introduction rate, λk, from 85 to 165 items per time unit, which 

caused the traffic intensity to vary from 0.8 to 1.2, and used each model to predict the 

average number of orders in the backlog. Figure 8 shows a plot of each model’s output. 
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Figure 8. Average number of orders in backlog versus traffic intensity 

We expected the simulation model to most closely approximate the behavior of the 

system, which we predicted would be a smooth, monotonically increasing curve as the 

arrival rate slowly overcame the processing capacity of the system. As expected, the SSS 

approximation followed the simulation results initially, but increased asymptotically to 

infinity as the arrivals approached capacity from the left.  (The SSS approximation 

overestimates slightly because it assumes that the kanban card interarrival times are 

exponentially distributed, but they are actually constant.)  The DFF reported backlogs 

well below the simulation model but caught up to and followed closely with it at higher 

arrival rates. If we assume that the simulation model is the closest approximation to the 

behavior of the system then the comparison is just as Hall predicted, with the SSS 
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approximation most useful when the arrival rate is well below capacity (Case 1), the DFF 

approximation most useful at rates well above capacity (Case 2) and the simulation 

model best at rates near capacity (Case 3).  

A key difference between the models is the computational effort that each one requires. 

The results of the SSS and DFF approximations can be obtained almost immediately 

from a spreadsheet model. The simulation model took nearly 2 minutes to process each 

data point. The flexibility of the simulation model has a high computational price that 

affects its usefulness for optimization of the transition.  

3.4  Hybrid Model 

The above results indicate that, for a system in which the decision variables are 

unconstrained, the optimal transition policy may be in the domain that we have identified 

as being best suited for simulation modeling. Thus, any automated optimization will 

likely spend a good deal of time searching the most computationally expensive region. In 

order to increase the speed of optimization, it would be useful to have an analytical 

solution for this region, even if it is merely an approximation. We derived linear 

approximations for the transition time and the total backlog for the case where the traffic 

intensity is between 0.9 and 1.5 (these values were selected after some experimentation to 

get the best fit).  We can use these linear approximations to bridge the gap between the 

SSS and DFF model results and create a hybrid model.  



 

Given a problem instance and values of the kanban arrival rate λk, the order deferral rate 

λd, and the number of additional resources r+ such that 0.9 < ρ = (λk+ λa - λd)/((r + r+)μr) < 

1.5, we will determine the transition time and average backlog for the two extreme values 

(by changing the traffic intensity ρ and determining the corresponding kanban arrival 

rate) and then interpolate to estimate the desired values. 
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For the moment, we assume that the order interarrival and service times are distributed 

exponentially, meaning ca = ce = 1. 
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Given these reference points, we then interpolate as follows:  
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We may now formulate a hybrid approximation for t2 and the total backlog, using the 

SSS approximation at values of ρ below 0.9, the DFF approximation at values above 1.5, 
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and the linear interpolation for values in between. To demonstrate, we developed a hybrid 

model of the example system introduced earlier and calculated values of t2 and total 

backlog for a range of traffic intensities from 0.5 to 2.0. Figure 9 and Figure 10 illustrate 

how the values of t2 and total backlog, respectively, vary as traffic intensity changes.  The 

graphs include measurements taken from the simulation model along with the SSS, DFF 

and Hybrid approximations. The graphs also include a plot of error between the hybrid 

and simulation models. 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.5
00

0.5
50

0.6
00

0.6
50

0.7
00

0.7
50

0.8
00

0.8
50

0.9
00

0.9
50

1.0
00

1.0
50

1.1
00

1.1
50

1.2
00

1.2
50

1.3
00

1.3
50

1.4
00

1.4
50

1.5
00

1.5
50

1.6
00

1.6
50

1.7
00

1.7
50

1.8
00

1.8
50

1.9
00

1.9
50

2.0
00

Transition Traffic Intensity, ρ 

Tr
an

si
tio

nT
im

e,
 t

2

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

Er
ro

r S
qu

ar
ed

, X
2

SSS

DFF

HYBRID

SIM

Error^2

 
Figure 9. Transition time versus traffic intensity 
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Figure 10. Total backlog versus traffic intensity 

We see that the hybrid solution does indeed mimic the behavior of the simulation model. 

The error plots show that the hybrid model is not an exact match of the simulation, but it 

may still be useful for finding the optimum transition policy.  

3.5  Sensitivity to Cost Rates 

The cost rates affect the overall transition cost. To examine their effect, we substituted 

the hybrid models for t2 and the total backlog into the objective function and measure the 

total cost of the example from Section 2.4 over the same range of traffic intensities as we 

used earlier. Figure 11 shows the how the overall transition cost changes as the transition 

traffic intensity varies. The graph shows the overall transition cost as well as the 
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contributions of each component four component costs.  (Note that the deferral cost in 

this example is zero.)  For this illustration we set each of the four cost rates equal to one.   
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Figure 11. Transition cost versus traffic intensity 

This graph closely mimics the results from the simulation model pictured in Figure 5. All 

but one of the cost components starts high at low traffic intensities and decreases 

monotonically as the intensity increases. The exception is the backlog cost, which 

decreases slightly to a minimum near where ρ = 0.75, then increases as the traffic 

intensity increases. The resulting overall cost function falls dramatically at first, then 

levels off and begins to climb slowly near where ρ = 0.9.  
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Since the total backlog is the only cost component that increases with traffic intensity, it 

follows that the magnitude of the backlog cost rate with respect to the other cost rates 

determines when, or if, the cost function reaches its minimum as the traffic intensity 

increases. Figure 12 shows only overall transition cost for different backlog cost rates.  

(Note that all of the other cost rates equal one in this example.) 

From this we can derive an important rule of thumb for Lean transition. If one is not 

concerned with backlog cost (cr ≈ 0), it is best to introduce the kanban cards into the 

system all at once (λd = ∞). However, if backlog cost is a significant concern, more 

analysis is required. The hybrid approximation model makes this analysis 

straightforward.  
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Figure 12. Transition cost versus traffic intensity at varying backlog cost rates 

3.6  Simple Transition Policies 

Using these models, it should be an easy thing to develop tools to find an optimal 

transition policy. However, I wish to determine if such high-order analysis is, in fact, 

necessary. Could a practitioner, using the limited advice from the literature, develop a 

simple transition policy that minimizes transition cost? In order to establish a baseline for 

optimization, I considered some simple policies inspired by the Lean references and some 

that we considered to be intuitive approaches.  I considered the following policies (Table 

2 shows the corresponding values of the decision variables for each policy). 
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• Case 1 – Instantaneous Kanban Card Introduction with no Mitigation 

• Case 2 – Instantaneous Kanban Card Introduction with Complete Order Deferral 

• Case 3 – Kanban Introduction Rate Calibrated to Make Traffic Intensity Equals 1 

• Case 4 – Kanban Introduction Rate Matched by Deferral of Customer Orders to 

Maintain Traffic Intensity 

o Case 4A – 33% Deferral of Customer Orders 

o Case 4B – 66% Deferral of Customer Orders 

o Case 4C – 100% Deferral of Customer Orders 

• Case 5 – Kanban Introduction Matched with Additional Resource to Maintain 

Traffic Intensity 

o Case 5A – 50% Additional Resources 

o Case 5B – 100% Additional Resources 

Cases 1 and 2 are the simplest and most often cited in the literature. Case 3 proposes to 

fill any perceived excess capacity with kanban card deliveries. Case 4 considers operating 

the system in a pre-transition configuration, such that the system does not see any 

increase in order arrivals, but where some fraction of the previously customer generated 
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load is replaced with kanban card arrivals. Case 5 addresses a system in which order 

deferral is not an option and the kanban card arrivals are balanced with additional 

resources such that the traffic intensity remains constant.  

Using the simulation model developed in Section 2, I measured the cost of each of these 

policies. Because transition cost is sensitive to backlog cost, we measured the cost when 

the backlog cost rate, cb, is $1 as in the original experiments, and where it is $2 as in the 

previous section. This is intended to demonstrate the potential impact of an incomplete 

understanding of transition cost.   

Table 2. Transition costs for simple transition policies, measured using the hybrid approximation 
model 

Transition Cost, CtotExample 
Case 

Kanban 
Introduction 

Rate, λk

Additional 
Resources, 

r+

Order 
Deferral 
Rate, λd

Transition 
Traffic 

Intensity, 
ρ 

cb = 
$1.00 

cb = 
$2.00 

1 ∞ 0 0 ∞ $873.14 $1405.98 
2 ∞ 0 75 ∞ $1070.62 $1600.78 
3 25 0 0 1.0 $1388.41 $1579.58 

4A 25 0 25 0.75 $1627.46 $1809.77 
4B 50 0 50 0.75 $1492.88 $1923.23 
4C 75 0 75 0.75 $1461.30 $1947.33 
5A 37.5 5 0 0.75 $829.57 $832.34 
5B 75 10 0 0.75 $461.23 $462.03 

 

The most expensive policies were those that made use of order deferral to balance the 

traffic intensity. This is primarily due to the much longer transition times these policies 

incur. The most popular policies, Cases 1 and 2, fared slightly better, but demonstrated an 
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acute sensitivity to backlog cost. In fact, although Case 1 had one of the lowest costs at 

cb=$1, its cost increased by 60% when cb was changed to $2. The lowest cost option, 

cases 5A and 5B proved to have the lowest overall cost and were also the least affected 

by changes in the backlog cost rate. However, the resource cost rate in this example is 

arguably the least realistic, meaning that the overall cost of these policies would likely be 

the most expensive in a real world application. 

This exercise illustrates that there is a significant variation in the cost of even simple 

transition policies. Further, it shows that an incomplete understanding of transition costs, 

especially the effect of backlog cost, could lead to significantly higher overall transition 

cost. It is clear that there is a need for better decision support for transition policies. 

Using the model developed in the previous section and the on-board optimization engines 

in Excel, we can develop optimal transition policies. 

3.7  Optimization 

Using the hybrid approximation model from Section 4, we can employ powerful 

automated tools to find the optimal transition policy without expensive simulation runs.  

(For this problem, I used the Solver in Microsoft Excel.)  We know that when the backlog 

cost rate is zero, the optimal transition traffic intensity is infinity.  For other backlog cost 

rates, I found the optimal transition policy.  Table 3 shows the results of this experiment. 

 



 

Table 3. Optimal transition policies for varying backlog cost rates, obtained using the hybrid 
approximation model 

Optimal Transition Parameters Backlog 
Cost Rate, 

cb

Kanban 
Introduction 

Rate, λk

Additional 
Resources, 

r+

Order 
Deferral 
Rate, λd

Transition 
Traffic 

Intensity, ρ 

Transition 
Cost, Ctot

$0.00 9999 10 75 49.995 $249.87 
$1.00 9999 10 75 49.995 $420.46 
$1.50 9999 10 75 49.995 $505.75 
$1.75 300.00 10 75 1.500 $574.20 
$2.00 192.76 10 75 0.964 $595.08 
$2.50 180.06 10 75 0.900 $601.52 

 

In this example, all three decision variables were allowed to change, subject to the 

following constraints: 

 99990 ≤< kλ  (26.) 

 00 rr ≤< +  (27.) 

 ad λλ ≤<0  (28.) 

The data validates the rule of thumb that when the backlog rate is very low, the optimal 

kanban introduction rate and transition traffic intensity tend to be as high as possible. As 

the backlog cost rate becomes more significant, the optimal kanban introduction rate 

decreases such that the traffic intensity decreases below 1.  

The simulation model developed in Section 2 also features a built-in optimization engine. 
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I performed the same exercise using the simulation model. The results are shown in Table 

4. 

Table 4. Optimal transition policies for varying backlog cost rates, obtained using the simulation 
model 

Optimal Transition Parameters Backlog 
Cost Rate, 

cb

Kanban 
Introduction 

Rate, λk

Additional 
Resources, 

r+

Order 
Deferral 
Rate, λd

Transition 
Traffic 

Intensity, ρ 

Transition 
Cost, Ctot

$0.00 ∞ 10 75 ∞ $335.79 
$1.00 103 10 74.91 0.52 $358.44 
$1.50 103 10 75 0.50 $556.28 
$1.75 68 10 74.86 0.34 $779.77 
$2.00 142 9 71 0.77 $520.24 
$2.50 108 9 58 0.66 $525.60 

 

In this exercise, the optimization engine was allowed to search for 8 hours in order to 

limit the computational expense.  However, this may have limited the effectiveness of the 

search, especially in the critical domain near where traffic intensity is 1. Despite the long 

search time, few of the analyses topped 100 trials. This may explain why the values 

neared, but did not settle on the parameter limits. Consider that the values in Table 3 took 

less than an hour to generate and it is clear why I seek an approximate analytical model. 

In order to validate the hybrid model optimization, I used the values from the spreadsheet 

optimization in Table 3 and plugged them into the simulation model. The results of this 

substitution are shown in Table 5, below. 
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Table 5. Transition costs for hybrid approximation optimal policies, measured using the simulation 
model 

Optimal Transition Parameters Backlog 
Cost Rate, 

cb

Kanban 
Introduction 

Rate, λk

Additional 
Resources, r+

Order 
Deferral 
Rate, λd

Transition 
Traffic 

Intensity, ρ 

Transition 
Cost, Ctot

$0.00 9999 10 75 49.995 $335.79 
$1.00 9999 10 75 49.995 $533.88 
$1.50 9999 10 75 49.995 $633.13 
$1.75 300.00 10 75 1.500 $600.27 
$2.00 192.76 10 75 0.964 $556.24 
$2.50 180.06 10 75 0.900 $591.47 
 

In general, the spreadsheet model costs are lower than those generated by the simulation 

model. We recognize that this is due to the error between the models, both in their 

estimates of total backlog and transition time, which tend to compound each others effect 

on total cost. From the data in Figure 9 and Figure 10, the region in which the error is 

smallest is where traffic intensity is between 1.2 and 1.5. We see that in the fourth trial, 

where the traffic intensity is 1.5, the difference in transition cost between the two models 

is minimized. The most notable result is that this error changes the location of the tipping 

point where the increasing backlog cost rate forces the optimal policy from instantaneous 

kanban card introduction to a more moderate rate. In the spreadsheet model, this point is 

between $1.50 and $1.75, whereas in the simulation model it is somewhere below $1.50. 

We propose that despite the error in total cost, this error does not diminish the ability of 



 

 

57 

 

the spreadsheet model to find a near-optimal transition policy very quickly. 

3.8  Additional Examples 

Both the example and the cost rates used in the previous sections were not very realistic. 

In order to better understand the significance of this technique and to learn more about 

the trade-offs of different transition policies, we can apply it to some additional 

examples.  

First, consider a manual assembly cell undergoing Lean transition. The cell is manned by 

4 workers. Each operator can process one order every 10 minutes. On average, an order 

for 1 item arrives every 3 minutes. Thus, the steady state parameters for this system are as 

shown in Table 6. 

Table 6.  Manual assembly cell example steady state parameters 

Parameter Value 
Order arrival rate λa 20 orders per hour 

Service rate μr 6 items per hour per worker 
Number of resources r0 4 workers 

Traffic Intensity, ρ 0.83 
 

from which we can calculate an initial traffic intensity of 0.83. The production planners 

wish to establish pull production control on this cell with kanban cards distributed twice 

per shift. Thus, they wish to build a kanban buffer equal to the 4-hour demand. That is, 

they wish to maintain an inventory of 80 items. They estimate their cost rates as 
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Table 7. Manual assembly cell example transition cost rates 

Parameter Value 
Order deferral cost, cd $1000 per order per hour 

Resource cost, cr  $80 per worker per hour 
Inventory cost, ci $1.25 per order per hour 
Backlog cost, cb $1.00 per order per hour 

 

Order deferral was an unattractive option for these planners, so they made the order 

deferral cost arbitrarily high. The resource cost was set to be the loaded cost of hiring 

temporary hourly workers. The inventory and backlog costs were determined based on 

holding cost rates and the earned value of the items. 

Using these values, I configured the hybrid model and used the solver to determine the 

optimal transition policy and cost. Constraints on the optimization were kept the same as 

in Section 3.7. The model yielded the values in Table 8. 

Table 8. Manual assembly cell example optimal transition policy, obtained using the hybrid 
approximation model 

Parameter Value 
Order deferral rate, λd 0 orders per hour 

Additional resources, r+  4 workers 
Kanban arrival rate, λk 9999 kanban cards per hour 

Phase 1 transition time, t1 – t0 0.0079 hours = 28.44 seconds 
Phase 2 transition time, t2 – t1 2.821 hours = 2 hours, 49 minutes 
Transition traffic intensity, ρ 209 

Total transition cost, Ctot $1361.29 
 

This result is consistent with our rule of thumb. Since the backlog cost is relatively low, 
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the optimal transition policy is to introduce the kanban cards as quickly as possible and if 

affordable, as it was in this case, purchase additional capacity to mitigate the backlog and 

overall transition time. By increasing the backlog cost and repeating the experiment (see 

Table 9), one can begin to see the tipping point at which the optimal transition policy 

switches from instant kanban introduction to something less is somewhere between $4.00 

and $5.00 per order per hour in backlog. 

Table 9. Manual assembly cell example optimal kanban arrival rates for varying backlog cost rates 

Backlog Cost, cr Optimal Kanban Arrival Rate, λk
$1.00 9999 
$2.00 9999 
$3.00 9999 
$4.00 9999 
$5.00 52.00 
$10.00 51.98 

 

Next, we consider another system with a different set of constraints. In another part of the 

manufacturing system above is an automated machining cell. As part of the same value 

stream as the manual assembly cell, it experiences the same order arrival rate. However, 

it processes the orders with a single machine capable of producing 1 item about every 2.7 

minutes, or 22 per hour. The machine is highly specialized and very expensive. The 

parameters for this stage of the system are then 
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Table 10. Automated machining cell example steady state parameters 

Parameter Value 
Order arrival rate λa  20 orders per hour 

Service rate μr  22 items per hour per machine 
Number of resources r0 1 machine 

Traffic Intensity, ρ 0.91 
 

Table 11. Automated machining cell example transition cost rates 

Parameter Value 
Order deferral cost, cd $1000 per order per hour 

Resource cost, cr  $5000 per machine per hour 
Inventory cost, ci $1.25 per order per hour 
Backlog cost, cb $1.00 per order per hour 

 

The planners are just as averse to order deferral in this case as they were in the previous 

example. In this case though, there is a much higher cost to augment the capacity of the 

system. For the sake of comparison, we leave the inventory and backlog costs the same as 

in the previous example. Using the hybrid model, the solver and the previously discussed 

constraints, we can find the optimal transition policy: 
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Table 12. Automated machining cell example optimal transition policy, obtained using the 
hybrid approximation model 

Parameter Value 
Order deferral rate, λd 0 orders per hour 

Additional resources, r+  1 machine 
Kanban arrival rate, λk 9999 kanban cards per hour 

Phase 1 transition time, t1 – t0 0.024 hours = 1 minute, 26 seconds 
Phase 2 transition time, t2 – t1 9.958 hours = 9 hours, 57 minutes 
Transition traffic intensity, ρ 227 

Total transition cost, Ctot $63,259.07 
 

Even at the much higher resource cost, the optimal policy calls for the use of an 

additional machine. Like the previous example, this solution is also consistent with the 

rule of thumb. The result poses the question: how high would the resource cost have to be 

in order to make order deferral an attractive option? By varying the resource cost, we can 

illustrate the region in which the increasing cost affects the nature of the optimal 

transition policy.  

Table 13. Automated machining cell example optimal deferral rate and additional resources 
for varying resource cost rates 

Resource Cost, cr Optimal Order 
Deferral Rate, λd

Optimal Number of 
Additional Resources, r+

$21,000 0 1 
$21,500 0 1 
$22,000 5.49 1 
$22,500 14.91 1 
$23,000 20 0 
$23,500 20 0 
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In the vicinity of $22,000 per machine per hour the resource cost and deferral cost are 

roughly in balance, resulting in a greater and greater deferral of customer orders and the 

continued use of an additional machine. Eventually, the resource cost becomes so great 

that the optimal policy is to simply stop taking customer orders while the machine, 

unaided, fills the kanban buffer. 

These results bear out the utility of my proposed rule and shed some light on the effect of 

cost on the optimal Lean transition policy.  

3.9  Summary 

Converting a manufacturing system from push to pull and moving the inventory/order 

interface is an important, but poorly understood, part of Lean manufacturing. In order to 

understand the cost of transition, I developed a cost model for transition and described 

three distinct types of transition. I developed three models, a stochastic steady state 

approximation, a deterministic fluid flow approximation and a simulation model, that all 

approximate the behavior of a single stage undergoing Lean production control transition. 

I illustrated the differences in the models by applying them to a test case. To make 

optimization more efficient, I developed a hybrid model that used a linear approximation 

between the SSS and DFF models in lieu of the simulation model. The hybrid model 

made it quick and easy to estimate the optimal transition policy. I used several examples 
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to demonstrate the utility of the new model and to illuminate interesting features of the 

Lean transition problem.  

The lessons learned here provide a useful rule of thumb to guide practitioners. For 

systems in which backlog holding costs are much greater than the cost of adding 

resources, kanban cards should be introduced into the system all at once, and additional 

resource should be employed to reduce the overall length of the transition. In cases where 

backlog costs are significant, the hybrid model provides a method to find the optimal 

transition policy.  

This single stage rule works well by itself, but it remains to be seen how it will hold up in 

the context of a multiple stage line transition. In coming chapters, I will expand the 

models to include multiple stages undergoing Lean transition and attempt to better 

understand how to optimize the many more decision variables such a system would 

present. 
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Chapter 4  Production Control Transition, Multi-Stage 

One tenet of Lean Manufacturing is that one should not optimize one part of the system at 

the expense of the whole. Now that we have studied the transition of a single stage from 

push to pull production control, we must now consider how to transform an entire system. 

To begin, we will consider how to transform a two-stage manufacturing system from 

push to pull. Any lessons learned from this elementary system should be applicable to N-

stage systems. 

4.1  Problem Setup 

In this section, I define the events of a multi-stage transition. I previously defined the 

events of a single-stage transition. A multi-stage transition consists of the same set of 

events occurring at each station in the system. The multi-stage transition policy 

determines the timing of the events at each individual stage with respect to those 

occurring at the other stages in the system. 

Consider an N-stage serial manufacturing system. Each stage of the system experiences 

the arrival of orders. Based on where in the system each stage is located and dependent 

on the production control policy in effect, the orders may be customer orders that initiate 

production of a finished good, or they may be signals from an adjacent stage to produce 

some kind of sub-assembly. In practical terms, there is no difference within the stage 

where the order came from. The rate of order arrival was previously defined as λa, but we 

must now differentiate the order arrival rate at each stage in the system. For this 
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parameter, and all parameters defined in the single stage case, we will denote the stage by 

adding another subscript, such that the order arrival rate at stage i is λai. Table 14 lists the 

likely now-familiar steady state parameters and Table 15 lists the transition parameters 

for stage i, where 1 ≤ i ≤ N. The tables include one new parameter, the material arrival 

rate, λmi. In the single stage case, we assumed that the system had an infinite supply of 

material with which to fill customer orders. This is still true for stage 1 of the multi-stage 

system, but stages 2 through N depend on the output of the stage directly upstream (i-1) 

to fill their material needs.  

Table 14. Steady state performance parameters for stage i of an N-stage manufacturing 
system 

Parameter Name Symbol 
Order arrival rate λai

Material arrival rate λmi
Number of resources r0i

Processing rate per resource μ0i
 

Table 15. Transition performance parameters for stage i of an N-stage manufacturing system 

Parameter Name Symbol 
Number of kanban cards nki

Order deferral rate λD
Kanban card arrival rate λki

Additional resources r+i
 

Recall from Chapter 3 that each stage experienced three distinct temporal events: the start 

of kanban card introduction, the end of kanban card introduction and the processing of 
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the last kanban card. We will denote the first two events as t0i and t1i to indicate the stage 

to which each event refers. The third event, processing the last kanban card, is not a 

meaningful event in the multi-stage scenario. It will become clear why this is true in a 

moment. 

We also define two new temporal events in the transition of each stage. As the system 

transitions from push to pull, each stage will first change from push control to being the 

push-pull interface. In push production control, customer orders are first directed to stage 

1 of the system. All subsequent stages are triggered to process by the flow of material 

from the preceding stages. In hybrid production control, the flow of customer orders is 

directed at a stage in the middle of the system. This stage is the push-pull interface and it 

processes material only if it has a customer order. All upstream stages operate with pull 

production control, meaning they work only if there is room in a downstream queue, 

while all downstream stages operate as they always have under push control. In Lean 

transition, the movement of the push-pull interface is assumed to be unidirectional 

downstream, toward the customer. As a result, the production control of a given stage 

will always proceed from push to push-pull interface to pull. These two changes 

necessitate two new temporal events: the interface transition time, txi, and the pull 

transition time, tpi. A complete list of the multi-stage temporal events is included in Table 

16. 
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Table 16. Temporal event parameters for stage i of an n-stage manufacturing system 

Parameter Name Symbol
Arrival of first kanban card t0i
Arrival of last kanban card t1i

Change to push-pull interface txi
Change to pull tpi

  

To develop a coherent transition strategy, we must identify the constraints on these 

events. First, we restrict the timing of the arrivals of the first and last kanban cards  

 t0i < t1i (29.) 

This reinforces common sense that we cannot finish kanban card introduction before it 

begins, but it goes a step further to say that kanban card introduction cannot be 

instantaneous. This constraint is a practical one to disallow infinite arrival rates.  

Next, we say that we must introduce kanban cards stage-by-stage in order. That is, we 

cannot introduce kanban cards to stage 2 before stage 1, which we express as 

 t0i ≤ t0(i+1) (30.) 

This constraint does not eliminate the possibility of starting the introduction of kanban 

cards to all of the stages simultaneously. We further restrict kanban card introduction by 

saying that it cannot be completed at any stage before it is complete at the preceding 
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stage. We write this constraint as  

 t1i ≤ t1(i+1) (31.) 

Again, this does not prohibit two or more stages, or all of them for that matter, from 

completing kanban card introduction at the same time. As discussed earlier, we can also 

restrict the order of the production control transition such that each stage transitions first 

from push production control to push-pull interface to pull by saying 

 txi ≤ tpi (32.) 

There is a push-pull interface in every system, even in one controlled with push. To 

ensure that this is true in a model, we specify that stage 1 is never operated in push 

production control, it can only be operated with pull or as the push-pull interface. So, we 

restrict stage 1 as follows: 

 tx1 << t01 (33.) 

We have not yet discussed t2. In the single stage model, we defined t2 as the time at which 

all of the kanban cards have completed processing within the stage and as the endpoint of 

the push-to-pull transition. The model implicitly assumed that no downstream stage was 

consuming the kanban inventory. Our definition of the multi-stage system makes no such 

assumption, so the definition of a t2-like variable for each stage would necessarily be 

much more complex as kanban cards would circulate between stages throughout 
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transition. As we look at different transition policies, we will explore new definitions of 

t2. 

Note that although these events are temporally constrained, I do not want to imply that 

the exact timing of these events might be known a priori. In fact, in this research we will 

consider them output rather than input parameters of a multi-stage transition. We will 

instead discuss and use system states as triggers for these events. 

With our definition of the system complete once again, we can now discuss multi-stage 

transition cost. 

4.2  Multi-stage Transition Cost 

In the previous chapter, we identified two important queue-related transition costs, 

backlog and inventory, where the distinction was principally on which side of the system 

the queue was located. In a multi-stage system, things are no different. Each stage has an 

upstream queue for orders or other demand signals which we will refer to as the backlog 

queue, a downstream queue for completed orders, which we’ll refer to as the inventory 

queue and a resource queue where orders that have been matched with material wait to be 

served. In the single stage model we assumed an infinite supply of raw materials with 

which to fill customer orders. This is still true of the first stage of the multi-stage system. 

All of the other stages, stages 2 through N however, must have an order in their backlog 

queue and material in the previous stage’s inventory queue before they can process. In 



 

this way, the stages overlap and are inter-connected.  

Recall from Section 3.2.3   that we defined single-stage inventory cost, Ci, as 

 Ci = (nk/2) (t2 – t0) ci (34.) 

This was based on a convenient simplification of the average volume of the inventory 

queue, whose volume increased linearly throughout the well-defined time interval. As we 

discussed in the previous section, neither the behavior of the queue volume nor the 

bounds of the per-stage transition time interval are so neat in the multi-stage case. It 

makes sense then to restate this definition as  

  (35.) ( )∑ ∫
=

=
N

i T
IiIiI dttcC

1
Q

In which we have renamed the total system inventory cost CI, using the capital I sub-

script for inventory to prevent confusion with lower case i, which we now use to indicate 

stage number. Since we no longer have an unambiguous definition of the end event, we 

replace t1 and t2 in the equation with T, the transition interval. We also introduce QIi(t), 

the number of orders in the inventory queue in stage i at time t. Note the similarity of this 

equation to our previous definition of backlog cost, which we modify here for the multi-

stage case. 
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Resource cost can then be defined as   

  (37.) ( )∑ ∫
=

+=
N

i T
iRiR dttrcC

1

Again we adopt the capitalized subscript to indicate total system cost versus the per-stage 

costs we used in the previous chapters. 

Backlog cost and order deferral cost, as defined in our initial model, seemed somewhat 

unrelated, but in a multi-stage model, it is clear to see that they share a strong common 

relationship to the incoming stream of customer orders. Customer orders represent 

demand for finished goods, not subassemblies, so the flow of customer orders cannot 

reasonably be deferred on a per-stage basis. As a result, we define the order deferral cost 

as  

  (38.) ( )∫=
T

dDD dttcC λ

which is absent the summation-by-stage evident in the previous cost terms. Similarly, 

backlog cost is related to the number of customer orders waiting to begin processing.  

Note that these cost equations permit both of the mitigation mechanisms, the number of 
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additional resources and the order deferral rate, to be non-stationary during the transition. 

The reason for this will become clear later, when we discuss transition policies. 

Summing up the cost terms, we can now define transition cost for the multi-stage model 

as 

 DRBIT CCCCC +++=  (39.) 

or 
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Now that we once again have a transition objective to minimize, let us now discuss 

transition strategies. 

4.3  Multi-stage Transition Strategies 

Using the constraints developed in the previous sections, we can develop an infinite 

number of transition strategies for even very simple systems, but we will begin by 

looking at two useful, unmitigated special cases, All-at-Once and One-by-One. 

4.3.1  All At Once (AA1) Transition Strategy 

What little advice the Lean literature has to offer on the subject of production control 

transition includes the very general guideline that it should be done as quickly as 
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possible. The previous chapter supports this theory in that the least expensive so-called 

simple transition policy was that in which all of the kanban cards were introduced into 

the system instantaneously. It might follow then that introducing all of the kanban cards 

at every stage in a multi-stage system might be an inexpensive, simple transition control 

strategy. I call this policy the All At Once strategy, or AA1 strategy, and define it in 

terms of our new parameters as follows: 

 t0i = 0  for 1 ≤ i ≤ N (41.) 

 t1i → 0  for 1 ≤ i ≤ N (42.) 

which indicates that all of the kanban cards are introduced at each stage, nearly 

instantaneously. Then, we define the transition timing as 

 tx1 << 0 (43.) 

This means that the push-pull interface must begin within the system of interest. 

According to the constraints, stage 1 must be the first stage to become the push-pull 

interface, so we say its transition to push-pull interface event happens before the Lean 

transition begins. 

 ( ) nt pI =11Q  (44.) 

During the transition, the inventory queues will fill, starting at stage N and working back 
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to stage 1, so the inventory queue at stage 1 is where the transition event is triggered. The 

push pull interface moves to stage 3 when all of the kanban cards have been processed 

and are sitting in the stage 1 inventory queue. 

 tp1 = tpi = txN = txi for 2 ≤ i ≤ N-1 (45.) 

So, true to its name, in the AA1 transition strategy, the kanban cards are introduced to the 

system all at once, and when they are all matched with inventory, all of the transition 

events occur at the same time.  

4.3.2  One By One (1B1) Transition Strategy 

We may instead choose to transform each stage of the system in turn, essentially doing 

exactly what we did in the single stage study, moving the push-pull interface downstream 

as each kanban queue fills completely. I call this transition strategy One By One, or 1B1.  

The previous chapter showed that careful selection of mitigation techniques can minimize 

the transition cost of a single stage. It also demonstrated that different types of 

manufacturing processes are subject to different transition constraints which call for 

different transition policies. In a multi-stage system it is reasonable to assume there will 

be a variety of processes and that a unilateral transition policy like AA1 may not achieve 

the lowest cost. Instead, let us consider transforming each stage of the system in turn, 

optimizing the transition policy of each transformation and completing each stage before 
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moving to the next.  

For this policy, we will re-use the end-of-transition variable from the single stage case, 

but add a subscript to indicate to which stage it refers. We define t2i as the time at which 

the transition of stage i is complete, when all of the kanban cards have been processed 

and are waiting in inventory. For timing, we define this policy like this 

 t01 = 0 (46.) 

 t0(i+1) = t2i   for 1 ≤ i ≤ N-1 (47.) 

This equations says that the transition begins at each stage when the transition at the 

previous stage is complete. 

 Qi(t2i) = ni for 1 ≤ i ≤ N (48.) 

This means that the transition of each stage is complete when the inventory queue at the 

stage contains all of the kanban cards. 

 txi = t0i  for 1≤ i ≤ N (49.) 

 tpi = t2i for 1 ≤ i ≤ N (50.) 

These two equations say that each stage becomes the push-pull interface at the same time 

that the transition begins, and that it changes to pull production control when the 
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transition is complete.  

This means that kanban cards are initially introduced to stage 1 and it is allowed to 

process all of them. When all of the kanban cards are completed at stage 1, kanban card 

introduction begins in stage 2. At the same time, the push-pull interface moves from stage 

1 to stage 2 and stage 1 begins to operate under pull production control.   

To compare the effectiveness of these two policies, we need to apply them to a simple 

example system undergoing Lean transition. 

4.4  Two Stage System Example 

For a simple example system on which to test transition policies we revisit the single 

stage model first introduced in Section 3.2.4. We can easily imagine a two stage system 

in which each of the two stages is identical to this example. Figure 13 illustrates this 

example system. 
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Figure 13. A two stage system operating under push production control. In this figure, incoming customer 
orders (orange triangles) are matched with raw materials (blue circles), which are processed in stage 1 to 
become intermediate assemblies (purple circles), which are then processed in stage 2 to become finished 

goods (orange circles). The customer order follows the material through the system because this system is 
under push production control. 

The example system consists of two workstations. Stage 1 receives customer orders, 

which are matched with raw material from an infinite supply.  The material/order then 

waits in queue for service at stage 1. When service is complete, the material/order moves 

to stage 2, where it again waits for service. In this system the material and order stay 

together throughout. When service is complete at stage 2, the now-fulfilled customer 

order leaves the system. As in Chapter 3, the system parameters are as shown in Table 

17. 
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Table 17. Two stage system parameters 

Parameter Value 
Number of resources r 10 per stage 

Service rate μr  10 items per unit time per resource 
Order arrival rate λa  75 items per unit time 

 

The system as shown is under push production control. Each stage is allowed to serve all 

of the material/orders in its queue without requiring any other trigger. We wish to 

transform this system to pull production control, where the final system configuration is 

shown in Figure 14, with 240 kanban cards in each of the two stages. 
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Figure 14. A two stage system operating under pull production control. In this figure, incoming customer 
orders (orange triangles) are matched with finished goods in inventory (pink circle with triangle), which 

causes a finished goods kanban card (pink triangle) to travel back to stage 2 and signal the production of a 
finished good from an intermediate assembly in inventory (purple circle with purple triangle). This causes 
an intermediate assembly kanban card (purple triangle) to travel back to stage 1 and signal the production 

of an intermediate assembly from raw materials (blue circles).  
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In its final, pull, configuration, the system requires a notional third stage. The extra 

station matches incoming orders, which now enter the system there, with material in the 

stage 2 inventory and thereby “pull” production in stage 2. Both of the original two stages 

operate by matching material with a kanban card before starting service. The material 

inventories in stages 2 and 3 are bundled with kanban cards, which are separated when 

the material is used and sent back to the originating stage.  

In this chapter we apply the two transition strategies proposed in the previous sections, 

examine their behavior and determine which one results in lower transition cost. We use 

a simulation model of the system. 

4.4.1  Modeling a Two Stage System 

A simulation model of the two-stage example was created using Arena. Figure 15 shows 

the Arena user view of the model. This model, like those used in Chapter 3 was built to 

provide plots of system performance over time in order to better see the dynamics of 

transition. The plots in the following sections are average values of 10 replications, 

sampled every 0.01 time units. 
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Figure 15. A model of a two-stage system, built using Arena  

4.4.2  Modeling an AA1 Transition 

The model output for a simulation of an AA1 transition is shown in Figure 16. The plot 

tracks the number of orders or material in each queue in the system versus time.  

At t=2, the kanban cards are introduced to both stages, resulting in predictably large 

spikes in both backlog queues. As we saw in the single stage example in Chapter 3, the 

stage 2 backlog queue decreases quickly as stage 2 processes material that accumulates as 

stage 2 inventory.  However, unlike the single stage model, the stage 1 backlog queue 

continues to fill. For each kanban order that stage 1 processes, stage 2 immediately 

consumes the material and sends the stage 1 kanban card back to the stage 1 backlog 

queue. Since the two stages process at the same rate, stage 1 keeps pace with stage 2, but 

the return of kanban cards and the continued arrival of new customer orders increases the 

stage 1 backlog queue well beyond the initial spike. When stage 2 completes processing 

its kanban cards and stops withdrawing material from the stage 1 inventory, then that 

inventory begins to grow. When all of the stage 1 kanban cards have become stage 1 
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inventory, the push-pull interface moves to stage 3 because all of the stage 2 kanban 

cards have become stage 2 inventory.  However, more than 50 customer orders are still in 

stage 1 backlog queue. . After the push-pull interfaces moves, at about t = 10, the new 

orders quickly consume the stage 2 inventory, which sends stage 2 kanban cards back to 

the stage 2 backlog queue, so stage 2 begins to consume the stage 1 inventory. Both 

inventories are again completely consumed somewhere between t = 10 and t = 15, and 

customer orders start to build up in the stage 3 backlog queue. The stage 2 backlog queue 

was receiving a steady flow of kanban cards returning from the stage 2 inventory as well 

as the approximately 50 customer orders that were at stage 1 when the push-pull interface 

moved. At about the same time that the stage 2 inventory is depleted, the flow of 

customer orders from stage 1 also ceases, and stage 2 begins working through its now-

sizable backlog queue. Stage 1 also begins to catch up, and both stages decrease their 

backlog queues.  They complete the waiting customer orders, and their kanban cards 

accumulate as inventory.  By about t = 55, the system has reached a new steady state. 
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Figure 16. A plot of quantities in queue versus time for a two-stage, AA1 transition  

4.4.3  Modeling a 1B1 Transition 

Figure 17 shows the equivalent plot for the 1B1 strategy. As in the previous example, the 

system begins in steady state, under push production control. At t = 2, kanban cards are 

introduced to stage 1 only, which results in a spike of orders in the stage 1 backlog queue. 

Just as in the single-stage model, the kanban cards are quickly converted into stage 1 

inventory. In fact, the plot closely resembles the single stage model until stage 1 finishes 

processing its kanban cards. In the B1B strategy, this triggers the push-pull interface to 

shift to stage 2, at which point all of its kanban cards are then introduced. Since stage 1 

and stage 2 have the same number of kanban cards, the stage 2 kanban cards are all 

immediately matched with the stage 1 inventory, emptying that queue. As stage 2 
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processes the matched orders, the stage 1 kanban cards begin returning to the stage 1 

backlog queue, where the influx temporarily halts its progress reducing the customer 

orders there. As in the AA1 strategy, stage 2 is once again subject to an existing 

backorder while receiving both new customer orders and older orders now filtering 

through the stage 1 backlog, resulting in a peak of backlog of roughly the same 

magnitude as that seen in AA1. Since the kanban cards were the first to arrive in the stage 

2 backlog queue, they are processed first and quickly accumulate as stage 2 inventory, 

triggering the push-pull interface to move again to stage 3. Just as it did when the push 

pull interface was moved to stage 2, the new customer orders quickly consume the stage 

2 inventory at the push pull interface, creating a stream of kanban cards that return to and 

greatly increase the stage 2 backlog queue, and the incoming customer orders begin to 

build up at the stage 3 backlog queue. In this case, both preceding stages have largely 

worked through their backlogs of old customer orders and can now focus on processing 

kanban card demand. For 10 or 15 time units, the two stages work in near-parallel to 

fulfill the demand originating downstream. Slowly, the backlog queues are emptied and 

the stage 1 and stage 2 inventories accumulate.  At about t = 50 the system settles into a 

new steady state. 



 

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Units

Q
ua

nt
ity

 in
 Q

ue
ue

Stage 1, Backlog

Stage 1, Inventory 

Stage 2, Backlog

Stage 2, Inventory 

Stage 3, Backlog

 
Figure 17. A plot of quantities in queue versus time for a two-stage, 1B1 transition  

4.4.4  Two Stage Transition Cost 

Using the data collected from the trials above, one can easily evaluate the cost of 

transition. In the previous chapter, measuring the transition cost was relatively 

straightforward because we were using a well-defined event to bound the transition time. 

In the multi-stage case, as we discussed earlier, the per stage and overall transition times 

are harder to define. Setting aside this dilemma for the moment, we can look at the 

cumulative costs of the two strategies we modeled. Table 18 lists the cumulative costs, 

where both the backlog and inventory holding costs are $1 per order per time unit. 
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Table 18. Cumulative costs for AA1 and 1B1 strategies  

Cumulative Transition Cost Strategy 
@ t = 20 @ t = 40 @ t = 60 

All at Once, AA1 $12,153 $22,008 $31,239 
One By One, 1B1  $11,304 $20,181 $29,456 

Difference $849 $1827 $1783 
 

The 1B1 strategy is superior throughout the transition, but builds most of its advantage 

over the AA1 strategy in the first half of the transition. Looking back at Figure 16 and 

Figure 17, the period between t = 0 and t = 20 is marked by large buildups of backlog as 

the system absorbs the surge of kanban cards. The backlogs in stages 2 and 3 share 

similar trajectories in both strategies. Stage 2 comes to a sharp, tall peak that descends 

quickly, levels out, and then continues to descend more moderately in both scenarios. 

Stage 3 similarly peaks quickly, and then follows a more moderate path downward. The 

principle difference between the strategies is seen in the trajectory of the stage 1 backlog. 

In the AA1 strategy, the stage 1 backlog climbs steadily, following a similar trajectory to 

that of stage 2, peaking early, then falling, leveling out, then falling more slowly over the 

rest of the transition. In the 1B1 strategy, however, the stage 1 backlog begins with the 

surge of kanban cards, but falls throughout the transition. This marked difference in 

behavior explains the difference in cost.  
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4.4.5  Mitigating Transition Cost; Deferral and Resources 

In Chapter 3 we experimented with techniques to mitigate the transition cost for a single 

stage. To demonstrate their effectiveness in the multi-stage case, we re-run the strategies 

we just discussed, but with mitigation as prescribed by the optimization of the last 

chapter. In Section 3.7 it was shown that the optimal transition policy for our stage single 

stage was full deferral of customer orders and doubling the resource capacity from 10 

units per stage to 20. To better understand the effects of each of these measures, we can 

re-run the trials of both strategies, but with mitigation as described in Table 19. 

Table 19. Mitigation techniques applied to two stage transition 

Mitigation Trial Order Deferral, λd Additional Resources, r+

Deferral 75 0 
Resources 0 10 

Deferral and Resources 75 10 
 

Figures 18 and 19 are plots of the deferral mitigation technique applied to the two-stage 

system for the AA1 and 1B1 strategies, respectively. 
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Figure 18. A plot of quantities in queue versus time for a two-stage, AA1 transition, with order deferral 

mitigation, λd = 75  
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Figure 19. A plot of quantities in queue versus time for a two-stage, 1B1 transition, with order deferral 

mitigation, λd = 75 
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These plots show that the deferral-mitigated strategies exhibit much different behavior 

from their unmitigated counterparts. Although we still see the initial spikes of backlog in 

both stages, they dissipate rather quickly and never exceed the quantity of the initial 

surge of kanban cards. In general, these strategies take much less time to reach the new 

steady state.  

Figures 20 and 21 are plots of the resources mitigation technique applied to the two-stage 

system for the AA1 and 1B1 strategies, respectively. 
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Figure 20. A plot of quantities in queue versus time for a two-stage, AA1 transition, with resource 

mitigation, r+ = 10 
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Figure 21. A plot of quantities in queue versus time for a two-stage, 1B1 transition, with resource 

mitigation, r+ = 10 

The resource-mitigated strategies behavior is more similar to the unmitigated trials than 

the deferral-mitigated strategies were. Both exhibit the same complex interactions 

between the stages, but the effects are moderated by the additional resources, which 

lower the traffic intensities somewhat. The backlog peaks are not as pronounced and the 

inventories almost never empty completely.  

Figures 22 and 23 are plots of the resources and deferral mitigation techniques applied 

simultaneously to the two-stage system for the AA1 and 1B1 strategies, respectively. 
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Figure 22. A plot of quantities in queue versus time for a two-stage, AA1 transition,                                                 

with deferral and resource mitigation, λd = 75 and r+ = 10 
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Figure 23. A plot of quantities in queue versus time for a two-stage, 1B1 transition, with deferral and 

resource mitigation, λd = 75 and r+ = 10 
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The behavior of the strategies mitigated with both order deferral and additional resources 

are very similar to those of the deferral-mitigated trials, but the transitions conclude much 

more quickly due to the extra capacity.  

Without explicitly defining a transition completion event, we estimate the transition cost 

based on the point at which each system reaches its new steady state. We again use unit 

rates for all of the cost factors. Table 20 shows the transition costs for the three mitigation 

techniques in each of the two transition strategies.  

Table 20. Transition costs of deferral and resource mitigated AA1 and 1B1 transition 
strategies 

Mitigation Trial All at Once, AA1 One By One, 1B1 
None $28,917 (@ t = 55.0) $24,814 (@ t = 50.0)

Deferral $26,827 (@ t = 7.0) $17,661 (@ t = 7.2) 
Resources $80,941 (@ t = 20.0) $69,252 (@ t = 20.0)

Deferral and Resources $16,175 (@ t = 5.0) $11,511 (@ t = 5.0) 
 

These results show that order deferral has the most dramatic impact on both transition 

time and cost. The resource-mitigated trials required more than twice as much time to 

reach their new steady state, accumulating proportionally higher cost as a result. The 1B1 

strategy proved once again to be the superior alternative in each of the three mitigation 

trials.    

4.4.6  Summary 

In this chapter, we studied the behavior of multi-stage Lean transitions by considering a 
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specific two stage system. A multi-stage transition was defined in terms of events and 

their relative timing. Based on this framework, two transition strategies were proposed; 

the All At Once (AA1), in which all of the stages begin the transition at the same time, 

and the One By One (1B1), in which the each stage begins its transition as the preceding 

stage finishes. It was shown that the behaviors of the backlog and inventory queues, 

which are important components of transition cost, are very complex. In general, the 1B1 

strategy minimized the transition cost because the AA1 strategy allowed large initial 

spikes of orders in the backlog queues while the 1B1 strategy suppressed them. Two 

mitigation techniques, the deferral of customer orders and the addition of resource 

capacity during the transition, were evaluated to see their effect on multi-stage transition 

cost. Both techniques reduced overall cost, but order deferral proved to be more effective. 

Order deferral, combined with the 1B1 transition strategy, proved to reduce overall 

transition cost significantly in this case. 

The results provide clear evidence of the complexity of the transition from push to pull in 

a multi-stage system and the potential impact of different strategies and mitigation 

techniques. More work is needed to understand this complex behavior more fully. 

In this investigation, we did not vary the kanban card introduction rate, a cost reduction 

technique demonstrated when we considered the single stage system in Chapter 3. To 

continue down this path of exploration, this option should be exercised. We used an 

easily measured, unambiguous event to trigger the start of each stage transition in the 
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1B1 strategy, but there are many other criteria that one could use as a trigger. These other 

triggers should be examined to determine if this strategy can be further improved. The 

system considered in this chapter had two identical stages. More work is needed to 

evaluate the performance of the transition strategies in other types of manufacturing 

systems. Little attention was paid to a concluding event or criteria to mark the end of 

transition. This topic deserves further investigation to more fairly compare different 

transition policies. Finally, the optimization tools used successfully in the single stage 

case should be employed to optimize the cost of multi-stage transition.   

 



 

94 

Chapter 5  Simulation Modeling of Production Control 

The previous chapters demonstrated that the cost of Lean transition can be mitigated if 

the transition is carefully controlled. It was shown that simulation modeling can be a 

powerful tool to find the optimal transition policy, especially when the on-board 

optimization utilities are brought to bear. However, the systems used as examples were 

relatively simple. In contrast, the simulation models of those same systems were 

necessarily very complex, due to the fact that off-the-shelf simulation software does not 

easily support pull production control. Since the goal of this research is to develop robust 

transition control policies for complex systems, a new class of simulation software 

objects is required in order to fully model hybrid production controls. It must enable 

parametric description of production control so that the built-in optimization utilities can 

be used to find the optimal transition policy. This chapter describes a new logical model 

of a manufacturing process, the Multi-Flow Modeling Paradigm (MFMP). It also 

introduces a hierarchical set of new simulation modeling objects, the Production Control 

Framework (PCF), based on this paradigm. The PCF makes it possible to model 

production control parametrically and therefore facilitate automated search of the 

production control domain. 

5.1  Modeling the Hidden Factory 

Although manufacturing systems are designed primarily to process raw materials into 

finished goods, the modern manufacturing system increasingly processes information as 

well. Vollmann, Berry, and Whybark (1997) describe this dualism as the “hidden 



 

 

95 

 

factory.”  They describe a manufacturing firm as being comprised of two factories, one 

that processes parts, while the other “hidden factory” processes transactions on paper and 

through computers. Most of these transactions are signals for a process to “go”. These 

signals, which I will refer to as “demand” are an important element missing from 

previous models of manufacturing systems. 

A manufacturing system contains multiple manufacturing processes.  A manufacturing 

process requires materials, resources, and demand (and time, but we will ignore this 

element for now). Materials are the physical would-be products of a manufacturing 

system, and they follow a unidirectional path through the manufacturing system.  

Resources are the finite capacity components of a manufacturing system.  Resources 

enter the system, but do not leave.  They follow a cyclic path through a series of system 

states.  Demand is also necessary to carry out a manufacturing process.  Demand may 

follow a unidirectional or cyclic path, depending on the production control policy of the 

system. 

5.2  Multi-Flow Modeling Paradigm 

Traditionally, a manufacturing process was modeled as a single-server queueing model. 

In such a model, customers arrive at the server and, if the server is idle, they are served 

for some processing time. If the server is busy, the customers wait in a queue for service. 

The system variables are few and very simple; server state is either idle or busy, and the 

queue contains 0 to ∞ customers. Figure 24 shows a simple single-server queueing 
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Figure 24. A single server queueing system (Law and Kelton, 2000). In this figure, material (red circles) 

arrives at the server where they waits in a queue for service. The server processes the material, converting it 
finished goods (blue circles), which depart the system. 

While this model is simple, it can be combined with other such models to represent very 

complex systems (Law and Kelton, 2000). However, it cannot easily model pull 

production control because it cannot accommodate demand. A new abstraction is 

required to model demand-driven manufacturing systems. 

To answer this need, I developed the Multi-Flow Modeling Paradigm (MFMP), an 

extension of the single server queueing model, designed specifically for the 

manufacturing domain.  It is based on the idea that each process is divided into two 

stages, storage and service. Looking again at the single server queueing model (see 

Figure 25) we can identify the two stages. 
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Figure 25. A single server queueing system with storage and service stages identified. 

Through these stages, three types of components flow: material, resource and demand. 

The three types are distinguished by how their flows converge and diverge before and 

after each stage of the process. A manufacturing system can be characterized by the flow 

of these components through manufacturing processes.  Material generally flows through 

a system in a unidirectional manner. Individual material flows may converge in an 

assembly process.  Resource flows in repetitive trajectories within the system as they 

cycle between busy and idle states.  Demand can arrive from external sources and from 

within the system. Demand follows both unidirectional and cyclic trajectories, based on 

the production control policy.  

We begin to develop the MFMP by looking at a useful variant of the single server 

queueing model, an assembly station model. In such a model, two or more queues store 

different types of components until a certain quantity arrives and a server is available. For 

example, a process in which a stool is assembled might require a seat, three legs and an 

assembly operator before service could begin. Figure 26 shows a model of an assembly 
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station configured for stool assembly. 
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Figure 26. A two queue assembly station model. In this figure, the components of a stool, legs (green 
circles) and seats (red circles) arrive at the station and wait in queue to be assembled. When there is a seat, 

three legs and an available server, the components are processed by the server into a stool (blue circle), 
which departs the system.  

The assembly station model can be further abstracted and simplified when one considers 

that the server itself is a component of the process and that service time is actually spent 

in yet another queue. However, the difference between the material components and the 

server, or resource component is in where it goes after service is complete. As in the 

previous model the material component, the assembly, departs the system, but the 

resource component, the server, circles back around to its original queue. Figure 27 

illustrates such a model. In the figure, three server/resource components are pictured. 

This is mostly for the sake of illustration, but it could represent a station with three 

processing resources. This type of model makes the number of servers easy to change by 

adding or removing resource components from the model, but retains much of the 

assembly station’s original operating logic. It actually simplifies the logic somewhat. 
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Where before it had to check the state of two different data objects (queues and servers), 

in this new model, the queues contain the entire system state.  
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Figure 27. A three queue assembly station model with resource components and service queue. In this 

figure, the components of a stool, legs (green circles) and seats (red circles) arrive at the station and wait in 
queue to be assembled. An additional queue contains resource components which represent an available 

server. When there is a seat, three legs and a resource component available in the queues, the components 
are processed by the server into a stool (blue circle), represented by a time period in which they are stored 
together in a service queue. The stool departs the system and the resource component returns to its queue.  

We then consider that demand is also a component of the process. Extending this model 

just a bit more yields a four server assembly station model in which the demand 

components have their own queue, and for which there is a required quantity to initiate 

service. Figure 28 illustrates this model. Like the resource component, the path of the 

demand component is not as simple as that of the material. In fact, it has three possible 

paths, corresponding to the three production control policies to which this process might 

be subject.  
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Figure 28. A four queue assembly station with resource and demand queues, showing demand paths. In the 
figure, the components of a stool, legs (green circles) and seats (red circles) arrive at the station and wait in 

queue to be assembled. An additional queue contains resource components which represent an available 
server. Another queue contains demand components (kanban cards, perhaps). When there is a seat, three 

legs, a resource component and a demand component available in the queues, the components are 
processed by the server into a stool (blue circle), represented by a time period in which they are stored 

together in a service queue. The stool departs the system, the resource component returns to its queue and 
the demand component follows one of three paths, depending on the production control policy in effect. 

If the production control policy is Pull, then the demand component continues to the next 

process with the resulting material component. If the policy is Push, the demand 

component, like the resource component, circles around and rejoins its original queue. If 

this process is the Customer Order interface, then all of the downstream processes are 

Push, meaning that those stations already have their own circling demand components. 

As a result, the demand component from this process is not needed and leaves the system 

entirely.  

There are other manufacturing-specific behaviors we can model within this evolved 

paradigm. In an assembly process, many “constituent” material components may be 

combined into a single “assembly” material component. It is easy to rationalize that the 
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components become a permanent “batch”, but in an explicit model like this, where do the 

extra constituents go?  Further, as in the figure above, where pull production control 

results in a temporary batch of material and demand, when and where does that batch 

separate and what happens to the components? In addition, the behavior of resources is 

not always as simple as our model presently indicates. Some resources operate this way, 

cycling between idle and busy states, staying within the same process. However, in a 

modern manufacturing system, some resources travel along with material through some 

or all of the system. Examples of such a resource are fixtures, jigs and other tooling that 

hold a product together or otherwise facilitate transport between processes. Figure 29 

illustrates the fully realized MFMP model, which accommodates all of these domain-

specific flows. 
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Figure 29. A multi-flow modeling paradigm (MFMP) model of an assembly process. In this figure, the 

green bar contains the material component paths, the pink bar contains the resource component paths and 
the blue bar contains the demand component paths through the junctions and stages of the MFMP.  

In the figure, the material, resource and demand component flow paths are denoted by the 

green, red and blue colored bars, respectively. The flows pass through the storage and 

service stages, just as the single server queueing model did, but these stages are bounded 

and separated by three junctions where the flows may be diverted out of the main process 

flow. 

In the first junction, the storage junction, resource components may be diverted back to 

the manufacturing system. Resources so diverted might represent a forklift, a delivery 

person or some other system resource that is needed for transport, but is not required for 
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this process.  

In the second junction, the service junction, batched material and demand is separated 

and the demand is released back to the system. In this figure we see, for the first time, 

this batched material/demand component. It is common in manufacturing systems where 

pull production control is used to affix a card to some material. The card is later detached 

when the material is consumed and becomes a signal to produce more of that material. 

This “batched” component is analogous to such a real-world implementation of pull. 

At the final junction, the disposition junction, each of the three flows may diverge. 

Material components may either continue on to the next process, or they may be disposed 

from the system. Here the constituent components of an assembly are disposed to leave 

only one “assembly” component remaining. Resource components may return to the 

storage stage if they are resources that are used solely in this process. They may also be 

released back to the system if they are resources that travel with the material through two 

or more processes. If this process is the first of a series of processes in which such a 

traveling resource originates, it may continue on to the next process with the resulting 

material component. In the disposition junction, we see again that the path of the demand 

component is a function of the production control policy in place. 

Contrast the MFMP model of a manufacturing process with the single-server model.  

Like the MFMP model, the server has two stages: storage and service.  However, it 
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accommodates only one flow, that of material.  In the server model, demand is implicit 

and resources are modeled as a separate binary data type, sometimes called a semaphore.  

The MFMP model can emulate a single-server model, but has greater flexibility.  In the 

MFMP model, the state of the system takes the form of a single data type – the number of 

components in the storage stage.  This greatly reduces the complexity of the control logic 

required to manage the system and adds flexibility to manage many types of 

manufacturing processes within the same basic framework. The result is a robust 

foundation upon which to build a complete simulation modeling framework. 

5.3  Production Control Framework 

The production control framework described in this chapter is a variation on the shop 

floor control architecture proposed by Smith, Hoberecht and Joshi (1996). Many other 

standard control architecture models have been proposed in the literature (Vieira, 1998), 

but the Smith model is unique among them in that it directly addresses the domain of 

shop floor control. The proposed production control framework adopts the same 

architecture as the Smith model, but adds greater detail at the lowest level in order to 

more completely describe the interaction of material and information on the shop floor, in 

accordance with the MFMP. The proposed framework is shown in Figure 30. 
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Figure 30. Production control framework 

The lowest level in the framework is the queue. Queues store and order the components 

to be processed in the storage stage. When signaled, they release components for 

processing. The framework uses the term queue rather than the Smith model of 

equipment as the lowest level because the framework requires more than one queue to 

enable processing at a piece of equipment.  

The second level of the framework is the workstation. A workstation is a collection of 

equipment, tools and personnel, usually physically separated from other workstations. 

The workstation controller monitors the state of the queues assigned to the workstation 

and determines if there are enough components to complete a process. If there are, it first 

signals the queues to release components and then processes them. A single workstation 

can control many processes from its queues. The workstation is essentially an MFMP 

model, executing all of the junction traffic control and housing the service stage, but with 

the storage stage queues modeled separately.  

The highest level of control is the shop. At the shop level, the overall production control 
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policy is implemented. The shop controller determines if a workstation is to be operated 

in a push or pull control policy and coordinates the flow of components throughout the 

system. 

To leverage the advantages of software re-use, each element in the framework must be 

defined in terms of parameters and the functions detailed in order to realize the 

framework in a simulation model. 

5.3.1  Components 

Traditionally, the term component referred only to the material elements of a product, but 

in the proposed framework material, resources and even demand are considered 

components, just as in the MFMP. I have identified four distinct component types to be 

used in the proposed framework:  

• Type 1, Material Components  

Material components are components in the classic sense; physical inventory of 

raw materials that the system transforms into finished goods. Type 1 components 

may be discretized bulk items like meters of steel stock or they may be individual 

parts like nuts or bolts. 

• Type 2, Demand Components  

Demand components are signals transmitted through the system indicating that a 
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transformation process can begin. Type 2 components are analogous to kanban 

cards or other physically realized production control mechanism that transmit a 

simple “Go” instruction. 

• Type 3, Resource Permission Components  

Resource permissions, like demands, are signals transmitted through the system, 

but unlike demands, they provide specific information about how a process will 

be completed, specifically, what system resources are to be used in a 

transformation process. The number and type of resource permissions controls the 

utilization of system resources. If a system contains three processing machines, it 

also contains three resource permission components, one corresponding to each 

machine. Resource permissions are also used to control the utilization of workers, 

machines, tools and any other capacity-limited system resource.  

• Type 4, Batch Components  

Batch components are administrative groupings of types 1, 2 and 3 components 

that are to be processed as a single unit and travel together between the different 

elements of the PCF.  

The disparate natures of the component types require different types and quantities of 

information to be carried with them in the form of component attributes. The framework 



 

accommodates these different requirements in the form of standardized attributes for each 

component type. The framework defined in here is represented in matrix-vector notation. 

This style of notation was chosen strictly as an organizational mechanism, rather than to 

facilitate any type of mathematical manipulation. Consequently, a component c is defined 

by a vector as follows: 

 [ ]Tncccc ,,, 21 K=c  (51.) 

where ci corresponds to component attribute i. The primary attribute, c1, is the component 

type, defined as above. The number of component attributes, nc, is dependent on the 

component type, as shown in Table 21, below. 

Table 21. PCF component types and numbers of attributes 

Component Type c1 nc 
Material 1 14 
Demand 2 6 
Resource 3 9 

Batch 4 17 
 

All components, regardless of type, share a set of five common attributes, ci, as defined in 

Table 22, below. 
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Table 22. PCF common component attributes 

i Description 
General Attributes 

1 Component Type 
2 Component Class 

Destination Attributes 
3 Shop 
4 Workstation 

Temporal Attribute 
5 Queue Entry Time 

 

The component class attribute defines general categories within each component type. 

This attribute could be a part number, a machine class, a worker skill type or any other 

user-defined subdivision within which the components are functionally equivalent. The 

destination attributes, shop, workstation and process, represent the address of the 

component’s next destination in terms of the production control framework. The 

destination address of types 1 and 4 components are updated according to the component 

process plan each time they complete a process step. Destination attributes for other 

component types do not change and serve as a return address. The queue entry time 

attribute is used to order components for processing based on the order in which they 

arrived at a queue. The queue entry time attribute is updated each time the component 

enters a queue. 

The remainders of the component attributes are functions of the component type. Some 
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attributes provide data necessary for production control, some record data necessary to 

measure system performance and some perform both functions. Table 23, Table 24, 

Table 25 and Table 26 describe the type specific attributes, ci, for component types 1, 2, 3 

and 4, respectively. The tables also indicate the function of each attribute, where C 

indicates that the attribute is used for control, M indicates that the attribute is used for 

measurement and C/M indicates that it may be used for both.  

Table 23. PCF type 1 (material) component attributes 

i Attribute Function 
In Addition to the Attributes in Table 2 

Temporal Attributes 
6 Workstation Entry Time C/M 
7 Shop Entry Time C/M 

Queue Attributes 
8 Imminent Setup Time C 
9 Imminent Processing Time C 
10 Gross Imminent Processing Time C 
11 Due Date C 
12 Process Time Remaining C 
13 Processes Remaining C 
14 Static Slack Time C 

 

Temporal attributes are used to measure the time a component spends under the control 

of a given control element. Each temporal attribute is updated when the component visits 

a controller of the given type. Temporal attributes may also be used to order components 

in a queue. They are updated each time a component visits a controller of the given type. 

The queue attributes in Table 23 were chosen specifically because they are static in 
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nature. That is, these attributes’ values do not change while a component waits in queue. 

Although there is a wide range of dynamic queue attributes used in practice, not all 

simulation software is capable of implementing dynamic queue rules. For greater detail 

regarding queue attributes, see Panwalker and Iskander (1977). 

Table 24. PCF type 2 (demand) component attributes 

i Attribute Function 
In Addition to the Attributes in Table 2 

Temporal Attribute 
6 Due Date C/M 

 

In Table 24, the only temporal attribute is due date. It is primarily used to measure the 

response time of a system. Each demand component constitutes demand for products. 

How quickly the system fills such demand is an important measure of system 

performance. This measure may be improved if the due date attribute is also used to order 

components in queues. In Table 25, the resource index attribute is used to specify a 

particular member of a resource class. Each member of a resource class is assigned a 

unique resource index. The time resource seized attribute is used to measure machine 

utilization. The queue attributes are used primarily to measure time-averaged utilization, 

but they may also be used to implement load balancing dispatching rules, based either on 

number of times a resource was accessed or the total time a resource has spent in use. 
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Table 25. PCF type 3 (resource permission) component attributes 

i Description Function 
In Addition to the Attributes in Table 2 

Identification Attribute 
6 Resource Index C 

Temporal Attribute 
7 Time Resource Seized M 

Queue Attributes 
8 Cumulative Use, Occurrences C/M 
9 Cumulative Use, Time C/M 

 

Table 26. PCF type 4 (batch) component attributes 

i Description 
In Addition to the Attributes in Tables 2 and 3 

Batch Attributes 
15 Type 1 Component Quantity C 
16 Type 2 Component Quantity C 
17 Type 3 Component Quantity C 

 

For attribute indices 1-10 and 12-14, batch components take on the values of the primary 

material component in the batch, which is the type 1 component with the lowest 

component class attribute. Attribute 11 is taken from the primary demand component. 

The batch attributes are used for production control book-keeping when the batch is split 

up and subsequently reassembled at each control level. The attributes described here are 

not intended to be a comprehensive list of attributes necessary to build a functioning 

simulation model, and may be augmented by others to facilitate realization in a particular 



 

simulation model. They may include object identification, sequence data, process plan or 

routing step number or subsequent step number. 

5.3.2  Queue Controller 

The lowest level of production control is the queue controller. A queue is a collection of 

similar objects, ordered according to some queue discipline (Law and Kelton, 1991). The 

simplest queue disciplines are based on the value of an object attribute and are ordered in 

either ascending or descending order. A queue controller q has two parameters: 

 [ ]21,qq=q  (52.) 

q1 identifies the component attribute, ci, to be used to order the queue and q2 is the order 

gradient, where 0 indicates ascending, 1 descending and 2 random. By careful selection 

of these parameters, a wide variety of operating policies can be realized. 

Material Sequences – Material sequences, also called queue disciplines or dispatching 

rules, refer to the parameters of types 1 and 4 component queues. The most exhaustive 

list of queue disciplines is Panwalker and Iskander (1977). Using the proposed 

framework, 16 of their 35 ‘Simple Priority Rules’, and 8 of the 11 most commonly used 

in practice (Vollmann, Berry and Whybark, 1997) can be implemented. Table 27 lists the 

parametric descriptions of the eight queue disciplines and their common names. 
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Table 27. Material queue discipline parameters 

Queue Discipline q1 q2
First Come / First Served (FCFS) 5 0 
Shortest Processing Time (SPT) 9 0 

Earliest Due Date (EDD) 11 0 
Least Work Remaining (LWR) 12 0 

Fewest Operations Remaining (FOR) 13 0 
Slack Time (ST) 14 0 

Least Setup (LSU) 8 0 
Random (RAND) Any 2 

 

Resource Sequences – Resource sequences control the utilization of system resources. By 

modeling resource permissions as components and placing them in queues, queue control 

can be used to implement simple, static resource sequence rules. Table 28 lists the 

parametric descriptions of five resource sequence rules and their common names. 

Table 28. Resource sequence rule parameters 

Dispatching Rule q1 q2
First Available Resource 5 0 

Preference Order 6 0 
Least Accessed Resource 8 0 

Least Used Resource 9 0 
Random (RAND) Any 2 

 

Queues are common elements of simulation modeling software. The ability of a software 

package to order the objects in a queue is not uncommon and is a prerequisite for 



 

compatibility with the framework. Therefore, the function of a queue controller will not 

be described here. To work within the framework, a queue must have the ability to 

indicate the number of elements it contains and it must be able to release a number of 

elements in response to a signal or method call. For more explicit details of queue 

operation, refer to Law and Kelton (1991). Queues, like components, require attributes in 

addition to those described in this framework to function. Those attributes, again, vary 

from package to package and will not be further defined here. 

5.3.3  Workstation Controller 

The second level of control is the workstation controller. A workstation is a set of system 

resources and associated queues. This controller is responsible for coordinating two or 

more queue controllers to complete processes. A workstation controller w has four 

components: 

 [ ]DX,Q,C,w =  (53.) 

C is a set of nq queue controller constituents. Q is a set of nq queue controllers in the 

workstation, X is a set of nx feasible process combinations and D is a set of nq post-

process dispositions. 

 [ ]TnqcccC ,,, 21 K=  (54.) 
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 [ ]21 , iii ccc =  (55.) 

ci1 and ci2 are the type and class of the components to be stored in queue i, respectively. 

 [ ]TnqqqqQ ,,, 21 K=  (56.) 

qi is a queue controller as described in the previous section. 

 [ ]nxxxxX ,,, 21 K=  (57.) 

 [ ]Tipisnqiiii ttxxx ,,,,, ,21 K=x  (58.) 

xij is the number of components from qj necessary to carry out process i and nx is the 

number of processes that can be carried out by the workstation. 

 [ ]nxdddD ,,, 21 K=  (59.) 

 [ ]Tnqiiii ddd ,21 ,,, K=d  (60.) 

dij is the post process disposition of components from qj after completing process i. If dij = 

0, the component is to be included in an output batch. If dij = 1, the component is to be 

released to return to its point of origin. If dij = 2, the component is to be disposed. If qj1 = 

1, then dij ∈{0,2}. If qj1 ∈{2,3}, then dij ∈ {0,1}. This means that only type 1 components 

may be disposed, but if they are not, they must be included in the output batch. Material 
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components are functionally disposed when they permanently become part of an 

assembly. 

A workstation controller communicates with other elements of the framework through 

ports. Communication within the framework refers to the transfer of components from 

one control level to another. All communication is either up or down the hierarchy. A 

component must pass through the shop controller on its way from one workstation to 

another. A workstation controller has two input ports and nq+1 output ports. The 

controller has one input port and one output port dedicated to communication with the 

shop controller. The workstation controller has one output port for each queue in the 

workstation and one input port that receives communication from the queues. 

When a component is received from the shop controller, the workstation follows a short 

sequence of steps to process the component. 

1. If the component is type 1, 2 or 3, the workstation entry time attribute is updated. 

2. If the component is type 4, the batch is split up. The type 1 and type 2 components are 

re-batched in pairs. 

3. The type 1 and 2 components are routed to the port corresponding to a queue with the 

same component type and class. Type 4 components are routed to the type 1 queue with 

the same component class. 
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4. The class attributes of the type 3 components are compared to the class attributes for 

each of the type 3 queues. If there is a match, the component is routed to the appropriate 

queue. If there is no match, the component is routed back to the shop controller for return 

to its point of origin as recorded in its attributes. 

5. The controller finds the first process combination xi that matches the state of Q. 

6. If the controller finds a match, say xi, it signals qj to release xij components to the queue 

input port. Any type 4 components that were stored in type 1 queues are split and the type 

2 components that were part of the batch are routed to the shop controller for return to 

their point of origin. The remaining components are then formed into a new batch. The 

batch attributes are assigned based on the attributes of the type 1 component in the batch 

with the lowest component class number. The batch is deactivated for a period of 

simulation time equal to the setup and processing times specified by the batch attributes. 

7. When the batch is reactivated at the end of processing it is split up and the disposition 

of each component is determined from the post-process disposition instructions. The 

component class, c2, of each type 1 component is changed to match the class attribute of 

the type 2 component in the batch. Components to be destroyed are disposed from the 

model. Components to be released are routed to the shop controller for transfer back to 

their point of origin. 

8. The remaining components are formed into a batch and routed to the shop controller 



 

for transfer to their next destination. 

5.3.4  Shop Controller 

The third and highest level of production control is the shop controller. In the same way 

that the workstation controller coordinates the operation of its queues, the shop controller 

coordinates the operation of its workstations. It is the responsibility of the shop controller 

to populate the system with production control and resource permissions at the beginning 

of each simulation run and to coordinate traffic between workstations to implement a 

coherent production control policy throughout the system. A shop controller s has four 

components: 

 [ ]BP,R,W,s =  (61.) 

W is a set of nw workstation controllers, R is a set of nr component generators, P is a set 

of np production control rules and B is a set of nc process plans. 

 [ ]nwwwwW ,,, 21 K=  (62.) 

wi is a workstation controller as described in the previous section and nw is the number of 

workstations in the shop. 

 [ ]TnrrrrR ,,, 21 K=  (63.) 
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 [ ]4321 ,,, iiiii rrrr=r  (64.) 

ri1 and ri2 are the component type and class of the components to be generated, ri3 is the 

workstation where the component is to be assigned, ri4 is the number of components to be 

generated and ri5 is the simulation time at which they are to be generated. 

 [ ]Tnpppp ,,, 21 K=P  (65.) 

np is the number of material component classes processed by the system, and pi is the 

production control policy for material component class i. If pi = 0, the control policy is 

push. If pi = 1, the control policy is pull. If pi = 2, the component is the order interface, or 

control point, for the product. 

np is the number of material component classes processed by the system, and pi is the 

production control policy for material component class i.  If pi = 0, the control policy is 

push.  If pi = 1, the control policy is pull.  If pi = 2, the component is the order interface, 

or control point, for the product. If pi = 3, the component is the first in a CONWIP loop. 

If pi = 4, the component is the last in a CONWIP loop. 

 [ ]Tnpbbb ,,, 21 K=B  (66.)   

bi is the process plan for material class i, bi1 is the number of the workstation controller 

where material component class i is processed, and bi2 and bi3 are the setup and processing 
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times, respectively, for processing material class i at workstation bi1. If bi1 = nw + 1, the 

component is a finished product and will be routed out of the system. 

The shop controller communicates with other elements in the framework through ports. 

The shop controller has a pair of ports for input and output with the world outside the 

system. Like the workstation controller, the shop controller has one output port for each 

of the workstation controllers in the shop and one input port to receive communication 

back from them. The shop controller operates in two distinct modes. At the beginning of 

a simulation run, it creates, initializes and distributes components into the system to 

establish the initial condition of the system. Thereafter it coordinates communication 

between the system and the world and between the workstations. A shop controller 

receives types 1, 2 and 3 components from the world. Type 1 components represent raw 

materials, type 2 components represent finished goods orders to be filled and type 3 

components are system resources to be added to the system. When a shop controller 

receives a component from the world, it follows a short set of instructions, depending on 

the component type. For a type 1 component of class i the shop controller follows these 

instructions: 

1. The controller sets c7, the shop entry time, to the current simulation time and sets c4, c8, 

c9 and c10, the destination workstation, imminent setup time and imminent processing 

time to bi1, bi2, bi3 and bi2+ bi3 respectively. 
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3. It would also set c12, c13 and c14, the process time remaining, processes remaining and 

static slack time, but these attributes require bill of material information that is not 

currently included in the definition of the framework.  

4. The controller then routes the component to c4, the destination workstation. For a type 

2 component of class i, the shop controller sets c4, the destination workstation, to bi1, the 

order interface workstation for product i. In some systems and under some production 

control policies, there may be more than one order interface workstation. If this were the 

case, bill of material information would be required to determine the number and 

destinations of duplicate demand components. As indicated above, that information is not 

yet included in this framework. 

For type 3 components, the controller routes them directly to workstation c4. A shop 

controller receives type 4 components from its workstation controllers. The controller 

splits the batch up, then processes the constituent components individually before 

reforming the batch. For type 1 components of class i, the controller sets c4, c8, c9 and c10, 

the destination workstation, imminent setup time and imminent processing time to bi1, bi2, 

bi3 and bi2+ bi3 respectively. The components are then set aside until the rest of the 

components in the batch are finished processing and a batch is reformed. For type 2 

components, the controller checks the production control policy for the class. For a type 2 

component of class i, the controller checks pi. If pi = 0, push, the component is 

immediately routed to workstation c4. If pi =1, pull, the component is set aside. If pi = 2, 
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PPI, the component is disposed from the simulation. 

Type 3 components, like type 1, are simply set aside until the rest of the components in 

the batch are finished. When all of the components in a batch have been processed by the 

shop controller, the batch is reformed, minus any type 2 components that were routed 

elsewhere or disposed. The resulting type 4 component is then routed to workstation c4. If 

c4 > nw, the controller routes the component to the world output port. 

5.4  Application 

The effectiveness of the production control framework is best illustrated through an 

example. It is applied here to a three stage flow shop producing a single product. In the 

first stage, two subassemblies are processed by two different machines. In the second 

stage, the subassemblies are combined into a finished product by one of two identical 

machines. In the final stage, the finished products are packaged for shipping before they 

leave the system. The system is undergoing Lean transformation and the system manager 

wants to simulate the effects of moving the control point from the first stage, where the 

legacy MRP system currently controls the system, to the third stage, where customer 

demand can directly drive production. Figure 31 illustrates the manufacturing system. 



 

 

 
Figure 31. A three stage flow shop example. In this figure, two types of raw material components (red and 
purple circles) arrive at the first stage of the system, where they a single server processes them into sub-

assemblies (yellow and blue circles, respectively). In the second stage of the system, the sub-assemblies are 
combined by one of two servers into an intermediate assembly (pink circle), which is then processed by a 

single server in the third stage of the system into a finished assembly (blue circle), which departs the 
system. 

5.4.1  System Definition 

Applying the framework, a shop controller s is 

 [ ]BPRWs =  (67.) 

The shop controller for this case is defined as 
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The system has three workstations, so W contains three rows. There are eight component 

generators in the shop controller, so there are eight rows in R. Looking at the first 
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column, there are four each of demand (type 2) and resource permission (type 3) 

generators. Column two indicates that each type 2 component is assigned to one of the 

four classes of subassemblies, and each of the type 3 components is assigned to one of 

the three classes of machines in the system. This is consistent with the fact that each 

machine in the system processes only one subassembly. Columns three and four show 

that the two types of components are assigned to the three workstations in equal numbers. 

According to column five, all of the components are introduced to the simulation at time 

0. There are six material component classes in the system, so P has six rows. Since the 

shop is initially using a purely push-type production control policy, all of the entries are 

zeros. This means that when batches visit the shop controller after processing, the type 2 

components are released to return to their original workstation. Again, there are six 

material component classes in the system, so B has six rows. Column one indicates the 

workstation where the component is processed. Note that B indicates material class 6 is 

processed in workstation 4. There is no workstation 4 in the system, so this simply 

indicates that the shop controller will count and destroy these components. Columns two 

and three contain the setup and processing times for each component class. They remain 

undefined since these parameters are not critical to this illustration. With the shop 

controller defined, the workstation controllers can now be designed in accordance with 

the framework. 

 [ ]DXQCw =  (69.) 
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The workstation controllers and queue controllers are generated in parallel to ensure row 

continuity. The workstation controller for workstation 1 is defined as 
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For workstation 1, there are five queues; one for each of the two material classes 

processed there, one for each of the demands for the processes and one for the machines 

in the workstation.  

Workstation 1 produces two subassemblies, so there must be at least two feasible process 

combinations. There is one column in X for each feasible process combination. In this 

case then, there are exactly two combinations because there are two columns in X. The 

first combination, column one of X, indicates that one class 1 raw material component 

and one class 1 resource permission component are required to produce one class 3 

subassembly. The second column defines the requirements to produce a class 4 

subassembly. 

Since there are two process combinations in the workstation, there must be two 

dispositions and therefore two columns in D. The dispositions indicate that the resource 
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permission components remain in the workstation after processing, but the other 

components are batched and routed to the shop controller. The remaining two 

workstation controllers are defined 
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The function and behavior of queues is well understood.  In the interest of brevity, 

assume all of the queue controllers are defined as FCFS or 

 [ ]05=ijq  ∀ i,j (73.) 

5.4.2  System Modification 

In this initial condition, production control in the system is governed by the release of 

raw materials. The push-pull interface is located outside the system. Transforming the 

system to a pull-type production control policy is a simple parametric change. To move 
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the push-pull interface, change P in the shop controller to 

 [ ]T000002=P   (74.) 

Material component class 1 is now the order interface.  Although the shop is still driven 

by push production control, the control point is now within the model and more 

progressive changes can begin to be made.  For instance, the push pull interface may be 

moved downstream one station at a time until it is located at the last workstation and the 

shop is completely controlled by pull production control.  The sequence of changes to P 

needed to implement this transition plan might be: 

 [ ]T000021=P   (75.) 

 [ ]T000211=P   (76.) 

 [ ]T002111=P   (77.) 

 [ ]T021111=P   (78.) 

 [ ]T211111=P   (79.) 

In the last configuration, the shop has been transformed to pull production control. This 

simple flow shop model illustrates the effectiveness of the proposed production control 

framework to model production control policy parametrically. 
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5.5  Summary 

This chapter described the design of a framework with which to implement production 

control in a simulation model of a manufacturing system. It does so by differentiating the 

flow of material from the flow of information in the system, but uses the same techniques 

to control both. An information model for the system was defined and an example was 

presented to demonstrate its use. The next step is to realize this framework in software 

and to test its ability to model production control.  

 



 

Chapter 6  Simulation-based Optimization of Production Control 

Finding a production control policy that achieves the best tradeoff between customer 

service, work-in-process inventory, and other performance measures is a difficult task.  

To address this problem, this chapter introduces a technique that optimizes production 

control of single product flow shops under hybrid production control by using the 

Production Control Framework (PCF).  This simulation modeling template is designed 

specifically to explore the production control domain. The chapter demonstrates how this 

template can be used in conjunction with existing simulation optimization software to 

find an optimal production control policy.  The decision variables are location of the 

push-pull interface and the number of kanban cards at each workstation.  The objectives 

include improving customer service and reducing work-in-process inventory. 

6.1  Hybrid Production Control Domain 

In this chapter, we explore the hybrid production control domain, a sub-set of the full 

PCF domain. Using PCF nomenclature, we define production control domains explicitly. 

Once a PCF based model is defined, one can describe its production control policy using 

only P from the Shop element. For such a model P is 

 [ ]Tnpx pppp ,,,,, 21 KK=P  (80) 

I describe the hybrid production control domain as   
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 11 =p  (81) 

 2=xp  (82) 

 { }2,1∈npp  (83) 

 1=ip  for 11 −<< xi  (84) 

 0=ip  for npix <<+1  (85) 

Thus, for a system with np material classes, there are np-1 variations of hybrid production 

control. As Hopp and Spearman (2000) suggest, both traditional push production control 

and kanban production control can be shown to be special cases within the hybrid 

production control domain. For push production control, x = 2. For kanban production 

control, x = np - 1.  

6.2  Problem Setting 

This chapter studies the effect of different hybrid production policies on the performance 

of a four-stage, single-product flow line. The flow line is shown in Figure 32. 
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Figure 32. A four stage flow line, shown configured for pull production control. In this example, incoming 
customer orders (orange triangles) are matched with finished goods in inventory (pink circle with triangle), 

which causes a finished goods kanban card (pink triangle) to travel back to stage 4 and signal the 
production of a finished good from an intermediate assembly in assembly (purple circle with purple 
triangle). This causes similar kanban card transactions triggering production of other intermediate 

assemblies (blue and red circles with triangles), from other assemblies (red circles with triangles) and raw 
materials (green circles), respectively. In this system, the push-pull interface is in workstation 5. 

Using the PCF, five workstations are required to model a four stage system. One 

workstation is required to model each stage and its upstream buffers. A fifth workstation 

is needed to provide a downstream buffer for the fourth stage. The process in this fifth 

workstation is defined as requiring zero time. Using the PCF, the example system is 

modeled as  
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for i ∈ {1,2,3,4},  
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and 

 [ ]05=ijq  ∀ i,j  (89) 

As a default, the WIP of each product in the system is set to five. Of course, this applies 

only to components controlled with pull. All of the queues are controlled on a first-in-

first-out policy. The system is configured for hybrid production control, specifically 

kanban production control. For this configuration, the production control vector P is  

 [ ]T20000=P  (90) 

Since this system has five workstations, it can be used to model five different hybrid 

production control policies. Figure 33 illustrates the system with the order interface at the 
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fourth stage, where P is 

 [ ]T12000=P  (91) 
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Figure 33. A four stage flow line with push-pull interface at fourth stage 

Figure 34 illustrates the system with the push-pull interface at the third stage, where P is 

 [ ]T11200=P  (92) 

Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5

Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5  
Figure 34. A four stage flow line with push-pull interface at third stage 

Figure 35 illustrates the system with the order interface at the second stage, where P is 

 [ ]T11120=P  (93) 
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Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5

Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5  
Figure 35. A four stage flow line with push-pull interface at second stage 

Figure 36 illustrates the system in its final configuration, with the order interface at the 

first stage, in push production control. Here P is 

 [ ]T11112=P  (94) 

Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5

Push-Pull 
Interface

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5  
Figure 36. A four stage flow line with push-pull interface at first stage – push production control 

Using the PCF, changing the production control policy is a simple parametric change to 

P. Models used in previous chapters, without the PCF, were much more difficult to 

change. Aside from the human effort benefits of using the PCF, changing production 

control from a structural model element to a parametric one makes it possible to use 

automated simulation-based optimization techniques to find the optimal production 

control policy for any PCF-modeled system, as we will soon demonstrate. 

6.3  Model 

I modeled the example system using a PCF-based template developed using Arena 
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(Kelton, Sadowski, and Sturrock, 2004).  Figure 37 shows the user view of the example 

model in Arena. 

 
Figure 37. An Arena model of the example system, built using the PCF template 

The PCF elements, as defined, are not sufficient to build a functioning model. Additional 

objects are necessary to create and dispose of the components that flow through the 

system. The PCF template provides modules for the creation of material, permission and 

resource components. It also provides a module to dispose of components that have 

completed processing.  

By using the Arena platform, the built-in optimization engine, Optquest, can be applied to 

PCF models to find optimal production control policy and WIP levels. 

6.4  Experiments 

I chose to repeat a subset of the experiments Gaury (2001) performed. Their experiments 

explored what they called Customized Pull Systems where every station could feed pull 
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signals back to every other station in the system.  This extremely flexible scheme is 

impractical and not found in practice.  The scope of this chapter is greatly reduced by my 

definition of the hybrid production control domain in which each station communicates 

only with the station immediately upstream.  

6.5  Experimental Factors 

Four experimental design factors were chosen to study the performance of the system. 

Gaury defined a set of 12 process, demand, and performance factors. My implementation 

of the PCF template is somewhat more limited in what it can express, so my experiments 

consider the following four factors (summarized in Table 29): 

• Line Imbalance - A balanced line is one in which all of the stage have the same 

production rate. An unbalanced line has workstations with unequal production 

rates.  The Degree of Imbalance (DI) characterizes this factor. Meral and Erkip 

(1991) define DI as 

 DI = max{TWC/N-min(PTi); max(PTi)-TWC/N} (95) 

where PTi is the mean Processing Time at workstation i in an N-station line, and 

TWC/N is the mean processing time at a workstation on the balanced N-station 

line. It was set to either 0, completely balanced, or 0.5, imbalanced.   

• Imbalance Pattern - Imbalanced lines can have the bottleneck at the last stage (a 
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funnel pattern) or at the first stage (a reverse funnel pattern). 

• Processing Time Variability - The variability of processing time, which has a 

strong effect on system performance, was set to either 0.1 or 0.5.  

• Demand Rate / Capacity - The rate at which orders arrive, relative to the 

capacity of the system, was set to either 0.8 or 0.9. 

The use of the PCF template allows us to use off-the-shelf optimization software to find 

the optimal production control and WIP levels for each experiment. Since this limited 

system has five possible production control configurations, the optimal WIP for each case 

was found in order to illustrate the difference this factor has on performance.  

Table 29. Flow shop optimization experiment factors (Gaury et al., 2001) 

Level Factor 
+ - 

Letter 

Line Imbalance 0 0.5 A 
Imbalance Pattern Funnel Reverse 

Funnel 
B 

Processing Time CV 0.1 0.5 C 
Demand Rate / Capacity 0.8 0.9 D 

 

6.6  Experimental Design 

A full factorial analysis was performed to examine this set of design factors (Note that if 

the line is balanced, the imbalance pattern is irrelevant.). Table 30 details the 

experimental design.  
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Each experiment was conducted with the customer order interface in each of the five 

possible configurations for a total of 60 experiments. Each trial was run for a single 

replication of 24,000 time units with a warm-up period of 1,000 units.  

Table 30. Design of experiment, flow show optimization 

Trial A B C D 
1 + n.a. + + 
2 + n.a. + - 
3 + n.a. - + 
4 + n.a. - - 
5 - + + + 
6 - + + - 
7 - + - + 
8 - + - - 
9 - - + + 
10 - - + - 
11 - - - + 
12 - - - - 

 

6.7  Optimization Setup 

Each trial configuration was optimized using Optquest, an optimization package that 

comes bundled with Arena.  The objective function to be minimized was the average total 

number of parts (material components) waiting in the system.  For optimization purposes, 

the control parameters were the number of permission components issued to each 

workstation at the beginning of the run.  For pull workstations, these permissions become 

the kanban cards that authorize production at that station.  Otherwise, the permissions are 

not used.  These controls were limited to integer values from 1 to 50, with recommended 



 

value of 10. A customer service requirement was imposed: the average waiting time for 

an incoming order at the push pull interface must be less than or equal to 0.001 time 

units.  The optimization for each trial was set to run for 20 minutes. In a typical run, this 

resulted in over 200 permutations. Figure 38 shows the Optquest user interface. The 

parameter values used in the experiments are included in Appendix A. 

 
Figure 38. Optquest user interface 

6.8  Results 

The experimental results show, consistent with my expectations, that increasing demand 

and variability requires more inventory to maintain good customer service.  Full results 

are reported in Appendix B.  In this table, cells are marked “N.F.F.” (“no feasible found”) 

when the optimization routine could not find a solution that satisfied the customer service 

requirement. 

When the push pull interface is Stage 1, the system is pure push system, and the system 

performance doesn’t depend upon the control parameters.  Interestingly, in three of the 

trials (trials 4, 7, and 10), the push system cannot achieve the customer service 
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requirement.  In all of the pure pull systems (with the push pull interface at Stage 5), the 

system can achieve the customer service requirement, though that will require more WIP 

(the number of kanban cards in the system) when demand or process variability is high. 

When the push pull interface is at Stages 2, 3, or 4, the system can achieve the customer 

service requirement sometimes, particularly when demand is low or process variability is 

low.   

Note that the customer service requirement may be too restrictive, since it was hard to 

find feasible solutions in some cases.  Additional experiments are needed to further 

understand how changing the customer service requirements affect the performance of 

different production control policies. 

6.9  Summary 

This chapter explored the potential of the PCF to facilitate the use of simulation-based 

optimization to find the optimal production control configuration for a generic flow line. 

The trials were carried out very quickly due to the fact that there was little or no 

programming required to re-configure the model and optimization engine for different 

production control configurations. Some coding was necessary to measure the objective 

function. However, once implemented, a single model was capable of emulating the 

entire production control domain for a given generic flow line. 
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Optquest proved to be a useful tool, but it was limited in its expression of constraints. No 

constraint could relate one input parameter to another. Thus, the ordinal constraints of the 

hybrid production control domain could not be fully automated. This was, however, only 

a small inconvenience. 

The PCF template successfully demonstrated that it could be combined with automated 

optimization to find the optimal production control configuration for a generic flow line. 

The results of experiments on a simple flow line were consistent with studies on similar 

systems using traditional modeling elements. 

Future research in this direction would consider larger generic flow lines with non-

monotonic processing time imbalances. It would pursue the incorporation of more 

intrinsic objective measurement. It would also address the limitations of the simulation 

optimization tool constraints. 
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Chapter 7  Conclusion 

7.1  Summary 

This dissertation addresses pull production control, an important component of Lean 

manufacturing, and explores the poorly understood process of implementing Lean 

principles and changing the production control policy. There is a host of Lean literature, 

no doubt due to its popularity as a buzzword in industry circles, but the rigor of most of 

this work is questionable. It is often based more on anecdotes than first principles, and, as 

a result, offers little to the would-be practitioner in terms of useful guidance. The serious 

analytical work in the production control realm of Lean study is focused on steady state 

performance of Lean systems. However, even the anecdotal articles tell the reader that 

the period of transition from “fat” to Lean is the most critical for ultimate success.  This 

dissertation provides a greater understanding of this transient period and develops useful 

guidelines and tools for Lean production control design and transition with the real-world 

objective of reducing cost. 

The transformation of a single stage of a manufacturing process is the fundamental 

element of production control transition. We developed a model of the transformation 

process, defining the events of a push-to-pull transition and developing a cost-based 

objective function. We based the objective function on the cost of holding both inventory 

and unfulfilled orders. We introduced three factors that we can use to control the speed of 

transition and thereby mitigate cost: controlling the speed at which kanban cards are 
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introduced to the system, deferring the flow of new customer orders into the system and 

adding extra capacity to deal with the temporary surge in traffic. These factors added 

their own costs to the objective function. To test the effects of mitigation on cost, we 

developed both a simulation model of the system and an approximate analytical model. In 

order to find the right balance of mitigation techniques, we employed simulation based 

optimization. We demonstrated that the optimal transition policies we developed 

outperformed simple policies derived from the Lean literature and so-called common 

sense. We also established a useful guideline to be used in the absence of thorough 

analysis: accelerate transition as much as possible except where backlog is expensive. 

Multi-stage transition is the reality of Lean production control implementation. Most 

manufacturing systems have many, often very diverse, stages. Using the single stage 

model as a basis, we developed a framework with which to describe the events of a multi-

stage transition. In the multi-stage scenario, the events of each individual stages 

transformation are no different than the single stage model. The fundamental question of 

the multi-stage system then is when to initiate each individual transformation. Using a 

simulation model of the system, we studied two special cases of multi-stage transition: all 

of the stages transforming at the same time in the All At Once strategy and the stages 

transforming one at a time in sequence in the One By One strategy. It was shown that the 

One By One strategy was less costly by avoiding some of the more radical interactions of 

adjacent stages transforming together. Mitigation techniques that were applied to the 
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single stage were tested on the multi-stage model, and they were shown to be just as 

effective in lowering the time and cost required for transition in this case. 

In order to model and optimize the transition of complex systems like those that one 

would find in a real manufacturing system, a new modeling paradigm was required. The 

queue server model has long been used to represent push production control, but pull has 

no such convenient analog. By extending the queue server model and modifying it in a 

manufacturing domain specific manner, we developed the Multi Flow Model of a 

manufacturing stage as a basis on which to build more complex models. The Multi Flow 

Model treated all of the ingredients of a manufacturing process, which we defined as 

material, resources and demand, as components all necessary to trigger the stage to begin 

service. By instantiating resources, and demand we provided the signals necessary to 

coordinate pull production control. However, the signals required a network across which 

to travel. To provide that network, the Production Control Framework was defined. The 

Production Control Framework is a hierarchical model, based on the Multi Flow Model, 

which can be used to emulate a rich variety of manufacturing systems. Its three tiers, the 

Shop, the Workstation and the Queue can be pieced together and configured in different 

ways to express a wide variety of production control and dispatching rules. One novel 

aspect of the Production Control Framework is the ability to express the production 

control of the system in parametric form and thereby enable automated manipulation and 

optimization of a model. 
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The power and flexibility of the Production Control Framework were demonstrated when 

we implemented it in a set of software objects and used it to find the optimal production 

control policy for a five stage manufacturing system. The models created with the 

Production Control Framework software were very easy to reconfigure to emulate 

different production control policies. Its compatibility with simulation-based optimization 

was shown when we employed Optquest, a common optimization engine, to find the 

optimal production control policy for the system under different operating conditions. 

7.2  Contribution 

This dissertation makes contributions to the study of production control, especially in 

transient conditions, and to the simulation modeling of manufacturing systems.  

Production control is normally studied in steady state. Lean manufacturing, a 

transformational doctrine, demands attention to the transient behavior of systems 

undergoing changes in production control.  To do this, I created new analytical models of 

systems experiencing non-stationary traffic intensity. I created simulation models capable 

of studying transient behavior – phenomena usually carefully eliminated from simulation 

studies. I used these tools to explore the transient behavior of single stage and the 

surprisingly complex behavior of multi-stage systems undergoing production control 

transition. To control these effects, I developed the first well-defined transition strategies. 

Simulation modeling of pull production control is a technical challenge. Traditional 
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simulation modeling software is designed to model push production control. In order to 

simulate complex systems under a variety of production control policies, I developed a 

new modeling paradigm, built by extending the logical basis of contemporary simulation 

models. Using this new paradigm, I created a new, hierarchical framework built 

specifically to model a wide variety of manufacturing system production control policies 

and to express production control as a parameter of a model, rather than part of its 

structure. I implemented this framework in a new class of re-usable software objects that 

make it possible to use automated tools to find optimal production control policies. 

Together, these contributions lay the groundwork for the exploration of the transient 

behavior of truly complex systems undergoing Lean transition and for optimization of 

those transitions. 

7.3  Future Work  

Although this dissertation sheds light on some previously unexplored phenomenon of 

Lean transformation, it leaves many questions yet unanswered and poses still more. It 

provides new tools to answer some of those questions, but they require more refinement 

to realize their full potential. 

My models of the single stage transformation deserve continued attention. There remains 

some inaccuracy in the predictions of the analytical model versus the simulation model 

results. Continued study should focus on understanding that inaccuracy. One possible 
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source of inaccuracy that should be examined is the selection of the simulation model run 

termination event. The time plots indicate that the system may take some time after the 

termination event to reach its new steady state. Meerkov and Zhang (2008) present an 

alternative termination criterion that should be pursued in this context. Further, our 

choice of first-in-first-out as the queue discipline used in the model may affect the results. 

One might argue that no real-world implementation of Lean would choose to give 

priority to orders destined for stock ahead of customer orders, no matter when they 

arrived at the stage. The effect of different queue disciplines should be evaluated. 

Much more work is required on the subject of multi-stage transition. This dissertation 

barely scratched the surface of the fascinating behavior of such systems. Just as in the 

single stage case, the effect of varying the queue discipline should be investigated. 

Giving priority to customer orders over kanban cards might moderate the more extreme 

behavior the systems exhibited. Only two of the three mitigation techniques demonstrated 

with the single stage system were used to mitigate the multi-stage system. Transition 

strategies that make use of this technique should be developed and similarly tested. In 

general, more transition strategies should be developed and categorized. Some possible 

variations include different types of transition triggers, varying versus fixed mitigation 

levels, and shared versus non-shared resource pools. Systems with different line balances 

and varying performance should be examined to determine which strategies work in 

which kinds of systems. Automated optimization should be employed to optimize multi-
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stage transition. Production Control Framework based modeling objects now make this 

possible. 

For all of the transition modeling and scenario testing, realistic cost rates should be 

further investigated. In this dissertation, I used unit rates in almost all of the tests. 

Although this does not affect my conclusions, it may render some of them moot from a 

practical standpoint.  

The PCF software template is powerful and flexible, but it is not user-friendly.  

Describing a complex system using the PCF is not easy. The software often makes it 

more complex than necessary due to the limitations of the user interface. Developing a 

wizard or some other design aid would add great value to these tools. The software 

objects themselves would benefit from enhanced outputs, both visual and data. Further, 

there is no cost model like those used in Chapters 3 and 4 built into the software. This 

would be a useful addition.  

The optimization of PCF models in Chapter 6 put the limitations of the optimization tool 

in stark relief. In Chapter 4 I developed simple constraints to define a multi-stage 

transition. However, the optimization tool I used did not allow me to input these 

constraints since they related one input variable to another. As a result, I was forced to do 

a full-factorial, fully manual evaluation. Either a new optimization tool must be identified 

that can accommodate the constraints I developed, or some kind of shell software must be 
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devised to manage the constraints and run the experiments through the optimization 

software. 

These few additions could add even more value to the work already completed in this 

dissertation. I look forward to pursuing them. 

  



 

 

151 

 

Appendices 

APPENDIX A: EXPERIMENTAL INPUTS  

Table 31 details the input parameters for the 12 configurations in which I optimized the 

production control policies for the example four-stage flow line. 

Table 31. Experiment Input Parameters 

Trial 1 2 3 4 5 6 7 8 9 10 11 12 

Demand  
Level 

Low Demand (0.8) High Demand (0.9) 

Process  
Variability 

Low Process  
Variability (0.1) 

High Process  
Variability (0.5) 

Low Process  
Variability (0.1) 

High Process  
Variability (0.5) 

Line  
Imbalance 
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Stage 1  
process time 

1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 

Stage 1  
variability 

0.1 0.15 0.05 0.5 0.75 0.25 0.1 0.15 0.05 0.5 0.75 0.25 

Stage 2  
process time 

1 1.17 0.83 1 1.17 0.83 1 1.17 0.83 1 1.17 0.83 

Stage 2  
variability 

0.1 0.117 0.083 0.5 0.585 0.415 0.1 0.117 0.083 0.5 0.585 0.415 

Stage 3  
process time 

1 0.83 1.17 1 0.83 1.17 1 0.83 1.17 1 0.83 1.17 

Stage 3  
variability 

0.1 0.083 0.117 0.5 0.415 0.585 0.1 0.083 0.117 0.5 0.415 0.585 

Stage 4  
process time 

1 0.5 1.5 1 0.5 1.5 1 0.5 1.5 1 0.5 1.5 

Stage 4  
variability 

0.1 0.05 0.15 0.5 0.25 0.75 0.1 0.05 0.15 0.5 0.25 0.75 

Order  
interarrival time 

1.25 1.87 1.87 1.25 1.87 1.87 1.11 1.66 1.66 1.11 1.66 1.66 

Order  
variability 

0.125 0.187 0.187 0.125 0.187 0.187 0.111 0.166 0.166 0.111 0.166 0.166 
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APPENDIX B: EXPERIMENTAL RESULTS 

Table 32 shows the optimal number of kanban cards at each of the four stages of the 

example flow line for each of the 12 configurations shown in Table 31. 

Table 32. Optimal WIP Level for Experiment Input Parameters 

Trial Push Pull 
Interface 

Optimal  
Value of  

Permissions 
for each Stage 

1 2 3 4 5 6 7 8 9 10 11 12 

Stage 2 Stage 1 1 2 1 N.F.F. N.F.F. N.F.F. N.F.F. 2 1 N.F.F. N.F.F. N.F.F. 

Stage 1 1 1 1  1   2 1    

Stage 2 1 1 1  6   1 1    

Stage 3 

Total kanban cards 2 2 2 N.F.F. 7 N.F.F. N.F.F. 3 2 N.F.F. N.F.F. N.F.F. 

Stage 1 1 1 1  1  1 1     

Stage 2 1 1 1  2  1 1     

Stage 3 1 1 1  4  2 1     

Stage 4 

Total kanban cards 3 3 3 N.F.F. 7 N.F.F. 4 3 N.F.F. N.F.F. N.F.F. N.F.F. 

Stage 1 1 1 1 1 1 1 1 1 1 7 3 1 

Stage 2 1 1 1 1 6 4 6 1 4 5 2 1 

Stage 3 1 1 3 1 6 6 6 1 8 5 4 4 

Stage 4 1 1 13 3 2 6 3 1 5 10 4 5 

Stage 5 
(Pull) 

Total kanban cards 4 4 18 6 15 17 16 4 18 27 13 11 
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Glossary 

Acronyms 

1B1:  One By One Transition Strategy 

AA1:  All At Once Transition Strategy 

CONWIP: Constant Work In Process 

DFF:  Deterministic Fluid Flow Model 

EDD:  Earliest Due Date 

FIFO:  First In First Out 

MFMP:  Multi Flow Modeling Paradigm 

MRP:  Material Requirements Planning 

PCF:  Production Control Framework 

PPI:  Push-Pull Interface 

SPT:  Shortest Processing Time 

SSS:  Steady State Stochastic Model 

WIP:  Work-in-Process Inventory 
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Terminology 

All At Once Transition Strategy (AA1): A strategy for converting a multi-stage 
manufacturing system from push to pull production control in which kanban cards are 
introduced into all stages simultaneously and the push pull interface moves from the start 
of the system to the end when the stage 1 inventory contains all of its kanban cards.  

Backlog: A queue of unfilled customer orders and/or kanban cards awaiting material 
and/or service. 

Constant Work In Process (CONWIP): A production control technique in which the 
amount of WIP in the system is held constant by matching order releases into the system 
with departing orders. 

Deterministic Fluid Flow Model (DFF): A model of a queuing system in which the 
service time is deterministic and variability is introduced in the form of a non-stationary, 
but also deterministic, customer arrival rate. 

Earliest Due Date (EDD): A queue discipline in which orders are arranged in ascending 
due date order. This queue discipline achieves low average order lateness at the expense 
of throughput. 

First In First Out (FIFO): A queue discipline in which orders are arranged in ascending 
order of queue entry time. 

Hybrid Production Control: A production control policy governing a multi-stage 
manufacturing system in which some of the stages are controlled with push and others 
with pull. 

Inventory/Order Interface: See Push-Pull Interface.  

Kanban: Japanese for “shop sign”, and first adopted in the Toyota Production System, 
this term refers to paper or plastic cards that manufacturing systems under pull control 
often use to instantiate demand signals. In practice, kanban cards are affixed to products 
or components in inventory. When that product or component is needed, the card is 
detached and returned to its original process, which now has explicit permission to refill 
the inventory of the part specified on the card. 

Lean: The western name for the Toyota Production System, a manufacturing 
management philosophy focused on the reduction of waste. 

Material Requirements Planning (MRP): A production control system that attempts to 
fill external demand (customer orders) by scheduling the creation of purchase and 
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production orders. For a given end item, MRP contains a bill of material, which it 
explodes to determine gross requirements for components and sub-assemblies. Using 
fixed lead times and assuming infinite capacity, it calculates creation dates for each order 
by back-scheduling from the due date of the external demand order (for the finished 
goods) or from the calculated creation date of the next higher assembly order (for 
subassemblies and components). 

Multi-Flow Modeling Paradigm (MFMP): A domain-specific abstraction of a 
manufacturing process in which the flow of materials, resources and demand are 
considered, enabling emulation of a wide variety of production control policies, including 
both push and pull.  

Multi-stage: A queuing system in which customers wait in a prescribed series of two or 
more queues (stages) for service by one or more servers. The variability of customer 
arrivals and service times at each stage dictates the arrival rate at the next.    

One By One Transition Strategy (1B1): A strategy for converting a multi-stage 
manufacturing system from push to pull production control in which kanban cards are 
introduced into one stage at a time, beginning at the upstream end. As a given stage 
begins the transition, it becomes the push-pull interface. When all of the kanban cards 
have been processed and are waiting in inventory, the transition of the next stage 
downstream begins. 

Production Control Framework (PCF): A three-tiered hierarchical description of a 
manufacturing system based on the multi-flow modeling paradigm. Starting from the 
bottom, the three levels of the PCF are: queue, workstation and shop.  

Production Control Policy: The operating policy of a workstation in a manufacturing 
system that specifies whether the presence of material implies permission to process or if 
additional explicit permission is required. See pull and push. 

Pull: A production control policy in which a workstation requires both material and 
explicit permission to proceed before processing. Permission to proceed is often granted 
in the form of a kanban card. Permission is generated by a customer, either external of 
internal to the system when they consume the product of a given workstation. Thus, 
production is governed by consumption and the number of kanban cards in a system 
dictates the level of work-in-process. 

Push: A production control policy in which a workstation may process material as long 
as it is available. Permission to proceed is implicit with the presence of material. 

Push-Pull Interface (PPI): The stage in a multi-stage manufacturing system under 
hybrid production control at which customer orders are introduced. All of the stages 
upstream of the PPI are controlled with pull and all of the stages downstream of the PPI 
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are controlled with push. Also called inventory/order interface. 

Shortest Processing Time (SPT): A queue discipline in which orders are arranged in 
order of increasing processing time. This queue discipline achieves high throughput at the 
expense of average due date performance.  

Single-stage: A queuing system in which customers wait in a single queue to be served 
by a single server. When service is complete, they exit the system. 

Steady State Stochastic Model (SSS): A model of a queuing system in which both the 
interarrival and service times are stochastic, but stationary. 

Work-in-Process Inventory (WIP): A queue of non-finished-goods material awaiting 
orders/kanban cards and/or service. 
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