
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: HIGH-SPEED RECONSTRUCTION OF LOW-

DOSE CT USING ITERATIVE TECHNIQUES 
FOR IMAGE-GUIDED INTERVENTIONS 

  
 Venkatesh Bantwal Bhat, 

Master of Science, 
2008. 

  
Directed By: Professor Raj Shekhar, 

Dept of Diagnostic Radiology (University of 
Maryland Baltimore) and 
Dept of Electrical and Computer Engineering 

 
 
Minimally invasive image-guided interventions (IGIs) lead to improved treatment 

outcomes while significantly reducing patient trauma and recovery time. Ultrasound 

and fluoroscopy have been traditionally used for image guidance. But these imaging 

modalities do not provide a comprehensive three-dimensional (3D) view of the 

anatomy. Because of features such as fast scanning, high spatial resolution, 3D view 

and ease of operation, computed tomography (CT) is increasingly the choice of intra-

procedural imaging technique during IGIs. The risk of radiation exposure, however, 

limits its current and future use.  

  

We perform ultra low-dose scanning to overcome this limitation. To address the 

image quality problem with ultra low-dose CT, we reconstruct images using the 



  

iterative Paraboloidal Surrogate (PS) algorithm. As iterative techniques are generally 

computationally intensive, we have accelerated the PS algorithm on a cluster of CPUs 

and also a GPU. Here, we first compare the quality of the low-dose images 

reconstructed using the PS algorithm and the standard filtered-back projection (FBP) 

algorithm. Using actual scanner data, we demonstrate visually acceptable 

improvement in the quality of reconstructed images using the iterative algorithm. 

 

We further demonstrate a fast implementation of the Ordered Subsets version of the 

PS algorithm for axial scans on a cluster of 32 processors using the MPI (Message 

Passing Interface) and an NVIDIA 8800 GTX GPU using CUDA (Compute Unified 

Device Architecture). Several studies in the recent past have reported computing 

forward and back projection on GPU using the rasterization framework. However, the 

GP-GPU (General Purpose GPU) framework used in our implementation is more 

generic and accommodates a wider variety of penalty functions on the GPU as 

compared to the rasterization framework. This obviates the need to transfer data 

between the GPU and CPU during reconstruction. 

 

We have compared the GPU and the cluster implementations using the ray-tracing 

method to the exact implementation using a pre-computed weight matrix on a single 

CPU. We demonstrate about 20 times speedup using a cluster of 32 processors and 

over two orders of improvement in speed using the GPU, while the image quality 

remains comparable to that of the exact implementation. 

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

HIGH-SPEED RECONSTRUCTION OF LOW-DOSE CT USING ITERATIVE 
TECHNIQUES FOR IMAGE-GUIDED INTERVENTIONS    

 
 
 

By 
 
 

Venkatesh Bantwal Bhat 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2008 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Raj Shekhar, Chair 
Professor Shuvra Bhattacharya 
Professor Peter Petrov 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Venkatesh B Bhat 

2008 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Dedication 

 

 

 

 

To my Parents, 
Uma, Rakesh and Rachna. 

 

 

 



 

 iii 
 

Acknowledgements 

I would like to express my sincere gratitude to my advisor, Dr. Raj Shekhar for 

introducing me to the amazing world of Medical Imaging. His guidance and advice 

was the key to all the work that has been reported in this thesis. The idea to make use 

of recent technological advances in both Signal Processing and Computer 

Engineering in the medical imaging field, no matter how interesting and inspiring, 

would not have borne fruits without his guidance and financial support. 

 

I would like to thank Dr. Shuvra Bhattacharya and Dr. Peter Petrov for readily 

agreeing to serve on my thesis committee amidst their busy schedules. I greatly value 

their support and encouragement. I would like to thank Dr. Bulent Bayraktar from 

Philips for all the help in understanding the CT reconstruction process and extraction 

of real data from the Philips scanners. The results in this thesis would not have been 

as valuable or meaningful without his support. 

   

I am thankful to Dr. William Plishker, Dr Omkar Dandekar and Peng Lei for their 

inputs and support in various aspects of my research during my entire stay at the 

Imaging Technologies Laboratory. In particular I would like to acknowledge all the 

support that I received from Dr. William Plishker with regard to the installation and 

maintenance of the CPU-GPU heterogeneous cluster. I also thank Vinay Gangadhar 

for taking the time to proofread this thesis. Finally, my family has always been a 

source of inspiration and encouragement in all my endeavors. I shall always be 

grateful to them for their sacrifices and their unalienable faith in me. 



 

 iv 
 

Table of Contents 

Dedication ..................................................................................................................... ii 
Acknowledgements...................................................................................................... iii 
Table of Contents......................................................................................................... iv 
List of Tables ............................................................................................................... vi 
List of Figures ............................................................................................................. vii 
Chapter 1: Introduction ................................................................................................. 1 

1.1 Augmenting laparoscopic views using CT ......................................................... 1 
1.2 Live Augmented Reality ..................................................................................... 2 
1.3 Contributions of this thesis ................................................................................. 6 
1.4 Outline of this thesis ........................................................................................... 7 

Chapter 2: Low-Dose CT Reconstruction..................................................................... 8 
2.1 Need for radiation dose reduction....................................................................... 8 
2.2 The CT acquisition and reconstruction process .................................................. 8 
2.3 The Filtered Back Projection Algorithm........................................................... 12 
2.4 Iterative Statistical Reconstruction Algorithms ................................................ 14 
2.5 The Paraboloidal Surrogates Algorithm ........................................................... 17 
2.6 Metrics for Image Comparison ......................................................................... 19 

2.6.1 The Peak Signal to Noise Ratio (PSNR).................................................... 20 
2.6.2 The Q index................................................................................................ 20 

2.7 Low-Dose Reconstruction using PS Algorithm................................................ 22 
2.7.1 Methods and Setup..................................................................................... 22 
2.7.2 Results and Conclusion.............................................................................. 23 

Chapter 3: High-Speed Reconstruction Using Ray-Tracing Methods........................ 31 
3.1 Acceleration of PS algorithm............................................................................ 31 
3.2 Forward and Back Projection using Ray Tracing ............................................. 32 

3.2.1 The Forward Projection Process ................................................................ 32 
3.2.2 The Ray-Tracing approach to Forward Projection .................................... 34 
3.2.3 The Back Projection Process ..................................................................... 36 
3.2.4 The Ray-Tracing approach to Back Projection.......................................... 37 

3.3 Implementation and results ............................................................................... 39 
3.3.1 Methods and setup ..................................................................................... 39 
3.3.2 Results and conclusion............................................................................... 42 

Chapter 4:  Hardware-based Acceleration of PS Algorithm for Low-Dose CT 
Reconstruction ............................................................................................................ 50 

4.1Cluster-based acceleration scheme .................................................................... 50 
4.1.1 Introduction and previous work ................................................................. 50 
4.1.2 The Cluster Setup....................................................................................... 51 
4.1.3 Implementation .......................................................................................... 53 

4.2 GPU-based acceleration scheme....................................................................... 56 
4.2.1 Introduction and previous work ................................................................. 56 
4.2.2 The NVIDIA CUDA architecture.............................................................. 58 
4.2.3 Implementation .......................................................................................... 61 

4.3 Termination condition....................................................................................... 72 
Chapter 5:  Results and Conclusions .......................................................................... 75 



 

 v 
 

5.1 Reconstructed Image Quality for various hardware platforms ......................... 75 
5.2 Speed-up for hardware based solutions ............................................................ 83 
5.3 Speed-up with variation in number of ordered subsets..................................... 88 
5.4 Termination condition....................................................................................... 92 
5.5 Conclusions and future work ............................................................................ 97 

Bibliography ............................................................................................................... 98 
 
 
 



 

 vi 
 

List of Tables 
 

Table 3.1 Speed-ups achieved by using the ray-tracing methods for reconstruction . 49 

Table 5.1 Hardware acceleration (Speedup and throughput) achieved for various 

reconstruction geometries using the Cluster and the GPU ......................................... 85 

Table 5.2 Distribution of time across various operations for reconstruction of PS 

algorithm on various platforms................................................................................... 87 

Table 5.3 Reconstruction time and image quality after 1 iteration on 672 × 580 

sinogram with image resolution of 512 × 512 pixels.................................................. 91 

Table 5.4 Reconstruction time for 1024x1024 image slice using the proposed 

termination condition on the GPU. ............................................................................. 94 



 

 vii 
 

List of Figures 

Figure 1.1 Proposed workflow for Live Augmented Reality ....................................... 4 

Figure 1.2 Intermediate outputs of Live AR Implementation....................................... 5 

Figure 2.1 First generation parallel-beam CT configuration ........................................ 9 

Figure 2.2 Second-generation translate and rotate fan beam CT configuration ......... 10 

Figure 2.3 Third-generation rotate only fan beam configuration ............................... 10 

Figure 2.4 CT scanner setup that enables axial or helical scans................................. 11 

Figure 2.5 Comparison of reconstructed image quality at varying doses for FBP and 

PS images using 1498 X 580 sinograms at 120kVp and reconstructed at 512 X 512 

pixels ........................................................................................................................... 24 

Figure 2.6 FBP reconstructed image using 1498 × 580 sinograms at 1024 × 1024 

pixels at 120kVp and 25mAs...................................................................................... 25 

Figure 2.7 PS reconstructed image using 1498 × 580 sinograms at 1024 × 1024 pixels 

at 120kVp and 25mAs ................................................................................................ 26 

Figure 2.8 Comparison of reconstructed image quality at varying doses for FBP and 

PS images using 1498 × 580 sinograms at 120kVp and reconstructed at 1024 × 1024 

pixels ........................................................................................................................... 28 

Figure 2.9 Quantitative comparison of FBP and PS reconstructed images at varying 

radiation doses (PSNR comparison). .......................................................................... 28 

Figure 2.10 Quantitative comparison of FBP and PS reconstructed images at varying 

radiation doses (Qindex comparison). ........................................................................ 29 

Figure 3.1 Analytical view of the CT reconstruction process .................................... 32 

Figure 3.2 The forward projection process ................................................................. 34 



 

 viii 
 

Figure 3.4 The back projection process ...................................................................... 37 

Figure 3.5 The bilinear interpolation based ray tracing approach for back projection39 

Figure 3.6 The ray tracing algorithm .......................................................................... 42 

Figure 3.7 Quantitative comparison of reconstructed image quality using PSNR for 

Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram. ................................................................................................... 43 

Figure 3.8 Quantitative comparison of reconstructed image quality using Qindex for 

Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram. ................................................................................................... 44 

Figure 3.9 Quantitative comparison of reconstructed image quality using PSNR for 

Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram and 10 subsets per iteration........................................................ 45 

Figure 3.10 Quantitative comparison of reconstructed image quality using Qindex for 

Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram and 10 subsets per iteration........................................................ 46 

Figure 3.11 PS reconstructed image after 20 iterations of Analog algorithm      (OS-

10) ............................................................................................................................... 47 

Figure 3.12 PS reconstructed image after 20 iterations of Ray-Tracing algorithm (OS-

10) ............................................................................................................................... 48 

Figure 4.1 Overview of the cluster setup at ITL......................................................... 52 

Figure 4.2 The Software stack overview for the cluster ............................................. 53 

Figure 4.3 Distribution of total execution time across various operations for the ray-

tracing based implementation of the PS algorithm..................................................... 54 



 

 ix 
 

Figure 4.4 Flowchart for the cluster based implementation of the ray-tracing 

algorithm..................................................................................................................... 55 

Figure 4.5 The arrangement of blocks of threads into a grid in CUDA ..................... 58 

Figure 4.6 The multiprocessor hardware and memory architecture in CUDA........... 59 

Figure 4.7 The CUDA software development process ............................................... 61 

Figure 4.8 CT reconstruction using the PS algorithm on CUDA enabled GPU......... 62 

Figure 4.9 The arrangement of threads in a grid for forward projection on the GPU 65 

Figure 4.10 The forward projection mechanism on the GPU..................................... 66 

Figure 4.11 The back projection mechanism on the GPU.......................................... 69 

Figure 4.12 The arrangement of threads in a grid for back projection on the GPU ... 71 

Figure 5.1 Quantitative comparison of the images reconstructed using the CPU, 

Cluster and the GPU with sinograms of 672 × 580 using PSNR as the metric .......... 76 

Figure 5.2 Quantitative comparison of the images reconstructed using the CPU, 

Cluster and the GPU with sinograms of 672 × 580 using Qindex as the metric ........ 77 

Figure 5.3 Quantitative comparison of the images reconstructed using the CPU, 

Cluster and the GPU using PSNR as the metric and 10 Ordered Subsets .................. 78 

Figure 5.4 Quantitative comparison of the images reconstructed using the CPU, 

Cluster and the GPU using Qindex as the metric and 10 Ordered Subsets ................ 78 

Figure 5.5 Image reconstructed after 100 iterations of PS (OS-1) on CPU/Cluster ... 80 

Figure 5.6 Image reconstructed after 100 iterations of PS (OS-1) on GPU ............... 80 

Figure 5.7 Image reconstructed after 30 iterations of PS (OS-10) on CPU/Cluster ... 81 

Figure 5.8 Image reconstructed after 30 iterations of PS (OS-10) on GPU ............... 81 



 

 x 
 

Figure 5.9 Difference image between 100 iterations of PS (OS-1) on CPU/Cluster and 

GPU............................................................................................................................. 82 

Figure 5.10 Difference image between 30 iterations of PS (OS-10) on CPU/Cluster 

and GPU...................................................................................................................... 82 

Figure 5.11 Hardware acceleration achieved for various reconstruction geometries 

using the Cluster and the GPU.................................................................................... 84 

Figure 5.12 Split-up of execution time for various reconstruction geometries on the 

CPU, Cluster and GPU ............................................................................................... 86 

Figure 5.13 Comparison of speed-ups achieved using various algorithms on GPUs. 88 

Figure 5.14 Variation of PSNR with the number of subsets after 1 iteration of the PS 

algorithm using 672 × 580 sinogram. ......................................................................... 89 

Figure 5.15 Variation of reconstruction time per iteration with the number of ordered 

subsets for the PS algorithm on the NVIDIA 8800GTX GPU ................................... 90 

Figure 5.16 Reconstructed image after 1 iteration of PS (OS-70) on GPU using a 

sinogram of 672 detectors and 580 views................................................................... 92 

Figure 5.17 Plot displaying the termination condition, rate of image update and the 

PSNR for an image reconstructed using a sinogram of 672×580 and reconstructed at 

512×512. ..................................................................................................................... 93 

Figure 5.18 Plot displaying the termination condition, rate of image update and the 

PSNR for an image reconstructed using a sinogram of 672×580 and reconstructed at 

512×512. ..................................................................................................................... 94 

Figure 5.19 Optimal number of ordered subsets for reconstruction of 1024 × 1024 

image........................................................................................................................... 95 



 

 xi 
 

Figure 5.20 Image reconstructed using 7 iterations of OS-25 using 1498 × 580 

sinograms at 1024 × 1024 pixels ................................................................................ 96 



 

 1 
 

Chapter 1: Introduction 

  
The current state-of-the-art laparoscopy uses the optical feed obtained from the 

camera on the laparoscope for surgical guidance and feedback. However, the main 

drawback of this system is the limited field of view offered by the laparoscope. The 

laparoscopic view limits the surgeon’s visibility to a small region around the central 

axis of the scope. Apart from the small aperture, the view is also limited due to radial 

and axial optical distortions. Moreover, optical systems only enable the surgeon to 

view the surface of the anatomical structures and any internal structures such as the 

bile duct and arteries are not visible by the laparoscope. Visualization of internal 

structures, especially the vasculature, has been a long-standing need of minimally 

invasive surgeons. Therefore, there is a need to augment the laparoscopic view with 

images from other imaging modalities such as ultrasound, computed tomography 

(CT), positron emission tomography (PET), etc.  

1.1 Augmenting laparoscopic views using CT 

CT is a true three-dimensional (3D) imaging modality that is capable of providing a 

wide coverage of the area of interest in a short time. Apart from the coverage, CT is 

also attractive due to its high spatial resolution, ease of operation and low acquisition 

cost. Therefore, CT is a good option for augmenting the laparoscopic views. In the 

past, laparoscopic views have been augmented using pre-procedural contrast CT 

scans[28], a technique commonly referred to as Augmented Reality (AR). CT scans 

have also been used to aid in port (small skin incisions) placement for laparoscopy 

[35]. However, these techniques make use of outdated CT scans and do not provide 



 

 2 
 

the surgeon with a current up-to-date view of the internal anatomy, which is essential 

for surgical procedures. Hence, we propose the concept of Live Augmented Reality 

(Live AR), where we propose to continuously scan the patient while the procedure is 

performed in the CT scanner.  

 

The use of CT, as we know it today, for IGIs is a difficult proposition due to a 

number of reasons. The current CT scans are acquired using radiation doses of about 

200-250 mA at 120-140KV. Such high radiation doses considerably increase the risk 

of cancer and other maladies in the patients [1][2]. Considering these facts, it would 

be nearly impossible to safely acquire a number of CT scans during the procedure 

without considerably increasing the risk of cancer in the patient. Hence the CT 

acquisition and reconstruction techniques need to be modified to better adapt CT for 

IGIs. 

1.2 Live Augmented Reality 

The advantages of using CT to enhance laparoscopic views by far outnumber the 

disadvantages. Once the modality for augmentation (CT in our case) is decided, the 

exact mode of augmentation has to be decided. In the past, peri-operative CT scans 

have been used to augment the laparoscopic data [28]. In these methods, a full body 

peri-operative scan is obtained under CT contrast before the procedure begins. This 

scan is then repetitively used to augment the laparoscopic data. During the procedure, 

the laparoscope is continuously tracked using an optical tracker system. The peri-

operative contrast scan is then volume rendered from the same position as the 

laparoscopic camera. The view thus obtained is very similar to the laparoscopic view. 



 

 3 
 

This image is then registered with the optical image from the camera to obtain the 

augmented reality images. 

 

However, there are a number of drawbacks of this system. First of all, the CT data is 

not updated with time leading to outdated CT images. Since respiration and the 

surgical procedure will both cause considerable deformation of the internal organs, 

the structural alignment of the CT and the laparoscopic image will be highly suspect. 

Therefore, for accurate representation of the augmented data, it is essential to 

continuously acquire the CT scans during the surgical procedure. Hence we propose 

the “Live AR” using CT to enable complete 3D volumetric visualization of the 

anatomy during image-guided minimally invasive surgeries.  

 

The “Live AR” procedure improves upon the AR procedure by continuously updating 

the CT data throughout the experiment. The laparoscopic data is now augmented 

using near real-time CT data, thus providing up-to-date information about the internal 

anatomy that is not visible in the laparoscopic optical images. There are a number of 

challenges in making “Live AR” a reality. In this thesis, we demonstrate solutions to 

a few of those challenges. Some of the other problems have also been overcome in 

[47].  The 3D Live Augmented Reality workflow can be summarized as in Figure 1.1.  



 

 4 
 

 

Figure 1.1 Proposed workflow for Live Augmented Reality 

 

Before the procedure begins, a whole-body contrast scan of the patient is acquired 

and stored. This scan is henceforth referred to as the peri-operative scan. The peri-

operative scan is acquired at the normal radiation dose. Since continuous update of 

CT data is essential for Live AR, the minimally invasive surgery is performed on the 

CT table such that the area of interest is within the CT scan region (field of view). 

During the surgery, frequent or continuous ultra-lose dose axial CT scans are 

acquired. The axial scans serve two purposes.  

• Unlike the helical scans, they do not require translation of the CT table during 

the scanning procedure thereby not interfering with the procedure.  

Lap 
Tracking

Optical Lap Tracker 

Real-Time Image 
Registration 

Peri-Op CT 
Scan 

Low Dose 
Raw Data

CT Scanner 

Volume rendering 
hardware 

Lap 
Data

Laparoscope 

Image Processing 
Software 

Contrast 
data

Polaris Controller  
& Frame Grabber Lap Tracking 

Data
Lap 
Data

    CT 
 Recon 

Low Dose 
CT Data



 

 5 
 

• They help to reduce the amount of radiation administered to the patient 

throughout the procedure.  

The ultra-low dose scans obtained from the CT scanner are then reconstructed using 

high-speed reconstruction. Since the ultra-low dose scans will not essentially present 

all the arteries and veins to the surgeon, they are registered with the contrast-

enhanced peri-operative scans. During the entire procedure, the surgical instruments 

are continuously tracked using an optical tracking system to ensure knowledge of 

their precise location. 

 

 

Figure 1.2 Intermediate outputs of Live AR Implementation  

Low Dose 
Intra-Op CT 

    Peri-Op 
Contrast CT 

Registered Data 

Volume 
render 

Volume 
render 

Lap Data 

Rich vasculature 
visible 



 

 6 
 

Using this information, the registered scan is volume-rendered to mimic the view 

from the laparoscope. The two images are then fused using specialized software to 

present the “Live Augmented Reality” feed to the surgeon. Figure 1.2 pictorially 

depicts the various intermediate outputs and the final results. 

1.3 Contributions of this thesis 

As explained in section 1.2, as the number of scans per patient increase, the need to 

lower the radiation doses becomes imperative. Also, high-speed reconstruction of 

these scans is extremely useful for real-time navigation during IGIs.  

 

Since the low-dose scans are extremely noisy, they cannot be reconstructed using the 

standard procedures. In this thesis, we mainly explore iterative techniques for 

reconstruction of the ultra-low dose image data. We first demonstrate superior 

reconstruction of the low dose images using these techniques. Since iterative 

techniques are computationally intensive, we demonstrate ray-tracing modification to 

accelerate these algorithms.  We also show equality in the quality of reconstructed 

images using these ray-tracing based techniques, which provide an acceleration of at 

least 30X. We further accelerate the algorithms using a cluster of computers and on 

the GPU using NVIDIA’s CUDA architecture. We again compare the reconstructed 

images qualitatively as well as quantitatively and demonstrate equality of image 

quality while achieving over 2 orders of magnitude speedups. We finally propose a 

terminating condition to properly estimate the number of iterations required for 

convergence. We also experimentally validate the propriety of this terminating 

condition. 



 

 7 
 

1.4 Outline of this thesis 

The remainder of this thesis is arranged as follows. Chapter 2 gives an overview of 

CT reconstruction, the standard FBP algorithm and the iterative techniques. We use 

real scanner data to demonstrate the superiority of the iterative techniques over the 

standard FBP technique for low dose CT scans. Chapter 3 gives an overview of the 

most compute-intensive portions of the algorithm and our ray-tracing based solutions 

to accelerate these portions. We then demonstrate a speedup of at least 30X using the 

ray-tracing method over the standard pre-computed weight matrix method for 

iterative reconstruction while retaining the image quality.  

 

Chapter 4 gives an overview of our multiprocessor heterogeneous cluster setup and an 

overview of NVIDIA’s 8800 GTX GPUs. We explain our implementation of the ray-

tracing based algorithms on the hardware with other improvements to make efficient 

use of the available resources.  We also propose a terminating condition to ensure the 

right number of iterations for convergence of the image. Chapter 5 presents the results 

and compares the speedups achieved as well as the reconstructed image quality using 

each of the methods. We show 100-400X speedups using the GPU and about 6-22X 

speedups using the multiprocessor cluster while maintaining the quality of the 

reconstructed images. Using the terminating condition we demonstrate iterative 

reconstruction of 64-slice axial scans in under a minute. Finally, we present our 

conclusions and explain the scope for future work. 

 



 

 8 
 

 

Chapter 2: Low-Dose CT Reconstruction 
 

2.1 Need for radiation dose reduction 

It has long been recognized that excessive exposure to X-ray radiations during CT 

scans can lead to an increase of the probability of cancer in patients. Studies 

conducted by Brenner et al. [2] lead to the conclusion that a single full-body CT scan 

at normal doses increases the cancer mortality risks by 0.08%. This factor increases to 

about 1.9% when about 30 CT scans are considered. Brenner et al. [1] show that the 

estimated risk of cancer mortality in infants is at least an order of magnitude higher 

than for adults. Berrington de Gonzalez et al. [54] further show that about 0·6% to 

1.8% of the cumulative risk of cancer can be attributed to diagnostic X-rays. 

 

Moreover, the risk posed by the radiation to the patient is somewhat insignificant 

when the situation of the surgeon is considered. Since a surgeon may be involved in a 

number of CT augmented IGIs in a single day, the risk due of secondary radiation 

from the scanner to the surgeon cannot be overlooked. These statistics reinforce the 

need to reduce radiation doses when CT is used to augment laparoscopy and for other 

IGIs. 

2.2 The CT acquisition and reconstruction process 

A typical CT scanner consists of a doughnut shaped gantry that consists of a set of X-

ray sources and detectors on opposite sides. The sources emit X-rays that are 

attenuated as they pass through the object in the CT gantry. The attenuated X-rays are 



 

 9 
 

then detected at the detectors. The amount of attenuation suffered at each detector is a 

measure of the cumulative attenuation/transmission coefficients of the materials 

intersected by the ray. These projections acquired at various locations at different 

angles are then used to reconstruct an intensity map of the transmission coefficients at 

various points in the object. This reconstructed image is a representation also of the 

density of the various objects in the body. 

 

Figure 2.1 First generation parallel-beam CT configuration 

 

The X-ray sources and detectors may be arranged in one of a number of different 

configurations. A few of the different configurations in the first-, second- and third- 

generation CT scanners are illustrated. While Figure 2.1 demonstrates the most basic 

parallel beam projections, Figure 2.2 illustrates the fan-bean projections in the rotate 

and translate format. Figure 2.3 illustrates the third-generation CT scanners in  



 

 10 
 

 
Figure 2.2 Second-generation translate and rotate fan beam CT configuration 

 

 
Figure 2.3 Third-generation rotate only fan beam configuration 



 

 11 
 

the rotate only configuration.  The current generation of scanners, however are mainly 

multi-slice in nature and often consist of more than one focal spot. This means that 

the detectors are arranged on a 2-Dimensional grid opposing the sources. The grid 

rotates around an axis in the gantry. The table and the patient are placed in the gantry 

along this axis of rotation. Depending on the motion of the table along the axis, 

helical or axial scans can be obtained. Figure 2.4 illustrates the concept. This enables 

fast acquisition of multiple projections across several planes during a single rotation. 

However, data collected from any of these configurations can be re-sorted to simulate 

the data obtained using a simple parallel-beam reconstruction method. 

 

 

Figure 2.4 CT scanner setup that enables axial or helical scans 



 

 12 
 

2.3 The Filtered Back Projection Algorithm 

The Filtered Back Projection (FBP) algorithm is the most commonly used algorithm 

to reconstruct images from the scanned data. The algorithm makes use of the Fourier 

Slice theorem and the radon transform to reconstruct images from the scanned 

data[4][46]. 

 

The Fourier Slice theorem states that “The Fourier Transform of a parallel projection 

at a given angle θ gives a slice of 2-D Fourier Transform of the original image”. The 

Fourier slice theorem makes use of this fact to obtain the Fourier Transform of the 

original image from the projection data. However there are drawbacks of using this 

scheme directly as the 2-D Fourier Transform slice of the original image obtained by 

this method is radial in orientation. Therefore interpolation would be essential to 

arrange the transform coefficients on a uniform 2-D grid before inverse transform can 

be obtained. To overcome this problem, the FBP method converts each of the slices 

into the spatial domain and performs back projection and summation in the spatial 

domain. 

 

Since the Fourier slices obtained are linear in contrast to the wedge shaped slices 

required to accurately reconstruct the images, a filtering step is introduced before the 

back projection. Usually the Ram-Lak filter is used for reconstruction [46]. In case of 

noisy sinograms, the Ram-Lak filter (ramp filter) is first multiplied by a window that 

de-emphasizes certain high frequency components. Thus the FBP mainly consists of 

the following steps. 



 

 13 
 

a) Fourier Transform. 

b) Filtering 

c) Inverse Fourier Transform 

d) Back Projection 

More details about the algorithm are explained in detail in Kak-Slaney [4]. 

 

The FBP algorithm is widely used due to its speed of reconstruction and simplicity. It 

also produces good quality images at normal radiation doses (120-140 kVp, 200-250 

mAs). The FBP reconstruction can commence immediately after a set of projections 

are obtained and hence data acquisition and reconstruction can overlap, thereby 

reducing the time for reconstruction. Moreover, being an analytical technique, FBP 

gives a closed loop solution to the reconstruction problem and requires no iterations. 

 

All of these techniques make the FBP extremely favorable for CT reconstruction. 

However, the FBP has a number of drawbacks when we consider scans acquired at 

low radiation doses. Since low-dose corresponds to significantly lowering the number 

of incident photons, with the body further attenuating the same, the number of 

photons reaching the detectors is extremely small. Under such circumstances, effects 

due to beam hardening, reflections and scatter become significant as compared to the 

attenuation effects. These lead to corruption of the data obtained at the detectors. The 

FBP being an analytical algorithm cannot accommodate such corruption of data and 

leads to artifacts in the final images, either streaking or speckled in nature [5-10]. 

 



 

 14 
 

The metal artifact is yet another common concern with commercial CT 

reconstruction. Since metals have high attenuation coefficients, the diagnostic X-ray 

beams are severely attenuated by the presence of metals. This results in an 

insufficient number of photons reaching the detectors [51][52]. The problem is further 

compounded when scans are obtained at extremely low doses. This leads to streaking 

artifacts in images reconstructed using the FBP algorithm. The artifacts are often 

reduced using filters during post-processing or by using interpolation to approximate 

the data lost due to metallic attenuation. However, these methods have not met with 

much success and metal artifacts are an area of concern even in commercial scanners 

today [51-53]. 

 

The problem of metal artifacts does not usually occur in patient X-ray diagnosis as 

there are very few metallic objects in the area of interest. Except for metallic filling in 

dentures and metallic prosthetics, the scanned objects are usually free of any metals. 

However, this can be a major problem in Live AR since the laparoscope and other 

surgical instruments which are metallic in nature can cause severe artifacts in the 

reconstructed images. Thus FBP is not a good choice for image reconstruction for 

Live AR. 

2.4 Iterative Statistical Reconstruction Algorithms 

Statistical reconstruction algorithms take into consideration the exact processes 

behind the X-ray generation and attenuation. They assign mathematical models and 

distributions to the photon generation at the X-ray source and the attenuation at the 

object. It is widely acknowledged that photon generation is a Poisson process [9][10]. 



 

 15 
 

The iterative expectation maximization (EM) algorithm is explained by Lange and 

Carson [10], and is repeated here for convenience. 

 

Suppose Y is a random vector that is observed during a process, with a density 

function of g(Y,θ), where θ is the parameter to be estimated. Also suppose that it is 

difficult to maximize g(Y,θ) with respect to θ. The EM algorithm proceeds by 

imagining a vector X in a space that encompasses the space of Y, such that h(X) = Y. 

if f(X,θ) is the density of X with respect to some measure µ(X), then g can be 

expressed as, 

∫= )(),(),( XdXfYg µθθ                                         (2.1) 

Maximizing ‘g’ now involves two steps.  

• The E step that involves forming the conditional expectation  

E(ln(f(X,θ)|Y,θn)              (2.2) 

• The M step that involves maximization of (2.2) with respect to a new ‘θ’ 

called θ(n+1) .  

Thus ‘θ’ converges to its true solution after a series of steps. 

 

For the emission tomography, where the system detects pairs of gamma rays emitted 

indirectly by a positron-emitting radionuclide (tracer) that is introduced into the body 

on a biologically active molecule, an easy closed loop solution for the EM algorithm 

has been reported by Lange and Carson [10]. This is widely used in emission 

modalities such as PET, SPECT etc. However, the solution suggested for the 

transmission tomography is not easy to implement and parallelize. Equation (2.3) 



 

 16 
 

gives the solution to the EM algorithm for the transmission tomography as reported in 

[10]. 

∑
∑

+

−
=+

i
ikikik

i
ikik

n

k lNM
NM

)(2/1

)(
1θ                                               (2.3) 

Here, lik
 gives the length of intersection of the ith ray with the jth pixel. And Mik 

represents the number of pixels of the ith ray entering the jth pixel, while N represents 

the number of photons leaving the pixel. Assuming a Poisson distribution for the 

number of photons leaving the source and the probability of a photon reaching the 

detector given by  

e j jijlp ∑= θ
                                                   (2.4) 

Where ‘θ’ is the attenuation constant of pixels and ‘j’ is the pixel counter and ‘i’ is the 

ray counter, the number of photons entering and leaving a pixel can be estimated. 

This is the iterative statistical expectation maximization (EM) algorithm. 

 

The main drawback of the EM transmission algorithm is its difficulty in 

implementation. For any iteration, the exact number of photons entering and leaving 

every pixel needs to be calculated. Since this is dependent on the previous estimate of 

the attenuation constant and the exact path traced by the ray, it cannot be pre-

calculated. Also, parallelization of the algorithm is extremely hard and calculation of 

the pixel updates for the various pixels is not independent. Hence, not only is the 

algorithm computationally intensive, it is also not amenable to parallelization. Yet 

another problem with the transmission EM algorithm is its slow convergence rate. 



 

 17 
 

Due to all of these reasons, we decide against using the EM algorithm or any of its 

variants in our implementation. 

2.5 The Paraboloidal Surrogates Algorithm 

Due to the various concerns associated with the EM algorithm as listed in section 2.4, 

Erdogen and Fessler [5] proposed a set of Monotonic algorithms for transmission 

tomography. These algorithms involved a class of algorithms called the Paraboloidal 

Surrogate algorithms (PS). These algorithms made use of the optimization transfer 

principles to maximize the Log Likelihood function. We present a brief overview of 

the same as described in [5] for the purposes of completion. A more detailed account 

can be found in the references [5-7]. 

 

For the optimization transfer principle, Erdogen and Fesslar [5] use a surrogate 

parabola to construct a paraboloidal surrogate function to the log likelihood function. 

However in order to be able to easily maximize the surrogate function, they use a 

separable paraboloidal surrogate. Moreover, a penalty function is introduced to make 

use of any a priori information about the images. The penalty function can also be 

designed as a separable function to enable easy maximization. The final Separable 

Paraboloidal Surrogates (SPS) algorithm can be defined as, 

∑

∑ ∑

=

= =+

−
+= Ny

i
iiij

Ny

i

K

k
k

n
kkj

n
iij

n
j

n
j

yaa

Cwcha

1

1 11
][ µβ

µµ
                 (2.5)         



 

 18 
 

 

yebh ii

n

i

Nx

j
jijua −∑= =

−
1                                 (2.6) 

 

∑=
j

iji aa                                                      (2.7) 

Here ‘i’ is a ray counter varying from 1 to ‘Ny’.  ‘j’ is a pixel counter varying from 1 

to ‘Nx’.  ‘bi’ is an estimate of the initial number of photons from the air scan. ‘aij’ is a 

measure of the length of intersection of the ith  ray with the jth pixel. ‘yi’ is the value 

of the sinogram for the ith ray. ‘µj’ represents the value of the jth pixel. And a 

superscript gives the iteration number for any of the variables. ’β’ is the scaling factor 

for the contribution from the penalty function and the contribution is given by 

∑
=

K

k
k

n
kkj Cwc

1
][ µ                                               (2.8) 

Here, we assume a quadratic penalty function of the form  

∑
=

=
K

k
kk CR w

1

2)]([
2
1)( µµ                                        (2.9) 

where C is the penalty matrix, and ∑=
j

jkjk cC µµ][ . wk is the scaling factor. 

Hudson and Larkin [15] first proposed the Ordered Subsets technique to accelerate 

iterative reconstruction algorithms. The technique proposes to use a subset of the 

projective rays to update the image before moving on to the next subset. This leads to 

a number of image updates per iteration instead of the usual single update, thereby 

leading to faster convergence. This technique has also been used for the PS algorithm 



 

 19 
 

by Erdogen and Fesslar[5]. However, the OS version of the algorithm is not 

guaranteed to be monotonic, though we have found that for a reasonable number of 

subsets, the OS algorithm performs extremely well and is monotonic in nature. The 

updated algorithm for OS subsets can be written as, 

∑

∑ ∑

=

∈ =+

−
+= Ny

i
iiij

Si

K

k
k

n
kkj

n
iij

n
j

n
j

yaa

CwchaM

1

11
][ µβ

µµ
       (2.10) 

 

Here all the symbols are similar to those in equations (2.5) and (2.6). ‘M’ represents 

the number of Ordered Subsets, and ‘S’ is the current subset. 

 

For the implementation of the algorithm, the values of all the ai can be pre-computed. 

These values remain constant for a given scanner geometry and an image size. 

Moreover, the size of these values is only as large as the sinogram size. 

2.6 Metrics for Image Comparison 

In medical imaging, the quality of the reconstructed images needs to be judged on the 

basis of the ability to discriminate between the various parts of the anatomy in the 

images rather than their visual appeal. Similarly, comparison of images generated 

using two different reconstruction algorithms would require comparisons based on the 

amount of discernable information in the images irrespective of the average contrast 

levels or exact pixel values. We use both the Minkowski metric based Peak Signal-to-



 

 20 
 

Noise Ratio (PSNR), which is a pixel by pixel comparison technique as well as the 

covariance-based Q index proposed by Wang and Bovik [55]. While the PSNR is a 

pixel by pixel difference based metric, the Q index tries to compare the images based 

on the variation of the pixel intensities between the corresponding blocks of the two 

images.  

2.6.1 The Peak Signal to Noise Ratio (PSNR) 

The PSNR of an image with respect to a benchmark image was calculated as follows. 

The two images f1(i,j) and f2(i,j)  were first normalized to the range of 0 to 1 as 

follows.  

))min(max(
)min(
ff

fff
−

−
=

                                        (2.11) 

The Mean Square Error (MSE) between the two images with N × N pixels each was 

calculated as, 

NN

jifjif
MSE

N

i

N

j

×

−
=
∑∑
= =1 1

),(2),(1

                                   (2.12) 

Finally, the PSNR was calculated as 10 times the inverse logarithm to the base 10 of 

the Mean Square Error. 

)1(log10 10 MSE
PSNR ×=

                                        (2.13) 

2.6.2 The Q index 

The Q index was calculated as explained in [55]. The two images f1(i,j) and f2(i,j)  

were first normalized to the range of 0 to 1 as follows.  



 

 21 
 

 

))min(max(
)min(
ff

fff
−

−
=

                                          (2.14) 

The Q index is calculated on a block by block basis and then averaged across all the 

blocks in the image to obtain the final value. We chose a block size of 16 × 16 pixels 

for our calculations to get a good trade-off between the number of blocks per image 

and the contribution of each pixel to the overall index. 

 

The variance for a block of size N×N, the mean and variance were calculated as, 

∑∑
= =×

=
N

i

N

j
jif

NN
f

1 1
),(

)(
1)(µ                               (2.15) 

1)(

))2(),(2))(1(),(1(
)2,1( 1 12

−×

−−
=
∑∑
= =

NN

fjiffjif
ff

N

i

N

j
µµ

σ                 (2.16)  

The Q index for the kth block of images f1 and f2 can be calculated as, 

)))(2,2()1,1((

)2()1()2,1(4
)(

)2()1( 2222

2

ffffff

ffff
kQ

µµσσ
σ µµ

++
=   (2.17) 

 

Finally, the Q index for the images is calculated as the average of the Q indices of all 

the blocks in the two images. Suppose there are K overlapping blocks in the 2 images 

the sliding window Q index can be calculated as, 

∑
=

=
K

k
kQ

K
Q

1
)(1

                                              (2.18) 



 

 22 
 

The Q index, thus varies from -1 to 1. A Q Index of 1 suggests that the images that 

are being compared are the same, while -1 suggests that the images are highly 

uncorrelated. 

2.7 Low-Dose Reconstruction using PS Algorithm 

The PS algorithm was developed for attenuation correction in emission tomography 

[10]. Often, a few transmission scans are required before the emission scans to 

calculate the Attenuation Correction Factors (ACF) in emission tomography. Since 

these scans are extremely noisy, Erdogan et al. [10] first proposed the PS algorithm 

for this kind of transmission scans. Since low-dose CT scans are also marred by 

extremely high noise variance, we propose to use the PS algorithm for low-dose 

reconstruction.  

2.7.1 Methods and Setup 

To compare the reconstruction quality of low dose images reconstructed using PS 

algorithm and FBP algorithm, two specimens were scanned using Philips Brilliance 

64 slice CT scanner. The specimens were scanned at 120 kVp with the tube current 

varying from 200 mAs to 15 mAs. All the scans were axial in nature. The raw data 

for these axial scans was extracted from the scanner and re-binned to obtain the 

parallel beam projections. The projections were then normalized using the air scan 

and corrected for faulty or missing detectors. The preprocessed sinograms finally 

consisted of 580 views of 1498 projections each. These were used to reconstruct the 

images using both FBP algorithm as well as PS algorithm. The FBP images were not 

post-processed in any manner. For fair comparison, no penalty function was used in 



 

 23 
 

the PS algorithm. 80 iterations of the PS algorithm were used to ensure convergence 

of the reconstruction to the optimal solution. The first specimen, a dead chicken, was 

reconstructed to a resolution of 512 × 512 while the second, a live swine was 

reconstructed to a resolution of 1024 × 1024 pixels. 

2.7.2 Results and Conclusion 

The figures 2.5 to 2.8 display the reconstructed images at varying radiation doses. For 

displaying purposes, the images have been normalized and cropped/resized. At high 

radiation doses, both FBP as well as PS algorithms give good quality images. 

However, as the radiation dose is lowered, the FBP images start showing speckled 

noise, which is absent in the PS reconstructed images. 

 

Figure 2.5 (top) demonstrates the chicken model images scanned at 120 kVp and at a 

tube current of 200 mAs. It can be seen that FBP as well as the PS reconstructed 

images do not have any perceptible noise in those. Figure 2.5 (bottom) displays the 

reconstructed images for the same specimen scanned at 120 kVp, but at a tube current 

of 15 mAs. While the FBP image has undergone considerable degradation with 

respect to the earlier image, the PS reconstructed image remains virtually unchanged.  

 

 

 

 

 

 



 

 24 
 

 

 

Figure 2.5 Comparison of reconstructed image quality at varying doses for FBP 
and PS images using 1498 X 580 sinograms at 120kVp and reconstructed at 512 X 

512 pixels 
Top-L: FBP reconstructed image at 200mAs . Top-R: PS reconstructed at 200mAs. 

B-L: FBP reconstructed image at 15mAs . B-R: PS reconstructed at 15mAs. 
 
 



 

 25 
 

Figures 2.6 and 2.7 demonstrate the noise in the in-vivo porcine model images 

reconstructed at extremely low tube current of 25 mAs with 120-kVp tube voltage. 

Again, the PS reconstructed image remains largely clear of any noise, while the FBP 

image is severely degraded. To demonstrate the progressive degradation of FBP 

images with reduction in tube current, Figure 2.8 demonstrates the reconstructed 

images for tube currents of 100 mAs, 75 mAs and 50 mAs, respectively, at their 

original resolution. The image reconstructed at 1024 × 1024 pixels has been cropped 

and scaled to fit in the document. Again we notice increase in the noise levels of FBP 

reconstructed images with reduction in the radiation dosage while the PS images are 

by and large unaltered. 

 
 

 
Figure 2.6 FBP reconstructed image using 1498 × 580 sinograms at 1024 × 1024 

pixels at 120kVp and 25mAs 



 

 26 
 

 

 
 

Figure 2.7 PS reconstructed image using 1498 × 580 sinograms at 1024 × 1024 
pixels at 120kVp and 25mAs 



 

 27 
 

 



 

 28 
 

 
 

Figure 2.8 Comparison of reconstructed image quality at varying doses for FBP 
and PS images using 1498 × 580 sinograms at 120kVp and reconstructed at 1024 × 

1024 pixels 
Top-L: FBP image at 100mAs. Top-R: PS image at 100mAs.  

B-L: FBP at 25mAs. B-R: PS  image at 25mAs. 
 

To quantify the amount of degradation in the image quality with the reduction of the 

dose, we used the PSNR as well as the Q index as comparative measures. Since there 

is no reference image, we use the FBP reconstructed image at 210 mAs tube current 

at 120 kV peak voltage as the benchmark to compare the degradation of image quality 

with decrease in radiation dose.  

Variation of Image Quality with Radiation dose

0

10

20

30

40

50

60

200 180 160 140 120 100 80 60 40

Tube Current (mAs)

PS
N

R
(d

B
)

FBP PS  

Figure 2.9 Quantitative comparison of FBP and PS reconstructed images at 
varying radiation doses (PSNR comparison). 

 
 



 

 29 
 

The plots in figure 2.9 demonstrate the rapid decrease in the image quality for the 

FBP images with decrease in radiation dose, while the quality of the PS images 

remain almost the same even at extremely low radiation doses. Since the PSNR is 

extremely sensitive to any changes in image contrast, we also use the Q index to 

compare the image quality at low radiation doses. We can again see that the Q index 

for the FBP images falls drastically with decrease in radiation dose, while the Q index 

for the PS images suffers only a slight decrease even at extremely low radiation 

doses. Thus we prove that the PS algorithm can be effectively used for reconstruction 

of CT transmission images at low radiation doses. 

Variation of Qindex with radiation dose

0

0.2

0.4

0.6

0.8

1

1.2

200 180 160 140 120 100 80 60 40

Tube Current (mAs)

Q
in

de
x

PS FBP  
Figure 2.10 Quantitative comparison of FBP and PS reconstructed images at 

varying radiation doses (Qindex comparison). 
 
 

The PS algorithm due to its iterative nature also presents other advantages. It can be 

used for metal artifact reduction to minimize the streaking effects caused due to 



 

 30 
 

scatter and extreme attenuation of photons by metallic objects. Since IGIs involve use 

of metallic surgical instruments in the field of view of the CT scanner, metal artifacts 

can be expected in FBP reconstruction. A number of investigations [52][53] have 

shown that iterative algorithms perform better in reconstructing images when there is 

attenuation from metallic objects in the image scan.  

 

Thus it is clear that reconstruction of CT transmission data using iterative statistical 

techniques, such as the PS algorithm, results in improved quality of the reconstructed 

images when the scans are acquired at extremely low doses. Moreover other benefits 

such as better control over metal artifact reduction also suggest that the iterative 

techniques are better suited for Image Guided Interventions. 

 



 

 31 
 

Chapter 3: High-Speed Reconstruction Using Ray-Tracing 

Methods 

3.1 Acceleration of PS algorithm  

The PS algorithm is computationally very intensive as compared to the FBP 

algorithm. Each iteration of the PS algorithm consists of one back projection and one 

forward projection apart from other operations such as computing exponentials, 

subtractions and divisions. The FBP algorithm, on the other hand, has only one back 

projection and is not iterative in nature. The forward and back projection operations 

are computationally very intensive as they require the calculation of the length of 

intersection of each ray with every pixel in the image. Though these values remain 

constant for a particular geometry and can be pre-calculated, the size of the pre-

computed values becomes extremely large as the image size increases. For example, 

for a typical geometry with 1498 detectors and 600 views, if the image is 

reconstructed at a resolution of 1024 × 1024, the weight matrix will have 942 billion 

entries. Though most of these will be zeros and the matrix can be stored in lean 

matrix format [57][58], managing the weight matrix for different configurations and 

different reconstruction resolutions becomes unwieldy. 

 

In the past, ray-tracing [17-19] has been effectively used to perform the forward and 

back projection operations for 3D cone beam reconstruction algorithms. We propose 

to leverage the ray-tracing mechanism to digitalize the implementation of the PS 

algorithm for axial slices. This version of the algorithm gives an approximately 30 



 

 32 
 

times speedup over the analog pre-computed weights implementation while 

drastically reducing the memory requirements.  

3.2 Forward and Back Projection using Ray Tracing 

3.2.1 The Forward Projection Process 

The forward projection is an operation common to most iterative or algebraic 

reconstruction methods. The forward projection mimics the scanner and creates 

projections from the image estimates.  

Y(θ,t)

t

xCosθ + ySinθ = tY 
A

xi
s

 
Figure 3.1 Analytical view of the CT reconstruction process 

 

Given an image (map of attenuation coefficients) - µ(x,y) , the projection at angle ‘θ’ 

and at a distance ‘t’ from the center of the image will be the projection along the line 

given by the equation. 

tySinxCos =+ )()( θθ                                           (3.1) 



 

 33 
 

The projection, Y(θ,t) can be given as line intergral at (θ,t) calculated as  

∫=
t),(

ds y)(x,  t),(
θ

µθY                                                   (3.2) 

This can be rewritten as  

∫ ∫
∞

∞−

∞

∞−

−+= dxdytySinxCosyxtY )(),(),( θθδµθ .                (3.3) 

Since the value of µ is known only at discrete points (i,j) at the center of each pixel, we 

can rewrite the above equation as 

∑∑=
i j

kjiaji ),,(),(  Y(k) µ                               (3.4) 

where a(i,j,k) is the length of intersection of pixel (i,j) with the kth  ray. Figure 3.2 

below shows the forward projection calculation. 



 

 34 
 

 

u1 u2 u3 u4 u5 u6

uk

un

a5

u5.a5 +….+ uk.ak + 
…….+ un.an 

an

 
Figure 3.2 The forward projection process 

3.2.2 The Ray-Tracing approach to Forward Projection 

Various kinds of interpolation-based discrete methods have been used in the past for 

volume rendering and inverse volume rendering (Reconstruction) of CT data [17-19]. 

Since we are mainly interested in axial reconstruction, we consider the reconstruction 

of one axial slice at a time using a bilinear interpolation based ray-tracing approach. 

The traditional weight matrix based forward reconstruction method assumes fixed 

regions of uniform attenuation coefficients, defined by the pixels in the image. This 

kind of discrete representation of the image is natural considering that the image is 

finally displayed as a 2D grid of intensity values on display devices.  



 

 35 
 

a(v1 + v2 +v3 + …+vn)

a

a

v1

vk =  bilinear_interpolation(u1,u2,u3,u4)

vn

u2

un

u1

Figure 3.3 Bilinear interpolation based ray tracing approach to forward projection 
 

However, the assumption of fixed regions of uniform attenuation coefficients makes 

the calculation of the projections extremely compute intensive. In the ray-tracing 

approach, we assume that the pixel value represents the attenuation coefficient at the 

center of each square pixel. Thus we only know the attenuation coefficients on the 

grid points of a uniform 2D grid that falls on the center of the pixels. The values at all 

other locations can be calculated by bilinear interpolation of the values at the 4 

surrounding grid points. 

 

Given the pixel values at grid points, the value at any location (x,y) can be given by, 



 

 36 
 

xy
1)j1,(i + 

x)y-(1
1)j(i, + 

y)- x(1
j)1,(i +  

y)-x)(1-(1
j)(i,),( ++++

=
µµµµµ yx  (3.5) 

where i,j are integers such that i<x<i+1, j<y<j+1.  

 

The line integral can now be calculated as the sum of the attenuation coefficients at 

points unit distance apart along the ray. 

∑ +−=
j

jSintCosjSintCost ),(  ),Y( θθθθµθ              (3.6) 

where, 

 –0.5*(Number of Projections per View) < j < 0.5*(Number of Projections per View) 

and j ∈  Integers 

Figure 3.3 demonstrates the ray-tracing approach to forward projection using bilinear 

interpolation. 

3.2.3 The Back Projection Process 

Back projection is the inverse of forward projection mechanism. It is mainly used to 

smear back the projection values from the sinograms onto the pixels in the image. 

Each sinogram value is distributed among the pixels proportional to the length of the 

ray intersecting the pixel. Suppose Y(θ,t) is the projection value at an angle ‘θ’ and at 

a distance ‘t’ from the center of the image, then the back-projected value of any pixel 

at location (x,y) can be given by, 

∫ ∫
∞

∞−

−+=
π

θθθδθµ
0

)(),(),( dtdtySinxCostYyx                (3.7) 



 

 37 
 

Since the value of Y(θ,t) is known only at discrete points (θ,t), we can rewrite the 

above equation as 

Y(k)),,(  ),( ∑=
k

kjiajiµ                                     (3.8) 

Where Y(k) is the discrete value of Y(θ,t) at a particular point (θ,t) and a(i,j,k) is the 

length of intersection of the ray Y(k) with the pixel at (i,j). 

Figure 3.4 demonstrates the back projection procedure. 

 

Figure 3.4 The back projection process 

3.2.4 The Ray-Tracing approach to Back Projection 

The back projection can also be implemented using ray-tracing and bilinear 

interpolation in a manner similar to forward projection. Here, we replicate the value 

of the projection all along the projective ray. The values are replicated at unit 



 

 38 
 

distances along the ray. The value at each of the pixel centers due to one particular 

view can now be obtained by bilinear interpolation of these back-projected values. 

Given the back projected values, v(x,y) at points along the ray for view θ, the 

contribution of the view at pixel center, µθ(i,j) can be calculated using the equation 

3.5. 

 

The total value at each pixel due to all the views can now be calculated as the sum of 

the values due to each of the views. 

∑=
θ

θµµ ),(  ),( jiji                                              (3.9) 

Where, 

 θ varies from 0 to 180 or 0 to 360 depending on the number of views in the sinogram 

and i,j ∈  Integers. 

The idea is demonstrated in figure 3.5. 

 



 

 39 
 

yj
yj

a

a

uk =  bilinear_interpolation(v1,v2,v3,v4)

v2

v1

yj

 
Figure 3.5 The bilinear interpolation based ray tracing approach for back 

projection 

3.3 Implementation and results 

3.3.1 Methods and setup 

The PS algorithm was implemented as suggested in Erdogen and Fesslar [5] as 

follows: 



 

 40 
 

∑

∑ ∑

=

= =+
−

+= Ny

i
iiij

Ny

i

K

k
k

n
kkj

n
iij

n
j

n
j

yaa

Cwcha

1

1 11
][ µβ

µµ
          (3.10) 

 

 yebh ii

n

i

Nx

j
jijua −∑= =

−
1                               (3.11) 

Here ‘i’ is a ray counter varying from 1 to ‘Ny’.  ‘j’ is a pixel counter varying from 1 

to ‘Nx’.  ‘bi’ is an estimate of the initial number of photons from the air scan. ‘aij’ is a 

measure of the length of intersection of the ith  ray with the jth pixel. ‘yi’ is the value 

of the sinogram for the ith ray. ‘µj’ represents the value of the jth pixel. And a 

superscript gives the iteration number for any of the variables.’β’ is the scaling factor 

for the penalty function and the penalty function is as described in [5].  

 

As demonstrated in equations 3.10 and 3.11, each iteration consists of two back 

projection operations as well as one forward projection. However, since the 

denominator does not vary across iterations, it can be calculated once. Hence every 

iteration consists of one forward projection and one back projection. 

 

The sinograms were first obtained from the scanner for the axial scans. The 

sinograms so obtained were first pre-processed for bad detectors. They were then 

normalized using an air scan to ensure uniformity among the detector readings. The 



 

 41 
 

Beer’s law was used to estimate the photon counts from the sinograms obtained. This 

states that the number of photons that reach a detector ‘yi’, can be given by  

eby
Nx

j
jijua

ii
∑= =

−
1                                       (3.12) 

where the notation is as described above and the sinogram from the scanner 

represents the values, 

∑
=

Nx

j
jijua

1                                              (3.13) 

The sinogram so obtained is then rebinned to obtain the parallel beam projections that 

are used in the reconstruction process. 

 

The PS algorithm was implemented using pre-computed weights as well as ray-

tracing algorithm. For the pre-computed weights method, the exact weights matrix 

(system matrix) was pre-calculated based on the system geometry. The matrix 

contained the length of intersection of each of the rays with every pixel in the image 

(‘aij’). This was then used to implement the algorithm as represented in equation 3.10. 

The images reconstructed using this method were taken as the baseline for 

comparison. Though the weight matrix was not optimized for size, for small images, 

for which the entire weight matrix can be loaded into the main memory, the execution 

time can be considered as being representative of the actual implementation time. 

 



 

 42 
 

Extract sinogram from the 
scanner, correct  for bad 
detectors and normalize 

using air scan.

Unlog the sinogram using 
Beer’s law to obtain the 
photon count. Rebin to 

obtain parallel beam 
projections.

Use a constant value as 
initial image estimate.

Forward project to obtain 
sinogram estimates.

Calculate sinogram error, 
back project and add 

penalty function.

Calculate new image 
estimates.

Image 
converged?End

Yes

No

 

Figure 3.6 The ray tracing algorithm 
 

For the ray-tracing method, ray-tracing and bilinear interpolation operations were 

used as described in sections 3.2.2 and 3.2.4 for the forward projection and back 

projection operations. The algorithm was implemented as depicted in figure 3.6. 

3.3.2 Results and conclusion 

To exactly estimate the difference between the images reconstructed using the analog 

(pre-computed weights) methods and the ray-tracing algorithm, we used a scanner 

image as the benchmark image. Projections were then created from this image at 580 

views with 672 detectors per view. The sinograms so obtained were then 

reconstructed using both the analog (pre-computed weights) as well as the ray-tracing 

based methods. The PSNR with respect to the initial scanner image was used as a 

measure to compare the quality of reconstruction from the two methods.  



 

 43 
 

 

Figure 3.7 compares the quality of the reconstructed images using the analog and the 

ray-tracing methods using the PSNR as a metric while figure 3.8 compares the same 

using the Q index as a metric. It is clear that the ray-tracing method increases 

monotonically at a rate similar to the analog method. It can also be observed that the 

quality of the images after the same number of iterations remains similar. 

 
 

Analog vs. Ray Tracing

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iteration No.

PS
N

R
 (d

B
)

Ray-Tracing Analog
 

Figure 3.7 Quantitative comparison of reconstructed image quality using PSNR for 
Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram. 
 
 
 



 

 44 
 

 
 
 
 
 

Analog vs. Ray Tracing

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iteration no.

Q
 In

de
x

Ray-Tracing Analog
 

Figure 3.8 Quantitative comparison of reconstructed image quality using Qindex 
for Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels 

using 580 × 672 sinogram. 
 



 

 45 
 

Analog vs. Ray-Tracing (OSEM 10)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration no.

PS
N

R
 (d

B
)

PSNR Ray-Tracing PSNR Analog
 

Figure 3.9 Quantitative comparison of reconstructed image quality using PSNR for 
Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels using 

580 × 672 sinogram and 10 subsets per iteration. 



 

 46 
 

Analog vs. Ray-Tracing (OSEM 10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration No.

Q
 in

de
x

Ray-Tracing Analog
 

Figure 3.10 Quantitative comparison of reconstructed image quality using Qindex 
for Analog vs. Ray Tracing methods for images reconstructed to 512 × 512 pixels 

using 580 × 672 sinogram and 10 subsets per iteration. 
 
 
In Figures 3.9 and 3.10, the PSNR and the Q index are again used to compare the 

quality of the reconstructed images using the two methods. The images, however, are 

reconstructed using the OSEM version of the two algorithms with 10 subsets per 

iteration. It can be noticed that while the PSNR reports the quality of the analog (pre-

computed weights) image as slightly better than the ray-traced image, the Q index 

reports vice versa. However, from the absolute values of the PSNR and the Q index, it 



 

 47 
 

is clear that both methods are monotonic in nature and give good quality images. 

Finally figures 3.11 and 3.12 display the images reconstructed via the two methods 

for qualitative comparison. It is clear that the ray-tracing method gives image quality 

that is comparable to the analog method (images cropped to fit document). 

 

 

Figure 3.11 PS reconstructed image after 20 iterations of Analog algorithm      
(OS-10) 

 



 

 48 
 

 

Figure 3.12 PS reconstructed image after 20 iterations of Ray-Tracing algorithm 
(OS-10) 

 

 

The table 3.1 below gives the time taken for reconstruction of the images using the 

Analog and Ray-Tracing algorithms. The analog version of the algorithm was a direct 

implementation of the equation 3.10 using a non-sparse representation of the pre-

computed weight matrix. All algorithms were run on single core of the dual-core Intel 

Xeon at 2.33GHz with 4 GB of memory. The pre-computed weight matrix was such 

that it completely fit into the main memory. The time per iteration is inclusive of all 

the memory operations performed in between two iterations. 

 

 

 



 

 49 
 

 

Time per Iteration Sinogram 
Size 

OSEM 
Subsets 

Reconstructed 
Image Size Analog Ray 

Tracing 

Speedup 

367 × 300 1 256 × 256  207 6.68 30.98 
367 × 300 10 256 × 256  244 6.68 36.52 
672 × 580 1 512 × 512 3122 39.58 78.87 
672 × 580 10 512 × 512 3220 39.59 81.33 
Table 3.1 Speed-ups achieved by using the ray-tracing methods for reconstruction 

 

Thus it is clear that the suggested ray-tracing algorithm gives speedups of at least 30X 

over the analog version of the same algorithm. The speedups achieved increase with 

the increase in the sinogram and image sizes. This is mainly due to the increased 

memory access delays due to a larger number of cache misses. The ray-tracing 

algorithm also does not result in undue degradation of image quality and gives good 

quality reconstructed images. 

 



 

 50 
 

Chapter 4:  Hardware-based Acceleration of PS Algorithm for 

Low-Dose CT Reconstruction 

4.1Cluster-based acceleration scheme 

4.1.1 Introduction and previous work 

With the recent advances in VLSI technologies, the total number of transistors per 

chip continues to increase. The increase in the number of transistors along with the 

decrease in the average half-pitch and feature size has led to ever faster computers 

with large amounts of main memory. However, better, faster and extremely sensitive 

data acquisition techniques have led to almost explosive amounts of data that are 

collected and need to be processed. Since most applications require similar  

operations to be performed on these large data sets, clusters of processors working in 

parallel have emerged to be the most preferred form of hardware accelerators [3] [20-

25]. 

 
In the past, many groups have used clusters of generic computers to accelerate 

reconstruction of CT [22][25]. However, most of these approaches have been directed 

towards the widely used 3D FBP algorithms and reconstruction of PET and SPECT 

images. Supercomputers as well as mainframe parallel computers have also been used 

for CT reconstruction. In 1989, Guerrini et al. [20] used the Vector computer, while 

Chen et al. [24] used the hypercube to accelerate CT reconstruction. Other mainframe 

parallel computing approaches include mesh-parallel approach by McCarty et al. [22] 

in 1991 and the transputers by Atkins et al. [23] in 1991. We use a cluster of 



 

 51 
 

computers to accelerate the PS algorithm for reconstruction of low-dose CT scans. 

Since the iterative algorithms are extremely compute intensive we use a cluster of 

machines, each having 2 dual-core processors for accelerating the algorithm. 

4.1.2 The Cluster Setup 

Our cluster has 8 nodes each consisting of 2 dual-core Intel Xeon processors running 

at 2.33 GHz. Each of the nodes has a 4GB main memory that is shared by the 

processors. The nodes are connected together using a 1Gbps Ethernet switch. The 

individual nodes run Red Hat Linux. The Portable Batch System (PBS) is installed on 

the cluster for efficient management of resources and jobs.  Each of the nodes can run 

4 independent threads on the 4 cores to give effectively 32 independent processing 

cores. Message Passing Interface (MPI) is used for communication between the 

individual cores. MPI is a library specification standard for message passing [26][42]. 

We used the MPICH2 [43] implementation of MPI that is freely available and 

extremely efficient for our purposes. Figure 4.1 gives an overview of the cluster 

setup. 

 

 

 



 

 52 
 

 

Figure 4.1 Overview of the cluster setup at ITL 
 

 

Each machine on the cluster also has an NVIDIA GeForce 8800 GTX GPU card 

installed. The GPU card can be programmed using NVIDIA’s Compute Unified 

Device Architecture (CUDA). CUDA is an extension to the generic C programming 

language and gives the user the ability to decide the actual placement of the data on 

the GPU and the distribution of the computations among the GPU stream processors. 

 

itlnode1 
 

itlnode2 
 

itlnode3 
 

itlnode4 
 

itlnode7
 

itlnode6
 

itlnode5
 

Head Node 
Itlnode0 

 
          2 x Dual CPU
        64b datapath 

 
        8800 GPU 

 

 8x1 Gbps 
Switch 

 

Internet 



 

 53 
 

 

Figure 4.2 The Software stack overview for the cluster 

4.1.3 Implementation 

The ray-tracing based algorithm was implemented on the cluster in a manner similar 

to the single CPU implementation as described in section 3.3.1. The 3 main 

operations of the algorithm are 

a) Forward Projection. 

b) Back Projection. 

c) Pixel Update. 

Figure 4.3 gives the relative time taken for the execution of each of these 

operations on a single CPU.  

Application programs 
(CT Recon etc.) 

Portable Batch System 
OpenPBS 

Message Passing Interface 
MPICH2 

Symmetric  
Multiprocessor 

Operating  
System 

SMP
OS 

SMP 
OS 



 

 54 
 

Time Slice for Reconstruction

Other
1%

Forward Projection
53%Back Projection

46%

 

Figure 4.3 Distribution of total execution time across various operations for the 
ray-tracing based implementation of the PS algorithm 

 

It is clear that the forward and back projection operations consume almost 99% of the 

total reconstruction time. Hence these operations were targeted for acceleration on 

multiple nodes. One of the main concerns with multi-processor implementation is the 

time taken for inter-processor communications. Hence the forward and back 

projection operations were not implemented separately, but combined, as explained 

below, to ensure that there will be only one inter-processor communication per 

iteration. 

 

The work flow is as shown in figure 4.4. The flow can be explained as below. 

1) The sinogram is first read by the head node and distributed to all the nodes. 

Each of the nodes starts with the same initial image.  

2) Every node creates a subset of the forward projection.  

If the view ‘V’is such theat ‘V’ mod k = 0, then node k generates the forward 

projection for view ‘k’. 



 

 55 
 

Computer

Computer Computer

Computer

Read Sinogram

Transmit Sinogram Receive Sinogram

Partial Forward 
Projection

Partial Forward 
Projection

Sinogram Correction/ 
Back Projection

Sinogram Correction/ 
Back Projection

Image Update = Image Update 
+ Received Image Update + 

Penalty Function.

Image Update = Image Update 
+ Received Image Update + 

Penalty Function.

Transmit Image Update/
Receive Image Update

Transmit Image Update/
Receive Image Update

Save Image

Data Flow

Control Flow
Head Node Worker Nodes

 
Figure 4.4 Flowchart for the cluster based implementation of the ray-tracing 

algorithm 
 

 

 



 

 56 
 

3) Each node compares the available sinogram views thus created with the 

corresponding views of the original sinogram to create corresponding views of 

the ‘difference sinogram’. These ‘difference sinogram’ views are then back-

projected to get partial increments for all the image pixels. 

4) All the nodes broadcast their partial image updates to all other nodes. Every 

node sums up all the partial updates to get the true image update for that 

iteration. 

5) All the nodes calculate the penalty values, and update the image using the 

updates calculated in step 4.  

This completes the iteration. Thus we can see that there is only one inter-processor 

communication per iteration thus decreasing the I/O overhead substantially. 

4.2 GPU-based acceleration scheme 

4.2.1 Introduction and previous work 

With the rise in the number of graphics intensive applications, the Graphics 

Processing Unit has been continuously improving in its computational performance. 

The exponential increase in the computational power and the number of transistors in 

the GPU has made it extremely attractive to other computationally intensive 

applications beyond graphics. With multiple cores per processor, the general-purpose 

computers are also moving towards parallel processing models. In such a scenario, 

the dozens of stream processors of the GPU present a very attractive model for 

computationally intensive applications.  

 



 

 57 
 

In recent years, the GPU is becoming more programmable for non-graphics 

applications and is being increasingly used as a co-processor for various applications 

in medical imaging, image processing, molecular chemistry, seismology, databases 

etc [56]. With the advent of NVIDIA’s Compute Unified Device Architecture 

(CUDA), non-graphics programmers are also able to program commercially available 

GPU’s using simple extensions to the ‘C’ programming language.  

 

Cabral et al. [17] used the texture mapping hardware for CT reconstruction. This 

was followed by many works ([16][18][19] etc.) that made use of the texture mapping 

hardware for CT reconstruction. In [33] a general framework for the use of GPU in 

reconstruction algorithms was presented. This was mainly based on the use of the 

graphics pipeline for acceleration of forward and back projection steps. In [48] the 

GPU was used to accelerate these steps of the convex algorithm using the framework 

suggested in [33]. Other algorithms such as SART and OSEM have also been 

accelerated using similar frameworks. All of these implementations relied on 

languages such as OpenGL and other shading languages that prevented direct 

programming of the GPU for various kinds of mathematical operations. In [40], the 

FDK algorithm was accelerated for 3D cone beam geometry using CUDA. CUDA 

offers many advantages over the traditional shading languages. CUDA gives the 

developer the complete control over the stream processors. There is no fixed pipeline 

and the developer is free to exploit the various memory and computational resources 

to his liking. Hence we chose to use CUDA for the acceleration of our ray-tracing 

based PS reconstruction algorithm. 



 

 58 
 

4.2.2 The NVIDIA CUDA architecture 

CUDA is a software and hardware architecture that enables a programmer to 

efficiently implement single instruction multiple data program samples on the CUDA 

enabled NVIDIA GPUs.  We made use of the NVIDIA 8800GTX GPU for our 

implementation. The GPU contains 128 programmable stream processors arranged as 

16 SIMD multiprocessors with 8 processors per multiprocessor. The GPU has 768MB 

of on board memory and a peak theoretical performance of 518Gflops. It has a core 

clock of 575MHz, a stream processor clock of 1.35GHz, and 900MHz memory. 

 

For ease of execution, CUDA classifies the code to be run on the device as a kernel. 

Each kernel is essentially a SIMD instruction set. The kernel can be executed on 

thousands of threads. The CUDA architecture allows the programmer to arrange the 

threads in the form of a grid as shown in figure 4.5. 

Block (0,1) Block (0,2)

Block (1,0) Block (1,1) Block (1,2)

Block (2,0) Block (2,1) Block (2,2)

Block (3,0) Block (3,1) Block (3,2)

Block (0,0) 
Thread (0,0)

Block (0,0) 
Thread (1,2)

 

Figure 4.5 The arrangement of blocks of threads into a grid in CUDA 
 



 

 59 
 

The threads are first grouped together in Blocks. Threads within a block are more 

tightly tied together and can synchronize amongst themselves. They share a common 

high-speed memory block and thus can share data faster with other threads within the 

same block. Each kernel is executed as a grid of blocks. The grid consists of similar 

blocks that have the same number of threads. 

 

 

 

Figure 4.6 The multiprocessor hardware and memory architecture in CUDA  



 

 60 
 

The GPU consists of a number of multiprocessors. Each multiprocessor has a number 

of stream processors that share the ‘shared memory’. Each stream processor has its 

own set of registers. The stream processors within a multiprocessor have a common 

texture and constant cache. Figure 4.6 demonstrates the hardware architecture. During 

execution, all threads within a block are assigned to the same multiprocessor. A 

multiprocessor may, at a given time, have a number of active blocks that are executed 

on a time sharing basis.  

 

The CUDA software API’s are extensions to the generic ‘C’ programming language. 

The software development model is as shown in figure 4.7. The source code that 

consists of basic C statements as well as CUDA extensions is first given to the CUDA 

compiler. The compiler processes all CUDA kernel calls and outputs a generic CPU 

specific C code that is then compiled using a standard C compiler. The GPU specific 

instructions are output in CUDA Assembly and are further processed by the ‘CUDA 

runtime’ and ‘CUDA drivers’ before being executed on the GPU. The generic C Code 

compiled for the CPU is executed on the CPU. More details of the architecture can be 

obtained in [44][45]. 



 

 61 
 

CUDA C Code

CUDA Compiler

CUDA Assembly Code Standard C Code

CUDA Driver Standard C Compiler/
Assembler

CUDA Libraries

Computer

GPU CPU
 

Figure 4.7 The CUDA software development process 

4.2.3 Implementation 

The NVIDIA 8800GTX was used as the hardware platform for the implementation. 

The CUDA architecture was used to program the GPU. The entire reconstruction 

process was implemented on the GPU. The CPU was used to preprocess the 

sinograms. The sinograms were preprocessed as described in section 3.3.1. Since the 

texture memory in the GPU has 4 channels for RGB and Alpha, 4 slices of the axial 

scans were simultaneously processed at any given time. 



 

 62 
 

 

Figure 4.8 CT reconstruction using the PS algorithm on CUDA enabled GPU 
 



 

 63 
 

Figure 4.8 gives an overview of the overall reconstruction process. The PS algorithm 

explained in section 2.5 is repeated here for convenience. 

 

∑

∑ ∑

=

= =+
−

+= Ny

i
iiij

Ny

i

K

k
k

n
kkj

n
iij

n
j

n
j

yaa

Cwcha

1

1 11
][ µβ

µµ
                (4.1) 

yebh ii

n

i

Nx

j
jijua −∑= =

−
1                                 (4.2) 

Here ‘i’ is a ray counter varying from 1 to ‘Ny’.  ‘j’ is a pixel counter varying from 1 

to ‘Nx’.  ‘bi’ is an estimate of the initial number of photons from the air scan. ‘aij’ is a 

measure of the length of intersection of the ith  ray with the jth pixel. ‘yi’ is the value 

of the sinogram for the ith ray. ‘µj’ represents the value of the jth pixel. And a 

superscript gives the iteration number for any of the variables. ’β’ is the scaling factor 

for the penalty function and the penalty function is as described in [5].  

 
The algorithm consists of 4 main parts: 

• One time calculation of the normalizing factor (denominator of equation) 

• One forward projection per iteration. (i.e calculation of 
∑
=

Nx

j
jijua

1 ) 

• One back projection per iteration. (i.e calculation of ∑
=

Ny

i

n
iijha

1
) 

• Calculation of penalty function and image update. 



 

 64 
 

Each of these operations is performed in a separate GPU kernel. For each operation, 

the individual threads always perform the gather operation, i.e., each of the results is 

assigned to an individual thread. Hence, for the forward projection each thread 

calculates the contribution of a single ray (i.e. one value in each of the stack of 4 

sinograms). For back projection, each thread calculates the image update value for a 

single pixel in each of the 4 images. In the following sections, we explore some of the 

salient features of each of the 4 operations. 

 

4.2.3.1 Forward Projection: 

For the forward projection operation, each of the threads calculates the value of hi
n 

(equation 4.2) for one particular value of ‘i’. For the forward projection operation, the 

sinograms are stored in the device memory. The ‘image estimate’, from which the 

‘sinogram estimate’ is to be calculated, is loaded into the texture memory. The 4 

images are loaded into the 4 channels of the texture memory. The sinogram is first 

divided into a grid as shown in figure 4.9.  



 

 65 
 

 

Figure 4.9 The arrangement of threads in a grid for forward projection on the GPU 
 

Each block in the grid consists of 16 × 16 rays and corresponds to a block of threads 

in CUDA. Each thread first calculates the position of each of the sample points along 

its ray. The value of the image at the sample point is obtained by using the hardware 

bilinear interpolation in the texture memory. These values are then summed together 

to obtain the forward projection values. Each thread then reads the corresponding ray 

value in the original sinogram(yi) from the device memory, calculates hi
n and stores it 

back in the device memory. Figure 4.10 demonstrates the forward projection 

implementation. 



 

 66 
 

Each GPU thread processes a single ray 
in the sinogram. The ray is first uniformly 

sampled.

Each thread 
rotates points 
on its ray by 
view angle

Vi
ew

s

Detectors

Block of 16 X 
16 Threads.

One Thread 
per Sinogram 
Value

vk =  bilinear_interpolation(u1,u2,u3,u4)

u2

u1

The values of the 4 images at the points along the ray are 
calculated by interpolation of the neighboring pixel values 

using the 4 channels of the texture hardware.

Each thread sums all 
image values at points 

along its ray to

 obtain sinogram value 
at that ray location on 

all four sinograms.

 
Figure 4.10 The forward projection mechanism on the GPU 

 

 



 

 67 
 

4.2.3.2 Back Projection: 

For the back projection operation, each of the threads calculates the value of 

∑
=

Ny

i

n
iijha

1
 (equation 4.1) for one particular pixel, ‘j’ in all 4 image slices. The values 

of hi
n calculated by the forward projection operation are stored in the device memory. 

For each of the views, it is now required to smudge back the his over the entire image. 

For each pixel, the contribution from each of the views is to be summed to obtain the 

‘image update’ estimate. As explained in section 3.2.4, the back projection operation 

would require the following steps, 

1) Load one  row of the sinogram.(Each row corresponds to a view) 

2) Back Project (Smudge back) the row onto the entire image. 

3) Rotate these values by the view angle ‘θ’. 

4) Load these rotated values into the texture memory. 

5) Estimate the contribution of this view to every pixel by bilinear interpolation. 

6) Add the resulting pixel-updates to the pixel updates from the previous views. 

7) Repeat steps ‘1’ to ‘6’ for every view in the sinogram. 

From the aforesaid procedure, it is clear that the back projection operation is 

extremely complicated as compared to the forward projection operation. The total 

number of memory copy and texture memory load operations equal to the number of 

views in the sinogram. 

 

We used a more sophisticated approach to solve this problem. There is a lot of data 

redundancy in the back projection operation. One can easily notice that when each 



 

 68 
 

view of the sinogram is back projected (smudged back) onto points that are uniformly 

distributed along the rays, the value of each row of points equals the value of the 

original view. Thus, there is plenty of data redundancy.  

 

For views at varying projection angles θ, we can either rotate the view by an angle θ 

or rotate the image by an angle of ‘2π – θ’. Considering we rotate the image, we can 

observe the following: 

1) The value at any pixel center is obtained by interpolating between the 

immediately upper and lower rows of back projected values. 

2) All the back projected rows have the same value. 

3) For correct interpolation, the relative position of the pixel center with respect 

to the back projected rows immediately above and below the pixel center 

position is important. The absolute position of the pixel center however is 

immaterial. 

Hence instead of actual back projection, we propose to just replicate the value of each 

row of the sinogram once. Then, all the pixel centers in the image are moved along 

the view direction to a new position in between these two rows such that the relative 

position between the rows and the pixel center remains unchanged. Simple bilinear 

interpolation now gives the back projected value at every pixel center for this 

particular view. 



 

 69 
 

uk=bilinear_interpolation(v1-v4)

yj
yj

a

a

uk=bilinear_interpolation(v1-v4)

v2

v1

uj= bilinear_interpolation(v1-v4)

Rotate image instead of 
projections.

Move pixel locations such 
that relative position 

between back projected 
rows remains unchanges.

 

Figure 4.11 The back projection mechanism on the GPU 



 

 70 
 

This method gives us two specific advantages, 

1) Only 1 replication of any view is required for back projection. This is 

equivalent to removal of all redundancy in the back projection operation. 

2) The back projected sinogram views are not rotated. Instead the image is 

rotated in the opposite direction for each back projection. 

These improvements translate to considerable savings in terms of memory bandwidth. 

Suppose a sinogram consists of ‘N’ views with ‘D’ detectors, a back projected view 

will consist of ‘D’ × ‘D’ values. ‘N’ similar views are typically required to complete 

the back projection operation. However, by replicating each row once, we only need 

‘N’ × ‘D’ × 2 values to complete the entire back projection. Thus, the total memory 

required is only ‘2/D’ times the original memory.  The algorithm is now implemented 

as follows. 

1) Replicate each row of the sinogram (The new sinogram is called the 

‘Extended Sinogram’). 

2) Load the extended sinogram into the texture memory. 

3) For each view θ, rotate the image pixel centers by ‘2π-θ’. 

4) Move each of the pixel centers along the view direction (vertically) such that 

they lie within the two rows corresponding to that view of the extended 

sinogram. 

5) Estimate the contribution of this view to every pixel by bilinear interpolation. 

6) Add the resulting pixel-updates to the pixel updates from the previous views. 

7) Repeat steps ‘3’ to ‘6’ for every view in the sinogram. 



 

 71 
 

The updated algorithm now reduces the number of memory copy operations for back 

projection of one view of the sinogram from ‘Nd-1’ to ‘1’, where ‘Nd’ is the number 

of detectors. It also reduces the number of texture memory loads from ‘Θ’ to ‘1’, 

where ‘Θ’ is the total number of views. Figure 4.11 depicts the algorithm. 

 

For implementation of the algorithm, the image was divided into 16 × 16 blocks. 

Each CUDA thread block corresponded with a block in the image. Figure 4.12 gives 

the grid scheme for the back projection operation. Since 4 sinograms for each of the 4 

slices were transferred to the texture memory, the back projection operation gave the 

image updates to all 4 image slices in the GPU. The bilinear interpolations for the 4 

slices were again performed using the 4 channels of the texture memory. 

P
ix

el
s

Pixels

Block of 16 X 16 
Threads.

One Thread per 
image pixel

 

Figure 4.12 The arrangement of threads in a grid for back projection on the GPU 
 



 

 72 
 

4.2.3.3 Penalty Function and Image update: 

The image slice was again divided into 16 × 16 blocks and each thread in a CUDA 

block processed a pixel of the image block. Each thread computed the penalty value 

for that particular pixel. The back projected values were available in the device 

memory. The threads used these values along with the pre-computed denominator 

values to update the image as required in equation 4.1 and thus complete the iteration.  

4.3 Termination condition 

For any iterative algorithm to be used in practice, it is important for the algorithm to 

be monotonic and converge to a unique solution. However, it is also important to 

have a well defined termination condition to ensure that enough number of iterations 

is completed and unnecessary iterations are avoided. The termination condition also 

should not be computationally expensive since it does not contribute directly to the 

reconstruction process. 

 

We compare the image update after every iteration, to the image value at the end of 

the previous iteration to check the rate of image update. Since CT value of air is -

1000 and that of bone is 1000; thereby giving a minimal resolution of 1/2000=0.0005; 

we decide to terminate iterations when the average image pixel update is less than 

0.05% of the original value. Hence, if the rate of change of the image is less than 

0.05%, then we know that the image has converged and any future iteration will not 

considerable benefit the quality of the image. The termination condition may 

therefore be defined as follows: 



 

 73 
 

05.0100
)( 1

<
−

∑
∑ +

j

n
j

j

n
j

n
jabs

µ

µµ

                            (4.3) 

where n
jµ  is the value of the jth  pixel after the nth iteration. 

We can note here that the subtraction is not required during the actual reconstruction 

as 1+n
jµ  is calculated as, 

update
n
j

n
j µµµ +=+1

                                       (4.4) 

Hence the computation of the termination condition only involves two reduction 

operations and one division operation. 

 

For the ordered subsets version of the algorithm, it is important to note that the image 

converges faster per iteration and the rate of change is accelerated by a factor almost 

equal to the number of subsets per iteration. Hence we still maintain the 0.05% rate of 

change in image for the termination condition, but we ensure that this rate of change 

holds for every subset in the iteration. So the modified termination condition 

becomes, 

    
05.0100

1

<
−

∑
∑ +

j

n
j

j

n
j

n
j

M µ

µµ

                          (4.5)               

where M represents the number of subsets per iteration. The other symbols are as 

described in equation (4.3). Here we ensure that the average rate of change per subset 



 

 74 
 

over all the subsets of the iteration is less than 0.05%. This termination condition is 

calculated only once per iteration after all the subsets are completed. This ensures that 

the algorithm does not terminate mid-way through an iteration.  



 

 75 
 

Chapter 5:  Results and Conclusions 

5.1 Reconstructed Image Quality for various hardware platforms 

We have introduced two hardware platforms for acceleration in this thesis. One is the 

multi-processor cluster and the other is the GPU. The ray-tracing based 

implementation of the PS algorithm was mapped to both the multi-processor cluster 

as well as the GPU as explained in sections 4.1 and 4.2. Projections were created 

from a scanner image to obtain 672 × 580 sinograms. The sinograms thus obtained 

were reconstructed on both the platforms.  

 

The figure 5.1 below compares the quality of the reconstructed images after each 

iteration of the PS algorithm using the PSNR as a metric. While the blue continuous 

curve represents the single processor implementation, the pink broken curve 

represents the multi-processor implementation. The red curve gives the GPU based 

implementation. We can clearly see that the multi-processor implementation gives 

exactly the same results as the single processor implementation. This is expected as 

all the nodes in the cluster have the same specifications and every processor is exactly 

the same. Further, there is no modification of the algorithm itself for parallelization 

across the nodes. Interestingly the GPU, despite its single precision accuracy, gives a 

slightly higher PSNR for the reconstruction images as compared to the general 

purpose computer based implementations. However, since PSNR alone is not a very 

reliable metric of actual image quality, we also use the Q index to compare the 

images. 



 

 76 
 

Reconstruction Quality (OSEM 1)

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Iteration No.

PS
N

R
 (d

B
)

CPU Cluster GPU
 

Figure 5.1 Quantitative comparison of the images reconstructed using the CPU, 
Cluster and the GPU with sinograms of 672 × 580 using PSNR as the metric 

 

Figure 5.2 compares the quality of the reconstructed images using the Q index as the 

metric. Here again it is obvious that the GPU and the cluster based solutions are 

comparable to, if not better than, the single processor implementations.  

 

We can notice that the single subset per iteration implementation of the PS algorithm, 

though monotonically increasing is slow in convergence. To enable faster 

convergence, multiple subsets were used per iteration as explained in [5]. Figures 5.3 

and 5.4 compare the quality of the reconstructed images when 10 Ordered Subsets are 



 

 77 
 

used per iteration. We again use both the PSNR as well as the Q index as the metrics 

to compare the quality of the reconstructed images. 

Reconstruction Quality (OSEM1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Iteration No.

Q
in

de
x

CPU Cluster GPU
 

Figure 5.2 Quantitative comparison of the images reconstructed using the CPU, 
Cluster and the GPU with sinograms of 672 × 580 using Qindex as the metric 

 



 

 78 
 

Reconstruction Quality (OSEM 10)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iteration No.

PS
N

R
 (d

B
)

CPU Cluster GPU  
Figure 5.3 Quantitative comparison of the images reconstructed using the CPU, 

Cluster and the GPU using PSNR as the metric and 10 Ordered Subsets 
Reconstruction Quality (OSEM 10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iteration No.

Q
in

de
x

CPU Cluster GPU  

Figure 5.4 Quantitative comparison of the images reconstructed using the CPU, 
Cluster and the GPU using Qindex as the metric and 10 Ordered Subsets 

 



 

 79 
 

It is clear that the quality of the images reconstructed using the cluster is the same as 

the single CPU. However, the PSNR metric suggests a slightly improved image 

quality for GPU-based reconstruction, while the Q index suggests a slight decrease in 

image quality. However, the reconstructed image quality does not vary much from the 

single CPU implementation. 

 

For qualitative evaluation, figures 5.5 and 5.6 display the resulting images for the 

cluster and the GPU based reconstruction after 100 iterations of the OSEM1 

algorithm and 30 iterations of the OSEM10 algorithm when the images have 

stabilized. The original CPU based reconstruction results are exactly the same as the 

cluster based results and are hence not displayed. 

 

From the images we can clearly notice that the GPU-based reconstruction converges 

to the same solution as the Cluster and the software based approaches. A slight 

difference in the sharpness of the reconstructed images gives the slight difference in 

the resulting PSNR. This can be corrected by running a few more iterations of the 

algorithm or using a simple edge preserving penalty function as described in 

[5][12][14] etc. 



 

 80 
 

 
Figure 5.5 Image reconstructed after 100 iterations of PS (OS-1) on CPU/Cluster 

 

 
Figure 5.6 Image reconstructed after 100 iterations of PS (OS-1) on GPU 



 

 81 
 

       
Figure 5.7 Image reconstructed after 30 iterations of PS (OS-10) on CPU/Cluster 

 

 
Figure 5.8 Image reconstructed after 30 iterations of PS (OS-10) on GPU 

 



 

 82 
 

 
Figure 5.9 Difference image between 100 iterations of PS (OS-1) on CPU/Cluster 

and GPU 
 

 
Figure 5.10 Difference image between 30 iterations of PS (OS-10) on CPU/Cluster 

and GPU 



 

 83 
 

5.2 Speed-up for hardware based solutions 

It is clear from section 5.1 that both the GPU as well as the cluster based solutions 

provide good quality reconstructed images for transmission CT. We compared the 

reconstruction time for each of the techniques as follows. The CPU, cluster and GPU 

based implementations were used to run 100 iterations of the PS algorithm on 

sinograms of various sizes. In each case, the total time taken for execution (except the 

time taken to load the sinogram) was recorded. The time included the time taken for 

inter-processor communication as well as the time to write the images to disk. The 

time taken to load the sinograms always remained constant at about 1 second. 

 

The time per iteration was calculated as the Total time/ No. of iterations. Table 5.1 

gives the time per iteration, the speedup in comparison to the CPU implementation 

with one sub-set per iteration and the total throughput. It is clear that the larger the 

sinogram and the reconstructed image, the better the speed-ups achieved. It can also 

be seen that the total throughput achieved is 4 times the speedup. This is because the 

GPU is capable of processing 4 slices at any given time utilizing the 4 channels of the 

texture memory. Even at extremely large sinogram sizes of 1498 × 580 and 

reconstruction image size of 1024 × 1024 pixels, the GPU gives a throughput of 9 

iterations per second. For normal reconstructed image sizes of 512 × 512, the GPU 

gives a throughput of about 37 iterations per second.  



 

 84 
 

Cluster (OS 1)
Cluster (OS

10) Cluster (OS
15) GPU (OS 1)

GPU (OS 10)
GPU (OS 15)

21.78
8.23

6.44

415.17

211.93

166.46

22.39
8.20

6.31

366.94

185.33

150.63

21.48
6.94

4.78

277.76

123.24

96.58

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Sp
ee

du
p

Hardware Acceleration

Sino 367 X 400 Image 256 X 256 Sino 672 X 580 Image 512 X 512 Sino 1498 X 580 Image 1024 X 1024 
 

Figure 5.11 Hardware acceleration achieved for various reconstruction geometries 
using the Cluster and the GPU 

 

We can notice that as the number of subsets per iteration increases, the speed-up 

achieved reduces drastically in the case of the Cluster. For 1 subset per iteration, the 

Cluster of 32 processors manages to give a speedup of about 22X over the single  



 

 85 
 

 

 

Table 5.1 Hardware acceleration (Speedup and throughput) achieved for various 
reconstruction geometries using the Cluster and the GPU 

 

CPU implementation. However, as the number of subsets per iteration increase, the 

contribution of the accelerated forward and back projection operations decreases as 

compared to the inter-processor communication. Therefore we can see a large hit in 

the speed-ups achieved at higher orders of subsets. It is hence clear that the amount of  

Sinogram 
Size 

(Detectors 
x Views) 

Reconstructed 
Image Size Platform 

No of slices 
reconstructed 

Subsets 
/Iteration 

Time/ Iteration 
(s) Speedup 

CPU 1 6.68 1.00 
CPU 10 6.68 1.00 
CPU 

1 
15 6.68 1.00 

Cluster(32) 1 0.31 21.48 
Cluster(32) 10 0.96 6.94 
Cluster(32)

1 
15 1.40 4.78 

GPU 1 0.02 277.76 
GPU 10 0.05 123.24 

367 X 400 256 X 256 

GPU 
4 

15 0.07 96.58 
CPU 1 39.06 1.00 
CPU 10 39.08 1.00 
CPU 

1 
15 39.08 1.00 

Cluster(32) 1 1.74 22.39 
Cluster(32) 10 4.76 8.20 
Cluster(32)

1 
15 6.19 6.31 

GPU 1 0.11 366.94 
GPU 10 0.21 185.33 

672 X 580 512 X 512 

GPU 
4 

15 0.26 150.63 
CPU 1 184.38 1.00 
CPU 10 196.01 0.94 
CPU 

1 
15 193.30 0.95 

Cluster(32) 1 8.47 21.78 
Cluster(32) 10 22.40 8.23 
Cluster(32)

1 
15 28.64 6.44 

GPU 1 0.44 415.17 
GPU 10 0.87 211.93 

1498 X 
580 1024 X 1024 

GPU 
4 

15 1.11 166.46 



 

 86 
 

0%

20%

40%

60%

80%

100%

CPU (1
 O

S)

CPU (1
0 O

S)

CPU (1
5 O

S)

GPU (1
 O

S)

GPU (1
0 O

S)

GPU (1
5 O

S)

Clus
ter

 (1
OS)

Clus
ter

 (1
0 O

S)

Clus
ter

 (1
5 O

S)

Execution Time split-up

other
Back Projection
Forward Projection

 

Figure 5.12 Split-up of execution time for various reconstruction geometries on the 
CPU, Cluster and GPU 

 

acceleration that can be achieved by using groups of processors in parallel is severely 

limited by the inter-processor communication latencies. Figure 5.12 displays the 

percentage of total time spent in each of the operations for various numbers of 

Ordered Subsets. 

 

However, the reduction in speed-ups is not so drastic in the case of the GPU. This is 

due to two main reasons: 

1) Unlike the cluster based implementation, the GPU implementation parallelizes 

all portions of the algorithm including the image update and penalty function 

calculation. 



 

 87 
 

2) The inter-thread communication in the GPU is achieved simply via a global 

read from the device memory. This is much faster than the inter-processor 

communication over external networks in the case of the cluster. 

Yet another observation is that though the time taken for forward projection increases 

with increase in the number of subsets in the GPU, the percent of time taken for the 

back-projection operation actually decreases. This is because the back-projection 

operation is implemented using the concept of the ‘extended sinogram’ as explained 

in section 4.2.3.2. The bandwidth and the computation necessary for this 

implementation are directly proportional to the number of views used for back-

projection. This lack of additional overhead results in the total time for back-

projection to remain the same in spite of varying number of subsets per iteration. 

 

Table 5.2 gives the exact time taken for the various operations across the platforms 

and using varying number of subsets per iteration. 

    Total 

Forward 
Projection 

(s) 

Forward 
Projection 

(%) 

Back 
Projection 

(s) 

Back 
Projection 

(%) 
other 

(s) 
other 
(%) 

OSEM1 184.38 97.81 53.05 85.82 46.55 0.75 0.41 
OSEM10 196.00 98.19 50.10 95.84 48.90 1.97 1.01 CPU 
OSEM15 193.30 98.45 50.93 92.12 47.66 2.73 1.41 
OSEM1 0.44 0.22 49.72 0.22 49.85 0.00 0.44 
OSEM10 0.87 0.62 71.46 0.23 26.34 0.02 2.20 GPU 
OSEM15 1.11 0.85 76.36 0.23 21.05 0.03 2.59 
OSEM1 8.47 3.50 41.35 3.63 42.87 1.34 15.78
OSEM10 22.41 4.50 20.09 3.65 16.28 14.26 63.63Cluster 
OSEM15 28.64 7.29 25.45 6.98 24.39 14.37 50.16

Table 5.2 Distribution of time across various operations for reconstruction of PS 
algorithm on various platforms 



 

 88 
 

Thus it is clear that the ray-tracing algorithm implemented on the GPU using the 

‘extended sinogram’ is a inexpensive and an excellent platform for acceleration of 

iterative algorithms for CT reconstruction. 

 

Figure 5.13 gives a comparison of the speed-ups achieved by various groups using 

GPU’s. The speed-ups are all for images reconstructed at 256×256×256, 

reconstructed using different algorithms and different GPU hardware. 

GPU Based Speed-ups

0

50

100

150

200

250

300

Mueller-SART-
Vol (2000)

Mueller-FDK-
Vol (2004)

Xue-FBP-Slice
(2007)

Xue-FDK-Vol
(2007)

Kole-Convex-
Vol (2006)

Bhat-PS-Slice
(2008)

Sp
ee

d-
up

 
Figure 5.13 Comparison of speed-ups achieved using various algorithms on GPUs. 

 

5.3 Speed-up with variation in number of ordered subsets 

From the results above, it is clear that the GPU is an excellent platform for 

acceleration of the PS algorithm. However, it can be noticed that the images converge 

faster with the increase in the number of subsets per iteration. It is obvious that 



 

 89 
 

arbitrarily large number of subsets cannot be used to get improved quality as the 

number of projections per subset decreases with the increase in the number of subsets.  

 

Figure 5.14 demonstrates the variation of the reconstructed image PSNR after just 1 

iteration with varying number of subsets for a sinogram with 672 detectors and 580 

view angles. It is clear that quality of the reconstructed images improves 

monotonically till about 8 views/subset or 70 subsets per iteration. Beyond that, the 

quality of the reconstructed image after 1 iteration is not monotonic and varies widely 

depending on the distribution of the subsets.  

 
 

Variation of PSNR with no. of ordered subsets(1 iteration)

15

17

19

21

23

25

27

29

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

No. of Ordered Subsets

PS
N

R
 (d

B
)

 
Figure 5.14 Variation of PSNR with the number of subsets after 1 iteration of the 

PS algorithm using 672 × 580 sinogram. 
 
 
 
 



 

 90 
 

Figure 5.15 demonstrates the time for reconstruction of a single iteration of the image 

at a 512 × 512 resolution with varying subsets. The reconstruction time linearly 

increases with the increase in the number of subsets. Thus, increasing the number of 

ordered subsets does not give any benefit beyond a certain point. 

 
Reconstruction time ( 1 iteration)

0

100

200

300

400

500

600

700

800

900

1000

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

No. of oredered subsets

Ti
m

e 
(m

s)

 
Figure 5.15 Variation of reconstruction time per iteration with the number of 

ordered subsets for the PS algorithm on the NVIDIA 8800GTX GPU 
 

Table 5.3 gives the time for reconstruction as well as the PSNR for a 512 × 512 

image reconstructed from the 672 × 580 sinogram. It is clear that with about 50-70 

subsets per iteration, reasonable quality images can be obtained after just a single 

iteration on the GPU.  

 

 



 

 91 
 

No. of 
subsets 

Reconstruction 
Time/iteration - 4 slices 

(ms) 

Reconstruction 
Time/iteration - 64 

slices (s) 

PSNR after 
1 iteration 

(dB) 
10 215 3.44 20.12 
15 263 4.21 21.25 
20 283 4.53 22.08 
25 342 5.47 22.73 
30 396 6.34 23.27 
35 399 6.38 23.73 
40 405 6.48 24.16 
45 451 7.22 24.42 
50 496 7.94 24.82 
55 537 8.59 25.08 
60 579 9.26 25.17 
65 623 9.97 25.35 
70 668 10.69 25.97 
75 712 11.39 25.22 
80 758 12.13 26.31 
85 801 12.82 24.71 
90 838 13.41 25.68 
95 882 14.11 26.89 
100 928 14.85 23.97 

Table 5.3 Reconstruction time and image quality after 1 iteration on 672 × 580 
sinogram with image resolution of 512 × 512 pixels 

 

Figure 5.16 shows the image after a single iteration of the PS algorithm using 70 

subsets. It is clear that images of reasonable quality can be obtained using a high 

number of subsets per iteration after just a single iteration of the PS algorithm. 

 

 



 

 92 
 

 
Figure 5.16 Reconstructed image after 1 iteration of PS (OS-70) on GPU using a 

sinogram of 672 detectors and 580 views. 
 

5.4 Termination condition 

To verify the effectiveness of the termination condition proposed in section 4.3, we 

create sinograms from a known image. The proposed implementation of the PS 

algorithm is them run on these sinograms for about 75 iterations using various 

numbers of subsets per iteration. The PSNR of the images reconstructed after every 

iteration is then calculated using the known image as the benchmark. The number of 

iterations required for reconstruction as proposed by our termination condition in 

equations 4.3 and 4.5 is then computed. The condition is then checked against the 



 

 93 
 

PSNR to ensure that the images have converged as predicted by the termination 

condition. 

 

Figures 5.17 and 5.18 give the termination condition as predicted by our method 

along with the PSNR curve. We can see that the termination condition correctly 

predicts the number of iterations required to ensure that the image has converged to a 

stable solution. 

Termination Condition vs. PSNR (OS 10)

20.00

21.00

22.00

23.00

24.00

25.00

26.00

27.00

28.00

29.00

30.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Iteration Number

PS
N

R
 (d

B
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

e 
of

 U
pd

at
e 

(%
)

PSNR termination Rate of Update  

Figure 5.17 Plot displaying the termination condition, rate of image update and the 
PSNR for an image reconstructed using a sinogram of 672×580 and reconstructed 

at 512×512. 



 

 94 
 

Termination Number vs. PSNR (OS 15)

20.00

21.00

22.00

23.00

24.00

25.00

26.00

27.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Iteration Number

PS
N

R
 (d

B
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

e 
of

 U
pd

at
e 

(%
)

PSNR termination Rate of Update  

Figure 5.18 Plot displaying the termination condition, rate of image update and the 
PSNR for an image reconstructed using a sinogram of 672×580 and reconstructed 

at 512×512. 
 

Sinogram Image Subsets/Iteration 

Iterations 
to 

converge 
Time per 
slice (s) 

1 170 12.34 
10 18 2.99 
15 12 2.89 
20 9 2.00 
25 7 1.89 
30 6 1.90 
35 6 2.15 

  1498 x 580 
 

1024 x 1024 
 

50 4 2.02 
10 23 1.44 
15 16 1.44 
20 12 1.04 
25 10 1.05 
30 8 1.00 
35 7 1.01 
40 6 1.00 

1498 x 580 512 x 512 

45 6 1.07 
Table 5.4 Reconstruction time for 1024x1024 image slice using the proposed 

termination condition on the GPU. 
 



 

 95 
 

The table 5.4 gives the time taken for reconstruction using the termination conditions 

described in equations (4.3)-(4.5) and real sinogram data from the scanner. It must be 

noted that the time indicated includes the time taken to load the sinogram as well as 

store the image. From the table it is clear that as the number of ordered subsets 

increases per iteration, the time per iteration also increases. However, the number of 

iterations required for reconstruction decreases. From the table it is also clear that 

using 25 subsets per iteration gives the most efficient reconstruction time of about 1.9 

sec per slice for a 1024 × 1024 image. Similarly 8 iterations of OS-30 give an optimal 

trade-off for the image reconstructed at 256 × 256. Figure 5.19 pictorially depicts the 

optimal reconstruction configuration. 

Reconstruction Time vs. Subsets/iteration

0

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25 30 35

Subsets/Iteration

Ti
m

e 
pe

r s
lic

e 
(s

)

0

2

4

6

8

10

12

14

16

18

20

Ite
ra

tio
ns

 to
 C

on
ve

rg
e

Time per slice (s) Iterations to converge
 

Figure 5.19 Optimal number of ordered subsets for reconstruction of 1024 × 1024 
image. 

 
Figures 5.18  displays the reconstructed image using 25 subsets per iteration and after 

7 iterations as predicted by the termination condition. 



 

 96 
 

 

Figure 5.20 Image reconstructed using 7 iterations of OS-25 using 1498 × 580 
sinograms at 1024 × 1024 pixels 



 

 97 
 

 

5.5 Conclusions and future work 

In this thesis, we have demonstrated that the GPU is an excellent, yet inexpensive 

platform for fast reconstruction of low-dose scans that can be used for navigation and 

guidance in image-guided interventions. This method of reconstruction is also 

extremely useful for evolving techniques such as Live Augmented Reality. We have 

also demonstrated that though a limited number of CPU nodes working in parallel 

give excellent speed-ups, the inter processor communication becomes the bottleneck 

as the number of ordered subsets increases. The same is the case with the increase of 

the number of nodes in the cluster. Also, the GPU gives a better performance at a 

comparable quality and is economically more viable than a cluster of computers. 

 

Future work would involve partnering with one of the CT scanner vendors for 

transferring the GPU based iterative reconstruction technology proposed here on the 

scanners for low-dose reconstruction. More work would also be required to ensure 

complete removal of artifacts from metal objects in the scanned images. The tracking 

information that is collected during laparoscopic procedures such as Live Augmented 

Reality can be effectively used for removal of metal artifacts from the reconstructed 

images. Multiple GPU’s can also be used in the scanner to reconstruct various slices 

to ensure yet faster reconstruction without significantly increasing the cost of the 

system. A thorough study using a large number of actual clinical cases on human 

subjects would be required before the system can qualify for use during actual 

procedures. 



 

 98 
 

Bibliography 
 
1. Brenner DJ, Elliston CD, Hall EJ, et al. Estimated risks of radiation-induced fatal 

cancer from pediatric CT. AJR 2001;176:289-296.  

2. Brenner D J, Elliston CD, Estimated Radiation Risks Potentially Associated with 

Full-Body CT Screening, Radiology v.232, n.3, Sept 2004. 

3. Ni, Jun; Li, Xiang; He, Tao; Wang, Ge , Review of Parallel Computing 

Techniques for Computed Tomography Image Reconstruction, Current Medical 

Imaging Reviews, Volume 2, Number 4, November 2006 , pp. 405-414(10) 

4. Kak A C, Slaney M., Principles of computerized tomographic imaging. SIAM 

2001. 

5. Erdogan H, Fessler J, Monotonic Algorithms for Transmission Tomography, 

IEEE trans. Med. Imag., vol 18, No. 9, Sept 1999. 

6. H Erdogan, G. Gualtieri, and J. A. Fessler. An ordered subsets algorithm for 

transmission tomography. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., 1998. 

7. J. A. Fessler, Grouped coordinate descent algorithms for robust edge-preserving 

image restoration. In Proc. SPIE 3170, Im. Recon. and Restor. II, pages 184–94, 

1997. 

8. Rockmore AJ, Macovski A. A maximum likelihood approach to image 

reconstruction. IEEE Trans. Nucl. Sci. 1976; NS-23: 1428-1432.  

9. Shepp LA, Valdi Y. Maximum likelihood reconstruction for emission 

tomography. IEEE, Trans. Med. Imag. 1982; MI-1: 113-122.  

10. Lange K, Carson R. EM reconstruction algorithms for emission and transmission 

tomography. J. Comput. Assist. Tomog. April 1984; 8(2): 302-316.  



 

 99 
 

11. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique 

(SART): A superior implementation of the ART algorithm. Ultrasonic Imaging. 

1984; 6: 81-94.  

12. Lange K, Fessler JA. Globally convergent algorithms for maximum a posteriori 

transmission tomography. IEEE Trans. Image Processing. 1995; 4 (10): 1430-

1438.  

13. Kamphuis C, Beekman FJ. Accelerated iterative transmission CT reconstruction 

using an ordered subsets convex algorithm. IEEE Trans. Med. Imaging. 

December 1998; 17 (6).  

14. Erdogan H, Fessler JA. Ordered subsets algorithms for transmission tomography. 

Phys. Med. Biol. 1999; 44(11).  

15. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets 

of projection data. IEEE Trans. Med. Imag. 1994; 13: 601-609.  

16. Xu F. Tomographic Reconstruction using graphics hardware. Nov. 2003.  

17. Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographic 

reconstruction using texture mapping hardware. In Proceedings of the 1994 

symposium on Volume visualization. Tysons Corner. 1994; 91-98.  

18. Chidlow K, Möller T. Rapid emission volume reconstruction. Volume Graphics 

Workshop. 2003.  

19. Mueller K, Yagel R. Rapid 3-D cone-beam reconstruction with the simultaneous 

algebraic reconstruction technique using 2-D texture mapping hardware. IEEE 

Trans. Med. Imag. 2000; 19: 1227-1237.  



 

 100 
 

20. Guerrini C, Spaletta G. An image reconstruction algorithm in tomography: A 

version for the CRAY X-MP vector computer. Computers and Graphics. 1989; 

13: 367-372.  

21. Miller M, Butler C. 3-D maximum a posteriori estimation for single photon 

emission computed tomography on massively-parallel computers. IEEE Trans. 

Med. Imag. 1993; 12: 560-565.  

22. McCarty A, Miller M. Maximum likelihood SPECT in clinical computation times 

using mesh-connected parallel computers. IEEE Trans, Med. Imag. 1991; 10: 

426-436.  

23. Atkins MS, Murray D, Harrop R. Use of transputers in a 3-D positron emission 

tomography. IEEE Trans. Med. Imag. 1991; 10 (3): 276-283.  

24. Chen CM, Lee SY, and Cho ZH. A parallel implementation of 3-D CT image 

reconstruction on hypercube multiprocessor. IEEE Trans. Nucl. Sci. 1990; 37 (3): 

1333-1346.  

25. Backfrieder W, Benkner S, Engelbrecht G. Web-based parallel ML_EM 

reconstruction for SPECT on SMP clusters. In Proceeding of the International 

Conference on Mathematics and Engineering Techniques in Medicine and 

Biological Science, Las Vegas, Nevada, CSREA Press. 2001.  

26. The message passing interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi  

27. Li X, Ni J, Wang G. Parallel iterative cone-beam CT image reconstruction on a 

PC cluster. Journal of X-Ray Science and Technology. 2005; 13: 1-10.  



 

 101 
 

28. Shahidi et. al., Implementation, calibration and accuracy testing of an image-

enhanced endoscopy system, IEEE Trans. Med. Imag., Dec 2002,Volume: 21, 

Issue: 12, p1524- 1535 

29. F. Xu and K. Mueller, Real-time 3D computed tomographic reconstruction using 

commodity graphics hardware Physics in Medicine and Biology, 2007. 

30. F. Xu and K. Mueller, Accelerating popular tomographic reconstruction 

algorithms on commodity PC graphics hardware, IEEE Trans. Nucl. Sci., vol. 52, 

no. 3, pp. 654-663, 2005. 

31. N. Neophytou, F. Xu and K. Mueller, Hardware acceleration vs. algorithmic 

acceleration: can GPU-based processing beat complexity optimization for CT?, 

SPIE Medical Imaging’07, 2007. 

32. F. Xu and K. Mueller, A comparative study of popular interpolation and 

integration methods for use in computed tomography, IEEE International 

Symposium on Biomedical Imaging, 2006. 

33. F. Xu and K. Mueller, Towards a unified framework for rapid 3D computed 

tomography on commodity GPUs, IEEE Medical Imaging Conference, 2003. 

34. Benson T.M.,Gregor J., Framework for Iterative Cone Beam MicroCT 

Reconstruction, IEEE trans. Nucl. Sci.,Vol. 52, No. 5, Oct 2005. 

35. Feuerstein M. et al., Intraoperative Laparoscope Augmentation for Port Placement 

and Resection Planning in Minimally Invasive Liver Resection, IEEE trans. Med. 

Imag.,Vol 27.,No. 3, Mar 2008. 

36. Rajan K,Patnaik L.M. et al., Linear Array Implementation of the EM Algorithm 

for PET Image Reconstruction., IEEE trans. Nucl. Sci.,vol 42,No 4, Aug 1995. 



 

 102 
 

37. Zeng G.L. et al., A MAP Algorithm for Transmission Computed Tomography, 

Nuclear Science Symposium and Medical Imaging Conference, 1993., p1202-

1204. 

38. P Toft,A very fast Implementation of 2D Iterative Reconstruction Algorithms, 

Nuclear Science Symposium, 1996. Conference Record., 1996 IEEE, Vol 3, 

p1742-1746. 

39. Mueller K, Xu F, Neophytou N., Why do Commodity Graphics Hardware Boards 

(GPUs) work so well for Acceleration of Computed Tomography?, SPIE 

Electronic Imaging 2007, Computational Imaging V Keynote. 

40. Scherl H. et al., Fast GPU-Based CT Reconstruction using the Common Unified 

Device Architecture (CUDA), Medical Imaging Conference, Honolulu, 

November 2007. 

41. H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik, and J. 

Hornegger. Implementation of the FDK algorithm for cone-beam CT on the Cell 

Broadband Engine Architecture. In J. Hsieh and M. Flynn, editors, Proceedings of 

SPIE Medical Imaging 2007: Physics of Medical Imaging, volume 6510, page 

651058, San Diego, February 2007.  

42. Message Passing Interface (MPI),SP Parallel Programming 

Workshop,http://www.mhpcc.edu/training/workshop/mpi/main.html 

43. MPICH2 User's Guide, ver 1.0.5,   

http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-

doc-user.pdf 



 

 103 
 

44. NVIDIA CUDA Programming Guide, ver 1.1, 

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Progr

amming_Guide_1.1.pdf 

45. http://www.nvidia.com/object/cuda_home.html 

46. Jain A. K., Fundamentals of Digital Image Processing, Prentice Hall Information 

and System Sciences Series, 2004. 

47. O Dandekar, High Performance 3D Image Processing Architectures for Image-

Guided Interventions, PhD Dissertation, Dept. of Elec. And Comp. Eng., Univ. of 

Maryland College Park, May 2008.  

48. Kole J S,  Beekman F J, Evaluation of accelerated iterative x-ray CT image 

reconstruction using floating point graphics hardware, Phys. Med. Biol. 51 (2006) 

875–889. 

49. G C Sharp, N Kandasamy, H Singh and M Folkert, GPU-based streaming 

architectures for fast cone-beam CT image reconstruction and demons deformable 

registration, Phys. Med. Biol. 52 (2007) 5771–5783. 

50. K Mueller and R Yagel, Rapid 3-D Cone-Beam Reconstruction with the 

Simultaneous Algebraic Reconstruction Technique (SART) Using 2-D Texture 

Mapping Hardware, IEEE trans. Med. Imag., vol. 19, No. 12, Dec 2000. 

51. S Zhao, D D. Robertson, G Wang, B Whiting, and K T. Bae, X-Ray CT Metal 

Artifact Reduction Using Wavelets:An Application for Imaging Total Hip 

Prostheses, IEEE trans. Med. Imag., vol. 19, No. 12, Dec 2000. 



 

 104 
 

52.  G Wang, D L. Snyder, J. A. O’Sullivan and M W. Vannier, Iterative Deblurring 

for CT Metal Artifact Reduction, IEEE trans. Med. Imag., vol. 15, No. 5, Oct 

1996.  

53. Robertson, D D.; Yuan, J; Wang, G; Vannier, M W., Total Hip Prosthesis Metal-

Artifact Suppression Using Iterative Deblurring Reconstruction, Jour. Comp. 

Asst. Tomo., Volume 21(2), March/April 1997, pp 293-298. 

54. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: 

estimates for the UK and 14 other countries. Lancet. 2004; 363:345-51. 

55. Wang Z, Bovic AC. A universal image quality index, IEEE Sig. Proc. Lett 

3:81Y84, 2002. 

56. www.gpgpu.org 

57. Rajan K. et al, Linear Array Implementation of the EM Algorithm for PET Image 

Reconstruction, IEEE Trans. Nucl. Sc., vol. 42, No 4, Aug.,1995. 

58. Toft P.,A very fast Implementation of 2D Iterative Reconstruction Algorithms, 

IEEE NSS, vol. 3,pages 1742-1746, 1996. 

 

http://www.gpgpu.org/

	Venkatesh Bantwal Bhat,
	Master of Science,
	2008.
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Augmenting laparoscopic views using CT
	1.2 Live Augmented Reality
	1.3 Contributions of this thesis
	1.4 Outline of this thesis

	Chapter 2: Low-Dose CT Reconstruction
	2.1 Need for radiation dose reduction
	2.2 The CT acquisition and reconstruction process
	2.3 The Filtered Back Projection Algorithm
	2.4 Iterative Statistical Reconstruction Algorithms
	2.5 The Paraboloidal Surrogates Algorithm
	2.6 Metrics for Image Comparison
	2.6.1 The Peak Signal to Noise Ratio (PSNR)
	2.6.2 The Q index

	2.7 Low-Dose Reconstruction using PS Algorithm
	2.7.1 Methods and Setup
	2.7.2 Results and Conclusion


	Chapter 3: High-Speed Reconstruction Using Ray-Tracing Metho
	3.1 Acceleration of PS algorithm
	3.2 Forward and Back Projection using Ray Tracing
	3.2.1 The Forward Projection Process
	3.2.2 The Ray-Tracing approach to Forward Projection
	3.2.3 The Back Projection Process
	3.2.4 The Ray-Tracing approach to Back Projection

	3.3 Implementation and results
	3.3.1 Methods and setup
	3.3.2 Results and conclusion


	Chapter 4:  Hardware-based Acceleration of PS Algorithm for 
	4.1Cluster-based acceleration scheme
	4.1.1 Introduction and previous work
	4.1.2 The Cluster Setup
	4.1.3 Implementation

	4.2 GPU-based acceleration scheme
	4.2.1 Introduction and previous work
	4.2.2 The NVIDIA CUDA architecture
	4.2.3 Implementation

	4.3 Termination condition

	Chapter 5:  Results and Conclusions
	5.1 Reconstructed Image Quality for various hardware platfor
	5.2 Speed-up for hardware based solutions
	5.3 Speed-up with variation in number of ordered subsets
	5.4 Termination condition
	5.5 Conclusions and future work

	Bibliography

