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A B S T R A C T

The remaining discharge energy (RDE) of a battery is an important value for estimating the remaining range of
a vehicle. Prediction based methods for calculating RDE have been proven to be suitable for improving energy
estimation accuracy. This paper aims to further improve the estimation accuracy by incorporating novel load
prediction techniques with pattern recognition into the RDE calculation. For the pattern recognition, driving
segment data was categorised into different usage patterns, then a rule-based logic was designed to recognise
these, based on features from each pattern. For the power prediction, a clustering and Markov modelling
approach was used to group and define power levels from the data as states and find the probabilities of
each state-to-state transition occurring. This data was defined for each pattern, so that the logic could inform
what data should be used to predict the future power profile. From the predicted power profile, the RDE was
calculated from the product of the predicted load and the predicted voltage, which was obtained from a first-
order battery model. The proposed algorithm was tested in simulation and real-time using battery cycler data,
and compared against other prediction-based methods. The proposed method was shown to have desirable
accuracy and robustness to modelling errors. The primary conclusion from this research was using pattern
recognition can improve the accuracy of RDE estimation.
1. Introduction

As electric vehicles (EVs) are growing in popularity, the accuracy of
the estimation of the remaining distance that can be travelled during a
trip is still a high priority for drivers to reduce range anxiety, which is
the fear of fully discharging the batteries in the middle of a journey [1].
To predict the remaining range of a vehicle, remaining discharge en-
ergy (RDE) is used [2]. RDE refers to the amount of energy that can be
discharged before a battery reaches its lower cut-off voltage [2], which
is usually set by the manufacturer to ensure safe and reliable operation.
RDE is different from state-of-charge (SoC), which is a very common
research topic [3], as SoC is a measure of the remaining capacity and
not remaining energy [2].

RDE can be calculated using

𝑅𝐷𝐸 = ∫

𝐸𝑜𝐷𝑇

𝑡
𝑈𝑡(𝜏) ⋅ 𝐼(𝜏) ⋅ 𝑑𝜏, (1)

where 𝑡 is the current time, 𝐸𝑜𝐷𝑇 is the end of discharge time, 𝑈𝑡 is the
battery terminal voltage as a function of time 𝜏, and 𝐼 is the current as a
function of time 𝜏 [2,4]. Since this equation relies on the a priori values
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for voltage and current, it cannot be used onboard and hence, methods
for RDE estimation have been proposed [4]. These can be grouped
into several categories: the direct calculation method, model-based
estimation methods using filters, and prediction-based methods.

The direct calculation method, given by Eq. (2), uses the current
SoC of the battery, to calculate RDE.

𝑅𝐷𝐸 = 𝑄 ⋅ 𝑈𝑛𝑜𝑚 ⋅ (𝑆𝑂𝐶𝑡 − 𝑆𝑂𝐶𝐸𝑜𝐷𝑇 ), (2)

where 𝑄 is the battery’s rated energy capacity, 𝑈𝑛𝑜𝑚 is the terminal
nominal voltage, 𝑆𝑂𝐶𝑡 is the state-of-charge value at the current time,
and 𝑆𝑂𝐶𝐸𝑜𝐷𝑇 is state-of-charge value at the end-of-discharge time [2,
5]. Although this method is easy to implement and has low compu-
tational costs, which is advantageous for real-time implementation,
the nominal voltage used cannot represent the complex, non-linear
voltage responses of the system, thus will cause large errors [4]. Ad-
ditionally, capacity is a function of discharge rate and temperature,
so using a simplified measure of rated capacity can produce further
inaccuracies [6].

Model-based methods often use the metric state-of-energy (SoE) to
define a battery’s remaining energy as a ratio of its total available
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energy. These methods use algorithms to estimate SoE, in a similar
manner to SoC estimation [7]. SoE is calculated using

𝑆𝑜𝐸𝑡 = 𝑆𝑜𝐸𝑡0 − ∫

𝑡

𝑡0
𝑃 (𝜏)𝑑𝜏∕𝐸𝑁 , (3)

here 𝑆𝑜𝐸𝑡 is the SoE value at the current time t, 𝑆𝑜𝐸𝑡0 is the SoE
value at the initial time 𝑡0, 𝑃 is the power output as a function of time
𝜏, and 𝐸𝑁 is the total available energy [4]. This calculation relies on
accurate estimations of the energy removed from the battery, which
can be affected by measurement errors, and an accurate estimation of
the maximum available energy, which changes based on future con-
ditions and the health of the battery [5,8]. Additionally, model-based
estimations are often based on equivalent circuit models with OCV vs
SoE curves [9], which cannot account for dynamic condition operating
conditions [4] and variations due to battery degradation [10].

Prediction-based methods obtain an RDE estimate by aiming to
predict future battery states. Since RDE can be calculated using Eq. (1),
predicting the future current and voltage can produce very accurate
RDE results. In [2], a method that uses real-time battery model param-
eter estimation and future battery model parameter prediction for RDE
estimation was proposed. This method showed a good agreement be-
tween the simulated voltage response of the battery and the measured
voltage, and also showed the proposed method had a much greater level
of accuracy than the direct calculation method, for dynamic stress test
(DST) and the Federal Urban Driving Schedule (FUDS) profiles. In [4],
future temperature as well as SoC dependent model parameters are
considered to further improve the voltage prediction accuracy.

In these examples, the integration of load prediction techniques
were not investigated, and the future load used was a priori known, but
for transportation applications this would not be the case. From Eq. (1),
it can be seen that RDE is directly related to the future load applied
to the battery [5]. Additionally, the future load directly affects the
results for the future voltage response from the battery model. Due to
these factors, investigating and improving load prediction methods can
be valuable for increasing RDE accuracy and therefore, understanding
the remaining energy that can be drawn from the battery for a given
application.

Methods for load prediction are discussed in [5,11]. The fundamen-
tal framework involves using a moving window to collect load data,
which can be represented as a sequence of distinct states and used to
forecast future load profiles. This approach requires two algorithms,
a method for grouping the data set and a method to predict a future
load profile, in particular, clustering and Markov modelling have been
used previously [5]. Clustering algorithms are a type of unsupervised
learning method for grouping unlabelled data [12–14]. A cluster is
defined as a subset of the total data set which contains data with similar
characteristics, where the cluster centre can be used to represent the
values of the data in the cluster. For this application, these are used to
give an indication of the common load values in a set of load profiles. A
clustered load profile can be used to find the probability of transitioning
from one load value to another, which is the basis of Markov modelling.
For RDE estimation, the future load profile is predicted using the cluster
values and the Markov models until the end-of-discharge, so no static
prediction horizon is needed. The future voltage can then be predicted
by using the predicted load as an input to a battery model. Thus,
the RDE can be calculated by multiplying the predicted voltage and
predicted load vectors together, then summing the result, as shown in
the equation

𝑅𝐷𝐸 =
𝑡𝑒𝑛𝑑
∑

𝑡0

𝑈𝑡,𝑝𝑟𝑒𝑑 ⋅ 𝐼𝑝𝑟𝑒𝑑 , (4)

where 𝑡0 is the time at the start of the prediction, 𝑡𝑒𝑛𝑑 is the time when
the end-of-discharge is predicted, and 𝑈𝑡,𝑝𝑟𝑒𝑑 and 𝐼𝑝𝑟𝑒𝑑 are the vectors
for the terminal voltage and current, respectively. The frequency of
the RDE calculation is a parameter that can be changed based on the
accuracy and computational efficiency requirements.
2

In previous work [15], an offline-training method to estimate RDE
was proposed. This method differs from the previous RDE estimation
methods as all the data processing for load prediction was performed
offline instead of using an online moving window. It was shown that
if the training data was similar to the test profile, the RDE results can
be more accurate than using the moving window method, but if the
data was vastly different to the test profile then the moving window
approach was better [15]. This means that the RDE estimation is most
accurate when the predicted load profile was similar to the load profile
for the current operation. A power level recognition algorithm was used
to determine whether to use the offline data or the moving window
method. This algorithm could be seen as a limited version of driving
pattern recognition (DPR).

Many examples of DPR can be found in the literature. In [16], fuzzy
logic pattern recognition was outlined and used to assess EV perfor-
mance. In [17], features derived from velocity data were chosen based
on dependencies between other features and having a high correlation
with fuel consumption. The chosen features were clustered to define
different types of driving profiles. More recently, DPR has been used
as the basis for the design of energy management systems [18–20],
where in [18], Markov chains were used to predict future velocity (in a
similar manner to how they are used for RDE estimation), with a neural
network used to recognise the current driving pattern. Neural networks
were also used in [19,20]. In these examples of DPR, the choice of
features and the number of driving scenarios used were not explored,
referencing other literature for their choices. Therefore, an examination
of how the choice of features and scenarios affect the DPR accuracy was
performed here for completeness.

This paper aims to extend and improve the previous work by
combining prediction-based methods for RDE estimation with DPR.
The performance of the proposed algorithm was assessed here and
compared to previous methods. In addition, a methodology for selecting
the number of features and scenarios for an online DPR algorithm was
outlined, as well as a rule-based logic for online pattern recognition.
The algorithms for RDE estimation were validated for both simulation
and on real-time hardware. The control architecture used is shown in
Fig. 1. This diagram shows the key components of the control system,
including which parts are performed offline and online.

Table 1 shows a comparison of the RDE estimation methods dis-
cussed here as well as the proposed method, showing the advantages
and disadvantages of each method.

The contributions of this paper are as follows. (1) A novel RDE
estimation method which incorporates DPR into the design of a load
and power prediction framework, which to the best of the authors’
knowledge has not been implemented before. (2) Performance analysis
and comparison of existing and the proposed prediction-based RDE
methods in simulation and real-time operation, to demonstrate the su-
perior accuracy of the proposed method. (3) A method for determining
the optimal number of clusters for a driving cycle data set, which is
compared to another commonly used metric to show the improved
repeatability of the results and accuracy for densely packed data points.
(4) A new methodology to optimise the pattern recognition accuracy
based on a feature selection approach, using a large set of real-world EV
driving profiles. (5) Hardware-in-the-loop verification of the proposed
algorithm.

The structure of this paper is as follows: in Section 2, the method-
ology of the DPR and load prediction methods used are proposed. In
Section 3, the methodology of the cell characterisation and modelling is
outlined. Section 4 shows optimisation of the DPR and load prediction
algorithms, and the RDE estimation results from simulations and real-
time implementation. In Section 5, conclusions about the findings are

made, with possible further directions proposed.
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Fig. 1. Flowchart of the control architecture proposed here, showing which components are performed online and offline. The blue rectangle blocks represent processes/algorithms,
the red parallelogram blocks represent input and output between processes, and the red oval/pill blocks represent outputs of the RDE algorithm. The yellow bounded areas represent
offline sections of the algorithm and the purple bounded areas represent online sections of the algorithm. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Table 1
Table summarising the advantages and disadvantages of the RDE estimation methods discussed [4].

Estimation method Advantages Disadvantages

SoC direct calculation Low computational cost, easily
implemented

Cannot represent complex voltage
responses, uses a constant rated
capacity value

Model-based methods Accurate, robust to measurement
errors

Does not consider future
operating conditions, estimates
total available energy percentage
not RDE

Prediction-based methods Accurate, considers future battery
states

Requires accurate load prediction,
relies on accurate SoC and
capacity values

Proposed method Accurate, produces current
driving scenario information,
performs data processing offline

Increased computational intensity,
reduced accuracy for rapidly
changing driving conditions
2. Methodology

2.1. Driving pattern recognition

DPR uses vehicle measurement data to identify the current driving
scenario and style [18] and has been used successfully to underpin the
design of the energy management algorithms in many applications [19,
20]. DPR contains two key parts, drive cycle analysis and the pattern
recognition logic. Drive cycle analysis is used to process and group the
data set into different patterns based on available measurement data,
such as velocity and power. The recognition logic aims to determine the
current driving pattern and is defined based on the different patterns
found previously, with the goal of real-time implementation.

The EV data used throughout this paper was obtained by recording
the usage of commercially available passenger EVs. The vehicles were
driven over a period of 12 months to capture their operation during
both hot and cold climates. In addition, the vehicles were driven in a
combination of urban and highway driving. Data was recorded directly
3

from the vehicle’s controller area network or CAN bus. In total around
4600 vehicle trips were recorded, representing around 18,000 miles of
operation.

2.1.1. Drive cycle analysis
To define different driving cycles, a feature selection and clustering

framework was required. The EV driving data trips were split into
smaller sections called microtrips by considering when the driving
segments were at zero velocity for an extended period of time (5 s).
The purpose of this was to remove large sections of when the vehicle
was stationary. Here, a minimum of 5 s was used to define a new
microtrip, but this can be seen as an arbitrary choice. Features based on
each microtrip’s velocity and power measurements were defined, which
provided a summary of each microtrip’s characteristics. This process
was used in [21]. The 24 features used are shown in Table 2, where
acceleration is the rate of change of speed, and jerk is the rate of change
of acceleration. These were chosen as they can be easily identified from
vehicle measurements.
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Table 2
Table showing feature definitions and symbols.

Feature name Equation Symbol

Mean velocity 𝛴𝑛
𝑖=1𝑣𝑖
𝑛

�̄�

Maximum velocity 𝑚𝑎𝑥(𝑣𝑖) 𝑣𝑚𝑎𝑥
Minimum velocity 𝑚𝑖𝑛(𝑣𝑖) 𝑣𝑚𝑖𝑛

Variance of velocity 𝛴𝑛
𝑖=1 (𝑣𝑖−�̄�)

2

𝑛−1
𝑣𝑣𝑎𝑟

Mean acceleration 𝛴𝑛
𝑖=1𝑎𝑖
𝑛

�̄�

Maximum acceleration 𝑚𝑎𝑥(𝑎𝑖) 𝑎𝑚𝑎𝑥
Minimum acceleration 𝑚𝑖𝑛(𝑎𝑖) 𝑎𝑚𝑖𝑛

Variance of acceleration 𝛴𝑛
𝑖=1 (𝑎𝑖−�̄�)

2

𝑛−1
𝑎𝑣𝑎𝑟

Mean positive acceleration 𝛴𝑛
𝑖=1𝑎𝑖
𝑛

, for 𝑎𝑖 > 0 �̄�+

Mean negative acceleration 𝛴𝑛
𝑖=1𝑎𝑖
𝑛

, for 𝑎𝑖 < 0 �̄�−

Mean jerk 𝛴𝑛
𝑖=1𝑗𝑖
𝑛

𝑗

Maximum jerk 𝑚𝑎𝑥(𝑗𝑖) 𝑗𝑚𝑎𝑥
Minimum jerk 𝑚𝑖𝑛(𝑗𝑖) 𝑗𝑚𝑖𝑛

Variance of jerk 𝛴𝑛
𝑖=1 (𝑗𝑖−𝑗)

2

𝑛−1
𝑗𝑣𝑎𝑟

Mean positive jerk 𝛴𝑛
𝑖=1𝑗𝑖
𝑛

, for 𝑗𝑖 > 0 𝑗+

Mean negative jerk 𝛴𝑛
𝑖=1𝑗𝑖
𝑛

, for 𝑗𝑖 < 0 𝑗−

Mean power 𝛴𝑛
𝑖=1𝑃𝑖

𝑛
𝑃

Maximum power 𝑚𝑎𝑥(𝑃𝑖) 𝑃𝑚𝑎𝑥

Minimum power 𝑚𝑖𝑛(𝑃𝑖) 𝑃𝑚𝑖𝑛

Mean temperature 𝛴𝑛
𝑖=1𝑇𝑖
𝑛

�̄�

Maximum temperature 𝑚𝑎𝑥(𝑇𝑖) 𝑇𝑚𝑎𝑥
Minimum temperature 𝑚𝑖𝑛(𝑇𝑖) 𝑇𝑚𝑖𝑛

Mean temperature change 𝛴𝑛
𝑖=2𝑇𝑖−𝑇𝑖−1

𝑛
𝛥𝑇

Maximum temperature change 𝑚𝑎𝑥(𝑇𝑖 − 𝑇𝑖−1) 𝛥𝑇𝑚𝑎𝑥
Minimum temperature change 𝑚𝑖𝑛(𝑇𝑖 − 𝑇𝑖−1) 𝛥𝑇𝑚𝑖𝑛

After the features were obtained, ones with a high correlation with
ach other were removed. This was to reduce the total number of
eatures by removing redundant features [22]. The metric used here to
ind the correlation was the linear correlation coefficient. This method
as selected as it provides an efficient way determine if there is a

inear relationship between two variables [22]. The linear correlation
oefficient of two vectors can be defined as [23],

(𝑋, 𝑌 ) = 𝑐𝑜𝑣 (𝑋, 𝑌 ) ∕ (𝜎 (𝑋) 𝜎 (𝑌 )) (5)

where 𝑟 is the correlation coefficient of vectors 𝑋 and 𝑌 , 𝑐𝑜𝑣 (𝑋, 𝑌 ) is
the covariance of vectors 𝑋 and 𝑌 , and 𝜎 (𝑋) is the variance of vector
𝑋, where 𝑋 and 𝑌 are the values of features for all microtrips. The
value of 𝑟 will be between −1 and 1 [22], where a value of 1 indicates
that the vectors are fully correlated.

A threshold value needed to be chosen to determine if two features
are dependent. In [17], a threshold value of 0.8 was used. When
examining the features, different threshold values were used to see how
they would affect the features removed. When 0.8 was used, 5 features
were removed, these being 𝑣𝑚𝑎𝑥, 𝑎𝑚𝑎𝑥, 𝑎𝑣𝑎𝑟, �̄� , and 𝑇𝑚𝑎𝑥. When the value
was raised to 0.9, only 𝑣𝑚𝑎𝑥, �̄� , and 𝑇𝑚𝑎𝑥 were removed, but when the
value was 0.75, 8 features were removed. These were �̄�, 𝑣𝑚𝑎𝑥, 𝑎𝑚𝑎𝑥, 𝑎𝑣𝑎𝑟,
�̄�+, 𝑗𝑣𝑎𝑟, �̄� , and 𝑇𝑚𝑎𝑥. The feature for mean velocity has a strong relation
with the power consumption of the vehicle, so it would be ideal if this
feature was kept. Therefore, a value of 0.8 was deemed to be a suitable
value for use here.

To identify which features had high correlation with 𝑃 , the linear
correlation coefficient was used in conjunction with reviewing scatter
plots of the each feature against 𝑃 , where this process was performed
in [17]. These scatter plots are shown in Fig. 2 and the values from
the linear correlation coefficients are shown in Fig. 3. Features such
as �̄� and 𝛥𝑇 have a small correlation coefficient, so they should not
4
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Table 3
Table showing the number of principle components and their
respective percentage contribution to the total variance. The
cumulative percentage is also calculated.

Principle
component

Percentage of
variance (%)

Cumulative
percentage
(%)

1 73.2 73.2
2 10.7 83.9
3 8.0 91.9
4 5.2 97.1
5 2.9 100

be included when clustering. Therefore, another threshold value was
defined to determine what features will be selected for clustering. A
clear example of correlation is shown in Fig. 2(a), where it shows that
overall, when �̄� increases, 𝑃 increases. Figs. 2 (q) and (r) do not show

correlation, by inspection, and therefore, the threshold value should
e greater than their correlational coefficient, 0.35 as shown in Fig. 3.
o, an initial threshold value of 0.4 was used to for clustering and the
PR logic. The resultant features are �̄�, 𝑣𝑣𝑎𝑟, 𝑎𝑚𝑖𝑛, 𝑃 , and 𝑃𝑚𝑖𝑛.

To group the microtrips into different driving patterns, clustering
eeded to be applied to the data in the feature set. Since the total
eature set may be very large, it was important to implement clustering
lgorithms that deal well with high dimensional data to avoid ‘the curse
f dimensionality’, which causes data points to become sparser as the
umber of dimensions is increased [24]. One method used to avoid
his problem is using principal component analysis (PCA) to reduce
he dimensionality of the data set before clustering. Examples of this
echnique can be found in [18,25]. Here, the data was first processed
sing Z-score normalisation, as described in [25,26]. This reduces the
eighting that features with large values will have on the clustering.
fter performing PCA, the number of principle components (PCs) used

o represent the dimensions for clustering needed to be determined by
hoosing the ones which contribute the most variance, which would
esult in a minimum loss of information [27].

For this example, five features were used, so five PCs were found.
heir variance percentages and the cumulative percentages are shown

n Table 3. In [18], the number of PCs used was decided by the
omponent that had more than 80% cumulative percentage.

The clustering algorithm used here was K-means clustering, where
ach principle component represented the different dimension. K-
eans clustering is a popular choice of clustering algorithm [28],

hat uses distance calculations to partition a set of points. It is easily
mplemented and has a high computational speed, which allows for
arge data sets to be processed [29,30], so it was suitable for this
pplication. A major issue with K-means clustering is choosing the
ptimal number of clusters. Similar processes for grouping driving
egments can be found in [17,18,31,32]. In [18,31], no rationale was
iven to deciding the number of clusters used. In [32], the choice
as made by inspecting the clustering results. In [17], the silhouette

oefficient was used to determine the optimal number of clusters, which
s defined by

(𝑝) =
𝑏(𝑝) − 𝑎(𝑝)

𝑚𝑎𝑥{𝑎(𝑝), 𝑏(𝑝)}
, (6)

here 𝑆(𝑝) is the silhouette coefficient for a point 𝑝, 𝑎(𝑝) is the average
istance from point p to all other points within the same cluster, 𝑏(𝑝) is
he average distance from point 𝑝 to all points within the next nearest
luster [17,33]. The silhouette coefficient is a common method for
eciding the optimal number of clusters [33,34]. It determines how
ell separated the clusters are and gives a value between −1 and 1.
he higher the silhouette coefficient is, the better defined the clusters
re [35]. If a data point has a negative silhouette coefficient, this means
t is likely assigned to the wrong cluster. When a data set contains

any densely packed points, the silhouette coefficient cannot reliably
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Fig. 2. Scatter plots of the feature set against the mean power. (a) mean velocity (�̄�), (b) variance of velocity (𝑣𝑣𝑎𝑟), (c) mean acceleration (�̄�), (d) minimum acceleration (𝑎𝑚𝑖𝑛),
(e) mean positive acceleration (�̄�+), (f) mean negative acceleration (�̄�−), (g) mean jerk (𝑗), (h) maximum jerk (𝑗𝑚𝑎𝑥), (i) minimum jerk (𝑗𝑚𝑖𝑛), (j) variance of jerk (𝑗𝑣𝑎𝑟), (k) mean
positive jerk (𝑗+), (l) mean negative jerk (𝑗−), (m) maximum power (𝑃𝑚𝑎𝑥), (n) minimum power (𝑃𝑚𝑖𝑛), (o) minimum temperature (𝑇𝑚𝑖𝑛), (p) mean temperature change (𝛥𝑇 ), (q)
maximum temperature change (𝛥𝑇+), (r) minimum temperature change (𝛥𝑇−).
determine the optimal number of clusters. This will be shown in the
results section.

Therefore, a new approach was proposed here, which calculates the
average standard deviation in the size of the clusters from multiple
restarts. The aim of this was to reveal the natural groupings in the
data by evaluating how the initial conditions for the cluster centres
affect the final number of points in each cluster. This was achieved
by clustering the data set with a predetermined number of clusters and
ordering the clusters based on their mean power, then calculating the
percentage of the total amount of data points in each. This process
can be repeated to give a large set of percentage values, so that the
5

difference in the sizes of each cluster can be assessed by calculating
the standard deviation of the cluster sizes. By comparing the results
when different numbers of clusters are used, the optimal number of
clusters can be determined based on the highest cluster number before
a significant change in standard deviation occurs. This is because a
large change in the standard deviation would suggest that there is a
dependence on the initial locations for the clustering outcome.

2.1.2. Pattern recognition logic
To use the defined profile types, a method was implemented to

recognise the driving pattern based on the current driving conditions.
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Data: 𝑠𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎, 𝑜𝑓𝑓𝑙𝑖𝑛𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑖, 𝑗)
𝑖 ← Number of features;
𝑗 ← Number of driving patterns;
for 𝑖 do

𝑠𝑒𝑛𝑠𝑜𝑟𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑖) ← calculate feature 𝑖 from 𝑠𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎;
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥(𝑖) ← index 𝑗 of 𝑚𝑖𝑛(𝑎𝑏𝑠(𝑠𝑒𝑛𝑠𝑜𝑟𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑖) − 𝑜𝑓𝑓𝑙𝑖𝑛𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑖, 𝑗)));

end
Current driving pattern ← 𝑚𝑜𝑑𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥)

Algorithm 1: DPR logic pseudocode.
Fig. 3. A bar chart showing the linear correlation coefficient between certain features
and mean power.

By using the pre-PCA feature set values of the microtrip segments,
the feature values for the different profile types were obtained. A
simple rule-based logic was devised by calculating the same features
from sensor data and comparing it to the offline features. The input,
processing and output of the logic are shown in the Driving Pattern
Recognition Logic block in Fig. 1, and the pseudocode for the logic is
shown in Algorithm 1. For this method, a moving window that gathers
measurement data was implemented. The length initially used was
500 s, but this value was optimised later.

2.2. Power prediction

This section outlines how power prediction is used for RDE estima-
tion, using the driving patterns defined previously. The method used
here follows similar methods outlined in [5]. There are two key compo-
nents to the proposed power prediction method, a clustering algorithm
to obtain distinct power levels and the use of Markov modelling to
predict future power levels. The difference for the method proposed
here is that the relevant information is obtained offline, from a training
data set of EV data, for prediction online. This method was used to
investigate whether there was a greater potential of increasing the RDE
estimation accuracy when used with DPR.

Performance analysis between different prediction-based methods
was also performed here. Therefore, the same power prediction method
was implemented for all methods. The other methods implemented
were an offline approach was used without DPR, where the Markov
model was trained from the whole microtrip data set, and an online
moving window method, which was used in [5]. The moving window
method gathers data during a cycle and performs clustering and the
Markov model training online. For the purpose of comparison, these
methods used the same clustering and Markov modelling approach.
Hence, an efficient clustering and Markov modelling method needed
to be implemented, so that is could be performed online in real-time.
The K-means algorithm for clustering meets such requirements.

2.2.1. K-means clustering with Gaussian distribution
This application of clustering has a different purpose to the previous

implementation. Here, the goal was to find power levels within the
6

data, which were used to predict the future power profile. For the
implementation of clustering algorithms for power prediction, Gaussian
mixture modelling (GMM) was used in [5] to represent load levels
as a Gaussian distribution [36], whereas K-means clustering was used
in [11], where the load value is represented as the value of the cluster
centre. Since the power draw for EVs can be very transient, using
the cluster centres from K-means clustering algorithm results in a loss
of accuracy, instead of a distribution of possible values. In contrast,
an unaltered GMM will result in computational times many orders
of magnitude greater than K-mean clustering [37,38], which will be
problematic for clustering large data sets.

Therefore, the method used here involved using K-means to find
the cluster centres of the data set and then calculating the variance
of the points in each cluster, so that the cluster could be represented
as a Gaussian distribution. The information obtained was used online
to calculate power values. This was done by randomly generating a
number between 0 and 1 and using this as the probability value for a
Gaussian inverse calculation, along with the information obtained from
clustering.

2.2.2. Markov modelling
Through clustering, power profiles can be described as a sequence

of distinct states, which represent certain power levels. This informa-
tion has been used to form a Markov model [39], with the purpose
of forecasting future states [40]. Markov models use probabilities to
predict the next state, depending on the current state. The probability
information is stored in a transitional probability matrix (TPM). This
information is used to predict all future states, where only the current
state is needed to predict all future states [5,41].

The TPM is an 𝑛-by-𝑛 matrix, where 𝑛 is the number of clusters. The
rows represent the current state, and the columns represent the possible
future states, so the probability of transitioning from state 𝑖 to state 𝑗
is given by 𝑀𝑖𝑗 . Note that the rows sum to 1. The TPM is calculated by
counting the number of times each transition between specific states for
𝑖 and 𝑗 occurs, then dividing it by the total number of times 𝑖 occurs.

For the method proposed here, the TPM was calculated offline
from the microtrip data, where cluster information and TPMs were
defined for the different driving scenarios. The DPR logic was used to
determine which set of data was be used to predict the future profile,
under the assumption that the current scenario will continue until the
end-of-discharge.

3. Cell characterisation and modelling

To implement the RDE estimation algorithm as well as for real-
time implementation, a battery model was needed. This section outlines
the experimental approach used to characterise a set of cells, and how
parameters for the battery model are identified and validated.

3.1. Experimental characterisation

Five new Samsung 21,700 48X cells were characterised using a
MACCOR battery cycler. The tests used here consisted of a capacity
test, a discharge capacity test and an open circuit voltage hybrid pulse
power characterisation (OCV-HPPC) test, as described in [42,43]. These
tests were performed at four different temperatures, 0 ◦C, 15 ◦C, 25 ◦C
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and 40 ◦C, with 4 h used for temperature stabilisation. For these cell,
he 1C discharge rate was 4.8 A. Additionally, the charge and discharge
ut-off voltage for the cells followed the data sheet limits of 4.2 V and
.5 V, respectively.

The capacity test used here consists of three C/3 constant current
onstant voltage (CCCV) charge and discharge cycles, with a cut-off
urrent in the CV phase of C/20, to test the stability of the cell’s capac-
ty [42]. The discharge capacity tests measured the energy capacity at
ifferent discharge rates, these being C/3, 1C, 2C, 3C, 5C and 8C. The
CV-HPPC test that was used combined discharge pulses with long rest
eriods. The OCV was measured from the voltage values before a 10 s
C discharge pulse was applied, with a rest period of 4 or 6 h used.
n incremental OCV test was used to obtain the OCV values, as it was
hown in [44] that this will produce more accurate measurements, with
oC breakpoints of 1% increments between 100% and 91% SoC with
h rest periods, 4% increments between 90% and 22% SoC with 4 h

est periods, and 1% increments between 21% and 1% SoC with 6 h
est periods. The longer rest periods were used in the more non-linear
egions, with the aim of getting more accurate results.

.2. Cell modelling

The choice of model used here was a first order equivalent circuit
odel (ECM) [45]. This was chosen as a computationally efficient
odel was needed for predicting the future battery voltage and real-

ime implementation. To identify the model parameters, a least-squares
ethod was used. The voltage response of the model was described by

he following discrete form state equations [46],

𝑝,𝑘+1 = 𝑈𝑝,𝑘𝑒
𝛥𝑡∕𝜏 + (1 − 𝑒𝛥𝑡∕𝜏 )𝑅𝑝𝐼𝑘, (7)

𝑈𝑇 ,𝑘 = 𝑈𝑂𝐶,𝑘 + 𝑈𝑝,𝑘 + 𝑅0𝐼𝑘, (8)

where 𝑘 is the current time step, 𝑈𝑝 is the polarisation voltage, 𝛥𝑡 is
the change in time (set to 10 ms), 𝜏 is the time constant, which is
equal to the polarisation resistance, 𝑅𝑝, multiplied by the polarisation
apacitance, 𝐶𝑝; 𝑈𝑇 is the terminal voltage, 𝑈𝑂𝐶 is the OCV, 𝑅0 is the

internal resistance, 𝐼 is the current, where negative current is discharge
current.

To identify the relevant model parameters, data from the OCV-HPPC
test was used. Firstly, the internal resistance (𝑅0) was calculated from
the voltage drop when the pulse was applied, using Ohm’s law [47,48].
This point was determined when the measured current was first equal
to the designed pulse current, this was the second sample point, with a
sample time of 0.1 s. To identify the values of the RC pair, the lsqcurvefit
library was used, which is part of the Mathworks optimisation tool-
box [49]. This enabled the values of 𝑅𝑝 and 𝐶𝑝 to be optimised against
the experimental data. Eqs. (7) and (8) were used as the function that
needs to be optimised with 𝑅𝑝 and 𝐶𝑝 as the unknown values. The
extracted parameters are shown in Fig. 4.

To validate the model parameters obtained, a predefined discharge
cycle was used on a fresh set cells of the same type used for parametri-
sation to measures the voltage response and determine the accuracy
of the battery model. The profile was chosen as it has both regions of
higher current pulse and regions of constant current. Fig. 5 shows a
validation cycle for one of the cells used. The voltage responses and
errors are shown. Overall, three cells were used for validation at four
temperatures. It was found that the RMSE of the model was 20 mV for
all tests.

4. Results and discussion

4.1. Driving pattern recognition

In order to optimise the DPR, various values outlined in the method-
ology could be adjusted to maximum the pattern recognition accuracy.
This involved clustering the data set to obtain distinct power profiles
and determining the which features to used for the rule-based pattern
recognition logic.
7

Table 4
Results of silhouette coefficients for different cluster numbers with multiple runs of the
clustering algorithm, where 𝑘 refers to the number of clusters.

Run 2 𝑘 3 𝑘 4 𝑘 5 𝑘 6 𝑘 7 𝑘

1 0.34 0.35 0.33 0.36 0.39 0.28
2 0.34 0.36 0.37 0.31 0.34 0.38
3 0.34 0.36 0.33 0.36 0.34 0.44
4 0.34 0.35 0.33 0.36 0.34 0.45
5 0.34 0.35 0.33 0.36 0.39 0.34

Mean 0.34 0.35 0.34 0.35 0.36 0.38

4.1.1. Drive cycle analysis
Before the DPR can be optimised, the microtrips needed to be

grouped using K-means clustering. For the data set here, the mean
silhouette coefficient for all points was calculated from multiple runs
and these results are shown in Table 4. The higher cluster numbers
showed far more variance in the values of their silhouette coefficients,
such as 7 clusters having the largest and smallest coefficient values.
Therefore, this method was deemed not to produce a clear optimal
number of clusters.

An example of how the initial cluster centre locations affect the final
number of points assigned to each cluster are shown in Fig. 6. Here,
there were distinct power levels for both 3 and 4 clusters, but the size of
the clusters had a high variability with 4 clusters. Hence, the proposed
metric proposed in Section 2.1.1 was used.

For the proposed metric, the optimal number of clusters would
be the largest number of clusters before a significant change in the
standard deviation of the cluster size, as a high standard deviation
would show that the size of the clusters is significantly affected by the
initial positions. For the current data set, this metric was calculated
from 50 restarts for each number of clusters. This number was chosen to
give a balance between a large enough same size and the computational
time, as a negative of this method was the large amount of time needed.
The results from this are shown in Fig. 7, where it is shown that the
best number of clusters to use in this scenario is 3.

From clustering, an example of each type of profile are shown in
Fig. 8, which were labelled low power, medium power, and high power.
The differences between the types of profiles are observable, the low
power profile had a has low charge and discharge power; the medium
power had a much larger range of power value but was a lot more
transient than the other profiles; and the high power profile had regions
of sustained power discharge, as well as high charge regions.

4.1.2. Pattern recognition logic
For testing the accuracy of the logic, the data set was randomly

split into 70% training data and 30% testing data. The accuracy was
defined as the percentage of correct identifications, where the test data
was formed into three profiles based on the different clustered driving
microtrips.

To validate the feature selection and clustering approach, in terms
of DPR accuracy, the logic was tested with and without feature selection
before clustering and with different number of PCs used for clustering.
An additional metric used here was the percentage of split cases, which
was where a clear driving pattern cannot be determined, e.g., if the
calculated features correspond to clusters [1, 1, 2, 2, 3]. The results are
shown in Table 5. The findings showed that there was no noteworthy
change in the accuracy or number of split cases when the number of
principle components was changed. The results also showed a signifi-
cant drop in accuracy when a larger feature set was used. The cause of
this was the inclusion ‘‘irrelevant’’ data, which makes recognition more
difficult. Furthermore, the difference in accuracy between clustering
with 3 and 24 features was significant and could be caused by clustering
a high dimensional data set.

From these findings, there was a correlation between the features
used and the accuracy of the DPR logic. Therefore, the threshold value
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Fig. 4. Parameters identified from the HPPC-OCV test, plotted against SoC at all temperatures used. For modelling, parameters have been reinterpolated so the SoC breakpoints
are the same. (a) shows OCV data, (b) shows internal resistance data, (c) shows polarisation resistance data, and (d) shows polarisation capacitance data.
Table 5
Table showing accuracy of the recognition logic and the number of split cases (where the mode has two values), for PCA K-mean clustering
with different numbers of PCs, against an approach that does not use any feature selection before the PCA clustering is performed, for 3 and
24 PCs. A moving window length of 300 s was used. The features used here are �̄�, 𝑣𝑣𝑎𝑟, 𝑎𝑚𝑖𝑛, 𝑃 , and 𝑃𝑚𝑖𝑛.

With feature selection
(5 total features)

Without feature selection
(24 total features)

Principle components 1 2 3 4 5 3 24

Accuracy (%) 85.4 85.5 85.2 85.2 85.6 73.6 61.6

Percentage of splitcases (%) 5.0 5.0 5.2 5.0 5.0 9.6 7.9
for the power correlation was also optimised. This involved finding
the threshold value that produced the highest DPR accuracy. Since
largest correlation value was 1, by definition, the threshold values that
were tested were 0.9, 0.8, 0.7, 0.6 and 0.5, which corresponded to the
different number of features being used for clustering.

The results from this are shown in Table 6, with the corresponding
number of features for each threshold value also shown. The threshold
value which had the best accuracy was 0.7, which also had a low
percentage of split cases. The accuracy for clustering with one feature
was high as well, and by nature had no split cases. As expected, the
larger threshold values produced reduced levels of accuracy by up to
7%, as the less relevant features were given the same weighting as the
most relevant. From these results, the threshold was set at 0.7 for this
data set.

Additionally, the length of the historical window was optimised
to produce the best accuracy. To test this, the length of the moving
window was changed and the accuracy was calculated. For comparison,
a neural network (NN) was created with the MATLAB nftool [50],
which is part of the MATLAB Deep Learning Toolbox. Here, the NN
input was the relevant feature values of each microtrip, and the target
data was the corresponding cluster number. The data for training,
validation and testing were divided based on 70%, 15% and 15% of the
total data set, respectively. For the training, 10 hidden neurons were
used in hidden layer and the Levenberg–Marquardt algorithm was used
to train the network. The trained NN was deployed as a function, which
8

Table 6
Table showing the accuracy of the power pattern recognition accuracy
for different values of the power correlation threshold, which determine
the features used for clustering. Note, the maximum power correlation
value is 1. The length of the moving window used was 300 s.

Mean power correlation
threshold value

0.9 0.8 0.7 0.6 0.5

Number of
features

1 2 3 4 5

Accuracy (%) 89.7 87.3 92.7 87.9 85.5

Percentage of
split cases (%)

0 14.9 1.1 14.4 5.0

used the features values of the measurements in the moving window
to output the cluster number, which corresponded to a certain driving
pattern.

The comparison between the accuracy of the rule-based logic and
the NN are shown in Fig. 9. For short window lengths, the NN had bet-
ter identification accuracy, but the results converge when the window
length was around 600 s. The computational time was also calculated
for the data set, where the rule-based logic took 32 s and the NN took
41 s. This shows a trade-off between the accuracy and computational
complexity for short window lengths, but for long window lengths, the
proposed logic had comparable accuracy for a smaller computational
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Fig. 5. Example of results from validation tests, performed at 25 ◦C. (a) shows the
experimental voltage that was measured from a cell, the model voltage using the battery
model previously defined. (b) shows the voltage error results, the SoC from the model
and the voltage error RMSE.

cost. Therefore, the rule-based logic, with a long historical window was
used.

4.2. Power prediction

The goal of the power prediction method here was to provide
a process for predicting future battery states in real-time. Because
of this, the method aims to produce power profiles with the same
key characteristics of the training data. Therefore, metrics need to be
defined for comparing the profiles from the measurement data to the
predicted profiles.

In [51], a metric was defined as the ratio of mean power to max
power and was used measure how close the mean power was to the
peak power for a given driving profile. An altered metric was imple-
mented here, such that the max power was defined as a percentage of
the maximum charge or discharge values, defined as

𝛷𝑛% =
|

|

|

|

𝑇 𝑜𝑡𝑎𝑙 𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟
𝑀𝑎𝑥 𝑛% 𝑃𝑜𝑤𝑒𝑟

|

|

|

|

. (9)

This change was justified as the average length of the profiles defined
here was 7200 s, whereas, in [51], the average length was 1200 s.

The results for this metric are shown in Fig. 10, when the per-
centage of maximum power values was 1 and 10. Here, the data split
into 70% training and 30% testing, so that the power prediction was
compared against unseen data. The metric is used for both the charge
and discharge components of the profiles. Here, it was shown that
there was good agreement, in most cases, between the test data, which
consisted of the real-world measurements, and the power predicted
profiles. Overall, 𝛷10% performed better with the max discharge data
and 𝛷1% performed better with the max charge data. The results that
did not have good agreement were the charging parts of the low power
profile, and to a lesser extent, the charging parts of the high power
profile. This did not have a significant effect on the overall accuracy of
the predicted profile, as there were four to five times more discharging
points compared to charging points for the profiles present here.
9

Fig. 6. Bar plots of cluster percentage and mean power of the data points within
each cluster, when different numbers of clusters are used. The error bars represent the
standard deviation between the results from 50 runs of the clustering algorithm. The
features present for this clustering are �̄�, 𝑣𝑣𝑎𝑟, 𝑎𝑚𝑖𝑛, 𝑃 , and 𝑃𝑚𝑖𝑛.

Fig. 7. Plot of the proposed cluster metric, standard deviation of cluster size, against
the number of clusters. The features present for this clustering are �̄�, 𝑣𝑣𝑎𝑟, 𝑎𝑚𝑖𝑛, 𝑃 , and
𝑃𝑚𝑖𝑛.

4.3. Single cell simulation

For RDE estimation simulation, the obtained battery model was used
to represent an actual battery’s voltage response, therefore, there was
no voltage or SoC error present. Before the simulations were performed,
the power was scaled from the EV pack level to an appropriate cell
level. With the scaled data, the high-power profile took one hour for
a full discharge, the medium power profile took two hours for a full
discharge, the low power profile took three hours for a full discharge.
These profiles were generated and used for simulation, as well as an
additional mixed power case which were generated from randomly
selecting microtrip segments for the purpose of testing the algorithm
when the power level do not remain constant.

For the four methods used here, various parameters were calibrated
to optimise the RDE result. These included the number of clusters used
to represent the different power levels and the length of the moving
window. The metric used to justify the parameter choices was the
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Fig. 8. Example power profiles generated from microtrips in each cluster. The plots are in ascending order of average power.
Fig. 9. Plot of the accuracy of the proposed logic and a NN against different historical
window lengths, where the sampling time was 1 s. The computational time for the
whole test data set for the rule-based logic was 32 s and the NN was 41 s.

Fig. 10. Plot of 𝛷𝑛% for 10% and 1%, comparing the results from the test data to the
power prediction results, for each power case.

RMSE, as this indicated how accurate the method was for the whole
profile. Here, the error was defined as the difference between the
reference RDE and the RDE estimate. The reference RDE was calculated
from the energy removed from a cell (using Eq. (1)), so that the RDE
at the start was equal to the total energy removed. The number of
clusters used to predict the future power was found to have little impact
on the overall results, where two clusters was found to be the most
suitable value, as shown in Table 7, for the proposed method. This
trend was also present for the other methods. An additional test was
also performed to justify both the use of representing the power levels
10
Table 7
Table showing the data from simulations using different cluster numbers for the load
levels for load prediction in the RDE estimation, with the proposed DPR algorithm.

Number of clusters

2 3 4 5 6 7 8

Low power RMSE (Wh) 0.76 0.83 0.88 0.86 0.88 0.89 0.89
Medium power RMSE (Wh) 0.35 0.41 0.46 0.45 0.46 0.47 0.51
High power RMSE (Wh) 0.28 0.29 0.29 0.30 0.32 0.31 0.33
Mixed power RMSE (Wh) 0.38 0.40 0.43 0.43 0.46 0.45 0.48
Overall RMSE (Wh) 0.44 0.48 0.51 0.51 0.53 0.53 0.55

as clusters and using Gaussian distributions. For this, when one cluster
was used with no Gaussian distribution, the RMSE is 0.57 Wh, whereas
when two clusters are used with Gaussian distribution, the RMSE is
0.32 Wh.

For the length of the moving window, it was found that increasing
the number of data points collected, the accuracy would increase, as
well as decrease the total computational time, so a moving window of
1000 s was used.

For each of the driving patterns, five profiles were generated. These
were used to determine which method had the greatest accuracy and
the highest computational efficiency. The computational efficiency was
determined by the total run time of the algorithm for a whole power
profile and was based on a computer with an Intel(R) Core(TM) i7-
8665U CPU @ 1.90 GHz and 16 GB of RAM. Table 8 shows the data
from these simulations. These results come with three key points. (1)
The offline-training method, without pre-processing, can provide RDE
values from the initial time, but the offline-training method with DPR,
can only provide reliable RDE values after time equal to the pattern
recognition window has been reached, this was also the case for the
moving window method. So, the RMSE values were calculated with
RDE values from the same starting point in time. (2) The computa-
tional time shown was for the whole RDE estimation time for each
implemented method, but for the moving window method, the direct
calculation method was used before the window length time has passed,
which took significantly less time than using power prediction. (3) The
DPR provides information that can be useful for other areas of the
control system, such as energy [31] and thermal management [52,53],
at the cost of computational efficiency. Therefore, these should be con-
sidered when deciding the optimal accuracy vs relative computational
intensity method.

As discussed previously, the direct calculation method has very poor
accuracy when compared to prediction based methods. This is expected
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Table 8
Table showing the data from simulations using different RDE estimation algorithms. Five different profiles for each profile type were tested,
with the mean RMSE for each type shown, as well as the standard deviation in these results and the total computational time shown.

Direct
calculation

Moving
window

Offline-training without
pre-processing

Offline-training
with DPR

Profile type

Low power Mean RMSE (Wh) 0.51 0.04 0.73 0.06

Standard
deviation (Wh)

0.01 0.00 0.02 0.04

Total computational
time (s)

34.41 101.94 48.20 97.45

Medium power Mean RMSE (Wh) 0.95 0.26 0.34 0.26

Standard
deviation (Wh)

0.23 0.13 0.12 0.10

Total computational
time (s)

17.92 22.06 24.55 29.94

High power Mean RMSE (Wh) 1.26 0.50 0.23 0.28

Standard
deviation (Wh)

0.18 0.20 0.09 0.06

Total computational
time (s)

7.94 7.45 11.61 12.51

Mixed power Mean RMSE (Wh) 1.37 0.56 0.39 0.53

Standard
deviation (Wh)

0.42 0.27 0.22 0.25

Total computational
time (s)

14.48 16.74 20.35 26.00

Final mean RMSE (Wh) 1.02 0.34 0.42 0.28
since the equation used to calculate RDE did not take into account the
current conditions of the cell. From the results shown, the accuracy
of this method decreased when higher power profiles were used. This
was attributed to the increased difference between the nominal voltage
(used in the direct calculation equation) and the terminal voltage of
the cell. Overall, the direct calculation method will only be suitable for
application that require high computational speeds.

When comparing the prediction-based methods, there was no
method that was universally the most accurate across all use cases.
For the low power case, the offline-training method with DPR and the
moving window method both had similar accuracy, which was much
greater than the offline-training method with no data pre-processing.
This was caused by the low power having a small range of possible val-
ues, which was unrepresentative of the entire data set. For the medium
power profiles, the results were much closer, and for the high power
profiles, the moving window method was the least accurate and the
offline-training method with no pre-processing was the most accurate.
This was because the possible range of values is very high. As for the
mixed power case, the offline-training method and the moving window
method were not suited to this type of profile, as the same power
level was not sustained for a significant period of time. The method
with no pre-processing provided the greatest accuracy for mixed power
profiles. Therefore, two cases were defined, a constant power case and
a mixed power case, where different methods were preferable for each
case. For a specific use case where the current conditions are present
for the whole cycle, the power pattern recognition method would be
preferable, but if the conditions rapidly change unpredictably, the
method where the whole training set is used for the prediction would
be favoured.

For medium power profiles, since the accuracy between the DPR
method and the moving window was the same, the standard deviation
was used to select the most appropriate method. Since the standard
deviation was smallest for the offline-training, with pattern recognition,
this was the best choice for medium power. For high power profiles,
the two offline-training methods showed similar accuracy, and when
considering the standard deviation in the results, the choice of the
best method became less significant. Therefore, the choice of the most
suitable method should be made according to the specific application,
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and whether more accuracy is needed, or more repeatable results are
needed, as well as the type of power profiles that will occur.

In terms of the total computational time, the direct calculation
method was very efficient, especially when longer profiles were used.
The moving window method was also efficient for all cases except the
low power profiles. For the pattern recognition method, the additional
computation cost came from the recognition component, compared
to the other offline-training method. The significance of this time
difference would be reduced if pattern recognition is necessary for the
control system, or if it is implemented to improve the accuracy of other
parts of the system. In addition, options for pattern recognition algo-
rithms were not explored here, in terms of accuracy and computational
efficiency, so this time difference could be reduced in the future work.

4.4. Real-time implementation

For the simulations, the testing conditions were made so the battery
model producing a voltage response was the same as the model used
for the RDE estimation. It is noteworthy that this was an idealised
case, where no voltage error was present. So, it is important to test the
proposed algorithm in real-time implementation (RTI) scenario using
data from real cells. The cells used for validation were used to gather
data based on the different driving profiles.

The hardware setup is shown in Fig. 11. Due to the limitations of the
cycler, the setup used for this implementation involved obtaining data
using a Maccor multi-range cycler from three 21,700 48X cells, which
were previously used for validation. A low, a medium and a high power
profile that were used for the simulations, were used as an input for the
cycler. To avoid cycler errors from the inability to switch between very
low current and very high current with high frequency, the profiles
were re-interpolated at ten second intervals. The difference between
the profiles is shown in Fig. 12(a) and Fig. 13(a). The voltage and
current data was then used as an input for the algorithm. The algorithm
was implemented on dSPACE Scalexio system and executed in real-
time, with a sample time of 10 ms and a fixed-step discrete solver.
Since three cells were used to obtain the data, three instances of the
each RDE prediction-based algorithm were also used and performed at
the same time. The algorithm also included an extended Kalman filter
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Fig. 11. Hardware diagram of real-time implementation setup, showing the
components that were used and the connections between them.

for SoC estimation, refer to [46,54] for the algorithm definition and
implementation.

Figs. 12 and 13 show RDE results for the simulation and the RTI for
the proposed method, respectively. The figures also show the current
profile used, which were based on the same original profile. Once again,
the reference RDE was calculated from the energy removed from a cell.
In this case, the voltage and current values were taken from the battery
cycler measurements. For the RTI, Fig. 13 shows the difference between
the cells for RDE estimation. The differences were most likely caused by
different random number generator seeds being used, as the cells used
did not have significant cell-to-cell when characterised. Although, cell
ageing was not examined here, the degradation caused by performing
multiple high current validation cycles may have increased the cell-
to-cell variations. When comparing the simulation result to the RTI
results, all cells had similar RMSE as the simulation results. This was
overall a positive result, as it shows the algorithm could achieve the
same accuracy, even when in the presence of modelling errors, as well
as add validity to the simulation results.

The three prediction-based methods were tested with high, medium
and low power profiles, in real-time. All the results are shown in
Table 9. In general, the moving window and offline-training with
DPR methods performed well, achieving higher accuracy than in the
simulations for the high and medium power profiles used. For these
methods, the accuracy of the low power profile was significantly lower.
This could have been caused by the modelling errors. The opposite
trend occurred for the offline-training method without pre-processing,
where it performed better than the simulations for the low power pro-
file, but worse for the high power profile. Overall, the offline-training
method produced slightly more accurate results that the moving win-
dow method in real-time.

5. Conclusion

Using power prediction methods to estimate RDE have been shown
to be more accurate than alternative methods, such as SoC direct
calculation and model-based methods. Here, previously implemented
methods for power prediction were compared to the proposed DPR
power prediction approach. The novelty of the proposed method was
the combination of power prediction with DPR, as well as an investiga-
tion into how feature selection affected DPR accuracy. Firstly, the DPR
approach was outlined, including methods for feature selection and
clustering to group the microtrips into different driving categories. Each
12
Fig. 12. Data from RDE simulations using a high power profile. (a) shows the
corresponding current profile. (b) shows the RDE against time results, with the reference
RDE regarded as the true value for RDE. (c) shows the RDE error and the calculated
RMSE.

step was justified with numerical simulations to determine its effect on
the recognition accuracy. Furthermore, a new method for determining
the optimal number of clusters was proposed, which is effective for
dense data sets. The simulations were then performed using the DPR
approach and comparing the results to a moving window method and
an offline training method, with no DPR. For four different types of
power profile, the DPR approach was the most accurate, at the cost of
computational speed. This approach was best suited for power profiles
that maintain a comparable power level for a significant period of time.
Next, the prediction-based algorithms were tested in real-time, using
actual cell data. The results were compared showing the DPR method
and the moving window method achieved a similar level of accuracy
for the three cases, but with the DPR method producing information
about the current driving conditions. Compared to the simulations,
the methods showed an acceptable level of accuracy, considering the
modelling errors present.

There are multiple areas of future work for this research. These
can be split into two categories, system implementation and algorithm
improvements. For the system implementation, the main component
of this would include BMS integration, which would be achieved by
testing the algorithm on an electronic control unit (ECU). In addi-
tion, testing the transferability of the algorithm to different battery



Journal of Energy Storage 64 (2023) 107091O. Hatherall et al.
Table 9
Results of real-time implementation (RTI) using three prediction-based RDE estimation methods, for the same profiles, with the average RMSE
from each profile calculated. The results for the same profiles in simulation are also shown.

Simulation
RMSE (Wh)

Cell 1 RTI
RMSE (Wh)

Cell 2 RTI
RMSE (Wh)

Cell 3 RTI
RMSE (Wh)

Average RTI
RMSE (Wh)

Moving window
High Power 0.31 0.27 0.30 0.29 0.29
Medium Power 0.22 0.24 0.22 0.25 0.24
Low Power 0.03 0.24 0.26 0.22 0.24

Offline-training
without pre-processing

High Power 0.18 0.51 0.54 0.53 0.53
Medium Power 0.45 0.43 0.40 0.46 0.43
Low Power 0.76 0.60 0.55 0.62 0.59

Offline-training
with DPR

High Power 0.31 0.29 0.30 0.29 0.29
Medium Power 0.23 0.23 0.22 0.24 0.23
Low Power 0.04 0.21 0.23 0.20 0.21
Fig. 13. Data from real-time RDE tests using the proposed DPR method for a high
power profile, using three cells. (a) shows re-interpolated current profile that was used
for simulation. (b) shows the RDE against time results, with the reference RDE regarded
as the true value for RDE. (c) shows the RDE error and the calculated RMSE.

chemistries, form-factors and load profiles, which will require ad-
ditional data sets. The algorithm improvements would include the
implementation different power prediction techniques to improve RDE
estimation accuracy, especially with computationally expensive data
processing, as this can be performed offline when using the proposed
RDE estimation method. Other improvements would also include imple-
mentation of a thermal model, which would aim to predict the future
13
temperature to improve the RDE estimation accuracy, as well as scaling
the RDE estimation algorithm up from a single cell to multiple cells.
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