

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

journal homepage: www.elsevier.com/locate/jctb

Notes

Hypergraph Turán densities can have arbitrarily large algebraic degree

Journal of Combinatorial

Theory

Xizhi Liu¹, Oleg Pikhurko²

Mathematics Institute and DIMAP, University of Warwick, Coventry, CV4 7AL, $U\!K$

ARTICLE INFO

Article history: Received 12 July 2022 Available online xxxx

Keywords: Hypergraph Turán problem Turán density Algebraic degree Pattern

ABSTRACT

Grosu (2016) [11] asked if there exist an integer $r \geq 3$ and a finite family of r-graphs whose Turán density, as a real number, has (algebraic) degree greater than r - 1. In this note we show that, for all integers $r \geq 3$ and d, there exists a finite family of r-graphs whose Turán density has degree at least d, thus answering Grosu's question in a strong form. © 2023 The Author(s). Published by Elsevier Inc. This is an

open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

1. Introduction

For an integer $r \geq 2$, an *r*-uniform hypergraph (henceforth, an *r*-graph) *H* is a collection of *r*-subsets of some finite set *V*. Given a family \mathcal{F} of *r*-graphs, we say *H* is \mathcal{F} -free if it does not contain any member of \mathcal{F} as a subgraph. The Turán number $\exp(n, \mathcal{F})$ of \mathcal{F} is the maximum number of edges in an \mathcal{F} -free *r*-graph on *n* vertices. The Turán density $\pi(\mathcal{F})$ of \mathcal{F} is defined as $\pi(\mathcal{F}) := \lim_{n \to \infty} \exp(n, \mathcal{F}) / {n \choose r}$; the existence of the limit was established in [12]. The study of $\exp(n, \mathcal{F})$ is one of the central topics in extremal graph

https://doi.org/10.1016/j.jctb.2023.03.003

E-mail addresses: xizhi.liu@warwick.ac.uk (X. Liu), o.pikhurko@warwick.ac.uk (O. Pikhurko).

¹ Research was supported by ERC Advanced Grant 101020255.

 $^{^2}$ Research was supported by ERC Advanced Grant 101020255 and Leverhulme Research Project Grant RPG-2018-424.

 $^{0095-8956/\}odot 2023$ The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

and hypergraph theory. For the hypergraph Turán problem (i.e. the case $r \ge 3$), we refer the reader to the surveys by Keevash [13] and Sidorenko [18].

For $r \geq 3$, determining the value of $\pi(\mathcal{F})$ for a given r-graph family \mathcal{F} is very difficult in general, and there are only a few known results. For example, the problem of determining $\pi(K_{\ell}^r)$ raised by Turán [19] in 1941, where K_{ℓ}^r is the complete r-graph on ℓ vertices, is wide open and the \$500 prize of Erdős for solving it for at least one pair $\ell > r \geq 3$ is still unclaimed.

For every integer $r \geq 2$, define

 $\Pi_{\text{fin}}^{(r)} := \{ \pi(\mathcal{F}) \colon \mathcal{F} \text{ is a finite family of } r\text{-graphs} \}, \text{ and} \\ \Pi_{\infty}^{(r)} := \{ \pi(\mathcal{F}) \colon \mathcal{F} \text{ is a (possibly infinite) family of } r\text{-graphs} \}.$

For r = 2 the celebrated Erdős–Stone–Simonovits theorem [6,7] determines the Turán density for every family \mathcal{F} of graphs; in particular, it holds that

$$\Pi_{\infty}^{(2)} = \Pi_{\text{fin}}^{(r)} = \{1\} \cup \{1 - 1/k : \text{integer } k \ge 1\}.$$

The problem of understanding the sets $\Pi_{\text{fin}}^{(r)}$ and $\Pi_{\infty}^{(r)}$ of possible *r*-graph Turán densities for $r \geq 3$ has attracted a lot of attention. One of the earliest results here is the theorem of Erdős [5] from the 1960s that $\Pi_{\infty}^{(r)} \cap (0, r!/r^r) = \emptyset$ for every integer $r \geq 3$. However, our understanding of the locations and the lengths of other maximal intervals avoiding *r*-graph Turán densities and the right accumulation points of $\Pi_{\infty}^{(r)}$ (the so-called *jump problem*) is very limited; for some results in this direction see e.g. [1,8,9,17,21].

It is known that the set $\Pi_{\infty}^{(r)}$ is the topological closure of $\Pi_{\text{fin}}^{(r)}$ (and thus the former set is easier to understand) and that $\Pi_{\infty}^{(r)}$ has cardinality of continuum (and thus is strictly larger than the countable set $\Pi_{\text{fin}}^{(r)}$), see respectively Proposition 1 and Theorem 2 in [16].

For a while it was open whether $\Pi_{\text{fin}}^{(r)}$ can contain an irrational number (see the conjecture of Chung and Graham in [3, Page 95]), until such examples were independently found by Baber and Talbot [2] and by the second author [16]. However, the question of Jacob Fox ([16, Question 27]) whether $\Pi_{\text{fin}}^{(r)}$ can contain a transcendental number remains open.

Grosu [11] initiated a systematic study of algebraic properties of the sets $\Pi_{\text{fin}}^{(r)}$ and $\Pi_{\infty}^{(r)}$. He proved a number of general results that, in particular, directly give further examples of irrational Turán densities.

Recall that the *(algebraic) degree* of a real number α is the minimum degree of a non-zero polynomial p with integer coefficients that vanishes on α ; it is defined to be ∞ if no such p exists (that is, if the real α is transcendental). In the same paper, Grosu [11, Problem 3] posed the following question.

Problem 1.1 (*Grosu*). Does there exist an integer $r \ge 3$ such that $\Pi_{\text{fin}}^{(r)}$ contains an algebraic number α of degree strictly larger than r - 1?

Apparently, all r-graph Turán densities that Grosu knew or could produce with his machinery had degree at most r-1, explaining this expression in his question. His motivation for asking this question was that if, on input \mathcal{F} , we can compute an upper bound on the degree of $\pi(\mathcal{F})$ as well as on the absolute values of the coefficients of its minimal polynomial, then we can compute $\pi(\mathcal{F})$ exactly, see the discussion in [11, Page 140].

In this short note we answer Grosu's question in the following stronger form.

Theorem 1.2. For every integer $r \geq 3$ and for every integer d there exists an algebraic number in $\Pi_{\text{fin}}^{(r)}$ whose minimal polynomial has degree at least d.

Our proof for Theorem 1.2 is constructive; in particular, for r = 3 we will show that the following infinite sequence is contained in $\Pi_{\text{fin}}^{(3)}$:

$$\frac{1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3-\frac{2}{\sqrt{3}}}}, \quad \frac{1}{\sqrt{3-\frac{2}{\sqrt{3-\frac{2}{\sqrt{3}}}}}}, \quad \frac{1}{\sqrt{3-\frac{2}{\sqrt{3-\frac{2}{\sqrt{3}}}}}}, \quad \dots \quad (1)$$

2. Preliminaries

In this section, we introduce some preliminary definitions and results that will be used later.

For an integer $r \ge 2$, an (r-uniform) pattern is a pair $P = (m, \mathcal{E})$, where m is a positive integer, \mathcal{E} is a collection of r-multisets on $[m] := \{1, \ldots, m\}$, where by an r-multiset we mean an unordered collection of r elements with repetitions allowed. Let V_1, \ldots, V_m be disjoint sets and let $V = V_1 \cup \cdots \cup V_m$. The profile of an r-set $R \subseteq V$ (with respect to V_1, \ldots, V_m) is the r-multiset on [m] that contains element i with multiplicity $|R \cap V_i|$ for every $i \in [m]$. For an r-multiset $S \subseteq [m]$, let $S((V_1, \ldots, V_m))$ consist of all r-subsets of Vwhose profile is S. We call this r-graph the blowup of S and the r-graph

$$\mathcal{E}((V_1,\ldots,V_m)) := \bigcup_{S\in\mathcal{E}} S((V_1,\ldots,V_m))$$

is called the *blowup* of \mathcal{E} (with respect to V_1, \ldots, V_m). We say that an *r*-graph *H* is a *P*-construction if it is a blowup of \mathcal{E} . Note that these are special cases of the more general definitions from [16].

It is easy to see that the notion of a pattern is a generalization of a hypergraph, since every r-graph is a pattern in which \mathcal{E} is a collection of (ordinary) r-sets. For most families \mathcal{F} whose Turán problem was resolved, the extremal \mathcal{F} -free constructions are blowups of some simple pattern. For example, let $P_B := (2, \{\{\{1, 2, 2\}\}, \{\{1, 1, 2\}\}\})$, where we use $\{\{\}\}$ to distinguish multisets from ordinary sets. Then a P_B -construction is a 3-graph H whose vertex set can be partitioned into two parts V_1 and V_2 such that H consists of all triples that have nonempty intersections with both V_1 and V_2 . A famous result in the hypergraph Turán theory is that the pattern P_B characterizes the structure of all maximum 3-graphs of sufficiently large order that do not contain a Fano plane (see [4,10,14]).

For a pattern $P = (m, \mathcal{E})$, let the Lagrange polynomial of \mathcal{E} be

$$\lambda_{\mathcal{E}}(x_1,\ldots,x_m) := r! \sum_{E \in \mathcal{E}} \prod_{i=1}^m \frac{x_i^{E(i)}}{E(i)!}$$

where E(i) is the multiplicity of *i* in the *r*-multiset *E*. In other words, $\lambda_{\mathcal{E}}$ gives the asymptotic edge density of a large blowup of \mathcal{E} , given its relative part sizes x_i .

The Lagrangian of P is defined as follows:

$$\lambda(P) := \sup \left\{ \lambda_{\mathcal{E}}(x_1, \dots, x_m) \colon (x_1, \dots, x_m) \in \Delta_{m-1} \right\},\$$

where $\Delta_{m-1} := \{(x_1, \ldots, x_m) \in [0, 1]^m : x_1 + \ldots + x_m = 1\}$ is the standard (m-1)dimensional simplex in \mathbb{R}^m . Since we maximise a polynomial (a continuous function) on a compact space, the supremum is in fact the maximum and we call the vectors in Δ_{m-1} attaining it *P*-optimal. Note that the Lagrangian of a pattern is a generalization of the well-known hypergraph Lagrangian that has been successfully applied to Turán-type problems (see e.g. [1,9,20]), with the basic idea going back to Motzkin and Straus [15].

For $i \in [m]$ let P - i be the pattern obtained from P by removing index i, that is, we remove i from [m] and delete all multisets containing i from E (and relabel the remaining indices to form the set [m - 1]). We call P minimal if $\lambda(P - i)$ is strictly smaller than $\lambda(P)$ for every $i \in [m]$, or equivalently if no P-optimal vector has a zero entry. For example, the 2-graph pattern $P := (3, \{\{1, 2\}\}, \{\{1, 3\}\}\})$ is not minimal as $\lambda(P) = \lambda(P - 3) = 1/2$.

In [16], the second author studied the relations between possible hypergraph Turán densities and patterns. One of the main results from [16] is as follows.

Theorem 2.1 ([16]). For every minimal pattern P there exists a finite family \mathcal{F} of rgraphs such that $\pi(\mathcal{F}) = \lambda(P)$, and moreover, every maximum \mathcal{F} -free r-graph is a Pconstruction.

Let $r \geq 3$ and $s \geq 1$ be two integers. Given an r-uniform pattern $P = (m, \mathcal{E})$, one can create an (r+s)-uniform pattern $P+s := (m+s, \hat{\mathcal{E}})$ in the following way: for every $E \in \mathcal{E}$ we insert the s-set $\{m+1, \ldots, m+s\}$ into E, and let $\hat{\mathcal{E}}$ denote the resulting family of (r+s)-multisets. For example, if $P = (3, \{\{\{1,2,3,\}\}, \{\{1,3,3,\}\}, \{\{2,3,3,\}\}\})$, then $P+1 = (4, \{\{\{1,2,3,4\}\}, \{\{1,3,3,4\}\}, \{\{2,3,3,4\}\}\})$.

The following observation follows easily from the definitions.

Observation 2.2. If P is a minimal pattern, then P + s is a minimal pattern for every integer $s \ge 1$.

For the Lagrangian of P + s we have the following result.

Proposition 2.3. Suppose that $r \ge 2$ is an integer and P is an r-uniform pattern. Then for every integer $s \ge 1$ we have

$$\lambda(P+s) = \frac{r^r(s+r)!}{(r+s)^{r+s}r!}\,\lambda(P)$$

In particular, the real numbers $\lambda(P+s)$ and $\lambda(P)$ have the same degree.

Proof. Assume that $P = (m, \mathcal{E})$. Let $\hat{P} := P + s = (m + s, \hat{\mathcal{E}})$. Let $(x_1, \ldots, x_{m+s}) \in \Delta_{m+s-1}$ be a \hat{P} -optimal vector. Note from the definition of Lagrange polynomial that

$$\lambda(\hat{P}) = \lambda_{\hat{\mathcal{E}}}(x_1, \dots, x_{m+s}) = \frac{(r+s)!}{r!} \lambda_{\mathcal{E}}(x_1, \dots, x_m) \prod_{i=m+1}^{m+s} x_i.$$

Let $x := \frac{1}{s} \sum_{i=m+1}^{m+s} x_i$ and note that $\sum_{i=1}^m x_i = 1 - sx$. Since $\lambda_{\mathcal{E}}$ is a homogeneous polynomial of degree r, we have

$$\lambda_{\mathcal{E}}(x_1,\ldots,x_m) = \lambda_{\mathcal{E}}\left(\frac{x_1}{1-sx},\ldots,\frac{x_m}{1-sx}\right)(1-sx)^r \le \lambda(P)(1-sx)^r$$

This and the AM-GM inequality give that

$$\lambda(\hat{P}) = \frac{(r+s)!}{r!} \lambda_{\mathcal{E}}(x_1, \dots, x_m) \prod_{i=m+1}^{m+s} x_i \le \frac{(r+s)!}{r!} \lambda(P)(1-sx)^r x^s.$$

For $x \in [0, 1/s]$, the function $(1 - sx)^r (rx)^s$, as the product of s + r non-negative terms summing to r, is maximized when all terms are equal, that is, at $x = \frac{1}{r+s}$. So

$$\lambda(\hat{P}) \le \frac{(r+s)!}{r!} \lambda(P)(1-sx)^r x^s \le \frac{r^r(s+r)!}{(r+s)^{r+s}r!} \lambda(P).$$

To prove the other direction of this inequality, observe that if we take $(x_1, \ldots, x_m) = \frac{r}{r+s}(y_1, \ldots, y_m)$, where $(y_1, \ldots, y_m) \in \Delta_{m-1}$ is *P*-optimal, and take $x_{m+1} = \cdots = x_{m+s} = \frac{1}{r+s}$, then all inequalities above hold with equalities.

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. By Theorem 2.1, it suffices to find a sequence of r-uniform minimal patterns $(P_k)_{k=1}^{\infty}$ such that the degree of the real number $\lambda(P_k)$ goes to infinity as k goes to infinity. Furthermore, by Observation 2.2 and Proposition 2.3, it suffices to find such a sequence for r = 3. So we will assume that r = 3 in the rest of this note.

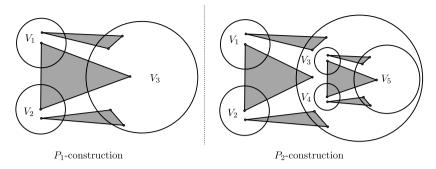


Fig. 1. Constructions with one level and two levels.

To start with, we let $P_1 := (3, \{\{\{1, 2, 3\}\}, \{\{1, 3, 3\}\}, \{\{2, 3, 3\}\}\})$. Recall that a 3-graph H is a P_1 -construction (see Fig. 1) if there exists a partition $V(H) = V_1 \cup V_2 \cup V_3$ such that the edge set of H consists of

- (a) all triples that have one vertex in each V_i ,
- (b) all triples that have one vertex in V_1 and two vertices in V_3 , and
- (c) all triples that have one vertex in V_2 and two vertices in V_3 .

The pattern P_1 was studied by Yan and Peng in [20], where they proved that there exists a single 3-graph whose Turán density is given by P_1 -constructions which, by $\lambda(P_1) = 1/\sqrt{3}$, is an irrational number. It seems that some other patterns could be used to prove Theorem 1.2; however, the obtained sequence of Turán densities (i.e. the sequence in (1)) produced by using P_1 is nicer than those produced by the other patterns that we tried.

Next, we define the pattern $P_{k+1} = (2k+3, \mathcal{E}_{k+1})$ for every $k \ge 1$ inductively. It is easier to define what a P_{k+1} -construction is rather than to write down the definition of P_{k+1} : for every integer $k \ge 1$ a 3-graph H is a P_{k+1} -construction if there exists a partition $V(H) = V_1 \cup V_2 \cup V_3$ such that

- (a) the induced subgraph $H[V_3]$ is a P_k -construction, and
- (b) $H \setminus H[V_3]$ consists of all triples whose profile is in $\{\{\{1,2,3\}\}, \{\{1,3,3\}\}, \{\{2,3,3\}\}\}$.

The pattern P_k can be written down explicitly, although this is not necessary for our proof later. For example, $P_2 = (5, \mathcal{E}_2)$ (see Fig. 1), where

$$\begin{aligned} \mathcal{E}_2 = \{\{\!\{1,2,3\}\!\}, \{\!\{1,2,4\}\!\}, \{\!\{1,2,5\}\!\}, \{\!\{1,3,3\}\!\}, \{\!\{1,3,4\}\!\}, \{\!\{1,3,5\}\!\}, \\ \{\!\{1,4,4\}\!\}, \{\!\{1,4,5\}\!\}, \{\!\{1,5,5\}\!\}, \{\!\{2,3,3\}\!\}, \{\!\{2,3,4\}\!\}, \{\!\{2,3,5\}\!\}, \\ \{\!\{2,4,4\}\!\}, \{\!\{2,4,5\}\!\}, \{\!\{2,5,5\}\!\}, \{\!\{3,4,5\}\!\}, \{\!\{3,5,5\}\!\}, \{\!\{4,5,5\}\!\}\} \end{aligned}$$

Our first result determines the Lagrangian of P_k for every $k \ge 1$. For convenience, we set $P_0 := (1, \{\emptyset\})$ and $\lambda_0 := 0$.

Proposition 3.1. For every integer $k \ge 0$, we have $\lambda(P_{k+1}) = 1/\sqrt{3-2\lambda(P_k)}$ and the pattern P_{k+1} is minimal. In particular, $(\lambda(P_k))_{k=1}^{\infty}$ is the sequence in (1).

Proof. We use induction on k where the base k = 0 is easy to check directly (or can be derived by adapting the forthcoming induction step to work for k = 0). Let $k \ge 1$.

Let us prove that $\lambda(P_{k+1}) = 1/\sqrt{3-2\lambda(P_k)}$. Recall that $P_k = (2k+1, \mathcal{E}_k)$ and $P_{k+1} = (2k+3, \mathcal{E}_{k+1})$. Let $(x_1, \ldots, x_{2k+3}) \in \Delta_{2k+2}$ be a P_{k+1} -optimal vector. Let $x := \sum_{i=3}^{2k+3} x_i = 1 - x_1 - x_2$. It follows from the definitions of P_{k+1} and the Lagrange polynomial that

$$\lambda(P_{k+1}) = \lambda_{\mathcal{E}_{k+1}}(x_1, \dots, x_{2k+3}) = 6\left(x_1x_2x + (x_1 + x_2)\frac{x^2}{2}\right) + \lambda_{\mathcal{E}_k}(x_3, \dots, x_{2k+3}).$$
(2)

Since $\lambda_{\mathcal{E}_k}(x_3,\ldots,x_{2k+3})$ is a homogeneous polynomial of degree 3, we have

$$\lambda_{\mathcal{E}_k}(x_3,\ldots,x_{2k+3}) = \lambda_{\mathcal{E}_k}\left(\frac{x_3}{x},\ldots,\frac{x_{2k+3}}{x}\right)x^3 \le \lambda(P_k)x^3.$$

So it follows from (2) and the 2-variable AM-GM inequality that

$$\lambda(P_{k+1}) \le 6\left(\left(\frac{x_1 + x_2}{2}\right)^2 x + (x_1 + x_2)\frac{x^2}{2}\right) + \lambda(P_k)x^3$$
$$= 6\left(\left(\frac{1 - x}{2}\right)^2 x + (1 - x)\frac{x^2}{2}\right) + \lambda(P_k)x^3 = \frac{3x - (3 - 2\lambda(P_k))x^3}{2}.$$

Since $0 \leq \lambda(P_k) \leq 1$, one can easily show by taking the derivative that the maximum of the function $(3x - (3 - 2\lambda(P_k))x^3)/2$ on [0,1] is achieved if and only if $x = 1/\sqrt{3 - 2\lambda(P_k)}$, and the maximum value is $1/\sqrt{3 - 2\lambda(P_k)}$. This proves that $\lambda(P_{k+1}) \leq 1/\sqrt{3 - 2\lambda(P_k)}$.

To prove the other direction of this inequality, one just need to observe that when we choose

$$x_1 = x_2 = \frac{1}{2} - \frac{1}{2\sqrt{3 - 2\lambda(P_k)}} \quad \text{and} \quad (x_3, \dots, x_{2k+3}) = \frac{1}{\sqrt{3 - 2\lambda(P_k)}} (y_1, \dots, y_{2k+1})$$
(3)

where $(y_1, \ldots, y_{2k+1}) \in \Delta_{2k}$ is a P_k -optimal vector, then all inequalities above hold with equality. Therefore, $\lambda(P_{k+1}) = 1/\sqrt{3 - 2\lambda(P_k)}$.

To prove that P_{k+1} is minimal, take any P_{k+1} -optimal vector $(x_1, \ldots, x_{2k+3}) \in \Delta_{2k+2}$; we have to show that it has no zero entries. This vector attains equality in all our inequalities above, which routinely implies that (x_1, \ldots, x_{2k+3}) must satisfy (3), for some P_k -optimal vector (y_1, \ldots, y_{2k+1}) . We see that $x_1 = x_2$ are both non-zero because the sequence $(\lambda(P_0), \ldots, \lambda(P_{k+1}))$ is strictly increasing (since $x < 1/\sqrt{3-2x}$ for all $x \in$ [0,1)) and thus $\lambda(P_k) < 1$. The remaining conclusion that x_3, \ldots, x_{2k+3} are non-zero follows from the induction hypothesis on (y_1, \ldots, y_{2k+1}) .

In order to finish the proof of Theorem 1.2 it suffices to prove that the degree of $\mu_k := \lambda(P_k)$ goes to infinity as $k \to \infty$. This is achieved by the last claim of the following lemma.

Lemma 3.2. Let $p_1(x) := 3x^2 - 1$ and inductively for k = 1, 2, ... define

$$p_{k+1}(x) = (2x^2)^{2^k} p_k\left(\frac{3x^2-1}{2x^2}\right), \quad \text{for } x \in \mathbb{R}.$$

Then the following claims hold for each $k \in \mathbb{N}$:

- (a) $p_k(\mu_k) = 0;$
- (b) p_k is a polynomial of degree at most 2^k with integer coefficients: $p_k(x) = \sum_{i=0}^{2^k} c_{k,i} x^i$ for some $c_{k,i} \in \mathbb{Z}$;
- (c) the integers $b_{k,i} := c_{k,i}$ for even k and $b_{k,i} := c_{k,2^k-i}$ for odd k satisfy the following:

(c.i) for each integer i with $0 \le i \le 2^k$, 3 divides $b_{k,i}$ if and only if $i \ne 2^k$; (c.ii) 9 does not divide $b_{k,0}$;

- (d) the polynomial p_k is irreducible of degree exactly 2^k ;
- (e) the degree of μ_k is 2^k .

Proof. Let us use induction on k. All stated claims are clearly satisfied for k = 1, when $p_1(x) = 3x^2 - 1$ and $\mu_1 = 1/\sqrt{3}$. Let us prove them for k + 1 assuming that they hold for some $k \ge 1$.

For Part (a), we have by Proposition 3.1 that

$$\frac{3\mu_{k+1}^2 - 1}{2\mu_{k+1}^2} = \frac{3/(3 - 2\mu_k) - 1}{2/(3 - 2\mu_k)} = \mu_k$$

and thus $p_{k+1}(\mu_{k+1}) = (2\mu_{k+1}^2)^{2^k} p_k(\mu_k)$, which is 0 by induction.

Part (b) also follows easily from the induction assumption:

$$p_{k+1}(x) = (2x^2)^{2^k} \sum_{i=0}^{2^k} c_{k,i} \left(\frac{3x^2 - 1}{2x^2}\right)^i = \sum_{i=0}^{2^k} c_{k,i} (3x^2 - 1)^i (2x^2)^{2^k - i}.$$
 (4)

Let us turn to Part (c). The relation in (4) when taken modulo 3 reads that

$$\sum_{j=0}^{2^{k+1}} c_{k+1,j} x^j \equiv \sum_{i=0}^{2^k} c_{k,i} x^{2^{k+1}-2i} \pmod{3}.$$

Thus, $c_{k+1,j} \equiv c_{k,2^k-j/2} \pmod{3}$ for all even j between 0 and 2^{k+1} , while $c_{k+1,j} \equiv 0 \pmod{3}$ for odd j (in fact, $c_{k+1,j} \equiv 0$ for all odd j since p_{k+1} is an even function). In terms of the sequences $(b_{\ell,j})_{j=0}^{2^\ell}$, this relation states that

$$b_{k+1,j} \equiv b_{k,j/2} \pmod{3}$$
 for all even j with $0 \le j \le 2^k$,

while $b_{k+1,j} \equiv 0 \pmod{3}$ for all odd j. This implies Part (c.i). For Part (c.ii), the relation in (4) when taken modulo 9 gives that $c_{k+1,0} \equiv c_{k,2^k}$ and $c_{k+1,2^{k+1}} \equiv c_{k,0} \cdot 2^{2^k} + c_{k,1} \cdot 3 \cdot 2^{2^{k-1}}$. Since $c_{k,1}$ is divisible by 3, we have in fact that $c_{k+1,2^{k+1}} \equiv c_{k,0} \cdot 2^{2^k} \equiv c_{k,0} \pmod{9}$. By the induction hypothesis, this implies that 9 does not divide $b_{k+1,0}$.

By the argument above, $c_{k+1,2^{k+1}}$ is non-zero module 3 for odd k and non-zero module 9 for even k. Thus, regardless of the parity of k, the degree of the polynomial p_{k+1} is exactly 2^{k+1} . Moreover, p_{k+1} satisfies Eisenstein's criterion for prime q = 3 (namely, that q divides all coefficients, except exactly one at the highest power of x or at the constant term while the other of the two is not divisible by q^2). By the criterion (whose proof can be found in e.g. [16, Section 4]), the polynomial p_{k+1} is irreducible, proving Part (d).

By putting the above claims together, we see that μ_{k+1} is a root of an irreducible polynomial of degree 2^{k+1} , establishing Part (e). This completes the proof the lemma (and thus of Theorem 1.2)

4. Concluding remarks

Our proof of Theorem 1.2 shows that for every integer d which is a power of 2 there exists a finite family \mathcal{F} of r-graphs such that $\pi(\mathcal{F})$ has algebraic degree d. It seems interesting to know whether this is true for all positive integers.

Problem 4.1. Let $r \ge 3$ be an integer. Is it true that for every positive integer d there exists a finite family \mathcal{F} of r-graphs such that $\pi(\mathcal{F})$ has algebraic degree exactly d?

By considering other patterns, one can get Turán densities in $\Pi_{\text{fin}}^{(r)}$ whose algebraic degrees are not powers of 2. For example, the pattern ([3], {{ 1, 2, 3 }}, {1, 2}) with *recursive parts* 1 and 2 (where we can take blowups of the single edge {{ 1, 2, 3 }} and recursively repeat this step inside the first and the second parts of each added blowup) gives a Turán density in $\Pi_{\text{fin}}^{(3)}$ (by [16, Theorem 3], a generalisation of Theorem 2.1) whose degree can be computed to be 3. However, we did not see any promising way of how to produce a pattern whose Lagrangian has any given degree d.

Data availability

No data was used for the research described in the article.

Acknowledgment

We would like to thank the referees for their helpful comments.

References

- [1] R. Baber, J. Talbot, Hypergraphs do jump, Comb. Probab. Comput. 20 (2) (2011) 161–171.
- [2] R. Baber, J. Talbot, New Turán densities for 3-graphs, Electron. J. Comb. 19 (2) (2012) 22, 21.
- [3] F. Chung, R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, Ltd., Wellesley, MA, 1998.
- [4] D. De Caen, Z. Füredi, The maximum size of 3-uniform hypergraphs not containing a Fano plane, J. Comb. Theory, Ser. B 78 (2) (2000) 274–276.
- [5] P. Erdős, On extremal problems of graphs and generalized graphs, Isr. J. Math. 2 (1964) 183–190.
- [6] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung. 1 (1966) 51–57.
- [7] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Am. Math. Soc. 52 (1946) 1087–1091.
- [8] P. Frankl, Y. Peng, V. Rödl, J. Talbot, A note on the jumping constant conjecture of Erdős, J. Comb. Theory, Ser. B 97 (2) (2007) 204–216.
- [9] P. Frankl, V. Rödl, Hypergraphs do not jump, Combinatorica 4 (2–3) (1984) 149–159.
- [10] Z. Füredi, M. Simonovits, Triple systems not containing a Fano configuration, Comb. Probab. Comput. 14 (4) (2005) 467–484.
- [11] C. Grosu, On the algebraic and topological structure of the set of Turán densities, J. Comb. Theory, Ser. B 118 (2016) 137–185.
- [12] G. Katona, T. Nemetz, M. Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok 15 (1964) 228–238.
- [13] P. Keevash, Hypergraph Turán problems, in: Surveys in Combinatorics 2011, in: London Math. Soc. Lecture Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 83–139.
- [14] P. Keevash, B. Sudakov, The Turán number of the Fano plane, Combinatorica 25 (5) (2005) 561–574.
- [15] T.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Can. J. Math. 17 (1965) 533–540.
- [16] O. Pikhurko, On possible Turán densities, Isr. J. Math. 201 (1) (2014) 415–454.
- [17] O. Pikhurko, The maximal length of a gap between r-graph Turán densities, Electron. J. Comb. 22 (4) (2015) 4.15, 7.
- [18] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Comb. 11 (2) (1995) 179–199.
- [19] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452.
- [20] Z. Yan, Y. Peng, An irrational Lagrangian density of a single hypergraph, SIAM J. Discrete Math. 36 (1) (2022) 786–822.
- [21] Z. Yan, Y. Peng, Non-jumping Turán densities of hypergraphs, Discrete Math. 346 (1) (2023) 113195, 11.