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In free-space optical communication, the intensity of a laser beam is modulated

by a message, the beam propagates through free-space or atmosphere, and eventually

strikes the receiver. At the receiver, an optical sensor converts the optical energy

into an electrical signal, which is processed to reconstruct the original message. The

promising features of this communication scheme such as high-bandwidth, power

efficiency, and security, render it a viable means for high data rate point-to-point

communication.

In this dissertation, we adopt a stochastic approach to address two major

issues associated with free-space optics: digital communication over an atmospheric

channel and maintaining optical alignment between the transmitter and the receiver,

in spite of their relative motion. Associated with these issues, we consider several

detection, estimation, and optimal control problems with point process observations.

Although these problems are motivated by applications in free-space optics, they

are also of direct relevance to the general field of estimation theory and stochastic



control.

We study the detection aspect of digital communication over an atmospheric

channel. This problem is formulated as an M-ary hypothesis testing problem involv-

ing a doubly stochastic marked and filtered Poisson process in white Gaussian noise.

The formal solutions we obtain for this problem are hard to express in an explicit

form, thus we approximate them by appropriate closed form expressions. These ap-

proximations can be implemented using finite-dimensional, nonlinear, causal filters.

Regarding the optical alignment issue, we consider two problems: active point-

ing and cooperative optical beam tracking. In the active pointing scheme that we

develop for short range applications, the receiving station estimates the center of

its incident optical beam based on the output of a position-sensitive photodetector.

The transmitter receives this estimate via an independent communication link and

incorporates it to accurately aim at the receiving station.

A cooperative optical beam tracking system consists of two stations in such a

manner that each station points its optical beam toward the other one. The stations

employ the arrival direction of the incident optical beams as a guide to precisely

point their own beam toward the other station. We develop a detailed stochastic

model for this system and employ it to determine a control law which maximizes

the flow of optical energy between the stations. In so doing, we consider the effect

of light propagation delay, which requires a point-ahead mechanism to compensate

for the displacement of the receiving station during propagation time.



NONLINEAR DETECTION, ESTIMATION, AND CONTROL

FOR
FREE-SPACE OPTICAL COMMUNICATION

by

Arash Komaee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Professor P. S. Krishnaprasad, Co-Chair/Advisor
Professor Prakash Narayan, Co-Chair/Co-Advisor
Professor Thomas E. Murphy
Professor Steve Marcus
Professor Rajarshi Roy



c© Copyright by

Arash Komaee
2008



DEDICATION

To my parents

for their endless love, encouragement, and support

ii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors Professor P. S. Krish-

naprasad and Professor Prakash Narayan for their thoughtful guidance, criticism of

my work, and every means of support. Their liberal attitude and unquestionable

ethics and integrity made working with them a pleasure. It has been my privilege

to have them as my mentors, and I endeavor to follow their admirable professional

standards.

I am grateful to my dissertation committee members Professor Thomas Mur-

phy, Professor Steve Marcus, and Professor Rajarshi Roy for their time and instruc-

tive comments during the defense. I am particularly in debt to Professor Marcus

for his suggestions that improved this dissertation and Professor Murphy for the

invaluable discussions we had during the course of my research.

I would like to express my gratitude and affection to my parents who have

been my primary teachers. Without their continued support and encouragement, I

doubt I could have completed my higher education.

I acknowledge the financial support of my research by the Army Research Of-

fice under ODDR&E MURI01 Program Grant No. DAAD19-01-1-0465 to the Center

for Communicating Networked Control Systems (through Boston University), by the

National Science Foundation under Grant No. ECS 0636613, by the Army Research

Office under ARO Grant No. W911NF0610325, and by the Office of Naval Research

under the ODDR&E MURI2007 Program Grant No. N000140710734.

iii



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Atmospheric Turbulent Channels . . . . . . . . . . . . . . . . . . . . 2
1.2 Optical Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Optical Beam Tracking . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Active Pointing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Cooperative Optical Beam Tracking . . . . . . . . . . . . . . . 9

1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Nonlinear Detection for Digital Communication Over Optical
Channels 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Model and Problem Statement . . . . . . . . . . . . . . . . . . . 15

2.2.1 Stochastic Model of an Optical Link . . . . . . . . . . . . . . 15
2.2.2 Significance of the Model Parameters . . . . . . . . . . . . . . 17
2.2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The Optimal Detection Law . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Upper and Lower Bounds on Λ (·) . . . . . . . . . . . . . . . . . . . . 30
2.5 Behavior of Λ (·) for a Small Pulse Duration . . . . . . . . . . . . . . 41
2.6 Approximate Implementation . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 Approximation: Category I . . . . . . . . . . . . . . . . . . . 51
2.6.2 Approximation: Category II . . . . . . . . . . . . . . . . . . . 58

3 Estimation and Control with Space-Time Point Process Obser-
vations 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 The Model and Problem Statement . . . . . . . . . . . . . . . . . . . 60

3.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Relevant Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



3.4 A New Formulation for the Estimation Problem . . . . . . . . . . . . 68
3.5 Optical Beam Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Active Pointing 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Proof of the Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . 90
4.5.2 Derivation of (4.9) . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . 95
4.5.4 Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . . . 103

5 Cooperative Optical Beam Tracking: Concept and Model 104
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Transceiver Structure . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 The Concept of Cooperative Optical Beam Tracking . . . . . . 110
5.2.3 Assisting Equipments . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.1 Notation and Coordinate Systems . . . . . . . . . . . . . . . . 113
5.3.2 Optical Field on the Transceiver Aperture . . . . . . . . . . . 117
5.3.3 Optical Intensity on the Photodetector Surface . . . . . . . . . 121
5.3.4 Atmospheric Turbulence . . . . . . . . . . . . . . . . . . . . . 123
5.3.5 The Photodetector Output . . . . . . . . . . . . . . . . . . . . 125
5.3.6 Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.7 Model Summary and Discussion . . . . . . . . . . . . . . . . . 130

5.4 Linearizing the Dynamical Equations . . . . . . . . . . . . . . . . . . 133
5.5 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Cooperative Optical Beam Tracking: Optimal Control 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Model and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Control Problem: Short Range Applications . . . . . . . . . . . . . . 151
6.5 Control Problem: Long Range Applications . . . . . . . . . . . . . . 156
6.6 Proof of Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusion and Directions for Future Work 172
7.1 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . . . 172
7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.1 Extending the Present Results . . . . . . . . . . . . . . . . . . 175

v



7.2.2 Optical Communication for Space Missions . . . . . . . . . . . 178
7.3 Possible Applications in the Study of Nervous Systems . . . . . . . . 179

Bibliography 181

vi



List of Tables

5.1 Typical values of the parameters of a free-space optical link. The
data is gathered from [47, 3, 50]. . . . . . . . . . . . . . . . . . . . . . 119

vii



List of Figures

1.1 Schematic diagram of a simple optical receiver. . . . . . . . . . . . . . 5

1.2 Active pointing scheme for a short range free-space optical channel. . 8

2.1 Implementation of (a) approximation (2.68) and (b) approximation (2.69).
In (b), the nonlinear mapping Φ∗

α (·) is defined as Φ∗
α (·) = ln Φα (·). . 52

2.2 Implementation of (2.80). Here, the impulse response g̃ (t, τ) is de-
fined as g̃ (t, τ) = g (t− ǫ, τ − ǫ). . . . . . . . . . . . . . . . . . . . . . 56

2.3 Implementation of (2.81). In this block diagram, we have g̃ (t, τ) =
g (t− ǫ, τ − ǫ) and F ∗

α (v1, v2) = lnFα (v1, v2). . . . . . . . . . . . . . . 57

2.4 Structure of a system which determines B (YT ; {λt} , T ) by solving (2.56).

In this block diagram, we have η = exp
(

−
∫ T

0
λtdt

)

and γ̃ (t, τ) =

γ (t− ǫ, τ − ǫ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Receiving aperture, optical beam, and the displacement vector yt. . . 79

5.1 Schematic diagram of an optical transceiver for short range applications.107

5.2 Optical transceiver for intersatellite communication (based on [48]). . 109

5.3 Interconnection between the components of a cooperative optical beam
tracking system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Comparison of γ (s) with its Gaussian approximation. . . . . . . . . . 123

viii



5.5 Block diagram of a cooperative optical beam tracking system. In
this figure, the blocks marked by “State-Space Equations”, “Output
Equations”, and “Optical Intensity Model” refer to (5.25), (5.26),
and (5.20), respectively. Also, “Photodetector Model” refers to (5.21)
and the vector-valued doubly stochastic Poisson process Y i

t defined
in Section 5.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



Chapter 1

Introduction

Free-space optics is regarded as a high-bandwidth and power efficient means for

point-to-point communication with a wide range of applications including fixed-

location terrestrial communication [1], communication between mobile robots [2],

airborne communication [3], and intersatellite communication [4]. In this mode of

communication, (digital) transmitting data modulates the instantaneous power of

a laser beam, which propagates through free-space or atmosphere, and eventually

strikes the receiver. At the receiver, an optical sensor (photodetector) converts the

optical energy into an electrical signal, which is processed to reconstruct the original

data.

Two major issues are associated with this communication scheme: optical

fade caused by the atmosphere and misalignment of the stations (transmitter and

receiver) due to their relative motion. This research investigates a stochastic ap-

proach in finding solutions to these problems. Although the detection, estimation,

and control problems considered in this work are motivated by applications in free-

space optical communication, they are of direct relevance to the general field of
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estimation theory and stochastic control.

Throughout this chapter, we briefly explain these issues, the models adopted

or developed to describe them, and our solutions to the associated problems. In the

last section, we fix the notation that will be used in the following chapters.

1.1 Atmospheric Turbulent Channels

The atmosphere, as an optical medium, introduces random fluctuations in the power

of the propagating optical field. The atmospheric turbulence caused by differential

heating of the air is characterized in terms of a (slowly-varying lognormal) random

process which modulates the optical power at the receiver. These random fluctu-

ations (fade) are a characteristic feature of atmospheric channels in contrast with

conventional fiber optic channels.

In general, the output of an optical sensor can be modeled by a marked and

filtered Poisson process, which is a stream of randomly weighted narrow pulses

arriving at the jump times of a Poisson process [5]. Also, the electronic circuit

which follows the sensor, corrupts this signal by thermal noise which is modeled by

an additive white Gaussian process. Thus, the problem of detecting digital signals

over an atmospheric optical channel can be formulated as a M-ary hypothesis testing

problem with observations which consists of a doubly stochastic marked and filtered

Poisson process in additive white Gaussian noise.

While most prior studies of the detection problem above are based on some

simplified version of the previous model [6, 7, 8, 9, 10] or involve a linearity con-

straint on the detector structure [11, 12, 13, 14, 15], a few tackle the problem in its
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general form [5, 16, 17, 18]. A state-space approach developed in [5, 16] succeeds to

formulate a solution in terms of a stochastic partial differential-difference-integral

equation; however, the solution of this equation must be approximated using a

finite-dimensional filter with an unclear approximation error.

We adopt another approach following that in [17, 18]1. This approach is based

on the fact that conditioned on the number and arrival times of the pulses, the

problem reduces to one of M-ary detection of a deterministic signal in white Gaussian

noise, which has a known solution. Then, averaging over the number and arrival

times of the Poisson process, the solution to the original problem can be obtained.

This leads to an expression involving an infinite sum of multiple integrals, which

is hard to reduce to an explicit (closed form) expression; however, under certain

assumptions, this infinite sum can be approximated by an explicit formula or a

mathematically tractable equation.

In Chapter 2, after presenting the model of an atmospheric optical channel

and stating its associated detection problem, we discuss our approach in more detail.

Based on the infinite sum mentioned above, we establish mathematically tractable

upper and lower bounds on the exact solution and study the behavior of these

bounds for some important limiting cases. We show that in these limiting cases,

the lower bound tends to the upper bound. This motivates us to approximate

the exact solution with the upper (or lower) bound under conditions which closely

approximate the limiting cases.

1In [17, 18], the avalanche gain of the optical sensor and the turbulent fade are not considered.
The later is essential for an atmospheric channel.
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Furthermore, in Chapter 2, we introduce a novel technique for expressing the

infinite sum in terms of an expectation taken with respect to a stochastic process.

This new expression is then used in order to develop several approximate solutions.

We remark here that the results of Chapter 2 are directly applicable to the fiber

optic channels as a special case of the atmospheric turbulent channels.

1.2 Optical Alignment

A major challenge in free-space optical communication is to maintain optical align-

ment between the stations despite their relative motion. This relative motion, caused

by the mobility of the stations or mechanical vibration, can be comparable in mag-

nitude to the size of the narrow laser beams employed by the optical link. Therefore,

a closed-loop fine alignment mechanism is required to maintain the alignment after

the link is established through a coarse open-loop alignment operation referred to

as spatial acquisition.

The closed-loop fine alignment can be decomposed into two operations: active

pointing and optical beam tracking. The goal of the first operation is to aim the

transmitted beam toward the receiver within an acceptable accuracy, while the

second operation is intended to maintain the transmitter within the field of view of

the receiver. For the purpose of alignment (pointing and tracking), the receiving and

transmitting optical devices are installed on electromechanical pointing assemblies1,

which adjust the direction of the devices according to control signals generated by

1Alternatively, the stations can be equipped with steerable flat mirrors to control the light
direction.
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appropriate closed-loop controllers.

The closed-loop controller employed by an optical alignment system is usually

fed by the output of a position-sensitive photodetector (e.g. quadrant detector). The

output of this device is normally modeled by a vector-valued point process or ideally

by a space-time point process. Thus, the control aspect of an optical alignment

system can be formulated in terms of a stochastic optimal control problem with

point process observations. In the remainder of this section, we briefly explain the

operations of optical beam tracking and active pointing, and our stochastic approach

for a resolution of the associated problems.

1.2.1 Optical Beam Tracking

In free-space optics, optical beam tracking is an active operation with the goal

of keeping the transmitter in the field of view of the receiver. Figure 1.1 illus-

trates a simple optical receiver employed in a free-space optical link. The receiver

��
��
��
��

Control
Azimuth 

Pointing
Assembly

Photodetector
Position−Sensitive

Station
BodyElevation

Control

Lens

Figure 1.1: Schematic diagram of a simple optical receiver.
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is equipped with a lens (or curved mirror) to focus the incident optical field on

a position-sensitive photodetector. The position-sensitive photodetector is a pho-

toelectron converter whose surface is partitioned into small regions (pixels) with

independent outputs. The image of the incident optical field is a spot of light which

randomly moves on the surface of the photodetector due to the relative motion of the

transmitter and the receiver. In the absence of an adjusting mechanism, the effect

of the relative motion might be large enough to move the spot of light beyond the

surface of the photodetector. An active mechanism is needed to maintain the spot

of light at the center of the photodetector by consistently adjusting the direction

of the receiver. For this purpose, the receiver is installed on an electromechanical

pointing assembly which controls the direction of the receiver (in azimuth and el-

evation), based on the control signals generated by a closed-loop controller. The

closed-loop controller estimates the location of the spot of light from the output

of the position-sensitive photodetector and determines a proper control in order to

direct the spot of light toward the center of the photodetector.

The system explained above has been modeled by a linear state-space equation

which is driven by a control vector and a vector-valued Wiener process [19]. Under

the assumption that the photodetector has an infinite spatial resolution, the output

of the photodetector has been described by a space-time point process whose rate is

modulated by the state of the system [19]. Also, the goal of closed-loop control can

be formulated in terms of minimizing a quadratic cost functional [19]. Assuming

that the observation of the space-time point process is provided on R
2 (which is

practically justified) and that the rate of this process has a Gaussian profile, the

6



solution to this optimal control problem (and its associated estimation problem) is

finite-dimensional and has been obtained in [20].

In Chapter 3, we discuss this problem in more detail and attempt to relax

the assumption of a “Gaussian profile”. This leads us to reformulate the state

estimation problem in terms of estimating the state of a discrete-time linear model

with additive white non-Gaussian measurement noise.

For a practical system with a finite resolution photodetector, the estimation

and control problems above are infinite-dimensional, thus some sort of approxima-

tion is required to solve them. A possible approach to this approximation problem,

specially for a high resolution photodetector, is to modify the results of [20] for a

finite resolution photodetector1. This approach is motivated by the fact that the

results of [20] are exact and are expressed in an explicit form.

1.2.2 Active Pointing

For short range applications, in which the size of the receiving aperture is comparable

to the size of the optical beam, we develop an active pointing scheme in Chapter 4.

In this scheme, the receiver is equipped with a position-sensitive photodetector in

order to measure the intensity profile of its incident optical beam. The output

of the photodetector is used to estimate the center of the received optical beam,

whereupon the estimate is conveyed to the transmitter through an optical link or

a low-bandwidth RF channel. Based on this estimate, a pointing assembly adjusts

1The alternative approach is to start from the stochastic partial differential equation which
describes the temporal evolution of the posterior density of the state vector and try to approximate
its solution using a finite-dimensional filter.
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the transmitter direction with the goal of maintaining the center of the optical beam

close to the center of the receiving aperture. Note that the pointing direction must

be adjusted consistently in order to compensate for the relative motion between the

transmitter and the receiver. The block diagram in Figure 1.2 illustrates this active

pointing scheme.

Relative Motion

Transmitter
Direction

Relative Motion

Receiver
Beam Center

RF or Optical Link

Propagation
EstimatorMediumControl

Figure 1.2: Active pointing scheme for a short range free-space optical channel.

We model the dynamics of the pointing assembly and the relative motion by

a stochastic linear state-space equation. The observation of the optical intensity

on the receiving aperture (photodetector output) will be modeled by a space-time

point process with a rate depending on the state of the dynamical model. Also,

we formulate the pointing control problem in terms of seeking a control law that

minimizes a quadratic cost functional of the state and the control vectors.

We note that for active pointing, the observations are provided only over a

subset of R
2, in contrast to the optical beam tracking in which the observation is

given over R
2. This causes significant technical difficulties, since the solution to the

estimation and control problems associated with this model are infinite-dimensional.

For this reason, instead of an exact solution, we obtain an approximate estimator
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and controller which are asymptotically optimal in the sense that they tend to the

optimal estimator and controller, as the aperture tends to R
2.

1.2.3 Cooperative Optical Beam Tracking

Cooperative optical beam tracking is a viable solution to the alignment problem,

especially for long range free-space optical communication. An optical link which

incorporates this alignment scheme consists of two stations in such a manner that

each station points its optical beam toward the other one. The stations employ

the arrival direction of the incident optical beams as a guide to precisely point

their own beam toward the other station. In short range applications in which the

light propagation delay is negligible, the transmitter points its optical beam along

the arrival direction, while in long range applications with significant propagation

delay (e. g., intersatellite communication), a point-ahead mechanism compensates

for the displacement of the receiving station during propagation time. The concept

of “cooperative optical beam tracking” will be explained in detail in Chapter 5, with

reference to the architecture of the optical transceivers employed in this alignment

method.

The model we develop in Chapter 5 for this alignment scheme consists of two

dynamically coupled subsystems, such that each subsystem is modeled similar to an

optical beam tracking system. In developing the model, we incorporate nonlinear

effects, major sources of disturbance, light propagation delay, and the fluctuations

of the optical intensity due to the modulation of data and optical fade. We believe

that including these details in the modeling procedure leads to a fairly accurate
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model. For a special and important case in which the relative motion can be de-

composed into a predetermined large component and an unknown small component

(e.g. intersatellite applications), the nonlinear dynamics of the system will be lin-

earized around a nominal state trajectory. This linearized model1 will be used later

in Chapter 6.

While cooperative optical beam tracking has been already analyzed using sim-

ple deterministic models [21, 22], we shall use a stochastic approach in Chapter 6 in

order to study this alignment scheme. The design goal is to obtain two controllers

(one for each station) to maximize an objective functional which is defined as the

expected flow of optical energy between the stations. Note that this control prob-

lem is decentralized in the sense that each station has access only to its own local

observation. For a negligible propagation delay, we directly maximize the objective

functional, while for the case of a significant propagation delay, we maximize a lower

bound on the objective functional.

1.3 Notations

In the following chapters, dependence on time will be displayed by subscript t, e.g.,

a stochastic process or a deterministic signal will be denoted as (·)t. This convention

will be occasionally violated in Chapter 2 by using (·) (t) to show the dependence

on time or using subscripts i through n in order to index a variable or a time-signal

over the integer set. In the later case, a time-signal will be denoted by (·)i (t). All

matrices will be denoted by capital letters and we shall occasionally use capital

1Note that only the dynamical equations are linearized, not the observation model.
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letters for vectors or scalars. We shall not use distinct notation to differentiate

between deterministic versus stochastic or vector versus scalar quantities; thus, the

nature of an entity should be understood from its context.
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Chapter 2

Nonlinear Detection for Digital Communication Over

Optical Channels

2.1 Introduction

The receiving end of any optical communication link (fiber or free-space) is equipped

with one of the several types of photodetectors (photoemissive, photovoltaic, or pho-

toconductive) to convert the received optical power into an electrical signal. The

output of a photodetector, regardless of its type, is a stream of narrow pulses which

occur with a rate depending on the instantaneous optical power striking the surface

of the device [5]. Each pulse of this stream corresponds to an electron generated

through a photo-electron conversion. Avalanche photodiodes and photomultiplier

tubes are designed in such a manner that each photo-generated charge carrier re-

leases additional charge carriers [23]. This mechanism introduces an internal gain

modeled by i.i.d. random variables which multiply the amplitude of the pulses [5].

In accordance with the description above, in the most general case, the output of a

photodetector is modeled by a marked and filtered Poisson process [24] whose rate

is modulated by the incident optical power.
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Normally, the output of the photodetector is degraded by the thermal noise

generated by the internal photodetector resistance, the amplifier circuit, and the

load resistor [5]. The thermal noise is well-modeled by an additive, zero-mean,

white Gaussian noise.

In free-space optical channels, atmospheric turbulence significantly perturbs

the optical power at the receiving end of the link. Mathematically, this phenomenon

is characterized in terms of a (lognormal) random process which modulates the

optical power at the receiver [25, 26]. In this case, the channel output must be

modeled as a doubly stochastic marked and filtered Poisson process [24] in additive

white Gaussian noise.

In order to transmit a single symbol through a digital optical communication

link, a waveform associated with the symbol is picked from a set of predetermined

waveforms to modulate the power of the transmitting optical source during a symbol

transmission time. At the receiving end, based on the channel output during the

symbol transmission time, a detector decides which symbol was transmitted, in such

a manner that the probability of erroneous decision is minimized. The structure and

design of such a detector is the subject of this chapter.

During the last four decades, the detection problem above has been studied

with different levels of model complexity. An idealized model which assumes infinite

bandwidth, constant avalanche gain, and zero thermal noise for a photodetector,

is provided by a (doubly stochastic) Poisson process. Using this simplified model,

binary and M-ary hypothesis testing problems have been addressed in [6, 7, 8, 9, 10].

As a suboptimal solution to this hypothesis testing problem, some authors have
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proposed a linear detector [11, 12, 13, 14, 15]. Gardner [11] introduced an equivalent

linear model for a marked and filtered Poisson process and employed this model to

develop a linear detector. In [12, 13, 14, 15], the linear detectors are designed based

on minimizing the Chernoff bound for the probability of error.

Hoversten et al. [5], Kurimoto [16], and Bhanji [17] tackled the problem by

exploiting a general formula due to Duncan [27] and Kailath [28] for the likelihood

ratio function of a stochastic process in white Gaussian noise. They used a state-

space approach to develop an approximate estimator which contributes to the Itô

integral based estimator-correlator structure of the likelihood ratio function.

We approach the problem using the fact that conditioned on the Poisson point

process associated with the photodetector output, the problem reduces to one of M-

ary detection of a deterministic signal in white Gaussian noise, which has a known

solution. Then, averaging over this point process, we obtain the solution to the

original problem. This procedure leads to an expression involving an infinite sum of

multiple integrals, which seems impossible to solve for an explicit expression. The

method explained above has been already applied to a special case of the problem

by Bhanji [17] and Hero [18], albeit with limited results.

In order to derive useful results from the mentioned infinite sum, we follow

two different directions. In the first direction, we establish upper and lower bounds

on the infinite sum in terms of two integral equations. Then, we show that the lower

bound approaches the upper bound, as the pulse duration tends to zero. Based on

this fact and for a small pulse duration, we approximate the infinite sum by the

solution of an integral equation.
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In the second direction, we introduce a new technique to rewrite the infinite

sum in terms of an expectation taken with respect to a stochastic process. This

formula which is suitable for further approximations, will be the point of depar-

ture for developing several approximate detectors, obtained under different set of

assumptions.

2.2 The Model and Problem Statement

We consider an optical channel in which a nonnegative input signal st modulates

the power of an optical source at the transmitter. The optical signal strikes a

photodetector at the receiver, after propagating through an optical medium, which

in addition to attenuation, introduces random fluctuations in the optical power

(when the atmosphere is the propagation medium). For the purpose of amplification,

the photodetector is followed by an electronic circuit, which gives rise to corrupting

thermal noise. The output of this circuit is regarded as the channel output yt.

The model we use for an optical channel (with some modification) is adopted

from [5, 29]. In order to keep the description self-contained, we reproduce the model

here. We first summarize the model and then discuss in more detail the physical

significance of the model parameters.

2.2.1 Stochastic Model of an Optical Link

Let {Nt, t > 0} be a doubly stochastic Poisson process with jump times {tn}Nt

n=1

and a stochastic rate

λt = αst + µ (2.1)
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where α is a nonnegative random variable with a known probability density function,

{st} is a nonnegative stochastic process regarded as the channel input, and µ is a

known nonnegative constant. Let {qn}∞n=1 be an i.i.d. sequence of random variables

with a known cumulative distribution function. Denote by {wt} a standard Wiener

process and let σ to be a known constant. It is assumed that {tn}Nt

n=1, {qn}
∞
n=1, α,

and {wt} are statistically independent. Moreover, {st} is statistically independent

of {qn}∞n=1, α, and {wt}. Suppose that π (·) is a unit area1 deterministic function

such that π (t) = 0 for t < 0. Then, the channel output yt can be modeled [5] by

the stochastic differential equation2

dyt =

Nt
∑

n=1

qnπ (t− tn) dt+ σdwt. (2.2)

We note that a doubly stochastic Poisson point process is fully characterized [24] by

Pr {Nt = 0|λτ , τ ∈ [0, t]} = exp

(

−
∫ t

0

λτdτ

)

(2.3)

and for n = 1, 2, 3, . . .,

Pr {Nt = n, ti∈ [τi, τi + dτi); i = 1, 2, . . . , n|λτ , τ ∈ [0, t]}

=

(

n
∏

i=1

λτi
dτi

)

exp

(

−
∫ t

0

λτdτ

)

(2.4)

when 0 6 τ1 6 τ2 6 · · · 6 τn 6 t, and 0, otherwise.

1This means that
∫

∞

0
π (t) dt = 1.

2We take
∑

0

n=1
(·) equal 0.
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2.2.2 Significance of the Model Parameters

The nonnegative constant µ in (2.1) represents the sum of the photodetector dark

current rate and the rate associated with the background radiation in the case

of free-space channels [29]. Except for the atmospheric channel, the parameter α

in (2.1) is a known constant which characterizes the multiplicative combination

of the antenna gain, the path attenuation, and the photodetector sensitivity. For

atmospheric channels, α is modeled by a nonnegative random variable to reflect

the random fluctuations of the optical power caused by atmospheric turbulence.

When the receiving aperture is smaller than the turbulence coherence length1, α is

a lognormal random variable [25] defined as α = ᾱe2χ, where ᾱ = E [α] and χ is a

normal random variable with mean −σ2
χ and variance σ2

χ [26]. Here, σ2
χ is a known

constant depending on the wavelength of the light, the propagation distance, the

refractive-index structure constant, and the shape of the optical field [30]. Note that

the turbulent fade is a time-varying phenomenon; however, since its coherence time

is much longer than the transmission interval [25], it can be accurately modeled as a

random variable during the transmission of a single message. We remark that when

the receiver possesses the perfect information of the channel fade, α can be modeled

as a constant. Also, when imperfect information of the channel fade is provided to

the receiver as an estimate for α, the distribution of α must be modified accordingly.

The integer-valued i.i.d. random variables {qn}∞n=1, stand for the random

avalanche gains, i.e., the number of released charge carriers due to a single photo-

1For definition of the turbulence coherence length see [25, 30].
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generated charge carrier. The probability distribution of qn has been derived (the-

oretically) by McIntyre [31] and verified experimentally by Conradi [32].

The area under π (·) is equal to the charge of an electron multiplied by the

gain of the amplifier which follows the photodetector. For sake of simplicity, we

normalize this quantity to 1. The shape of pulses at the output of a practical

photodetector vary from one pulse to another, i.e., the pulse shape is a random

function [33]; however, since a reasonable stochastic model for the pulse shape is

not available, π (·) is characterized by the average of the random pulses. For an

avalanche photodiode, this averaged pulse shape is derived in [33, 34, 35].

The standard Wiener process {wt} in (2.2) represents the thermal noise gener-

ated by the amplifier which follows the photodetector. The strength of the thermal

noise is characterized by the known constant σ2.

2.2.3 Problem Statement

Suppose that a random message m taken from {1, 2, . . . ,M} is to be transmitted

through an optical channel during [0, T ]. Here, the transmission time T > 0 is a

known constant. Denote by pm, m = 1, 2, . . . ,M , the prior probability of message m.

Assume that a deterministic, nonnegative, bounded waveform sm (t) is assigned to

each message m = 1, 2, . . . ,M . Then, in order to transmit m, we let st = sm (t)

during t ∈ [0, T ].

Let (Ω,F , P ) be the underlying probability space for the stochastic model

of Section 2.2.1. On this probability space, we define YT as the σ-algebra gen-

erated by {yt} during [0, T ]. The goal is to obtain a YT -measurable detection
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rule m̂ (YT ) ∈ {1, 2, . . . ,M}, which minimizes the probability of error defined as

Pe = Pr {m̂ (YT ) 6= m}.

2.3 The Optimal Detection Law

In this section, we consider the hypothesis testing problem of Section 2.2.3 and

determine a formal solution for it via Lemma 2.3.1 below. Then, through Theo-

rems 2.3.1, 2.3.2, and 2.3.3, three different expressions will be presented for this

solution.

Lemma 2.3.1. For i = 1, 2, . . . ,M , consider the binary hypothesis testing problem

Hi : dyt =

Nt
∑

n=1

qnπ (t− tn) dt+ σdwt, λt = αsi (t) + µ, t ∈ [0, T ]

H0 : dyt = σdwt, t ∈ [0, T ]

(2.5)

and let Li (T ) denote its associated likelihood ratio function given YT . Then, the op-

timal detection rule which minimizes the probability of error Pe = Pr {m̂ (YT ) 6= m}

is given by the maximum a posteriori estimator

m̂ (YT ) = arg max
i=1,2,...,M

piLi (T ) . (2.6)

Proof. Define δ (i, j) such that δ (i, i) = 1 and δ (i, j) = 0 for i 6= j. Then, the
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probability of error Pe can be expressed as

Pe = E [1 − δ (m, m̂)]

= 1 − E [E [δ (m, m̂ (YT )) |YT ]]

= 1 − E

[

M
∑

i=1

δ (i, m̂ (YT )) Pr {m = i|YT}
]

.

By the chain rule for likelihood ratios [36], we can write

Pr {m = i|YT} /pi

Pr {m = j|YT} /pj
=
Li (T )

Lj (T )

which leads to

Pe = 1 − E

[

∑M
i=1 δ (i, m̂ (YT )) piLi (T )

∑M
i=1 piLi (T )

]

.

In order to minimize Pe, the sum in the numerator of the expression above must be

maximized, which results in the detection rule (2.6).

Corollary 2.3.1. The solution for the binary case (M = 2) of the hypothesis testing

problem in Section 2.2.3 is the threshold test

m̂ =















2 if Lb (T ) > p1

p2

1 if Lb (T ) < p1

p2

(2.7)

where the likelihood ratio function Lb (T ) is given by

Lb (T ) =
L2 (T )

L1 (T )
·
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Proof. The proof follows directly from (2.6).

Our goal for the remainder of this section is to obtain proper expressions

for Li (T ) , i = 1, 2, . . . ,M . Theorem 2.3.1 below represents Li (T ) in terms of an

infinite sum of multiple integrals.

Theorem 2.3.1. Fix α and define λi (t) = αsi (t) + µ. Then, the likelihood ratio

function Li (T ) can be expressed as

Li (T ) = Λ (YT ; {λi (t)} , T ) (2.8)

where, for any deterministic function λt, the functional Λ (·) is given by

Λ (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

)

·
(

1 +
∞
∑

n=1

1

n!

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn)

n
∏

k=1

dPq (θk)

n
∏

k=1

λτk
dτk

)

. (2.9)

Here, Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn) is defined as

Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn) = exp

{

1

σ2

∫ T

0

n
∑

k=1

θkπ (t− τk) dyt

− 1

2σ2

∫ T

0

( n
∑

k=1

θkπ (t− τk)

)2

dt

}

(2.10)

and Pq (·) is the common cumulative distribution function of {qn}∞n=1.

Proof. Consider the random vector VT = (t1, . . . , tNT
, q1, . . . , qNT

). Conditioned

on VT , the hypothesis testing problem (2.5) is one of detecting a deterministic
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signal in white Gaussian noise. For the realization (τ1, . . . , τn, θ1, . . . , θn) of VT ,

the likelihood ratio function associated with this hypothesis testing problem is

given by (2.10). The likelihood ratio function for the original problem can be ob-

tained [36] by averaging (2.10) over all realizations of VT , where the rate associated

with VT is λi (t) = αsi (t) + µ. Thus, we can write

Li (T ) = E
[

Λ̃
(NT )
T (t1, . . . , tNT

, q1, . . . , qNT
)
∣

∣YT

]

. (2.11)

Using (2.3) and (2.4), it is easy to verify that this expectation can be written as (2.8)

with

Λ (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

)

·
(

1 +

∞
∑

n=1

∫ T

0

∫ τn

0

· · ·
∫ τ2

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn)

n
∏

k=1

dPq (θk)

n
∏

k=1

λτk
dτk

)

. (2.12)

Since the integrand of each multiple integral is invariant under any change in the

order of τk’s, (2.12) can be rewritten as (2.9).

Corollary 2.3.2. For the case of a random α, the likelihood ratio function Li (T )

can be expressed as

Li (T ) = Λα (YT ; {si (t)} , T ) (2.13)

where, for any deterministic function st, the functional Λα (·) is given by

Λα (YT ; {st} , T ) =

∫ ∞

0

Λ (YT ; {ast + µ} , T ) dPα (a) . (2.14)
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Here, Pα (·) denotes the cumulative distribution function of α.

Proof. Applying the law of total expectation to (2.11) and using the fact that α

and YT are statistically independent, we get

Li (T ) = E
[

E
[

Λ̃
(NT )
T (t1, . . . , tNT

, q1, . . . , qNT
)
∣

∣YT , α
]

∣

∣YT

]

= E
[

Λ (YT ; {αsi (t) + µ} , T ) |YT

]

=

∫ ∞

0

Λ (YT ; {asi (t) + µ} , T ) dPα (a) .

This leads to (2.13) with Λα (·) defined by (2.14).

Remark 2.3.1. We observe from (2.9) and (2.10) that the dependence of the func-

tional Λ (YT ; {λt} , T ) on {yt} is through the stochastic process {zt} defined as

zt =
1

σ2

∫ T

0

π (τ − t) dyτ , t ∈ [0, T ]. (2.15)

This implies that for implementing Λ (YT ; {λt} , T ), the first stage is a linear filter

characterized by (2.15). We remark that (2.15) is a matched filter for π (·).

The following theorem introduces a new technique to rewrite (2.9) in a simpler

form, which is suitable for the purpose of approximation.

Theorem 2.3.2. Let {ξt} be a standard Wiener process independent of {tn}Nt

n=1,

{qn}∞n=1, and {wt}, which is defined on the probability space (Ω,F , P ). Fix α and
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define the stochastic process

ξ̄t =
1

σ

∫ T

0

π (τ − t) dξτ , t ∈ [0, T ]. (2.16)

Then, with probability 1, the functional Λ (·) can be expressed as

Λ (YT ; {λt} , T ) = E

[

exp

(
∫ T

0

λtΦq

(

zt + jξ̄t
)

dt

)

∣

∣

∣
YT

]

(2.17)

where zt is given by (2.15), j =
√
−1, and Φq (·) is defined as

Φq (z) =

∫ +∞

−∞

exp (θz) dPq (θ) − 1 (2.18)

when it exists.

Proof. We can verify that

exp

{

− 1

2σ2

∫ T

0

( n
∑

k=1

θkπ (t− τk)

)2

dt

}

= E

[

exp

{

j

σ

∫ T

0

n
∑

k=1

θkπ (t− τk) dξt

}]

(2.19)

by noting that the integral on the right side is a Gaussian random variable. Sub-

stituting (2.15), (2.16), and (2.19) into (2.10), and noting that YT and {ξt} are
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statistically independent, we get

Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn) =

n
∏

k=1

exp (θkzτk
) E

[

n
∏

k=1

exp
(

jθkξ̄τk

)

∣

∣

∣
YT

]

= E

[

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

∣

∣

∣
YT

]

. (2.20)

Since with probability 1, the sample paths of {zt} are bounded, the rest of this

proof will be presented for bounded sample paths of {zt}. Thus, any result which

is obtained based on the boundedness of {zt} will be stated with probability 1.

Let ℜ{·} and ℑ{·} denote the “real part” and the “imaginary part”, respec-

tively. We can write

∣

∣

∣

∣

∣

ℜ
{

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

}∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

∣

∣

∣

∣

∣

=

n
∏

k=1

exp (θkzτk
) .

Assuming that Φq (·) exist, this leads to

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

E

[∣

∣

∣

∣

∣

ℜ
{

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

}∣

∣

∣

∣

∣

∣

∣

∣
YT

]

·
n
∏

k=1

dPq (θk)
n
∏

k=1

λτk
dτk 6

n
∏

k=1

∫ T

0

(
∫ +∞

−∞

exp (θkzτk
)Pq (θk)

)

λτk
dτk

=

(
∫ T

0

λt

(

Φq (zt) + 1
)

dt

)n

.

For every bounded sample paths of {zt}, the right side of the inequality above is
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bounded, thus we conclude from Fubini’s theorem [37] that

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

E

[

ℜ
{

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

}

∣

∣

∣
YT

]

·
n
∏

k=1

dPq (θk)
n
∏

k=1

λτk
dτk

= E

[

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

ℜ
{

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

}

·
n
∏

k=1

dPq (θk)
n
∏

k=1

λτk
dτk

∣

∣

∣
YT

]

.

A similar argument can be applied to the imaginary part of

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

in order to show that

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

E

[

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

∣

∣

∣
YT

]

n
∏

k=1

dPq (θk)
n
∏

k=1

λτk
dτk

= E

[

∫ T

0

· · ·
∫ T

0

∫ +∞

−∞

· · ·
∫ +∞

−∞

n
∏

k=1

exp
{

θk

(

zτk
+ jξ̄τk

)}

·
n
∏

k=1

dPq (θk)
n
∏

k=1

λτk
dτk

∣

∣

∣
YT

]

= E

[(
∫ T

0

λt

(

Φq

(

zt + jξ̄t
)

+ 1
)

dt

)n
∣

∣

∣YT

]

.

Substituting (2.20) into (2.9) and using the result above, we obtain

Λ (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

) ∞
∑

n=0

1

n!
E [Zn|YT ]
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where the random variable Z is defined as

Z =

∫ T

0

λt

(

Φq

(

zt + jξ̄t
)

+ 1
)

dt.

We note that |Z| satisfies the inequality

|Z| 6

∫ T

0

λt

∣

∣Φq

(

zt + jξ̄t
)

+ 1
∣

∣ dt

=

∫ T

0

λt

∣

∣

∣

∣

∫ +∞

−∞

exp
{

θ
(

zt + jξ̄t
)}

∣

∣

∣

∣

dPq (θ) dt

6

∫ T

0

λt

∫ +∞

−∞

exp (θzt) dPq (θ) dt

=

∫ T

0

λt

(

Φq (zt) + 1
)

dt , |Z|u.

From this inequality and the fact that |Z|u < ∞ for every bounded sample path

of {zt}, we conclude that |Z| <∞. Let N be an integer and define the sequence of

complex-valued random variables XN as

XN =
N
∑

n=0

1

n!
Zn.

From |Z| < ∞, we conclude that XN → exp (Z), and as consequence, ℜ{XN} →

ℜ{exp (Z)} and ℑ{XN} → ℑ{exp (Z)}. On the other hand we have

|XN | 6
N
∑

n=0

1

n!
|Z|n 6

∞
∑

n=0

1

n!
|Z|n 6

∞
∑

n=0

1

n!
|Z|nu = exp (|Z|u) .

This leads to |ℜ {XN}| 6 |XN | 6 exp (|Z|u) and |ℑ {XN}| 6 |XN | 6 exp (|Z|u).
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Also, for every bounded sample path of {zt}, we have

E [exp (|Z|u) |YT ] = exp (|Z|u) <∞.

Thus, we can apply the dominated convergence theorem [37] separately to ℜ{XN}

and ℑ{XN} in order to show that

∞
∑

n=0

1

n!
E [Zn|YT ] = lim

N→∞
E [XN |YT ] = E [exp (Z) |YT ] .

This completes the proof.

Corollary 2.3.3. For the case of a random α, under the assumptions of Theo-

rem 2.3.2 and assuming that {ξt} is independent of α, with probability 1, we have

Λα (YT ; {st} , T ) = E

[

Φα

(
∫ T

0

stΦq

(

zt + jξ̄t
)

dt

)

exp

(
∫ T

0

µΦq

(

zt + jξ̄t
)

dt

)

∣

∣

∣
YT

]

(2.21)

where Φα (·) is defined as

Φα (z) =

∫ ∞

0

exp (az) dPα (a) (2.22)

when it exists.

Proof. Let XT denote the σ-algebra generated by {ξt} during [0, T ]. Using the law
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of total expectation, we write

Λα (YT ; {st} , T ) = E

[

E

[

exp

(
∫ T

0

(αst + µ) Φq

(

zt + jξ̄t
)

dt

)

∣

∣

∣
YT , α

]

∣

∣

∣
YT

]

= E

[

E

[

exp

(
∫ T

0

(αst + µ) Φq

(

zt + jξ̄t
)

dt

)

∣

∣

∣
YT ,XT

]

∣

∣

∣
YT

]

= E

[
∫ ∞

0

exp

(
∫ T

0

(ast + µ)Φq

(

zt + jξ̄t
)

dt

)

dPα (a)
∣

∣

∣
YT

]

where the last equality is concluded from the fact that α is independent of YT

and XT . Since the sample paths of {zt} and {ξt} are almost surely bounded, as-

suming that Φα (z) exists for every bounded z, this leads to (2.21) with probabil-

ity 1.

The following theorem provides an alternative expression for (2.9), which later

will be used to establish a lower bound on (2.9).

Theorem 2.3.3. Fix α and let qk = q̄, k = 1, 2, 3, . . . be a constant. Then, with

probability 1, (2.9) can be expressed as

Λ (YT ; {λt} , T )

= exp

(
∫ T

0

λtΦq̄ (zt) dt

)

E



exp

{

− 1

2σ2

∫ T

0

( N∗

T
∑

k=1

q̄π (t− t∗n)

)2

dt

}

∣

∣

∣

∣

YT





(2.23)

where Φq̄ (·) is defined as

Φq̄ (z) = eq̄z − 1 (2.24)

29



and {t∗n}
N∗

t

n=1, is a doubly stochastic Poisson point process with the rate

λ∗t = λte
q̄zt . (2.25)

Proof. Noting that qk = q̄ is a constant, we substitute (2.10), (2.24), and (2.25)

into (2.12) and rewrite it as

Λ (YT ; {λt} , T ) = exp

(∫ T

0

λtΦq̄ (zt) dt

)

exp

(

−
∫ T

0

λ∗tdt

)

·
(

1 +
∞
∑

n=1

∫ T

0

∫ τn

0

· · ·
∫ τ2

0

exp

{

− 1

2σ2

∫ T

0

( n
∑

k=1

q̄π (t− τk)

)2

dt

}

n
∏

k=1

λ∗τk
dτk

)

.

For bounded sample paths of {λ∗t}, it is easy to verify that this expression is equiv-

alent to (2.23). Since with probability 1, the sample paths of {zt}, and as a conse-

quence the sample paths of {λ∗t}, are bounded, (2.23) holds with probability 1.

2.4 Upper and Lower Bounds on Λ (·)

In this section, we determine simple upper and lower bounds for Λ (YT ; {λt} , T ).

Since the expressions obtained for Λ (YT ; {λt} , T ) in Section 2.3 are complicated,

these bounds are useful in studying the behavior of Λ (YT ; {λt} , T ) for some impor-

tant limiting cases. In addition, under conditions close to these limiting cases, the

bounds can be used to approximate Λ (YT ; {λt} , T ). Throughout this section, we

shall assume that λt is a deterministic function.

Theorem 2.4.1. Assume that qk > 0, k = 1, 2, 3, . . . and π (t) > 0 for every t > 0.
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Define the functional

Bu
1 (YT ; {λt} , T ) = exp

(
∫ T

0

λtΦ
∗
q (zt, bt) dt

)

(2.26)

where

bt =
1

σ2

∫ T

0

π2 (τ − t) dτ (2.27)

and assuming that Φ∗
q (z, b) exists for every bounded z and b, it is defined as

Φ∗
q (z, b) =

∫ +∞

−∞

exp

(

θz − 1

2
θ2b

)

dPq (θ) − 1. (2.28)

Then, with probability 1, we have

Λ (YT ; {λt} , T ) 6 Bu
1 (YT ; {λt} , T ) . (2.29)

Proof. Under the assumptions of the theorem, the second term on the right side of

( n
∑

k=1

θkπ (t− τk)

)2

=
n
∑

k=1

θ2
kπ

2 (t− τk) +
n
∑

k=1

n
∑

l=1
l 6=k

θkθlπ (t− τk) π (t− τl)

is nonnegative. This indicates that the left side is not greater than the first term on

the right side. Applying this result to (2.10), we have

Λ̃
(n)
T (τ1, . . . , τn, θ1, . . . , θn) 6

n
∏

k=1

exp

(

θkzτk
− 1

2
θ2

kbτk

)

.
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Substituting this inequality into (2.9), we get

Λ (YT ; {λt} , T ) 6 exp

(

−
∫ T

0

λtdt

) ∞
∑

n=1

1

n!

(
∫ T

0

λt

(

Φ∗
q (zt, bt) + 1

)

dt

)n

.

For every bounded sample path of {zt}, the right side of this inequality converges

to (2.26). Since with probability 1, the sample paths of {zt} are bounded, this

indicates that (2.29) holds with probability 1.

Remark 2.4.1. The more conservative upper bound

Λ (YT ; {λt} , T ) 6 Bu
1 (YT ; {λt} , T ) 6 exp

(
∫ T

0

λtΦq (zt) dt

)

(2.30)

does not require the assumptions of Theorem 2.4.1. The proof follows from

exp

{

− 1

2σ2

∫ T

0

( n
∑

k=1

θkπ (t− τk)

)2

dt

}

6 1.

Theorem 2.3.3 and Lemma 2.4.1 stated below can be used to establish a lower

bound on Λ (·). This lower bound will be presented in Theorem 2.4.2.

Lemma 2.4.1. Let {tn}Nt

n=1 be a Poisson point process with rate λt. Then, we have

E

[

∫ T

0

( NT
∑

k=1

π (t− tn)

)2

dt

]

=

∫ T

0

∫ T

0

λτπ
2 (t− τ) dτdt+

∫ T

0

(
∫ T

0

λτπ (t− τ) dτ

)2

dt. (2.31)
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Proof. The left side of (2.31) can be written as

exp

(

−
∫ T

0

λtdt

) ∞
∑

n=1

1

n!

∫ T

0

∫ T

0

· · ·
∫ T

0

[

∫ T

0

( n
∑

k=1

π (t− τk)

)2

dt

]

n
∏

k=1

λτk
dτk

= exp

(

−
∫ T

0

λtdt

) ∞
∑

n=1

1

n!

[

n

(
∫ T

0

λtdt

)n−1 ∫ T

0

∫ T

0

λτπ
2 (t− τ) dτdt

+ n (n− 1)

(
∫ T

0

λtdt

)n−2 ∫ T

0

∫ T

0

∫ T

0

λτ1λτ2π (t− τ1)π (t− τ2) dτ1dτ2dt

]

=

∫ T

0

∫ T

0

λτπ
2 (t− τ) dτdt

+

∫ T

0

(
∫ T

0

λτ1π (t− τ1) dτ1

)(
∫ T

0

λτ2π (t− τ2)

)

dt

which is equal to its right side.

Theorem 2.4.2. Under the assumptions of Theorem 2.3.3, with probability 1, the

functional

Bℓ
1 (YT ; {λt} , T ) = exp

{

∫ T

0

λtΦq̄ (zt) dt−
q̄

2σ2

∫ T

0

∫ T

0

λτΦ
′
q̄ (zτ )π

2 (t− τ) dτdt

− 1

2σ2

∫ T

0

(
∫ T

0

λτΦ
′
q̄ (zτ ) π (t− τ) dτ

)2

dt

}

(2.32)

is a lower bound for Λ (YT ; {λt} , T ). Here Φ′
q̄ (·) is the derivative of Φq̄ (·) which is

defined by (2.24).

Proof. Noting that exponential is a convex function, we apply Jensen’s inequality
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to (2.23) to get

Λ (YT ; {λt} , T ) > exp

(
∫ T

0

λtΦq̄ (zt) dt

)

· exp

{

− 1

2σ2
E

[

∫ T

0

( N∗

T
∑

k=1

q̄π (t− t∗n)

)2

dt

∣

∣

∣

∣

YT

]}

.

Next, we apply Lemma 2.4.1 to the right side of this inequality to obtain (2.32).

Corollary 2.4.1. Under the assumptions of Theorem 2.3.3, with probability 1, we

have

lim
σ→∞

Λ (YT ; {λt} , T )

Bℓ
1 (YT ; {λt} , T )

= lim
σ→∞

Λ (YT ; {λt} , T )

Bu
1 (YT ; {λt} , T )

= 1 . (2.33)

Proof. From (2.26), (2.30), and (2.32), with probability 1, we have

exp

{

− q̄

2σ2

∫ T

0

∫ T

0

λτΦ
′
q̄ (zτ )π

2 (t− τ) dτdt

− 1

2σ2

∫ T

0

(
∫ T

0

λτΦ
′
q̄ (zτ ) π (t− τ) dτ

)2

dt

}

6
Bℓ

1 (YT ; {λt} , T )

Bu
1 (YT ; {λt} , T )

6
Λ (YT ; {λt} , T )

Bu
1 (YT ; {λt} , T )

6 1 .

As σ → ∞, for every bounded sample path of {zt}, the expression on the left side

of this inequality tends to 1. This proves that (2.33) holds with probability 1.

Remark 2.4.2. Using Theorems 2.4.1 and 2.4.2 and (2.14), we can find upper and
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lower bounds on Λα (YT ; {st} , T ) as

Λα (YT ; {st} , T ) >

∫ ∞

0

Bℓ
1 (YT ; {ast + µ} , T ) dPα (a)

Λα (YT ; {st} , T ) 6

∫ ∞

0

Bu
1 (YT ; {ast + µ} , T ) dPα (a) .

In the remainder of this section, we adopt a different approach to establish

upper and lower bounds on Λ (YT ; {λt} , T ). Theorems 2.4.3 and 2.4.4 below explain

this approach.

Theorem 2.4.3. Assume that qk = q̄, k = 1, 2, 3, . . . is a constant and π (t) > 0 for

every t > 0. Let Xu
t be the solution of the integral equation

Xu
t = 1 +

∫ t

0

γu (t, τ)λτ cτf (zτ )X
u
τ dτ (2.34)

where f (z) = eq̄z, ct = exp (−q̄2bt/2), and

γu (τ1, τ2) = exp

(

− q̄2

σ2

∫ T

0

π (t− τ1) π (t− τ2) dt

)

. (2.35)

Then, with probability 1, we have

Λ (YT ; {λt} , T )6Bu
2 (YT ; {λt} , T )6Bu

1 (YT ; {λt} , T ) (2.36)

where Bu
2 (·) is defined as

Bu
2 (YT ; {λt} , T ) = Xu

T exp

(

−
∫ T

0

λtdt

)

. (2.37)
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Proof. We first define

Bu
2 (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

)

·
(

1 +

∫ T

0

λτ1cτ1f (zτ1) dτ1

+

∞
∑

n=2

∫ T

0

∫ τn

0

· · ·
∫ τ2

0

λτn
cτn
f (zτn

) dτn

n−1
∏

k=1

γu (τk+1, τk)λτk
cτk
f (zτk

) dτk

)

(2.38)

and show that this expression can be written as

Bu
2 (YT ; {λt} , T ) = Y u

T exp

(

−
∫ T

0

λtdt

)

(2.39)

where

Y u
T = 1 +

∫ T

0

λtctf (zt)X
u
t dt.

To achieve this goal, for every bounded sample path of {zt}, every t > 0, and every

integer N > 2, we define

ZN
t = 1 +

N
∑

n=2

[

∫ τn

0

· · ·
∫ τ2

0

n−1
∏

k=1

γu (τk+1, τk)λτk
cτk
f (zτk

) dτk

]

τn=t

.

We note that for every fixed t > 0, ZN
t is increasing in N and satisfies

ZN
t 6 exp

(
∫ t

0

λτcτf (zτ ) dτ

)

.

This shows that for every bounded sample path of {zt}, Z∞
t , limN→∞ ZN

t exists.
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For every N > 3, we can write

ZN
t = 1 +

∫ t

0

γu (t, τ)λτcτf (zτ )Z
N−1
τ dτ

which leads to

Z∞
t = 1 + lim

N→∞

∫ t

0

γu (t, τ)λτcτf (zτ )Z
N−1
τ dτ

= 1 +

∫ t

0

γu (t, τ)λτcτf (zτ )Z
∞
τ dτ.

Here, the second equality is concluded from the monotone convergence theorem [38].

This result indicates that Xu
t = Z∞

t for t > 0. Using the monotone convergence

theorem, we express (2.38) as

Bu
2 (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

)

lim
N→∞

(

1 +

∫ T

0

λtctf (zt)Z
N
t dt

)

= exp

(

−
∫ T

0

λtdt

)(

1 +

∫ T

0

λtctf (zt)Z
∞
t dt

)

which proves that (2.39) holds. Expressing Y u
T as

Y u
T = 1 +

∫ T

0

γu (T, t)λtctf (zt)X
u
t dt+

∫ T

0

(1 − γu (T, t))λtctf (zt)X
u
t dt

and noting that γu (T, t) = 1 for every 0 6 t 6 T , we find that Y u
T = Xu

T . This

verifies that with probability 1, (2.38) is equal to (2.37).

To prove the first inequality (from left) of (2.36), we use (2.38) and (2.12) to
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construct

Bu
2 (YT ; {λt} , T ) − Λ (YT ; {λt} , T )

= exp

(

−
∫ T

0

λtdt

) ∞
∑

n=2

∫ T

0

∫ τn

0

· · ·
∫ τ2

0

χu
n (τ1, τ2, . . . , τn)

n
∏

k=1

λτk
f (zτk

) dτk

(2.40)

where χu
n (·) is given by

χu
n (τ1, τ2, . . . , τn) =

n
∏

k=1

cτk

n−1
∏

k=1

γu (τk+1, τk) − exp

{

− q̄2

2σ2

∫ T

0

( n
∑

k=1

π (t− τk)

)2

dt

}

.

It is easy to show that χu
n (τ1, τ2, . . . , τn) > 0, by rearranging the expression above as

χu
n (τ1, τ2, . . . , τn)

=
n
∏

k=1

cτk

n−1
∏

k=1

γu (τk+1, τk)



1 − exp

{

− q̄2

2σ2

∫ T

0

∑

S (i,j)

π (t− τi) π (t− τj) dt

}





where S (i, j) = {(i, j) : i6=j, |i− j|6=1}. This verifies that (2.40) is nonnegative and

completes the proof. The second inequality of (2.36) follows from γu (·, ·) 6 1.

Theorem 2.4.4. Assume that qk = q̄, k = 1, 2, 3, . . . is a constant, π (t) > 0 for

every t > 0, and π (t) = 0 for t > ǫ, where ǫ > 0 is a known constant. Let Xℓ
t and Y ℓ

t

be the solutions of

Xℓ
t = 1 +

∫ t

0

γℓ (t, τ)λτcτf (zτ )X
ℓ
τdτ (2.41)

Y ℓ
t = 1 +

∫ t

0

λτcτf (zτ )X
ℓ
τdτ (2.42)
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where γℓ (·, ·) is defined such that

γℓ (τ1, τ2) = γℓ (τ2, τ1) =















1 0 6 τ1 6 max (0, τ2 − ǫ)

0 max (0, τ2 − ǫ) < τ1 6 τ2.

Then, with probability 1, we have

Bℓ
2 (YT ; {λt} , T )6Bℓ

3 (YT ; {λt} , T ) 6 Λ (YT ; {λt} , T ) (2.43)

where

Bℓ
2 (YT ; {λt} , T ) = Xℓ

T exp

(

−
∫ T

0

λtdt

)

(2.44)

Bℓ
3 (YT ; {λt} , T ) = Y ℓ

T exp

(

−
∫ T

0

λtdt

)

. (2.45)

Proof. The proof is similar to the proof of Theorem 2.4.3, by replacing superscript u

with ℓ. For this case, χℓ
n (·) is given by

χℓ
n (τ1, τ2, . . . , τn) =

n
∏

k=1

cτk

(

n
∏

j=2

γℓ (τj , τj−1) −
n
∏

j=2

j−1
∏

i=1

γu (τj , τi)

)

.

From the definitions of γu (·, ·) and γℓ (·, ·) and the assumptions of the theorem, it

is easy to show that for 0 6 τ1 6 τ2 6 . . . 6 τj , we have

γℓ (τj , τj−1) 6

j−1
∏

i=1

γu (τj , τi)

which leads to χℓ
n (τ1, τ2, . . . , τn) 6 0, n > 2. This proves the inequality on the right
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side of (2.43). The inequality on the left side follows from Xℓ
T 6 YT

ℓ.

The following theorem provides a closed form expression for a lower bound

on (2.45).

Theorem 2.4.5. Let the assumptions of Theorem 2.4.4 hold and define

Bℓ
4 (YT ; {λt} , T ) = exp

{

−
∫ T

0

λtdt

+

∫ T

0

λtctf (zt)

(

1 +

∫ t

0

(

1 − γℓ (t, τ)
)

λτcτf (zτ ) dτ

)−1

dt

}

. (2.46)

Then, with probability 1, we have

Bℓ
4 (YT ; {λt} , T )6Bℓ

3 (YT ; {λt} , T ) . (2.47)

Proof. Using (2.41), we can write

Xℓ
t = 1 +

∫ t

0

λτcτf (zτ )X
ℓ
τdτ −

∫ t

0

(

1 − γℓ (t, τ)
)

λτcτf (zτ )X
ℓ
τdτ.

From (2.42) and the fact that Xℓ
t is increasing in t, we find that

Xℓ
t > Y ℓ

t −Xℓ
t

∫ t

0

(

1 − γℓ (t, τ)
)

λτ cτf (zτ ) dτ.

We know from (2.42) that Xℓ
t = Ẏ ℓ

t /λtctf (zt), thus substituting this result into the
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inequality above and rearranging it, we get

Ẏ ℓ
t

Y ℓ
t

>
λtctf (zt)

1 +

∫ t

0

(

1 − γℓ (t, τ)
)

λτcτf (zτ ) dτ

·

Upon integrating both sides of this inequality over [0, T ], we obtain (2.47).

2.5 Behavior of Λ (·) for a Small Pulse Duration

In this section, we study the behavior of Λ (YT ; {λt} , T ) when the pulse duration ǫ

tends to zero. Before addressing the main topic, we discuss a technical difficulty

arising from ǫ→ 0, namely

lim
ǫ→0

E [Λ (YT ; {λt} , T )] = ∞. (2.48)

As mentioned in Section 2.2.1, π (·) has a unit area, thus it can be expressed

as π (t) = ǫ−1π̃ (t/ǫ), where π̃ (·) has a unit area and |π̃ (·) | is bounded for every

t > 0. In addition, the condition π (t) = 0, t > ǫ implies that π̃ (t) = 0, t > 1. We

define ν (τ1, τ2) = 1/γu (τ1, τ2), where γu (·, ·) is given by (2.35). This function can

be expressed as

ν (τ1, τ2) = exp

(

q̄2

σ2ǫ
Πǫ (τ1, τ2)

)

(2.49)

where Πǫ (·, ·) is defined as

Πǫ (τ1, τ2) =

∫ T/ǫ

0

π̃ (t− τ1/ǫ) π̃ (t− τ2/ǫ) dt.
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Let π̃ (·) be nonnegative over [0, 1]. Then, for some subset of |τ1 − τ2| 6 ǫ with

nonzero Lebesgue measure, we have Πǫ (τ1, τ2) > 0. Referring to (2.49), this im-

plies that limǫ→0 ǫν (τ1, τ2) = ∞ over a subset of |τ1 − τ2| 6 ǫ. Thus, for every

function λt > 0, t ∈ [0, T ] and every t∗ ∈ [0, T ], we have

lim
ǫ→0

∫ T

0

λtν (t, t∗) dt = ∞. (2.50)

We note that the stochastic process {ctf (zt)}T
t=0 can be expressed as1

ctf (zt) = ρt

NT
∏

n=1

ν (t, tn) (2.51)

where {ρt} is defined as

ρt = exp

(

q̄

σ

∫ T

0

π (τ − t) dwτ −
q̄2

2σ2

∫ T

0

π2 (τ − t) dτ

)

.

It is easy to verify that for every fixed t > 0, the lognormal random variable ρt has

a unit mean. When ǫ→ 0, since the pulses in {zt} do not overlap each other, (2.51)

can be written as

ctf (zt) = ρt + ρt

NT
∑

n=1

(ν (t, tn) − 1) . (2.52)

We remind from Theorem 2.4.4 that Xℓ
t > 1, t ∈ [0, T ]. Thus, using (2.42),

1We take
∏

0

n=1
(·) equal 1.
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(2.52), and E [ρt] = 1, we can write

E
[

Y ℓ
T

]

> E

[

1 +

∫ T

0

λtctf (zt) dt

]

= 1 +

∫ T

0

λtdt+

∫ T

0

λtE

[

NT
∑

n=1

(ν (t, tn) − 1)

]

dt.

Applying (2.50) to this inequality, we get limǫ→0 E
[

Y ℓ
T

]

= ∞, which together

with (2.43) and (2.45) prove (2.48).

In spite of the difficulty mentioned above, we present useful results below for

the case of ǫ→ 0. These results provide appropriate means for approximating Λ (·)

when ǫ is small.

Theorem 2.5.1. Assume that the unit area function π (·) has the property that

π (t) > 0 for t ∈ [0, ǫ] and π (t) = 0 beyond this interval. Then, with probability 1,

we have

lim
ǫ→0

Λ (YT ; {λt} , T )

Bℓ
2 (YT ; {λt} , T )

= lim
ǫ→0

Λ (YT ; {λt} , T )

Bu
2 (YT ; {λt} , T )

= 1 .

Proof. From (2.34), (2.41), and the fact that γℓ (τ1, τ2) = γℓ (τ1, τ2) γ
u (τ1, τ2), we

can write

βt ,
Xu

t −Xℓ
t

Xu
t

=
1

Xu
t

[

∫ t

0

γu (t, τ)λτcτf (zτ )
(

Xu
τ −Xℓ

τ

)

dτ

+

∫ t

0

(

1 − γℓ (t, τ)
)

γu (t, τ)λτcτf (zτ )X
ℓ
τdτ

]

.
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The increasing property of Xu
t and the facts that Xu

t > Xℓ
t and γu (·, ·) 6 1, result in

βt 6

∫ t

0

λτcτf (zτ ) βτdτ + δt (2.53)

where δt is defined as

δt =

∫ t

0

(

1 − γℓ (t, τ)
)

γu (t, τ)λτcτf (zτ ) dτ.

Using (2.51) and E [ρt] = 1, we find the mean of δt as

E [δt] = E

[

∫ t

0

(

1 − γℓ (t, τ)
)

γu (t, τ)λτ

NT
∏

n=1

ν (τ, tn) dτ

]

. (2.54)

For a fixed sample path of {tn}NT

n=1, let t′ and t′′ be, respectively, the closest and the

next closest tn to t. Assume that
∣

∣t−t′
∣

∣ > 0. Then, for ǫ <
∣

∣t−t′
∣

∣/2, over the interval

τ ∈ [max (0, t− ǫ) , t] in which 1−γℓ (t, τ) 6= 0, we have
∏NT

n=1 ν (τ, tn) = 1. Now, we

assume that t′ = t. Then, noting that Pr
{∣

∣t′ − t′′
∣

∣ > 0
}

= 1 for ǫ <
∣

∣t′ − t′′
∣

∣/2, we

have γu (t, τ)
∏NT

n=1 ν (τ, tn) = γu (t, τ) ν (τ, t′) = 1 for τ ∈ [max (0, t− ǫ) , t]. These

results indicate that the integrand in (2.54) is almost surely bounded, and as a

consequence, the integral tends to 0 as ǫ → 0. This proves that limǫ→0 E [δt] = 0

for every t > 0, which in combination with δt > 0 lead to limǫ→0 δt = 0, with

probability 1.

By letting δt = 0 on the right side of (2.53) and noting that β0 = 0, we find

that βt 6 0 for t > 0. On the other hand, we know from definition that βt > 0, thus

we conclude that limǫ→0 βt = 0, almost surely for every t > 0. Finally, we complete
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the proof by applying limǫ→0X
ℓ
T/X

u
T = 1 to the inequality

Bℓ
2 (YT ; {λt} , T ) 6 Λ (YT ; {λt} , T ) 6 Bu

2 (YT ; {λt} , T ) .

Theorem 2.5.2. Assume that for 0 6 τ 6 t 6 T , the mapping γ (·, ·) satisfies the

inequality

γℓ (t, τ) 6 γ (t, τ) 6 γu (t, τ) . (2.55)

Let Xt be the solution of the integral equation

Xt = 1 +

∫ t

0

γ (t, τ)λτcτf (zτ )Xτdτ (2.56)

and define

B (YT ; {λt} , T ) = XT exp

(

−
∫ T

0

λtdt

)

. (2.57)

Then, under the assumptions of Theorem 2.5.1, with probability 1, we have

lim
ǫ→0

Λ (YT ; {λt} , T )

B (YT ; {λt} , T )
= 1 .

Proof. The proof follows from the proof of Theorem 2.5.1 and Xℓ
T 6 XT 6 Xu

T .

Remark 2.5.1. The proof of Theorem 2.5.1 suggests that B (YT ; {λt} , T ) in (2.57)

is an appropriate approximation for Λ (YT ; {λt} , T ), if ǫ is small enough to ensure

that most sample paths of {yt} are free from overlapping pulses.
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Theorem 2.5.3. Let λ1 (t) and λ2 (t) be nonnegative functions defined over [0, T ].

Then, under the assumptions of Theorem 2.5.1, with probability 1, we have

lim
ǫ→0

Λ (YT ; {λ1 (t)} , T )

Λ (YT ; {λ2 (t)} , T )
= exp

(
∫ T

0

(

λ2 (t) − λ1 (t)
)

dt

) NT
∏

n=1

λ1 (tn)

λ2 (tn)
· (2.58)

Proof. Consider a sample path of the stochastic process {ctf (zt)} defined by (2.51)

and assume that ǫ is much smaller than the minimum distance between two suc-

cessive occurrence times tn and tn+1. This ensures that the pulses in (2.51) do not

overlap each other. Under this condition, the goal is to solve the integral equa-

tion (2.41), whose simplified form is given by

Xℓ
t = 1 +

∫ t−ǫ

0

λτcτf (zτ )X
ℓ
τdτ. (2.59)

The solution of this equation encounters a “big jump” during [tn, tn + 2ǫ], n =

1, 2, . . . , NT . Therefore, we have to solve (2.59) separately for two cases: inside the

intervals [tn, tn + 2ǫ] and outside these intervals.

For t ∈ (tn, tn + ǫ], we rewrite the integral equation (2.59) as

Xℓ
t = Xℓ

tn +

∫ t−ǫ

tn−ǫ

λτρτν (τ, tn)Xℓ
τdτ

and solve it as follows. Since Xτ , ρτ , and λτ are (almost surely) continuous over

τ ∈ (tn − ǫ, tn], the solution of this equation can be approximated by

Xℓ
t = Xℓ

tn + λtnρtnX
ℓ
tn

∫ t−ǫ

tn−ǫ

ν (τ, tn) dτ, t ∈ (tn, tn + ǫ]. (2.60)
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Note that as ǫ → 0, this approximation tends to the exact solution. Also, the

solution of (2.59) for Xℓ
tn+2ǫ can be approximated as

Xℓ
tn+2ǫ = Xℓ

tn+ǫ +

∫ tn+ǫ

tn

λtρtν (t, tn)Xℓ
t dt

= Xℓ
tn+ǫ + λtnρtn

∫ tn+ǫ

tn

ν (t, tn)Xℓ
tdt.

Upon substituting (2.60) into this expression, we get

Xℓ
tn+2ǫ = Xℓ

tn

(

1 + λtnρtn

∫ tn+ǫ

tn−ǫ

ν (t, tn) dt

+ λ2
tnρ

2
tn

∫ tn+ǫ

tn

∫ t−ǫ

tn−ǫ

ν (t, tn) ν (τ, tn) dτdt

)

.

For sake of simplicity, we express this result as

Xℓ
tn+2ǫ = Xℓ

tn

(

1 + λtnρtnJ (ǫ) + λ2
tnρ

2
tn J̃ (ǫ)

)

(2.61)

where J (ǫ) and J̃ (ǫ) are defined as

J (ǫ) =

∫ 2ǫ

0

ν (t, ǫ) dt

J̃ (ǫ) =

∫ 2ǫ

ǫ

∫ t−ǫ

0

ν (t, ǫ) ν (τ, ǫ) dτdt.

In order to obtain Xℓ
t for t ∈ (tn + 2ǫ, tn+1], we need to solve the integral

equation

Xℓ
t = Xℓ

tn+2ǫ +

∫ t−ǫ

tn+ǫ

λτρτX
ℓ
τdτ.
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As ǫ→ 0, the solution of this equation at t = tn+1 is given by

Xℓ
tn+1

= Xℓ
tn+2ǫ exp

(
∫ tn+1

tn

λτρτdτ

)

. (2.62)

Starting from

Xℓ
t1 = exp

(
∫ t1

0

λτρτdτ

)

and using (2.61) and (2.62) in a recursive procedure, it is straightforward to show

that

Xℓ
T = exp

(
∫ T

0

λτρτdτ

) NT
∏

n=1

(

1 + λtnρtnJ (ǫ) + λ2
tnρ

2
tn J̃ (ǫ)

)

.

This result leads to

Λ (YT ; {λ1 (t)} , T )

Λ (YT ; {λ2 (t)} , T )
= U (ǫ) exp

(
∫ T

0

(

λ2 (t) − λ1 (t)
)

dt

) NT
∏

n=1

λ1 (tn)

λ2 (tn)
(2.63)

where U (ǫ) is defined as

U (ǫ) = exp

(
∫ T

0

(

λ1 (t) − λ2 (t)
)

ρtdt

)

·
NT
∏

n=1

1 +
(

λ1 (tn) ρtnJ (ǫ)
)−1

+ λ1 (tn) ρtn J̃ (ǫ) /J (ǫ)

1 +
(

λ2 (tn) ρtnJ (ǫ)
)−1

+ λ2 (tn) ρtn J̃ (ǫ) /J (ǫ)
·

We can show that limǫ→0U (ǫ) = 1, by the fact that for every t ∈ [0, T ], with proba-

bility 1, we have limǫ→0 ρt = 0, limǫ→0

(

ρtJ (ǫ)
)−1

= 0, and limǫ→0 ρtJ̃ (ǫ) /J (ǫ) = 0.

This proves (2.58), upon being applied to (2.63).
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Remark 2.5.2. As ǫ→ 0, the stochastic differential equation (2.2) tends to

dyt = q̄dNt + σdwt. (2.64)

On the other hand, (2.58) is the likelihood ratio function associated with a channel

whose output ỹt is described by

dỹt = q̄dNt. (2.65)

We conclude from these facts that subject to the detection problem of Section 2.2.3,

the channels described by (2.64) and (2.65) are equivalent, in the sense that they

have equal probability of error. In addition, since this argument is valid for every T ,

every integer M , and every set of waveforms {λ1 (t) , λ2 (t) , . . . , λM (t)}, we argue

that (2.64) and (2.65) have identical channel capacity.

Remark 2.5.3. We consider the case that σ = σ (ǫ) is a decreasing function of ǫ such

that limǫ→0 σ (ǫ) = ∞. We can verify that the results of Theorems 2.5.1 and 2.5.3

still hold, if for every 0 < ǫ < 1 and some δ > 0, σ (ǫ) satisfies the inequality

σ (ǫ) <
q̄

1 + δ

√

−Πǫ (0, 0)

ǫ ln ǫ
·

Under this condition, Theorem 2.5.3 implies that as ǫ → 0, the probability of error

of channel (2.2) tends to the probability of error of the ideal channel (2.65). On the

other hand, any linear filtering scheme fails to reconstruct the transmitted message,
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since limǫ→0 σ (ǫ) = ∞ implies that the signal-to-noise-ratio at the output of that

filter will be 0.

2.6 Approximate Implementation

The formal solutions introduced in Section 2.3 can be implemented only by means of

infinite-dimensional systems; however, under certain assumptions, finite-dimensional

approximations for Λ (YT ; {λt} , T ) can be derived from (2.17) and the results of

Sections 2.4 and 2.5. The goal of this section is to determine such approximate

implementations and discuss the conditions under which they are useful. We shall

keep the assumption of Section 2.5 in which π (·) is of finite duration, i.e., π (t) = 0

for t /∈ [0, ǫ]. The interpretation of this assumption is that most of the pulse energy

is concentrated in [0, ǫ] such that the energy beyond this interval is negligible.

According to (2.15), the stochastic process {zt} can be only implemented us-

ing an anticausal system; however, due to the assumption above, the stochastic

process z̃t , zt−ǫ, t ∈ [ǫ, T + ǫ] can be implemented by a causal, linear, time-varying

system. This system is characterized by

z̃t =
1

σ2

∫ +∞

−∞

h (t, τ) dyτ =
1

σ2

∫ t

0

h (t, τ) dyτ (2.66)

where the impulse response h (t, τ) is given by

h (t, τ) = π (ǫ− (t− τ)) u (T − τ)
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with u (·) denoting the unit step function. Note that (2.9) and (2.17) remain un-

changed if we shift up the limits of integration by ǫ (i.e. replacing 0 with ǫ and T

with T + ǫ) and in the same time replace zt with z̃t, e.g., (2.17) can be written as

Λ (YT ; {λt} , T ) = E

[

exp

(
∫ T+ǫ

ǫ

λt−ǫΦq

(

z̃t + jξ̄t−ǫ

)

dt

)

∣

∣

∣
YT

]

.

This shows that by accepting a delay of ǫ in the decision time, we can implement (2.9)

and (2.17) using the causal system (2.66). For sake of simplicity, in the rest of this

section, we keep the time frame [0, T ], while we know how to replace it with [ǫ, T +ǫ]

in order to implement zt by means of the causal filter (2.66).

Throughout this section, we introduce two categories of approximation for Λ (·).

The first category will be derived from expression (2.17), while the second one is

based on Theorem 2.5.2. While the first category can be used for the general case

of α and {qk}, the second category is only applicable to the case that α and qk = q̄

are deterministic values.

2.6.1 Approximation: Category I

We derive our first approximation for Λ (·) from (2.17) by approximating

Φq

(

zt + jξ̄t
)

≃ Φq (zt) (2.67)
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which results in

Λ (YT ; {λt} , T ) ≃ exp

(
∫ T

0

λtΦq (zt) dt

)

. (2.68)

For the case of a random α, using (2.14), (2.22), and (2.68) we can write

Λα (YT ; {st} , T ) ≃ Φα

(
∫ T

0

stΦq (zt) dt

)

exp

(
∫ T

0

µΦq (zt) dt

)

. (2.69)

The block diagrams in Figure 2.1 illustrate the implementation of (2.68) and (2.69).

(b)

(a)

×

st−ǫu (t − ǫ)

µu (t − ǫ)

×
1

σ2

∫ t

0

h (t, τ) (·) dτyt

∫ t

0

(·) dτ

∫ t

0

(·) dτ

Φq (·)
z̃t

t = T + ǫ

+

ln Λα (YT ; {st} , T )

Φ∗
α (·)

1

σ2

∫ t

0

h (t, τ) (·) dτyt Φq (·)
z̃t

∫ t

0

(·) dτ

λt−ǫu (t − ǫ)

×

t = T + ǫ

ln Λ (YT ; {λt} , T )

Figure 2.1: Implementation of (a) approximation (2.68) and (b) approximation (2.69).
In (b), the nonlinear mapping Φ∗

α (·) is defined as Φ∗
α (·) = ln Φα (·).

In order to obtain a condition under which (2.68) and (2.69) are useful, we
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rewrite (2.17) as

Λ (YT ; {λt} , T ) = exp

(

−
∫ T

0

λtdt

)

E

[

exp

(
∫ T

0

∫ +∞

−∞

λte
θztejθξ̄tdPq (θ) dt

)

∣

∣

∣
YT

]

.

It can be observed from this expression that the approximation (2.67) is equivalent

to approximating ejθξ̄t ≃ 1. Let bt be given by (2.27) and qmax be defined such

that Pr {|qk| > qmax} ≃ 0. Then, the approximation ejθξ̄t ≃ 1 is justified, if for

every t ∈ [0, T ] and every |θ| < qmax, we have

E
[

(

1 − cos θξ̄t
)2
]

≃ 3

4

(

θ2bt
)2 ≪ 1 (2.70)

E
[

(

0 − sin θξ̄t
)2
]

≃ θ2bt ≪ 1. (2.71)

It is straightforward to verify that both conditions (2.70) and (2.71) are satisfied if

q2
max

σ2

∫ ∞

0

π2 (t) dt≪ 1 . (2.72)

Remark 2.6.1. As mentioned earlier, the first stage for implementing Λ (·) is a

linear filter which has an impulse response with duration ǫ. Since the bandwidth

of this filter is roughly 1/ǫ, the effective power of the white noise (thermal noise)

is 2σ2/ǫ. For simplicity of discussion, assume that qk = q̄ is a deterministic value.

Then, (2.72) can be expressed as

1

ǫ

∫ ǫ

0

q̄2π2 (t) dt≪ 1

2

(

2σ2

ǫ

)

. (2.73)
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The interpretation of (2.73) is that the average power of a single pulse must be

much smaller than the effective power of the white noise. Note that (2.73) does not

necessarily require a small signal-to-noise-ratio (SNR), since with a large rate λt, we

can maintain a large SNR, while satisfying (2.73).

We can improve (2.68) and (2.69) by approximating

Φq

(

zt + jξ̄t
)

≃ Φq (zt) + jΦ′
q (zt) ξ̄t (2.74)

which is equivalent to

ejθξ̄t ≃ 1 + jθξ̄t.

For this approximation to be valid, in addition to (2.70), the condition

E
[

(

θξ̄t − sin θξ̄t
)2
]

≃ 5

12

(

θ2bt
)3 ≪ 1 (2.75)

must be satisfied for t ∈ [0, T ] and |θ| < qmax. A unified condition that satisfies

both (2.70) and (2.75) is obtained as

3

4

(

q2
max

σ2

∫ ∞

0

π2 (t) dt

)2

≪ 1

which is less restrictive than (2.72).

In order to determine an approximation for Λ (·) based on (2.74), we substi-
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tute (2.74) into (2.17) to find

Λ (YT ; {λt} , T ) ≃ exp

(
∫ T

0

λtΦq (zt) dt

)

E

[

exp

(

j

∫ T

0

λtΦ
′
q (zt) ξ̄tdt

)

∣

∣

∣
YT

]

.

(2.76)

The second integral in (2.76) can be written as

∫ T

0

λtΦ
′
q (zt) ξ̄tdt =

∫ T

0

xtdξt (2.77)

where xt is defined as

xt =
1

σ

∫ T

0

π (t− τ)λτΦ
′
q (zτ ) dτ. (2.78)

Note that xt can be implemented using a causal, linear, time-varying system with

the impulse response

g (t, τ) = π (t− τ) u (τ) u (T − τ) .

Let žt and x̌t be the sample paths of {zt} and {xt}, respectively, noting that x̌t

is associated with žt through (2.78). Then, for the sample path žt, the left side

of (2.77) is a zero-mean Gaussian random variable with a variance
∫ T

0
x̌2

t . Thus,

noting that {zt} and {xt} are independent of {ξt}, we can write

E

[

exp

(

j

∫ T

0

λtΦ
′
q (žt) ξ̄tdt

)]

= exp

(

−1

2

∫ T

0

x̌2
tdt

)

. (2.79)
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Since {zt} and {xt} are smooth stochastic processes with (almost surely) continuous

sample paths, in (2.79), we can replace the sample paths žt and x̌t with the sto-

chastic processes {zt} and {xt}, respectively. Using this fact and substituting (2.79)

into (2.76), we obtain

Λ (YT ; {λt} , T ) ≃ exp

{
∫ T

0

(

λtΦq (zt) −
1

2
x2

t

)

dt

}

. (2.80)

The implementation of this approximation is illustrated in Figure 2.2.

yt
1

σ2

∫ t

0

h (t, τ) (·) dτ
z̃t

λt−ǫu (t − ǫ)

Φq (·) × +

∫ t

0

(·) dτ

t = T + ǫ

lnΛ (YT ; {λt} , T )

Φ′
q (·) ×

λt−ǫu (t − ǫ)

1

σ

∫ t

0

g̃ (t, τ) (·) dτ −1

2
(·)2

Figure 2.2: Implementation of (2.80). Here, the impulse response g̃ (t, τ) is defined as
g̃ (t, τ) = g (t− ǫ, τ − ǫ).

In order to extend (2.80) to the case of a random α, we define the stochastic

processes

x̃t =
1

σ

∫ T

0

π (t− τ) sτΦ
′
q (zτ ) dτ

x̄t =
1

σ

∫ T

0

π (t− τ)µΦ′
q (zτ ) dτ

where st is a deterministic function. Next, substituting xt = αx̃t + x̄t into (2.80)
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and using (2.14), we get

Λα (YT ; {st} , T ) ≃ exp

{
∫ T

0

(

µΦq (zt) −
1

2
x̄2

t

)

dt

}

·Fα

(
∫ T

0

(

stΦq (zt) − x̃tx̄t

)

dt ,

∫ T

0

x̃2
tdt

)

(2.81)

where Fα (·, ·) is defined as

Fα (v1, v2) =

∫ ∞

0

exp

(

av1 −
1

2
a2v2

)

dPα (a) .

The implementation of this approximation is illustrated in Figure 2.3.

yt

1

σ

∫ t

0

g̃ (t, τ) (·) dτ

1

σ

∫ t

0

g̃ (t, τ) (·) dτ

µu (t − ǫ)

st−ǫu (t − ǫ)

Φ′
q (·)

×

×

×

−1

2
(·)2

(·)2

×

st−ǫu (t − ǫ)

×

Φq (·)

+

−

+

∫ t

0

(·) dτ

∫ t

0

(·) dτ

∫ t

0

(·) dτ

+F ∗
α (·, ·)

t = T + ǫ

µu (t − ǫ)

1

σ2

∫ t

0

h (t, τ) (·) dτ

z̃t

z̃t
lnΛα (YT ; {st} , T )

Figure 2.3: Implementation of (2.81). In this block diagram, we have g̃ (t, τ) =
g (t− ǫ, τ − ǫ) and F ∗

α (v1, v2) = lnFα (v1, v2).
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2.6.2 Approximation: Category II

The second category of approximation we purpose for Λ (·) is based on Theo-

rem 2.5.2. Using the results of this theorem, we argue that for a small ǫ, we can

approximate

Λ (YT ; {λt} , T ) ≃ B (YT ; {λt} , T ) (2.82)

where B (·) is determined by solving the integral equation (2.56) and using (2.57).

In order to establish a condition under which (2.82) is a close approximation, we

focus on the proof of Theorem 2.5.1. This proof indicates that for a nonzero ǫ,

the claim of the theorem is approximately valid, if the sample paths of {zt} are

free from overlapping pulses. This is equivalent to having a small probability for

occurrence of more than one pulse in an interval with duration ǫ. We know from the

properties of Poisson process that this condition is satisfied if we have ǫ2λ2
i (t) ≪ 1

for i = 1, 2, . . .M and every t ∈ [0, T ]. The structure of a system which determines

B (YT ; {λt} , T ) is illustrated in Figure 2.4.

1

σ2

∫ t

0

h (t, τ) (·) dτyt
z̃t ×f (·)

∫ t

0

γ̃ (t, τ) (·) dτ

λt−ǫct−ǫu (t − ǫ)

+

η
t = T + ǫ

B (YT ; {λt} , T )

Figure 2.4: Structure of a system which determines B (YT ; {λt} , T ) by solving (2.56). In

this block diagram, we have η = exp
(

−
∫ T
0 λtdt

)

and γ̃ (t, τ) = γ (t− ǫ, τ − ǫ).
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Chapter 3

Estimation and Control with Space-Time Point Process

Observations

3.1 Introduction

The concern of this chapter is to estimate the state of a stochastic dynamical model

which modulates the rate of a space-time point process. In addition, an associated

optimal control problem will be discussed which has a direct application in the

optical beam tracking aspect of free-space optics. Sections 3.2 and 3.3 present

the prior work by Snyder and Fishman [39] and Rhodes and Snyder [20], with the

intention of providing the necessary background for the next chapters. In Section 3.4,

we introduce a new formulation of the problem which is useful in generalizing the

results of [39, 20]. An approximation method will be developed in Section 3.5 which

incorporates the results of [39, 20] to explore a suboptimal control law for an optical

beam tracking system with a finite resolution position-sensitive photodetector.
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3.2 The Model and Problem Statement

In this section, we present a stochastic model in which the state of a linear sto-

chastic state-space equation modulates the rate of a space-time point process which

is regarded as the system output. In our description of the model, we closely fol-

low [39, 20]. For a rigorous and complete treatment of the space-time point process

we refer the reader to [40]. After introducing the model, we state its associated

estimation and control problems.

3.2.1 The Model

Consider the stochastic linear dynamical model

dxt = Atxtdt+Btutdt+Dtdwt (3.1)

where xt ∈ R
n and ut ∈ R

k are random vectors standing for state and control, {wt} is

a p-dimensional standard Wiener process, and At, Bt, and Dt are uniformly bounded

deterministic matrices with proper dimensions. The initial state x0 is a Gaussian

vector with mean x̄0 and covariance matrix Σ̄0 and is independent of {wt}.

The observation of the state vector is provided via a space-time point process

defined over [0,∞) × A, where A ⊆ R
m, m 6 n. Each point of this process is

characterized in terms of a temporal component ti ∈ [0,∞) and a spatial component

ri ∈ A. Let the nonnegative scalar map λt (r, xt) which is defined over t ∈ [0,∞)

and r ∈ A and is parameterized by the state vector xt, be the rate associated with
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this process. Then, the space-time point process is (statistically) characterized as

follows.

Let N (T × S) denote the number of points occurring in T ×S, where T and S

are Borel sets in [0,∞) and A, respectively. Associated with N(T × S), define the

random variable

Λ (T × S) =

∫

T ×S

λt (r, xt) dtdr.

Then, conditioned on Λ (T × S), the random variable N (T × S) is Poisson distrib-

uted, i.e.,

Pr {N(T × S) = n|Λ (T × S)} =
e−Λ(T ×S)Λn (T × S)

n!
·

Moreover, for disjoint T1×S1 and T2×S2, conditioned on Λ (T1 × S1) and Λ (T2 × S2),

the random variables N (T1 × S1) and N (T2 × S2) are statistically independent.

We shall assume that the rate of the space-time process has the form

λt (r, xt) = µtγt (r − Ctxt) (3.2)

where Ct is a bounded m × n matrix, the known function µt is nonnegative for

every t > 0, and the nonnegative map γt (·) : R × R
m → R satisfies

∫

Rm

γt (r) dr = 1. (3.3)
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In particular, we are interested in the case that γt (·) is a Gaussian map, i.e.,

γt (r) = Φm (r; 0, Rt) (3.4)

where Rt = RT
t is a m×m positive definite matrix and Φk : R

k×R
k×R

k×k → R, k =

1, 2, 3, . . . is defined as

Φk (z; z̄,Θ) = (2π)−k/2 (det Θ)−1/2 exp

(

−1

2
(z − z̄)T Θ−1 (z − z̄)

)

. (3.5)

3.2.2 Problem Statement

Let (Ω,F , P ) be the underlying probability space for the stochastic model of Sec-

tion 3.2.1. Define Bt as the σ-algebra generated by the space-time point process

over [0, t) and assume that the control vector ut is Bt-measurable. We say ut is an

admissible control if it is Bt-measurable and the solution to (3.1) is well-defined.

Subject to the model of Section 3.2.1, we define the following problems.

Estimation Problem: For every t > 0, determine pxt
(x|Bt), the posterior den-

sity of the state vector xt given Bt. In particular, determine the condi-

tional expectation x̂t , E [xt|Bt] and the conditional covariance matrix Σt ,

E
[

(xt − x̂t) (xt − x̂t)
T
∣

∣Bt

]

.

Control Problem: Find an admissible control {ut, t ∈ [0, T ]} which minimizes the
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cost functional

J = E

[
∫ T

0

(

xT
t Qtxt + uT

t Ptut

)

dt+ xT
TSxT

]

(3.6)

where Pt = P T
t > 0, Qt = QT

t > 0, and S = ST > 0 are matrices of proper

dimensions and T > 0 is a fixed time horizon.

3.3 Relevant Prior Work

In this section, we state the results obtained in [39, 20] regarding the estimation

and control problems defined in Section 3.2.2. These results provide an adequate

framework for our discussion in the next chapters. Theorem 3.3.1 below provides a

solution to the estimation problem in the most general case. The rest of theorems

address the special case in which the rate of the space-time point process is given

by (3.2) and (3.4).

Before stating the theorems, we fix notation. Let (tk−1, tk] be the interval

between two successive occurrence of the space-time point process and rk be the

location of kth occurring point. Assume that ht (r, ξt) is continuous in r and left

continuous in t and ξt. Then, the stochastic differential equation

dξt =

∫

A

ht (r, ξt)N (dt× dr)

is defined such that dξt = 0 during (tk−1, tk) and ξt encounters a jump of htk (rk, ξtk)
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at t = tk, i.e.,

ξt+
k

= ξt−
k

+ htk

(

rk, ξt−
k

)

.

Theorem 3.3.1 (Rhodes and Snyder 1977 [20]). Consider the state-space equa-

tion (3.1) and its associated space-time observation defined in Section 3.2.1. Assume

that the increasing family of σ-algebras Bt are given and that ut is Bt-measurable.

Then, the posterior density of the state vector xt is the solution of the stochastic

partial differential-integral equation

dpxt
(x|Bt) = L{pxt

(x|Bt)} dt+ pxt
(x|Bt)

∫

A

(

λt (r, x) λ̂
−1
t (r) − 1

)

N (dt×dr)

− pxt
(x|Bt)

∫

A

(

λt (r, x) − λ̂t (r)
)

drdt

(3.7)

where λ̂t (r) = E [λt (r, xt) |Bt] and L{·} is the forward Kolmogorov operator asso-

ciated with (3.1) defined as

L{·} = −
n
∑

i=1

∂ [(Atx+Btut) (·)]i /∂xi +
1

2

n
∑

i=1

n
∑

j=1

∂2
[

DtD
T
t (·)

]

ij
/∂xi∂xj .

Proof. See [39, 20].

Corollary 3.3.1 (Rhodes and Snyder 1977 [20]). Assume that A = R
m and λt (r, xt)

is given by (3.2). Let {µt} be a nonnegative stochastic process which is statistically

independent of x0 and {wt}. Then, under the assumptions of Theorem 3.3.1, the
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posterior density pxt
(x|Bt) is the solution of

dpxt
(x|Bt) = L{pxt

(x|Bt)} dt+pxt
(x|Bt)

∫

Rm

(

γt (r − Ctx) γ̂
−1
t (r) − 1

)

N (dt×dr)

(3.8)

where γ̂t (·) is defined as γ̂t (r) = E [γt (r − Ctxt) |Bt].

Proof. Following [20], we temporarily replace Bt with B′
t = Bt ∪ M , where M

is the σ-algebra generated by {µt} over [0,∞). Then, Theorem 3.3.1 indicates

that pxt
(x|B′

t) is the solution of (3.7) with λt (r, xt) replaced from (3.2) and Bt

replaced with B′
t. From condition (3.3), it is easy to verify that the second integral

on the right side of this equation is identically zero, which leads to (3.8) with Bt

replaced by B′
t. Since this equation does not depend on {µt}, we can replace B′

t

with Bt to show that pxt
(x|Bt) satisfies (3.8).

Theorem 3.3.2 (Rhodes and Snyder 1977 [20]). Let γt (·) be the Gaussian map (3.4).

Then, under the assumptions of Corollary 3.3.1, the posterior density pxt
(x|Bt) is

Gaussian, i.e.,

pxt
(x|Bt) = Φn (x; x̂t,Σt) .

Here, the conditional expectation x̂t and the conditional covariance matrix Σt are

the solutions of the stochastic differential equations

dx̂t = Atx̂tdt+Btutdt+

∫

Rm

Mt (r − Ctx̂t)N (dt× dr) (3.9a)

dΣt = AtΣtdt+ ΣtA
T
t dt+DtD

T
t dt−MtCtΣtdNt (3.9b)
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with the initial states x̂0 = x̄0 and Σ0 = Σ̄0, where Nt = N ([0, t) × R
m) and Mt is

defined as

Mt = ΣtC
T
t

(

CtΣtC
T
t +Rt

)−1
.

Moreover, the conditional covariance matrix Σt is almost surely positive definite

for t > 0, provided that Σ̄0 is positive definite.

Proof. We outline the proof and refer the reader to [39] for the details. Let t1 be the

first occurrence time of the space-time point process. During t ∈ [0, t1), the integral

on the right side of (3.8) is zero and the equation is reduced to

∂pxt
(x|Bt)

∂t
= L{pxt

(x|Bt)} . (3.10)

The solution to this equation is a Gaussian function with mean x̂t and covariance

matrix Σt. In the transition from t−1 to t+1 , the integral on the right side of (3.8)

causes pxt
(x|Bt) to jump from Φn

(

x; x̂t−
1
,Σt−

1

)

into Φn

(

x; x̂t+
1
,Σt+

1

)

. Continuing

this procedure, we find that pxt
(x|Bt) is Gaussian for every t > 0.

To prove the second statement, we note that Σt is positive definite during t ∈

[0, t1), since in equation (3.9b), the initial state Σ̄0 and DtD
T
t are positive definite.

Also, at t = t1 we have

Σt+
1

= Σt−
1
− Σt−

1
CT

t1

(

Ct1Σt−
1
CT

t1
+Rt1

)−1

Ct1Σt−
1

=
(

Σ−1

t−
1

+ CT
t1
R−1

t1
Ct1

)−1

which indicates that Σt+
1

is positive definite. The proof can be completed by con-
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tinuing this procedure.

Theorem 3.3.3 (Rhodes and Snyder 1977 [20]). Under the assumptions of The-

orem 3.3.2, the admissible control u∗t which minimizes the cost functional (3.6) is

uniquely given by

u∗t = −P−1
t BtKtx̂t (3.11)

where the n × n nonnegative definite matrix Kt is the backward solution of the

Riccati equation

K̇t = −KtAt −AT
t Kt +KtBtP

−1
t BT

t Kt −Qt

with the terminal condition KT = S. The minimum of the cost functional J asso-

ciated with (3.11) is given by

J∗ = E
[

xT
0K0x0

]

+

∫ T

0

tr
(

KtBtP
−1
t BT

t KtE [Σt] +KtDtD
T
t

)

dt.

Proof. According to [20], J can be expressed as

J = E

[
∫ T

0

(

ut + P−1
t BtKtx̂t

)T
Pt

(

ut + P−1
t BtKtx̂t

)

dt

]

+ E
[

xT
0K0x0

]

+

∫ T

0

tr
(

KtBtP
−1
t BT

t KtE [Σt] +KtDtD
T
t

)

dt.

It is easy to verify that the second and the third terms on the right side of the

expression above do not depend on ut, thus we must minimize the first term. This

term is always nonnegative with a minimum of zero which is achieved by choosing ut
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as (3.11).

3.4 A New Formulation for the Estimation Problem

Throughout this section, we assume that λt (r, xt) is given by (3.2) and γt (·) satis-

fies (3.3), while it is not necessarily Gaussian. Further, we assume that A = R
m,

the pair of (At, Dt) is controllable, and the Bt-measurable ut is a piecewise con-

tinuous and almost surely bounded stochastic process. Under these assumptions,

we determine the solution of the estimation problem in terms of the posterior den-

sity associated with a discrete-time model. The procedure for obtaining this new

representation is explained below.

Lemma 3.4.1. Consider the stochastic differential equation

dx̃t = Atx̃tdt+Dtdwt (3.12)

and assume that for the fixed but arbitrary t∗ > 0, x̃t∗ is independent of {wt, t > t∗}

and its probability density function is known. Then, for every t > t∗, the probability

density function px̃t
(x̃) is given by

px̃t
(x̃) =

∫

Rn

Φn

(

x̃; ΦA (t, t∗) x∗,W (t, t∗)
)

px̃t∗
(x∗) dx∗. (3.13)
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Here, ΦA (t, τ) is the transition matrix associated with At which satisfies

∂ΦA (t, τ)

∂t
= AtΦ

A (t, τ)

ΦA (τ, τ) = In×n

(3.14)

for every t > τ and W (t, t∗) is defined as

W (t, t∗) =

∫ t

t∗
ΦA (t, τ)DτD

T
τ

(

ΦA (t, τ)
)T
dτ.

Proof. We note that for every t > t∗, the solution of (3.12) is given by

xt = ΦA (t, t∗) xt∗ +

∫ t

t∗
ΦA (t, τ)Dτdwτ .

The two random vectors on the right side of this expression are independent and the

second one is a zero-mean Gaussian random vector with covariance matrix W (t, t∗).

This leads to the convolution described by (3.13).

Consider the linear discrete-time state-space model

θk+1 = Fkθk +Gkωk (3.15a)

ρk = Lkθk + νk (3.15b)

where θk ∈ R
n is the state vector and the i.i.d. random vectors ωk ∈ R

n, k =

1, 2, 3, . . . are zero-mean and Gaussian with covariance matrix In×n. The matrices Fk

and Lk in (3.15) are defined as Fk = ΦA (tk+1, tk) and Lk = Ctk , respectively,
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where t0 = 0 and tk, k = 1, 2, 3, . . . is the kth occurrence time of the space-time

point process. The n×n matrix Gk is defined in such a manner that GkG
T
k =

W (tk+1, tk). The random vector νk ∈ R
m is distributed according to the probability

density pνk
(ν) = γtk (ν) and νk and νl are independent for k 6= l. The initial

state θ0 is a Gaussian random vector with mean x̄0 and covariance matrix Σ̄0 and is

independent of {ωk} and {νk}. We denote the history of the measurement vector ρk

(up to k) by Rk = {ρ1, ρ2, . . . , ρk} , k = 1, 2, 3, . . ., and R0 = ∅.

Theorem 3.4.1. Suppose that the measurement vector ρk in (3.15b) is generated

according to ρk = rk−Ctkvtk , where rk is the location of the event occurred at t = tk

(associated with the space-time point process) and the stochastic process {vt, t > 0}

is defined as

vt =

∫ t

0

ΦA (t, τ)Bτuτdτ.

Then, for t ∈ [tk, tk+1) , k = 0, 1, 2, . . ., the posterior density pxt
(x|Bt) can be

expressed as

pxt
(x|Bt) =

∫

Rn

Φn

(

x; ΦA (t, tk) θ + vt,W (t, tk)
)

pθk
(θ|Rk) dθ (3.16)

where pθk
(θ|Rk) is the posterior density of the state vector θk in (3.15a), conditioned

on Rk.

Proof. Let x̃t = xt−vt be the solution of (3.12) and assume that px̃t
(x̃|Bt) is known

at t = tk. For the time interval t ∈ [tk, tk+1) in which (3.8) reduces to (3.10), we use
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Lemma 3.4.1 to obtain

px̃t
(x̃|Bt) =

∫

Rn

Φn

(

x̃; ΦA (t, tk) x
∗,W (t, tk)

)

px̃tk
(x∗|Btk) dx

∗. (3.17)

Also, from xt = x̃t + vt and the fact that vt is measurable with respect to Bt, we

have

pxt
(x|Bt) =

∫

Rn

Φn

(

x; ΦA (t, tk) x
∗ + vt,W (t, tk)

)

px̃tk
(x∗|Btk) dx

∗. (3.18)

At t = t−k+1, (3.17) can be expressed as

px̃
t
−

k+1

(

x̃|Bt−
k+1

)

=

∫

Rn

Φn

(

x̃;Fkx
∗, GkG

T
k

)

px̃tk
(x∗|Btk) dx

∗. (3.19)

We solve (3.8) between t−k+1 and tk+1, in order to get

pxtk+1

(

x|Btk+1

)

=
px

t
−

k+1

(

x|Bt−
k+1

)

γtk+1

(

rk+1 − Ctk+1
x
)

∫

Rn

px
t
−

k+1

(

x∗|Bt−
k+1

)

γtk+1

(

rk+1 − Ctk+1
x∗
)

dx∗
·

Using this result, the equality xt = x̃t+vt, the continuity of vt, and rk+1−Ctk+1
vtk+1

=

ρk+1, we obtain

px̃tk+1

(

x̃|Btk+1

)

=
px̃

t
−

k+1

(

x̃|Bt−
k+1

)

pνk+1
(ρk+1 − Lk+1x̃)

∫

Rn

px̃
t
−

k+1

(

x∗|Bt−
k+1

)

pνk+1
(ρk+1 − Lk+1x

∗) dx∗
· (3.20)

The recursive formulas (3.19) and (3.20) specify a two-step procedure for determin-

ing px̃tk+1

(

x̃|Btk+1

)

in terms of px̃tk
(x̃|Btk). We shall show that the same procedure
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can be used to determine pθk+1
(θ|Rk+1) in terms of pθk

(θ|Rk).

Using the law of total probability, we can write

pθk+1
(θ|Rk) =

∫

Rn

pθk+1
(θ|θk = θ∗,Rk) pθk

(θ∗|Rk) dθ
∗

=

∫

Rn

Φn

(

θ;Fkθ
∗, GkG

T
k

)

pθk
(θ∗|Rk) dθ

∗ (3.21)

where the second equality is obtained from (3.15a), noting that

pθk+1
(θ|θk = θ∗,Rk) = pθk+1

(θ|θk = θ∗) .

Also, from Bayes’ rule we obtain

pθk+1
(θ|Rk+1) = pθk+1

(θ|Rk, ρk+1)

=
pθk+1

(θ|Rk) pρk+1
(ρk+1|θk+1 = θ,Rk)

∫

Rn

pθk+1
(θ∗|Rk) pρk+1

(ρk+1|θk+1 = θ∗,Rk) dθ
∗

=
pθk+1

(θ|Rk) pνk+1
(ρk+1 − Lk+1θ)

∫

Rn

pθk+1
(θ∗|Rk) pνk+1

(ρk+1 − Lk+1θ
∗) dθ∗

(3.22)

where the last equality is derived from (3.15b). Comparing the pair of formulas

(3.21) and (3.22) with (3.19) and (3.20), we conclude that px̃tk
(θ|Btk) = pθk

(θ|Rk),

k = 0, 1, 2, . . ., which leads to (3.16) upon substituting into (3.18).

For the special case that νk, k = 1, 2, 3, . . . is a Gaussian random vector,

the estimation problem associated with the discrete-time model (3.15) has an exact

Gaussian solution, which is consistent with the results of [39, 20]. For the gen-
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eral case, this estimation problem is difficult to solve, i.e., the problem is infinite-

dimensional. While it seems that Theorem 3.4.1 converts a hard-to-solve problem

into another hard-to-solve problem, the new formulation might be easier to ap-

proach, due to the discrete-time and linear nature of the model.

3.5 Optical Beam Tracking

In Section 1.2.1, we briefly discussed the operation of optical beam tracking. This

operation has been studied by Snyder [19] in a stochastic framework using an ide-

alized model for the photodetector. In that work, the dynamics of the pointing

assembly and the relative motion is modeled by (3.1), where ut is the (control) in-

put of the pointing assembly. Also, the location of the center of spot of light is

modeled by Ctxt and its optical intensity is described by (3.2). In addition, [19]

considers the Gaussian model (3.4) for the intensity pattern of the spot of light1.

Regarding the position-sensitive photodetector, [19] makes two ideal assumptions:

the photodetector has an infinite spatial resolution and an infinite area (A = R
2).

The first assumption allows us to model the output of the photodetector by a space-

time point process with rate2 λt (r, xt) in (3.2) and the second one makes it possible

to use the results of Theorems 3.3.2 and 3.3.3. Finally, the problem of optical beam

tracking can be formulated in terms of minimizing (3.6) with Qt = CT
t Ct. For a

detailed derivation of this model see Chapter 5.

In a more realistic model, while keeping (3.1), (3.2), and (3.4), we describe

1To evaluate the validity of this assumption see Chapter 5
2Here, the background radiation and the dark current noise are ignored.
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the output of the position-sensitive photodetector by a point process vector. For

this purpose, let Ai, i = 1, 2, . . . , q denote the ith partition on the surface of the

photodetector such that
⋃q

i=1 Ai = A. The output of the region Ai will be modeled

by a doubly stochastic Poisson process Y i
t with rate Λi

t (xt), where Λi
t (·) : R×R

n → R

is defined as

Λi
t (x) =

∫

Ai

λt (r, x) dr.

To have a compact notation, we put Y i
t , i = 1, 2, . . . , q in a vector Yt and express

the output of the position-sensitive photodetector by Yt = (Y 1
t , Y

2
t , . . . , Y

q
t ).

In order to solve the optimal control problem associated with this new model,

we need to obtain an equation which describes the temporal evolution of the poste-

rior density (similar to (3.7)). The filtering problem associated with this equation

is infinite-dimensional, which requires some sort of approximation to reduce it into

a finite-dimensional problem. An alternative to this approach is to start from the

idealized model explained above and derive an appropriate approximation from the

“exact” results of Theorem 3.3.2 and Theorem 3.3.3. To justify this approach, we

note that the “infinite resolution” assumption provides a reasonable approximation

for a high spatial resolution photodetector. Also, the “infinite area” assumption is

appropriate when the photodetector area is significantly larger than the size and the

displacement of the spot of light.

Following this approach, we approximate the optimal control associated with
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the “finite resolution” model as

ũt = −P−1
t BtKtx̃t

where x̃t is the solution of the stochastic differential equations

dx̃t = Atx̃tdt+Btũtdt+

q
∑

i=1

M̃t

(

ri
t − Ctx̃t

)

dY i
t (3.23a)

dΣ̃t = AtΣ̃tdt+ Σ̃tA
T
t dt+DtD

T
t dt−

q
∑

i=1

M̃tCtΣ̃tdY
i
t (3.23b)

with the initial state x̃0 = x̄0 and Σ̃0 = Σ̄0. Here, ri
t ∈ Ai is a representative point

of the region Ai and M̃t is defined as

M̃t = Σ̃tC
T
t

(

CtΣ̃tC
T
t +Rt

)−1
.

We note that Y i
t is the integral over Ai of the space-time point process, i.e.,

each point (event) of this process which occurs on Ai increases the value of Y i
t by

one unit. The information we lose by replacing the space-time point process with Yt

is the knowledge of the exact occurrence location of the points on Ai. In fact, we

derived (3.23a) from (3.9a) by replacing the exact occurrence location of the points

with ri
t as a representative point of Ai. This suggests that to achieve the best

performance of the estimator (3.23), ri
t must be chosen as a “good” estimate of the

occurrence locations, based on the past observation of Yt.

Based on the explanation above, an appropriate choice for ri
t is the minimum
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mean squared error (MMSE) estimator

ri
t =

∫

Ai

rE [Φm (r;Ctxt, Rt) |Yt] dr
∫

Ai

E [Φm (r;Ctxt, Rt) |Yt] dr

where Yt is the σ-algebra generated by Yt over [0, t). Approximating pxt
(x|Yt)

with Φn

(

x; x̃t, Σ̃t

)

, the expression above can be written as1

ri
t =

∫

Ai

rΦm

(

r;Ctx̃t, Rt + CtΣ̃tC
T
t

)

dr
∫

Ai

Φm

(

r;Ctx̃t, Rt + CtΣ̃tC
T
t

)

dr

·

Another suitable choice for ri
t is the maximum a posteriori (MAP) estimator

ri
t = arg max

r∈Ai
Φm

(

r;Ctx̃t, Rt + CtΣ̃tC
T
t

)

.

When the partition A1,A2, . . . ,Aq is fine enough, for sake of simplicity, ri
t can be a

predetermined point of Ai such as

ri
t =

∫

Ai

rΦm (r; 0, Rt) dr
∫

Ai

Φm (r; 0, Rt) dr

·

1See Lemma 4.5.1.

76



Chapter 4

Active Pointing

4.1 Introduction

In this chapter we study the estimation and control problems defined in Section 3.2.2

for the case of A 6= R
m. Since under this assumption, the associated filtering

problem is infinite-dimensional, we focus our attention on an approximate solution

for the problem, which leads to a suboptimal estimator and controller.

The motivation for this study is its application in an active fine pointing scheme

for short range free-space optical communication. The one-way optical link under

consideration comprises an optical transmitter and an optical receiver which are sub-

ject to relative motion. The optical transmitter is equipped with an electromechani-

cal pointing assembly which can control the azimuth and elevation of a transmitting

laser source. The optical beam emitted by the laser source has a nonuniform in-

tensity profile which is assumed to be Gaussian [41]. Normally, the aperture of the

receiver is smaller than the received optical beam, so that the receiver can collect

only a fraction of the optical power. In order to enlarge this captured fraction,

the goal of active pointing is to hold the center of the optical beam at the center
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of the receiving aperture. The receiver employs a position-sensitive photodetector

to measure the intensity profile of the optical beam that strikes its aperture. The

output of the photodetector is used to estimate the center of the received optical

beam, which is then conveyed to the transmitter through an optical link or a low-

bandwidth RF channel. The pointing assembly then adjusts the orientation of the

transmitter based on this estimate. The concept of this active pointing method is

illustrated in the block diagram of Figure 1.2.

The performance of the proposed active pointing scheme depends significantly

on the accuracy of the estimate of the beam center. In order to achieve a good

estimate of the beam center, it is necessary that the size of the receiving aperture

be comparable with the size of the beam. This requirement limits the application

of the method to short distance links.

The remainder of this chapter is organized as follows. In the next section, we

show that the overall active pointing scheme can be described in terms of the model

of Section 3.2.1 and its associated estimation and control problems in Section 3.2.2.

Sections 4.3 and 4.4 consider the estimation and control problems, respectively.

Since the proof of the theorems stated in these sections are long, for sake of continuity

of discussion, we present the proofs in Section 4.5.

4.2 The Model

Let the two-dimensional vector θt denote the azimuth and elevation angles of the

transmitter axis with respect to some fixed coordinate system. Similarly, αt denotes

the azimuth and elevation angles of the line-of-sight of the stations (passing through
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the center of the receiving aperture) with respect to the same coordinate system.

We assume that the receiving aperture is held perpendicular to the line-of-sight by

means of an optical beam tracking system. Then, for a small pointing error θt −αt,

the displacement of the center of the optical beam with respect to the center of the

receiving aperture is given by yt = l (θt − αt), where the known constant l is the

distance between the stations. Figure 4.1 illustrates the optical beam in the plane

of the receiving aperture and the displacement vector yt.

Receiving 
Aperture

Optical
Beam

yt

Figure 4.1: Receiving aperture, optical beam, and the displacement vector yt.

The pointing assembly is an electromechanical system with the input vec-

tor ut ∈ R
2 and the output vector θt ∈ R

2. We describe this system by the linear

stochastic state-space equations

dxp
t = Ap

tx
p
tdt+Bp

t utdt+Dp
t dw

p
t

θt = Cp
t x

p
t

(4.1)

where xp
t ∈ R

np

is the state vector and {wp
t } is a mp-dimensional standard Wiener
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process. In this equation, Ap
t , B

p
t , D

p
t , and Cp

t are known uniformly bounded matrices

of appropriate dimensions. Using a linear model for the pointing assembly is justified

by the fact that the system operates over small angles during the active pointing

regime1.

We model αt by a Gauss-Markov stochastic process described by the state-

space equations

dxd
t = Ad

tx
d
t dt+Dd

t dw
d
t

αt = Cd
t x

d
t

(4.2)

with the state vector xd
t ∈ R

nd

, md-dimensional standard Wiener process
{

wd
t

}

, and

known uniformly bounded matrices Ad
t , D

d
t , and Cd

t of proper dimensions.

The displacement vector yt = l (θt − αt) is a linear function of xp
t and xd

t , so

that (4.1) and (4.2) can be combined in a compact form

dxt = Atxtdt+Btutdt+Dtdwt (4.3)

yt = Ctxt

with the state vector xt ∈ R
n and m-dimensional standard Wiener process {wt},

where n = np +nd and m = mp +md. The initial state x0 is assumed to be Gaussian

with mean x̄0 and covariance matrix Σ̄0, and independent of {wt}.

Let r denote the position vector of an arbitrary point on the plane of the

receiving aperture with respect to a coordinate system centered at the center of the

1For a detailed discussion of this issue see Chapter 5.
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aperture. Then, for a Gaussian beam centered at yt = Ctxt, the optical intensity

over the plane of the aperture is proportional to Φ2 (r − yt; 0, Rt) = Φ2 (r;Ctxt, Rt),

where Rt = RT
t is a 2× 2 positive definite matrix describing the shape of the beam.

For a circular symmetric beam with a constant radius ̺ > 0, Rt can be expressed

as Rt = ̺2I2×2.

Let A denote the set of points on the receiving aperture. In a practical sys-

tem, the optical field over the receiving aperture is focused on a position-sensitive

photodetector of small surface area by means of a focusing lens. The photodetector

measures the intensity profile of the imaged optical field, which is a scaled-down

version of the optical intensity over the receiving aperture. Therefore, we consider

the combination of the lens and the photodetector as a virtual photodetector of

area A, i.e., we assume that the virtual photodetector provides the observation of

the optical intensity over A.

Following [19] and our discussion in Section 3.5, we use an “infinite resolution”

model for a high resolution photodetector employed by the receiver. According to

this model, we describe the output of the photodetector by a space-time point

process defined over A with a rate given by

λt (r, xt) = µtΦ2 (r;Ctxt, Rt) .

where µt is a known nonnegative function. We remind from Section 3.2.2 that Bt

denotes the σ-algebra generated by the space-time point process over [0, t).

The central objective of an active pointing system is to maintain the centroid of
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the optical beam as close as possible to the center of the photodetector. This control

task can be interpreted as one of minimizing yt with respect to some appropriate

norm. For this purpose, we adopt the quadratic cost functional

J = E

[
∫ T

0

(

xT
t Qtxt + uT

t Ptut

)

dt+ xT
TSxT

]

(4.4)

with Qt = CT
t Ct, Pt = ρI2×2, and S = 0, where ρ > 0 is a known constant.

Our discussion up to this point indicates that the controller design for an active

pointing system can be formulated in terms of the control problem of Section 3.2.2

subject to the model of Section 3.2.1. An intermediate step for solving the control

problem is to obtain the posterior density pxt
(x|Bt). In the next section, we discuss

this problem and develop an approximation for the posterior density. In Section 4.4,

we employ this approximation in order to determine an approximate solution for the

optimal control problem. Although for the specific application of active pointing,

the space-time point process is defined over A ⊂ R
2, our results can be applied to

the general case of A ⊂ R
m. Hence, for sake of generality, we present these results

for an arbitrary integer m.

4.3 Estimation Problem

We remind from Chapter 3 that the posterior density pxt
(x|Bt) is the solution of

the stochastic partial differential-integral equation (3.7). For the case that A 6= R
m,

the filtering problem associated with this equation is infinite-dimensional; however,

when A is large compared with the size of the optical beam, a finite-dimensional
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approximation is reasonable. The fact that for A = R
m, the posterior density

pxt
(x|Bt) is Gaussian1, motivates us to consider a Gaussian approximation for

pxt
(x|Bt) when A 6= R

m. In the remainder of this section, we develop a method to

determine the mean and covariance matrix of such a Gaussian approximation. The

cumulant generating function associated with pxt
(x|Bt) plays a central role in this

development.

The conditional cumulant generating function of xt given Bt is defined as

ψt (s) = ln E
[

exp
(

jωTxt

)

|Bt

] ∣

∣

jω=s
.

This function can be expanded in terms of the conditional cumulants κ
i1i2···ij
t [42] as

ψt (s) =
∞
∑

j=1

∑

I n
j

1

j!
κ

i1i2···ij
t si1si2· · ·sij (4.5)

where I n
j = {1, 2, . . . , n}j and s = (s1, s2, . . . , sn). Note that x̂t and Σt are repre-

sented in terms of the first and the second order cumulants as x̂t = (κ1
t , κ

2
t , . . . , κ

n
t )

and Σt = [κij
t ]. The temporal evolution of ψt (·) is described by a partial differential-

integral equation derived from (3.7) and is stated next.

Theorem 4.3.1. Let ψt (·) be the conditional cumulant generating function of xt

given Bt where xt is the solution of (4.3). Then, the temporal evolution of ψt (·) is

1It is also assumed that γt (·) is a Gaussian map.
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described by

dψt (s) = sT

(

At
∂ψt(s)

∂s
+Btut

)

dt+
1

2
sTDtD

T
t s dt

+

∫

A

(

ln βt (r, s) − ln βt (r, 0)
)

N(dt× dr) −
∫

A

(

βt (r, s) − βt (r, 0)
)

drdt

(4.6)

where βt (·, ·) is defined as

βt (r, s) = exp {−ψt(jω)}E
[

exp
(

jωTxt

)

λt(r, xt)|Bt

] ∣

∣

jω=s
· (4.7)

Moreover, if the Fourier transform of λt (r, ·),

Λt (r, jω) =

∫

Rn

λt (r, x) exp
(

−jωTx
)

dx

exists, βt (·, ·) can be expressed as

βt (r, s) =
1

(2π)n

∫

Rn

Λt (r, jν) exp
{

ψt(jν + s) − ψt(s)
}

dν. (4.8)

Proof. See Section 4.5.1.

The temporal evolution of the cumulants is described by a (generally infi-

nite) set of nonlinear stochastic differential equations driven by the space-time point

process N (T × S). This set of equations can be derived from (4.6) by matching

the coefficients of corresponding si1si2 · · ·sij on the two sides of (4.6). We usually

suppose that the first few cumulants approximate pxt
(x|Bt) within an acceptable
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precision. This means that the infinite set of equations can be approximated by a

finite-dimensional one.

Regarding this approach, two issues should be addressed. First, we need to

compute βt (·, ·) in terms of the cumulants via equations (4.7) or (4.8) and ex-

pansion (4.5), which is not straightforward for an arbitrary number of cumulants.

Second, when we truncate (4.5) to a finite number of terms, the corresponding ap-

proximation for pxt
(x|Bt) might not be a valid probability density function, i.e., it

might be negative for some x. When we limit the expansion (4.5) to the first and

second order terms (Gaussian approximation), these difficulties are avoided. In this

case, βt (·, ·) can be easily calculated (when γt (·) is Gaussian) and the truncated

expansion leads to a valid probability density.

We have used the method above to approximate pxt
(x|Bt) with a Gaussian

probability density. It is shown in Section 4.5.2 that the mean x̃t and the covari-

ance matrix Σ̃t of this Gaussian approximation are the solutions of the stochastic

differential equations

dx̃t = Atx̃tdt+Btutdt+

∫

A

M̃t (r − Ctx̃t)N (dt× dr) − µtht

(

x̃t, Σ̃t

)

dt

dΣ̃t = AtΣ̃tdt+ Σ̃tA
T
t dt+DtD

T
t dt− M̃tCtΣ̃tdNt + µtHt

(

x̃t, Σ̃t

)

dt

(4.9)

with the initial state x̃0 = x̄0 and Σ̃0 = Σ̄0. Here, we have Nt = N ([0, t) ×A) and

M̃t = Γt

(

Σ̃t

)

, where Γt (·) : R × R
n×n → R

n×m is defined as

Γt (Σ) = ΣCT
t

(

CtΣC
T
t +Rt

)−1
.
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Also, ht (·, ·) : R × R
n × R

n×n → R
n and Ht (·, ·) : R × R

n × R
n×n → R

n×n are

given by

ht (x,Σ) =

∫

A

Γt (Σ) (r − Ctx) Φm

(

r;Ctx, CtΣC
T
t +Rt

)

dr

Ht (x,Σ) =

∫

A

Γt (Σ)
(

CtΣC
T
t +Rt − (r − Ctx) (r − Ctx)

T
)

ΓT
t (Σ)

· Φm

(

r;Ctx, CtΣC
T
t +Rt

)

dr.

Note that x̃t and Σ̃t are approximations of x̂t and Σt, not their exact values.

Remark 4.3.1. The definition of h (·, ·) and H (·, ·) imply that as A → R
m,

h (·, ·) → 0 and H (·, ·) → 0, and as a consequence, the approximate estimator (4.9)

tends to the exact estimator (3.9). In this sense, we can say that (4.9) is an asymp-

totically optimal estimator.

4.4 Control Problem

We exploit the results of the previous section in solving the control problem as stated

in Theorem 4.4.1 below. Before presenting this result, we fix notation. Let Σ = [σij ]

denote a symmetric n× n matrix and f (Σ) be a scalar function of Σ. Assume that

the partial derivatives of f (Σ) with respect to the elements of Σ exist. We denote

by ∂f (Σ) /∂Σ a n× n symmetric matrix F (Σ) = [Fij (Σ)] such that Fii = ∂f/∂σii

and Fij = (1/2) ∂f/∂σij for i 6= j. Let gt (x,Σ) be a scalar function of x ∈ R
n and

n × n symmetric matrix Σ. Assume that the partial derivatives of gt (x,Σ) with
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respect to x and Σ exist. Define the linear operator Lt {·} as

Lt {gt (x,Σ)} =

∫

A

(

gt

(

x+ Γt (Σ) (r − Ctx) ,Σ − Γt (Σ)CtΣ
)

− gt (x,Σ)
)

· Φm

(

r;Ctx, CtΣC
T
t +Rt

)

dr

− (∂gt (x,Σ) /∂x)T ht (x,Σ) + tr {(∂gt (x,Σ) /∂Σ)Ht (x,Σ)} .

(4.10)

Finally, we use ‖ · ‖2
Pt

to denote (·)T Pt (·).

Theorem 4.4.1. Let x ∈ R
n and Σ be a n × n symmetric matrix. Suppose that

gt (x,Σ), t ∈ [0, T ] is the solution of the partial differential equation

− ∂

∂t
gt (x,Σ) =

(

∂

∂x
gt (x,Σ)

)T

Atx−
1

4

(

∂

∂x
gt (x,Σ)

)T

BtP
−1
t BT

t

(

∂

∂x
gt (x,Σ)

)

+ tr

{(

∂

∂Σ
gt (x,Σ)

)

(

AtΣ + ΣAT
t +DtD

T
t

)

+QtΣ

}

+ xTQtx+ µtLt {gt (x,Σ)} (4.11)

with the boundary condition gT (x,Σ) = xTSx. Then, the cost functional (4.4) can

be expressed as

J = g0

(

x̃0, Σ̃0

)

+ E

[
∫ T

0

δtdt

]

+ E

[

∫ T

0

∥

∥

∥

∥

ut +
1

2
P−1

t BT
t

(

∂

∂x̃t
gt

(

x̃t, Σ̃t

)

)∥

∥

∥

∥

2

Pt

dt

]

(4.12)
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where

δt =

∫

Rn

{

xTQtx+

∫

A

(

gt

(

x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

)

− gt

(

x̃t, Σ̃t

)

)

λt (r, x) dr

}

(

pxt
(x|Bt) − p̃xt

(x|Bt)
)

dx (4.13)

is the error term resulting from replacing the posterior density pxt
(x|Bt) by its

Gaussian approximation p̃xt
(x|Bt).

Proof. See Section 4.5.3.

The first term on the right side of (4.12) does not depend on ut and so is

not involved in the minimization. While the hard-to-compute error term δt in (4.12)

depends on ut, it is supposed to be small. Therefore, in minimizing (4.12), we ignore

the term involving δt and only minimize the third term. We note that the minimum

of the third term is zero which is achieved when ut is given by

u∗t = −1

2
P−1

t BT
t

(

∂

∂x̃t

gt

(

x̃t, Σ̃t

)

)

. (4.14)

Then the cost associated with u∗t will be

J∗ = g0

(

x̄0, Σ̄0

)

+

∫ T

0

E
[

δt|ut=u∗

t

]

dt.

When A = R
m, a simple solution can be obtained for (4.11). This solution

which is stated by the following theorem confirms that the control (4.14) is consistent

with that obtained for A = R
m by Rhodes and Snyder [20] in Theorem 3.3.3. This
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indicates that the suboptimal control (4.14) tends to the optimal control as A → R
m.

Theorem 4.4.2. When A = R
m, the solution of the partial differential equa-

tion (4.11) with the boundary condition gT (x,Σ) = xTSx can be expressed as

gt (x,Σ) = xTKtx+ ft (Σ) (4.15)

where Kt is the backward solution to the Riccati equation

K̇t = −KtAt −AT
t Kt +KtBtP

−1
t BT

t Kt −Qt (4.16)

with KT = S, and ft (Σ) is the solution of the partial differential equation

− ∂

∂t
ft (Σ) = tr

{(

∂

∂Σ
ft (Σ)

)

(

AtΣ + ΣAT
t +DtD

T
t

)

+QtΣ

}

+ µt

(

ft (Σ − Γt (Σ)CtΣ) − ft (Σ)
)

+ µttr {Γt (Σ)CtΣKt} (4.17)

with the boundary condition fT (Σ) = 0.

Proof. See Section 4.5.4.

We observe from (4.14) and (4.15) that when A = R
m, the optimal control is

given by

u∗t = −P−1
t BT

t Ktx̂t (4.18)

with the optimal cost

J∗ = x̄T
0K0x̄0 + f0

(

Σ̄0

)

. (4.19)
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While the optimal control (4.18) has been obtained by Rhodes and Snyder [20], the

value of the corresponding optimal cost (4.19) is newly obtained here.

4.5 Proof of the Theorems

4.5.1 Proof of Theorem 4.3.1

The Fourier transform of (3.7) is given by [20] as

dφt (jω) = E

[

exp
(

jωTxt

)

(

jωT (Atxt +Btut) −
1

2
ωTDtD

T
t ω

)

∣

∣

∣
Bt

]

dt

+

∫

A

E
[

exp
(

jωTxt

)

(

λt (r, xt) λ̂
−1
t (r) − 1

)

∣

∣Bt

]

N (dt×dr)

−
∫

A

E
[

exp
(

jωTxt

) (

λt (r, xt) − λ̂t (r)
)∣

∣Bt

]

drdt. (4.20)

Let t0 = 0 and t1 < t2 < t3 < · · · be the occurrence times of the space-time process

N (T × S). During the interval (tk, tk+1), k = 0, 1, 2, . . ., the first integral on the

right side of (4.20) is zero, thus we can write

d exp {ψt (jω)} = E

[

exp
(

jωTxt

)

(

jωT (Atxt +Btut) −
1

2
ωTDtD

T
t ω

)

∣

∣

∣
Bt

]

dt

−
∫

A

E
[

exp
(

jωTxt

) (

λt (r, xt) − λ̂t (r)
)∣

∣Bt

]

drdt.

Using the identity

E
[

xt exp
(

jωTxt

)

|Bt

]

=
∂

∂jω
E
[

exp
(

jωTxt

)

|Bt

]

=
∂ψt(jω)

∂jω
exp {ψt(jω)}
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we rewrite this equation as

exp {ψt(jω)}dψt(jω) = exp {ψt(jω)}
[

jωT

(

At
∂ψt(jω)

∂jω
+Btut

)

− 1

2
ωTDtD

T
t ω

]

dt

−
∫

A

E
[

exp
(

jωTxt

) (

λt (r, xt) − λ̂t (r)
)∣

∣Bt

]

drdt.

Multiplying both sides of this equation by exp {−ψt(jω)} and substituting βt (r, jω)

from (4.7) into the result, we obtain

dψt (jω) = jωT

(

At
∂ψt(jω)

∂jω
+Btut

)

dt

− 1

2
ωTDtD

T
t ω dt−

∫

A

(

βt (r, jω) − βt (r, 0)
)

drdt. (4.21)

The discontinuity at t = tk is treated as follows. Let rk be the spatial compo-

nent of the event occurring at tk. Then, from (4.20) we get

φt+
k

(jω) − φt−
k

(jω) = E
[

exp
(

jωTxt−
k

)

(

λt−
k

(

rk, xt−
k

)

λ̂−1

t−
k

(rk) − 1
)∣

∣

∣
Bt−

k

]

which can be simplified as

φt+
k

(jω) = E
[

exp
(

jωTxt−
k

)

λt−
k

(

rk, xt−
k

)∣

∣Bt−
k

]

λ̂−1

t−
k

(rk) .

Multiplying both sides of this equality by exp
{

−ψt−
k

(jω)
}

and taking logarithm, we
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obtain

ψt+
k

(jω) − ψt−
k

(jω)

= ln
(

exp
{

−ψt−
k

(jω)
}

E
[

exp
(

jωTxt−
k

)

λt−
k

(

rk, xt−
k

)∣

∣Bt−
k

])

− ln λ̂t−
k

(rk)

= ln βt−
k

(rk, jω) − ln βt−
k

(rk, 0) .

Combining this result with (4.21) and replacing jω by s, we obtain (4.6).

From the definition of βt (r, jω) in (4.7), we have

βt (r, jω) = exp {−ψt (jω)}
∫

Rn

pxt
(x|Bt) exp

(

jωTx
)

λt (r, x) dx. (4.22)

Note that pxt
(x|Bt) is the Fourier transform of exp {ψt (jω)}, and so we can write

pxt
(x|Bt) =

1

(2π)n

∫

Rn

exp {ψt (jν)} exp
(

−jνTx
)

dν.

Upon substituting this expression into (4.22) and interchanging the order of inte-

gration1, we obtain

βt (r, jω) =
1

(2π)n

∫

Rn

exp
{

ψt(jν) − ψt(jω)
}

∫

Rn

λt (r, x) exp
{

−j (ν − ω)T x
}

dxdν.

Replacing the second integral above by Λt (r, jν − jω) and changing the variable of

1This interchange is permissible since for any fixed t, the integrand is continuous in x and ν.
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integration ν with ν + ω, we get

βt (r, jω) =
1

(2π)n

∫

Rn

Λt (r, jν) exp
{

ψt(jν + jω) − ψt(jω)
}

dν.

Finally, we obtain (4.8) upon replacing jω with s.

4.5.2 Derivation of (4.9)

We first state a technical lemma from [43] which will be used later in deriving (4.9).

For sake of completeness, we repeat below the proof from [43].

Lemma 4.5.1. Let zk, z̄k ∈ R
k, zl ∈ R

l, and Θk and Θl be respectively k×k and

l×l positive definite matrices. Assume that G is any l×k matrix. Then, we have

∫

Rk

Φk (zk; z̄k,Θk)Φl (zl;Gzk,Θl) dzk = Φl

(

zl;Gz̄k,Θl +GΘkG
T
)

. (4.23)

Proof. Denoting the Fourier transform of the left side of (4.23) by Fl (ωl), we can

write

Fl (ωl) =

∫

Rk

Φk (zk; z̄k,Θk) exp
(

jωT
l Gzk − 1

2
ωT

l Θlωl

)

dzk

= exp
(

jωT
l Gz̄k − 1

2
ωT

l GΘkG
Tωl

)

exp
(

−1
2
ωT

l Θlωl

)

= exp
(

jωT
l Gz̄k − 1

2
ωT

l

(

Θl +GΘkG
T
)

ωl

)

.

Taking inverse Fourier transform of the expression above, we get the right side

of (4.23).
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The probability density function associated with the truncated expansion

ψ̃t(s) = sT x̃t+
1
2
sT Σ̃ts is Gaussian with mean x̃t and covariance matrix Σ̃t. With this

approximate probability density function and with λt (r, xt) = µtΦm (r;Ctxt, Rt), the

approximation of βt (·, ·) is given by

β̃t (r, s) = exp
{

−ψ̃t (s)
}

∫

Rn

Φn

(

x; x̃t, Σ̃t

)

exp
(

sTx
)

µtΦm (r;Ctx,Rt) dx.

A simple calculation yields that

exp
{

−ψ̃t (s)
}

Φn

(

x; x̃t, Σ̃t

)

exp
(

sTx
)

= Φn

(

x; x̃t + Σ̃ts, Σ̃t

)

.

Then, using Lemma 4.5.1, we get

β̃t (r, s) = µtΦm

(

r;Ctx̃t + CtΣ̃ts, CtΣ̃tC
T
t +Rt

)

which leads to

ln β̃t (r, s) − ln β̃t (r, 0) = sT Σ̃tC
T
t

(

CtΣ̃tC
T
t +Rt

)−1

(r − Ctx̃t)

− 1

2
sT Σ̃tC

T
t

(

CtΣ̃tC
T
t +Rt

)−1

CtΣ̃ts (4.24)
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and

β̃t (r, s) − β̃t (r, 0) = µtΦm

(

r;Ctx̃t, CtΣ̃tC
T
t +Rt

)

·
{

sT Σ̃tC
T
t

(

CtΣ̃tC
T
t +Rt

)−1

(r − Ctx̃t)

+
1

2

[

sT Σ̃tC
T
t

(

CtΣ̃tC
T
t +Rt

)−1

(r − Ctx̃t)

]2

− 1

2
sT Σ̃tC

T
t

(

CtΣ̃tC
T
t +Rt

)−1

CtΣ̃ts+O
(

‖s‖3
)

}

. (4.25)

We combine (4.24), (4.25), and (4.6) and match the coefficients of sT (·) and sT (·)s

from both sides to obtain (4.9).

4.5.3 Proof of Theorem 4.4.1

Our proof consists of the following four steps.

Step I: Using the properties of conditional expectation, it is easy to show that

E
[

xT
t Qtxt

]

= E
[

x̂T
t Qtx̂t + tr {QtΣt}

]

.

Then the cost functional (4.4) can be expressed as

J = E

[
∫ T

0

(

x̃T
t Qtx̃t + tr

{

QtΣ̃t

}

+ uT
t Ptut + δ1

t

)

dt+ xT
TSxT

]

(4.26)

where δ1
t is defined as

δ1
t = tr

{

Qt

(

x̂tx̂
T
t − x̃tx̃

T
t + Σt − Σ̃t

)}

.
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Step II: For t > 0 and for any positive ǫ, ∆Nt , Nt+ǫ−Nt is a conditionally Poisson

random variable with the stochastic rate

λ̄ǫ
t =

∫ t+ǫ

t

∫

A

λτ (r, xτ ) drdτ.

Thus, using the law of total probability, we can write

Pr
{

∆Nt = 1
∣

∣Bt

}

= E
[

Pr
{

∆Nt = 1|λ̄ǫ
t

} ∣

∣Bt

]

= E
[

λ̄ǫ
t exp

(

−λ̄ǫ
t

) ∣

∣Bt

]

= ǫqt +O
(

ǫ2
)

(4.27)

where qt is defined as

qt =

∫

A

E [λt (r, xt) |Bt] dr. (4.28)

In a similar manner, we can show that

Pr
{

∆Nt = 0
∣

∣Bt

}

= 1 − ǫqt +O
(

ǫ2
)

Pr
{

∆Nt > 2
∣

∣Bt

}

= O
(

ǫ2
)

.

(4.29)

Let the random vector R ∈ R
m denote the location of a single event occurring

during [t, t+ ǫ). We show that

p
R

(r|∆Nt = 1,Bt) =
E [λt (r, xt) |Bt]

qt
IA (r) +O (ǫ) (4.30)

where IA (r) = 1 if r ∈ A and IA (r) = 0 otherwise. For this purpose, let D (r) ⊂ A
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denote a m-dimensional cube with side length ∆r which is centered at r ∈ A.

Defining T = [t, t+ ǫ) and using Bayes’ rule, we can write

p
R

(r|∆Nt = 1,Bt) = lim
∆r→0

∆r−2 Pr {R ∈ D (r) |∆Nt = 1,Bt}

= lim
∆r→0

∆r−2 Pr {N (T ×D (r)) = 1|∆Nt = 1,Bt}

= lim
∆r→0

1

∆r2
· Pr {N (T ×D (r)) = 1, N (T ×A) = 1|Bt}

Pr {∆Nt = 1|Bt}
·

(4.31)

Note that the event of N (T ×D (r)) = 1 and N (T ×A) = 1 is equivalent to

the event of N (T ×D (r)) = 1 and N (T × (A−D (r))) = 0. Therefore, defining

Xt = {xτ | τ ∈ T } and using the law of total probability and properties of a space-

time point process, we get

Pr {N (T ×D (r)) = 1, N (T ×A) = 1|Bt}

= E
[

Pr {N (T ×D (r)) = 1, N (T × (A−D (r))) = 0 |Xt,Bt}
∣

∣Bt

]

= E
[

Pr {N (T ×D (r)) = 1|Xt}Pr {N (T × (A−D (r))) = 0 |Xt}
∣

∣Bt

]

= E

[
∫

T ×D(r)

λτ (s, xτ ) dτds
(

1 − O
(

ǫ∆r2
))

∣

∣

∣
Bt

]

= ǫ∆r2E [λt (r, xt) |Bt] +O
(

ǫ∆r3
)

+O
(

ǫ2∆r2
)

. (4.32)

Substituting (4.27) and (4.32) into (4.31), we obtain (4.30).

Assume that p̃xt
(x|Bt) is the Gaussian approximation of pxt

(x|Bt). Then,
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using Lemma 4.5.1, we can write

E [λt (r, xt) |Bt] =

∫

Rn

p̃xt
(x|Bt)λt (r, x) dx

+

∫

Rn

(

pxt
(x|Bt) − p̃xt

(x|Bt)
)

λt (r, x) dx

= µtΦm

(

r;Ctx̃t, CtΣ̃tC
T
t +Rt

)

+

∫

Rn

(

pxt
(x|Bt) − p̃xt

(x|Bt)
)

λt (r, x) dx. (4.33)

Step III: Let gt (x,Σ) be a scalar function of x ∈ R
n and n×n symmetric matrix Σ.

Assume that the partial derivatives of gt (x,Σ) with respect to t, x, and Σ exist.

Using the law of total probability we can write

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

=
∞
∑

k=0

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = k
]

Pr {∆Nt = k|Bt} .

Replacing Pr {∆Nt = k|Bt} from (4.27) and (4.29) into this expression, and using

the law of total probability again, we find

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

= E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = 0
]

(1 − ǫqt)

+ E
[

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = 1, R = r
]

∣

∣Bt,∆Nt = 1
]

ǫqt +O
(

ǫ2
)

.
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Substituting (4.28) and (4.30) into this equality and rearranging terms, we obtain

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

= E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = 0
]

+ ǫ

∫

A

(

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = 1, R = r
]

− E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt,∆Nt = 0
]

)

E [λt (r, xt) |Bt] dr +O
(

ǫ2
)

. (4.34)

Conditioned on Bt and ∆Nt = 0, (4.9) can be solved during [t, t+ ǫ) to obtain

x̃t+ǫ = x̃t + ǫAtx̃t + ǫBtut − ǫµtht

(

x̃t, Σ̃t

)

+O
(

ǫ2
)

Σ̃t+ǫ = Σ̃t + ǫAtΣ̃t + ǫΣ̃tA
T
t + ǫDtD

T
t + ǫµtHt

(

x̃t, Σ̃t

)

+O
(

ǫ2
)

.

(4.35)

Also, conditioned on Bt, ∆Nt = 1, and R = r, we can write

x̃t+ǫ = x̃t + M̃t (r − Ctx̃t) +O (ǫ)

Σ̃t+ǫ = Σ̃t − M̃tCtΣ̃t +O (ǫ) .

(4.36)

Substituting (4.35) and (4.36) into (4.34), and linearizing with respect to ǫ, we get

E
[

gt

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

= gt

(

x̃t, Σ̃t

)

+ ǫ
∂

∂t
gt

(

x̃t, Σ̃t

)

+ ǫ

(

∂

∂x̃t

gt

(

x̃t, Σ̃t

)

)T
(

Atx̃t +Btut − µtht

(

x̃t, Σ̃t

)

)

+ ǫ tr

{(

∂

∂Σ̃t

gt

(

x̃t, Σ̃t

)

)

(

AtΣ̃t + Σ̃tA
T
t +DtD

T
t + µtHt

(

x̃t, Σ̃t

)

M̃T
t

)

}

+ ǫ

∫

A

[

gt

(

x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

)

− gt

(

x̃t, Σ̃t

)

]

E [λt (r, xt) |Bt] dr

+O
(

ǫ2
)

.
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We replace E [λt (r, xt) |Bt] from (4.33) into the expression above and use the linear

operator Lt {·} defined by (4.10) to obtain the simplified form

E
[

gt

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

= gt

(

x̃t, Σ̃t

)

+ ǫ
∂

∂t
gt

(

x̃t, Σ̃t

)

+ ǫ

(

∂

∂x̃t

gt

(

x̃t, Σ̃t

)

)T

(Atx̃t +Btut)

+ ǫ tr

{(

∂

∂Σ̃t

gt

(

x̃t, Σ̃t

)

)

(

AtΣ̃t + Σ̃tA
T
t +DtD

T
t

)

}

+ ǫµtLt

{

gt

(

x̃t, Σ̃t

)

}

+ ǫδ2
t +O

(

ǫ2
)

(4.37)

where the error term δ2
t is defined as

δ2
t =

∫

Rn

∫

A

[

gt

(

x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

)

− gt

(

x̃t, Σ̃t

)

]

·
(

pxt
(x|Bt) − p̃xt

(x|Bt)
)

λt (r, x) drdx.

Define the nonlinear operator Kt {·} as

Kt {gt (x,Σ)} =
∂

∂t
gt (x,Σ) +

(

∂

∂x
gt (x,Σ)

)T

Atx

− 1

4

(

∂

∂x
gt (x,Σ)

)T

BtP
−1
t BT

t

(

∂

∂x
gt (x,Σ)

)

+ tr

{(

∂

∂Σ
gt (x,Σ)

)

(

AtΣ + ΣAT
t +DtD

T
t

)

+QtΣ

}

+ xTQtx+ µtLt {gt (x,Σ)} .
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Then, (4.37) can be written as

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)∣

∣Bt

]

= gt

(

x̃t, Σ̃t

)

+ ǫ

∥

∥

∥

∥

ut +
1

2
P−1

t BT
t

(

∂

∂x̃t
gt

(

x̃t, Σ̃t

)

)∥

∥

∥

∥

2

Pt

+ ǫδ2
t

− ǫ
(

x̃T
t Qtx̃t + tr

{

QtΣ̃t

}

+ uT
t Ptut

)

+ ǫKt

{

gt

(

x̃t, Σ̃t

)

}

+O
(

ǫ2
)

. (4.38)

Let gt (·, ·) be the solution of the partial differential equation (4.11) with the bound-

ary condition gT (x,Σ) = xTSx. This implies that Kt

{

gt

(

x̃t, Σ̃t

)}

= 0. Under this

condition, we take expectation from (4.38) to get

E
[

gt+ǫ

(

x̃t+ǫ, Σ̃t+ǫ

)

]

= E
[

gt

(

x̃t, Σ̃t

)

]

+ ǫE

[

∥

∥

∥

∥

ut +
1

2
P−1

t BT
t

(

∂

∂x̃t
gt

(

x̃t, Σ̃t

)

)∥

∥

∥

∥

2

Pt

]

+ ǫE
[

δ2
t

]

− ǫE
[

x̃T
t Qtx̃t + tr

{

QtΣ̃t

}

+ uT
t Ptut

]

+O
(

ǫ2
)

.

(4.39)

Step IV: We partition the interval [0, T ) into K subintervals [tk, tk+1), k = 0, 1, . . . ,

K − 1, where t0 = 0, tK = T , and tk+1 − tk , ǫk > 0. Recalling that xT
TSxT =

gtK

(

x̃tK , Σ̃tK

)

, we approximate the cost functional (4.26) by the finite sum

J ≃ JK =

K−1
∑

k=0

ǫkE
[

x̃T
tk
Qtk x̃tk + tr

{

QtkΣ̃tk

}

+ uT
tk
Ptkutk + δ1

tk

]

+ E
[

gtK

(

x̃tK , Σ̃tK

)

]
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and rearrange it as

JK =

K−2
∑

k=0

ǫkE
[

x̃T
tk
Qtk x̃tk + tr

{

QtkΣ̃tk

}

+ uT
tk
Ptkutk + δ1

tk

]

+ E
[

δ1
tK−1

]

+ ǫK−1E
[

x̃T
tK−1

QtK−1
x̃tK−1

+ tr
{

QtK−1
Σ̃tK−1

}

+ uT
tK−1

PtK−1
utK−1

]

+ E
[

gtK

(

x̃tK , Σ̃tK

)

]

.

In this expression, we replace E
[

gtK

(

x̃tK , Σ̃tK

)

]

by the right side of (4.39). With

minor manipulations, and upon defining δt = δ1
t + δ2

t according to (4.13), we find

that

JK =
K−2
∑

k=0

ǫkE
[

x̃T
tk
Qtk x̃tk + tr

{

QtkΣ̃tk

}

+ uT
tk
Ptkutk + δ1

tk

]

+ E
[

gtK−1

(

x̃tK−1
, Σ̃tK−1

)

]

+ ǫK−1E

[

∥

∥

∥

∥

utK−1
+

1

2
P−1

tK−1
BT

tK−1

(

∂

∂x̃tK−1

gtK−1

(

x̃tK−1
, Σ̃tK−1

)

)∥

∥

∥

∥

2

PtK−1

]

+ ǫK−1E
[

δtK−1

]

+O
(

ǫ2K−1

)

.

Repeating this procedure for k = K − 2, K − 3, . . . , 1, 0, we obtain

JK = E
[

gt0

(

x̃t0 , Σ̃t0

)

]

+

K−1
∑

k=0

ǫk E [ δtk ]

+

K−1
∑

k=0

ǫk E

[

∥

∥

∥

∥

utk +
1

2
P−1

tk
BT

tk

(

∂

∂x̃tk

gtk

(

x̃tk , Σ̃tk

)

)∥

∥

∥

∥

2

Ptk

]

+

K−1
∑

k=0

O
(

ǫ2k
)

.

Finally, we take the limit of JK as K → ∞ and max ǫk → 0 to obtain (4.12).
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4.5.4 Proof of Theorem 4.4.2

For A = R
m and gt (x,Σ) given by (4.15), we can show that

Lt {gt (x,Σ)} = ft

(

Σ − Γt (Σ)CtΣ
)

− ft (Σ) + tr {Γt (Σ)CtΣKt}

which clearly does not depend on x. Therefore, (4.11) can be decomposed into

two decoupled equations: the partial differential equation (4.17) with the boundary

condition fT (Σ) = 0 and the equation

−∂
(

xTKtx
)

∂t
=

(

∂
(

xTKtx
)

∂x

)T

Atx

− 1

4

(

∂
(

xTKtx
)

∂x

)T

BtP
−1
t BT

t

(

∂
(

xTKtx
)

∂x

)

+ xTQtx

with the boundary condition xTKTx = xTSx. This equation holds for any arbi-

trary x if and only if Kt satisfies (4.16) with the terminal condition KT = S.
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Chapter 5

Cooperative Optical Beam Tracking: Concept and Model

5.1 Introduction

In free-space optical communication using narrow laser beams, it is required to

maintain the optical alignment between the stations in spite of their relative mo-

tion. This relative motion is caused by the mobile nature of the stations, mechanical

vibration, or accidental shocks. In order to establish and maintain a free-space op-

tical link, a two-phase optical alignment mechanism is required. In the first phase,

a coarse alignment is achieved through the open-loop operation of spatial acquisi-

tion [41, 44]. Following the coarse alignment phase, data transmission is established

and simultaneously a closed-loop fine alignment operation is performed to precisely

compensate for the persistent relative motion of the stations. A possible scheme to

achieve this fine alignment is cooperative (reciprocal) optical beam tracking.

A cooperative optical beam tracking system consists of two stations in such a

manner that each station points its optical beam toward the other one. The receiving

station continuously measures the arrival direction of its incident optical beam in

order to employ it as a guide to precisely point its own beam toward the other
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station. In short range applications with negligible light propagation delay, this

direction is approximately along the line-of-sight of the stations, thus the stations

transmit their optical beams along this measured direction. In applications with

a large propagation delay, the optical beams must be transmitted within a certain

angle with respect to the arrival direction in order to compensate for the variation

of the line-of-sight during the travel time of the transmitted beams. This requires

the transmitter to predict the future location of the receiver and point its optical

beam toward the predicted location.

To implement the alignment scheme above, the stations are equipped with a

position-sensitive photodetector (e.g., quadrant detector) and a focusing lens (or an

arrangement of curved mirrors) to measure the azimuth and elevation components of

the beam arrival direction. In addition, each station employs an electromechanical

pointing assembly to adjust the direction of its optical devices according to the

control signals provided by a closed-loop controller. The controller incorporates

the output of the position-sensitive photodetector and generates proper azimuth

and elevation control signals. As an alternative (or complement) to adjusting the

transceiver direction, the incoming and outgoing optical fields can be directed using

an arrangement of steerable flat mirrors.

The goal of this chapter is to develop a mathematical model for a cooperative

optical beam tracking system, which includes the nonlinear effects, major distur-

bance sources, and light propagation delay. For analyzing the optical alignment

between two fast maneuvering stations (e.g. aircrafts), the nonlinearity of the dy-

namical equations is essential; however, in applications such as intersatellite commu-
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nication in which the relative motion consists of a predetermined large component

and an unknown small component, we can linearize the nonlinear dynamics around

a nominal state trajectory.

In the last section, we shall describe the relative motion of the stations by

means of a set of stochastic differential equations. This stochastic model will be

used later in Chapter 6 for a stochastic analysis of the system, as an alternative to

the deterministic approach of [21, 22].

5.2 System Architecture

In this section, we first consider the structure and components of an optical trans-

ceiver and then describe the operation of a cooperative optical beam tracking system

which employs two transceivers of this type.

5.2.1 Transceiver Structure

A schematic diagram of a simple transceiver used in short range free-space optical

links is illustrated in Figure 5.1 (see also [1]). This transceiver comprises a lens, a

position-sensitive photodetector, and a narrow laser source, all installed on a rigid

platform. The photodetector surface is perpendicular to the lens axis and its center

is placed at the focus of the lens. The axes of the lens and the laser source are

parallel to transceiver axis. The azimuth and elevation of the transceiver axis can

be controlled by means of an electromechanical pointing assembly, which is mounted

on the station body.

The optical beam generated by the laser source is used for two purposes: as a
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Figure 5.1: Schematic diagram of an optical transceiver for short range applications.

carrier of information and as a beacon assisting the opposite station in its tracking

and pointing operations. For the purpose of communication, the instantaneous laser

power is modulated by the information-bearing signal, usually with a digital form

of on-off-keying.

The position-sensitive photodetector is a photoelectron converter whose sur-

face is partitioned into small regions. The output of each region counts the number

of converted electrons regardless of their location on the region. The photoelectron

conversion rate depends on the instantaneous optical power absorbed by the region.

The image of the received optical field on the surface of the photodetector is a spot

of light with a bell-shaped intensity pattern whose location depends on the angle

of arrival of the optical field with respect to the transceiver axis. Hence, using the

position-sensitive photodetector, this angle can be tracked by measuring the loca-

tion of the spot of light. Many practical optical beam tracking systems employ a
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quadrant detector1 as their optical sensing device, while the low spatial resolution

of a quadrant detector can be improved using a finer partition. For instance, the

authors of [45] describe a beam tracking system which employs a photodetector with

512 × 512 pixels.

The pointing assembly is usually a two-axes gimballed system with two inde-

pendent motor which control the azimuth and elevation of the transceiver. Gim-

balled pointing systems generally suffer from low bandwidth (in order of 10 Hz)

and low slew rate, while being able to cover a large solid angle. Also, they have

the disadvantage of being singular at certain points, which limits their coverage re-

gion [46]. To resolve this difficulty, Omni-Wrist III is an alternative antenna pointer

with double universal joints and linear actuators, which has 2π steradian range of

motion without singularity [46].

A more sophisticated transceiver design, used for intersatellite communication,

is illustrated in Figure 5.2 (for detailed discussion see [47, 48]). Similar to Figure 5.1,

this design employs a position-sensitive photodetector, a pointing assembly, and a

laser source; however, instead of a lens, it employs a reflecting telescope.

The telescope which is shared between the receiving and the transmitting op-

tics, consists of a primary and a secondary curved mirror with one of the several

common designs. The most popular [47] design, Cassegrainian telescope, employs a

parabolic primary mirror and a hyperbolic secondary mirror which share the same

focus. In addition to the telescope, an arrangement of lenses (not shown in Fig-

ure 5.2) might be used for extra magnification [47]. In design of the transceiver,

1Quadrant detector is a position-sensitive photodetector with a four-region partition.
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Figure 5.2: Optical transceiver for intersatellite communication (based on [48]).

the incoming and outgoing optical fields must be isolated as much as possible, since

the backscattered photons caused by the outgoing light emerge as a source of noise

for the photodetector. This can be achieved by a combination of spectral isolation,

spatial separation, and polarization isolation [47]. In the situations that these tech-

niques cannot provide enough isolation, two separated telescopes are required for the

incoming and the outgoing optical beams [47], while this dual telescope approach

leaves the tracking function of the transceiver unchanged.

The tracking mirror in Figure 5.2 is intended to control the direction of the

incoming light toward the position-sensitive photodetector and the outgoing light

toward the target. This steerable flat mirror, which is equipped with miniature ac-

tuators, provides a complementary (or alternative) means for the pointing assembly.

The steering machinery consists of a support plate with a single pivot and three or

four piezoelectric linear actuators (fast steering mirror). Although, the scanning

region of a steerable mirror is small (less than 5 degrees in each direction), its small
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mass and fast actuators result in a high bandwidth (up to 1 kHz) and high slew

rate. This provides considerable assistance to the pointing assembly in suppressing

the high bandwidth disturbance.

The point-ahead mirror is another steerable flat mirror with the purpose of

compensating for the displacement of the receiver during light propagation time.

This mirror provides an additional degree of freedom in controlling the pointing

direction of the outgoing light.

5.2.2 The Concept of Cooperative Optical Beam Tracking

We consider a two-way optical link consisted of two transceivers of the type discussed

earlier, in such a manner that each station transmits its optical beam toward the

other station and receives the optical beam from the other side. We assume that

the stations are subjected to relative motion.

For a simple description of the alignment scheme, consider the transceiver of

Figure 5.1 and suppose that a uniform optical field strikes the transceiver aperture

(i.e., the lens). When the striking optical field propagates along the axis of the

lens, its image is a spot of light at the center of the position-sensitive photodetector,

while any deviation from this direction shifts the spot of light from the center.

This shift can be detected by the position-sensitive photodetector. The output of

the photodetector is fed to a closed-loop controller, which adjusts the transceiver

direction by applying proper signals to the pointing assembly. For short range

applications (negligible propagation delay), the goal of the controller is to eliminate

the angle between the lens axis and the arrival direction of the incident optical beam.
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Since the axes of the lens and the laser source are parallel, this operation aligns the

propagation direction of the transmitted optical beam with the arrival direction

of the received optical beam. Assuming that both stations actively perform this

operation, the propagation direction of the optical beams stay close to the line-of-

sight, in spite of the relative motion between the stations. The block diagram in

Figure 5.3 illustrates the interconnection between the components of a cooperative

optical beam tracking system.

Controller

Photodetector

Controller Pointing Assembly

Photodetector

Pointing Assembly

Transceiver (a) Transceiver (b)

Direction
Control

Direction
Control

RotationRotation

LaserLens

LensLaser

Translational Motion

Figure 5.3: Interconnection between the components of a cooperative optical beam track-
ing system.

In the optical transceiver of Figure 5.2, the task of adjusting the light direction

is distributed between the pointing assembly and the tracking mirror. In applications

such as intersatellite communication, the relative motion consists of a large, slowly

varying component and a small, high bandwidth term. Accordingly, the control

law consists of an open-loop, coarse control and a closed-loop, fine control. In this

case, a reasonable design employs the pointing assembly for the purpose of coarse

(open-loop) control and the tracking mirror for closed-loop fine control.

In the transceiver of Figure 5.1, a successful tracking operation which keeps
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the spot of light close to the center of the photodetector, requires the transmitted

optical beam to propagate along the arrival direction of the received optical beam;

however, in applications with a large propagation delay, the optical beam must be

pointed ahead with respect to this arrival direction. The required point-ahead angle

can be accommodated by means of the point-ahead mirror.

5.2.3 Assisting Equipments

Application of inertial sensors (gyro and accelerometer) in the alignment aspect of

intersatellite optical communication is considered in [49]. Through measuring the

angular velocity and acceleration, these sensors provide information regarding the

position of the stations. This information can be combined with the output of the

photodetectors to improve the overall performance of the system.

Another possibility for improving the performance of the system is to exchange

information between the stations. Sharing the output of the photodetectors and the

inertial sensors enables each individual station to produce a more accurate estimate

of the line-of-sight, which in turn, increases the capability of the stations to com-

pensate for their relative motion. The means for exchange of information can be

provided by the optical channel itself or an independent low bandwidth RF channel.

In the optical transceiver of Figure 5.1, an additional pointing error can be

introduced by a misalignment between the axes of the lens and the laser source.

This misalignment might occur due to the imperfect manufacturing process. The

same type of pointing error arises in the optical transceiver of Figure 5.2, because

of the imperfect positioning of the laser source and the point-ahead mirror. Note
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that this type of pointing error can be measured only by the receiving station, thus,

in order to eliminate it, the stations need to share their outputs. This is another

reason which indicates that information exchange between the stations improves the

performance of the system.

5.3 The Model

In this section, we develop a mathematical model for a cooperative optical beam

tracking system. In order to avoid unnecessary complications in notation, we shall

assume that the optical link under consideration consists of two identical transceivers

(Figure 5.1 or Figure 5.2). We begin by fixing notation and defining necessary co-

ordinate systems. Then we determine the optical field on the aperture of each

transceiver, which will be used later to derive a formula for the optical intensity

on the photodetector surface. This will be followed by discussing the effect of at-

mospheric turbulence on the optical intensity. Next, we shall present a statistical

description for the photodetector output in terms of the optical intensity. Finally,

we introduce the dynamical equations which describe the temporal evolution of the

system.

5.3.1 Notation and Coordinate Systems

In what follows, we distinguish the stations by superscripts a and b or i = a, b when

referring to both stations. Let I be an inertial coordinate system. Consider the

position vector of station i with respect to the origin of I and denote by ri
t its

representation in coordinate system I at time t. The light travel time between the
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stations (with abuse of notation) will be denoted by td and can be determined from

td = c−1
∥

∥ra
t − rb

t

∥

∥

where c is the light velocity in the propagation medium (vacuum). Note that in

general, td depends on time which is not emphasized by this notation.

For station i and at time t, we define the coordinate system Ri
t which is

attached to the center of the transceiver aperture in such a manner that its z axis

extends outward perpendicular to the aperture plane, its x axis is parallel to the

elevation axis (see Figure 5.1 and Figure 5.2), and its y axis is the cross product

of z and x axes. We denote by Ωi
t the rotation matrix from coordinate system I to

coordinate system Ri
t. Let Bi

t be a coordinate system fixed to the body of station i

and denote by ωi
t the angular velocity of I with respect to Bi

t represented in I. The

angular velocity of Bi
t with respect to Ri

t represented in Ri
t will be denoted by υi

t.

We shall assume that the optical field transmitted by station i propagates

along the z axis of the coordinate system T i
t . This coordinate system is obtained

by two successive rotations of Ri
t in the following manner. First, rotate Ri

t around

its x axis by an angle −δx,i
t to get the coordinate system R̃i

t, and then rotate R̃i
t

around its y axis by an angle −δy,i
t to obtain T i

t . The rotation matrix from Ri
t to T i

t

is given by

∆i
t =







cos δy,i
t sin δx,i

t sin δy,i
t cos δx,i

t sin δy,i
t

0 cos δx,i
t − sin δx,i

t

− sin δy,i
t sin δx,i

t cos δy,i
t cos δx,i

t cos δy,i
t






.
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For small δx,i
t and δy,i

t , this matrix can be approximated by

∆i
t ≃







1 0 δy,i
t

0 1 −δx,i
t

−δy,i
t δx,i

t 1






. (5.1)

Let a = [a1 a2 a3]
T and define the operator [·]× such that

[a]× =







0 −a3 a2

a3 0 −a1

−a2 a1 0






.

Then, (5.1) can be expressed in the compact form1

∆i
t = I +

[

IT
∗ δ

i
t

]

×
(5.2)

where I is the 3 × 3 identity matrix, δi
t =

[

δx,i
t δy,i

t

]T
, and the 2 × 3 matrix I∗ is

defined by

I∗ =

[

1 0 0

0 1 0

]

.

In the optical transceiver of Figure 5.1, for the ideal case that the axes of

the lens and the laser source are perfectly aligned, we have δi
t = 0; however, as

mentioned in Section 5.2.3, due to an imperfect manufacturing process, there might

be a small angle between the lens axis and the laser axis. This can be modeled by

letting δi
t = εi

t in (5.2), where the elements of εi
t are the misalignment errors in x

1Afterward, we consider (5.1) as an exact formula.
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and y directions (elevation and azimuth).

For the optical transceiver of Figure 5.2, δi
t depends on the orientations of

the tracking and point-ahead mirrors which are described by the 2-dimensional

vectors αi
t and βi

t , respectively. These vectors are defined as follows. Let ζ i
t be a

vector normal to the tracking mirror i and define ζ̄ i such that ζ̄ i = ζ i
t when the

actuators of the mirror are in the “rest” condition. Then, the elements of αi
t are

the deviation (angles) of ζ i
t from ζ̄ i in x and y directions. Since the elements of αi

t

and βi
t are small, their contributions to δi

t appear linearly, i.e., we can write

δi
t = Kαi

t + Lβi
t + εi

t

where K and L are 2×2 known matrices. Replacing this result into (5.2), we express

the rotation matrix from Ri
t to T i

t as

∆i
t = I +

[

IT
∗

(

Kαi
t + Lβi

t + εi
t

)]

×
. (5.3)

Note that this expression can be used for the transceiver of Figure 5.1 as well, by

setting αi
t = βi

t = 0.

Regarding the optical transceiver of Figure 5.1, we define the 2-dimensional

coordinate system P i
t in the focal plane of the lens (also the photodetector plane)

such that its center is located at the focus of the lens and its x and y axes are

parallel to x and y axes of Ri
t, respectively. For the optical transceiver of Figure 5.2,

the coordinate system P i
t is defined in the plane of the photodetector surface such
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that its origin is located at the projection of the focus of the secondary mirror on

the photodetector surface, its x axis is parallel to the x axis of Ri
t, and its y axis is

perpendicular to its x axis.

5.3.2 Optical Field on the Transceiver Aperture

Consider the coordinate system O with axes (ax, ay, az) and assume that a laser

beam with a wavelength λ and a divergence angle ψ̄ propagates along az. Since

the major fraction of the laser power is concentrated in its fundamental transverse

mode (TEM00), we shall use a Gaussian beam model for the optical field generated

by the laser. Based on this model, the complex amplitude of the optical field at a

point r = (x, y, z) , z > 0 is given [23] by

U (r) =

√

2P

π
· 1

w (z)
exp

{

−jkz −
(

1

w2 (z)
+

jk

2R (z)

)

(

x2 + y2
)

}

(5.4)

where P > 0 is the laser power, k = 2π/λ is the wave number, and w (z) and R (z)

are defined as

w (z) = w0

(

1 + (z/z0)
2)1/2

R (z) = z
(

1 + (z0/z)
2)

with1 w0 = λ/πψ̄ and z0 = λ/πψ̄2.

Suppose that r can be decomposed as r = r̄ + δr such that r̄ = (x̄, ȳ, z̄)

and δr = (δx, δy, δz) satisfy the conditions ‖δr‖/‖r̄‖ ≪ ψ̄ and |δz|≪z0≪‖r̄‖.
1In spite of our convention, here, the subscript 0 is not used as time.
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Denote by 〈r̄, az〉 the angle between the vectors r̄ and az and assume that the

magnitude of 〈r̄, az〉 is in order of ψ̄ or smaller, i.e. 〈r̄, az〉 < ψ̄. Then, for a small ψ̄

(e.g., smaller that 1 mrad), the optical field (5.4) can be approximated by

U (r̄ + δr) ≃
√

2P

π
· 1

ψ̄‖r̄‖ exp

(

−〈r̄, az〉2
ψ̄2

)

· exp

(

−jk r̄ · δr

‖r̄‖ − jk
δx2 + δy2

2‖r̄‖

)

exp
(

−jφ̄
)

(5.5)

where · denotes the dot product operator and φ̄ is defined as

φ̄ = kz̄ + k
x̄2 + ȳ2

2R (z̄)
·

In the context of free-space optics, r̄ represents the line-of-sight of the receiver

with respect to the transmitter and δr is the position vector of a point on the

aperture plane of the receiver with respect to the center of the aperture. With this

assignment, |δz|/‖δr‖ will be in the order of the pointing error 〈r̄, az〉. Table 5.1

presents some typical values of the parameters of a free-space optical link which are

relevant to approximation (5.5). Note that in Table 5.1, it is assumed that under

the closed-loop regime, the pointing error is in order of 1/10 of the angular spread of

the beam. According to this table, the conditions for approximating (5.4) with (5.5)

are satisfied for all scenarios, i.e., short, medium, and long range applications.

Note that φ̄ on the right side of (5.5) introduces a constant phase over the

aperture of the receiver, which can be dropped without affecting our discussion. In
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Parameter Symbol
Short Range
(terrestrial)

Medium Range
(airborne)

Long Range
(intersatellite)

Wavelength λ 1 µm 1 µm 1 µm
Angular Spread 2ψ̄ 500 − 3000 µrad 100 µrad 1 − 50 µrad

Range ‖r̄‖ 0.1 − 5 km 10 − 100 km 1000− 80000 km
Aperture Diameter 2‖δr‖ 5 − 20 cm 20 cm 20 − 100 cm

Pointing Error 〈r̄, az〉 50 − 300 µrad 10 µrad 0.1 − 5 µrad
— z0 0.15 − 5 m 125 m 500 m − 1250 km
— |δz| order of µm order of µm order of µm

Table 5.1: Typical values of the parameters of a free-space optical link. The data is
gathered from [47, 3, 50].

addition, Table 5.1 indicates that for long range applications we have

k
δx2 + δy2

2‖r̄‖ ≪ 1 (5.6)

which allows us to simplify (5.5) as

U (r̄ + δr) ≃
√

2P

π
· 1

ψ̄‖r̄‖ exp

(

−〈r̄, az〉2
ψ̄2

)

exp

(

−jk r̄ · δr

‖r̄‖

)

. (5.7)

Although (5.7) is not a good approximation for short and medium range applica-

tions, still it can be used for these cases, since the phase (5.6) can be compensated

by proper adjustment of the distance between the lens and the photodetector sur-

face [51].

We use approximation (5.7) to determine the optical field on the aperture of

the stations. For this purpose, consider the position vector of a point on the aperture

plane of transceiver i with respect to the center of the aperture and let IT
∗ s

i, si ∈ R
2

be its representation in the coordinate system Ri
t. Then, the representation of this

vector in I is given by (I∗Ω
i
t)

T
si. We define the 2-dimensional (tracking error)
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vectors θa
t and θb

t as

θa
t =

I∗Ω
a
t

(

rb
t − ra

t

)

∥

∥rb
t − ra

t

∥

∥

θb
t =

I∗Ω
b
t

(

ra
t − rb

t

)

∥

∥ra
t − rb

t

∥

∥

·
(5.8)

In order to find the optical field on the aperture of station b, we replace r̄ with rb
t −ra

t

and δr with
(

I∗Ω
b
t

)T
sb in (5.7). This is equivalent to replacing r̄ · δr/‖r̄‖ with −θb

t ·s
b.

To obtain a proper replacement for 〈r̄, az〉, we must take into account the travel time

of light between the stations. For this purpose, we define the 2-dimensional (pointing

error) vectors ψa
t and ψb

t as

ψa
t =

I∗∆
a
t Ω

a
t

(

rb
t+td

− ra
t+td

)

∥

∥rb
t+td

− ra
t+td

∥

∥

ψb
t =

I∗∆
b
tΩ

b
t

(

ra
t+td

− rb
t+td

)

∥

∥ra
t+td

− rb
t+td

∥

∥

·
(5.9)

Then, it is easy to show that 〈r̄, az〉2 must be replaced by
∥

∥ψa
t−td

∥

∥

2
. In a similar

manner, we can find proper replacements for determining the optical field on the

aperture of station a.

Let U i
t (s) denote the complex amplitude of the optical field at a point s on

the aperture of station i. Then, using the replacements mentioned above, we can

write

Ua
t (s) =

(

2P b
t−td

πψ̄2
∥

∥ra
t − rb

t

∥

∥

2

)1/2

exp
(

−
(∥

∥ψb
t−td

∥

∥ /ψ̄
)2
)

exp
(

jk θa
t · s

)

U b
t (s) =

(

2P a
t−td

πψ̄2
∥

∥rb
t − ra

t

∥

∥

2

)1/2

exp
(

−
(∥

∥ψa
t−td

∥

∥ /ψ̄
)2
)

exp
(

jk θb
t · s

)

(5.10)
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where P i
t > 0 is the instantaneous power transmitted by station i. It can be observed

from (5.10) that the optical intensity at station b depends on the pointing error ψa
t−td

of station a, while the phase depends only on the tracking error θb
t of station b.

Note that in (5.10), we allow P i
t to be time-dependent in order to describe

the information-bearing signal which modulates the optical power of station i. The

nature of the information-bearing signals suggests that a nonnegative stochastic

process is an appropriate means for modeling P i
t . The statistical properties of this

stochastic process depends on the type of modulation scheme and channel coding;

however, for many applications, the detailed characterization is not necessary and

only a few parameters (e.g., expected value and coherence time) and the knowledge

of general properties (e.g., stationarity) of the process are enough to use the model.

5.3.3 Optical Intensity on the Photodetector Surface

The optical field on the focal plane of a thin lens can be determined from Fraun-

hofer diffraction [41, 51]. Consider the optical transceiver of Figure 5.1 and assume

that the optical field U i
t (s) on the receiving lens is given by (5.10). According to

Fraunhofer diffraction, the optical field on the x− y plane of P i
t is given [41, 51] by

Ud,i
t (s) =

1

jλfc
exp

(

jk ‖s‖2

2fc

)

∫

|s̃|6̺

U i
t (s̃) exp

(

−j k
fc
s · s̃

)

ds̃ (5.11)
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where fc and ̺ are the focal length and the radius of the (circular) lens, respectively.

In terms of (5.11), the optical intensity on the photodetector surface is given by

I i
t (s) =

∣

∣

∣
Ud,i

t (s)
∣

∣

∣

2

. (5.12)

Let J1 (·) be a Bessel function of the first kind and define the intensity pat-

tern γ (·) : R
2 → R as

γ (s) =
J2

1 (k̺‖s‖/fc)

π‖s‖2
· (5.13)

Then, using (5.10), (5.11), and (5.12) and defining yi
t = fcθ

i
t, we determine the

optical intensities Ia
t (s) and Ib

t (s) as

Ia
t (s) =

2̺2P b
t−td

ψ̄2
∥

∥ra
t − rb

t

∥

∥

2 exp
(

−2
(∥

∥ψb
t−td

∥

∥ /ψ̄
)2
)

γ
(

s− ya
t

)

Ib
t (s) =

2̺2P a
t−td

ψ̄2
∥

∥rb
t − ra

t

∥

∥

2 exp
(

−2
(∥

∥ψa
t−td

∥

∥ /ψ̄
)2
)

γ
(

s− yb
t

)

.

(5.14)

For the optical transceiver of Figure 5.2, the entire telescope is considered as

a “big” lens with a focal length fc. Also, the effect of the tracking mirror on the

optical intensity I i
t (s) will be included by modifying yi

t as

yi
t = fcθ

i
t +Hαi

t (5.15)

where H is a known 2×2 matrix. The linearity of (5.15) is justified by the assump-

tion that ‖αi
t‖ is small.

In order to simplify our analysis of Chapter 6, it is desirable to approximate
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the intensity pattern γ (s) with a Gaussian function, i.e.,

γ (s) ≃ Φ2 (r; 0, R) (5.16)

where R = 2 (fc/k̺)
2 I2×2. The comparison between (5.13) and (5.16), illustrated in

Figure 5.4, indicates that (5.16) is a reasonably close approximation for (5.13). Note

that both γ (s) and its Gaussian approximation approach the unit impulse δ (‖s‖),

as k̺/fc → ∞.
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Figure 5.4: Comparison of γ (s) with its Gaussian approximation.

5.3.4 Atmospheric Turbulence

The optical intensity (5.14) was determined based on the assumption that the laser

beam propagates through free-space (vacuum). While this assumption is justified
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for intersatellite applications, for communication through atmosphere, (5.14) must

be modified to include the effect of atmospheric turbulence.

Atmospheric turbulence which is caused by differential heating of the air, re-

sults in random variations in the refractive index of air. This, in turn, causes

random fluctuations in the intensity and phase of the received optical field. The

refractive index of air as a function of the position vector r and time t can be mod-

eled as nt (r) = n̄ + δnt (r), where n̄ is a constant and {δnt (r)} is a stochastic

field. The statistical properties of {δnt (r)} can be derived from the Kolmogorov

theory [52, 30, 26].

The Rytov method1 is frequently used to analyze and model the propagation

of an optical field in the turbulent atmosphere [30, 26]. In this method, the complex

amplitude of the optical field is expressed as

Ut (r) = Tt (r) Ūt (r) (5.17)

where Ūt (r) is the optical field under the condition δnt (r) = 0 and {Tt (r)} is a

stochastic field which can be determined in terms of {δnt (r)} and Ūt (r).

In general, using (5.17) in obtaining an expression for I i
t (r) leads to a com-

plicated calculation which is beyond the scope of this study. For short range appli-

cations (in order of 1 km for weak to moderate turbulence) in which the diameter

of the receiving aperture is smaller than the turbulence coherence length2, the sto-

1This method provides an approximate solution to the Maxwell wave equation.
2Roughly speaking, the turbulence coherence length (Fried parameter) is the maximum dis-

tance between two points r1 and r2 in which Tt (r1) and Tt (r2) are highly correlated. For a detailed
characterization of this parameter see [52, 30].
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chastic field {Tt (r)} is approximately uniform over the aperture. Therefore, {Tt (r)}

can be approximated by a stochastic process. By means of this approximation, we

modify (5.14) as

Ia
t (s) =

2̺2κb
tP

b
t−td

ψ̄2
∥

∥ra
t − rb

t

∥

∥

2 exp
(

−2
(∥

∥ψb
t−td

∥

∥ /ψ̄
)2
)

γ
(

s− ya
t

)

Ib
t (s) =

2̺2κa
tP

a
t−td

ψ̄2
∥

∥rb
t − ra

t

∥

∥

2 exp
(

−2
(∥

∥ψa
t−td

∥

∥ /ψ̄
)2
)

γ
(

s− yb
t

)

(5.18)

where
{

κa
t

}

and
{

κb
t

}

are nonnegative stochastic processes.

Under the condition of approximation, {κi
t} is a unit mean lognormal stochastic

process [30, 26]. The variance of κi
t (for a fixed t) depends on the wavelength of

the light, the propagation distance, the refractive-index structure constant, and the

shape of the optical field [30]. Although, a complete description for the temporal

evolution of {κi
t} does not exist, its autocorrelation function can be approximated

using the Taylor’s frozen-flow hypothesis [52].

5.3.5 The Photodetector Output

In order to model the position-sensitive photodetectors, we first introduce the space-

time rate λi
t (r) which is an affine function of the optical intensity I i

t (r), i.e.,

λi
t (r) = ηI i

t (r) + λ̄. (5.19)
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Here, the known constant η > 0 is the photodetector sensitivity1 and λ̄ > 0 is

a known constant which characterizes the combination of the dark current noise

and the back ground radiation [29]. Substituting I i
t (r) from (5.18) into (5.19), we

express λa
t (r) and λb

t (r) as

λa
t (r) = νa

t−td
exp

(

−2
(∥

∥ψb
t−td

∥

∥ /ψ̄
)2
)

γ
(

r − ya
t

)

+ λ̄

λb
t (r) = νb

t−td
exp

(

−2
(∥

∥ψa
t−td

∥

∥ /ψ̄
)2
)

γ
(

r − yb
t

)

+ λ̄

(5.20)

where νa
t and νb

t are defined as

νa
t =

2η̺2κb
t+td

P b
t

ψ̄2
∥

∥ra
t+td

− rb
t+td

∥

∥

2

νb
t =

2η̺2κa
t+td

P a
t

ψ̄2
∥

∥rb
t+td

− ra
t+td

∥

∥

2 ·

Note that νi
t/η is the instantaneous optical power received by station i in the absence

of the pointing error.

We denote the set of points on the surface of the photodetector by A. In a

position-sensitive photodetector, A is partitioned into q subsets Ak, k = 1, 2, · · · , q

such that ∪q
k=1Ak = A. The output of photodetector i is a q- dimensional vector Y i

t

such that its kth element Y k,i
t is the output of the region Ak. We model Y k,i

t as a

doubly stochastic Poisson process with the rate process
{

Λk,i
t

}

, where Λk,i
t is given by

Λk,i
t =

∫

Ak

λi
t (r) dr. (5.21)

1The photodetector sensitivity is given by η = ζ/~f̄ , where ~ is the Planck’s constant, f̄ is the
mean frequency of light, and 0 < ζ 6 1 is the quantum efficiency of the photodetector.
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Moreover, for l 6= k, conditioned on
{

Λk,i
t

}

and
{

Λl,i
t

}

, the stochastic processes

{

Y k,i
t

}

and
{

Y l,i
t

}

are mutually independent.

Remark 5.3.1. Let
∣

∣Ak
∣

∣ denote the area of region k. Then, under the condition

q → ∞ and max
k∈{1,2,··· ,q}

∣

∣Ak
∣

∣→ 0,

the vector-valued stochastic process Y i
t tends to a space-time point process with

rate (5.20). This is a motivation for approximating the output of a high spatial

resolution photodetector by a space-time point process.

Remark 5.3.2. A first order approximation for a Poisson process is its expected

value. For the q-dimensional vector Y i
t , this approximation can be expressed as

Y i
t ≃ Λi

t, where Λi
t is a q-dimensional vector with elements Λk,i

t . This approximation

can be improved as

Y i
t ≃ Λi

t + ni
t (5.22)

where the noise vector ni
t is independent of Λi

t. This simple approximation is useful

when a deterministic approach is adopted to study the system [41, 21].

5.3.6 Dynamical Equations

Let up,i
t , uα,i

t , and uβ,i
t denote the input (control) vectors of the pointing assembly, the

tracking mirror, and the point-ahead mirror, respectively. Define the disturbance

vector ρi
t as

ρa
t = −ρb

t =
rb
t − ra

t
∥

∥rb
t − ra

t

∥

∥

·
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The goal of this section is to develop a state-space model which determines the

output vector (yi
t, ψ

i
t) in terms of the control vector ui

t ,
(

up,i
t , u

α,i
t , uβ,i

t

)

and the

disturbance vector (ωi
t, ρ

i
t, ε

i
t). We note that (5.8) and (5.15) express yi

t in terms

of ρi
t, Ωi

t, and αi
t. Also, ψi

t can be determined in terms of ρi
t, ε

i
t, Ωi

t, α
i
t, and βi

t

using (5.3) and (5.9). Thus, we need to obtain dynamical equations which describe

the temporal evolution of Ωi
t, α

i
t, and βi

t .

Referring to the definition of υi
t and ωi

t in Section 5.3.1, we can show that Ωi
t

is the solution of the matrix differential equation

Ω̇i
t =

[

υi
t

]

×
Ωi

t + Ωi
t

[

ωi
t

]

×
.

Here, the angular velocity vector υi
t ∈ R

3 is controlled by the pointing assembly. In

the most general case, the relationship between υi
t and up,i

t can be described by the

nonlinear state-space equations

ẋp,i
t = f

(

xp,i
t , u

p,i
t

)

υi
t = g

(

xp,i
t

)

(5.23)

where xp,i
t ∈ R

np

is the state vector and f (·) and g (·) are smooth vector fields with

proper dimensions. The explicit forms of f (·) and g (·) depend on the structure

of the pointing assembly and will not be discussed here. For a two-axes gimballed

pointing assembly, the control vector up,i
t is 2-dimensional.

We model the dynamics of the steerable flat mirrors by the linear state-space
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equations

ẋα,i
t = Aαxα,i

t +Bαuα,i
t

αi
t = Cαxα,i

t

and

ẋβ,i
t = Aβxβ,i

t +Bβuβ,i
t

βi
t = Cβxβ,i

t

(5.24)

where the superscripts α and β refer to the tracking and point-ahead mirrors, respec-

tively. In these equations, xα,i
t ∈ R

nα

and xβ,i
t ∈ R

nβ

are the state vectors, uα,i
t ∈ R

2

and uβ,i
t ∈ R

2 are the control vectors, and the matrices have appropriate dimensions.

The linearity of the equations is justified by the fact that the flat mirrors operate

over small angles. It is worth remarking here that the actuators of the flat mirrors

are fast dynamical systems, so that for an approximate analysis, we can ignore their

dynamics and approximate αi
t ≃ uα,i

t and βi
t ≃ uβ,i

t .

As a summary, we characterize each station as a dynamical system with the

state vector
(

xp,i
t ,Ω

i
t, x

α,i
t , xβ,i

t

)

, the control vector
(

up,i
t , u

α,i
t , uβ,i

t

)

, and the distur-

129



bance vector (ωi
t, ρ

i
t, ε

i
t), where the state vector evolves in time according to

ẋp,i
t = f

(

xp,i
t , u

p,i
t

)

Ω̇i
t =

[

g
(

xp,i
t

)]

×
Ωi

t + Ωi
t

[

ωi
t

]

×

ẋα,i
t = Aαxα,i

t +Bαuα,i
t

ẋβ,i
t = Aβxβ,i

t +Bβuβ,i
t .

(5.25)

Also, the output vector (yi
t, ψ

i
t) is expressed in terms of the state and disturbance

vectors as

yi
t = fcI∗Ω

i
tρ

i
t +HCαxα,i

t

ψi
t = I∗

(

I +
[

IT
∗

(

KCαxα,i
t + LCβxβ,i

t + εi
t

)]

×

)

Ωi
tρ

i
t+td

.

(5.26)

5.3.7 Model Summary and Discussion

The mathematical model developed in this section is summarized in the block dia-

gram of Figure 5.5. This block diagram describes a dynamical system with the input

vector
(

ua
t , u

b
t

)

, the disturbance vector
(

ωa
t , ω

b
t , ρ

a
t , ρ

b
t , ε

a
t , ε

b
t , ν

a
t−td

, νb
t−td

)

, and the out-

put vector
(

Y a
t , Y

b
t

)

. Here, the output vector
(

Y a
t , Y

b
t

)

“statistically” depends on

the state of the system and the disturbance vector. According to Figure 5.5, except

for ωa
t and ωb

t which appear in the state-space equations, other elements of the dis-

turbance vector only appear in the output equations. Therefore, ρi
t, ε

i
t, and νi

t−td
,

i = a, b affect the state vector only after establishing closed-loop paths from Y i
t

to ui
t. Also, we observe from Figure 5.5 that when the feedback loops exist, the
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Optical IntensityState−Space Output Photodetector
Equations Equations Model Model

λat (r)yat
Y a
t
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t
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νbt−td

νat−td
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ψbt−td

ψat−td

ωat ρat , ε
a
t

ωbt ρbt , ε
b
t

Figure 5.5: Block diagram of a cooperative optical beam tracking system. In this figure,
the blocks marked by “State-Space Equations”, “Output Equations”, and “Optical Inten-
sity Model” refer to (5.25), (5.26), and (5.20), respectively. Also, “Photodetector Model”
refers to (5.21) and the vector-valued doubly stochastic Poisson process Y i

t defined in
Section 5.3.5.

subsystems a and b are coupled through (5.20) (“Optical Intensity Model” block in

Figure 5.5) and the linear constraint ρa
t + ρb

t = 0.

In a cooperative optical beam tracking system, the goal of the closed-loop con-

trol is to maintain some appropriate norm of {yi
t} and {ψi

t} close to zero. Here, the

condition yi
t ≃ 0 is the objective of the optical beam tracking operation, while ψi

t ≃ 0

is associated with the active pointing. In short range applications with td = 0, as-

suming that εi
t = 0, the two conditions are equivalent, i.e., the tracking and pointing

operations are combined. In long range applications where td 6= 0, the conditions can

be achieved independently, by means of the additional degree of freedom provided

by the point-ahead mirrors.
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The solution to the control problem above, depends on the structure of the

information which is provided to the controllers. In one scenario, the controller of

each station has access only to the output of the same station, i.e., the control prob-

lem is decentralized. In another possible scheme, the stations share their outputs

through the optical link or and independent RF channel. This scheme improves the

performance of the system by increasing the information for estimating the common

disturbance ρa
t = −ρb

t . On the other hand, sharing the outputs is the only possibil-

ity for compensating εi
t, since this disturbance vector can be observed only by the

receiving station. As an assisting equipment, an arrangement of three (perpendicu-

lar) rate gyros and accelerometers which is carried by each station provides relevant

information for estimating ωi
t and ρi

t.

Up to this point, we did not offer any model for the disturbance vectors, while

such a model is essential for the further analysis. A disturbance model might be

deterministic or stochastic, depending on the preferred analysis tools and methods.

For a deterministic analysis, the disturbance vectors are modeled using appropriate

deterministic functions which are rich enough to represent the family of all possible

instances. In this type of analysis, we can also approximate the output vector Y i
t

by (5.22).

A stochastic disturbance model can be characterized by an appropriate sto-

chastic state-space equation driven by a vector-valued Wiener process. Then, a

complete stochastic model is constructed by combining this equation with (5.25).

This stochastic modeling approach will be considered in Section 5.5.
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5.4 Linearizing the Dynamical Equations

In the applications such as intersatellite communication, the relative motion (dis-

turbance) consists of a large, predetermined component and a small, unknown term.

Accordingly, the control law consists of an open-loop, coarse control and a small,

closed-loop, fine control. In this case, the nonlinear state-space equations (5.25)

and the output equations (5.26) can be linearized around a predetermined nominal

trajectory, which results in a linear time-varying model for the fine control regime.

In order to obtain the linearized model, every vector contributing in (5.25)

and (5.26) will be expressed as the sum of a nominal vector and a (small) deviation

vector. For a vector x, the nominal and deviation vectors will be denoted by x̄

and δx, respectively. Thus, we express x as x = x̄+δx. Because the tracking mirrors

are not involved in the coarse control regime, we set ᾱi
t = 0. In this procedure, ρi

t

needs a special attention, since it must satisfy the condition ‖ρi
t‖ = 1. This norm

condition is obviously satisfied for the nominal vector ρ̄i
t defined as

ρ̄a
t = −ρ̄b

t =
r̄b
t − r̄a

t
∥

∥r̄b
t − r̄a

t

∥

∥

·

We define the deviation vectors δξa
t and δξb

t as

δξa
t = −δξb

t =
δrb

t − δra
t

∥

∥r̄b
t − r̄a

t

∥

∥

·

Then, assuming that ‖δξi
t‖2 ≪ 1, we can show that the condition ‖ρ̄i

t + δρi
t‖ = 1 is

133



approximately preserved, if the deviation vector δρi
t is given by

δρi
t =

(

I − ρ̄i
t

(

ρ̄i
t

)T
)

δξi
t. (5.27)

The rotation matrix Ωi
t will be expressed as Ωi

t ≃
(

I + [δφi
t]×
)

Ω̄i
t, where δφi

t is

a 3-dimensional vector and Ω̄i
t is the nominal rotation matrix satisfying

˙̄Ωi
t =

[

ῡi
t

]

×
Ω̄i

t + Ω̄i
t

[

ω̄i
t

]

×
.

We can show that δφi
t is the solution of the linear differential equation

δφ̇i
t =

[

ῡi
t

]

×
δφi

t + δυi
t + Ω̄i

tδω
i
t.

The goal of the open-loop control
(

ūp,i
t , ū

β,i
t

)

is to maintain ȳi
t = 0 and ψ̄i

t = 0.

These conditions are respectively equivalent to Ω̄i
tρ̄

i
t = [0 0 1]T and ∆̄i

tΩ̄
i
t = Ω̄i

t+td
,

where ∆̄i
t is defined as

∆̄i
t = I +

[

IT
∗

(

Lβ̄i
t + ε̄i

t

)]

×
.

We can show that ȳi
t = 0 holds, if and only if ῡi

t satisfies

I∗ῡ
i
t = −I∗Ω̄i

tω̄
i
t + JI∗Ω̄

i
t
˙̄ρ i
t (5.28)
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where the 2 × 2 matrix J is defined as

J =

[

0 1

−1 0

]

.

Also, solving the equation ∆̄i
tΩ̄

i
t = Ω̄i

t+td
for β̄i

t , we find

β̄i
t = (JL)−1 I∗Ω̄

i
t+td

ρ̄i
t − L−1ε̄i

t (5.29)

which is the condition on β̄i
t that leads to ψ̄i

t = 0. We shall assume that the state-

space equations (5.23) and (5.24) allow ūp,i
t and ūβ,i

t to achieve the conditions (5.28)

and (5.29).

Let x̄p,i
t denote the state of (5.23) under the nominal control ūp,i

t . We linearize

the state-space model (5.23) around x̄p,i
t and ūp,i

t to obtain

δẋp,i
t = Ap,i

t δx
p,i
t +Bp,i

t δup,i
t

δυi
t = Cp,i

t δxp,i
t

where Ap,i
t , Bp,i

t , and Cp,i
t are defined as

Ap,i
t =

∂f (x, u)

∂x

∣

∣

∣

x=x̄p,i
t , u=ūp,i

t

Bp,i
t =

∂f (x, u)

∂u

∣

∣

∣

x=x̄p,i
t , u=ūp,i

t

Cp,i
t =

∂g (x)

∂x

∣

∣

∣

x=x̄p,i
t

.

As a summary, we present the linearized version of (5.25) through the following
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state-space equations

δẋp,i
t = Ap,i

t δx
p,i
t +Bp,i

t δup,i
t

δφ̇i
t =

[

ῡi
t

]

×
δφi

t + Cp,i
t δxp,i

t + Ω̄i
tδω

i
t

δẋα,i
t = Aαδxα,i

t +Bαδuα,i
t

δẋβ,i
t = Aβδxβ,i

t +Bβδuβ,i
t .

(5.30)

Assuming that (5.28) and (5.29) hold, we linearize (5.26) around the nominal tra-

jectory to get

yi
t = fc

(

JI∗δφ
i
t + I∗Ω̄

i
tδξ

i
t

)

+HCαδxα,i
t

ψi
t = JI∗∆̄

i
tδφ

i
t + I∗Ω̄

i
t+td

δξi
t+td

−
(

I∗
[

Ω̄i
tρ̄

i
t+td

]

×
IT
∗

)(

KCαδxα,i
t + LCβδxβ,i

t + δεi
t

)

.

(5.31)

We note that the linearized model is not identical for i = a, b, as it depends on the

nominal trajectory which is different for stations a and b. When (5.30) is used to

describe the transceiver of Figure 5.1, the control vectors uα,i
t and uβ,i

t are identically

zero. For the transceiver of Figure 5.2, since the pointing assembly is used only for

the open-loop control, we set δup,i
t = 0 in the first equation of (5.30).

5.5 Stochastic Model

As mentioned in Section 5.3.7, the disturbance vector (ωi
t, ρ

i
t, ε

i
t) can be adequately

described in a stochastic framework. Since our analysis in Chapter 6 focuses on the

linearized model of Section 5.4, the goal of this section is to develop a stochastic

136



description for the linearized disturbance vectors δωi
t, δξ

i
t, and δεi

t.

We use a set of stochastic differential equations to model the disturbance

vectors δωi
t, δξ

i
t, and δεi

t. Justified by the assumption that these “deviation” vec-

tors have small norms, we consider a linear structure for the equations, i.e., we

describe δωi
t, δξ

i
t, and δεi

t by1

dxω,i
t = Aω,i

t xω,i
t dt+Dω,i

t dwω,i
t

δωi
t = Cω,i

t xω,i
t ,

(5.32a)

dxξ,i
t = Aξ

tx
ξ,i
t dt+Dξ

t dw
ξ,i
t

δξi
t = Cξ

t x
ξ,i
t ,

(5.32b)

dxε,i
t = Aε,i

t x
ε,i
t dt+Dε,i

t dw
ε,i
t

δεi
t = Cε,i

t xε,i
t

(5.32c)

where xω,i
t ∈ R

nω

, xξ,i
t ∈ R

nξ

, and xε,i
t ∈ R

nε

are the state vectors and wω,i
t ∈

R
pω

, wξ,i
t ∈ R

pξ

, and wε,i
t ∈ R

pε

are vector-valued standard Wiener processes.

Here, the matrices are uniformly bounded and have appropriate dimensions. The

initial states xω,i
0 , xξ,i

0 , and xε,i
0 are Gaussian random vectors with known mean

and covariance matrix. Since δωi
t, δξ

i
t, and δεi

t have independent physical ori-

gins, the initial states xω,i
0 , xξ,i

0 , and xε,i
0 and the Wiener processes

{

wω,i
t

}

,
{

wξ,i
t

}

,

and
{

wε,i
t

}

are assumed to be statistically independent. Also, the initial states

and Wiener processes associated with stations a and b are statistically independent,

1The equations are defined in the Itô sense.
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except for the pairs
(

xξ,a
0 , xξ,b

0

)

and
(

wξ,a
t , wξ,b

t

)

that must satisfy xξ,a
0 + xξ,b

0 = 0

and wξ,a
t + wξ,b

t = 0, t > 0, in order to hold δξa
t + δξb

t = 0.

The state-space equations (5.30) and (5.32) and the output equations (5.31)

can be combined in a compact form1

dxi
t = Ai

tx
i
t +Bi

tu
i
tdt+Di

tdw
i
t (5.33a)

yi
t = Ci

tx
i
t (5.33b)

ψi
t =

(

ψ̄/2
)

Li
tz

i
t (5.33c)

where

xi
t =

[

δxp,i
t δφi

t δxα,i
t δxβ,i

t xω,i
t xξ,i

t xε,i
t

]T

zi
t =

[

δxp,i
t δφi

t δxα,i
t δxβ,i

t xω,i
t xξ,i

t+td
xε,i

t

]T

ui
t =

[

δup,i
t δuα,i

t δuβ,i
t

]T

wi
t =

[

wω,i
t wξ,i

t wε,i
t

]T

(5.34)

and the block matrices {Ai
t, B

i
t, D

i
t, C

i
t , L

i
t} can be obtained in terms of the matrices

appearing in (5.30), (5.31), and (5.32). Here, the initial state xi
0 is a Gaussian

random vector with mean x̄i
0 and covariance matrix Σ̄i

0. Considering (5.34), we can

determine matrices Π and Πd such that

zi
t = Πxi

t + Πdxi
t+td

. (5.35)

1The notation ui
t which is used here for the linearized model should not be confused with the

same notation used in Section 5.3.6 for the nonlinear case.
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Also, we note that the linear constraints xξ,a
0 + xξ,b

0 = 0 and wξ,a
t + wξ,b

t = 0 can be

expressed as

Υx
(

xa
0 + xb

0

)

= 0

Υw
(

wa
t + wb

t

)

= 0

(5.36)

with properly defined matrices Υx and Υw.

In the following, we discuss some properties of matrices Bi
t, C

i
t , and Li

t which

will be used later in Chapter 6. Assume that δεi
t is identically zero. Then, regarding

the transceiver of Figure 5.1 for which δxα,i
t = 0, δxβ,i

t = 0, and td = 0, we observe

from (5.31) that yi
t = fcψ

i
t. Comparing this result with (5.33b) and (5.33c) we find

that

Li
t = 2

(

fcψ̄
)−1

Ci
t . (5.37)

This result also holds for the transceiver of Figure 5.2, if in addition to td = 0

and δεi
t ≡ 0, we have H + fcK = 0. Regarding Bi

t, we can verify that this matrix

satisfies ΠdBi
t = 0 for every t > 0. This follows from the fact that xξ,i

t does not

depend on the control vector ui
t.

The space-time rates (5.20) can be expressed in terms of xi
t and zi

t as

λa
t (r) = νa

t−td
exp

(

−1
2

∥

∥Lb
t−td

zb
t−td

∥

∥

2
)

γ
(

r − Ca
t x

a
t

)

+ λ̄

λb
t (r) = νb

t−td
exp

(

−1
2

∥

∥La
t−td

za
t−td

∥

∥

2
)

γ
(

r − Cb
tx

b
t

)

+ λ̄.

(5.38)

We allow
{

νa
t

}

and
{

νb
t

}

to be nonnegative stochastic processes with piecewise
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continuous and bounded sample paths and nonzero mean1. Further, we assume

that
{

νa
t

}

and
{

νb
t

}

are mutually independent and are independent of xi
0 and

{wi
t} , i = a, b.

1This characterizes the effect of random optical fade and data modulation.
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Chapter 6

Cooperative Optical Beam Tracking: Optimal Control

6.1 Introduction

In Chapter 5, we discussed the concept of cooperative optical beam tracking and

developed a mathematical model for this alignment scheme. In the next step, the

dynamical equations associated with this model were linearized around a nominal

trajectory and a stochastic description for the disturbance vectors was introduced.

In the present chapter, we use this linearized stochastic model in order to study

the problem of controller design for a cooperative optical beam tracking system.

The design goal is to maximize the flow of optical energy between the stations.

We shall study the problem (separately) for two scenarios: short range applications

with td = 0 and long range applications with td > 0.

The organization of this chapter is as follows. In Section 6.2, we first introduce

some additional assumptions on the model of Chapter 5 and modify it accordingly,

and then define its associated control problem. Section 6.3 considers an associated

estimation problem and presents an approximate solution for it. This solution will

be used in Sections 6.4 and 6.5 in order to develop two different methods for solving
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the control problem for td = 0 and td > 0, respectively.

6.2 Model and Problem Statement

In order to use the results of Theorem 3.3.2 in our analysis, we shall assume that γ (r)

in (5.38) has a Gaussian profile (see Section 5.3.3) and ignore the effect of the dark

current and the background noises by letting λ̄ = 0 in (5.38). In addition, we use the

“infinite resolution” and “infinite area” model for the photodetectors as explained

in Section 3.5. These assumptions enable us to describe the output of a position-

sensitive photodetector by a space-time point process over R
2. After solving the

control problem using this idealized model, we can apply the approximation method

of Section 3.5 to modify the solution for a practical finite resolution photodetector.

6.2.1 The Model

Following the model of Section 5.5, we describe the dynamics of station i = a, b by

the state-space equation

dxi
t = Ai

tx
i
tdt+Bi

tu
i
tdt+Di

tdw
i
t (6.1)

where xi
t ∈ R

n is the state vector and {wi
t} is a p-dimensional standard Wiener

process. The initial state xi
0 is independent of {wa

t } and {wb
t} and is assumed to be

a Gaussian vector with mean x̄i
0 = 0 and covariance matrix P i

0. We remind from Sec-

tion 5.5 that xi
0, i = a, b and {wi

t} , i = a, b satisfy the linear constraints (5.36). The

control vector ui
t will be discussed separately for td = 0 and td > 0 in Section 6.2.2.
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The observation at station i = a, b which is provided over R
2 is the space-time

point process N i (T × S) with rate

λi
(

r, xi
t, µ

i
t

)

= µi
tΦ2

(

r;Ci
tx

i
t, R
)

(6.2)

where R = 2 (fc/k̺)
2 I2×2 is defined in Section 5.3.3 and the Gaussian map Φ2 (·) is

given by (3.5). The stochastic processes
{

µa
t

}

and
{

µb
t

}

are defined as

µa
t = νa

t−td
exp

(

−1
2

∥

∥Lb
t−td

zb
t−td

∥

∥

2
)

µb
t = νb

t−td
exp

(

−1
2

∥

∥La
t−td

za
t−td

∥

∥

2
)

(6.3)

where the nonnegative stochastic process {νi
t} is statistically independent of xi

0

and {wi
t} , i = a, b and has piecewise continuous and bounded sample paths and

nonzero mean. The stochastic vector zi
t is determined in terms of the state vector xi

t

according to1

zi
t = Πxi

t + Πdxi
t+td

. (6.4)

We shall assume that prior to t = 0, the stations are under the open-loop

control ua
t = ub

t = 0. This implies that for t ∈ [−td, 0], xi
t is a zero-mean Gaussian

random vector with covariance matrix P i
t which satisfies the matrix differential equa-

tion

Ṗ i
t = Ai

tP
i
t + P i

tA
iT
t +Di

tD
iT
t .

Note that due to the propagation delay td, the initial state of the system must be

1See (5.35) in Section 5.5.
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given over the interval t ∈ [−td, 0], instead of a single point t = 0.

Over the underlying probability space (Ω,F , P ) of the above stochastic model,

we define Bi
t, i = a, b as the σ-algebra generated by the space-time point process i

over [0, t). We say ua
t and ub

t are admissible controls if ui
t is Bi

t-measurable and the

solution to (6.1) is well defined for i = a, b.

6.2.2 Problem Statement

For long range applications using the transceiver of Figure 5.2, the control ui
t is a

4-dimensional vector comprised of uα,i
t ∈ R

2 and uβ,i
t ∈ R

2 which are the control

vectors associated with the tracking mirror and the point-ahead mirror, respectively.

In terms of uα,i
t and uβ,i

t , the state-space equation (6.1) can be expressed as

dxi
t = Ai

tx
i
tdt+Bα,i

t uα,i
t dt+Bβ,i

t uβ,i
t dt+Di

tdw
i
t (6.5)

where Bα,i
t and Bβ,i

t are defined such that Bi
t =

[

Bα,i
t Bβ,i

t

]

. Note that the con-

trol uα,i
t is employed for the purpose of tracking, i.e., maintaining ‖Ci

tx
i
t‖ close to 0,

while uβ,i
t is used for precise pointing, i.e., keeping ‖Li

tz
i
t‖ as small as possible. We

observe from (5.30) and (5.31) that Ci
tx

i
t does not depend on uβ,i

t , thus the tracking

control uα,i
t can be designed subject to (6.5) with uβ,i

t = 0. The design problem can

be formulated in terms of minimizing the cost functional (3.6) with Qt = CiT
t Ci

t ,

Pt = ηI2×2, η > 0, and S = 0 as explained in Section 3.5. A simpler scheme is to ob-

tain uα,i
t such that E [Ci

tx
i
t|Bi

t] = 0. This scheme needs some additional assumptions

which will be explained later through Lemma 6.4.1.
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After determining an admissible uα,i
t , we solve the pointing control problem

subject to (6.5) with the already obtained uα,i
t . For the nonnegative constants ka

and kb and the fixed time horizon T > td > 0, we define the objective functional

J = E

[
∫ T

0

(

kaνa
t exp

(

−1
2

∥

∥Lb
tz

b
t

∥

∥

2
)

+ kbνb
t exp

(

−1
2

∥

∥La
t z

a
t

∥

∥

2
))

dt

]

(6.6)

as a linear combination of the expected optical energy received by the stations during

[td, T + td]. Then, the pointing control problem can be defined as follows. Subject

to (6.5), determine the admissible controls
{

uβ,a
t , t ∈ [0, T ]

}

and
{

uβ,b
t , t ∈ [0, T ]

}

that maximize the objective functional (6.6).

For short range applications with td = 0, the control vector ui
t ∈ R

2 is associ-

ated with either the pointing assembly or the tracking mirror. In this case, the con-

trol problem is to obtain the admissible controls
{

ua
t , t ∈ [0, T ]

}

and
{

ub
t , t ∈ [0, T ]

}

that maximize the objective functional

J = E

[
∫ T

0

(

kaνa
t exp

(

−1
2

∥

∥Lb
tx

b
t

∥

∥

2
)

+ kbνb
t exp

(

−1
2

∥

∥La
tx

a
t

∥

∥

2
))

]

. (6.7)

We note that for the case of td = 0, (6.3) can be simplified as

µa
t = νa

t exp
(

−1
2

∥

∥Lb
tx

b
t

∥

∥

2
)

µb
t = νb

t exp
(

−1
2

∥

∥La
tx

a
t

∥

∥

2
)

.

(6.8)
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6.3 Estimation Problem

The first step in solving the control problem is to determine the posterior den-

sity pxi
t
(x|Bi

t). While the structure of the model for a single station1 is similar to

the model of Chapter 3, this model does not completely satisfy the assumptions

of Theorem 3.3.2, due to the statistical dependence between {µi
t} and {wi

t}. This

dependence is manifested by (6.3) which indicates that {µi
t} depends on the state

of the other station, and as a consequence, the statistical dependence between
{

xa
t

}

and
{

xb
t

}

leads to statistical dependence between {µi
t} and {wi

t}. The dependence

between
{

xa
t

}

and
{

xb
t

}

has two origins: the linear constraints (5.36), and the de-

pendence of {xi
t} on Bi

t through ui
t, noting that Bi

t depends on the state of the

other station.

The discussion above suggests that the coupling between the stations must

be involved in an exact solution for the estimation problem. Such an estimation

problem is difficult to solve, not only due to the complexity of the model, but also

because of the requirement of determining the optimal controls ua
t and ub

t , prior to

solving the estimation problem. A suboptimal solution for the estimation problem

which avoids these difficulties can be obtained by applying Theorem 3.3.2 to each

individual station, ignoring the statistical dependence between {µi
t} and {wi

t}. To

justify this approximation, we note that for a well-designed system, the expected

1This model is consisted of the state-space equation (6.1) and the observation of the space-time
point process with rate (6.2).
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value of the stochastic process

ρi
t , exp

(

−1
2

∥

∥Li
tz

i
t

∥

∥

2
)

must stay close to 1 for every t ∈ [0, T ]. This implies that the standard deviation

of ρi
t is small compared to its expected value, i.e., we can approximate

ρi
t ≃ E

[

ρi
t

]

. (6.9)

Based on (6.9), we approximate the stochastic processes
{

µa
t

}

and
{

µb
t

}

by

{

νa
t−td

E
[

ρb
t

]}

and
{

νb
t−td

E [ρa
t ]
}

, respectively. Since {νi
t} is statistically independent

of xi
0 and {wi

t}, these approximations imply that {µi
t} is statistically independent

of xi
0 and {wi

t}. Thus, using Theorem 3.3.2, we approximate

pxi
t

(

x|Bi
t

)

≃ p̃xi
t

(

x|Bi
t

)

= Φn

(

x; x̂i
t,Σ

i
t

)

(6.10)

where x̂i
t and Σi

t are the solutions of the stochastic differential equations

dx̂i
t = Ai

tx̂
i
tdt+Bi

tu
i
tdt+

∫

R2

M i
t

(

r − Ci
t x̂

i
t

)

N i (dt× dr) (6.11a)

dΣi
t = Ai

tΣ
i
tdt+ Σi

tA
iT
t dt+Di

tD
iT
t dt−M i

tC
i
tΣ

i
tdN

i
t (6.11b)

with the initial states x̂i
0 = x̄i

0 = 0 and Σi
0 = P i

0. Here, the stochastic process {N i
t}
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and the stochastic matrix M i
t are defined as

N i
t = N i

(

[0, t) × R
2
)

M i
t = Σi

tC
iT
t

(

Ci
tΣ

i
tC

iT
t +R

)−1
.

From the definition of N i (T × S), we know that {N i
t} is a doubly stochastic Poisson

process with rate {µi
t} which is defined by (6.3) (or by (6.8) for the short range

applications).

Note that the estimator (6.11) does not explicitly depend on {µi
t, t > 0};

however, the estimates x̂i
t and Σi

t depend on {µi
t, t > 0} through the space-time

point process. This dependence can be explained by observing from (6.11b) that

the occurrence of each event in the space-time point process decreases Σi
t by the

positive definite matrix M i
tC

i
tΣ

i
t. Thus, a larger µi

t leads to a smaller estimation

error by increasing the occurrence rate of the events. According to (6.3), a smaller

pointing error ‖Lb
t−td

zb
t−td

‖ at station b results in a larger µa
t and, as a consequence,

a closer estimate for xa
t , which in turn, leads to a smaller pointing error at station a.

This explains the mechanism which couples the dynamics of the stations.

The posterior density pzi
t
(z|Bi

t) can be obtained in terms of pxi
t
(x|Bi

t) as

stated in the following theorem.

Theorem 6.3.1. Consider the state-space equation (6.1) and its associated space-

time observation with the rate process (6.2). Assume that the increasing family of

σ-algebras Bi
t are given and that ui

t is Bi
t-measurable. Then, for zi

t defined by (6.4),
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the posterior density pzi
t
(z|Bi

t) is given by

pzi
t

(

z|Bi
t

)

=

∫

Rn

pxi
t

(

x|Bi
t

)

Φn (z;Htx, Vt) dx (6.12)

where Ht and Vt are defined as1

Ht = Π + ΠdΦAi

(t+ td, t)

and

Vt =

∫ t+td

t

(

ΠdΦAi

(t+ td, τ)D
i
τ

)(

ΠdΦAi

(t+ td, τ)D
i
τ

)T

dτ.

Here, ΦAi

(t, τ) is the transition matrix associated with Ai
t.

Proof. We know from Section 5.5 that ΠdBi
t = 0 for every t > 0. Thus, solving the

linear stochastic differential equation (6.1) from t to t+ td, we get

Πdxi
t+td

= ΠdΦAi

(t+ td, t) x
i
t + Πdvi

t

where

vi
t =

∫ t+td

t

ΦAi

(t+ td, τ)D
i
τdw

i
τ .

From the definition of zi
t and Ht we can write

zi
t = Htx

i
t + Πdvi

t.

1We know from Section 5.5 that Ht and Vt are identical for stations a and b, thus the super-
script i has been dropped.
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The conditional characteristic function of zi
t given Bi

t is given by

E
[

exp
(

jωTzi
t

)

|Bi
t

]

= E
[

exp
(

jωTHtx
i
t

)

exp
(

jωT Πdvi
t

) ∣

∣B
i
t

]

= E
[

exp
(

jωTHtx
i
t

)

|Bi
t

]

E
[

exp
(

jωT Πdvi
t

)]

= E
[

exp
(

jωTHtx
i
t

)

|Bi
t

]

exp
(

−1
2
ωTVtω

)

.

Taking the inverse Fourier transform of the last expression above, we obtain (6.12).

Using Theorem 6.3.1 and Lemma 4.5.1, we determine the approximation of

pzi
t
(z|Bi

t) associated with (6.10) as

p̃zi
t

(

z|Bi
t

)

= Φn

(

z; ẑi
t , HtΣ

i
tH

T
t + Vt

)

(6.13)

where ẑi
t is defined as ẑi

t = Htx̂
i
t. For future reference, we use (6.13) to obtain

∫

Rn

p̃zi
t

(

z|Bi
t

)

exp
(

−1
2
‖Li

tz‖
2
)

dz = f i
t

(

Σi
t

)

exp
(

−1
2
‖Qi

tL
i
tẑ

i
t‖

2
)

(6.14)

where f i
t (·) : R

n×n → R is defined as

f i
t (X) =

[

det
(

I2×2 + Li
t

(

HtXH
T
t + Vt

)

LiT
t

)]−1/2
(6.15)
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and the positive definite stochastic matrix Qi
t is given by1

Qi
t =

(

I2×2 + Li
t

(

HtΣ
i
tH

T
t + Vt

)

LiT
t

)−1/2
. (6.16)

For the case of td = 0, in which Ht = In×n and Vt = 0, (6.15) and (6.16) are

simplified as

f i
t (X) =

[

det
(

I2×2 + Li
tXL

iT
t

)]−1/2
(6.17)

and

Qi
t =

(

I2×2 + Li
tΣ

i
tL

iT
t

)−1/2
. (6.18)

6.4 Control Problem: Short Range Applications

We exploit the estimator (6.11) and the approximate posterior density (6.10) in order

to prove Theorem 6.4.1 below which is the basis for developing a suboptimal control

for the case of td = 0. Before stating the theorem, we fix notation. Let gt

(

Σa,Σb
)

be a scalar function of n × n symmetric matrices Σa and Σb. Assume that the

partial derivatives of gt

(

Σa,Σb
)

with respect to the elements of Σa and Σb exist.

We denote by ∂gt

(

Σa,Σb
)

/∂Σi, i = a, b a n × n symmetric matrix with diagonal

elements ∂gt/∂σ
i
kk and off-diagonal elements (1/2) ∂gt/∂σ

i
kl, where σi

kl is the element

of Σi at kth row and lth column. We define the linear operators La
t {·} and Lb

t {·} as

La
t

{

gt

(

Σa,Σb
)}

= gt

(

Sa
t (Σa) ,Σb

)

− gt

(

Σa,Σb
)

Lb
t

{

gt

(

Σa,Σb
)}

= gt

(

Σa, Sb
t

(

Σb
))

− gt

(

Σa,Σb
)

(6.19)

1Here, by X = Y −1/2, we mean a matrix X that satisfies XTX = Y −1.

151



where Si
t (·) is given by

Si
t (Σ) = Σ − ΣCiT

t

(

Ci
tΣC

iT
t +R

)−1
Ci

tΣ. (6.20)

Theorem 6.4.1. Fix sample paths νa
t and νb

t , t ∈ [0, T ]. Let Σa and Σb be n×n

symmetric matrices and assume that gt

(

Σa,Σb
)

, t ∈ [0, T ] is the solution of the

partial differential equation

∂gt

(

Σa,Σb
)

∂t
+ νa

t f
b
t

(

Σb
)

(

ka + La
t

{

gt

(

Σa,Σb
)}

)

+ νb
t f

a
t

(

Σa
)

(

kb + Lb
t

{

gt

(

Σa,Σb
)}

)

+ tr

{

∂gt

(

Σa,Σb
)

∂Σa

(

Aa
t Σ

a + ΣaAaT
t +Da

tD
aT
t

)

}

+ tr

{

∂gt

(

Σa,Σb
)

∂Σb

(

Ab
tΣ

b + ΣbAbT
t +Db

tD
bT
t

)

}

= 0 (6.21)

with the boundary condition gT (·, ·) = 0, where f i
t (·) is defined by (6.17). Let

{Σi
t, t ∈ [0, T ]}, i = a, b be the solution of the stochastic differential equation (6.11b)

with the initial state P i
0. Then, for the fixed sample paths νa

t and νb
t , the objective
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functional (6.7) can be expressed as

J = g0

(

P a
0 , P

b
0

)

+

∫ T

0

E
[

νa
t δ

b
t

(

ka + La
t

{

gt

(

Σa
t ,Σ

b
t

)}

)

+ νb
t δ

a
t

(

kb + Lb
t

{

gt

(

Σa
t ,Σ

b
t

)}

)]

dt

−
∫ T

0

E
[

νa
t f

b
t

(

Σb
t

)

(

ka + La
t

{

gt

(

Σa
t ,Σ

b
t

)}

){

1 − exp
(

−1
2

∥

∥Qb
tL

b
t x̂

b
t

∥

∥

2
)}]

dt

−
∫ T

0

E
[

νb
t f

a
t

(

Σa
t

)

(

kb + Lb
t

{

gt

(

Σa
t ,Σ

b
t

)}

){

1 − exp
(

−1
2

∥

∥Qa
tL

a
t x̂

a
t

∥

∥

2
)}]

dt

(6.22)

where Qi
t, i = a, b is given by (6.18) and the error term δi

t, i = a, b is defined as

δi
t = exp

(

−1
2
‖Li

tx
i
t‖

2
)

− f i
t

(

Σi
t

)

exp
(

−1
2
‖Qi

tL
i
tx̂

i
t‖

2
)

. (6.23)

Moreover, if Σa and Σb are positive definite, La
t

{

gt

(

Σa,Σb
)}

and Lb
t

{

gt

(

Σa,Σb
)}

are nonnegative for every t ∈ [0, T ].

Proof. See Section 6.6.

In the following, we use the results of Theorem 6.4.1 to develop a suboptimal

solution for the control problem. Clearly, the first term on the right side of (6.22)

is not involved in the optimization, since it does not depend on ua
t and ub

t. Even

though the hard-to-compute error terms δa
t and δb

t do depend on ua
t and ub

t , they

are small, at least under the suboptimal control that will be obtained. Therefore,

in maximizing (6.22), we ignore the second term on the right side and maximize J̃

which is defined as the sum of the third and the fourth terms.

Assuming that ki > 0, i = a, b, for the fixed sample paths νa
t and νb

t , we
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have J̃ 6 0, with equality holds if and only if La
t x̂

a
t = 0 for almost every t ∈

{

τ | νb
τ 6= 0, τ ∈ [0, T ]

}

and Lb
t x̂

b
t = 0 for almost every t ∈

{

τ | νa
τ 6= 0, τ ∈ [0, T ]

}

.

Assuming that the stochastic processes
{

νa
t

}

and
{

νb
t

}

have nonzero sample paths

during t ∈ [0, T ], the condition J̃ = 0 holds for all sample paths of
{

νa
t

}

and
{

νb
t

}

,

if and only if for almost every t ∈ [0, T ] we have

La
t x̂

a
t = Lb

t x̂
b
t = 0. (6.24)

Note that this condition is sufficient for J̃ = 0, even if the assumption above does

not hold, i.e., with a nonzero probability, some of the sample paths of
{

νa
t

}

and
{

νb
t

}

are identically zero over an interval I ⊆ [0, T ].

Assuming that under the condition (6.24), the error term (second term) on the

right side of (6.22) is ignorable, for fixed sample paths νa
t and νb

t , the maximum of J

can be approximated by J∗ ≃ g0

(

P a
0 , P

b
0

)

. In order to generalize this result to the

stochastic processes
{

νa
t

}

and
{

νb
t

}

, we need to average g0

(

P a
0 , P

b
0

)

over all sample

paths of
{

νa
t

}

and
{

νb
t

}

. For this purpose, consider (6.21) with the sample path νi
t

replaced with the stochastic process
{

νi
t

}

, i = a, b and let the random variable

g0

(

P a
0 , P

b
0

)

be the solution of this stochastic differential equation at t = 0. Then,

the maximum of J can be approximated as

J∗ = E
[

g0

(

P a
0 , P

b
0

)]

.

Remark 6.4.1. The condition (6.24) which leads to the maximum of J̃ does not
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depend on ka and kb. In particular, the sufficient condition is the same for (ka, kb) =

(1, 0) and (ka, kb) = (0, 1), which means that under (6.24), both stations approxi-

mately receive the maximum possible optical energy. In other words, the stations

are not required to pay any cost in order to increase the payoff of the other station,

which indicates a cooperative relationship between them.

Remark 6.4.2. According to (6.11), x̂a
t and x̂b

t do not explicitly depend on
{

νa
t

}

and
{

νb
t

}

, thus the control law which leads to (6.24) does not explicitly depend

on
{

νa
t

}

and
{

νb
t

}

. This is important in particular when a reliable model for {νi
t}

does not exist.

The following lemma determines a control law ui
t which achieves (6.24).

Lemma 6.4.1. Consider the stochastic differential equation (6.11a) and assume

that Li
0x̂

i
0 = 0. Let Li

tB
i
t be nonsingular and Li

t be differentiable for t > 0. Then,

under the control

ui
tdt = −

(

Li
tB

i
t

)−1
{

(

Li
tA

i
t + L̇i

t

)

x̂i
tdt+

∫

R2

Li
tM

i
t

(

r − Ci
t x̂

i
t

)

N i (dt× dr)

}

(6.25)

we have Li
tx̂

i
t = 0 for every t > 0.

Proof. We verify the validity of the lemma by substituting (6.25) into (6.11a) and

left multiplying both sides by Li
t. The resulting equation will be Li

tdx̂
i
t = −L̇i

tx̂
i
tdt,

which yields d (Li
tx̂

i
t) = 0. Then we argue that Li

tx̂
i
t = Li

0x̂
i
0 = 0 for t > 0.

Remark 6.4.3. The state-space equation (5.32c) indicates that the elements of xi
t

which are associated with εi
t constitute an isolated block in (6.1). Also, according
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to (5.31), this block of xi
t does not appear in Ci

tx
i
t, i.e., its corresponding block

in Ci
t is identically zero. Considering these facts, we find from (6.11) that the block

of x̂i
t which is associated with εi

t is identically zero. This result together with (5.37)

indicate1 that Li
tx̂

i
t = 0 implies Ci

t x̂
i
t = 0, which allows us to simplify (6.25) as

ui
tdt = −

(

Li
tB

i
t

)−1
{

(

Li
tA

i
t + L̇i

t

)

x̂i
tdt+ Li

tM
i
t

∫

R2

rN i (dt× dr)

}

. (6.26)

Remark 6.4.4. As mentioned in Remark 6.4.3, the estimate of εi
t generated by (6.11)

is identically zero. As a consequence, under control (6.26), the effect of εi
t remains

uncompensated. Since εa
t can be observed only by station b, the only possibility

to compensate it is to generate its estimate by station b and send this estimate to

station a through the optical channel or an independent RF link.

6.5 Control Problem: Long Range Applications

In this section, we develop a method for solving the control problem when td > 0. In

this method, we first establish an analytically tractable lower bound on the objective

functional (6.6) and then maximize that lower bound. We shall continue using the

approximation (6.9) which leads to µi
t ≃ µ̃i

t, where µ̃i
t is defined as

µ̃a
t = νa

t−td
E
[

exp
(

−1
2

∥

∥Lb
t−td

zb
t−td

∥

∥

2
)]

µ̃b
t = νb

t−td
E
[

exp
(

−1
2

∥

∥La
t−td

za
t−td

∥

∥

2
)]

.

(6.27)

1For the transceiver of Figure 5.2, also the condition H + fcK = 0 is required.
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In the remainder of this section, we consider an “approximate model” which is

similar to the model of Section 6.2.1, except for µi
t being replaced with µ̃i

t, i = a, b.

This approximate model allows us to present our results in exact statements, since its

associated estimation problem has an exact solution. Then, these “exact results”

are interpreted as “approximate results” for the original model of Section 6.2.1.

Noting that
{

µ̃i
t

}

is statistically independent of {wi
t} and xi

0, the exact solution

of the estimation problem associated with the approximate model is given by the

posterior densities (6.10) and (6.13).

Our solution to the control problem is based on Theorem 6.5.1 which estab-

lishes a lower bound on the objective functional J , and Corollary 6.5.1 which deter-

mines a sufficient condition for the lower bound to achieve its maximum. In order

to prove Theorem 6.5.1 and Corollary 6.5.1, we need the results of Lemmas 6.5.1

and 6.5.2 below.

Lemma 6.5.1. The scalar function f i
t (X) defined by (6.15) is decreasing in X,

i.e., 0 6 X1 6 X2 (in the sense of positive semidefiniteness ordering) implies that

f i
t (X1) > f i

t (X2) > 0. Furthermore, for any positive definite random matrix X we

have

E
[

f i
t (X)

]

> f i
t (E [X]) . (6.28)

Proof. The decreasing property of f i
t (·) follows from the increasing property of det (·)

over the set of positive semidefinite matrices, which is shown in [53]. To prove (6.28),

let us denote the argument of the determinant in (6.15) by Y . Since (det (·))−1 is

convex over the set of positive definite matrices [53], we use Jensen’s inequality to
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show

E
[

f i
t (X)

]

= E
[

(

det Y 1/2
)−1
]

>
(

det E
[

Y 1/2
])−1

.

Then we exploit the matrix inequality E [Y ] >
(

E
[

Y 1/2
])2

and the increasing prop-

erty of det (·) to prove (6.28).

The following lemma compares the solutions of two generalized matrix Riccati

differential equations [54].

Lemma 6.5.2. Consider the symmetric matrix differential equations

Ẏ 1
t = AtY

1
t + Y 1

t A
T
t +DtD

T
t − σ1

t Y
1
t C

T
t

(

CtY
1
t C

T
t +R

)−1
CtY

1
t

Ẏ 2
t = AtY

2
t + Y 2

t A
T
t +DtD

T
t − σ2

t Y
2
t C

T
t

(

CtY
2
t C

T
t +R

)−1
CtY

2
t

and assume that the scalar functions σ1
t and σ2

t satisfy 0 6 σ2
t 6 σ1

t for t ∈ [0, T ].

Then, 0 6 Y 1
τ 6 Y 2

τ implies that 0 6 Y 1
t 6 Y 2

t for 0 6 τ 6 t 6 T .

Proof. The proof follows from [54, Theorem 4.5] by replacing the independent vari-

able t with −t and noting that

[

DtD
T
t 0

0 R/σ2
t

]

>

[

DtD
T
t 0

0 R/σ1
t

]

.

Theorem 6.5.1. Fix sample paths νa
t and νb

t , t ∈ [−td, T ]. Let f i
t (·) be given
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by (6.15) and βi
t be defined such that βi

t = 0 for t < 0 and

βi
t = f i

t (0n×n)
{

1 − E
[

exp
(

−1
2

∥

∥Qi
tL

i
tẑ

i
t

∥

∥

2
)]}

for t > 0, where Qi
t is defined by (6.16). Assume that Γa

t and Γb
t , t ∈ [0, T ] are the

solutions of the matrix delay differential equations

Γ̇a
t = Aa

t Γ
a
t + Γa

tA
aT
t +Da

tD
aT
t

− νa
t−td

(

f b
t−td

(

Γb
t−td

)

− βb
t−td

)

Γa
tC

aT
t

(

Ca
t Γa

tC
aT
t +R

)−1
Ca

t Γa
t (6.29a)

Γ̇b
t = Ab

tΓ
b
t + Γb

tA
bT
t +Db

tD
bT
t

− ν b
t−td

(

fa
t−td

(

Γa
t−td

)

− βa
t−td

)

Γb
tC

bT
t

(

C b
t Γ

b
tC

bT
t +R

)−1
C b

t Γb
t (6.29b)

with the initial state Γi
t = P i

t , i = a, b for t ∈ [−td, 0]. Then, Γa
t and Γb

t upper bound

E [Σa
t ] and E

[

Σb
t

]

, respectively, i.e. Γa
t > E [Σa

t ] and Γb
t > E

[

Σb
t

]

for t ∈ [0, T ].

Moreover, JL defined as

JL =

∫ T

0

(

kaνa
t f

b
t

(

Γb
t

)

+ kbνb
t f

a
t (Γa

t )
)

dt−
∫ T

0

(

kaνa
t β

b
t + kbνb

tβ
a
t

)

dt (6.30)

is a lower bound for J , i.e. JL 6 J .

Proof. It is shown in [20, Theorem 4] that the solution of the matrix differential

equation

Ẋ i
t = Ai

tX
i
t +X i

tA
iT
t +Di

tD
iT
t − µ̃i

tX
i
tC

iT
t

(

Ci
tX

i
tC

iT
t +R

)−1
Ci

tX
i
t (6.31)
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with the initial state X i
0 = P i

0 is an upper bound for E [Σi
t], i.e. E [Σi

t] 6 X i
t .

During t ∈ [0, td], x
b
t−td

is a zero-mean Gaussian random vector with covariance

matrix P b
t−td

. It is easy to show that zb
t−td

is a zero-mean Gaussian random vector

with the covariance matrix Ht−tdP
b
t−td

HT
t−td

+ Vt−td . Then, recalling that Γb
t−td

=

P b
t−td

during t ∈ [0, td], we find from (6.27) that

µ̃a
t = νa

t−td
f b

t−td

(

Γb
t−td

)

, t ∈ [0, td]. (6.32)

Substituting µ̃a
t from (6.32) into (6.31) with i = a and noting that βb

t−td
= 0, we

find that (6.31) and (6.29a) are identical during t ∈ [0, td]. Hence, we can write

Γa
t = Xa

t > E [Σa
t ] for t ∈ [0, td]. With a similar argument, we can show that

Γb
t = Xb

t > E
[

Σb
t

]

, t ∈ [0, td].

For t ∈ (td, T ], we use the smoothing property of conditional expectation

and (6.14) to express (6.27) as

µ̃a
t = νa

s E
[

E
[

exp
(

−1
2

∥

∥Lb
sz

b
s

∥

∥

2
)

∣

∣B
b
s

]]

= νa
s E
[

f b
s

(

Σb
s

)

exp
(

−1
2

∥

∥Qb
sL

b
sẑ

b
s

∥

∥

2
)]

= νa
s E
[

f b
s

(

Σb
s

)]

− νa
s E
[

f b
s

(

Σb
s

)

{

1 − exp
(

−1
2

∥

∥Qb
sL

b
sẑ

b
s

∥

∥

2
)}]

where, for convenience of notation, we have replaced t−td with s. From Lemma 6.5.1,

we have f b
s (0n×n) > f b

s

(

Σb
s

)

and E
[

f b
s

(

Σb
s

)]

> f b
s

(

E
[

Σb
s

])

. These two inequalities
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together with the definition of βb
t result in

µ̃a
t > νa

t−td

(

f b
t−td

(

E
[

Σb
t−td

])

− βb
t−td

)

.

We partition the interval [0, T ] as

I1 = [0, td], I2 = (td, 2td], . . . ,In = (ntd − td, T ]. (6.33)

For t ∈ I1 we already proved that Γi
t > X i

t > E [Σi
t]. Assume that Γi

t > X i
t > E [Σi

t]

holds for t ∈ Ik. Then, for t ∈ Ik+1 we have f b
s

(

E
[

Σb
s

])

> f b
s

(

Γb
s

)

, which results in

µ̃a
t > νa

t−td

(

f b
t−td

(

Γb
t−td

)

− βb
t−td

)

. (6.34)

In Lemma 6.5.2, let Xa
t , Γa

t , and ktd play the role of Y 1
t , Y 2

t , and τ , respectively.

Then inequality (6.34) and Γa
ktd

> Xa
ktd

imply that Γa
t > Xa

t > E [Σa
t ] for t ∈ Ik+1.

A similar argument shows that Γb
t > Xb

t > E
[

Σb
t

]

for t ∈ Ik+1. Repeating this

process, we show that Γi
t > X i

t > E [Σi
t] holds for t ∈ Ik, k = 1, 2, . . .n, which

means that Γi
t > E [Σi

t] holds for every t ∈ [0, T ]. The second statement of the

Theorem follows from (6.34).

Corollary 6.5.1. Under the assumptions of Theorem 6.5.1, let Γ∗a
t and Γ∗b

t , t ∈

[0, T ] be the solutions of (6.29) with βa
t = βb

t = 0, t ∈ [0, T − td]. Then, J∗
L

defined as

J∗
L =

∫ T

0

(

kaνa
t f

b
t

(

Γ∗b
t

)

+ kbνb
t f

a
t (Γ∗a

t )
)

dt
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is an upper bound for JL, i.e. J∗
L > JL, and equality holds if for almost every t ∈

[0, T ] we have

La
t ẑ

a
t = Lb

t ẑ
b
t = 0. (6.35)

Proof. Referring to the partition (6.33), since βa
t = βb

t = 0 for t < 0, we have

Γ∗i
t = Γi

t for t ∈ I1. Assume that Γ∗i
t 6 Γi

t for t ∈ Ik. Then, from the decreasing

property of f i
t (·) and the fact that βi

t > 0, we conclude that

νa
t−td

f b
t−td

(

Γ∗b
t−td

)

> νa
t−td

(

f b
t−td

(

Γb
t−td

)

− βb
t−td

)

(6.36)

holds for t ∈ Ik+1. Similar to the proof of Theorem 6.5.1, we employ Lemma 6.5.2

and inequality (6.36) to show that Γ∗i
t 6 Γi

t for t ∈ Ik+1. As before, repeating

this process, we show for k = 1, 2, . . .n that Γ∗i
t 6 Γi

t, t ∈ Ik. This means that

Γ∗i
t 6 Γi

t holds for every t ∈ [0, T ]. Applying this inequality and βi
t > 0 to (6.30), we

find J∗
L > JL. From the definition of βi

t , we know that (6.35) results in βa
t = βb

t = 0

almost everywhere in [0, T ], which leads to J∗
L = JL.

The following lemma proposes a control law uβ,i
t which leads to Li

tHtx̂
i
t = 0,

t > 0, or equivalently the condition (6.35).

Lemma 6.5.3. Consider the stochastic differential equation (6.11a) with Bi
tu

i
t =

Bα,i
t uα,i

t + Bβ,i
t uβ,i

t and assume that Li
0H0x̂

i
0 = 0. Let Li

tHtB
β,i
t be nonsingular
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and Li
tHt be differentiable for t > 0. Then, under control

uβ,i
t dt = −

(

Li
tHtB

β,i
t

)−1
{(

Li
tHtA

i
t +

dLi
tHt

dt

)

x̂i
tdt+ Li

tHtB
α,i
t uα,i

t dt

+

∫

R2

Li
tHtM

i
t

(

r − Ci
t x̂

i
t

)

N i (dt× dr)

}

(6.37)

we have Li
tHtx̂

i
t = 0 for every t > 0.

Proof. The proof is similar to the proof of Lemma 6.4.1.

As mentioned in Section 6.2.2, the goal of the tracking control is to keep Ci
t x̂

i
t =

0, i = a, b for every t > 0. Suppose that Ci
0x̂

i
0 = 0, Ci

tB
α,i
t is nonsingular, and Ci

t

is differentiable. Then, according to Lemma 6.4.1, we can achieve Ci
t x̂

i
t = 0, t > 0,

using the control law

uα,i
t dt = −

(

Ci
tB

α,i
t

)−1
{

(

Ci
tA

i
t + Ċi

t

)

x̂i
tdt+ Ci

tM
i
t

∫

R2

rN i (dt× dr)

}

. (6.38)

Upon combining (6.37) and (6.38), we get

ui
tdt = F i

t x̂
i
tdt+Gi

tM
i
t

∫

R2

rN i (dt× dr)

where the matrices F i
t and Gi

t are given by

F i
t = −









I2×2 02×2

(

Li
tHtB

β,i
t

)−1
Li

tHtB
α,i
t I2×2









−1 







(

Ci
tB

α,i
t

)−1(
Ci

tA
i
t + Ċi

t

)

(

Li
tHtB

β,i
t

)−1(
Li

tHtA
i
t + L̇i

tHt + Li
tḢt

)








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and

Gi
t = −









I2×2 02×2

(

Li
tHtB

β,i
t

)−1
Li

tHtB
α,i
t I2×2









−1 







(

Ci
tB

α,i
t

)−1
Ci

t

(

Li
tHtB

β,i
t

)−1
Li

tHt









.

6.6 Proof of Theorem 6.4

Using the differential rule for point processes1 [24], we can write

dgt

(

Σa
t ,Σ

b
t

)

=
(

∂gt

(

Σa
t ,Σ

b
t

)

/∂t
)

dt

+ tr
{

(

∂gt

(
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t ,Σ

b
t

)

/∂Σa
t

)

(

Aa
t Σ

a
t + Σa

tA
aT
t +Da

tD
aT
t

)}

dt

+ tr
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(

∂gt

(

Σa
t ,Σ

b
t

)

/∂Σb
t

)

(

Ab
tΣ

b
t + Σb

tA
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tD
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t

)}

dt

+ La
t

{
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Σa
t ,Σ

b
t

)}

dNa
t + Lb

t

{

gt

(

Σa
t ,Σ

b
t

)}

dN b
t . (6.39)

Noting that {µi
t} defined by (6.8) is the rate of {N i

t}, we use the smoothing property

of conditional expectation to show that

E
[

Li
t

{

gt

(

Σa
t ,Σ

b
t

)}

dN i
t

]

= E
[

E
[

Li
t

{

gt

(

Σa
t ,Σ

b
t

)}

dN i
t |µi

t

]]

= E
[

E
[

Li
t

{
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(

Σa
t ,Σ

b
t

)}

µi
tdt|µi

t

]]

= E
[
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t

{

gt

(

Σa
t ,Σ

b
t

)}

µi
t

]

dt, i = a, b.

1This is the counterpart of the Itô differential rule for Wiener process.
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Taking expectation from both sides of (6.39), using the last result, and noting that

E
[

dgt

(

Σa
t ,Σ

b
t

)]

= dE
[

gt

(

Σa
t ,Σ

b
t

)]

, we get
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b
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]

dt.

We add the expression E
[

kaµa
t + kbµb

t

]

dt to the both sides of this equation and

rearrange the terms in order to obtain
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Since gt (·, ·) is the solution of (6.21), the right side of the equation above is identi-

cally zero which leads to

E
[

kaµa
t + kbµb

t

]

dt = − dE
[

gt
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t ,Σ

b
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)]
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[
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(
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Integrating this equation from 0 to T and noting that E
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b
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= 0 and
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b
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From (6.8) and (6.23), we have
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2
)}

.

Substituting these expressions into (6.40), we obtain (6.22).

In order to prove the second statement of the theorem, we need the following

preliminaries.

P-1) In the context of this proof, we say f (·) : R
n×n → R is decreasing, if for any
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positive definite1 Σ and any positive semidefinite ∆, we have f (Σ + ∆) 6

f (Σ). Also, we say f (·) is m-nonnegative, if for any positive definite Σ, we

have f (Σ) > 0.

P-2) If f1 (·) and f2 (·) are decreasing and m-nonnegative, f1 (·)+f2 (·) and f1 (·) f2 (·)

are decreasing and m-nonnegative as well.

P-3) If f (·) is decreasing, for any positive definite Σ, we have f (Σ) 6 f (Si
t (Σ)),

where Si
t (·) is defined by (6.20).

Proof. Applying the matrix inversion lemma to (6.20), it is easy to verify

that for any positive definite Σ, Si
t (Σ) is positive definite. Also, we know

from (6.20) that ∆ , Σ − Si
t (Σ) is a positive semidefinite matrix. Since f (·)

is decreasing, we can write

f (Σ) = f
(

Si
t (Σ) + ∆

)

6 f
(

Si
t (Σ)

)

.

P-4) If f (·) is decreasing and m-nonnegative, for any fixed t, f (Si
t (·)) is decreasing

and m-nonnegative.

Proof. For any positive definite Σ and any positive semidefinite ∆, we can

show

Σ−1 − (Σ + ∆)−1 = Σ−1∆1/2
(

I + ∆1/2Σ−1∆1/2
)−1

∆1/2Σ−1 , ∆̃ (6.41)

1By definition, any positive definite matrix is symmetric.
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where I is the identity matrix with proper dimension. This indicates that ∆̃

is positive semidefinite. Using the matrix inversion lemma and replacing Σ−1

with (Σ + ∆)−1 + ∆̃, we can write

Si
t (Σ + ∆) − Si

t (Σ) =
(

(Σ + ∆)−1 + CiT
t R−1Ci

t

)−1 −
(

Σ−1 + CiT
t R−1Ci

t

)−1

=
(

(Σ + ∆)−1 + CiT
t R−1Ci

t

)−1

−
(

(

(Σ + ∆)−1 + CiT
t R−1Ci

t

)

+ ∆̃
)−1

.

Applying (6.41) to the last equality, we find that Si
t (Σ + ∆)−Si

t (Σ) is positive

semidefinite. Then, since Si
t (Σ) is positive definite and f (·) is decreasing, we

have

f
(

Si
t (Σ + ∆)

)

= f
(

Si
t (Σ) +

{

Si
t (Σ + ∆) − Si

t (Σ)
})

6 f
(

Si
t (Σ)

)

which means that f (Si
t (·)) is decreasing. Moreover, since f (·) is m-nonnegative

and Si
t (Σ) is positive definite, f (Si

t (·)) is m-nonnegative.

P-5) For any fixed t, f i
t (·) defined by (6.17) is decreasing and m-nonnegative.

Proof. For any positive definite Σ and any positive semidefinite ∆, we can

write

f i
t (Σ)

f i
t (Σ + ∆)

=

√

det (I2×2 + Li
tΣL

iT
t + Li

t∆L
iT
t )

det (I2×2 + Li
tΣL
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t )

=
√
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(

I2×2 + ∆̄i
t

)
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where ∆̄i
t is defined as

∆̄i
t =

(

(

I2×2 + Li
tΣL

iT
t

)−1/2
Li

t

)

∆
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.

This implies that det
(

I2×2 + ∆̄i
t

)

> 1, which leads to f i
t (Σ + ∆) 6 f i

t (Σ).

P-6) Let ht

(

Σa,Σb
)

be a scalar function of n×n matrices Σa and Σb. Assume that

this function is decreasing and m-nonnegative in both Σa and Σb. For ǫ > 0

define the linear operator Kǫ
t as

Kǫ
tht
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Σa,Σb
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=
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t f
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t f

a
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(
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(
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(

Σb
))

where

X i,ǫ
t (Σ) = Σ + ǫ

(

Ai
tΣ + ΣAiT

t +Di
tD

iT
t

)

.

Then, for any positive definite Σa and Σb and any positive semidefinite ∆a

and ∆b, there exists ζ = ζ
(

Σa,Σb,∆a,∆b
)

> 0 such that for every 0 6 ǫ < ζ ,

we have

Kǫ
tht

(

Σa + ∆a,Σb
)

6 Kǫ
tht
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)

Kǫ
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)

6 Kǫ
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)

Kǫ
tht
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Σa,Σb
)

> 0.

Therefore, as ǫ → 0+, these conditions are satisfied for any choice of Σa, Σb,

∆a, and ∆b. This means that Kǫ
tht

(

Σa,Σb
)

is decreasing and m-nonnegative
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in both Σa and Σb, as ǫ → 0+.

We claim that gt

(

Σa,Σb
)

, the solution of equation (6.21) with the boundary condi-

tion gT

(

Σa,Σb
)

= 0, is decreasing in both Σa and Σb for every t ∈ [0, T ]. Once the

claim is proven, we apply (P-3) to (6.19) in order to show that Li
t

{

gt

(

Σa,Σb
)}

> 0,

i = a, b for every positive definite matrices Σa and Σb and every t ∈ [0, T ].

In order to prove this claim, for any 0 6 t < T , we partition the interval

[t, T ] into K subintervals [tk+1, tk), k = 0, 1, . . . , K − 1, where tK = t, t0 = T ,

and tk − tk+1 = ǫk > 0. Using this partition, we discretise the partial differential

equation (6.21) to obtain the recursive equation

gtk+1

(

Σa,Σb
)

= ǫk

(

kaνa
tk
f b

tk

(

Σb
)

+ kbνb
tk
fa

tk

(

Σa
)

)

+ ǫk

(

νa
tk
f b

tk

(

Σb
)

gtk

(

Sa
tk

(Σa) ,Σb
)

+ νb
tk
fa

tk

(

Σa
)

gtk

(

Σa, Sb
tk

(

Σb
))

)

+ Kǫk

tk
gtk

(

Σa,Σb
)

+O
(

ǫ2k
)

. (6.42)

Starting from gt0 (·, ·) = 0 and using this recursive equation for k = 0, 1, 2, . . . , K − 1,

we can determine gtK (·, ·). Then, by letting K → ∞ such that max ǫk → 0, we have

gtK (·, ·)→gt (·, ·).

We prove by induction that as K → ∞ and max ǫk → 0, for k = 0, 1, . . . , K,

gtk (·, ·) is decreasing and m-nonnegative in both Σa and Σb. Clearly, gt0

(

Σa,Σb
)

= 0

is decreasing and m-nonnegative in both Σa and Σb. Also, we show that if gtk

(

Σa,Σb
)

is decreasing and m-nonnegative, gtk+1

(

Σa,Σb
)

is decreasing and m-nonnegative as

well. For this purpose, we use (P-2, P-5) and (P-2, P-4, P-5), respectively, to

show that the first and the second terms on the right side of (6.42) are decreasing
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and m-nonnegative. Also, as ǫk → 0+, (P-6) implies that the third term on the

right side of (6.42) is decreasing and m-nonnegative. Since all three terms on the

right side of (6.42) are decreasing and m-nonnegative, we conclude from (P-2) that

gtk+1

(

Σa,Σb
)

is decreasing and m-nonnegative.
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Chapter 7

Conclusion and Directions for Future Work

7.1 Summary of Main Contributions

This dissertation is devoted to finding solutions for two major concerns in free-space

optics: digital communication over a free-space optical channel and optical align-

ment between the transmitter and the receiver. Adopting a stochastic approach,

we formulated these concerns in terms of detection, estimation, and optimal control

problems with point process observations. This observation model is imposed by the

nature of optical sensors which are the essential component of a free-space optical

link.

We discussed an M-ary detection problem associated with a marked and fil-

tered Poisson process in additive white Gaussian noise. The motivation for this

study comes from the digital communication over the optical channels (fiber or free-

space). The stochastic model adopted for the problem is adequate for characterizing

the optical sensors (including the avalanche gain), the thermal noise generated by

the amplifying circuits, and the atmosphere-induced optical fade. We obtained a

solution for the problem in terms of an infinite sum of multiple integrals, which is
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hard to express in an explicit form. We established two sets of upper and lower

bounds on this infinite sum, where the bounds in the first set are given in explicit

forms, while in the second set, two integral equations determine the bounds. In

both cases, it was observed that under certain conditions, the lower bound is close

to the upper bound, which is a motivation for approximating the solution by one of

these bounds. In another effort for simplifying the infinite sum, we expressed it in

terms of an expectation taken with respect to a stochastic process. The resulting

expression was our point of departure to develop several approximations with dif-

ferent levels of complexity. These approximations can be implemented by means of

finite-dimensional, nonlinear, causal filters.

A stochastic dynamical model introduced in [20] plays a central role in our

study of optical alignment. This model consists of a linear stochastic state-space

equation driven by a control vector and a vector-valued Wiener process, and the

observation of a space-time point process with a rate which depends on the state

vector. Associated with this model, an optimal control problem is defined in [20]

in terms of minimizing a quadratic cost functional. The model and its associated

control problem have been used in [19] in order to analyze an optical beam track-

ing system which employs an infinite resolution position-sensitive photodetector. In

that study, it is assumed that the observation is provided over R
2 and that the rate

of the space-time point process has a Gaussian profile. Under these assumptions, the

control problem and its associated state estimation problem have finite-dimensional

exact solutions [20]. We used these solutions to develop a suboptimal control law

for an optical beam tracking system with a finite resolution photodetector. Fur-
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thermore, in an effort to extend these results to the case of a non-Gaussian rate,

we demonstrated that the estimation problem can be formulated in terms of esti-

mating the state of a discrete-time linear model with an observation vector which

is corrupted by additive white non-Gaussian noise.

We proposed an active pointing scheme in which the receiving station estimates

the center of its incident optical beam by means of a position-sensitive photodetec-

tor. The transmitter receives this estimate via an independent communication link

and incorporates it to accurately aim at the receiving station. We showed that

the stochastic model mentioned above can adequately characterize this alignment

scheme, but with the observation which is provided over a subset of R
2 instead of R

2.

Regarding this modified model, we determined a suboptimal state estimator and a

suboptimal control law. In addition, we demonstrated that our suboptimal results

tend toward the optimal results when the observation is provided over the entire R
2.

We studied the concept of cooperative optical beam tracking and developed a

detailed nonlinear model for it. Next we linearized the model around a nominal state

trajectory and presented a stochastic description for its disturbance vectors. Associ-

ated with this stochastic model, we considered an optimal control problem with the

goal of maximizing an objective functional defined as the expected optical energy

received by the stations of the link. For short range applications with negligible

light propagation delay, we proposed a suboptimal control law which approximately

maximizes the objective functional. We demonstrated that the proposed control

law does not depend on the nature of the optical fade or the information-bearing

signals which modulate the optical beams. In addition, we showed that the control
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law simultaneously maximizes the received optical energy for both stations. We also

addressed the considerations arising from light propagation delay in a cooperative

optical beam tracking system. For the case that the propagation delay is significant,

a suboptimal control law was developed based on maximizing a lower bound on the

objective functional.

7.2 Directions for Future Work

In this section, we sketch some directions for the future research. We first highlight a

few problems regarding the topics discussed in this dissertation which can complete

or extend our present results. Then, we briefly explain an application of free-space

optical communication in space missions and its associated problems which can be

viewed in the framework of this study.

7.2.1 Extending the Present Results

In Chapter 2, we developed several detection rules as the solution to our detection

problem. In order to evaluate the performance of each detector, it is required to

obtain its associated probability of error. In addition, this performance measure can

be used to compare the effectiveness of the proposed detection rules. In particular,

it is useful to compare the performance of each detection rule with a simple linear

detector. This comparison evaluates the improvement of the performance as a re-

sult of accepting the complexity of a nonlinear detector. On the other hand, it is

important to determine how the probability of error varies with the parameters of

the model. Considering the complexity of the detectors and the observation process,
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it is difficult to obtain an analytical expression for the probability of error. It seems

that the numerical methods such as Monte Carlo simulation are the most convincing

way to compute this quantity.

Upon computing the probability of error, we can improve the performance

of the detection rules by optimizing their associated threshold. To explain this

idea, consider the detection rule (2.7) for the binary case. In this detection rule,

the threshold p1/p2 is determined in terms of the prior probability of the binary

message; however, when we replace the exact likelihood ratio function Lb (T ) with

its approximation, the optimal threshold is not necessarily p1/p2. Thus, to achieve

the best performance, we can determine the probability of error as a function of an

unknown threshold and then, minimize this function with respect to the threshold.

This modification can be easily extended to the general M-ary hypothesis testing

problem whose optimal detector is given by (2.6). In this case, the probability of

error must be minimized with respect to p1, p2, . . . , pM , subject to the constraints

pi > 0, i = 1, 2, . . . ,M and p1 + p2 + · · · + pM = 1.

In Section 3.5, we proposed a control law for an optical beam tracking system

with a finite resolution photodetector. This controller was developed by applying an

approximation scheme to the results of [20] for an infinite resolution photodetector.

Another approach is to directly solve the estimation and control problems for the

original finite resolution photodetector. Since in this case, the estimation problem is

infinite-dimensional, we have to approximate its solution using a finite-dimensional

filter. The cumulant matching method developed in Section 4.3 is a possible scheme

for this approximation. Following this method, we can approximate the posterior
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density with a Gaussian density function whose mean an covariance matrix are

obtained from a set of stochastic differential equations driven by the photodetector

output. Further, a suboptimal control law can be determined by following the proce-

dure in Section 4.4. Only after finding this controller and comparing its performance

with the already developed controller, we can decide which one better approximates

the solution of the optimal control problem.

In Chapter 5, we mentioned to the possible application of inertial sensors in a

cooperative optical beam tracking system. In order to involve these sensors in our

analysis, we need to include the output of the sensors in the observation set of the

estimators. Then, the estimation and control problems must be solved again for this

extend observation set. We note that the output of each inertial sensor is a noisy

version of an element of the disturbance vector. If there are convincing indications

that the noise is additive and Gaussian, the results of [20] still can be applied to the

estimation problem.

Another method for improving the performance of a cooperative optical beam

tracking system is to exchange information between the stations. In one scenario,

station b estimates the error vector εa
t and sends the estimate back to station a.

Then, the controller of station a employs this estimate to compensate for εa
t by

means of the point-ahead mirror. In another scenario, each station transmits its

photodetector output to the other station, i.e., the stations estimate their state from

the observation of both stations. Clearly, these schemes improve the performance of

the system by providing more information to the controllers; however, it is not clear

whether this improvement is significant enough to justify the increased complexity.
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This must be evaluated through comparing the performance of the schemes by means

of computer simulations.

7.2.2 Optical Communication for Space Missions

In recent years, the idea of assigning the task of a large satellite to a cluster of

cooperating micro-satellites has drawn attention to certain space missions [55, 56].

A possible application for this idea is a cluster of micro-satellites equipped with

small aperture antennas, which cooperatively act as a distributed antenna with an

effective aperture size larger than that can be achieved by a single large satellite. In

addition to cost reduction [4], a cluster of micro-satellites flying in formation has the

advantage of being reconfigurable to meet requirements for different missions [56].

In a multisatellite application, a closed-loop formation-keeping controller main-

tains the required constellation in spite of the disturbance forces. An essential com-

ponent to implement this controller is the availability of reliable communication be-

tween the micro-satellites forming the constellation [48]. Because of high-bandwidth,

power efficiency, and small weight, free-space optics is an attractive means for com-

munication between the micro-satellites [48]. Moreover, a free-space optical link

can be used simultaneously for the purpose of range and attitude measurement [57],

which is another essential component for formation flying [48].

Deployment of the optical links in a formation flying system raises several

questions and design concerns, while at the same time, it opens some windows of

opportunity. A fundamental question in this regard is whether the communication

subsystem (including the optical alignment components) and the formation-keeping
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controller can be designed independently. For two reasons, the answer to this ques-

tion seems to be negative. First, the limitations of this communication scheme (e. g.,

communication lost due to sudden lose of alignment) require special considerations

in the design of the formation-keeping controller. The second reason is that a certain

formation flying mission might impose constraints on the optical alignment system,

or it might support a capability for designing a more efficient and less expensive

alignment system.

In a formation flying system, the communication between the members can be

established through an optical network. This provides with extra flexibility for the

optical alignment systems, since for any specific formation state, the network can

be reconfigured to achieve the best alignment performance.

A stochastic approach to the problems above is the most convincing one [4].

Finding solutions to these problems is a logical continuation of this research, in light

of the well-established models and methods we developed in the present work.

7.3 Possible Applications in the Study of Nervous Systems

The response of an animal’s sensory nerve to a physical stimulus is a sequence

of electrical pulses called spike or action potential [58, 59]. By means of sensory

nerves, the information carried by the stimuli is represented (coded) in terms of

the temporal pattern of the sequences of spikes [58]. An important question in

the study of nervous systems is how the information is represented through this

temporal pattern. This question leads to the associated decoding problem: how to

reconstruct the stimulus from the spikes.
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The nature of the problem above suggests a stochastic approach to tackle

the problem. A complete description of the problem consists of a stochastic model

for the “stimulus-spike” relationship, a stochastic model to describe the temporal

evolution of the stimulus, and formulating the decoding problem in terms of an

estimation problem. For example, the authors of [60] characterized place cells1 in

terms of an array of doubly stochastic Poisson processes (place cell-spike frequency

representation). Then, they formulated the decoding problem as estimating the state

of a continuous-time state-space model which modulates the rates of the Poisson

processes. A discrete-time version of this model has been used in [61], in order to

estimate the position of a rat, based on the data collected from its hippocampal

place cells. Also, adaptive filtering techniques have been applied to the model in

order to analyze the plasticity2 of neural receptive fields [62].

These examples demonstrate close similarity to the stochastic models we worked

with during the present research. Thus, the body of techniques we developed here

might be useful in study of nervous systems.

1Place cells are sensory nerves which fire when the animal is close to a particular location.
2This means that the response of neurons to stimuli change with experience.
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