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Global biodiversity is increasingly threatened by combined pressures from 

human- and climate-related environmental change.  Projected climate change 

indicates that these trends are likely to continue and may accelerate by the end of this 

century leading to large scale modification of species habitats.  Such modification 

will be amplified by an increase in catastrophic natural events such as wildland fire - 

one of the dominant disturbance agents in boreal and temperate forests of the Russian 

Far East (RFE).  In the RFE, large fire events lead to abrupt, extensive, and long-term 

conversion of forests to open landscapes, thus considerably impacting the habitat of 

the critically endangered Amur tiger (Panthera tigris altaica).  A remotely sensed 

data-driven regional fire threat model (FTM) is developed to assess current and 

projected fire threat to the Amur tiger under scenarios of climate change.  The FTM is 

parameterized to account for regional specifics of fire occurrence in the RFE and fire 

impacts on the Amur tigers, their main prey, and their habitat.  Fire regimes are 



  

shown to be strongly influenced by anthropogenic use of fire and the monsoonal 

climate of the RFE, with large fire seasons observed during uncharacteristically dry 

years.  Even with a large proportion of human ignition sources and periodic extreme 

events, fire currently poses a limited threat to the Amur tiger meta-population.  The 

observed peaks in high fire threat conditions are localized in space and time and are 

likely to impact a small number of individual tigers.  Under the wide range of the 

IPCC climate change scenarios, no considerable change in fire danger is expected by 

the mid-21st century.  However, by the end of the 21st century under the A2 (regional 

self-reliance) scenario of the IPCC Special Report on Emissions, fire danger over the 

southern part of the RFE is predicted to increase by nearly 15%.  An overlap of areas 

of likely increase in fire danger with areas of highest tiger habitat quality results in a 

20% mean yearly increase in fire threat with a mean monthly increase of ~40% in 

August.  The results have implications for conservation strategies aimed at securing 

long-term habitat availability. 
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Chapter 1: Introduction 

1.1. Background 

Global biodiversity is increasingly threatened by combined pressures from 

human- and climate-related environmental change (Millennium Ecosystem 

Assessment, 2005).  While it is widely accepted that human modification of species 

habitat may lead to species extinction (National Research Council, 1995; Lee and 

Jetz, 2007), new evidence shows that climate change alone can present a potent threat 

as well (Pimm, 2008).  Thomas et al. (2004) estimate that under a suite of scenarios 

of climate change between 15 and 37% of species across various taxa and several 

geographic regions are likely to be ‘committed to extinction’ by 2050. A study by 

Sekercioglu et al. (in press) forecasts that a staggering 400 – 550 out of 8500 landbird 

species to be extinct by 2100.  These and numerous other studies evaluate the gradual 

shift of species ranges under projected climate change (Pimm, 2008).  However, little 

has been done to evaluate the threat posed to biodiversity by extensive and abrupt 

modifications of habitat under changing regimes of natural catastrophic events. 

Wildland fire is one of the leading causes of land cover disturbance 

worldwide.   The present global distribution of vegetation is nearly as much 

determined by fire occurrence as by climate (Bond et al., 2005).  The extent of fire 

induced land cover disturbance is particularly pronounced in temperate and boreal 

forests of the Northern Hemisphere where it often represents an abrupt conversion of 

tree-dominated ecosystems to open landscapes over vast areas (Stocks 1991).  In 

addition to the considerable spatial extent, fire induced land cover disturbance in 
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boreal forests is characterized by slow rates of vegetation regrowth.  On average, 

secondary forests are established on burns within 50-75 years, and complete burn 

recovery to pre-fire conditions may take as long as 150-200 years (Sheshukov, 1996).  

The extent and persistence of land cover disturbance lead to significant and long-

lasting changes in ecosystem functioning including nutrient cycling, microclimate, 

and species composition, distribution, and richness (Kielland et al., 2006; Harden et 

al., 2006; Vajda and  Venalainen, 2005; Warren and Collins, 2007; Wein and de 

Groot, 1996).   It can also lead to regional climatic feedbacks through the increase in 

surface albedo associated with conversion of forest to open landscapes (Sirois and 

Payette, 1991, Chapin et al., 2000) triggering a chain of further changes in vegetation 

composition (Bonan et al., 1992).   

The Sikhote-Alin ecoregion of the Russian Far East (RFE) is an area of high 

biological importance, part of which was designated by the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) as a World Heritage 

Site (UNESCO, 2001) (Figure 1-1).  The landscapes of the RFE present a mosaic of 

boreal and temperate forest rich in rare and endemic species (Astafiev and Potikha, 

2006).  These forests are considered the most diverse ecosystems of the north-western 

Pacific coastline, shared by subtropical and northern boreal species (IUCN, 2001).   

The World Conservation Union (IUCN) regards the protection of natural ecosystems 

of the RFE as highly important for both cultural and environmental reasons (2001).  

Forests of the RFE sustain the hunting culture of the Udege indigenous people.  

Additionally, this ecosystem is the only known habitat for several endangered species 

including the Far Eastern leopard and the Amur tiger.   
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Figure 1-1.  Map of study area showing distribution of forested landscapes in 2000, 

areas burned between 1998 (Sukhinin et al., 2004) and 2005 (chapter 4), and the 

range of the Amur tiger meta-population (Miquelle et al., 2005). 
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The Amur tiger (Panthera tigris altaica) is the northernmost subspecies of 

tiger.  The entire tiger meta-population, which consisted of approximately 350 adult 

tigers remaining in the wild in 1998, is found within the Sikhote-Alin ecoregion of 

the RFE (Seidensticker et al, 1999).  The Amur tiger population size has varied 

throughout the 20th century (Matyushkin, 2006).  Although the forests of the RFE 

remained nearly pristine during the first half of the 20th century, unlimited tiger and 

ungulate hunting led to a deep depression in tiger population by mid 1960s.  Between 

1963 and 1966 tigers were extremely rare even within Sikhote-Alin Reserve, which is 

the largest reserve in the RFE established in 1935.  The change in state policy and the 

inclusion of the Amur tiger in the protected species list resulted in a steady increase in 

the number of tigers first within the nature reserve and subsequently outside its 

boundaries.    In recent years tiger presence was noted north of the Amur River, 

which was previously considered to be beyond the tigers’ northern ecological 

boundary (D. Miquelle and A. Kulikov, personal comm.).   

While the tiger population is recovering (Matyshkin, 2006), it is yet far from 

the estimated 876 individuals – the minimal viable population (MVP) necessary to 

ensure the long-term species well-being and genetic diversity (Reed et al, 2003).  

Reaching the MPV of 876 individuals will not be possible without large continuous 

tracks of quality habitat.  The Amur tiger has the lowest population densities and 

reproductive potential of all tiger subspecies even in high quality tiger habitat and 

thus requires extensive hunting areas for tigers (Smirnov and Miquelle, 1999).  In the 

relatively undisturbed forests of the Sikhote-Aline reserve, Amur tiger home-ranges 

vary from 200-400km2 for females to 800-1000km2 for males (Matyushkin, 2006). 
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Male and female ranges often overlap, resulting in an estimated 500 km2 hunting 

ground needed per tiger.  Based on the size of the individual home ranges, the 

minimal dynamic area (MDA) required to sustain an MVP of 876 individuals is 

approximately 400,000 km2.  The MDA may be smaller in high quality habitats 

which can support higher prey densities.  However, lower prey densities, resulting 

from over-hunting and habitat degradation and conversion, would require an even 

larger MDA to sustain the tiger meta-population.   

 Massive logging activities started in the second half of the 20th century in the 

highest quality tiger habitat – Korean pine stands (Matyushkin, 2006).  By mid 1980s, 

nearly all Korean pine stands of the RFE were affected by industrial logging.   

Although the Korean pine harvest became illegal by early 1990s, the industrial 

logging did not diminish but was rather redirected to harvesting spruce, fir, and larch 

stands, further contributing to conversion of tree-dominated habitat to open 

landscapes.  A comprehensive network of interconnected protected areas was 

designed to ensure the ecological corridors necessary to maintain the connectivity of 

fragmented landscapes (Miquelle et al., 1999).   Although the proposed network of 

protected areas will mitigate against anthropogenic habitat disturbance, large fire 

events will continue tiger habitat conversion and fragmentation.   

The RFE experiences a strong oceanic influence that is particularly well 

pronounced in the amount and regime of rainfall (Kotlyakov, 2003).  The summer 

monsoon provides ample precipitation (500 mm/year in the lowlands and up to 1500 

mm/year in the mountains) with the majority received during the June-August time 

period (Savin, 2003). The coincident peaks of large amounts of precipitation and 
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maximum annual temperatures determine lower frequency of large fire occurrence 

relative to the taiga forests of Central Siberia where large forest fires occur almost 

every year (Ivanova and Ivanov, 1999).  Large and catastrophic fire events are 

recurring incidents in the RFE with a return interval of approximately 12-15 years 

(Sheingauz, 1996).  Although fire occurrence is a natural component of this 

ecosystem, increased frequency of fire occurrence and amounts of burned area 

resulted in extensive and irreversible modifications of the Amur tiger habitat 

(Gromyko, 2006).  Between 1977 and 2003 ~21% of spruce-fir forests and ~28% of 

Korean pine stands within the Sikhote-Alin reserve were killed by wildland fire.  In 

addition, fires occurring within secondary forests impede regeneration of coniferous 

tree species leading to setbacks in forest restoration and potentially irreversible 

conversion of coniferous forests to other land cover types.    

In the light of a considerable warming trend of the changing global climate 

with its particularly strong effect on the boreal regions, boreal ecosystems are 

changing rapidly (Barber et al., 2000; Soja et al., 2007).  The projected trend towards 

higher temperatures in the boreal zone will affect vegetation flammability through its 

impact on fuel moisture, fire season length, and water levels (Stocks et al., 1998; 

Stocks, 1993; de Groot et al., 2003; Gillet et al., 2004).  Even without accounting for 

these factors, burned area is expected to increase under changing climatic conditions 

(Flannigan et al., 2005).  Additional changes in forest health due to increases in pest 

infestation (Logan et al, 2003) associated with a warming climate are expected to lead 

to fuel accumulation.  Increases in hazardous fuel build-up results in a higher 
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frequency of fire occurrence and often changes the fire regime from low intensity 

ground fires to high intensity catastrophic fire events (Martell, 2001).    

  The changes in the natural fire cycle in the Amur tiger habitat, prompted by 

decades of intensive economic development and the rising frequency of large fires, 

necessitate the adoption of a proactive approach to resource protection from wildland 

fire impacts.  The viability of such an approach is in part based on wildlife managers’ 

ability to assess the potential threat posed by fire to the Amur tigers in spatially 

explicit and temporally dynamic framework.   Fire risk or fire threat modeling 

addresses the likelihood and magnitude of fire impact on resources within a specific 

region and provides such a framework (Fairbrother and Turnley, 2005).  Risk 

assessments are designed as decision tools in support of management activities.  Fire 

risk modeling is particularly valuable for resource managers because of its ability to 

evaluate stress-induced ecological responses and subsequent resource recovery. 

  Although risk/threat modeling is the newest type of fire modeling, several 

approaches have been developed.  The USDA Forest Service model is a probability 

based model designed to forecast the number of fires and particularly large fires over 

a given area during a particular time period (Preisler et al., 2004).  The model output 

focuses on forecasting the likelihood of catastrophic fire occurrence rather than 

evaluation of expected impact.  The fuzzy logic driven long-term risk fire model 

presented by Iliadis (2005) focuses on structural fire risk.  In the context of wildland 

fire, structural risk implies long-term risk derived from parameters with slow dynamic 

ranges such as land cover type and topography.  This model outputs spatially explicit 

but static maps of areas that can be potentially strongly affected by fire.  A fire threat 



 

 8 
 

assessment scheme (Solichin et al., 2003) introduces the temporal component of fire 

threat modeling and incorporates the notion of values at risk and fire suppression 

capabilities in addition to the overall topography related fire danger.  Bonazountas et 

al. (2005) present a risk assessment model, forecasting integrated damage rate based 

on probability of fire ignition, socio-economic risk, land value, and potential fire 

spread rate.  This model presents a similar approach to Solichin et al. but identifies 

values at risk more rigidly as socio-economic values.   

The previously described models focus on the assessment of immediate post-

fire impacts which are often transparent and are relatively easy to assess.  However, 

these models do not balance the negative short-term effects with potentially positive 

long-term effects, which are highly important for natural resource management 

(Gossow, 1996).  The approach to fire threat modeling introduced by Sampson and 

Sampson (2005) focuses on evaluation of long-term effects of fire occurrence as well 

as long-term effects of fire exclusion from the ecosystems.  They examine ecosystem 

processes at landscape level to evaluate the benefits and potential damage from 

wildland fires to vegetative succession, watershed properties, and human life and 

property.  

The overarching concern of above models with risk in relation to human life, 

property, or specific socio-economic values, makes them inapplicable to estimating 

threat posed by wildland fire to the Amur tiger.  This threat is specific and includes a 

suite of direct and indirect fire effects on tigers that may not be explicitly linked to 

human well-being.  The direct threats to tigers include flaming front-resultant tiger 

cub mortality and conversion of preferred tiger habitats to substandard habitat types.  
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Similarly, the indirect threats to the Amur tiger include flaming front induced 

mortality of the young of tigers’ prey species and degradation or conversion of their 

preferred habitats.  Additionally, the models described above do not account for 

ecological and socio-economic specifics of regional fire occurrence.  Finally, the 

implementation of the evaluated models often relies on the availability of data sources 

which do not exist in many regions of the world (de la Riva et al, 2004: Vadrevu et al, 

2006). 

Data availability for fire threat modeling in the RFE is particularly limited.  

Fire records collected by the Russian federal aerial fire protection agency are highly 

inaccurate in both the position and estimated amounts of fire occurrence (Conard et 

al, 2002).   Remote sensing presents the only viable source of timely, consistent, 

relatively unbiased, and spatially explicit data about wildland fires for the RFE.  The 

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument was in part 

designed for fire monitoring (Kaufman et al., 1998).  The suite of standard MODIS 

products allows for high frequency observations of fire occurrence, land surface 

properties, and vegetation response at moderate (500 m) and coarse (1 km) spatial 

resolutions.  Additional information used in fire modeling activities is available from 

global observations of terrestrial ecosystems from various satellite platforms 

(Amatulli et al., 2006; de la Riva et al, 2004; Chuvieco et al, 2004; Oldford et al, 

2006).      

The ability to model spatially explicit and temporally dynamic fire threat to 

the Amur tiger will enable the resource management community to develop short- 

and long-term plans, increasing the chances of maintaining tiger habitat quality, 
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availability, and connectivity under changing climate and/or land use.  Fire threat 

modeling will also allow for testing various management approaches and evaluating 

scenarios beyond the current range of experience (Andrews and Queen, 2001).  In 

addition to the operational value of fire threat modeling, this research contributes to 

addressing the scientific goals of the international Northern Eurasia Earth Science 

Partnership Initiative (NEESPI) by developing “predictive capability of terrestrial 

ecosystems dynamics over Northern Eurasia for the 21st century to support global 

projections as well as informed decision making and numerous practical applications 

in the region” (NEESPI, 2004). 

1.2. Research Objectives 

This research was designed to answer two major science questions: How much 

threat does the wildland fire pose to the Amur tiger and its habitat and how will 

climate change affect fire threat to the Amur tiger by the end of 2100?  Two 

hypotheses were developed from the general body of knowledge in response to these 

science questions: 

1. Wildland fire presents a potent and wide spread threat to the Amur tiger and its 

habitat.   

2.  Climate change will increase fire threat to the Amur tiger and its habitat 

These hypotheses were tested within the framework of a spatially explicit and 

temporally dynamic Fire Threat Model (FTM) driven by remotely sensed data.  The 

model was developed and parameterized to reflect regional specifics based on the 

analysis of fire occurrence in the RFE during 2001-2005 available from the MODIS 

record.  The FTM was focused on assessing fire threat to the Amur tiger by modeling 



 

 11 
 

potential impacts on the tigers, their main prey species (red deer, wild boar, and 

moose), and their habitat.   

The specific sub-goals were as follows: 

1. Develop a conceptual framework for fire threat assessment for resource 

managers. 

2. Produce yearly burned area estimates for the RFE between 2001 and 2005 to 

facilitate the evaluation of drivers of fire occurrence. 

3. Determine drivers of fire occurrence and quantify their contribution to fire 

danger. 

4. Evaluate feasibility of using Global Circulation Model (GCM) data in projecting 

future trends in fire danger under various scenarios of climate change. 

5. Develop an approach to evaluating fire driven ecological components of threat to 

the Amur tiger from qualitative assessments. 

6. Map current levels of fire threat to the Amur tiger during 2005-2007. 

7. Evaluate projected changes in fire threat to the Amur tiger through the year 2100 

under climate change scenarios. 

1.3. Outline of the Dissertation 

This dissertation consists of seven chapters (Figure 1-2).  Five chapters 

(Chapter 2 – Chapter 6) are presented in the self-contained format of journal articles.  

They are ordered in the sequence of project implementation where the subsequent 

analysis relies on the previously developed methodologies and data products.  

Chapter 7 concludes the dissertation with the discussion of the project’s implications 

and future research directions. 
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Chapter 2 introduces the conceptual model of fire threat for resource 

management.  The conceptual FTM presents a generic regional scale model that aims 

at identifying fire susceptible areas of high importance for a given resource.  

Additionally, it provides a framework for developing quantitative assessments of 

contributions from various parameters to the overall fire threat.  The FTM is a fuzzy 

logic driven model designed to operate on spatially explicit data sources largely 

provided by remotely sensed data products.  This chapter also includes assessment of 

the risk of ignition in the RFE as an example of model application.   

Chapter 3 focuses on yearly burned area mapping for the RFE which is central 

to the analysis of fire occurrence in the RFE and the FTM parameterization.  It 

describes a remote sensing/GIS-based algorithm for burned area mapping using 

MODIS data.  This algorithm presents a novel approach to burned area mapping 

because it is adapted to ecosystem and regional specifics of fire occurrence in the area 

of interest.  As a semi-automated algorithm, this methodology ensures consistent and 

reliable spatially explicit assessment of burned area for the RFE through 2001-2005.        

Chapter 4 addresses the application of the FTM framework to assessing daily 

fire danger in the RFE during 2006.  It describes the model parameterization based on 

the analysis of spatio-temporal patterns of fire occurrence as a factor of land cover 

and land use, topography, proximity to anthropogenic features, and previous 

disturbances.  This analysis allowed for quantifying the relative contribution of 

various socio-economic and ecological parameters to fire danger in the RFE. 

The fire danger modeling approach described in chapter 4 is extended to 

evaluate a broad range of potential scenarios of future trends in fire danger over the 
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Figure 1-2.  Flow of the doctoral research project within the dissertation structure. 
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RFE (Chapter 5).  This chapter addressed the feasibility of using very coarse 

resolution GCM outputs from the ECHAM5 model for fire danger modeling at the 

regional scale by comparing it to the observed meteorological conditions at the end of 

the 20th century.  The potential changes in fire danger over the RFE are then analyzed 

for the B1 and A2 story lines of the Special Report on Emissions Scenarios (SRES) of 

the International Panel on Climate Change (IPCC) projected to the middle and the 

end of the 21st century. 

Chapter 6 provides the connection between modeled fire danger levels and 

observed fire impacts on the vegetation of the RFE.  This relationship presents the 

basis for evaluating fire threat to the Amur tiger.  Direct impact of flaming front and 

smoke on the tigers and the major prey species is assessed together with the fire 

driven habitat conversion and fragmentation.  These parameters are evaluated to 

present an integrated estimate of expected fire impact on the Amur tiger – Fire 

Threat.  The current levels of Fire Threat to the Amur tiger modeled during 2005-

2007 period are subsequently compared to the Fire Threat levels projected for 2096-

2100 under the A2 scenario using the ECHAM5 model outputs.   

Chapter 7 presents the overall conclusion of the doctoral research.  It 

discusses the implications and opportunities provided by this research for the Amur 

tiger conservation, natural resource management, climate change science, and fire 

threat modeling.  It also presents this project’s contribution to the international 

NEESPI science program, strategic tiger conservation planning, and provides an 

overview of the future research directions. 
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Chapter 2: Assessing the Risk of Ignition in the Russian Far 

East within a Modeling Framework of Fire Threat1 

This chapter presents a conceptual fire threat model as a resource oriented 

approach to assessing wildland fire impact.  It identifies generic components of fire 

threat and provides a framework for building the model of fire threat to the Amur 

tiger in the RFE (finalized in chapter 6).  The assessment of the risk of ignition 

describes the first step towards adapting the conceptual model to regional specifics of 

wildland fire in the RFE.  This analysis is further used in chapter 4 to model fire 

danger.    

2.1. Introduction 

Considerable impacts on ecosystem functioning and human well-being, posed 

by wildland fire, necessitate adoption of proactive approaches to resource protection.  

The existing frameworks for assessment of fire threat commonly focus on wildland-

urban interface and protection of human property (Cohen, 1999).  This chapter 

presents a new conceptual model of fire threat designed for resource management 

rather than the fire management community and is aimed at evaluating spatio-

temporal dynamics of fire threat to a given resource.   

In this context, fire threat defines a combination of the expected probability 

and extent of fire occurrence, fire impact severity relevant to a specific resource, and 

the ability of the resource to recover within the time-frame of interest.  The 

                                                 
1 The presented material has been previously published in part in Loboda TV, Csisar IA (2007)  
Assessing the Risk of Ignition in the Russian Far East within a Modeling Framework of Fire Threat.  
Ecological Applications, 17(3), 791-805.  
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conceptual model is presented as a generic framework that can be applied to 

evaluating fire threat to a variety of specific (e.g. endangered species) or broad 

resource types (e.g. wetland ecosystems).  For fire affected ecosystems, fire threat 

assessment provides critical information for short- and long-term strategic planning of 

resource protection, ranging from fire preventative measures to policy making and 

promoting fire-threat awareness among the population. 

This chapter has a dual purpose.  First, it introduces a spatially explicit and 

temporally dynamic model driven by remotely sensed data to assess quantitatively 

fire threat to a generic resource.   Second, it presents an evaluation of the risk of 

ignition in the RFE within the framework of the presented model.  This analysis 

demonstrates the functionality of the model and provides a brief assessment of 

temporal patterns of fire occurrence and how they relate to the patterns of fire 

ignition.   

2.2. Dynamic Fire Threat Model 

Fire threat modeling extends the predictive capabilities of fire danger 

assessment, which evaluates the ease of fire ignition and the difficulty of fire 

suppression for fire management purposes.   The Fire Threat Model (FTM) presented 

here targets the resource management rather than the fire management community.  

The intent is to provide information on current and potential future wildland fire 

threat to a specific resource and to enable resource managers to make short and long-

term decisions about the best approaches to protecting a particular resource from 

adverse wildland fire impact.  Although the fire management community undoubtedly 

knows best how to reduce the threat of large fire impact, fire managers are often not 
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familiar with specific needs of a particular resource. The FTM output identifies areas 

where a given resource will be impacted the most at a specific period of time based 

on dominate weather patterns. 

The FTM (Figure 2-1) has a number of advantages over the existing fire threat 

assessment schemes (e.g. Preisler et al., 2004; Iliadis, 2005; Solichin et al., 2003).   

 

 

 

Figure 2-1.  The conceptual Fire Threat Model for resource managers.  The shaded 

areas show the components of the Risk of Ignition Module. 
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First, it is a highly generic model designed to operate at the regional scale.  It presents 

a skeleton of a system which can be populated and refined to meet the requirements 

of a particular region and resource.  Second, Geographic Information Systems (GIS) 

and remotely sensed data sources enable spatially explicit and temporally dynamic 

forecasting of fire threat to a given resource.  Third, the FTM provides an opportunity 

to evaluate “no-interference” fire threat scenarios.  The flexibility of the FTM allows 

for modifications of Fire Suppression Module parameterization not only as a factor of 

a given area’s proximity to fire suppression units (e.g. fire crew base station) and its 

general accessibility, but also on the effectiveness of the fire suppression units 

response. 

2.2.1. The Fire Danger Module 

The Fire Danger module is the most generic part of the FTM.  It incorporates 

two large components of fire occurrence: Risk of Ignition (ROI) and Potential Fire 

Behavior (PFB).  The relative importance of input variables is determined through 

regional expert knowledge of fire regimes.  The input variables are weighted 

accordingly to simulate regional specifics of fire occurrence.   

ROI evaluates the likelihood of fire ignition based on natural and human 

causes of fire and the suitability of weather conditions.  Lightning is the most 

frequent natural cause of fire (Whelan, 1995).  The anthropogenic influences on fire 

regimes are evaluated through land use and area accessibility.  Logging (both clear-

cutting and selective) affects the microclimate of forest stands directly by increasing 

air temperature and reducing relative humidity (Whelan, 1995).  Further, logging 

debris presents hazardous dead fuels which can rapidly lose their moisture content 
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and facilitate fire ignition and propagation.  In addition, logging introduces 

anthropogenic sources of ignition such as sparks from equipment and human 

negligence.  Roads, railroads and human settlements and the complexity of the terrain 

strongly affect area accessibility and influence the likelihood of fire occurrence in 

Siberia (Kovacs et al., 2004).  The third ROI component in the model is fire weather, 

which evaluates the possibility of fire ignition under specific weather conditions.  

Any of the weather indices currently used for fire danger assessment can be applied to 

the model. 

Potential Fire Behavior at the regional scale is driven predominantly by 

terrain, fuel availability and condition.  The Fuels component is composed of three 

major subcomponents: Vegetation Type (or Land Cover), Drought Index and Area 

Disturbance.  At the regional scale vegetation type provides an approximation of fuel 

types/loading characteristics for a particular vegetation zone.  Drought Index is of 

importance in relation to the condition of the fuels.  Area Disturbance presents a 

combination of natural and anthropogenic causes.  Previous fire history, natural 

disasters (e.g. hurricanes, tornadoes, etc.) leading to vegetation mortality and fuel 

accumulation, and pest infestation are the main natural disturbances influencing fuel 

availability.  While natural disasters and pest infestation lead to an increase in fuel 

accumulation and therefore enhance fire occurrence and spread, previous fire history 

can have either enhancing or diminishing effects on fire behavior.  Anthropogenic 

disturbance significantly changes the natural dynamics of fire.  Complete fire 

suppression inside the US has led to high fuel loads leading to the uncontrollable 

spread of fire in many areas and, as a result, prescribed fire has been used in some 
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areas to decrease the fuel loads (Martell, 2001).  Agricultural practices include a 

range of human activities affecting fire behavior.  For example, management of 

pastures and open grasslands and prevention of brush encroachment by the use of fire 

changes considerably the fuel availability. 

2.2.2. The Values at Risk Module 

The Values at Risk module is designed to narrow the scope of the model to 

focus on the protection of a specific resource.  This module reflects the current expert 

knowledge of the resource and the needs and potential impacts of wildland fire on 

various aspects of the resource environment.  Fire threat to a resource can be modeled 

successfully as long as the fire impact and the feedbacks between the various 

components of a given resource are understood.  Modeling fire threat to a complex 

resource with numerous feedbacks is significantly more difficult than a focused 

approach and may introduce a large amount of uncertainty into modeling results.  

The two major components of the Values at Risk Module are assessments of 

direct and indirect fire impacts on a resource.  The assessment of direct fire impacts 

on a resource is more straightforward than the assessment of the indirect impacts.  

Beside the fact that direct impacts are usually more obvious and therefore are easier 

to model, indirect impacts and their interactions are more complex.  Therefore, it is 

practical to determine first, second, third, etc. order indirect impacts and, depending 

on the nature of the resource, limit the assessment to a specific order.  While 

numerous parameters are likely to influence the resource in the long run, it is the 

short-term consequences which will affect the resource first and therefore require 
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immediate post-fire rehabilitation efforts.  However, depending on the nature of a 

resource, long-term impacts may be of higher importance to that particular resource. 

2.2.3. The Recovery Potential Module 

The FTM is the first threat/risk assessment scheme to incorporate a recovery 

potential assessment. The Recovery Potential module provides information regarding 

the ability of a given resource to return to its pre-burn condition and the time frame 

for the recovery to occur.  The recovery potential is estimated through the fire impact 

severity and area rehabilitation potential.  Similar to the Values at Risk component, 

the Recovery Potential module is highly resource dependant.  Recovery potential is 

also important for natural resource management in terms of the possibility of 

additional post-fire degradation of the resource/area due to the slow rates of area 

recovery.  For example, high intensity stand replacement fires can lead to soil erosion 

which in turn leads to lower chances and slower rates of area recovery (Wirth and 

Pyke, 2006). 

2.2.4. The Fire Suppression Capabilities Module   

The Fire Suppression Capabilities (FSC) module evaluates the ability to 

mitigate against fire impacts on a given resource through fire suppression activities.   

The FSC is assessed as a factor of area accessibility, proximity, and the efficiency of 

the fire suppression unit’s response.  Area accessibility, defined as proximity to major 

roadways, provides the possibility of using mechanized (fire trucks, bulldozers,  etc.) 

or aerial (aerodrome proximity) methods of fire suppression.  The proximity, defined 

as the distance between the fire event and the fire suppression unit base, allows for 

evaluating the minimum time for the initial attack unit’s arrival at the place of fire 
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occurrence.  The likelihood of wildland fire suppression grows lower as the duration 

of the fire event grows longer.  A successful initial attack minimizes fire size and fire 

impact.  Additionally, it prevents wildland fires from reaching intensities that allow 

the fire to spread uncontrollably.   The effectiveness of fire suppression unit response 

also has a considerable effect on fire suppression success.  Modification of the 

response effectiveness parameter allows the resource managers to analyze a range of 

potential outcomes of a fire event based on the FSC.  The exclusion of this module 

provides a “no interference scenario” which may be of great importance to resource 

managers or within inaccessible areas.  In some cases the impact of fire suppression 

activities on a given resource may be greater than that caused by a fire event itself 

(Backer et al., 2004).  Therefore, evaluation of a range of fire threat levels based on 

“no interference” and “fire suppression” scenarios will provide a basis for the 

development of fire management strategies aimed at the needs of a given resource.  

The evaluation of “no-interference” scenarios is also important because a given 

resource will be impacted the most during large and catastrophic fire events when fire 

is beyond any possibility of control by definition (Whelan, 1995).  During these 

events the Fire Suppression Capabilities module would artificially lower the output 

fire threat level and provide misleading information on the security of the resource. 

2. 3. Data and Methodology for Risk of Ignition Estimation 

The MODIS (Moderate Resolution Imaging Spectroradiomenter) active fire 

product (Giglio et al., 2003) from both the Terra (MOD14) satellite for the period of 

2001 – 2004 and the Aqua (MYD14) satellite for the period of 2003 – 2004 was 

included in the analysis.  The active fire detections were processed through the Fire 
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Spread Reconstruction approach (Loboda and Csiszar, 2007b) to simulate 

development of fire events in space and time and identify points of ignition.  Due to a 

considerable overlap of satellite orbits in the mid and high northern latitudes, the 

MODIS active fire product provides up to four observations of the study area daily 

from each of the two satellites.  This high frequency of observation allows for the 

creation of algorithms which reconstruct fire development from the distribution of 

fire detections in three-dimensional space (x, y, and time).   Individual fire detections 

were clustered into contiguous (in space and time) fire events.  The earliest fire 

detection point(s) of individual fire events were considered ignition points.  These 

points of ignition were later analyzed in the GIS environment in order to evaluate the 

frequency and distribution of fire ignitions as a factor of proximity to major roads, 

railroads, human settlements and rivers and as a factor of terrain complexity.  The 

2001 – 2004 fire seasons were not directly compared to each other but rather used to 

identify similar trends in the distribution of fire ignitions in space and time. 

The GIS data for anthropogenic (roads, railroads and settlements) features in 

the RFE were acquired from the Digital Chart of the World 

(<www.maproom.psu.edu/dcw/>) and buffered in 1km increments.  The road layer 

was classified into 11 zones based on the distance from major roads: 1) 0-1 km, 2) 1-

2 km, 3) 2-3 km, 4) 3-4 km, 5) 4-5 km, 6) 5-6 km, 7) 6-7 km, 8) 7-8 km, 9) 8-9 km, 

10) 9-10 km, and 11) outside 10 km buffer.   The settlement and railroad layers were 

classified following the same approach into 21 zones (20 buffers and the rest of the 

area) and 31 zones (30 buffers and the rest of the area) respectively. Terrain was 

evaluated through 3 Arc Second Digital Elevation Models (DEM) from the data 
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acquired during the Shuttle Radar Topography Mission (USGS/GLCF, 2004).  The 

terrain was classified into 5 zones based on slope gradient: 1) flat, 2) 1-10%, 3) 10-

20%, 3) 20-30%, 4) 30-40%, and 5) over 40% slope.  Land use was modeled using 

data from of the MODIS land cover product (Friedl et al., 2002), maps of land use 

(Stolbovoi and McCallum, 2003), and maps of protected areas (World Database on 

Protected Areas (WDPA Consortium, 2005; Miquelle et al., 1999b).  The study area 

was classified into 8 land cover/land use zones: 1) croplands, 2) forest, 3) grasslands, 

4) multiuse and traditional use areas, 5) protected natural areas, 6) shrublands, 7) 

other, and 8) water.   The creation of a simplified but combined land cover/land use 

layer was necessary because land use of areas with different land covers varies even if 

their designation remains the same (e.g. federal lands).  Cropland, grassland, 

shrubland, forest and water zones were extracted from the MODIS Land Cover 

Product.  The “traditional and multi-use” zone was identified from the available maps 

of land use.  Protected areas were mapped from a combination of WDPA data and 

available land use maps which were verified against the zones identified for the RFE 

in Miquelle et al. (1999b).  All areas which were not included in the previously 

identified land cover/land use zones were assigned to the “other” category.     

The risk of ignition was estimated through the evaluation of individual inputs 

for the FTM’s ROI module (Figure 2-1 – shaded area) and their subsequent 

aggregation.  The MODIS active fire product does not allow for differentiation 

between natural and anthropogenic sources of fire.  Consequently, they are analyzed 

simultaneously under the Ignition Sources component.  Additionally, the Fire 

Weather component of the ROI module was assessed qualitatively, to observe the 
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general trends in fire ignition rather than reconstruct specific conditions of fire 

occurrence. 

Frequency of fire ignition, defined as an absolute or relative number of 

ignition points within a given buffer over a specific amount of time (e.g. monthly, 

yearly, etc.), was calculated for individual buffer zones from settlements, 

transportation routes, land use zones and different gradations of the steepness of 

terrain within the GIS environment.  The calculated frequency of fire ignition was 

normalized by unit area through the Ignition Load coefficient (L) which presents a 

quantitative assessment of the relative frequency of ignition within a given parameter 

or zone. 
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where Ly is a yearly average Ignition Load,  fzi  is the number of ignitions within a 

given buffer zone in year i, fti is the total number of ignitions within the study area in 

year i, Az is the area of the given buffer zone, and At is the total area of the study area.  

The equation above shows calculation of yearly average ignition load (Ly) over four 

years (2001-2004).  Similarly, monthly average Ignition Load (Lm) over the four year 

time period was calculated for each buffer and zone to observe temporal variability of 

ignition loading (Figure 2-2).    
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Figure 2-2.  Distribution of average yearly Ignition Load (Ly) values by buffer zones 

for: a) roads, b) railroads, c) settlements, d) slope, and e) land use. 
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Within this study the individual components of the ROI module were 

aggregated into the overall fire threat value based on fuzzy reasoning.  While 

numerous methods of multi-criteria decision making are appropriate for evaluating 

the fire threat within the FTM framework, the fuzzy aggregation operations present 

significant advantages.  The major advantage of fuzzy logic is the possibility of 

recreating complex scenarios based on a limited number of variables and rules.  The 

ability to combine factors in a non-linear way and account for the inaccuracies of GIS 

information further advances the applicability of fuzzy logic to multi-criteria decision 

making in GIS (Sasikala et al., 1996). The disadvantage of the enhanced flexibility 

provided by the large range of fuzzy logic operators is the amount of fine tuning 

required to achieve high precision in the model output. 

The L values were converted to fuzzy membership values (µ) which stretch 

between 0 and 1 where 0 implies no likelihood and 1 implies certainty.  This 

conversion allows for developing a quantitative assessment scheme for evaluation of  

the likelihood of ignition as a factor of proximity to various anthropogenic (e.g. roads 

and settlements) and natural (e.g. flat terrain) geographic objects and phenomena.  Ly 

values for each buffer zone were combined to create a range of values representing 

the frequency of fire ignition in the RFE.  This range was subsequently used to 

develop equations to support conversion of the ignition load (L) to ignition likelihood 

(µ).   

Conversion of the Ly values to µ was based on calculating several statistics.  

The first is the overall average of the Ly range which is considered to be equal to µ = 

0.5.  The second is µ = 0.25 which is represented by the average of all Ly values 
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below the average for the entire range.  The same approach was used to identify 

average Ly values corresponding to µ equal 0.75, 0.125, 0.375, 0.625 and 0.875.  The 

corresponding points, including the Ly value of  7 (the next full integer after the 

maximum Ly zone value in the range) as the maximum fuzzy membership equal to 1, 

are then plotted against each other and the best regression fit (with the intercept set at 

0) is determined (Figure 2-3).   
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Figure 2-3.  Regression equations for conversion of Ignition Load (L) values to fuzzy 

memberships for: a) µ < = 0.625, b) µ > 0.625 

 



 

 29 
 

Although the polynomial equation (Figure 2-3 a) provides the best fit for the 

majority of points, it quickly reaches saturation and therefore is not suitable for the 

higher L values.  Instead, values of µ > 0.625 are assigned following the logarithmic 

equation in Figure 2-3 b.   Subsequently, the exact membership values of all 

individual Lm values are rescaled to the µ range following the combination of the two 

regression equations.  The calculated µ values were further assigned to the respective 

buffer zones to create monthly maps of the likelihood of ignition as a factor of a given 

geographic phenomenon (roads, railroads, settlements, terrain, andland cover/land 

use).  Each of these layers presents a continuous (with a value existing at each point 

of the surface) view of the likelihood of ignition based on a given parameter. 

The overall risk of ignition is represented by a function of all the input 

likelihood values and can be presented as a spatial multi-criteria set of ROI = (rj, rrj, 

sj, tj, luj), where r, rr, s, t, and lu represent the likelihood of ignition as a function of 

proximity to major roads, railroads, settlements, terrain and land cover/land use 

respectively for each jth point of the study area.  The ordered weighted averaging 

(OWA) approach (Yager, 1988) was applied to aggregate this multi-criteria system 

with fuzzification using three sets of OWA operators: 1) MIN (intersection), 2) MAX 

(union), and 3) MEAN.  The MIN operator allows for evaluating the ROI for “the 

best case scenario” where the lowest value of the input variables drives the overall 

output membership value without being mitigated by the other variables.   The MAX 

operator outputs the “worst case scenario” where the overall ROI is driven by high 

likelihood of fire occurrence caused by one of the input parameters.  The MEAN 

operator in this case presents a simple weighting additive decision rule where the ROI 
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presents a sum of all input variables multiplied by the weights assigned as w = [0.2, 

0.2, 0.2, 0.2, 0.2].  It provides a trade-off environment for aggregating multi-criteria 

datasets where a positive compensation between the variables is realized 

(Malczewski, 1999).  In this case equal importance was assigned to all input 

variables.  The final output of this process presents a fuzzy set of ROI = (min, max, 

mean) values for each point within the set. 

2.4. Results and Discussion 

2.4.1. Fire Occurrence 

Fire occurrence in the RFE, inferred from an analysis of the temporal 

distribution of fire detections in the RFE during the 2001-2004 period carried out 

outside the FTM framework, shows considerable interannual variations (Figure 2-4).  

The overall number of fire detections (Figure 2-4 a) shows a sharp contrast in the 

amount of fire occurrence between the years of high (2003) and low (2001, 2002 and 

2004) fire activity as well as the variation in the temporal patterns of fire occurrence.  

During the low fire activity seasons, fire detections from MODIS demonstrate a 

bimodal distribution with a strong peak during spring months (April and May) and a 

much lower but still distinct peak in the fall (October and November).  This 

distribution is characteristic for the area of Russia located between 40-48o latitudes 

(Korovin, 1996).  However, during the large fire seasons of 2003 the bimodal 

distribution of the low fire activity years (2001, 2002, and 2004) is replaced by a 

strong dominating peak in fire occurrence in July.  The seasonal distribution of fire 

ignitions in the RFE (Figure 2-4 b) mimics the bimodal distribution of fire occurrence 

during the low intensity fire years and is even more pronounced.   
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Figure 2-4.  2001-2004 absolute and relative numbers of: a) fire detections, b) fire 

ignitions. 

 

The overwhelming majority (over 70%) of all individual fire events start in 

April - May and a smaller but still significant number (5-10%) start in October - 

November.  Although July 2003 ignitions account for a comparatively larger portion 

of fire ignitions than usual (~14%), the bimodal spring/fall distribution of fire 
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ignitions remains largely unaffected.  The overall comparison of the seasonal 

distribution of fire ignitions and fire detections implies that the high fire activity years 

are characterized by larger and longer burning fire events rather than a dramatic 

increase in the number of fire events. 

2.4.2. Fire Ignitions 

The analysis of fire ignition as a factor of proximity to various anthropogenic 

structures and land uses is an acceptable approach for the RFE due to low density of 

the transportation network in the area and uneven distribution of the population.  

Unlike the European part of Russia, the RFE has a very different pattern of 

transportation networks and population distribution which is determined by the 

complexity of terrain, history of the area’s development and natural routes of 

transportation (large rivers and sea ports).  Road, railroad, settlements, and river 

network densities were calculated for the RFE from the input GIS data layers and 

were compared with the statistics for other regions of Russia.  There are 

comparatively fewer major roads going through the area with an average density of 

0.04 km of roads per 1 km2 of the study area, which is considerably lower than 0.2 

km/km2 found in European Russia (Stolbovoi and McCallum, 2003).  The road 

network is considerably denser in the south-western part of the region with a higher 

percentage of population concentrated there.  The network density of railroads is even 

lower than that of highways (0.01 km/km2).  In comparison, the river network in the 

RFE is fairly dense with 0.1 km of rivers per 1 km2 of the area.  Population density in 

the RFE is low - ~ 13 persons per km2 (compared to 26.4 persons per km2 in 

European Russia and 49.5 persons per km2 in the Northern Caucasus) (Stolbovoi and 
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McCallum, 2003).  Additionally, population distribution in this area is very uneven.  

On average there is one settlement per over 700 km2 of area, however the settlements 

are concentrated along the Amur and Ussuri rivers, Lake Khanka and the coastline of 

the Sea of Japan.  The highly uneven distribution of population and low density of 

transportation networks allow for a meaningful analysis of distribution of fire ignition 

points as a factor of proximity to various anthropogenic structures.  Due to the high 

density of the river network in the RFE it was difficult to establish a connection 

between the spatial patterns of fire ignitions and rivers as natural transportation 

routes.  

The analysis of fire ignitions as a factor of various components of the FTM 

(Figure 2-1 – shaded area) has shown a significant connection between the 

anthropogenic presence in the area and the frequency of fire ignitions.  This result 

supports the previous findings regarding the connection of fire occurrence and 

anthropogenic activity characteristic for the Russian Federation (Korovin, 1996; 

Kovacs et al., 2004).  Population distribution, expressed through buffer zones from 

human settlements and major transportation routes (highways and railroads), strongly 

influences the number of fire ignitions in the RFE (Figure 2-2 a, b and c).  The 

number of fire ignitions decreases linearly as the distance from roads and railroads 

increases.  The highest number of fire ignitions is found within the 1 km buffer zone 

along the transportation networks.  The number of fire ignitions decreases more 

rapidly with the increase in distance from highways, rather than railroads, where a 

higher than average (Ly value of 1 representing 100% of fire ignition over 100% of 

the area) number of fire ignitions is still found within the 24 km buffer.  In contrast, 
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this number of fire ignitions is below average within the 8 km road buffer.  The 

frequency of fire occurrence as a factor of proximity to human settlements also 

suggests a strong connection (Figure 2-2 c).  The Ly values peak within the 3-5 km 

buffers, then slope down considerably and go below average within the 12 km buffer. 

Terrain expressed through slope gradient often determines the spatial 

attributes of population distribution outside the settlements and transportation 

networks and defines the accessibility of an area.  The Ly values are the highest over 

flat areas, drop rapidly with an increase in slope steepness, and fall far below average 

(Ly = 0.35) over areas where slope exceeds 20% (Figure 2-2 d).  No fire ignitions 

have been observed from the satellite data within areas with a slope over 40%. 

An additional strong connection between the frequency of fire ignition and 

land use has been established (Figure 2-2 e).  The dominating source of fire ignitions 

appears to be agricultural land use with Ly ~5.1 within agricultural areas. 

2.4.3. Risk of ignition 

There is considerable intra-annual variability in the risk of ignition in the 

RFE.   Figure 2-5 shows the spatial distribution of the ROI in the RFE for selected 

months.  During winter months (December – February) (not shown in Figure 2-5) the 

ROI is very uniformly low across the entire study area for MAX (“worst case”) and 

MIN (“best case”) scenarios.  The MEAN (“trade-off case”) shows an extremely low 

ROI across the region with slightly higher levels (comparable to the MIN and MAX 

scenarios) along transportation routes and within agricultural areas.  The mean winter 

temperatures range between -24oC (north-west and mountainous areas) and -7oC 

(south-east) (NCEP/NCAR Reanalysis 1).   
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Figure 2-5.  Monthly maps of Risk of Ignition (ROI) in the RFE: a) ROI in April 

calculated by MIN aggregation operator; b) ROI in April calculated by MAX 

aggregation operator; c) ROI in April calculated by MEAN aggregation operator; d) 

ROI in July calculated by MIN aggregation operator; e) ROI in July calculated by 

MAX aggregation operator; f) ROI in July calculated by MEAN aggregation 

operator. 
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At these temperatures there can be no natural sources of fire ignitions associated with 

lightning and therefore all sources are considered anthropogenic. 

The ROI increases sharply in March around populated areas and along the 

transportation networks with a particularly noticeable increase in agricultural zones.   

While the MIN scenario associates the ROI increase exclusively with agricultural 

activity, the MAX and MEAN scenarios show a noticeable increase in wetlands, 

shrublands, forests and protected areas as well, primarily along the transportation 

network (Figure 2-5 a-c).  This spatial distribution of the ROI is characteristic of the 

entire spring period (March through May) with a peak in April. 

During the spring, croplands contain the majority of fire ignition points.  This 

suggests that the majority of spring (and the overall yearly) fire activity in the RFE 

represents agricultural burning rather than forest fires (Figure 2-6).  The temporal 

distribution of fire ignitions is consistent with the patterns of agricultural use of fire 

worldwide (Korontzi et al., 2006).  Agricultural fire activities are often associated 

with removing crop residue from the fields either at the beginning or at the end of the 

growing season.  Similar, although not as strong, a pattern of fire occurrence is 

observed in grasslands which are often used as pasture.  The increase in spring fire 

detections in the RFE from 2001 and 2002 to 2003 and 2004 is caused by an increase 

in the frequency of MODIS fire detections after the launch of the Aqua satellite; 

however, the relative frequency of fire ignition through 2001-2004 remains constant.  

The high ratio of fire ignitions to all fire detections means that the agricultural fires 

are small in extent and short-lived.   The overall ROI decreases in May and the spatial 
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distribution changes to resemble that of March.  Higher levels of ROI are 

concentrated along roads and settlements with a considerably lower ROI in croplands. 

    

 

Figure 2-6.  Spatial distribution of fire ignitions by seasons for 2001-2004. 

 

The ROI continues to decline in June throughout the study area and remains 

low overall throughout the summer (June - August).  A slightly elevated ROI is 
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observed in remote areas and areas with complex terrain (Figure 2-5 d-f).  This may 

be indicative of an addition of natural sources of fire ignition (e.g. lightning) to the 

existing anthropogenic sources.  However, this premise requires further investigation 

involving extensive field work.  In contrast with summer fires during seasons of low 

fire occurrence, summer fires during July 2003 have a considerably lower ratio of 

ignitions to all fire detections (Figure 2-6), suggesting an increase in the duration and 

spatial extent of these fire events.  The ROI in agricultural areas during the summer 

months becomes very low.  The higher ROI levels are observed in forested and 

shrubland landscapes.  On average, protected areas with limited population access 

have fewer fires ignited within their territory.  

During low fire activity years the proximity to highways – the first 6 km away 

from the road - becomes the most dominant factor in the distribution of ignition 

points (Figure 2-7).  During high fire activity years the regular correlation between 

fire ignitions and major transportation routes breaks up.  While some portion of fire 

ignitions during July of the high fire activity year (2003) occurred in a similar pattern 

compared to the fire occurrence during low fire activity years, the majority of large 

fires were initiated in areas distant from major roads, railroads and settlements.  The 

slope gradient becomes the most dominant factor in the distribution of ignition points.  

Many of those fires were initiated near fairly large streams (Figure 2-8a), at 

previously disturbed sites (Figure 2-8c) and at logging concessions (Figure 2-8b).  All 

of these factors are indicative of human-caused fire occurrence; however they do not 

provide solid support for this premise.  High resolution up-to-date datasets of human 
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activities in the region are necessary to carry out a more detailed study targeting the 

identification of sources of ignition during high fire activity years. 

 

 

 

Figure 2-7.  Spatial distribution of July fire ignitions for 2001-2004. 
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Figure 2-8.  Examples of July spatial occurrence of July 2003 fire ignitions as a factor 

of: a) elevation and proximity to large streams; b) proximity to logging sites; c) 

proximity to previously disturbed areas. 
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fire ignition rather than an increase in the available sources of fire.  The climate of the 

study area is governed by a summer monsoon regime which causes increased 

amounts of precipitation and high levels of relative humidity in the area during the 

summer months (Stolbovoi and McCallum, 2003).  In June-July of 2003 relative 

humidity over the area and the amount of precipitable water were uncharacteristically 

low (NCEP/NCAR Reanalysis 1) while at the same time there was an increase in the 

mean air temperature.  The combination of higher than usual air temperatures and 

lower relative humidity leads to drier small fuels and creates potential for fire 

ignition.  

The ROI begins to rise in September, peaks in October and declines by the 

end of November.  The spatial patterns of ROI distribution are very similar to those 

during the spring months; however the levels of risk are considerably lower.  The fall 

pattern of the ROI is also consistent with agricultural fire management of post-harvest 

crop residue. 

The variability of fire ignitions in both the spatial and temporal domains 

shows that ROI is a highly dynamic factor which should be accounted for within a 

fire threat modeling framework.  The observed monthly patterns of fire ignitions vary 

considerably intra-annually but show less variability inter-annually.  The only 

noticeable difference is found during the summer period of years of low and high fire 

activity which is in part explained by changes in fire weather. 

 



 

 42 
 

2.5. Conclusions 

The Fire Threat Model is a new tool aimed at identifying fire susceptible areas 

of high importance for a given resource.  It is a novel approach to spatially explicit 

and temporally dynamic modeling of fire threat designed to be used as a resource 

management tool.    The FTM provides a framework for developing quantitative 

assessments of various parameters and their contribution to the overall potential 

impact of fire on a given resource.  In addition to operational use of the FTM, the 

model provides the framework for predictive assessment of fire threat in the future 

and evaluation of potential resource management scenarios aimed at minimizing the 

fire threat to the resource of interest.     

The analysis of fire occurrence in the RFE, described in this chapter, 

demonstrates considerable inter-annual variability of fire seasons.  While average fire 

occurrence in this area is fairly low, large areas of the RFE become affected by fires 

during years of high fire activity.  The findings show that the increase of fire activity 

during large fire years is not proportional to increase in the risk of ignition but is 

rather driven by enhanced propagation of fire linked to disruption of the monsoonal 

cycle in 2003.   

The spatial and temporal patterns of fire ignition reveal a strong connection 

between human presence in the area and the risk of ignition.  The intra-annual spatial 

variability of the risk of ignition also emphasizes the importance of developing 

temporally dynamic models in order to achieve better prediction of fire danger and 

fire threat. 
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The short record (four years) of fire detections from MODIS involved in this 

analysis presents a potential drawback due to the small sample size and the possibility 

of anomalous fire occurrence during all four years.  However, the observed variability 

of fire occurrence during this time period indicates that the analysis included a set of 

different conditions and thus provides a reasonable range of possible outcomes. 
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Chapter 3: Regionally Adaptable dNBR-Based Algorithm for 

Burned Area Mapping from MODIS Data2 

This chapter describes a burned area mapping algorithm necessary for 

assembling a record of fire activity in the RFE.  Such record provides a baseline for 

developing an understanding of regional fire regimes and drivers of fire occurrence.  

It provides the inputs for parameterization of the potential fire behavior component 

within the fire danger module of the FTM (chapter 4).  The available fire information 

in the RFE, collected by the Russian federal aerial fire protection agency, lacks 

spatial precision, reporting accuracy, and observational consistency (Conard et al., 

2002), necessitating development of a multi-year record of burned area from satellite 

observations. 

3.1. Introduction 

 The potential role of satellite imagery in monitoring and mapping wildland 

fire was recognized early on (Jayaweera and Ahlnas, 1974).  The operational use of 

coarse resolution satellite information for active fire detection and monitoring was in 

place by the mid 1980s (Flannigan and Vonderhaar, 1986).  A long term record of fire 

activity based on hotspot detections from satellite imagery is currently available for 

Along-Track Scanning Radiometer (ATSR) (Arino and Rosaz, 1999), Moderate 

Resolution Imaging Specroradiometer (MODIS) (Giglio et al., 2003), and 

Geostationary Operational Environmental Satellite (GOES) (Prins et al., 1998).  At 

                                                 
2 The presented material has been previously published in part in Loboda TV, O’Neal KJ, Csiszar IA 
(2007)  Regionally Adaptable dNBR-based Algorithm for Burned Area Mapping from MODIS Data.  
Remote Sensing of Environment, 109, 429-442. 
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the same time, development of a long-term record of global observations of burned 

area is lagging.   

While numerous approaches demonstrated the feasibility of burned area 

mapping from Advanced Very High Resolution Radiometer (AVHRR) data 

(Chuvieco and Martin, 1994; Gutman et al., 1995; Rauster et al, 1997), they found a 

number of limitations which made AVHRR a less than ideal tool for fire 

observations.  Recent advances in instrument design have led to considerable 

improvements in wildfire mapping at regional and global scales.   The MODIS sensor 

on board the Terra and Aqua satellites was designed to enhance fire mapping 

capabilities (Kaufman et al., 1998) and to improve land surface monitoring (Justice et 

al, 1998).  A suite of global MODIS products includes a burned area product (Roy et 

al, 2005a), however, the multi-year record has not yet become available to the public.   

Other examples of global burned area mapping activities include GBA2000 

(Tansey et al., 2004) and GLOBSCAR (Simon et al., 2004).  Both products mapped 

the extent of burned area globally for the year 2000 using SPOT-Vegetation 

(GBA2000) and ATSR-2 (GLOBSCAR) data respectively.  Unlike global active fire 

detection algorithms, these global burned area products take into account regional 

specifics to some degree.  The GLOBSCAR processing mechanism involves 

identification of a “burnable zone” through application of a vegetation map.  

GBA2000 presents a combination of a series of regional burned area products 

developed through regional burned area algorithms.  These algorithms are applied at 

continental and comparable scales covering various land cover types and biomes and 

therefore are insensitive to ecosystem level specifics of vegetative cover or fire 
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behavior. The MODIS Burned Area product is based on BRDF models which are 

contextually driven by vegetation type and therefore are more sensitive to spatial 

change of vegetative cover.  However, the BRDF approach does not account for 

regional variability of fire occurrence and behavior which makes it difficult to 

differentiate between change due to burning and change caused by other reasons.    

Numerous regional burned area mapping activities were also undertaken using 

SPOT-Vegetation (Gerard et al, 2003; Brivio et al, 2003; Zhang et al, 2003; Egorov et 

al., 2004) and AVHRR (Sukhinin et al., 2004) data.  The majority of these regional 

products are hard-coded to the specifics of a given biome (e.g. boreal forest) and their 

mapping accuracy drops dramatically outside the intended area.  The approach 

presented by Zhang et al (2003) has more flexibility to account for temporal changes 

in surface reflectance over various regions of the electro-magnetic (EM) spectrum as 

a function of forest/non-forest vegetative cover.  The validation of this burned area 

dataset produced for the Russian Federation (at sub-continental scale) was performed 

over four Landsat 7 scenes positioned in pairs over 2 WRS paths (path 014 rows 14 

and 15 and path 122 rows 15 and 16).  This makes it difficult to draw conclusions 

about the reliability of algorithm performance over the broad range of ecosystems 

within the Russian Federation.  Due to the natural variability of ecosystems, regional 

fire regimes, and land use practices, mapping burned area with high levels of 

accuracy requires development of a flexible approach which can be fine tuned to the 

regional/ecosystem level specifics. 

This chapter describes a regionally adaptable semi-automated approach to 

mapping burned area using MODIS data.  This is a flexible remote sensing/GIS based 
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algorithm which allows for easy modification of algorithm parameterization to adapt 

it to the regional specifics of fire occurrence in the biome or region of interest.  The 

algorithm is based on Normalized Burned Ratio differencing (dNBR).   The 

normalized differencing of TM bands 4 (0.76 - 0.90 µm) and 7 (2.08 - 2.35 µm) was 

introduced by Lopez-Garcia and Caselles (1991).  The index is based on the 

independence of surface reflectance change in these ranges of the EM spectrum 

driven by fire effects on the land surface.  The index, later named NBR by Key and 

Benson (2006), was originally developed specifically to map burned areas and more 

recently is used for burn severity assessment (Key and Benson, 2006; van 

Wagtendonk et al., 2004; Epting et al, 2005).       

MODIS is presently the only moderate resolution instrument which allows for 

dNBR derivation.  Other comparable sensors (e.g. SPOT-Vegetation and Medium 

Resolution Imaging Spectrometer - MERIS) do not collect spectral information in the 

2.0 – 2.5 µm range of the EM spectrum.  However, the Visible/Infrared 

Imager/Radiometer Suite (VIIRS) instrument developed for the future operational set 

of National Oceanic and Atmospheric Administration (NOAA) satellites will have a 

2.25µm band.  Therefore, the presented algorithm has the potential to be used with 

next generation satellite data to continue a long term record of fire impacts.  While 

dNBR is currently used by the National Park Service, Burned Area Emergency 

Recovery (BAER) teams, and fire management agencies outside the US as an 

operational method for burn severity assessment (Cocke et al, 2005; van Wagtendonk 

et al., 2004; Howard and Lacasse, 2004), it may not be the optimal indicator of burn 

severity (Roy et al, 2006).  Additionally, the potential applicability of dNBR as a 
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predictor of burn severity may be limited only to forested landscapes (Epting et al., 

2005).     

The burned area mapping approach presented in this paper was tested within 

three ecosystems (Figure 3-1): 1) boreal forest of Central Siberia, 2) Mediterranean-

type ecosystem of California, and 3) sagebrush steppe of the Great Basin.  Post-burn 

changes in surface reflectance are driven by pre-burn vegetation types as well as burn 

intensity.  The presented approach includes threshold development based on an 

ecosystem’s vegetation composition and more specifically percent tree cover.  The 

test ecosystems differ substantially from each other in species composition, percent 

tree cover, and fire behavior.  They represent a variety of land cover types in order to 

test algorithm adaptability to regional specifics and provide a reasonable evaluation 

of burned area mapping accuracy over a wide range of conditions. 

3.2. Methodology 

The input data for the algorithm include the MODIS Surface Reflectance 8-

Day Composite product (Vermote et al, 2002) and the MODIS Active Fire product 

(Giglio et al, 2003).  The approach is presented as a three-part procedure.  The first 

part involves image processing and analysis of potential fire-induced changes in 

surface reflectance from remotely sensed data.  The second part deals with 

development of thresholds based on ecosystem vegetation type, post-burn spectral 

signatures, and fire occurrence.  The third part includes a GIS-based analysis of fire 

scar contiguity and inter-comparison with active fire detections (Figure 3-2). 

 



 

 49 
 

 

Figure 3-1. Distribution of test sites for the MODIS-based burned area assessment: a) 

Central Siberia boreal forests; b) Mediterranean-type ecosystem of California; c) 

Sagebrush steppe of the Great Basin.  Enlarged boxes show the position of test 

windows over sample post-burn dNBR images used for burn threshold determination. 

 

3.2.1. Image Processing 

The analysis of fire induced change in surface reflectance is performed on the 

MODIS Surface Reflectance 8-day composites.  Composites covering a full year (Jan 

1 – December 31) are included in the processing.  Only pixels of the highest quality 

are included in the analysis. Table 3-1 presents the image processing mask developed 
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based on the information contained in the packed quality bits which are found in the 

standard MODIS products.  For further description of MODIS Surface Reflectance 

QA Science Data Set bits, see the MODIS Surface Reflectance User’s Guide 

(<http://modis-sr.ltdri.org/html/guide.htm>). 

 

 

Figure 3-2.  MODIS burned area algorithm processing stages. 

 

NBR processing of surface reflectance  8-day 
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((band2-band7)/(band2+band7)) * quality mask 
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to reasons other than burning by 
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Table 3-1.   MODIS Surface Reflectance QA Science Data Set bits used to mask out 

low quality data 

sur_refl_stat
e_500m bit 
id 

0-1 2 3-5 6-7 8-9 10 12 15 

Bit 
description 

cloud 
state 

cloud 
shadow 

land/water 
flag 

aerosol 
quality 

cirrus 
detected 

PGE11 
internal 
cloud 
mask 

Snow 
/ice 
flag 

PGE11 
internal 
snow 
mask 

Value 
accepted 

0 0 1 1-2 0-2 0 0 0 

 
 

The uncorrelated response of the NIR and SWIR bands to post-fire effects is 

exploited in three different indices based on the different SWIR ranges of the EM 

spectrum.  These indices are calculated according to the same equation (NIR – SWIR) 

/ (NIR + SWIR) but differ in the range of SWIR band.   MODIS collects spectral 

information in three SWIR ranges (1.2, 1.6, and 2.1 µm).  This allows for direct 

comparison of the performance of different indices used in burned area mapping.  A 

time series of the Normalized Difference Water Index (NDWI) based on the 1.2 µm 

range (Gao, 1996), the Normalized Difference ShortWave Infrared Index (NDSWIR) 

based on the 1.6 µm range (Gerard et al., 2003), and NBR on MODIS data were 

compared over a known burned area in the Russian Far East boreal forest (located 

outside the validation sites used in this project).   

Mean values of all pixels within the burned areas were calculated for all seven 

MODIS bands available in the standard MODIS Surface Reflectance 8-Day L3 

Global 500m product (Vermote et al, 2002) during the time period 2002-2006.  The 

pre-burn conditions were estimated from the 2002 MODIS data.  The mean values 

were subsequently used to develop a time series of delta (preburn – postburn) NDWI, 
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NDSWIR, and NBR indices (Figure 3-3).  While all these indices show a similar 

pattern of change due to burning, dNBR (based on the 2.1 µm) has the largest 

amplitude of values and the highest signal to noise ratio, particularly during the time 

period immediately following burning.  

 

 

Figure 3-3. Time series of mean delta NDWI, NDSWIR, and NBR over the burned 

areas in boreal forest during pre-burn, burning, and post-burn conditions.  The X axis 

shows the dates from January 1, 2003 through September 30, 2006.  The Y axis 

shows the range of dNDWI, dNDSWIR, and dNBR values.  The vertical lines are 

used to indicate the approximate time frames for pre-burn, burn, and post-burn 

periods. 

 

Within the processing algorithm the NBR is calculated using MODIS Surface 

Reflectance product bands 2 (0.841-0.876 µm) and 7 (2.105-2.155 µm) following the 
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equation: NBR = (band2 – band7)/(band2 + band7).  The NBR index was originally 

developed for Landsat TM and ETM+ bands 4 (0.78–0.90 µm) and 7 (2.09-2.35 µm), 

and therefore our selection of MODIS bands approximates spectral signatures 

recorded by Landsat bands.  Differenced NBR (dNBR) is calculated using the NBR 

values in the compositing period containing the fire scar and the same compositing 

period one year prior in order to account for phenology-driven intra-annual variability 

of vegetation state.  A set of 8-day dNBR composite images with values ranging from 

-2000 to 2000 (dNBR * 1000 and converted to integers) and the “bad data quality” 

fill value of -10000 is assembled for each year for further GIS analysis. 

3.2.2. Threshold Development 

Threshold development is the only analyst-driven part of the methodology.  

There are two groups of thresholds used in the algorithm.  The first group contains 

dNBR-based thresholds developed through the manual selection of test sites within a 

given region or ecosystem.  The second group includes thresholds based on the 

MODIS active fire product aimed at the elimination of fire scar false alarms caused 

by land surface processes that generate a similar change in spectral response.  While 

dNBR provides a good measure of change in surface reflectance following a fire 

event, inter-annual differences in the onset of greenup and senescence may cause a 

non fire-related increase in dNBR values (van Wagtendonk et al., 2004).  The 

atmospheric correction procedure performed on MODIS data to produce the Surface 

Reflectance products minimizes differences in atmospheric effects between pre- and 

post-burn images, but does not account for BRDF effects (Epting et al., 2005) which 

are particularly noticeable in mountainous areas.  Additionally, anecdotal evidence 
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collected during algorithm development shows that dNBR may also be sensitive to 

changes in surface moisture following precipitation events or irrigation. 

3.2.2.1. DNBR based thresholds 

The masks of potentially burned areas are developed by thresholding the 

dNBR values at empirically-determined levels which differ for various biomes.  This 

threshold is determined from the frequency distribution of dNBR values over a 

sample area with known fire activity based on the presence of MODIS Active Fire 

detections.  It is important to select an area which includes a large sample of 

suspected burns (Figure 3-1) to ensure sufficient representation of dNBR burn values 

in the histogram.  Although the size of the sample area is driven by the relative size of 

burns within a given ecosystem and therefore differs for various areas, the expected 

burns should constitute a minimum of 10% of the overall test site.  The dNBR values 

from the best post-fire (determined from the dates of active fire detections) 8-day 

dNBR composite are evaluated.   The histogram of dNBR values shows a near 

Gaussian distribution for unburned areas and an extended arm of positive values for 

burned areas (Figure 3-4). The first threshold, referred to as the burn threshold, is 

then set at the expected unburned pixels boundary which is defined by the fit of the 

Gaussian distribution at 95% of the range.  The range of unburned dNBR values 

narrows as the percent tree cover diminishes from boreal forests (Figure 3-4 a) to 

grasslands (Figure 3-4 b), and subsequently the threshold slides from 300 to 75-100 

(dNBR * 1000). 
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Figure 3-4. Frequency distribution of dNBR values for threshold development test 

windows in different ecosystems: a) Central Siberia boreal forest; b) Sagebrush 

steppe of the Great Basin.  The test windows include a range of areas including 

burned as well as unburned areas.  The vertical lines are used to indicate the 

placement of the burn thresholds.  The difference in the scales of the presented graphs 

reflects the variability of dNBR range in various ecosystems. 
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The next stage of analysis allows for additional adjustment of the burn 

threshold based on the ecosystem of interest.  The thresholds are adjusted manually 

based on the success rate of burned area masks mapped with the previously 

determined burn threshold.   The MODIS Vegetation Continuous Fields (VCF) 

product (Hansen et al., 2003) provides important information about tree and 

herbaceous cover which is incorporated into additional thresholds within the GIS 

processing steps.  A sample fire scar from the validation base is used to create a high 

confidence mask of a burned area.  The distribution of MODIS post-fire dNBR values 

within the mask is then evaluated as a function of percent tree cover and percent 

herbaceous cover (Figure 3-5). 

This evaluation yields vegetation cover thresholds subsequently used to adjust 

the burn thresholds.  Within the sagebrush steppe test site, all areas with tree cover > 

2% and areas with herbaceous cover > 72% performed adequately.  However, areas 

with tree cover <= 2% and herbaceous cover <= 72% were not mapped well.  

Subsequently, the burn threshold for the underrepresented areas was moved to the 

lowest level of “potentially burned” pixels – a dNBR value of 75.  Similarly, the burn 

threshold for boreal forests of Central Siberia with tree cover <= 10% was moved to 

200 whereas the areas with tree cover > 10% were mapped with the original burn 

threshold of 300.  All thresholds used in the burned area mapping within the three test 

ecosystems are summarized in Table 3-2. 
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Figure 3-5. Ratio of MODIS burned area estimates mapped with the original 

threshold to burned area estimates in the reference database within the sagebrush 

steppe test site.  The lines are used to indicate the placement of vegetation thresholds 

for: a) Percent tree cover; b) Percent herbaceous cover 

3.2.2.2. Active Fire based Thresholds 

The MODIS Active Fire product is included in the burned area mapping 

approach to provide a means to identify fire-induced changes in surface reflectance.  

An empirically-determined set of spatial and temporal thresholds is selected to 

account for fire spread specifics in the biome and latitude of the given region or 

ecosystem.   
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Table 3-2.  Thresholds used for burned area mapping in the test ecosystems. 
 

Thresholds 
Boreal 
forest 

Mediterranean-
type ecosystem Sagebrush steppe 

Burn thresholds    
Tree cover threshold 10% 10% 2% 

dNBR * 1000 (> high tree threshold) 300 150 100 

dNBR * 1000 (<= tree threshold) 200 100 
see herbaceous 

thresholds 
herbaceous cover threshold na na 72% 

dNBR * 1000 (> high herbaceous 
threshold) na na 100 

dNBR * 1000 (<= low herbaceous 
threshold) na na 75 

Active Fire thresholds    

Spatial 
3 * 

100ha 4*100ha 5*100ha 
Temporal 64 days 32 days 32 days 

  

The number of active fire detections increases in the northern latitudes due to overlap 

of the MODIS swaths, producing as many as four observations per day of the same 

area from each of the Aqua and Terra satellites (Giglio et al., 2006).  In comparison, 

observations at the equator do not exceed twice per day from each satellite.  In 

addition, fire spread rates and obstruction of fire detection due to heavy smoke lead to 

considerable gaps between consequent fire detections.  Therefore a buffer is 

necessary for threshold development.  Giglio et al. (2006) established a relationship 

between area burned and active fire detections count within several different biomes 

based on the mean percent tree cover.  Their approach involved using regression trees 

to calibrate MODIS active fire detection counts and MODIS burned area estimates 

derived from 500m MODIS imagery in fourteen global regions.  In their algorithm, 

the variability of the proportion of active fire detections count to burned area was 

driven by percent tree and herbaceous cover and mean fire cluster size.  Their results 

show that in biomes with low percent tree cover, such as grasslands and shrublands, a 
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single 1 km2 active fire detection represents 4–6 km2 of burned area.  However, in 

boreal forests the relationship is much closer where ~1 km2 of active fire detection 

represents 1.5 km2 of burned area.  

In addition to the dependence on fractional tree cover, the relationship 

between active fire detections and burned area is affected by the mean size of the fire 

cluster.  The amount of burned area per active fire detection increases with an 

increase in the mean fire cluster size.  The increase is shown to be steepest in 

grassland ecosystems, reaching 8 km2 of burned area per 1 km2 of active fire 

detections in the arid grasslands of Central Asia (Giglio et al, 2006).   

The coefficients developed by Giglio et al. (2006) are indicative of the 

thresholds used in our approach. However, since these coefficients were developed 

based on averaged 1 degree grid cell values they are not sufficiently precise for 

spatially explicit fire scar mapping.  In addition, our previous research (Loboda and 

Csiszar, unpublished) has shown that MODIS Active Fire detections tend to omit 

considerable areas of burning in large scars, which is associated with the release of 

large quantities of smoke.  Active fire detection count thresholds (spatial thresholds) 

for each test area were set based on the previously described trends and regression 

tree estimates of the relationship between active fire detection and burned area 

(Giglio et al., 2006).   The spatial threshold limits the extent of burned areas based on 

the biome-dependant coefficient applied to the number of active fire detections 

multiplied by 100 ha (1 km2).  These coefficients are described for each study area in 

the respective sections 3.4.1, 3.4.2, and 3.4.3 and summarized in Table 3-2.      
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In addition to the spatial threshold, a temporal threshold is introduced to limit 

the inclusion of active fire detections to those which were likely to produce a change 

in dNBR.  The temporal threshold is based on the dates of active fire detections 

provided within the MODIS Active Fire product.  Only fire detections observed prior 

to the date of the surface reflectance 8-day composite are included in the analysis. A 

sliding time window of X number of days prior to the date of fire scar mapping is set 

depending on the specifics of fire occurrence and vegetation response within the 

ecosystem of interest.  Large forest fires often burn for extended periods of time, 

producing large smoke plumes which make the mapping effort impossible.  However, 

these fire scars remain easily detectable in the imagery for a long time after burning is 

complete.  Therefore the temporal threshold for forested areas was set at 64 days prior 

to the date of the analyzed surface reflectance 8-day composite.  In contrast, it is 

extremely rare for fire events in grasslands and shrublands to last over that length of 

time.  In addition, vegetation recovery is considerably quicker in these ecosystems 

and fire scars are easily masked by new vegetative growth.   Subsequently, the 

temporal threshold was set at 32 days prior to the date of the analyzed surface 

reflectance 8-day composite.  The spatial and temporal thresholds are adjustable and 

can be modified based on the expert knowledge of fire behavior within the ecosystem 

of interest. 

3.2.3. Burned Area Mapping 

The dNBR 8-day composites created during the image processing stage are 

processed to generate two outputs.  The first output presents a set of 8-day composite-

based masks of potentially-burned area based on thresholds at an ecosystem-
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determined dNBR level (described in section 3.2.2.1).  The second output presents the 

end–of–year maximum dNBR composite.   The potential burn masks are evaluated as 

contiguous polygons against the MODIS Active Fire detections (thresholded as 

described in section 3.2.2.2).  Active fire location points representing the center of 

MODIS Active Fire product pixels are buffered by a 500m radius to approximate the 

nominal 1km2 area from which the radiometric signal is received by the satellite.  The 

buffers are subsequently intersected with the potential burn polygons.  If the area of 

the evaluated polygon is less than or equal to the spatial threshold value it is 

considered burned; otherwise the polygon is excluded from further consideration.   

At the final stage of the process, the individually evaluated 8-day composite-

based masks are merged into the end-of-year burn mask which is further used to clip 

the maximum dNBR composites.  Each pixel in the output burned area product is 

assigned the beginning and ending date of fire scar mapping based on the date of the 

8-day masks which detected the given pixel.  The final burned area product presents a 

shapefile coverage which contains dNBR values ranging from 0-2000 and beginning 

and ending fire scar mapping dates.  The end-of-year maximum dNBR represents an 

efficient way to map fire scars to their maximum extent (provided the burning did not 

occur in the time period December – January) while preserving dNBR values to 

indicate the largest recorded change in surface reflectance within the fire scar.  The 

additional attributive information about the first and last date of mapping individual 

burned pixels allows for identification of areas of burning over a long period of time 

and areas which burned several times during a given year, which is characteristic for 

agricultural burning.  However, the algorithm can be easily modified to output 8-day 
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(or multiples of 8 days) burned area composites with the dNBR values from the given 

compositing period. 

3.3. Validation Datasets and Methodology 

Two different validation reference bases were used to evaluate algorithm 

performance.  The reference base used for validation of the MODIS burned areas in 

Central Siberia was created by mapping burned areas from single-date Landsat ETM+ 

data using the supervised Spectral Angle Mapper method (Kruse et al, 1993). Prior to 

classification the Landsat ETM+ data were converted to at sensor surface reflectance 

and aggregated to 100 m to account for the modulation transfer function (MTF) effect 

(Kaufman, 1988).  Areas of significant cloud cover and cloud shadows were manually 

digitized and excluded from further consideration.  The results of the classification 

were subsequently compared against active fire detections from MODIS and AVHRR 

(Sukhinin et al., 2004) and available quick look images of preceding dates to verify 

burned area assignment.  Burn scars in boreal forests remain reliably detectable in the 

imagery for up to 10 years after the fire event.  However, a posteriori identification of 

the time of burning can be successfully implemented through overlaying active fire 

detections with mapped burned areas (George et al., 2006).  In the final step, the 

burned areas were manually selected and the false alarms were eliminated.  Due to 

the nature of the burned areas developed from MODIS (end-of-year mapping), only 

fire scars with completed burning in the high resolution imagery were included in the 

analysis.  The Landsat ETM+ validation reference base allows for conducting both 

inventory and geographic accuracy assessments.  Inventory assessment is defined as a 
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comparison of burn scar area (ha) mapped by each product.  Geographic accuracy is 

evaluated through confusion matrices.  

The validation of the MODIS burned areas in the test sites located within the 

United States was performed using fire perimeter data obtained by federal and state 

interagency incident management teams.  The dataset contains perimeters derived 

using different methods with different reference bases and therefore may include 

inconsistent data and contain errors due to misregistration of geographic information.  

To ensure accurate comparison of the burned areas with the reference database, only 

perimeters containing MODIS active fire locations were included in the analysis.  The 

nature of this reference base allows only for providing the inventory accuracy 

assessment without true estimates of errors of commission and omission. 

3.4. Results 

This section presents the results of the described approach to burned area 

mapping in three unique case studies.  The test sites are located in three distinct 

ecosystems (Figure 3-1) with considerable differences in vegetation composition and 

structure and fire regimes to demonstrate the versatility of the algorithm.  Burned area 

was mapped in these test sites using thresholds adjusted for each ecosystem based on 

expert knowledge of fire characteristics and vegetation specifics.  The resulting 

burned area maps were evaluated against fire scars mapped from Landsat ETM+ data 

and fire perimeter data derived from various methods by U.S. federal and state 

agencies and San Diego State University (<http://map.sdsu.edu>). 
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3.4.1. Boreal Forest of Central Siberia 

Central Siberia is covered predominantly by boreal forests and shrublands 

(Figure 3-1).  The tree cover density in these forests is relatively low (< 50%) and 

typical for mid-taiga stands (Stolbovoi et al, 1998).  The northern part of the test site 

includes a northern taiga stand with short (< 5m) trees and minimal (< 30%) tree 

cover (Hansen et al., 2003).  Due to these vegetation characteristics, northern taiga is 

identified in the MODIS land cover product as shrubland.  None of the validation fire 

scars from Landsat scenes are found in tundra.   Forests are predominately coniferous 

(larch, spruce-fir and pine) stands with considerable accumulation of plant litter.  Fire 

scars are characterized by high dNBR values during the year of burning.  Analysis of 

subsequent year green up using NDVI values produced from the MODIS 8-day 

surface reflectance composites showed very low levels of photosynthetic vegetation 

within the fire scars which can be indicative of high levels of tree mortality. 

The Central Siberia boreal forest site covers the area of ~2.5 million km2 

(MODIS tiles h23v2 and h24v2).  MODIS burned area was mapped for this site for 

2001 and 2002.  The dNBR thresholds were set at 300 (dNBR * 1000) for areas with 

tree cover > 10%, and 200 for areas with tree cover <= 10%.  The spatial threshold 

for active fires was developed from the estimates provided by Giglio et al (2006) for 

boreal forests of North America.  The spatial active fire threshold is primarily 

important for large clusters, therefore we followed the regression tree estimates for 

mean cluster size > 6.6 and high vegetation cover.  The coefficient of 2.8 was 

rounded and the spatial active fire threshold were set at “3 times active fire pixel 

count * 100 ha”.  The temporal active fire threshold was set at 64 days prior to the 
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date of the compositing period due to the high frequency of cloud cover, large smoke 

plumes, and long duration of fire events in this area.   

The Central Siberia case study is the largest test site in this study.  The high 

resolution reference base includes ninety-nine fire scars from 11 Landsat ETM+ 

images acquired in 2001 and 2002 (Table 3-3).  Five of these Landsat scenes 

contained only scars with fully completed burning and the remaining scenes 

contained a combination of fire scars with completed and on-going burning.  The fire 

scars with completed burning from all scenes were included in the evaluation of 

burned area estimates.   

 

Table 3-3.  Landsat ETM+ scenes included in the reference database for Central 

Siberia  

 
WRS2 
Path_Row 

Acquisition date Number of scars with 
completed burning 

Included in geographic 
accuracy assessment 

113_015 08/17/2001 1 no 
117_016 07/28/2001 10 no 
120_013 08/02/2001 10 yes 
120_013 07/20/2002 6 no 
120_014 07/20/2002 6 yes 
120_015 07/17/2001 2 no 
121_016 08/09/2001 22 no 
121_017 08/09/2001 14 no 
122_015 08/16/2001 16 yes 
125_015 09/06/2001 6 yes 
132_018 08/22/2001 4 yes 
 

The results show that the MODIS burned areas provide accurate estimates 

(slope = 0.89 with R2 = 0.98) of burned area across a large territory (Figure 3-6 a).  

The overall assessment is driven clearly by the largest fire scar mapped in Landsat 

path 125 row 15 from 09/06/2001.  However, the relationship remains strong (slope = 
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1.13 with R2 = 0.97) for smaller fire scars (< 50,000 ha) and is not entirely dependant 

on the largest fire scar (Figure 3-6 b).  The MODIS burned areas missed nearly all 

fire scars less than 100 ha (1 km2).  However, the overall contribution of the small fire 

scars to the total area burned is negligible (0.31%).  The MODIS burned areas have a 

nearly 100% mapping rate for fire scars larger than 200 ha with only one fire scar 

missed, which results in high accuracy of burned area estimates.  

 

  

 

Figure 3-6. Inventory accuracy assessment for the Central Siberian test site compared 

against Landsat ETM+ fire scars: a) all fire scars; b) fire scars less than 50,000 ha. 

 

Geographic accuracy of burned area mapping is also reasonably high (Figure 

3-9 a).  Geographic accuracy assessment produced the lowest results for Landsat path 

120 row 14 from 07/20/2002 with a Kappa value of 0.35.  This is most likely due to 

the fact that three of a total of six fire scars in this scene are less than 150 ha and the 

only large fire scar missed contains a very heterogeneous burned surface.  The next 
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lowest Kappa value was 0.69 for Landsat path 120 row 13 from 07/20/2002 which 

also contains small burn scars.  Kappa values improve greatly in scenes containing 

larger fire scars – 0.76, 0.78 and 0.79 for Landsat path 132 row18 from 08/22/2001, 

path 122 row 15 from 08/16/2001, and path 125 row 15 from 09/06/2001, 

respectively. 

3.4.2. Mediterranean-type Ecosystem of California 

The southern coast of California is a Mediterranean-type ecosystem (MTE) 

consisting of dense thickets of chaparral and coastal sage scrub communities. 

Chaparral describes communities of highly flammable evergreen shrubs with 

sclerophyllous leaves found in more inland reaches at moderate elevations, while 

coastal sage scrub describes communities of drought deciduous shrubs found along 

the coastal margin in lower elevations (Rundel, 1998). These species lose most of 

their leaves during the summer drought as soil moisture is reduced. Fire is the 

dominant disturbance agent that determines structure and functions of vegetation in 

MTEs (Hanes, 1971), although fire suppression efforts have skewed fire regime 

toward longer return intervals, larger burn extent and greater fire intensity (Minnich, 

1983). Fire spread is promoted by the dense shrub canopy, availability of fine fuels, 

and low fuel moisture during the summer drought (Davis and Burrows, 1994). Fires 

are typically intense and stand-replacing, and post-fire regeneration occurs within 3-7 

years (Hanes, 1971) through resprouting and stored seeds (Moreno and Oechel, 

1994). 

The MODIS burned areas for this ecosystem were mapped over the total area 

of ~42,000 km2 (MODIS tile h08v05) for 5 years (2001-2005).  The thresholds were 
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set at 150 (dNBR * 1000) for areas with tree cover > 10% and 100 (dNBR * 1000) 

for areas with tree cover <=10%.  The spatial active fire threshold was set at “4 times 

active fire pixel count * 100 ha” modeled from Giglio et al. (2006) estimates for 

Australia with percent tree cover < 18.5 and cluster size > 6.2.  The temporal active 

fire threshold was set at 32 days prior to the date of compositing period. 

The burned area estimates developed using MODIS were compared to the fire 

perimeters from federal and state interagency incident management teams.  The 

MODIS burned areas showed a considerable overestimate of burned area (slope = 

1.46 with R2 = 0.99) (Figure 3-7 a).  However, during the examination of potential 

reasons for such a large error it was determined that the error was caused by a large 

plume of particulate matter not detected by the quality bits in the input MODIS 

Surface Reflectance product for the compositing date 11/25/2003.  The overall 

accuracy improved (slope = 0.92 with R2 = 0.97) (Figure 3-7 b) once this date was 

excluded from the analysis.  Similar to the Central Siberian test site, the relationship 

is driven by one very large fire scar.  For fire scars less than 50,000 ha, the MODIS 

burned areas slightly overestimate the area (slope = 1.15) and have less consistency in 

the estimates with R2 = 0.87 (Figure 3-7 c).  Although the reference dataset does not 

allow for conducting full assessment of geographic accuracy of burned area mapping, 

the visual evaluation of mapped burns shows good spatial correspondence between 

the MODIS burned area and the fire perimeters (Figure 3-9 b). 
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Figure 3-7. Inventory accuracy assessment for the Mediterranean-type ecosystem test 

site compared against fire perimeters: a) all fire scars; b) all fire scars mapped with 

composite 11/25/2003 excluded; c) fire scars less than 50,000 ha with composite 

11/25/2003 excluded. 

3.4.3. Sagebrush Steppe of the Great Basin 

Sagebrush steppe is found in the northern-most reaches of the Great Basin 

desert region in the intermountain Western US. The region is predominantly open 

rangeland containing sparse shrub cover intermixed with grass cover and exposed 
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rocky soils. Historically, the ecosystem consisted of several sagebrush species and 

short perennial bunchgrasses and forbs (Young and Allen, 1997). Fires and 

widespread grazing were not initially part of the ecological disturbance regime 

(Harris, 1967). In the past century, there has been an invasion of exotic annual grasses 

that have altered the fire regime (Mack, 1981). The increase in fine fuels availability 

has facilitated fire spread and increased fire frequency. Repeated fires coupled with 

overgrazing have allowed for the replacement of sagebrush by exotic annual grasses 

(Prater et al., 2006), facilitating the overall dominance of annual grass cover and 

further altering the fire regime through a feedback loop. Post-fire regeneration of 

sagebrush is relatively slow as compared to other shrub communities, with 

regeneration often requiring 15 years or more to return to pre-burn conditions 

(Humphrey, 1984). 

The sagebrush steppe site covers ~175,000 km2 (MODIS tile h09v04), and the 

burned areas for this ecosystem were mapped for 2001.  Herbaceous cover was 

incorporated in the dNBR threshold development in addition to tree cover.  The 

threshold was set at 100 (dNBR * 1000) for areas with tree cover >2%.  For areas 

with tree cover <= 2%, the thresholds were set at 100 (dNBR * 1000) for herbaceous 

cover > 72% and 75 (dNBR * 1000) for areas with herbaceous cover <= 72%.  The 

spatial active fire threshold was set at “5 times active fire pixel count * 100 ha” based 

on the estimates of arid grasslands in Northern Africa for clusters > 2.3 and 

herbaceous cover < 73.5 %.  The temporal active fire threshold was set at 32 days 

prior to the date of the compositing period. 
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The comparison of the MODIS burned area estimates with the fire perimeter 

data showed that MODIS burned areas only slightly overestimate the area burned 

(slope = 1.11 with R2 = 0.92) (Figure 3-8).  Visual evaluation of mapping accuracy 

also shows a good correspondence between the MODIS burned area and the reference 

burn scars (Figure 3-9 c).  These results are very encouraging considering the 

difficulty of mapping burned areas with coarse and moderate resolution instruments 

in ecosystems with low biomass concentrations. 

 

 

 

 

 

 

 

 

 

 

Figure 3-8.  Inventory accuracy assessment for the Great Basin sagebrush steppe test 

site compared against fire perimeters. 
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Figure 3-9. Examples of the MODIS-based burned areas overlaid on the validation 

datasets in the three test ecosystems: a) Central Siberia boreal forest; b) 

Mediterranean-type ecosystem of California; c) Sagebrush steppe of the Great Basin.  

 

3.5. Discussion 

The regionally adjustable burned area algorithm presents an innovative 

approach which focuses on unique combinations of vegetative, fire progression, and 
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post-fire recovery characteristics for various biomes.  The approach is straightforward 

and repeatable.  Although the algorithm is not fully automated it does not rely on the 

analyst’s knowledge of the regional specifics and eliminates subjectivity of threshold 

selection.  The results of the MODIS burned area mapping approach across the three 

test ecosystems are encouraging (Figure 3-9).  The flexibility of the algorithm allows 

for high levels of mapping accuracy across different ecosystems ranging from boreal 

forests to semi-arid grass and shrub lands with estimates falling within 15% of the 

validation base.  The high accuracy of algorithm performance within individual 

regions and ecosystems also allows for cross-comparison of burned areas between 

regions and biomes of interest.  In addition to the high accuracy of burned area 

estimates, the product demonstrated high levels of geographic accuracy for large fire 

scars (Kappa 0.76 – 0.79).  The geographic accuracy for smaller fire scars was lower, 

but this is partially explained by the coarse mapping resolution (500m) of the MODIS 

burned areas.  Among the most common sources of error introduced by the coarse 

resolution instruments are edge effects, where a burned MODIS pixel at the edge of 

the fire scar covers a combination of burned and unburned pixels in the validation 

dataset.  The limitations arising from the instruments’ spatial resolution are amplified 

by the heterogeneity of burned areas with numerous unburned inclusions within the 

fire scars which results in a considerable overestimate of the burned area (Loboda and 

Csiszar, 2005).  

Several major problems found with mapping burned areas are related to the 

input data.  The exclusion of atmospherically contaminated pixels leads to gaps in 

burned areas due to a lack of high quality surface observations.  This problem is 



 

 74 
 

particularly relevant for areas with high average percent cloud cover and areas where 

burning results in the release of large quantities of particulate matter into the 

atmosphere.  Another problem is the existence of low quality input data missed by the 

quality assessment algorithm used on the MODIS Surface Reflectance product.  

Atmospheric contamination in the input data leads to a large error in burned area 

mapping.  It is possible to reduce this error by visual inspection of input data.  

However, this solution is extremely time consuming and is only feasible for small 

projects.  The burned area accuracy may also be further improved by the inclusion of 

MODIS products from the Aqua satellite in the processing chain. 

Intra-annual and inter-annual variability of vegetative cover driven by 

phenology and differences in onset of green up and senescence presents a challenge 

for single “annual” threshold application in burned area mapping.  This issue was 

particularly prominent in mapping burned areas in Mediterranean-type ecosystems 

where a large inter-annual difference in NBR values is observed during the spring 

(February through April). This problem leads to the identification of extremely large 

contiguous areas as being burned.  While these areas were subsequently eliminated by 

the algorithm at later processing stages, true burned areas were also eliminated.  

Changing dNBR thresholds as a function of season of fire occurrence could present a 

solution to this issue and lead to considerable improvements in mapping burned areas. 

Two potential issues with the validation approach are the use of a single-date burned 

area mapping technique with the Landsat ETM+ imagery and the fire perimeters from 

the interagency incident command teams as the validation reference bases. Although 

multi-temporal change detection is a more commonly used approach to burned area 
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mapping, the persistent cloud cover over Northern Eurasia throughout the year (60-

80% according to ISCCP-D2, mean monthly cloud products July, 1983 – December, 

2004, <http://isccp.giss.nasa.gov/>) makes the availability of cloud-free image pairs 

rare.  Single image classification enhances the possibility of creating burned area 

products over large geographic areas with a yearly temporal frequency.  It also allows 

for mapping burned areas with a higher temporal frequency due to the availability of 

a larger number of single Landsat images per fire season compared to the number of 

multi-temporal Landsat image pairs. In addition to the Landsat validation base issues, 

the fire perimeters contain an archive of inconsistent sources with numerous errors of 

misregistration which significantly limit their use. In the future we plan to adapt fully 

the GOFC/GOLD validation protocol used by the Southern Africa Fire Network 

(SAFNet) and described by Roy et al. (2005b) wherever possible to produce 

consistent and full (inventory and geographic) accuracy assessments for this product. 

3.6. Conclusions 

The presented algorithm provides the basis for developing a long-term (based 

on the MODIS data record length) record of fire effects over the entire study region 

necessary for parameterization of the fire danger model.  The algorithm is based on 

readily available operational MODIS products which ensure the availability and 

consistency of input data.  As a semi-automated algorithm, this approach provides 

consistent estimates of burned area over time.  At the same time, the flexibility of the 

approach presents an opportunity to adapt burned area mapping to the regional 

specifics of vegetation composition and structure and fire regime.  Developed 

thresholds for mapping burned area in Siberian forests, produce accurate estimates of 
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the total amount of burned area (R2~0.97, slope ~1.1) as well as reasonable 

geographic precision of mapping (kappa ~0.78 for larger scars). 

In addition to the binary burned /unburned mask, the algorithm preserves the 

variability of change in surface reflectance compared to the pre-burn conditions, 

which provides valuable information about characteristics of burning and fire impact.  

While dNBR may not be a suitable index for burn severity assessment across various 

ecosystems, its variability within an individual fire scar may provide comparative 

estimates of fire impacts on a given area.  The recorded spectral signature of the 

dNBR index may prove useful to differentiate fire impact severity levels within a 

single ecosystem or a single fire scar with proper field validation.  However, 

additional work in developing understanding of dNBR as a measure of fire impact on 

land surface and severity is necessary.
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Chapter 4: Modeling Fire Danger in Data-Poor Regions: A Case 

Study from the Russian Far East3 

In this chapter, the generic conceptual framework of fire threat is adapted to 

regional specifics of fire occurrence in the RFE through parameterization of the fire 

danger module.  As a region-specific but resource independent module (chapter 2), 

fire danger is presented at this stage as a stand-alone model.  Here the predictive 

capability of the fire danger model is tested by comparing it to observed fire 

occurrence.  The model is subsequently used in chapter 5 to evaluate climate driven 

changes in fire danger during the 21st century and is merged with other components to 

evaluate fire threat to the Amur tiger in chapter 6. 

4.1. Introduction 

Fire danger modeling, concerned with the spatio-temporal assessment of 

factors supporting initiation and influencing behavior of fires (Allgőwer et al., 2003; 

Lynham, 2005), presents the next step in parameterization of the Fire Threat Model to 

the regional fire specifics of the RFE.  Despite the nearly global extent of fire, our 

ability to forecast fire danger using existing fire danger rating systems is limited to 

only a few regions where fire management is supported by a well developed scientific 

understanding of fire ecology, integrated with fire management experience (Taylor 

and Alexander, 2006).  The most well developed and known systems include the 

Canadian Forest Fire Danger Rating System, National Fire Danger Rating System in 

the US, McArthur’s Fire Danger Rating System in Australia (San-Miguel-Ayanz et 
                                                 
3 The presented material is accepted for publication in Loboda TV (in press) Modeling Fire Danger in 
Data-Poor Regions: A Case Study from the Russian Far East.  International Journal of Wildland Fire..  
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al, 2003), and European Forest Fire Information System (<effis.jrc.it>).  These danger 

rating systems rely on information provided by long-term records of fire activity, a 

dense network of field sites and meteorological stations, and a large volume of 

supporting information, such as high resolution fuel maps and high precision 

topographic and digital elevation models.   

The RFE lacks the required inputs necessary for applying the existing fire 

danger rating approaches.  However, the FTM provides the necessary framework for 

development of fire danger models driven by remotely sensed data.  This chapter 

details the development of inputs from remotely sensed data, provides an analysis of 

contribution from various factors to the potential fire behavior, describes 

parameterization of the Fire Danger module, and demonstrates its feasibility.  It 

incorporates the understanding of the risk of ignition (described in chapter 2) with the 

potential fire behavior (based on the multi-year record of burned area described in 

chapter 3) and fire weather assessment into a comprehensive multivariate predictive 

systems of fire danger modeling. 

4.2. Data sources and methodology 

 The conceptual framework of the FTM was adapted to fit the data availability 

and regional specifics of the RFE (Figure 4-1).  Fire Danger is assessed through the 

evaluation of the Risk of Ignition, Potential Fire Behavior, and Fire Weather.  The 

Risk of Ignition (ROI) module assesses the likelihood of fire initiation as a factor of 

landscape accessibility for people and potential for occurrence of natural sources of 

ignition (e.g. lightning).  Potential Fire Behavior (PFB) evaluates the likelihood of 

fire spread over large areas based on the expected condition of fuels, assessed through 
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the combination of vegetation types and previous disturbances over the existing 

terrain. 

 

 

Figure 4-1.  Input parameters for regional fire danger assessment for the Russian Far 

East.  The shaded area shows the assessment of the Risk of Ignition described in 

chapter 2.  The clear boxes indicate inputs described in this chapter with the name of 

the product describing it in parentheses. 

 

 Fire Weather (FW) provides daily estimates of likelihood that meteorological 

conditions are optimal for fire ignition and spread over large areas.   These model 
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topography, described later in turn.  The predictive capabilities of fire danger 

modeling were evaluated during the 2006 fire season against known fire occurrence 

shown by MODIS active fire detections. 

Data and derived data products from MODIS for 2001-2005 constitute the 

major portion of remotely sensed data used in the analysis.   The MODIS instrument 

collected data aboard two satellites – Terra (launched in late 1999) and Aqua 

(launched in mid 2002).  To ensure consistency of the fire data record during the 

entire 2001-2005 period, only MODIS Terra data products were included in the 

analysis.  Publicly available products from other satellite platforms and archives were 

also used in the project for land cover, forest disturbance, and terrain assessment, and 

are referenced in their respective dataset descriptions.   

4.2.1. Fire events characterization from MODIS active fire product 

The MODIS Rapid Response System active fire product, obtained from Fire 

Information for Resource Management System (<maps.geog.umd.edu>), presents 

center points of pixels within the MODIS swath that were flagged as fire by its 

detection algorithm (Giglio et al., 2003).  Due to considerable swath overlap in the 

high latitudes, the MODIS Terra can collect up to four daily observations of fire 

occurrence over the same area.  This high frequency of observations provides a 

detailed view of fire development and was used as the basis for the Fire Spread 

Reconstruction approach (FSR) (Loboda and Csiszar, 2007b).  This approach clusters 

individual fire observations into contiguous fire events in space and time and provides 

information on the number of fire events, their duration, and the average spread rate 

of fire between observations.   
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4.2.2. Burned area estimates 

A regional burned area product from Surface Reflectance 8-Day L3 Global 

500 m product (MOD09A1) was used to assess the annual amount of burned area 

(described in chapter 3).  A problem associated with mapping burned area using this 

approach in the current study area impacted the mapping of early and late season fires 

due to presence of snow cover.  Pixels affected by snow are masked out at the pre-

processing stage.  Subsequently many pre-burn and post-burn images were eliminated 

for early season and late season fires.  This issue is particularly pronounced in 

mapping late season fires that may be large and produce considerable smoke plumes 

thus making mapping burned area during the on-going burning process unfeasible.  

Appearance of snow cover on the ground immediately after or possibly even before 

the burning is completed prevents such fires from being fully mapped.  Two large fire 

events recorded by the MODIS active fire product in the northern part of the study 

during November 2005 were mapped using the same algorithm, but with relaxed data 

quality standards to ensure that these areas were included in further analysis.  In 

particular, pixels with high concentrations of aerosols, which are normally masked 

out by the algorithm, were included in the processing chain.  The results produced 

contiguous burned areas which were visually confirmed by the analyst. 

4.2.3. Land cover/Forest type coverage 

A land cover/forest type layer was developed by combining three coarse 

resolution datasets: 1) a map of Russia’s forests (Bartalev et al., 2004), 2) a land 

cover map of Northern Eurasia from the Global Land Cover 2000 (GLC2000) Project 

(Bartalev et al., 2003), and 3) a MODIS land cover (MOD12Q1) in IGBP 
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classification (Friedl et al., 2002).  Fusion of these data sources enhances advantages 

and minimizes disadvantages presented by the application of each individual dataset.  

This approach builds on consistency in mapping of highly important forest classes by 

independently produced datasets, translating generic MODIS IGBP legend classes to 

region specific legends for Northern Eurasia, and filling unspecified gaps (e.g. “recent 

burns”) with meaningful land cover classes.    Incorporation of the map of Russia’s 

forests, derived from two independently produced remote sensing datasets -land cover 

of Northern Eurasia and MODIS vegetation continuous fields product (Hansen et al., 

2003) - provides a more detailed description of forest cover in the RFE, compared to 

either of the land cover maps.  Unlike the MODIS land cover product, the map of 

land cover for the Northern Eurasia is based on a regionally adapted algorithm that 

differentiates land cover classes specific to Northern Eurasia better.  However, the 

classification legend for this product contains classes that do not represent land cover 

(e.g. recent burns).  The land covers for these spatial areas were identified from the 

MODIS land cover product.  In addition, the intercomparison of independent land 

cover products allows higher confidence in identifying forest cover, which presents 

the single most important land cover type for the RFE.   

The input data sources were combined over the study area following the 

overall scheme presented in Figure 4-2.  The output coverage contains two large 

groups of classes, “forest” and “non-forest.”  Within the “forest” group, the output 

map contains six dominant forest types defined by the map of Russia’s forests (larch, 

dark coniferous, pine, broadleaf, mixed, and Siberian dwarf pine) in dense (40-100 % 

crown cover) and sparse (10-39 % crown cover) categories.   
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Figure 4-2.  Schematic description of assembling the land cover/forest type map for 

the RFE from three data sources: Russia’s forests, Land cover of Northern Eurasia, 

and MODIS land cover (shown in shaded boxes).  Italicized text shows the areas 

evaluated by using the data from one of the original land/forest cover products.  The 
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diamond connections show processing data flow.  The arrows indicate the 

contribution of original land/forest cover products to the final land cover map. 

 

The “non-forest” group consists of 10 classes (combined and cross-referenced from 

the MODIS land cover product and the land cover of Northern Eurasia map): tundra, 

riparian vegetation, shrublands, grasslands, croplands and cropland complexes, forest-

natural vegetation mosaic, wetlands, water, barren and sparsely vegetated, and urban. 

4.2.4. Forest disturbance layer 

The two major forest disturbance processes in the RFE are forest fires and logging 

(Sheingauz, 1996).  These two disturbances impact forest fire susceptibility and forest 

structure differently.  Logging often leads to fine fuel accumulation, changes in forest 

microclimate through full or partial removal of the canopy, and a rise in the risk of 

ignition due to improved accessibility and the introduction of anthropogenic sources 

of ignition (Whelan, 1995).  The effects of fire on vegetation are generally more 

variable and complex.  The type, intensity, and return interval of fire events within 

different vegetation types can produce drastically different results from improving 

forest productivity to replacing forests with brushwood or grasslands (Sheshukov, 

1996). 

A map of logged areas was obtained through visual evaluation of Landsat 

ETM+ imagery acquired between 1999 and 2002.  The apparent areas of logging 

activities were delineated to include logging sites grouped into “clear cut” and 

“selective” logging categories.  An additional class of “potential” logging was 

mapped from the “hot spot” areas of forest cover change (Achard et al., 2005). These 
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areas were identified by the local experts from satellite imagery mosaics as forest that 

experienced the most rapid rates of logging in the region since 2000.  The “hot spots” 

of forest conversion due to logging mapped by Archard et al. (2005) delineate general 

areas rather than map forest conversion per pixel; therefore they include both logged 

and non-logged areas, and are considered “potential” areas of logging in this study.  

Since the majority of Landsat imagery used to map logging in the previous step was 

acquired prior to 2002, the “potentially” logged areas help to account for more recent 

logging activities in the RFE. In areas of spatial coincidence between the different 

logging categories the “clear cut” and “selective” (mutually exclusive) classes were 

assigned to the disturbance map instead of “potential” category.  Forest disturbance 

due to burning was mapped annually between 2001 and 2005.  The input sources 

include annual MODIS burned area product (described in section Burned area 

estimates) and large fire scars from fires of the 1998 fire season mapped with 

AVHRR imagery (Sukhinin et al., 2004).  The scars were grouped into “recent burns” 

(less than 5 years old) and “old burns” (5 years old and greater) for each year.  

4.2.5. Fire weather 

Fire weather was assessed through the Nesterov Fire Index (NFI) (as shown in 

Buchholtz and Weidemann, 2000).  The major advantage of the NFI is the simplicity 

of its calculation, which follows the equation: 

∑
=

−=
W

i
iii TDTNFI

1
*)(    (4.1.) 
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where NFI is the fire index, W is the number of days since the last daily rainfall 

greater than 3 mm, T is the temperature (°C), and D is the dew-point temperature 

(°C).  Ideally, air temperature T and dew point temperature D are acquired mid day 

(Groisman et al., 2007) around the expected daily peak for both parameters.  In this 

study, maximum daily temperature and dew point measurements were used to 

calculate NFI.  The low number of readily available input parameters in this equation 

makes it possible to provide the daily coverage of NFI from remotely sensed or 

archived meteorological observations.  One of the major disadvantages of the NFI is 

its inability to retain fire weather history because it zeroes out with cumulative 24-

hour precipitation of 3mm or more.  The modified NFI (NFImod), developed within 

this study, presents the sum of mean daily NFI values over the nine previous days and 

the actual NFI value of a given day.  The average NFI over the previous 9 days allows 

retention of the previous fire history.  However, while retaining the previous fire 

history, simple averaging leads to the creation of a time lag in the beginning of a 

given period of enhanced fire danger weather.  This lag counterbalances one of the 

advantages of the NFI - its quick response to changes in fire weather (Buchholtz and 

Weidemann, 2000), which is important for fire ignition.   The danger level 

assignment based on the NIFmod index was adjusted from the original thresholds in 

order to account for the summation of 9-day average and the current day NFI values 

which nearly doubles the output numeric value of the fire index.  The NFImod was 

converted to membership values µ through linear stretching of values between the 

identified thresholds in Table 4-1. 
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Table 4-1.  Danger level assignment for the NFI and NFImod values and fuzzy 

membership (µ) assignment.  Fire danger levels in bold show the original 4 step scale 

developed by Nesterov (as shown in Buchholtz and Weidemann, 2000).  Fire danger 

levels in normal font were added to provide further differentiation at finer scales.  

Fire Danger Level NFI range NFImod Range NFImod µ 
Nil (Very Low) 0-300 0-500 0-0.2 
Low  501-1000 0.2-0.4 
Moderate 300-1000 1001 - 2000 0.4-0.6 
High 1000-4000 2001-8000 0.6-0.8 
Very High  8001-15000 0.8-1 
Extreme 4000+ > 15000 1 
 

 

A gridded NFImod product for the RFE was created following the approach 

presented in Jolly et al (2005).  Point source weather data collected at 23 weather 

stations (archived at < www.wunderground.com/global/RS.html> and shown in figure 

4-3) for maximum air temperature, maximum dew point temperature, and amount of 

precipitation were interpolated over the study area.  This approach is based on 

interpolation of potential temperatures (recorded point source values converted to 

values at 1000 mb) and subsequent conversion of interpolated potential temperature 

surfaces using a fixed relationship between elevation and temperatures.  The 

interpolation of precipitation adopted by Jolly et al (2005) is based on the approach 

described in Thornton et al (1997).  In this method, the interpolation of the actual 

precipitation value is preceded by evaluation of precipitation occurrence probability 

(POP) defined as a likelihood of precipitation occurring at a given point.  

Precipitation amounts were interpolated only within the areas with a probability over 
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0.54 (Jolly et al, 2005).  The interpolation was done using a predefined spline routine 

in GIS software. 

 

 

Figure 4-3.  Distribution of weather stations used in interpolation of fire weather 

parameters.  Stations shows as hollow stars used to test the stability of the 

interpolation methodology. 
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This interpolation approach was tested to evaluate its stability. The test included 

removal of 3 stations from interpolation and comparison of the interpolated values to 

the values recorded at these stations (Figure 4-4).  The results show a significant but 

not very strong relationship between the interpolated and recorded values (R2 ~ 0.57).  

With the removal of the three test stations, precipitation was interpolated between 

stations ~200 km apart.  Recognizing that rainfall is an atmospheric parameter with 

high spatial variability, and that it operates at the level of weather cells considerably 

smaller than the distance between stations, a strong correlation between the 

precipitation recorded at different stations is not likely. 

 

 

Figure 4-4. Amount of precipitation estimated by interpolation routine and recorded 

at three test stations during March 1 – October 31. 
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The Global Precipitation Climatology Project’s One-degree Daily 

Precipitation Estimate product (<lwf.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html>) is 

the only available alternative to the interpolated product.  Mean values for 

interpolated precipitation amounts within 21 full 1 degree cells found within the study 

area were calculated and compared with the amounts of precipitation derived from the 

satellite observations. The results of the comparison showed no relationship between 

the mean interpolated values and the GPCP data (R2 < 0.001). A similar relationship 

was established between the amounts provided within the GPCP and the amounts of 

precipitation recorded at the stations. Although direct correlation between the 

amounts reported within the GPCP product and the stations should not be expected, 

there is an large number of points where a considerable (over 10mm) amount of 

precipitation was recorded by one data source and registered as 0 by the other. 

To evaluate the discrepancy further, one 1degree cell containing 2 weather 

stations positioned at the southern and at the northern boundaries of the cell – 

Partizansk and Anucino (Figure 4-3) was selected. Although the stations within this 

cell are separated by a considerable distance (over 90 km) the comparison of 

precipitation amounts recorded at these stations shows a significant relationship (R
2 
= 

0.68). However, no relationship was detected between the values reported by the 

GPCP product and either of these stations (R
2 
= 0.0001 and R

2 
= 0.0066).  These 

findings prompted adopting point source interpolated datasets as a more reliable 

source. 
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4.2.6. Terrain 

 Topography influences fire spread through slope, aspect and elevation 

(Whelan, 1995).  Slope gradient affects fire behavior by preheating upper slopes 

through convective and radiant heat and through draft winds that increase fire spread 

capabilities.  Aspect determines a slope’s exposure to the sun and therefore influences 

fuel availability, fuel conditions and the slope’s fire weather (i.e., air temperature and 

relative humidity).  Elevation determines vegetation composition and is consequently 

evaluated through land cover analysis.  Although aspect and slope are related, there is 

no dependence between the two and no direct connections.  Each has a specific input 

to the potential fire spread rate that can be expressed through a matrix (Table 4-2).   

 

Table 4-2.  Matrix for evaluation of the potential fire behavior as a function of terrain 

for categories adapted from Solichin et al (2003): VL (very low), µ = 0.0-0.2; L 

(low), µ = 0.2-0.4; M (moderate), µ =0.4-0.6; H (high), µ = 0.6-0.8; and VH (very 

high), µ = 0.8-1.0.  Fuzzy membership (µ) values are assigned to aspect by linearly 

stretching the values between 0 (0° aspect - north) and 1 (180° aspect – south), and to 

slope by linearly stretching the slope values between 0 (0%) and 1 (100%). 
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The terrain component of fire spread was modeled using the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM).  In the Northern 

Hemisphere south facing slopes receive the majority of the sun‘s warmth and the 

north facing slopes have little exposure to the sun.  Consequently, the aspect values 

were converted into membership values (µ) and stretched linearly between northern 

(0o aspect - µ = 0.01) and southern (180 o aspect - µ = 0.99).  Slope gradient was 

converted into membership values by linearly stretching the slope steepness between 

0 and 1. 

4.3. Spatio-temporal patterns of fire occurrence in the RFE 2001-2005 

4.3.1. General patterns of fire occurrence 

 The analysis of fire occurrence in the RFE was carried out using satellite data 

products described earlier in the paper to develop an understanding of regional fire 

dynamics and parameterize the Fire Danger model.  Based on the satellite record from 

2001-2005, fire occurrence in the study area varied in both the amount and 

seasonality of burning.  During this period the RFE experienced a range of severity 

from low fire activity seasons in 2001 and 2002 (~263,921 ha and ~221,298 ha 

burned, respectively) to very the high fire activity season of 2003 (burned area 

~972,795 ha) with 2004 and 2005 being moderate fire activity seasons (~544,716 and 

~597,095 ha of burned area respectively).  The division into “low”, “moderate”, and 

“high” fire activity seasons is conditional based upon the observed variability of fire 

seasons.  Burned area estimates cover all fires during these seasons, which include 

detected agricultural burning and management fires as well as explicitly wildland fire.   
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  Figure 4-5 shows the comparative severity of fire seasons.  Although the 

number of fire detections or individual pixels flagged as “hotspots” in the MODIS 

active fire product in 2001 is similar to that of 2005 and the number of fire detections 

in 2002 is only slightly lower than that of 2004, the difference in area burned during 

these seasons is considerable (Table 4-3).  An analysis of fire event duration (Figure 

4-6), where a fire event is defined as a contiguous cluster of fire detections in space 

and time (see section Fire events characterization from MODIS active fire product), 

shows that the majority of fire events are very short-lived (1 day).   

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5. Observations of fire occurrence from the MODIS (Terra) during 2001-

2005 shown as a comparison of the raw number of fire detections (1 fire detection = 1 

“hot” pixel), number of fire events (clustered in space-time fire detections) and the 

number of detections per fire event. 
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Table 4-3.  Seasonal and total amounts of burned area in the RFE during 2001- 2005.  

The seasons are defined as early (March – May), mid (June – August), and late 

(September – November).  

Burned area (ha) Year 
early season mid season late season total 

2001 172,078 22,922 68,921 263,921 
2002 51,762 159,336 10,201 221,298 
2003 364,159 533,322 75,314 972,795 
2004 268,015 47,946 228,754 544,716 
2005 118,988 105,022 373,084 597,095 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. Frequency of occurrence of short- and long-lasting fire events in the RFE 

during 2001-2005. 

 

The fire detections/fire event ratio (Figure 4-7), indicative of long-burning 
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However, this ratio does not account for the increase in burned area during 2004.  The 

increase in burned area during 2004 occurred due to the increases in number of fire 

events during the spring and fall seasons (Figure 4-8 and Table 4-3).   

 

 

 

 

 

 

 

  

 

Figure 4-7.  Ratio of fire detections to fire events shows the variability in size and 

duration of fire events monthly during 2001-2005. 

  

In summary, the observed fire regime in the RFE is similar to the general 

pattern of fire activity in boreal forests where a small number of high intensity fire 

events account for the majority of burned area and a large number of smaller low 

intensity fires add little to the overall fire impacts on the region (Stocks, 1991).  For 

example, in 2003 ~20% of all fire scars (scars > 1000 ha) account for over 76% of 

total burned area, while over 30% of all scars (scars < 300ha) account for just over 

4% of the area burned. 

 

0

2

4

6

8

10

12

14

16

18

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

# 
fir

e 
de

te
ct

io
ns

 p
er

 fi
re

 e
ve

nt

2001

2002
2003

2004
2005



 

 96 
 

 

 

 

 

 

 

 

  

Figure 4-8. Monthly amount of fire occurrence in the RFE during 2001-2005. 
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In order to ensure eventual fire danger model parameterization, the three intra-

annual fire seasons were compared between years.  Although the majority of fire 

events occur during the early fire season, these fire events are small and short with 

two fire detections per fire event, on average (Figure 4-7).   Fires burn through cured 

vegetation leaving patchy scars that rapidly disappear with the onset of spring green-

up. 

On average, most burning during the early season happens in broadleaf 

forests, grasslands, and croplands (44, 25, and 13% of early season burned area, 

respectively).  The spatial pattern of late season fires is similar to that of the early 

season, with broadleaf forests, grasslands, and croplands accounting for an average of 

84% of burned area (28, 44, and 14% respectively).  Fewer fires occur in the fall than 

in the spring (Figure 4-8); however, the number of fire events that burn longer and 

result in larger burned areas increases (Figure 4-7 and Table 4-3); the analysis shows 

that although the total ratio of fire detections to fire events does not change greatly, 

the actual number of larger fire events is greater in the fall than in the spring period. 

Mid season fire characteristics differ from those of both spring and fall 

(Figure 4-8).  There are generally very few fire events with the exception of 2003, 

when over 50% of burned area resulted from mid season fires. Mid season fire events 

are longer; they burn through live green vegetation, and leave long-lasting scars 

discernable in the remotely sensed imagery for decades.  These fires burned 

predominantly in spruce-fir forests, larch forests, and grasslands, each of these types 

contributing around 20% of burned area in the mid season of 2003 and make up 11% 

of total burned area for the year.  
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4.3.2. Impact of forest disturbance on fire occurrence in the RFE 

Fire occurrence was also evaluated as a function of previous area disturbance.  

The two major disturbances in the RFE are logging and fire.  The analysis did not 

find a relationship between fire occurrence and logging during early and late fire 

seasons.  The only strong relationship was established between clear cut logging and 

fire occurrence during mid season, particularly for long-burning fires.  During the mid 

season of 2003, 63 fire events (~4.6% of the total burned area during 2003) occurred 

in clear-cut sites (~1% of total area of the RFE).  Because the uncharacteristic 

summer conditions were observed only once during 2001-2005, this finding is based 

only on a very limited set of data.  However, since there is no specific concentration 

of clear cut areas in only one geographic region of the study area, the observed 

relationship appears to be non-accidental.       

Fire occurrence as a function of previous burning showed a more complex 

relationship.  The data suggest that fires are the least likely (~2% from total on 

average) to occur on sites having older scars (> 5 years old) in all years and seasons.  

Fires are more likely  (~4% from total on average) to occur on previously burned sites 

(≤ 5 years old) than in the previously unburned areas, particularly during early and, to 

a lesser extent, the late fire season (~5 and 3%, respectively).  The latter finding may 

reflect the spatial proximity of areas previously burned to frequent fire ignition 

sources.  Since a number of early and late season fires represent agricultural burning, 

it is expected that those areas would burn more frequently as a result of crop residue 

management practices.  However, the spatial analysis showed that repeated burning is 

not limited to only agricultural areas.  
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Fires that occurred on previously burned area within different land cover types 

were analyzed for the period of 2002-2005.  Burn scars for the time period prior to 

2001 are only available for the northern part of the study area for the 1998 season.   

Analysis of repeated burns during 2001 would, therefore, be skewed towards the land 

covers present in northern areas.  Consequently, burned areas of 2001 were excluded 

from further analysis.  Although the amount of area reburned increased during 2002 – 

2005 from 5000 km2 to 95000 km2, this increase reflects the improved record of 

obtaining burn area estimates during 2001-2005 rather than an increase in fire 

activity.  Relative percentages of reburned areas by land cover types were calculated 

for each year between 2002 and 2005 and averaged over the 4 years of observation 

(Figure 4-9).   

 

   

 

 

 

 

 

 

 

 

Figure 4-9.  Relative amounts of reburned areas over recent burns (<= 5 year old 

burns) within different land cover types during 2002 – 2005. 
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The results show that the majority of reburning occurs within dense broadleaved 

forests and grasslands (32% and 28% of reburned areas, respectively) followed by 

sparse broadleaved forests and wetlands (12% and 10% respectively) whereas 

croplands and cropland complexes account on average for 7% of reburned areas. 

4.4. Model parameterization 

The analysis of fire occurrence in the RFE demonstrated that characteristics of 

fire occurrence vary intra-annually.  Similar intra-annual variability in distribution of 

fire ignitions in the RFE was noted in chapter 2.  This temporal variability is 

preserved in model parameterization through introduction of temporal thresholds set 

for the three major components of the fire danger model – the Risk of Ignition (ROI), 

Potential Fire Behavior (PFB), and Fire Weather (FW) (Figure 4-1).  The thresholds 

change at a monthly time scale for the ROI module and at a seasonal time scale 

(early, mid, late) for the PFB module.  FW is evaluated daily; however, the thresholds 

identifying the ranges of fire weather severity remain constant throughout the year. 

All model input parameters were weighed through a set of Fire Occurrence 

Load coefficients (FOL), which evaluate the likelihood of a single fire’s occurrence 

and extent, driven by a given parameter.  For example, the FOL coefficient was 

evaluated as a function of land cover following the equation: 
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is a seasonal average Fire Occurrence Load, f
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given land cover zone z in year i, f
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is the total area t burned within the study area in year 
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is the area of the given land cover zone z, and A
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is the total area of the study area 



 

 101 
 

over five years (2001-2005).  When the FOL coefficient equals 1, it indicates that fire 

occurrence in the given land cover is average for the region equivalent of the 

distribution of 100% of fires over 100% of area.  For land covers with FOL greater 

than 1, the recorded occurrence is greater than average; and for FOL less than 1, the 

recorded fire occurrence in less than average.  Table 4-4 shows the FOL for all 

evaluated parameters. 

In order to assign weights to the model input parameters, the FOL coefficients 

were stretched between 0 and 1 to convert them to membership values (µ) following 

the methodology described in chapter 2.  A range of FOL values for all parameters 

within the PFB component was established and used to develop equations for 

membership value assignment.  The mean value for the entire range of FOL values 

was set to µ = 0.5.  The mean of FOL values below and above the mean for the entire 

range correspond to µ = 0.25 and µ = 0.75, respectively.  Following the same 

approach, corresponding FOL values for µ = 0.125, 0.375, 0.625, and 0.875 were 

calculated.  The relationships were fitted with a regression equation that was then 

used to translate each FOL to µ.  The calculated µ values were further assigned to 

respective land covers, terrain gradient zones, and disturbance layers to create a 

continuous (a value existing at each point in space) grids of PFB as a factor of these 

individual parameters for 3 seasons (early - March – May, mid - June – August, and 

late - September – November).   The list of resultant membership values is presented 

in Table 4-4.   
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Table 4-4.  Conversion of FOL coefficient to membership values (µ) for model 

parameterization. 

early season mid season late season Parameter 
FOL µ FOL µ FOL µ 

Landcover / Forest Type 
Barren and sparsely vegetated 0.27 152 0.36 193 0.17 97 
Broadleaf forests (dense) 0.69 343 0.03 19 0.13 76 
Broadleaf forests (sparse) 2.79 794 0.17 95 0.90 422 
Croplands and cropland complexes 1.08 484 0.51 267 0.68 339 
Dark coniferous forests (dense) 0.01 7 0.20 114 0.13 73 
Dark coniferous forests (sparse) 0.06 35 0.42 224 0.27 151 
Forest-natural vegetation complex 0.68 336 0.33 182 0.31 169 
Grasslands 1.04 471 0.47 247 1.75 653 
Larch forests (dense) 0.21 118 0.42 225 0.09 52 
Larch forests (sparse) 0.70 348 0.70 348 0.22 124 
Mixed forests (dense) 0.14 80 0.09 51 0.06 37 
Mixed forests (sparse) 0.36 194 0.22 121 0.22 125 
Pine forests (dense) 0.00 0 0.00 0 0.00 0 
Pine forests (sparse) 0.00 0 0.00 0 0.00 0 
Riparian vegetation 1.30 500 1.30 500 1.30 500 
Shrublands 0.38 206 0.23 128 0.24 132 
Siberian dwarf pine  forests (dense) 0.00 0 0.13 74 0.11 61 
Siberian dwarf pine forests (sparse) 0.00 0 0.23 130 0.29 161 
Tundra 0.00 0 0.00 0 0.34 187 
Unclassified 0.02 12 0.00 1 0.16 92 
Urban 0.02 14 0.07 43 0.04 24 
Water bodies 0.00 0 0.00 0 0.00 0 
Wetlands 1.77 658 0.79 381 1.91 683 
Burns 
Old burns 0.09 52 0.11 61 0.18 100 
New burns 1.43 583 0.26 145 0.76 372 
Non-burned 0.48 249 0.19 109 0.28 156 
Logging 
Clearcut logging 0.15 85 1.76 656 0.21 116 
Selective logging 0.05 26 0.07 40 0.04 21 
Potential logging 0.01 5 0.13 76 0.06 33 
Non-logged  0.57 292 0.19 106 0.34 184 
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4.5. Evaluation of fire danger within the modeling framework of the Fire Threat 

Model 

Fire danger (FD) is calculated as a sum of its major components.  ROI and PFB 

are evaluated through the ordered weighted averaging (OWA) approach (Yager, 1988) 

to model fire danger with fuzzification.  In this approach, PFB is treated as a fuzzy set 

PFB = (lcj, terrj, dj) where lc is land cover, terr is terrain, d is disturbance for each pixel j.  

Fuzzy logic driven approach to combining input parameters in a quantitative assessment 

of fire danger accounts for non-linearity of the interaction among the input parameters 

and provides a built-in method for assessing the range of uncertainty.  The OWA with 

fuzzification outputs a fuzzy set FD = (minimum, mean, maximum) which can be viewed 

as 3 potential PFB scenarios.  The scenarios are built using the following weightings 

(w): 1) “best case” scenario (fuzzy intersection - w = [1,0,0] with the weight of 1 

assigned to the lowest input value), 2) “worst case” scenario (fuzzy union – w = 

[0,0,1] with the weight of 1 assigned to the highest input value), and 3) “trade-off” 

scenario (arithmetic mean – w = [0.33, 0.33,0.33] with equal weights assigned to all 

inputs).  The “best case” scenario implies that fire susceptibility of a given area is 

mitigated by the lowest value of the three input parameters providing the low 

boundary of the range of uncertainty.  For example, if terrain has the lowest input 

value of the three, the situation can be interpreted as “although this type of vegetation 

can support fast moving fires that spread over large areas and there is additional dead 

fuel from a previous disturbance, the flatness of terrain will minimize the rate of 

spread of the fire”.   Similarly, the “worst case” scenario defines the upper boundary 

of the range of uncertainty.  In the same example, if terrain has the highest 

membership value of the three inputs, the situation can be interpreted as “no matter 
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what land cover type is present, steep slopes will increase preheating of the fuels and, 

in combination with slope driven wind effects, will aid in fast movement of the fire 

upslope resulting in more severe fire effects”.  The “trade off” scenario provides an 

estimate of combined effects from all three inputs on fire danger.  

Similarly, ROI presents a fuzzy set ROI = (rj, rrj, sj, tj, luj), where r, rr, s, t, and 

lu represent the likelihood of ignition as a function of distance from major roads, 

railroads, and settlements, terrain gradient, and land cover/land use, respectively, for 

each jth point of the study area (chapter 2).   The Fire Danger for date i is then 

calculated as FDif = Sum(ROImf, PFBsf, FWi), where f is one of the three output 

scenarios, ROIm is the monthly risk of ignition index relevant to date i, PFBs is the 

seasonal potential fire behavior index relevant for date i, and FWi is the daily fire 

weather index for date i.   Values for the three inputs, ranging between 0 and 1, are 

converted for computational purposes to integer values by rounding off the floating 

point value multiplied by 1000 and effectively stretching the range of individual 

inputs between 0 and 1000.  Consequently, the output fire danger range is stretched 

between 0 and 3000.  

Fire Danger model performance was evaluated against the MODIS fire 

detections during March10 – October 30 of 2006 fire season.  Maps of Fire Danger 

were produced and evaluated against MODIS active fire detections at a daily time 

step (Figure 4-10).  The MODIS daily fire detection points were buffered to a 1 km 

diameter to approximate the MODIS pixel size.  It was assumed that all the area 

within the buffered fire detections was burned.  
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Figure 4-10. Maps of fire danger ratings for April 14, 2006 and corresponding fire 

occurrence on that date for three scenarios: a) “best case” scenario, b) “trade-off” 

scenario, c) “worst case” scenario. 
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All three scenarios present meaningful evaluations of fire danger in the RFE 

but differ from each other, to a certain degree, in spatial distribution and the 

amplitude of danger levels (Figure 4-11).  Each of the scenarios operates within a 

different range of fire danger values with the “best case” scenario gravitating towards 

the lower range of fire danger and the “worst case” scenario towards the upper range 

of values.  The two parameters graphed in figure 4-11 show the overall distribution of 

values binned by fire danger levels as well as the ratio of the number of pixels within 

MODIS fire detection buffers to the total number of pixels within a given fire danger 

range for the study area (fire/total ratio).  The cumulative yearly frequency 

distribution of values shows the dynamic range of the model output and the 

proportion of elevated levels of fire danger (upper range of moderate, high and very 

high).  This parameter helps to ensure that the relationship between observed fire 

occurrence and fire danger level is not driven by overestimated fire danger throughout  

the year.  The fire /total ratio demonstrates the relative frequency of fire occurrence as 

a function of the modeled fire danger levels by calculating the fraction of “burned” 

pixels (as defined by the 1km MODIS buffers) within a group of pixels of the same 

fire danger level.   

All three scenarios show that the fire/total ratio increases sharply through 

moderate to high ranges of fire danger (or high to very high levels for the “worst 

case” scenario).  This increase indicates that the fires are more likely to be found 

within areas identified as high fire danger zone than low.   

The “worst case” scenario (Figure 4-11 c) outputs a wide range of fire danger 

values with the majority of areas falling within moderate and low fire danger levels.   
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Figure 4-11.  Frequency distribution of fire danger values during March10 – October 

31 of 2006 and the ratio between the number of fire danger values within buffer zones 

from the MODIS active fire detections and the total number of fire danger values for 
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three scenarios: a) “best case” scenario, b) “trade-off” scenario, c) “worst case” 

scenario.  The first bin (100) includes fire danger value of “0” over water bodies. 

 

A considerable (16%) number of values fall within high danger levels, which 

somewhat contradicts the actual fire activity levels in the RFE during 2006.  In 

addition the ratio of pixels within fire buffers to the total number of pixels of a given 

range of fire danger values appears to saturate.  This indicates a limited applicability 

of this scenario for high fire activity seasons. 

The “best case” scenario (Figure 4-11 a) has the narrowest dynamic range of 

fire danger levels with the majority of values falling within the low fire danger zone.  

The number of pixels mapped as high fire danger is extremely low and the maximum 

fire danger values do not exceed 2000.  This scenario has the sharpest increase in the  

fire/total ratio demonstrating the highest likelihood of fire occurrence within areas 

classified as high fire danger levels.   

  The “trade-off scenario (Figure 4-11 b) has a relatively wide dynamic range.  

While the majority of values are found within the low fire danger zone, many pixels 

are identified as moderate fire danger and some as high fire danger, a designation that 

can support multi-day fire events.  The fire/total ratio is extremely low within the low 

fire danger zone.  It sharply increases throughout the upper range of the moderate fire 

danger zone and peaks in the high fire danger zone.  It further declines towards the 

very high danger zone due to a very low number of pixels identified as very high fire 

danger areas. 
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Based on the fire occurrence of 2006 fire season the “trade-off” scenario 

presents the optimal choice for mapping fire danger in the RFE during low fire 

activity seasons.  The “best case” scenario is the most appropriate evaluation of fire 

danger levels for applications focused on identification of areas likely to support large 

and catastrophic fire events (undetected during 2006).  The “worst case” scenario 

may be best suited for applications supporting early signs of increase in fire danger.  

Since 2006 was a year of relatively low fire occurrence with nearly complete absence 

of fire during mid season, further evaluation of model performance during high fire 

activity years and during mid season is necessary. 

4.6. Conclusions 

The presented approach demonstrates feasibility of successful fire danger 

assessment in the RFE within the framework of Fire Threat Modeling.  The model 

parameterization, driven by remotely sensed data, allows for incorporation of 

anthropogenic influences on fire ignition and propagation.  The ability to account for 

human impact on fire is particularly relevant for the RFE where the distribution of 

fire ignitions is closely connected with human presence (chapter 2) and large fire 

occurrence during dry years is enhanced in logged areas (this chapter). 

The modeled fire danger levels are supported by observation of actual fire 

activity in the RFE during the 2006 fire season.  The three output scenarios provide 

an estimate of uncertainty associated with modeling outputs.  While all three modeled 

scenarios provide meaningful evaluations of fire danger in the region, selection of an 

appropriate scenario may be determined by the risk tolerance of decision makers and 

fire season severity.  During low fire activity seasons similar to 2006, the “trade-off” 
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scenario appears to be the most appropriate for mapping fire danger at a daily time 

scale.      

The parameterization of the model is highly dependent on the accuracy and 

resolution of the input data.   Each individual data source introduces a number of 

uncertainties into the modeled scenarios.  However, parameterization of the model 

using knowledge of the relationship between fire occurrence and related parameters 

gained by using remotely sensed data products can help to minimize the error 

associated with converting biophysical relationships previously established during 

field studies at the local scale to regional applications.   

Based on the 2006 assessment, the predictive capabilities of the model can be 

applied for operational applications and scientific research.  Daily scenarios of fire 

danger can be created using observed, forecasted, or modeled meteorological 

conditions.  The flexible model structure and minimized requirements for input 

weather parameters allow for evaluating long-term scenarios of potential climate 

induced change in regional fire danger from the outputs of General Circulation 

Models.   
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Chapter 5:  Long-Term Forecasting of Fire Danger in the 

Russian Far East Using Climate Change Scenarios 

In this chapter, the predictive capability of the fire danger module is used to 

evaluate a range of potential change in fire danger under several scenarios of climate 

change during the 21st century.  The research presented here builds the capacity for 

coupling the regional fire danger and fire threat models with outputs of the Global 

Circulation Models, thus extending the models’ predictive capabilities.  Because the 

fire danger module is a stand-alone component within a more complex structure of 

fire threat modeling, it allows for more efficient processing of a variety of climate 

change scenarios aimed at narrowing the suite of potential model runs to a subset of 

relevant scenarios.  The resultant subset is further used in chapter 6 to assess potential 

change of fire threat to the Amur tiger by the end of the 21st century. 

5.1. Introduction 

Global climate warming is now recognized as unequivocal by the international 

scientific community (Intergovernmental Panel on Climate Change (IPCC), 2007).  

Systematic observations of climatic trends show a net increase in global air and ocean 

temperatures with a particularly pronounced increase in higher northern latitudes of 

Northern Eurasia (Groisman et al., 2007).  Following the warming climate, there has 

been a considerable increase in frequency, extent, and severity of wildland fire in 

boreal forests worldwide (Stocks et al., 1998; Conard et al., 2002; Kasischke et al., 

2004).  Moreover, under the further developing conditions of climate change the 
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frequency of large severe fire occurrence in Russia is predicted to rise (Stocks et al., 

1998; Malevsky-Malevich et al., 2008).  

The borderline position between temperate and boreal zones makes the RFE 

especially sensitive to climate change.  A mosaic of boreal and temperate species 

provides a readily available seed bank which can respond to changing climate faster 

than areas of uniform boreal or temperate forests as broadleaved species generally 

outcompete needleleaved species (Shao et al., 2003; Shriner and Street, 1998).  The 

rate of change in vegetation composition is likely to be enhanced by stand replacing 

disturbances such as fire.  Therefore, understanding potential changes in future fire 

regimes under the changing climate will provide a basis for understanding the 

potential change in fire impacts on the Amur tiger habitat.  

Several studies have previously analyzed changes in fire weather over Russia 

under the changing climate during the 20th century (Groisman et al., 2007) and during 

the 21st century under various scenarios of climate change produced by Global 

Circulation Models (GCM) (Malevsky-Malevish et al., 2008).  However, these 

studies considered fire weather outside of a fire danger rating system providing 

estimates of separate uncoupled components.  The fire danger model developed 

within the fire threat modeling framework (chapter 4) provides an approach for 

evaluating future change in fire danger under the projected scenarios of climate 

change in spatial relation to the risk of ignition and potential fire behavior, thus 

providing a more explicit set of scenarios of expected change compared to the 

previous studies.   
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This chapter presents an evaluation of future trends in fire danger in the RFE 

and the uncertainties in our estimates associated with our ability to forecast climate 

change.  This analysis aims at answering three major questions: 1) how suitable are 

the GCM predicted parameters for evaluation of potential climate change at a regional 

(sub-continental) scale; 2) how do GCM data driven fire danger estimates compare to 

those driven by observed weather parameters; and 3) what are the expected trends in 

fire danger in the RFE under the IPCC scenarios of climate change during the 21st 

century.   

5.2. Data and Methodology 

This chapter is designed as a three part study.  First, GCM based 

meteorological parameters including temperature, humidity, and precipitation are 

compared with the same parameters derived from observations at meteorological 

stations over a 5-year period (1996 – 2000) to evaluate the ability of very coarse 

resolution (~1.85 X 1.85 degrees) GCM data to reproduce observed weather patterns 

within a relatively small region.  Second, fire danger predictions, developed using the 

fire danger model presented in chapter 4, from observed and modeled meteorological 

conditions are evaluated over the 1996-2000 time period.  This comparison provides 

an opportunity to assess fire danger model sensitivity to various meteorological inputs 

as well as determine if GCM outputs can be used to model fire danger within a 

coupled system that includes risk of ignition and potential fire behavior with 

reasonable accuracy.  During the third stage, GCM based estimates of fire danger 

were modeled under two different Special Report on Emissions Scenarios (SRES).  

These GCM-based estimates were compared for three 5-year periods – end of the 20th 
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century (1996-2000), mid 21st century (2046-2050), and end of the 21st century 

(2096-2100).  This analysis furthers our understanding of trends in potential climate 

impact on wildland fire in the RFE during the 21st century. 

5.2.1. Meteorological Data for Fire Danger Modeling 

Meteorological observations for the study area during 1996 – 2000 were 

obtained from the National Climatic Data Center (NCDC) datasets 9290c and 9813 

(NCDC, 2005 A and B).  These datasets include point source observations of 

temperature, relative humidity, air pressure, air pressure at sea level (dataset 9290c), 

and daily amount of precipitation (dataset 9813).  These parameters were collected 

for 36 stations in the study area and further interpolated to create gridded products at 

1km resolution using the methodology of Jolly et al. (2005) described in detail in 

chapter 4. 

The NCDC dataset 9290c includes several daily observations of 

meteorological parameters.  Maximum daily air temperatures were selected as inputs 

for the fire danger model to maintain consistent daily GCM outputs.  Measured air 

temperature and dew point temperature derived from recorded relative humidity were 

converted to potential temperatures in accordance with the Jolly et al. (2005) 

methodology as inputs to the fire danger model. 

Although NCDC datasets 9290c and 9813 present the most complete and 

detailed archive of meteorological data available for the study area outside Russia, 

there are considerable gaps in data record from individual stations.  Missing 

observations from individual stations were removed from the dataset at a daily time 

step by subsequently removing the station points from the interpolation routine.  
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Therefore, some daily gridded temperature and air pressure products were 

interpolated from fewer than the total available 36 stations.  There were no missing 

records in the precipitation dataset and it was interpolated into gridded products 

separately.  The data record for year 1997 was affected particularly strongly: during 

this year daily data interpolation was performed from as few as 24 of the 36 available 

stations. 

5.2.2. Climate Model Selection 

Scenarios of change from various Global Circulation Models (GCMs) often 

differ in their estimates of change in temperature and precipitation for different 

regions of the world (Williams et al., 1998).   Temperature and precipitation trends 

analysis for the SRES A2 greenhouse gases and aerosol precursor emissions scenario 

(a description of this scenario is provided below in section 5.2.3) during the 21st 

century was conducted for the study area relative to 1961-1990 for six major GCMs 

(<www.ipcc-data.org/cgi-bin/ddcvis/gcmcf>): 1) CCCma (Canada), 2) CSIRO 

(Australia), 3) ECHAM4 (Germany), 4) GDFL99 (USA), 5) HadCM3 (UK), and 6) 

NIES99 (Japan).  The comparison included the magnitude of change averaged over 

the entire study region as well as a visual assessment of spatial patterns of change 

(Figure 5-1).  The general trends produced by the analyzed GCMs are relatively 

consistent in both magnitude and spatial pattern.  This allowed us to select one model 

representative of a general trend for fire danger modeling.   

The ECHAM5 model was selected because it is representative of the averaged 

trends, it has comparatively high spatial resolution of ~1.875 degrees, and daily 

outputs of the necessary parameters including air temperature, specific humidity, air  
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Figure 5-1. General climatic trends and spatial patterns for temperature and 

precipitation over the RFE in the 21st century relative to 1961 – 1990 produced by 

major General Circulation Models: a) CCCma, b) CSIRO, c) ECHAM4, d) GDFL99, 

e) HadCM3, and f) NIES99. 
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Diagnosis and Intercomparison (PCMDI)  (<www-pcmdi.llnl.gov>).  The higher 

spatial resolution of the ECHAM5 is important considering the relatively small size 

of the region (~300,000 km2) as compared to GCM cell size (~8,000 km2). 

5.2.3. Climate Change Scenario Selection 

The design of this project required the evaluation of scenarios that overlap 

with the existing data record and cover a broad range of potential future 

developments.  Data overlap is provided by the climate of the 20th Century 

experiment (20C3M) where daily ECHAM5 modeled outputs are available for 1961 – 

2000.  The SRES A2 and B1 experiments represent the best and worst potential future 

conditions, respectively (Meehl, 2007).  Their selection met the requirement for 

covering a broad range of potential developments.  Both SRES A2 and B1 initialize 

with conditions from the end of the 20C3M experiment and run at least through 2100.   

The A2 and B1 storylines of the SRES experiments present opposites for the 

emissions associated with two sets of divergent tendencies between economic - 

environmental values on the Y axis and globalization – regionalization values on the 

X axis (Nakicenovic et al., 2000).  The A2 scenario is based on highly fragmented 

and regionally oriented economic growth and continuously increasing population.  

Inclusion of this scenario is of particular importance in the RFE because this area is 

close to South and South-East Asia which are the most rapidly growing regions in 

terms of their economies and populations. 

The B1 emissions scenario is based on a projected stabilization of the world’s 

population by the middle of the 21st century with a subsequent decline by the end of 

the 21st century.  In addition, this story line includes conversion of the economic 
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structure to a service and information oriented economy and development of clean 

and efficient technologies.  The B1 story line presents the greatest reduction in 

pressure from population growth accompanied by very high rates of economic 

development.  In summary, the A2 – B1 range presents a reasonable estimate of the 

wide range of uncertainly associated with the potential future climate change in the 

RFE. 

5.2.4. Conversion of GCM Outputs for Fire Danger Modeling 

Daily outputs for maximum daily surface air temperature, specific humidity, 

precipitation flux, and air pressure at sea level from the ECHAM5 model were 

acquired from WCRP CMIP3 Multi-Model Database.  Air temperature and specific 

humidity were collected at 1000hPa range to develop gridded products for potential 

air temperature and dew point temperature.  Specific humidity (kg/kg) was converted 

to vapor pressure following the equation of Gill (1982): 

q = (0.622*e) / (p – 0.378 * e)   (5.1) 

where q is specific humidity (kg/kg), e is vapor pressure in Pa, and p is air pressure 

(=1000hPa).  Vapor pressure was subsequently converted to dew point temperature 

using (<www.srh.noaa.gov/elp/wxcalc/formulas/vaporPressure.html>): 

))3.237/(*5.7(10*11.6 TdTde +=     (5.2) 

where e is vapor pressure in hPa and Td is dew point temperature in °C . 

Maximum air temperature and the resultant dew point temperature were 

converted to K.  Precipitation flux (kg/m2s) was converted to mm/day multiplying the 

flux by 8.64 * 10^4 (Roads et al., 2002).   The resultant grids including temperatures, 

precipitation, and sea level pressure were regridded to 1km resolution consistent with 
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the fire danger model resolution and then processed by the same algorithms used for 

converting the interpolated meteorological station data. 

5.3. Results 

5.3.1. Comparison of Temperature, Humidity, and Precipitation Estimates from 

Observational and ECHAM5 Modeled Data 

Comparison of estimates for weather parameters from observed and modeled 

data provides a basis for further assessment of uncertainty introduced by those 

parameters into fire danger estimates.  Methodologies for creating gridded datasets 

from the observed and modeled data at the potential temperature, potential dew point 

temperature, and precipitation differ.  The point observations at the meteorological 

stations are interpolated creating highly variable potential temperatures or 

precipitation surfaces, as opposed to highly uniform surfaces created by the 

ECHAM5 model grid.  In addition, point source precipitation interpolation involved 

setting a probability threshold below which the actual interpolated precipitation 

values are converted to 0, whereas the modeled dataset inputs the uniformly 

distributed precipitation over each ECHAM5 model grid cell.  Based on these 

fundamental differences, a strong relationship between estimated temperature, 

humidity (expressed through dew point temperature), and precipitation from the two 

datasets is not expected.  The focus is rather shifted to evaluation of the magnitude 

and spatial patterns of differences in order to assess their potential to influence fire 

danger estimates in the subsequent analysis.  

Average regional temperatures estimated from the two datasets differ 

considerably (Figure 5-2).  The amplitude of meteo-stations based estimates is much 
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greater than that of the ECHAM5 driven estimates: the observational data driven 

outputs show much lower winter and much higher summer temperatures.  ECHAM5 

driven estimates show a slower increase in temperatures in spring and early summer 

with a peak in September as opposed to a peak in July-August shown by the stations 

data driven estimates.  Estimates from both sources are close during September, 

October, and early November but differ strongly during other seasons.   

 

 

Figure 5-2.   Average daily air (black) and dew point (blue) temperature estimates 

from: a) interpolated point source data using meteorological observations, and b) 

gridded ECHAM5 modeled data during 1996 – 2000. 
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Similarly to the estimates of air temperature, there is a large discrepancy 

between the observational and modeled estimates of humidity.  Most noticeably, 

ECHAM5 driven humidity estimates are much higher leading to dew point 

temperatures being very close to the air temperatures.  Figure 5-2 b shows that the 

range between ECHAM5 modeled air temperatures and dew point temperatures is 

particularly narrow during summer months which is consistent with the expected 

climatology of the region which is dominated by a summer monsoon.  However, it 

differs from the observed values indicative of an overestimation of the Pacific Ocean 

influence on the RFE in the ECHAM5 parameterization.  

The magnitude of the difference between air temperature estimates and dew 

point estimates is of great importance for fire danger modeling.  Fire weather within 

the fire danger model is assessed using the modified version of the Nesterov Fire 

Index (NFImod) (described in chapter 4).  In this index, both the absolute measure of 

air temperature and the difference between the estimates of air temperature and dew 

point directly influence the magnitude of the NFImod. 

The NFImod reduces the importance of the actual amount of precipitation.  

Instead it emphasizes the importance of the frequency of occurrence of precipitation 

of 3 mm and greater.  The analysis shows that the relationship between the observed 

and modeled amounts of precipitation in the RFE is weak (R2 = 0.41, slope = 0.23).  

The comparison of the monthly mean frequency of precipitation of 3 mm and greater 

indicates that the discrepancy between observed and modeled estimates is greater 

during spring and fall than during summer (Figure 5-3). 
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Figure 5-3. Mean monthly difference in occurrence of precipitation of 3 mm and 

greater according to the ECHAM5 driven estimates compared to the interpolated 

station observations in 1996-2000. 

 

Spatial patterns of differences in air temperature, dew point temperature, and 

precipitation are shown in Figure 5-4.  No specific pattern in the differences between 

observed and modeled estimates of precipitation (analyzed as the frequency of 

precipitation occurrence of 3mm and greater) was found (Figure 5-4 a).  Air 

temperatures interpolated from point source measurements show considerably higher 

values over the central part of the study area as compared to the ECHAM5 driven 

estimates (Figure 5-4 b).  Dew point temperature estimates from observed data are 

generally lower than those driven by the ECHAM5, with the exception of the 

northern part of the study area where they are slightly higher (Figure 5-4 c).  Overall 

the dew point temperature estimates from both sources are closer than the air 

temperature estimates. 
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Figure 5-4.  Differences in mean year ECHAM5 driven estimates compared to mean 

yearly meteorological station measurements driven estimates within 1 degree cells 

for: a) precipitation (% frequency), b) air temperature (°C), and c) dew point 

temperature(°C).  The difference was calculated by subtracting the mean yearly 

ECHAM5 estimated parameter within the 1 degree grid from the mean yearly stations 

derived estimates. 
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The large differences between GCM and observational data driven estimates 

of temperature, dew point temperature, and precipitation are likely to impact fire 

danger estimates considerably.   This analysis shows that by itself fire weather 

assessed from GCM data is not strongly representative of observed conditions.  

Therefore, evaluating changes in fire danger throughout the 21st century based on 

meteorological parameters alone is unlikely to produce a realistic projection.  

However, coupling GCM based fire weather with risk of ignition and potential fire 

behavior within a fire danger model is likely to improve the forecast due to 

contributions from other spatially explicit sources and the fuzzy logic driven decision 

process.  The evaluation of this hypothesis is presented in the next section.  

5.3.2. Comparison between Fire Danger Estimates from Observed and Modeled 

Weather Parameters 

The comparison between fire danger estimates from observed and modeled 

meteorological data was undertaken to evaluate the potential for using GCM modeled 

data at very coarse resolution for a relatively small region.  Because other 

components of the fire danger model were not adjusted to the pre-2000 period, the 

estimates of fire danger in the region from either observed or modeled data do not 

have a truly predictive capability for 1996-2000.  In particular, the information on 

fuel composition and previous disturbances which drive in part the evaluation of 

potential fire behavior was developed based on data acquired during 2000 – 2005 and 

does not reflect the state of vegetation during the pre-2000 period.  Therefore fire 

danger modeling results for 1996-2000 should not be viewed as reflecting the actual 

fire danger in the region during this time-frame.   
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Fire danger estimates from observational and modeled meteorological 

information provide comparable results (Figure 5-5 a and b).  Both datasets provide a 

similar view of inter- and intra-annual variability in fire danger in the RFE.  Average 

daily fire danger estimates, ranging between 0 (no danger) and 1 (extreme danger), 

from both datasets cover a similar range of values with an average yearly standard 

deviation of ~0.09 for both the observed and modeled weather parameters.  However,  

 

  

Figure 5-5.  Direct comparison of average daily estimates of fire danger during 1996 

– 2000 for 3 model scenarios: a) “worst case”, b) “trade off”, c) “best case”. 
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the ECHAM5 modeled weather observations tend to lower the projected fire danger 

rate over the entire region, with an average mean for the 3 potential scenarios of ~ 

0.36 for the meteorological station driven fire danger estimates as compared to ~ 0.30 

for the ECHAM5 modeled data driven estimates. 

The direct comparison of individual scenarios of fire danger from the two data 

sources shows that the estimates for the “worst case” scenario, that reflect the upper 

limit of uncertainty, are very closely matched (slope ~0.91, R2 ~ 0.89) (Figure 5-5 a).  

However, this close relationship deteriorates in the comparison of “trade off” 

scenarios (slope ~0.71, R2 ~ 0.66) and dissipates completely for the “best case” 

scenario (slope ~0.11, R2 ~ 0.04) (Figure 5-5 b and c).  The diminishing slopes of the 

relationships also show that the ECHAM5 driven estimates tend to underestimate fire 

danger (consistent with previous findings).   These relationships, derived from the 

1996 – 2000 record, remain relatively unchanged during each of these years analyzed 

individually, thus providing a consistent view of meteorological conditions from 

which a reliable bias in fire danger assessment can be estimated. 

A strong relationship of the “worst case” scenario assessment of fire danger in 

the RFE in combination with a lack of a relationship for the “best case” scenario 

indicates that weather conditions incorporated through the fire weather assessment 

play a different role within each of the fire danger scenarios.  The deterioration of the 

relationship is expected with increasing contribution from the fire weather component 

of the fire danger model along the “worst case” – “trade off” – “best case” scenario 

continuum.  Although the fire danger value presents a sum of equally weighted risk of 

ignition, potential fire behavior, and fire weather values, the input values for the risk 
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of ignition and potential fire behavior differ for the three output scenarios.  The 

“worst case” scenario contains higher values for the risk of ignition and potential fire 

behavior than the “trade off” scenario.  The values for the risk of ignition and 

potential fire behavior within the “trade off” scenario are in turn higher than those 

within the “best case” scenario.  Considering that the fire weather value is the same 

within all three scenarios, its contribution to the total fire danger value changes in 

relation to the magnitude of other input parameters (risk of ignition and potential fire 

behavior).  For example in a hypothetical case of the risk of ignition value of 10, 

potential fire behavior value of 7, and fire weather value of 5, the fire weather value 

contributes ~23% of the total fire danger value.  If the hypothetical risk of ignition 

value is 3, potential fire behavior value is 3, and the fire weather value is still 5, the 

total contribution of the fire weather value is ~45%.    

The results in figure 5-5 b and c show that with a weakening relationship in 

the “trade off” and “best case” scenarios, the range of predicted fire danger values 

narrows.  Consequently, even with weak relationships, the predicted fire danger 

values are still found within the same general range of fire danger. 

Fire danger estimates, ranging between 0 and 1, were further binned to ten 

qualitative levels: 1) none ≤ 0.1, 2) very low (VL) 0.1-0.2, 3) low (“L”) 0.2-0.3, 4) 

moderate low (ML) 0.3-0.4, 5) moderate (M) 0.4-0.5, 6) moderate high (MH) 0.5-0.6, 

7) high (H) 0.6-0.7, 8) very high (VH) 0.7-0.8, 9) severe (S) 0.8-0.9, 10) catastrophic 

(C) > 0.9.  Monthly frequencies of binned fire danger values also show a good 

correspondence between the station and model driven datasets (Figure 5-6).  

Consistent with the previous findings, while retaining a close resemblance in inter- 
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and intra-annual patterns of fire danger, ECHAM5 driven fire danger values are lower 

that those driven by observed values for all three scenarios. 

 

 

Figure 5-6.  Monthly frequencies of fire danger values from observed and modeled 

weather parameters for three scenarios: a) “worst case” - observed, b) “trade off” - 

observed, c) “best case” – observed, d) “worst case” - modeled, e) “trade off” – 

modeled, f) “best case” - modeled.Fire danger values ranging from 0 to 1 were binned 

to 10 qualitative values: 1) none ≤ 0.1, 2) very low (VL) 0.1-0.2, 3) low (“L”) 0.2-0.3, 

4) moderate low (ML) 0.3-0.4, 5) moderate (M) 0.4-0.5, 6) moderate high (MH) 0.5-

0.6, 7) high (H) 0.6-0.7, 8) very high (VH) 0.7-0.8, 9) severe (S) 0.8-0.9, 10) 

catastrophic (C) >0.9. 
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On average during 1996 – 2000 the modeled weather parameter driven 

estimates of fire danger were 13%, 17%, and 21% lower for “worst case”, “trade off” 

and “best case” scenarios, respectively, compared to the fire danger estimates driven 

by observational data.  Figure 5-7 shows that greater difference (up to 18, 23, and 26 

% for “worst case”, “trade off”, and “best case” respectively in June) is found during 

warm months (May - September), and the difference is less pronounced during colder 

periods (as little as 7, 9, and 11% for “worst case”, “trade off”, and “best case” 

respectively in November).  

 

 

 

 

 

 

 

 

 

 

Figure 5-7. Differences in the monthly mean modeled data driven estimates of fire 

danger in the RFE, compared to observational data driven values in percent. 
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analysis has shown little inter-annual variation in the relationships between modeled 

and observational data driven mean yearly values and monthly frequencies of fire 

danger estimates during 1996 - 2000.The analysis shows that the relationships of the 

daily mean 1 degree estimates vary within the region and among the three scenarios 

(Figure 5-8).  Consistent with the previous findings, the “worst case” scenario outputs 

have the strongest relationship (mean R2 ~0.72, mean slope ~0.75) which weakens 

substantially in the “trade off” scenario (mean R2 ~0.41, mean slope ~0.45), and 

becomes non-existent in the “best case” scenario (mean R2 ~0.1, mean slope ~0.14).   

 

 

 

Figure 5-8. The strength of relationships between the modeled and observational data 

driven daily mean 1 degree estimates of fire danger in the RFE expressed through R2 

values. 
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In general, the relationships are found to be stronger on the edges of the study 

area rather than in the central parts.  But the patterns for the three scenarios are 

explained by different drivers.  The strong relationships (R2 >0.8) of the “worst case” 

scenario match the patterns of population distribution in the RFE.  Population 

distribution in this region is highly uneven with a large concentration of towns, and 

transportation routes in the western and eastern part of the study area leaving the 

central part very sparsely populated (see chapter 2).  Subsequently, fire danger for the 

western and eastern edges of the study area often experiences stronger influences of 

anthropogenic presence, expressed through the risk of ignition, land use, and previous 

disturbances rather than weather conditions.  In contrast, the comparatively stronger 

relationships of the “best case” scenario are driven by smaller differences in 

precipitation and temperature estimates within those 1 degree cells (Figure 5-4). 

While daily mean 1 degree estimates show little consistency for the two of the 

three scenarios, yearly and monthly means within 1 degree cells show more stability.  

All three scenarios have a similar pattern of mean yearly difference (%) from the 

observational data driven estimates with the mean 12, 16, and 20% and the standard 

deviation from the mean of 4, 5, and 6% for the “worst case”, “trade off”, and “best 

case” scenario respectively.  Monthly mean estimates within 1 degree cells show 

more variability with the mean standard deviations over the March – November 

period of 6, 7, and 8 % for the “worst case”, “trade off”, and “best case” scenario 

respectively.   

In summary, fire danger estimates driven by the ECHAM5 modeled weather 

parameters give a consistent and representative assessment of fire danger in the RFE.  
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These estimates capture inter- and intra-annual patterns of fire danger change well.  

The modeled data driven fire danger assessment provides a close approximation for 

the upper range of potential fire danger values but underestimates mean and 

particularly lower range values.  Modeled data driven estimates also represent the 

geographic distribution of fire danger values reasonably well particularly at monthly 

and yearly mean levels.  Therefore, overall ECHAM5 data driven estimates of fire 

danger are considered suitable for exploring future changes in fire danger in the RFE 

under the projected scenarios of climate change. 

5.3.3. Estimates of Changes in Fire Danger during the 21st Century Using A2 and B1 

Climate Change Scenarios 

Mean fire danger (averaged over the entire study area in 5-year periods – 

1996-2000, 2046-2050, and 2096-2100) is projected to increase by less than 1% by 

the middle of the 21st century and by 5.2% (A2 scenario) or 2.5% (B1 scenario) by 

the end of the 21st century.    The increase of the lower “best case” scenario is 

projected to be slightly higher (6.7% and 3.3% for A2 and B1 scenarios by the end of 

the 21st century, respectively).  At the same time the upper “worst case” scenario 

range will increase at a lower rate (3.7% and 1.8% for the A2 and B1 scenarios by the 

end of the 21st century, respectively) effectively narrowing the range of uncertainty in 

fire danger estimates by 3% and 1.5% for the A2 and B1 scenarios, respectively.  

According to the results, fire danger will follow the same inter- and intra-annual 

pattern as was observed at the end of the 20th century (Figure 5-9).  

Fire danger values will rise over the 21st century throughout the year with the 

most noticeable increases projected to occur by the end of the 21st century in August, 
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September, and October (13%, 10%, and 8% respectively) according to the A2 

scenario (Figure 5-10).  The range of potential danger values (“worst case” to “best 

case”) remains constant throughout the 21st century and resembles closely that of the 

end of the 20th century. 
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Figure 5-9.  Fire danger patterns over 5 year periods: a) 1996-2000 – observed 

meteorological data, b) 1996-2000 – 20c3m scenario, c) 2046-2050 – B1 scenario, d) 

2046-2050 – A2 scenario, e) 2096-2100 – B1 scenario,  f) 2096-2100 – A2 scenario.  

Mean values are shown as dots and uncertainty range is shown in grey. 
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Figure 5-10.  Monthly increases in mean fire danger (averaged over 5 year periods 

1996-2000, 2046-2050, 2096-2100) in the 21st century over the RFE projected by A2 

and B1 scenarios compared to the 20c3m estimates. 

 

Frequency of monthly and yearly mean values binned into ten fire danger 

categories, ranging from “none” to “catastrophic” (described in section 5.3.2), also 

shows negligible change in fire danger by 2050 (A2 and B1 scenarios) and a 

noticeable increase in frequency of occurrence of higher fire danger conditions 

(relative to “worst case”, “trade off”, and “best case” scenarios) in March, April, 

May, August, September, and October (A2 scenario) (Figure 5-11).  No marked 

increase in the frequency of high fire danger conditions was noted for the B1 

scenario. 
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Figure 5-11.  Increase in frequency of higher fire danger occurrence projected by the 

A2 scenario by the end of the 21st century: a) “worst case” – 20c3m scenario, b) 

“trade off” – 20c3m scenario, c) “best case”– 20c3m scenario, d) “worst case” – A2 

scenario, e) “trade off” – A2 scenario, f) “best case” – A2 scenario.  Fire danger 

values are binned into 10 equal-size qualitative bins: 1) none ≤ 0.1, 2) very low (VL) 

0.1-0.2, 3) low (“L”) 0.2-0.3, 4) moderate low (ML) 0.3-0.4, 5) moderate (M) 0.4-0.5, 

6) moderate high (MH) 0.5-0.6, 7) high (H) 0.6-0.7, 8) very high (VH) 0.7-0.8, 9) 

severe (S) 0.8-0.9, 10) catastrophic (C) >0.9. 
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The spatial pattern of fire danger change in the RFE under A2 and B1 climate 

change scenarios show pronounced differences (Figure 5-12).  By the mid 21st 

century, spatial patterns of fire danger increase are similar for both A2 and B1 

scenarios of climate change.  A slight (1-5% mean annual value) increase in fire 

danger is observed over the southern third of the region while no significant change is 

expected in the northern and central parts.  However, by the end of the 21st century 

the impact of climate change under the A2 scenario is observed over the entire region 

with a particularly noticeable increase (up to 15% mean annual value) in the southern 

part of the region.   

The 10-15% mean yearly increase is distributed unevenly throughout the year.  

The 1 degree cells in the southern part of the region show 20-38% increase in mean 

monthly fire danger during July or August and 10 – 20% increase in May, September, 

and October.  Even the 38% increase during August within a 1 degree cell raises the 

total monthly mean fire danger level from “low” to only “moderate low”.  However, 

the change in the frequency of occurrence of various levels of fire danger changes 

dramatically.  Frequencies of fire danger values, calculated by 10 bins, were 

described previously in this paper.  Within the 1 degree grid these frequencies showed 

the largest (38%) increase in monthly (August) mean fire danger.  At the end of the 

20th century 96% and 4% of August fire danger values in that cell were within “low” 

and “moderate low” fire danger bins, respectively.  By the end of the 21st century 

under the A2 scenario only 34% of August fire danger values remained in the “low” 

bin while 42% were in the “moderate low” and 23% moved to the “moderate” fire 

danger bins.  A small number of grid cells (0.2%) were within “moderate high” fire 
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danger with the values forecasted for 2097, 2099, and 2100.  No fire danger values 

above “moderate low” were recorded during 1996-2000 within this cell. 

 

  

Figure 5-12.  Change in mean yearly fire danger by 1 degree cells as percent from 

1996 values for 2050 and 2100 using A2 and B1 scenarios. 
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A noticeable (5-10% mean annual value) increase in fire danger over the 

southern part of the study area is expected even under the B1 scenario.  A smaller 

increase is expected over the central part and no increase is likely to be observed in 

the northern part of the study area.     

5.4. Discussion 

This analysis evaluates climate driven change in fire danger through climate 

change impact on fire weather and its subsequent contribution to the overall fire 

danger.  Fire weather is the only variable parameter in this assessment.  While other 

components of the fire danger model including the risk of ignition and potential fire 

behavior are also likely to be affected by climate change, evaluation of compound 

effects of climate change on fire danger is outside the scope of this current work.  The 

study rather focuses on isolating the climate change impact on weather conditions 

conducive to fire occurrence. 

The climate of the RFE separates this area from other boreal and temperate 

forests of Northern Eurasia.  The bulk of the large (500 – 1500 mm/year) amount of 

precipitation arrives during the warmest time of year (June-August) thus considerably 

lowering fire danger in the RFE during these months.  Wet summers and moderately 

warm spring and fall periods result in the overall moderately-low fire weather 

characteristic for the RFE.  It is likely that the region’s proximity to the Pacific Ocean 

will mitigate against sharp increases in fire danger projected for other areas of Siberia 

(Stocks et al., 1998).  Our study shows that even under the worst case scenario of 

climate change (A2), the overall increase in fire danger in the RFE will not be 

considerable.  These findings are consistent with the results by Malevsky-Malevich et 
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al. (2008).  Even the maximum projected 5 percent total regional increase by the end 

of the 21st century will still keep the mean regional fire danger within “low” and 

“moderate low” range, with the highest level of uncertainly just marginally entering 

into the “moderate” fire danger zone.  The rate of change is likely to be slow.  Our 

estimates show that in the next 50 years fire danger will increase by less than 1% 

under both A2 and B1 scenarios.  According to our finding, the most aggressive A2 

and the most favorable B1 scenarios project comparable rates of change in fire danger 

in the RFE by 2050.  The outcomes of the two scenarios are nearly identical for the 

mid 21st century and show little difference (~4%) in mean yearly estimates by the end 

of the 21st century.   

Change in fire danger under B1 scenario is negligible.  Under this scenario 

fire danger in the RFE will be the same as fire danger at the mid 21st century ±1% for 

the majority of the areas.  Fire danger levels will rise slightly in the southern part of 

the region by the end of the 21st century.  However, even with the 5-10% increase in 

the southern part (compared to the end of the 20th century) fire danger will stay within 

“low” and “moderately low” categories. 

Under the A2 scenario, climate change will drive fire danger higher.  

Similarly under the B1 scenario, the initial rate of fire danger increase will be slow.  

However, the rate will increase from the mid 21st century resulting in the noticeably 

more frequent occurrence of “high” – “severe” fire danger conditions, particularly in 

the late summer and fall.  According to the projected scenarios, the fire season is 

likely to become more active beginning in August and going through October.  Late 

season fire danger increase has a potential to increase the amount of burned area, burn 
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intensity, and burn severity due to higher fuel accumulation at the end of the growth 

season and the compound effects of longer period of higher fire danger levels.  At the 

end of the 20th century, the period of “low” fire danger lasted from June through 

September.  Climate projections show that this period will shorten to only two 

months, June and July, allowing the fuels to dry out considerably more by the 

expected increase in fire activity in October and November.  October is already 

projected to experience the largest increase in fire danger within a year; however, this 

increase is driven only by the changes in daily weather conditions and does not take 

into account the compound changes in the state of fuels which results from an 

increase in fire danger during the two preceding months.  The compound effects are 

likely to increase fire danger further pushing it beyond the projected 8% increase 

compared to the 1996-2000 values. 

Fire danger increase by the end of the 21st century will not be uniformly 

distributed across the region.  The study shows that the yearly mean fire danger 

increase over the southern part of the region could be considerably larger than the 

elsewhere.  In this area, monthly mean fire danger values in July or August may rise 

as high as 37% in some of the 1 degree cells.   While fire occurrence during summer 

months is rather uncharacteristic for the area, it often leads to large severe fires like 

those that occurred in July of 2003 (see chapter 4).  A nearly 40% increase in fire 

danger during July and August at the end of the 21st century may be indicative of 

similar conditions developing over 24% of the study area, that would subsequently 

lead to potentially catastrophic fires in the RFE.  Fire danger in the northern part of 

the study area will experience little change under both A2 and B1 scenarios.  
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Overall, this study has shown that climate driven change in fire weather is 

unlikely to result in considerable increase in fire danger at the regional scale for the 

RFE even under the worst scenario of climate change (A2).  Fire danger under the B1 

scenario will be similar to the conditions at the end of the 20th century.  Under the A2 

scenario, fire danger will increase more substantially by the end of the 21st century.  

The range of increase will vary within the region is more likely to affect fire danger 

during July - October. 

5.5. Conclusions 

The results show that in the RFE GCM driven fire danger estimates are lower 

than those driven by observational data interpolated from point source weather 

parameters.  However, the estimates are consistent at yearly and monthly temporal 

resolutions for the entire region and its individual parts assessed using a 1 degree 

grid.  In addition, while mean GCM driven fire danger levels are noticeably lower, 

the range of uncertainty is close to observational data driven estimates.  Overall, 

ECHAM5 provides sufficient inputs for producing estimates of fire danger in the RFE 

comparable to those from observational meteorological data.   

The projected mean yearly changes in climate driven fire danger during in the 

21st century in the RFE are small.  Changes in mean yearly and mean monthly fire 

danger under B1 scenario are negligible.  Under A2 scenario fire danger change 

during the first part of the 21st century is close to that projected under B1 scenario but 

increases more sharply by the end of the 21st century.  The magnitude of the increase 

varies spatially and temporally.  The greatest increase in fire danger is projected to 

occur in the southern part of the RFE where monthly mean fire danger estimate for 
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individual cells can be up to nearly 40% higher in a single month compared to the 

values observed at the end of the 20th century.  July, August, and October are likely to 

experience the largest increase in fire danger by the end of the 21st century in 

individual 1 degree cells under A2 scenario. 

This study evaluates potential changes in fire danger driven only by climate 

induced changes in fire weather and assumes stationary vegetation, population, 

economic development, and land use.  Each of these multiple stressors has a potential 

to change the fire regime.  Therefore, further development of coupled models, with a 

capability to account for direct contribution from each of these components as well as 

feedbacks from their interactions, is necessary to develop a suite of realistic future 

scenarios of change in fire danger.   The model’s predictive capability in the RFE 

could also be furthered by improved understanding of the monsoon and the resiliency 

of this meso scale climate system to emissions induced change.      

In summary, this chapter establishes the feasibility of regional fire danger 

modeling and subsequently regional fire threat modeling based on very coarse 

resolution GCM inputs.  It offers a proof of concept to start considering the long term 

viability of endangered species under a changing climate.  The considerable fire 

danger increase over the southern portion of the study area under the A2 scenario 

raises concerns regarding the potential impact on the Amur tiger meta-population 

because it affects a large portion of the known tiger range.   The results also indicate 

that further modeling fire threat to the Amur tiger can be narrowed down to only one 

scenario of climate change (A2) since fire danger change is not likely to increase 

significantly under the B1 scenario.   
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Chapter 6:  Estimating Wildland Fire Threat to the Amur Tiger 

and Its Habitat: Current Levels and Future Scenarios under the 

Influence of Climate Change 

The focus of the research, described in this chapter, is aimed at completing 

parameterization of the fire threat model and using its predictive capability to assess 

the current and future potential wildland fire threat to the Amur tiger and its habitat.  

Here the resource-oriented modules of the fire threat model (values at risk and 

rehabilitation potential) are defined in terms of their relevance to the tiger meta-

population.  The model of fire threat to the Amur tiger is assembled and used to 

address the major research questions of the doctoral research defined in chapter 1.  

6.1. Introduction 

High rates of economic development combined with climate change are 

pushing the limits of stable ecosystem functioning and threatening global biodiversity 

(Millennium Ecosystem Assessment, 2005).  Recent studies estimate that gradual 

shifts in species ranges under changing climate may lead to wide spread extinction by 

the end of the 21st century (Thomas et al., 2004; Sekercioglu et al., in press; Pimm, 

2008).   With the projected increase in fire danger over Northern Eurasia (Stocks et 

al., 1998; Malevsky-Malevich et al., 2008; chapter 5 of this dissertation) the rates of 

habitat conversion in boreal and temperate ecosystems are likely to be amplified by 

wildland fire.  Sudden and extensive habitat loss from wildland fire can potentially 
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undermine species conservation efforts aimed at policy ensured protection of habitat 

and its connectivity.  

The forests of the RFE contain large contiguous Amur tiger (Panthera tigris 

altaica) habitat patches up to 183,237 km² (Dinerstein et al., 2007).  The remaining 

tiger meta-population of approximately 500 tigers occupies ~160,000 km² (Miquelle 

et al. 1999a).  Low prey densities found even in best quality habitats in the RFE 

necessitate ~ 500km2 home ranges for individual tigers, thus requiring availability of 

large contiguous sections of habitat to support the minimum viable population – 876 

individuals (Reed et al, 2003). 

Recent studies have shown that in comparison with other areas of Northern 

Eurasia, overall mean fire danger is not predicted to increase in the RFE dramatically 

(Malevsky-Malevich et al., 2008).  However, a more detailed assessment of fire 

danger trends driven by climate change scenarios, described in chapter 5, projects a 

considerable increase in fire danger under SRES A2 scenario in the southern portion 

of the region which currently constitutes the bulk of the highest quality Amur tiger 

habitat. 

This chapter describes a spatially explicit and temporally dynamic model of 

wildland fire threat to the Amur tiger developed within the framework of fire threat 

assessment presented in chapter 2.  The model parameterization incorporates 

knowledge about regional fire specifics (developed in chapter 4) and expert 

knowledge of tiger habitat use and post-fire vegetation recovery in the RFE 

(described in this chapter).  First, this chapter details the components, 

parameterization, data flow, and sensitivity assessment of the full fire threat model.  
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Second, it describes fire threat to the Amur tiger during the 2005-2007 period based 

on observed meteorological conditions.  Finally, it presents projections of fire threat 

driven by outputs of the ECHAM5 model over two 5-year periods.  ECHAM5 model 

output from the 20th Century climate experiment (20c3m) scenario are used to 

develop a base-line of fire threat over the 1996-2000 time frame and to evaluate large 

scale trends in climate induced fire threat change under A2 SRES scenario by 2096-

2100. 

6.2. Fire Threat Model 

The conceptual framework of fire threat modeling provides the necessary 

structure to develop an understanding of fire impacts on a specific resource (chapter 

2).  The emphasis of the modeling effort moves from forecasting the presence, extent, 

and generic severity of wildland fire (achieved by fire danger modeling) towards 

modeling the pressure from fire effects on well-being of the resource of interest.  The 

conceptual framework identifies four major contributors to the overall fire threat (FT) 

– fire danger (FD), values at risk (VAR), Recovery Potential (RP), and Fire 

Suppression Capabilities (FSC).  The FSC component has a negligible contribution in 

assessing fire threat to the Amur tiger because the majority of the tiger habitat is 

remote and inaccessible.  Therefore, the FSC component was removed from the 

model.  At the conceptual level, VAR and RP components are identified in general 

and need to be better defined to reflect the sensitivity of the Amur tiger meta-

population to fire impacts. 

The Amur tiger (Panthera tigris altaica) distribution at the regional scale is 

most closely related to the distribution of its prey and availability of suitable habitat 
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(Miquelle et al, 1999a).   Therefore, for the Amur tiger the VAR module, renamed 

Tiger Risk (TR), evaluates the combined impact of fire threat to the tigers (Direct 

Threat subcomponent) and the major prey species (Indirect Threat subcomponent) - 

red deer (Cervus elaphus), wild boar (Sus scrofa), and moose (Alces alces) (Miquelle 

et al, 1999a) (Figure 6-1).  Both tigers and their prey are affected by fire in two ways.  

First, the flaming front, heat, and smoke pose a direct threat to less mobile (e.g. 

young) individuals leading to their mortality and thus affecting the animals directly.      

 

 

 
 
Figure 6-1.  Components of the Fire threat model defined for the Amur tiger.  The 

acronyms in bold are used to reference respective modules throughout this chapter. 
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However, a more pronounced fire effect is often reflected in destruction or 

modification of the preferred habitat leading to a broader impact on a large number of 

animals. 

The generic Recovery Potential module for the Amur tiger is driven primarily 

by the long-term post-fire habitat quality and availability for tigers and their prey.  In 

this sense the recovery potential translates into the Post Fire Habitat Potential (PFHP) 

and is referred to it that way throughout the chapter.  The components of the PFHP 

evaluate post-fire habitat quality by assessing habitat suitability for tigers and prey 

species and fragmentation (Figure 6-1).  The development of the FD module is 

described in chapters 2 and 4.  Detailed descriptions for the TR and PFHP modules 

including their parameterization are provided below. 

6.2.1. Tiger Risk Module 

Each of the sub-components within the Direct and Indirect Threat components 

of the TR module describes the spatial variability of fire threat through habitat 

ranking and temporal variability through the impacts of the burning front and smoke 

on the animals.  Habitat ranking (HR) evaluates the species preference for particular 

habitats and relates to habitat quality.  HR is calculated as a sum of geographically 

overlapping parameters, developed from a literature review, statistical assessments, 

and expert opinion (D. Miquelle, A. Kulikov, personal comm.).  It ranges between 0 

and 1 indicating unfavorable and highly preferred habitat, respectively.   

Although species use various segments of their habitat differently throughout 

the year, the exact timing of fire impact on the intra-annual scale is of little 

importance because ecosystems of the RFE do not recover quickly.  The impacted 
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areas of the habitat remain unavailable to the animals during all seasons.  However, 

the TR module has temporal variability determined by the vulnerability of the young 

animals to the direct impacts of the flaming front and smoke.  For a certain time 

period after birth young animals are susceptible to impacts from flaming front and 

smoke inhalation due to their limited mobility. During these periods of limited 

mobility the contribution from the Individual animal inputs is switched on (Figure 6-

1).  Outside the time window of the limited mobility of the young, these inputs are 

turned off and the overall threat to a species is considered to be lower. 

The weights of Individual animals and Habitat quality parameters reflect the 

assessment of the relative impact of these parameters on a population of tigers and 

their prey species.  Fire-induced change of habitat presents a long-term impact which 

has the potential to affect all members of a population found within the affected area.  

In comparison, fire threat posed to the young animals by flaming fire has a limited 

impact on a small subgroup within the species population prone to higher mortality 

rates than other age groups.  On average tiger cubs present approximately 20% of the 

total tiger population (Smirnov and Miquelle, 2005).  Although young boar piglets 

represent on average 40% of the total boar population, non-fire related mortality rates 

during the first year of life are at a minimum of 30-50% of the young animals 

(Zaumyslova, 2005).  Therefore, the fire is likely to present direct threat to 

approximately 20% of the boar population.  Similar to wild boar, very high mortality 

rates are characteristic for deer calves.  Although no direct information is available 

for calf mortality rates in the RFE, similar studies of red deer calf mortality 

throughout Russia cite between 30 and 50% levels (Heptner et al, 1988).  Indirect 
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assessment of moose population structure through bear kill and tracking produces a 

similar estimate of moose population structure with calves presenting ~ 20% of the 

herd (Heptner et al, 1988).  The 2005 tiger track survey estimates the tiger meta-

population to consist of 331-393 adults and 97-109 cubs (Miquelle et al., 2007).  With 

the estimated cub mortality rate of 41-47% (Kerley et al., 2003) the expected adult to 

cub ratio is ~ 80%/20% and is similar to that of the ungulate prey species.   Based on 

these assessments the young mobility parameter is weighted at 0.2. 

6.2.1.1. Indirect Threat Assessment 

Indirect Threat is evaluated through potential fire impact on three major prey 

species.  The weights assigned to each of the prey species reflect the importance of 

the species in the Amur tiger diet.  Red deer (Cervus elaphus) is the major prey 

species which accounts for approximately 60 - 65% of the total tiger diet (Miquelle et 

al, 2005) and largely drives the distribution of the tiger meta-population (Miquelle et 

al., 1999a).  Wild boar (Sus scrofa) is considered the tiger’s favorite prey 

(Zaumyslova, 2005).  Moose (Alces alces) presents a significant source of the tigers’ 

diet in the northern part of the Amur tiger habitat (A. Kulikov, personal comm., 

2006).  Red deer distribution correlates significantly with the distribution of the tiger 

– 61% of tiger distribution in the RFE overlaps with the distribution of red deer 

(Miquelle et al., 1999a).  In comparison, only 37% of tiger habitat overlaps with wild 

boar habitat.  No similar assessment for the overlap between tiger and moose habitats 

is available; however, we estimate from the maps of species distribution (Miquelle et 

al., 1999a) that it does not exceed 30%.  Subsequently, the weights for the red deer, 

wild boar, and the moose subcomponents were set to 0.5, 0.3, and 0.2.  The total 
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value of Indirect Threat presents a weighted sum of the three subcomponents which 

reflects the improved relationship between the distribution of tiger and prey for 

combination of several species (Miquelle et al, 1999a). 

6.2.1.1.1. Assessment of the Mobility of the Young 

New born piglets of the wild boar appear in the RFE between early March (D. 

Miquelle, personal comm. 2006) and mid April (Baskin and Danell, 2003).  They 

become highly mobile in 2 – 3 weeks (Heptner et al, 1989) when they start traveling 

with the herd daily.  Based on these data we set temporal window of animals’ 

susceptibility to flaming and smoking fires to March 1 – May 10.  

Female red deer fawn between mid April and early May (Baskin and Danell, 

2003).  Fawns become truly mobile when 3 weeks old (Heptner et al., 1989) and 

reach the levels of mobility comparable to the adults by the age of 1 month.  

Subsequently, the temporal window of animals’ susceptibility to flaming front 

impacts is set between April 10 and June 10. 

Moose calving generally occurs during May (Heptner et al., 1989).  Calves 

develop quickly and begin moving freely on the third day of their life.  By the 10th 

day their mobility is no longer inferior to that of their mothers (Heptner et al., 1989).  

The time period of heightened risk for the moose is set between May 1 and June 10. 

6.2.1.1.2. Prey Habitat Ranking 

Habitat ranking methodology is based primarily on converting qualitative 

descriptions of species habitat preference to a set of weighted parameters using expert 

opinion.  The information was acquired from a combination of literature research and 

spatial analysis of land cover types within the known distribution of the Amur tiger 
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and its prey species.  The presented approach is valid for mapping habitat preferences 

at the regional scale when prey species habitat preference can be directly linked to the 

geographic distribution of land cover types (Stephens et al, 2005a, Stephens et al, 

2005b, Baskin and Danell, 2003).  A review of literature provided the bases for 

identifying the major drivers of species habitat preference and inferring their relative 

importance.  We accounted for all major drivers with the exception of snow depth - 

an important limiting factor for tigers and prey species distribution (Baskin and 

Danell, 2003; Heptner et al, 1989, Myslenkov, 2005).  Spatially explicit information 

on snow depth is not available and therefore could not be included in the ranking 

methodology.   

Habitat ranking (HR), ranging between 0 and 1, is calculated following: 

                                           HR = Σ(t, lc, we, fe, nb, ob)                                 (6.1) 

where t represents terrain defined by the slope and elevation boundaries, lc is land 

cover, we - water edge, fe – forest edge, nb – new burns and ob – old burns.  The 

parameterization of these inputs is detailed in the text below. 

  As the strongest predictor of species presence, land cover type was set to 

account for 40% of the total habitat rank value.  Species use of habitat within various 

land cover types was evaluated by comparing the area occupied by a given land cover 

within the known distribution of a species (as shown in Miquelle et al. (2005)) and 

the total available area occupied by the same land cover within the study area.  The 

fraction (f) was calculated following equation 6.2: 

ii Aaf /=     (6.2) 
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where ai is the area of land cover type i within the species distribution map and Ai is 

the area of land cover type i within the study area.  The land cover map, used in this 

analysis, was developed from 3 remotely sensed data products described in detail in 

chapter 4.  Land cover fractions, ranging primarily between 0 and 0.8, were linearly 

stretched between 0 and 0.4 (the maximum allowed contribution from the land cover 

components to the HR value).  Although two land cover types within the moose 

distribution were found to have fractional weight over 0.8, they were included in the 

lower ranking group (w = 0.4) because of a very small geographic sample of these 

land covers available within the study area.  The full list of land cover assignments by 

weight for each species is presented in Table 6-1.   

 

Table 6-1.  Weight (w) assignment for various parameters included in prey habitat 

ranking.  Land covers were ranked based on their fractional assessment (f), other 

parameters were assessed qualitatively through the analysis of literature sources. 

Moose Red deer Wild boar Parameters 
f w f w f w 

shrublands 0.64 0.4 0.13 0.1 0.03 0.0 
grasslands 0.19 0.3 0.12 0.1 0.05 0.0 
riparian vegetation 0.39 0.2 0.13 0.1 0.00 0.0 
tundra 0.87 0.4 0.26 0.2 0.00 0.0 
wetlands 0.14 0.1 0.24 0.2 0.04 0.0 
barren and sparsely vegetated 0.70 0.0 0.09 0.0 0.00 0.0 
croplands and cropland complexes 0.04 0.0 0.11 0.1 0.10 0.1 
urban 0.00 0.0 0.00 0.0 0.01 0.0 
water bodies 0.24 0.0 0.02 0.0 0.01 0.0 
dark coniferous forests (sparse) 0.76 0.4 0.22 0.2 0.02 0.0 
pine forests (sparse) 0.00 0.0 0.00 0.0 0.00 0.0 
larch forests (sparse) 0.59 0.3 0.18 0.1 0.02 0.0 
broadleaf forests (sparse) 0.03 0.0 0.24 0.2 0.33 0.2 
siberian dwarf pine forests (sparse) 0.77 0.4 0.18 0.1 0.00 0.0 
mixed forests (sparse) 0.43 0.3 0.46 0.3 0.18 0.0 
dark coniferous forests (dense) 0.73 0.4 0.28 0.2 0.05 0.0 
pine forests (dense) 0.00 0.0 0.00 0.0 0.00 0.0 
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larch forests (dense) 0.74 0.4 0.26 0.2 0.07 0.0 
broadleaf forests (dense) 0.11 0.1 0.63 0.4 0.64 0.4 
siberian dwarf pine  forests (dense) 0.84 0.4 0.18 0.1 0.00 0.0 
mixed forests (dense) 0.31 0.2 0.62 0.4 0.44 0.3 
terrain  0.3  0.2  0.2 
old burns  0.0  0.1  0.1 
new burns  -0.1  -0.1  -0.2 

 
 

Literature descriptions of the habitats for each ungulate species emphasized 

the importance of water- and forest-edge habitats in species habitat preferences 

(Voloshina et al, 2006; Baskin and Danell, 2003; Heptner et al, 1989).  Forest edge 

was defined as a 1 km (A. Kulikov, personal comm., 2006) buffer from all land cover 

types identified as sparse or dense forest and land cover type “forest/natural 

vegetation”. Water edge coverage was estimated as 1 km buffer from land cover type 

“water” and a map of large rivers.  The importance of water edge was emphasized for 

all three species and its weight was set at 0.2.  Forest edge is considered to be of 

higher importance for red deer and boar (w = 0.2) and of lesser importance for moose 

(w = 0.1). 

Literature sources reference recently burned areas as undesirable habitat for 

ungulates (Stephens, 2005b).  Based on the field observations made during the 2006 

field work, recent burns (burns with little regrowth) were identified as ~2 year old 

burns.  Wild boar is reported to avoid recent burns completely (Zaulmyslova, 2005b) 

and therefore this parameter received a negative weight (w = -0.2) in the overall boar 

habitat ranking scheme.  The recent burns have lower (although still negative) impact 

on deer and moose use of the habitat (w = -0.1).  Areas burned ~3 years prior to 

mapping and older were considered old burns (covered with some type of vegetation 

– grass or shrub).  Unlike recent burns, regrowing burns present an attractive land 
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cover for some ungulates and specifically red deer (Astafiev et al, 2006).  Old burns 

were assigned a weight of 0.1 for red deer and boar.  For moose burned area is 

considered to be usable with the appearance of dense shrubby vegetation.  Based on 

the data collected during field surveys and literature review, shrubby vegetation does 

not appear in considerable amounts in areas burned more recently than ~7-10 years 

prior to mapping.  Therefore, in the moose habitat ranking all burns mapped by the 

MODIS burned area algorithm since 2001 (chapter 3) were defined as new burns.   

The category “old burns” was eliminated because burns older than 2001 were mapped 

as specific land cover classes (chapter 4).   

Elevation and slope are known to influence species distribution (Baskin and 

Danell, 2003; Heptner et al, 1989).  The specific slope/elevation combinations 

limiting species use of habitat are presented in Table 6-2.  The weights for slope and 

elevation were assigned based on the restrictions imposed by the terrain on the 

species’ use of the habitat.  For example, moose are found only in areas with gentle 

slopes (defined in this study as slopes <=15%).  In comparison, red deer are not 

restricted by the gradient of the terrain and can freely move across the landscape.  

Consequently, the terrain restriction is weighted greater for moose habitat ranking (w 

= 0.3) rather than red deer habitat ranking (w = 0.2). The maps of ranked habitat are 

presented in Figure 6-2. 

 

Table 6-2.  Slope and elevation composition defining terrain as an input to tiger and 

prey habitat ranking. 

Prey species Slope (%) Elevation (m) 
moose 0 -15 200 - 1700 
red deer 0 - 50 300 - 700 
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wild boar 0 - 15 200 - 2000 
 

 

Figure 6-2.  Distribution of highly ranked habitats within the known area of presence 

of a) red deer, b) wild boar, c) moose, and d) the Amur tiger (Miquelle et al., 2005).   

Red deer Wild boar 

Moose Tiger 

species range 
Habitat rank: 0 0 – 0.2 0.4-0.6 0.2-0.4 0.6-0.8 0.8-1 
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6.2.1.2. Direct Threat Assessment 

6.2.1.2.1. Assessment of the Mobility of Tiger Cubs 

The literature overview and radio tracking data provided by Kerley et al 

(2005) cite large discrepancies in reported seasons of birthing for the Amur tiger.  

The period of relative immobility of the young (when they stay in the immediate 

vicinity of the den) ranges between 21 and 67 days.  Generally tiger cubs start 

traveling with their mothers once they reach 3 months of age (D. Miquelle, personal 

communication, 2006).  It is hard to determine a specific window in time within a 

year when fires pose higher levels of risk to the meta-population of tigers based on 

limited mobility of the young.  Consequently, the direct threat component of the TR 

representing fire impact on tigers remains stable in time and does not show temporal 

variability. 

6.2.1.2.2. Tiger Habitat Ranking 

Land cover rating for the tiger habitat was conducted following a similar approach to 

the fractional assessment described in prey habitat ranking.  In addition to land cover, 

tiger habitat preference is also driven by terrain.  Multiple literature sources name 

areas along river valleys (defined in this study as river flood plains and surrounding 

slopes <= 10% at elevations >=100m and <=700m) as highly preferred habitat by the 

Amur tiger (Miquelle et al, 1999a, Astafiev et al, 2006, Smirnov, 2005).  Because 

river valleys define preference rather than limitation in tiger distribution the weight 

was set at 0.2.  River valleys influence the overall tiger distribution as topographic 

features rather than distance from water which was found to be unimportant 

(Miquelle et al, 1999a).  Tigers are known to avoid recently (0 – 5 year old) burned 
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areas (Miquelle et al, 2004) which includes all burns since the development of land 

cover map (w = -0.2).     

Because of the small number of known factors contributing to tiger habitat 

preference ranking, the weights of various land covers were assigned based on their 

fractional assessment with an additional adjustment.  The fractional assessment 

values (f) were adjusted based on the most recent evaluation of tiger habitat 

preference inferred from tiger track density surveys in the RFE (Miquelle et al, 2007).  

In this assessment tiger habitat preference was ranked on a qualitative scale in four 

categories – “extremely low”, “low”, “moderate”, and “high”.  Comparison of the 

results of fractional assessment of land covers within the known tiger distribution 

showed that “high” importance designation was roughly equivalent to the 0.6 – 0.8 

fraction and the “extremely low” was equivalent to <0.1 fraction.  The f values were 

rounded to one decimal place and were adjusted if their qualitative importance was 

lower (-0.1) or higher (+0.1) than that suggested by the f value.  If the qualitative 

importance was considerably higher or lower than the estimated f (e.g. f = 0.1 and 

importance is “high”) the weights were adjusted by 0.2.  Table 6-3 shows the 

adjustment of the initial fractional land cover assignments by the qualitative 

assessments in Miquelle et al (2007) and the final land cover weighting for all input 

parameters.  Tiger habitat ranking (THR) follows: 

THR = Σ(t, lc, nb)    (6.3) 

where t is terrain variables representing river valleys, lc – land cover, nb – new burns.  

The map of ranked tiger habitat and the fractional assessment of habitat within the 

known species distribution are presented in Figure 6-2 d. 



 

 158 
 

 

Table 6-3. Land cover grouping by habitat inclusion in the distribution for the Amur 

tiger and the weight adjustments based on the habitat importance (Miquelle et al, 

2007).  

 
Input parameters f Importance w 
barren and sparsely vegetated 0.0 extremely low 0.0 
broadleaf forests (dense) 0.8 high 0.8 
broadleaf forests (sparse) 0.5 high 0.6 
croplands and cropland complexes 0.1 extremely low 0.0 
dark coniferous forests (dense) 0.2 low 0.1 
dark coniferous forests (sparse) 0.1 low 0.1 
forest-natural vegetation complex 0.2 moderate 0.3 
grasslands 0.1 low 0.1 
larch forests (dense) 0.2 moderate 0.3 
larch forests (sparse) 0.1 moderate 0.2 
mixed forests (dense) 0.7 high 0.7 
mixed forests (sparse) 0.5 high 0.6 
pine forests (dense) 0.1 high 0.3 
pine forests (sparse) 0.0 high 0.2 
riparian vegetation 0.1 moderate 0.2 
shrublands 0.1 moderate 0.2 
siberian dwarf pine  forests (dense) 0.0 extremely low 0.0 
siberian dwarf pine forests (sparse) 0.0 extremely low 0.0 
tundra 0.0 extremely low 0.0 
urban 0.0  0.0 
water bodies 0.1  0.0 
wetlands 0.2 moderate 0.3 
terrain (valley)   0.2 
new burns   -0.2 

 

6.2.2. Post Fire Habitat Potential 

PFHP assessment combines several methods.  The full data flow chart (Figure 

6-3) identifies the major components of PFHP and describes their relationships.  

These components include Fire Impact (FI), Post-Fire Habitat Rank (PFHR), Habitat 

Conversion (HC), and Habitat Fragmentation (HF).  Definitions, parameterization, 
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and sources for these components range from statistical analyses of remotely sensed 

data sources to literature-based look up table compilation. 

 

 

 

Figure 6-3. Full FTM Data flow 

 

6.2.2.1. Fire Impact Assessment 

Fire impact (FI) presents a binary identifier of model grid cells where fire can 

result in a stand replacing event or high burn severity conditions.  For this study we 

adopted the differenced Normalized Burn Ratio (dNBR) index which has been 

correlated with the field measurements of burn severity assessed through the 

Composite Burn Index (CBI) across various ecosystems of the continental US (Key 

and Benson, 2006; Zhu et al., 2006).  Although numerous recent studies demonstrated 
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the variability of dNBR measurements due to changing solar and view angles (Roy et 

al, 2006; Walz et al., 2007), site conditions (Wimberly and Reilly, 2007), and its 

ability to detect burn severity across all vegetation types (Epting et al, 2005), dNBR 

based burn severity estimates are considered reliable in tree dominated landscapes 

where it is directly related to tree mortality (Epting et al., 2005; vanWagtendonk et 

al.,  2004; Waltz et al, 2007, Wimberly and Reily, 2007).   

A limited field sample collected during the 2006 field work supports 

applicability of dNBR burn severity assessment for identifying stand replacing fires.  

A transect of ~3 km was surveyed within a 2003 burn scar in spruce/fir forest (Figure 

6-4 a and b).  Along the transect, 12 points were opportunistically selected to capture 

the variability of observed burn severity levels within the MODIS burned area 500 m 

(25 ha) mapping grid cells.  The number and density of observations were determined 

through a visual assessment of variability of conditions within a 360º view from the 

starting point and each subsequent point along the transect.  Very low density (1 

point) was set in uniformly burned areas with no standing living trees (Figure 6-4 c).  

50 m radius plots were established around each point and the number of dead, living, 

and downed trees within broadleaved and coniferous categories were counted and 

converted to percent tree mortality (by category and total).  Field observations show 

that areas with dNBR below 0.2 demonstrate patchy fire effects with no dominant tree 

mortality; areas with dNBR between 0.2 and 0.3 include sizable pockets of unburned 

vegetation; and areas with dNBR greater than 0.4 (corresponding to “moderate-high” 

burn severity class (Key and Benson, 2006)) are characterized by complete tree 

mortality.   
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Figure 6-4.  Field sites surveyed in 2006 to collected data on post-fire vegetation 

regrowth and burn severity: a) distribution of the 3 survey areas (shown larger than 

actual size) in the RFE, b) the burned severity levels within a 2003 burn scar and 

location of field transect; c) 360º view of severely burned area from single field point 

within a MODIS 500 m grid cell, d) homogenous vegetation regrowth in 1998 burn 

scars. 

 

Although originally developed for the Landsat imagery (30 m spatial 

resolution), dNBR retains its ability to map general patterns of impact severity at 
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Spectroradiometer (MODIS) (Walz etal., 2007).    The MODIS dNBR estimates were 

produced within burned area mapping in the RFE for 2001-2005 (chapter 3).   

Burn severity and particularly tree mortality, are driven by a combination of 

numerous factors including broad categories such as fuel load, rainfall and humidity, 

topography, climate (Whelan, 1995).  Specific conditions such as stand age class, tree 

composition, vertical structure of the stand, fuel continuity, and local wind patterns 

also impacts burn severity (Johnson, 1992).  Burn severity is nearly as much 

influenced by fire residency time as by fire intensity (Johnson, 1992) and specific 

patterns of fire spread (e.g. up or down hill burning) (Fuller, 1991).  The influence of 

the broad categories is modeled within the Potential Fire Behavior and Fire Weather 

modules of the FTM.  However, the information on the specific conditions and fire 

residency time is not available and cannot be obtained reliably from the satellite 

record.  Therefore, the FI index, calculated as a sum of fire weather and potential fire 

behavior, presents an approximation of conditions leading to stand replacing fires and 

is likely to underestimate the extent of moderate high and high burn severity rather 

than overestimate it. 

The high mortality FI threshold was identified by comparing FI to dNBR 

values over areas burned during 2005 fire season.  The exact date of burning for each 

grid cell necessary for FI calculation was assigned based on its proximity to active 

fire detections (Giglio et al., 2003).  The sample was stratified by 6 land covers 

(Table 4) and a separate assessment was conducted for each type.  In each case 

distribution of values was positively skewed making standard deviation based metrics 

non-applicable.  Subsequently, minimum observed FI corresponding to moderate high 
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or high burn severity category was accepted as the high mortality FI threshold.  A 

complete set of FI thresholds for each land cover type is shown in Table 6-4. 

 

Table 6-4.  Minimum Fire Impact (FI) levels for moderately-high and high burn 

severity occurrence within various land cover types of the RFE. 

 
Land cover type min FI 
dark coniferous forest 980 
larch forest 938 
mixed forest 868 
forest/natural vegetation 1146 
shrublands 1149 
wetlands 1156 

 

6.2.2.2. Post Fire Habitat Potential 

Grid cells exceeding the FI threshold are further used to evaluate vegetation 

succession, using a look up table developed from the patterns of vegetation recovery 

described in the literature for the RFE (Krestov, 2003; Sheingauz, 1996; Sheshukov, 

1996; Gossow, 1996) and field observations.  Trends of vegetation recovery 

following stand replacing fires were defined within a look up table (LUT) (Table 6-5) 

for 11 successional stages - immediate (first season post fire), 5, 10, 15, 20, 25, 30, 

35, 40, 45, and 50-year assessments.  The 50-year window is selected based on the 

time frame required for establishment of tree dominated land covers post fire for the 

majority of land cover types in the RFE (Krestov, 2003).   

Post-fire succession of various land covers is affected by climatic patterns (e.g. 

moisture availability and temperatures), soil erosion and organic content, seed bank 

richness in the soils, successful seed producing season during the year of fire 
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occurrence, during the preceding year, or the first and second post-fire years, 

reoccurrence of fire over the burns within 1-3 years, competition from other native or 

exotic species (Krestov, 2003; Sheshukov, 1996). 

 

Table 6-5.  Look up table for 11 stages of post-fire successional stages over a 50-year 

period  
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The LUT is created under the assumption of favorable climatic conditions, 

sufficient seed availability for coniferous species throughout the entire burned area, 

and absence of competition with introduced species.  However, important general 
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distinctions are made for areas with expected moisture deficit and moisture 

accumulation due to topography and proximity of larch stands for the dark coniferous 

forest regeneration.   

Moisture limited areas of regrowth were identified using the ArcINFO© 

procedure FLOWACCUMULATION which models the amount of rain flowing 

through each grid cell of a Digital Elevation Model under a hypothetical scenario of 

uniformly distributed precipitation with no interception, loss to ground water, or 

evapotranspiration.  A threshold (<= 2) was developed from a limited number (n=41) 

of field observations of regrowth patterns during the field work of 2006.  Regrowth 

information including height and count of tree species, type and height of ground 

cover and shrubs in 10 m radius plots were recorded at each point in 5 field transects 

within burns of 1996, 1998, and 2003.  Due to limited area and ragged terrain access 

points were selected opportunistically.  However, the observed regrowth patterns 

across large areas of similar burn ages were highly homogenous (Figure 6-4 d). 

The proximity to larch stands was evaluated in a 5X5 window.  The expected 

post-fire land covers were further ranked for habitat suitability using the habitat 

ranking system described in the Values at Risk section and averaged over the 11 

successional stages into the Post Fire Habitat Rank.  Habitat Conversion (HC) was 

calculated following HC = HRpost-burn – HRpre-burn where HR is habitat rank and 

compares the mean quality of the habitat during the 50-year succession to the pre-fire 

habitat quality.  Negative HC indicates declining habitat quality while positive HC 

indicates an improvement in the post-fire habitat value for the Amur tiger.  



 

 166 
 

Habitat Fragmentation (HF) is assessed for each individual cell within a 3X3 

moving window over the post-fire habitat ranking.  Evaluation of habitat 

fragmentation as a function of habitat quality presents a more reasonable alternative 

to habitat fragmentation as a function of land cover.  Changes in quality of the habitat 

are more likely to impact the use of the habitat and animals’ ability to move freely 

across landscape.  HF is calculated as a mean of absolute values of differences 

between the value of the given cell nij and the eight surrounding cells.  The resultant 

HF index ranges between 0 and 1 and provides quantitative assessment of uniformity 

and amplitude of variations in habitat quality for each grid cell.  Low HF values 

correspond to homogenous habitat quality and high values indicate fragmented 

habitat with high differences in habitat quality among the adjacent cells.  HF and HC 

estimates per grid cell are further combined through a matrix (Table 6-6) into the 

Post-Fire Habitat Potential (PHFP) (Figure 6-3). 

 

Table 6-6.  Matrix for calculating Post Fire Habitat Potential 
 

Habitat Fragmentation  PFHP 
<= .1 .1 - .2 .2 -.3 .3 -.4 .4 -.5 .5 -.6 .6 - .7 .7 - .8 .8 - .9 > .9 

< -.5 0.5 0.4 0.3 0.2 0.1 0 0 0 0 0 
 -.3 - -.5 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0 0 
 -.1 - -.3 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0 
 -.1 - .1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 
 .1 - .3 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
.3 - .5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

H
ab

ita
t C

on
ve

rs
io

n 
 

> .5 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 
 

 

PFHP is then combined with the TR values using matrix in Table 6-7 and the result is 

converted to a fuzzy set of probabilistic fire threat values through multiplying it by 
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the three scenarios of fire danger (Malczewski, 1999).  The final output Fire Threat 

presents a fuzzy set FT[min, mean, max] corresponding to three scenarios “best case” 

– minimum, “trade off” –mean, and “worst case” – maximum. 

 

Table 6-7.  Matrix for combining Post Fire Habitat Potential and Values at Risk 

Post Fire Habitat Potential 
  <=.1 .1 - .2 .2 -.3 .3 -.4 .4 -.5 .5 -.6 .6 - .7 .7 - .8 .8 -.9 >.9 
<= .1 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 
.1 - .2 0.45 0.3 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 
.2 -.3 0.5 0.35 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.1 
.3 -.4 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.25 0.2 
.4 -.5 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.3 0.3 0.3 
.5 -.6 0.8 0.75 0.7 0.6 0.55 0.5 0.45 0.35 0.35 0.3 
.6 - .7 0.9 0.85 0.8 0.75 0.7 0.6 0.5 0.4 0.4 0.4 
.7 - .8 1 0.95 0.9 0.85 0.8 0.7 0.6 0.45 0.45 0.4 
.8 - .9 1 1 0.95 0.9 0.85 0.8 0.7 0.5 0.5 0.5 

T
ig

er
 R

is
k 

> .9 1 1 1 0.95 0.9 0.85 0.8 0.6 0.6 0.5 

 

6.2.3. Model Sensitivity Assessment 

As a fuzzy set, fire threat value at each cellij carries an assessment of the range 

of uncertainty with the top defined by the “worst case” scenario (max) and the bottom 

level defined by the “best case” scenario (min).  However, by design this uncertainty 

expresses the inherited uncertainty of the fire danger modeling and does not represent 

the contribution from other components of the model. A three-step assessment was 

designed to better understand the sensitivity of a full fire threat model to values 

representing individual model components.  The first step presents an analysis of the 

relative magnitude of contribution from various components to the overall fire threat 

value.  The second step addresses the range of possible habitat states during the 50-
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year post-fire regrowth.  The last step evaluates the range of uncertainty introduced 

within habitat ranking. 

The relative contribution of various factors to the overall fire threat value was 

assessed using the stepwise linear regression approach.  To ensure a representative 

sample for the full range of fire threat values between 0 (the lowest) and 1 (the 

highest), a stratified random sample of 1000 points was created.  Fire threat values 

were stratified by equal intervals of 0.1 into 10 bins and 100 randomly selected points 

in space and time were collected for each of the bins for 3 output scenarios of fire 

threat during the 2007 fire season.  Fire threat values for the “worst case” scenario 

covered the entire range (0-1), values for “trade off” scenario did not exceed 0.8, and 

values for the “best case” scenario did not exceed 0.7.  As a preparatory step we 

plotted the 3 components (fire danger, values at risk, and post fire habitat potential) 

and 2 independent parameters constituting the post fire habitat potential (habitat 

conversion and habitat fragmentation) against fire threat values individually (Figure 

6-5).  Values of all components range between 0 and 1 allowing for an easy visual 

interpretation of the relationships. 

The individual parameter evaluation shows that the strongest relationships 

with fire threat exist for fire danger, values at risk, and habitat conversion values.  

These plots also show that these parameters have a different magnitude of impact at 

different levels of fire threat.  The variability of moderate and high fire threat values 

is strongly dependant on fire danger assessment (Figure 6-5 a), whereas the 

variability of the lower fire threat value is more dependant on tiger risk (Figure 6-5 b) 

and habitat conversion (Figure 6-5 d).  Habitat fragmentation at an individual cell 
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level is fairly uniform and therefore does not appear to have a significant relationship 

with the fire threat values (Figure 6-5e). 

Stepwise linear regression analysis confirms these relationships (Table 6-8).  

In this analysis the PHFP component was substituted with its parts HC and HF in the 

equation.  Both forward and backward linear regressions were preformed for the three 

output fire threat scenarios.  In each case FD and HC components are identified as the 

most influential followed by the HF component.  Although the TR component is 

shown to have the lowest amount of influence on the fire threat values, this may be 

explained by the spatial autocorrelation between TR and HC components (~0.75 

residual).  Autocorrelation of two independently strong predictors within a stepwise 

regression results in omitting the contribution of one of the correlated parameters. 

 

Table 6-8.  Results of the stepwise linear regression assessment for the model 

sensitivity testing.   

  Max Mean Min 
Coefficients       

FD 0.7657196 0.72697 0.713942 
TR 0.1249285 0.093342 0.094991 
HC -1.099934 -0.72031 -0.57166 
HF 0.5838579 0.498266 0.293825 

n (df)* 
1000 
(995) 

800 
(795) 

700 
(695) 

RMSE 0.112 0.06784 0.05391 
R2 0.8435 0.906 0.9249 
p-value 0.0000 0.0000 0.0000 

 

*n represents the sample size, df is degrees of freedom 
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Figure 6-5.  Relationships between fire threat values for three output scenarios “worst 

case” (max) - red, “trade off” (mean) - green, and “best case” (min) – blue and 

individual parameters of the FTM: a) fire danger, b) tiger risk, c) post fire habitat 

potential, d) habitat conversion, e) habitat fragmentation. 
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Variability of the state of the Amur tiger habitat during the 50-year regrowth 

period produces additional uncertainty within fire threat estimates.  Habitat ranking is 

averaged over the 11 successional stages to calculate a long-term post-fire habitat 

rank.  To evaluate the full possible range of magnitude in fire threat throughout the 

50-year regrowth period, two more scenarios to the PFHP modeling producing a 

fuzzy set [min, mean, max] for post-fire habitat ranking and propagating it through 

the model were added to the fire threat calculation.  The “min” and “max” scenarios 

represent the worst and best state in habitat quality respectively during the 50-year 

period.  The fuzzy PFHP[min, mean, max] was combined with crisp TR datasets and 

then merged with the fuzzy FD[min, mean, max] dataset.  Opposite to the PFHP 

scenarios, FD “min” and “max” scenarios correspond to the “best case” and “worst 

case” of fire danger, respectively.  Therefore evaluation of the broadest possible range 

of scenarios required combining PFHP/TR(max) with FD(min) and PFHP/TR(min) 

with FD(max) scenarios. 

Figure 6-6 shows that the fullest range of potential fire threat values, driven by 

the contribution from the best and worst post fire habitat stages, is not much greater 

than that covered by the fuzzy set FT[min, mean, max] for a 50-year mean post fire 

habitat potential.  The difference between the FTmax with the mean 50-year PFHP and 

FTmax with the lowest PFHP, representative of the worst post fire habitat stage 

(usually immediately after burning), is greater than that of the FTmin with the mean 

50-year PFHP and FTmin with the highest PFHP, representative of the best post fire 

habitat stage.  This indicates that the highest quality habitat value is closer to the 
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mean value for the 11 stages of regrowth compared to the lowest habitat quality 

value.   

 

 

 

 

 

 

 

 

 

Figure 6-6.  Mean daily regional fire threat estimates for 2007, where FULL MIN 

results from the best quality habitat stage and the lowest fire danger, FD MIN is 

driven by the lowest fire danger only, MEAN is calculated from the mean fire danger, 

FD MAX is driven by the highest fire danger, and FULL MAX is a combination of 

the worst fire danger and the lowest quality of habitat. 

 

This finding is consistent with the observed post-fire habitat use by ungulates (Peek, 

1997; Kie et al, 2003).  Field studies have demonstrated that ungulate densities 

increase rapidly within regrowing burns, starting at ~ 5 year post burn.  Habitat use 

peaks at ~15 - 25 years after the burn, possibly reaching 2-3 times higher ungulate 

densities than in non-burned forests, and then begins to decline reaching the near 

equilibrium state ~ 50-70 years after then burning when a new tree dominated land 
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cover is established.  Thus the 50-year mean estimate of post-fire habitat rank is 

expected to be closer to the peak level habitat use than to the lowest level habitat use 

post fire – a pattern reproduced by the model. 

The qualitative nature of weightings within the habitat ranking methodology 

also carries a range of uncertainty associated with the magnitude of assigned weights.  

A set of ranking systems based on varying weights assigned to the input parameters 

was created and compared to the habitat ranking described in section 6.2.1.  To 

evaluate the largest possible variability in fire threat introduced by habitat ranking 

uncertainty, the set that produced the greatest difference from the original habitat 

ranking, driven exclusively by land cover types, was selected and processed through 

the fire threat model for the three output scenarios during 2007 season. 

The results show that modifications in habitat ranking can affect fire threat 

values considerably (Figure 6-7).   Habitat ranking driven by land cover increases the 

mean rank value within 1 degree cells (n = 54) throughout the study area linearly by 

nearly 30% (R2 ~0.96, slope ~1.3) (Figure 6-7 a).  This increase propagates linearly 

through the fire threat model consistently raising mean fire threat values within 1 

degree cells for each of the output scenarios by ~36% (R2 ~0.95 for each scenario) 

(Figure 6-7 b, c, and d) and mean fire threat values for the entire study area by 20 – 

25% (R2 > 0.99 for each scenario) for “worst” and “best case” scenarios, respectively.   

The large increase in fire threat under the land cover driven habitat ranking is 

not surprising.  With elimination of other contributing factors, over 28% of the entire 

study area is ranked above 0.8 habitat quality (ranging between 0 and 1) compared to 

only 4% under the ranking that considers importance of overlapping of fine spatial 
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patterns such as water edge and forest edge.  Although the land cover driven habitat 

ranking presents an oversimplified approach to habitat ranking, it allows for 

establishing the top level of habitat ranking driven range of uncertainty.    

     

 

Figure 6-7.  Changes introduced by weights assigned to various inputs in habitat 

ranking (a) and fire threat for b) “worst case” –max, c) “trade off” – mean, and d) 

“best case” – min scenarios.  
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6.3.  Results 

6.3.1. Current Levels of Fire Threat to the Amur Tiger 

Current levels of fire threat to the Amur tiger were evaluated based on the data 

record for 2005-2007 when a complete dataset of updated information, including 

daily weather measurements and yearly information about fire occurrence, was 

available.  This analysis includes a comparison of daily 1km grids of fire threat values 

ranging between 0 (the lowest) and 1 (the highest).  Fire threat during the months of 

December, January, and February is considered negligible due to the presence of 

snow cover which impedes fire ignition and propagation.  Subsequently, fire threat is 

only modeled during March - November time frame.  The analysis was focused on 

identifying magnitude and general spatial and temporal trends of fire threat to the 

Amur tiger under current climatic conditions within the entire study area and within 

the known area of tiger presence (or tiger range).  Recolonization of the RFE by tigers 

is an on-going process.  Therefore, it is important to consider the study area as a 

whole because it includes many potential areas of habitat for tigers that have not yet 

been colonized.  However, an analysis of fire threat within the current tiger range 

allows for evaluating fire threat in the most suitable tiger habitat that often serves as a 

source of tiger meta-population and thus has a particularly significant role. 

Mean fire threat to the Amur tiger over the entire study area during 2005-2007 

was low.  Even under the “worst case” scenario mean projected levels of fire threat 

did not rise above 0.3 while the “best case” scenario values remained below 0.15.  

The mean confidence range (the difference between the “best case” and “worst case” 

scenarios) was relatively narrow (0.07) and stable (standard deviation ~0.03).  During 



 

 176 
 

2005-2007 fire threat values followed a distinct temporal pattern of intra-annual 

distribution with a tall peak in April-May and two small peaks in July and October, 

respectively.  This pattern was observed during all three years with only minor 

variations resulting from weather driven change in fire danger.   

In the areas of known tiger presence mapped during a winter tiger track 

survey (Miquelle et al., 2005) the observed patterns of fire threat distribution were 

similar to those over the entire RFE.  However, the mean fire threat values were on 

average slightly higher (+0.03) for all three scenarios.  This increase is driven by 

elimination of areas of poor habitat where tigers are not found thus removing the 

lowest values of fire threat from averaging.  With the exception of the increase in 

magnitude, other parameters describing the mean regional fire threat including the 

range between “worst” and “best” case scenarios and its stability as well as 

seasonality are nearly identical to those obtained for the entire RFE (Figure 6-8). 

Fire threat values of individual 1km cells were binned to 10 equal ranges to 

evaluate frequency distribution of various fire threat level occurrences at monthly 

scales.  The bins were assigned qualitative values to assist in easier interpretation of 

their magnitude: 1) 0-0.1 – none, 2) 0.1-0.2 – very low (VL), 3) 0.2-0.3 – low (L), 4) 

0.3-0.4 – moderate low (ML), 5) 0.4-0.5 – moderate (M), 6) 0.5-0.6 – moderate high 

(MH), 7) 0.6-0.7 – high (H), 8) 0.7-0.8 – very high (VH), 9) 0.8-0.9 – severe (S), 10) 

0.9-1 – catastrophic (C).   The analysis shows that most of the time, fire threat to the 

Amur tiger in the study area was between very low and moderately low (Figure 6-9 a, 

b, c).  Noticeable spikes in fire threat occur in April and May when up to 15% (under 

the “worst case scenario - Figure 6-9 a) of values are at or above moderate fire threat 
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level.  This pattern repeats throughout the 2005-2007 time period and is characteristic 

for all three output scenarios, although the magnitude of change is smaller under the 

“trade off” and even smaller under the “best case” scenarios. 

 

 

 

 

 

 

 

 

 

Figure 6-8.  Mean monthly fire threat levels (2005-2007) within: a) the entire study 

area and b) the known area of tiger presence.  The “trade off” scenario is used as the 

basis with the “best case” and the “worst case” scenarios representing error bars. 

   

Monthly frequency distribution of threat levels provides a smoothed view of 

the fire threat over the entire area.  At daily time scales and over isolated areas fire 

threat reaches the highest “catastrophic” levels in all 3 years of observation.  During 

September, October, and November of 2005 3, 50, and 57 1km grid cells, 

respectively, registered “catastrophic” levels of fire threat under the “worst case” 

scenario.  Even under the assumption that the same cell experienced “catastrophic” 

levels of fire threat during half of each month, during November of 2005 it translates 
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into ~ 4 km2 of the study area under the “catastrophic” threat level, 24 km2 under the 

“severe” threat level, 89 km2 under “very high” and  373 km2 under “high” fire threat.  

Using similar assumptions, even under the “best case” scenario ~45 km2 are found at 

or above “high” fire threat level in 2005.  However, in 2006 and 2007 this number is 

considerably smaller and can be as low as 1km2. 

 

Figure 6-9.  Frequency distribution of monthly fire threat levels in the entire study 

area: a) “worst case”, b) “trade off”, and c) “best case” scenarios; and within the 

known area of tiger presence: e) “worst case”, f) “trade off”, g) “best case” scenarios. 

 

Compared to the entire study area, fire threat levels registered within the areas 

of known tiger presence are higher (Figure 6-9 e, f, g).  The known area of tiger 
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presence excludes the areas not suitable for tigers, for example agricultural and urban 

areas, thus leading to a large reduction in the number of cells with “none” fire threat 

level.  However, these are primarily replaced with “low” and “very low” fire danger 

areas with only a very moderate (1% or less) increase in the higher ranges of fire 

threat values. 

Fire threat varies considerably in space and time.  Spatial patterns of fire 

threat observed during 2005-2007 demonstrate both consistency (Figure 6-10 a, b, c) 

and variability (Figure 6-10 e, f, g).  A large increase in fire ignitions during April, 

connected to anthropogenic activity in the RFE (chapter 2), raises the overall fire 

danger and subsequently fire threat in a predictable pattern observed on anniversary 

dates during each of the three years (Figure 6-10 a, b, c).  In contrast, weather driven 

changes in fire danger result in localized increases with changing spatial pattern and 

fire threat levels (Figure 6-10 e, f, g).  While seasonally consistent increases in fire 

threat level are wide spread and persistent in time, weather driven events generally 

cover smaller areas for short periods of time and, therefore, do not raise fire threat 

levels at coarser spatial scales. 

Fire threat distribution, analyzed within a 1X1 degree grid, showed little 

variability in spatial patterns at yearly or monthly scales.  Spatial patterns of yearly 

mean fire danger in 1 degree cells are similar for the entire RFE and within the known 

area of the Amur tiger presence (Figure 6-11). 
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Figure 6-10.  Daily fire threat in the RFE on April 15 of a) 2005, b) 2006, c) 2007, 

and November 12 of e) 2005, f) 2006, g) 2007. 

 

6.3.2. Fire Threat to the Amur Tiger by the End of the 21st Century 

The fire threat model was used to analyze potential changes in fire threat 

driven by projected climate change during the 21st century.  In this analysis, fire 

danger presents the only variable component in the overall fire threat model.  

Although tiger habitat is likely to experience additional impact from climate change 
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particularly in the post-fire recovery phase (e.g. changes in tree species composition), 

it is outside the scope of this study. 

 

 

Figure 6-11.  Mean yearly fire threat in 1X1 degree cells within the entire study area 

and areas of known tiger presence. 

 

ECHAM5 projections of meteorological parameters have been shown to 

underestimate fire danger compared to observed data (chapter 5).  Due to this 

underestimation, the direct comparison of modeled fire threat at the end of the 21st 

century and observed conditions in the beginning of the 20th century is not an 

acceptable approach.  Instead, ECHAM5 driven estimates of fire threat observed over 
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a 5-year period at the end of the 20th century (1996-2000) are compared with 

ECHAM5 driven estimates over 2096-2100.   The analysis is focused on 

understanding the general trends observable at coarser spatial and temporal resolution 

to minimize uncertainty introduced at the fire threat model’s 1km daily resolution.  

Under the A2 scenario fire threat is expected to rise throughout the RFE with a 

particularly pronounced increase in the southern potion of the region (Figure 6-12).   

 

 

 

Figure 6-12.  Fire threat change under the A2 scenario by the end of the 21st century 

compared to the conditions at the end of the 20th century for 3 output scenarios: a) 

“worst case”, b) “trade off”, and c) “best case”. 

 

The pattern of the increase is similar to that of fire danger (chapter 4 figure 5-12); 

however, the magnitude of fire threat increase is up to 5% larger.   The rates of 

increase will be the highest for the “best case” scenario and the lowest for the “worst 
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case” scenario thus narrowing the range of uncertainty in fire threat estimates.  Mean 

regional yearly fire threat will rise by ~6% (“trade off” scenario) compared to values 

at the end of the 20th century.  This moderate yearly increase will be driven by large 

increases (6-17% range) in regional fire threat in August – October counterbalanced 

by small increases (2-4%) in March, April, and June and moderate (4-6%) increases 

in May, July, and November (Figure 6-13). 

 

 

 

  

 

 

 

 

 

Figure 6-13.  Percent increase in average monthly fire threat levels by the end of the 

21st century for the 3 output scenarios MIN – “best case”, MEAN – “trade off”, and 

MAX – “worst case”. 

 

Frequency distribution of the 10 fire threat levels (described in the previous 

section) show that in August and September fire threat is likely to increase over large 
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November.  During these months a greater number of localized high fire threat 

conditions similar to those shown in Figure 6-11 e are expected. 

 

 

 

  

 

 

 

 

 

 

Figure 6-14.  Percent change in frequency distribution of fire threat levels by the end 

of the 21st century compared to the conditions at the end of the 20th century. 

   

Monthly fire threat change will also vary spatially over the RFE (Figure 6-15).   

While the northern and central sections of the area will experience only mild (<5%) 

fire threat increases in most months and even decreases in June and July, fire threat 

change in the southern part will be persistent throughout the year and much larger 

reaching nearly 40% in August over the southwester section of tiger habitat.   

Frequency distribution of fire threat levels within the three cells with mean 
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levels will also increase (Figure 6-16).  This may be indicative of a higher frequency 

of high fire threat years in the southern part of the RFE compared to the conditions at 

the end of the 20th century. 

  

 

 

Figure 6-15.  Monthly mean change in fire threat compared to the end of the 20th 

century within 1 degree grid. 

 

6.4. Discussion 

The predictive capability of fire threat modeling is regulated by several 

independent components which require detailed understanding of patterns and 

dependencies between fire, landscape, and tigers.  The RFE is a relatively sparsely 

populated remote region with limited access to many areas.  This remoteness and 

inaccessibility serves both a positive and a negative role at the same time.  On the one 
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hand, it allows for preserving large contiguous areas of anthropogenically unaltered 

habitat critical for supporting a meta-population of a large solitary carnivore.  On the 

other hand, it limits significantly our ability to develop detailed knowledge of 

wildland fire, its impacts on the habitat, specific patterns of post-fire recovery, and 

the tiger habitat suitability.  Satellite based observations provide the basis for regional 

assessment of various fire and habitat related parameters.  However, it is difficult to 

relate the results of landscape level field studies to coarse resolution remotely sensed 

products.  This model presents a methodology and a feasibility study for modeling 

landscape scale processes at the regional scale using remotely sensed data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16.  Frequency distribution of fire threat levels in the three 1 degree cells 

with monthly mean fire threat increase > 35% in August by the end of the 21st 

century. 
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Model sensitivity assessment shows a large uncertainty in fire threat estimates 

associated with the accuracy of habitat ranking.  The presented methodology of 

habitat ranking is expected to provide a more realistic assessment of habitat 

importance for the tiger and prey species compared to that driven exclusively by land 

cover distribution, because it accounts for a number of contributing parameters 

known to impact habitat use.  However, the relative contributions from each of the 

parameters may differ from the ones used in this study.  Therefore, fire threat 

modeling accuracy can be further improved by development of spatially explicit maps 

of habitat suitability based on the field surveys of density distribution of animals 

during all seasons as a factor of various environmental parameters.   

Assessment of fire threat during 2005-2007 provides the first view of the 

extent and severity of wildland fire impact on the Amur tiger and its habitat.  

According to satellite observations of fire activity, 2005-2007 fire seasons during this 

time frame were typical with relatively few large fires.  Therefore, this analysis 

presents an assessment of fire threat under typical conditions for the RFE and does 

not include fire threat during seasons of uncharacteristically high fire occurrence (e.g. 

2003, 1998 – chapter 4).  Since large fire seasons are repeated, periodic events, their 

omission limits our knowledge of fire threat to the tiger to only moderate seasons of 

fire activity.  However, it is likely that the most significant damage to the tigers and 

their habitat would occur during large fire seasons. 

One of the limitations of the current fire threat model is its inability to deal 

with fire induced habitat degradation.  Our present state of knowledge about post-fire 

vegetation recovery is primarily based on forest rehabilitation after a stand-replacing 
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fire.  Little has been published in the literature regarding moderate and low severity 

fire impacts and post-fire habitat rehabilitation.  Even less is currently known about 

tiger and prey species use of fire degraded habitat in comparison to its use during pre-

fire period.  Incorporation of these parameters into fire threat modeling is likely to 

enhance our understanding of a broader spectrum of fire impact on the tigers and their 

habitat. 

Modeling uncertainty can be further reduced with development of a regionally 

tuned suite of remotely sensed products.  Mapping of individual parameters related to 

the important tiger habitat descriptors, such as Korean pine, which is specific to this 

geographic region, instead of fitting the existing globally generic land cover datasets 

for habitat suitability modeling is likely to improve the model’s predictive 

capabilities.   

Potential climate change scenarios show that the RFE is less likely to be 

strongly affected by climate change, as compared to other areas in Northern Eurasia 

(Malevsky-Malevich et al., 2008).  Under the most favorable SRES scenario B1, fire 

danger and subsequently fire threat in the RFE will remain close to their current 

levels (chapter 5).  However, under the least favorable SRES scenario A2 fire threat 

will rise considerably in the southern part of the RFE impacting large tracts of high 

quality tiger habitat.  The A2 scenario seems to be a more likely outcome for the 

study area because of its geographic position next to massive and fast growing 

economies and population of South-East and South Asia.  Therefore, although the 

chapter presents estimates for the most unfavorable scenario, they are not unrealistic 
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considering the regional dynamics of the past 10 years (Auffhammer and Carson, in 

press).    

The results of this study shows that current levels of fire threat to the Amur 

tiger in the RFE are fairly low during a typical year.  At present elevated levels of fire 

threat are connected to two main factors.  The first factor presents wide spread 

anthropogenically driven increase in fire occurrence in the RFE during spring months.  

The second factor represents primarily localized weather driven increases in fire 

danger at daily scales.  Fires connected to the second factor are more likely to occur 

in remote and particularly important sections of tiger habitat, thus resulting in higher 

fire threat.  These weather dependant fire events are likely to increase in number and 

extent by the end of the 21st century over the southern part of the habitat covering 2/3 

of the known area of tiger distribution.  Based on the trajectories of post-fire recovery 

described in the literature (Krestov, 2003) with 12-15 year frequency of large fire 

seasons observed in the 20th century (Sheingauz, 1996), the fire impacted areas 

generally recovered to a suitable (although not necessarily highest quality) habitat 

before a new section of the habitat was impacted.  Increased frequency of such 

seasons in the 21st century is likely to result in potentially higher fragmentation of the 

habitat with considerable loss of connectivity. 

6.5. Conclusions 

Fire threat modeling provides a structure for incorporating wildland fire into 

resource management and resource protection framework.  It draws linkages between 

generic fire impacts and specific responses to those characteristic for the Amur tiger.  

A remotely sensed data driven model is applied to analyze fire threat to the tiger 
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meta-population based on the patterns observed during 2005 – 2007.  As a modeling 

tool, this approach can be used to analyze a variety of potential scenarios including 

management decision and future forecasting.  In this research, the model’s predictive 

capability was used to evaluate potential long-term changes in fire threat under the 

future scenarios of climate change produced by the ECHAM5 model. 

The results show that at present in low to moderate fire years the Amur tiger 

habitat is rarely threatened by wildland fire.  The combination of fairly low fire 

activity with trajectories of vegetation recovery within the existing tiger habitat, 

results in overall low fire threat throughout the year.  Only relatively small and 

localized high fire threat occurrences were observed in the RFE during 2005-2007.  

The range of potential change in fire threat by the end of the 21st century, projected 

by various climate change scenarios, is considerable.  Under B1 scenario, fire threat is 

likely to remain at the present low levels.  However, under the most unfavorable A2 

scenario fire threat to the Amur tiger and its habitat will rise.  The magnitude of 

change will vary in space and time with the most pronounced increase in the southern 

part of the known Amur tiger habitat.  Fire threat is expected to rise considerably 

throughout late summer and fall.  However, the frequency of episodic high fire threat 

events is likely to increase throughout the year. 

The results presented in this chapter reflect an assessment of potential fire 

threat to the Amur tiger under the changing climate based on the currently available 

datasets.  The predictive capabilities of the presented model can be further improved 

through development of better understanding of post-fire habitat use by tigers and 

their prey species, recovery of fire degraded forests, more precise habitat suitability 
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modeling, and fine-tuning remotely sensed products to represent the drivers of the 

resource well-being more adequately.  The analysis will be strengthened by a longer 

monitoring period and inclusion of catastrophic fire years.   Our ability to model 

climate induced change in fire threat to the Amur tiger will be further improved with 

the development of regional high resolution climate models capable of capturing 

regional specifics and spatial variability of climate change in the RFE.  
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Chapter 7:  Operational and Scientific Potential for Fire Threat 

Modeling for the Amur Tiger and Its Habitat and Areas for 

Future Research 

7.1. Implications of this research for tiger conservation  

The Russian Far East currently presents a stronghold for tiger conservation 

(Dinerstein et al., 2006).  The RFE contains two of 20 Global Priority Tiger 

Conservation Landscapes (TCL), described as regions offering a high probability of 

long-term persistence of at least 100 individual tigers with evidence of breeding and 

minimal-moderate threat levels.  The strategic document for tiger conservation 

defines preservation of whole landscapes including core areas, buffer zones, and 

dispersal routes as the goal of tiger conservation in the wild (Dinerstein et al., 2006).  

This document cites habitat destruction and degradation as one of the highest threats 

to the tigers and underlines the importance of preserving every remaining portion of 

the habitat necessary to facilitate movement of tigers across landscape.  A habitat 

protection plan for the Amur tiger was developed to ensure the long-term existence of 

interlinked core conservation units spread across the RFE with an intent to  “guard 

against catastrophic events and minimize the effects of long-term habitat and genetic 

erosion” (Miquelle et al., 1999b).   

Wildland fire presents the dominant and recurring natural catastrophe 

affecting the Amur tiger habitat with the yearly amount of burned area ranging 

between 200,000 ha and nearly 1,000,000 ha during low and high fire severity 

seasons, respectively.  The fire threat model, developed within this research, provides 
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a useful tool for operational monitoring of fire threat to the Amur tiger at the daily 

time scale (driven by changes in weather), assessment of management decisions 

aimed at ensuring habitat availability and connectivity, and strategic planning for 

tiger conservation and landscape protection.   

This research has demonstrated that “protected area” status does not limit 

catastrophic fire occurrence in core areas of tiger habitat.  Despite a close link 

between fire ignitions and anthropogenic activity in the RFE in general, large fires 

that occur during uncharacteristically dry years, burn in remote areas with limited 

human access.  These fires can result in extensive (over 500,000 ha in the summer of 

2003) conversion of tree dominated land to open landscapes thus considerably 

modifying the available tiger habitat.  Over 3% of the area within the habitat 

protection plan burned during the 2001-2005 period with nearly 2% burned during a 

single catastrophic season of 2003.  Considering that fires are recurrent events in the 

RFE, it is important that fire modification of the habitat (specifically within the core 

areas, buffers, and dispersal routes, identified in the TCL approach) is monitored on a 

yearly basis and is reflected in the habitat protection plan.  The habitat protection plan 

should be treated as a dynamic strategic document and adjusted to reflect current 

habitat availability and connectivity of its individual sections and to be updated 

approximately every 5 years.  

The repeated burning in broadleaf forests of the southern tip of the tiger range, 

identified in this study (Figure 7-1), may be contributing to the decline in tiger 

numbers in these areas reported by field surveys (Miquelle, 2006).  Repeated low 

intensity surface fires observed in these forests do not kill the dominant trees but 
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remove the understory and surface layers, impeding forest regeneration and degrading 

the browsing base for large prey species such as red deer (~140-250 kg (Heptner et 

al., 1989)).  Although the resultant increase in herbaceous cover within these forests 

is beneficial for smaller prey species (e.g. sika deer, ~60 - 131 kg (Heptner et al., 

1989)) (Dr. John Seidensticker, personal comm.., 2008), the increase in prey biomass 

associated with distribution density for sika deer in the oak forests of the RFE (from ~ 

0.3 to ~1 individuals per km2 between 1992 and 2002) is not comparable to the 

decrease in densities of red deer (from ~ 4 to ~2 individuals per km2 between 1992 

and 2002) (Stephens et al., 2005a). 

 

 

Figure 7-1.  Multi-year burning in broadleaved forests of the southern RFE 
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In certain cases wildland fire occurrence has a positive effect, improving tiger 

habitat by converting larch and spruce/fir forests, which provide a substandard habitat 

for tigers, to shrub dominated communities supporting higher prey densities.  These 

fires frequently occur during large fire seasons (exceptionally dry conditions) and 

lead to extensive habitat conversion with short-term negative but long-term positive 

influence on tiger habitat quality.  However, the impact of these fires on spatial 

habitat connectivity and subsequently tiger dispersal is not well understood and 

requires further investigation. 

The pressing nature of the decline in the number of tigers and extent of their 

habitat (Dinerstein et al., 2006) consumes the current tiger conservation operations 

and leaves little room for long-term studies aimed at evaluation of climate change 

impacts on future habitat availability and sustainability of the species.  This research 

presents one of the first contributions to the extension of the strategic framework for 

tiger conservation.  Although the current levels of fire threat to the Amur tiger are 

generally low, the stability of the Amur tiger habitat in the RFE, crucially important 

for long-term tiger survival, is uncertain under the influence of changing climate. The 

currently projected climate change results in little change in fire threat under the B1 

and a noticeable increase under the A2 SRES IPCC scenarios.  Although the A2 

scenario is considered the “worst case” story line of the SRES suite, it appears the 

most likely to occur, based on the observed rates of economic development in South 

and South-East Asia.    

The results indicate that the southern portion of the tiger habitat is likely to 

experience a considerable increase in fire threat (up to 20% mean annual increase and 
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up to 40% increase in mean August fire threat) by the end of the 21st century, 

compared to the levels at the end of the 20th century.  Several core areas included in 

the habitat protection plan are likely to see more frequent and severe wildland fires.  

In particular, wildland fires are likely to impact the established  protected areas, 

including Lasovsky and Ussuri State Reserves, Kedrovaya Pad’ Zapovednik, and 

Barsovy Zakaznik, which may subsequently lose their role as a stronghold and source 

of tiger population in the tiger conservation landscapes.  The existing and proposed 

protected areas (Upper Ussuri National Park, Southern Primorye Nature Park, and 

Borisovskoe Plateau Zakaznik) and proposed ecological corridors (Lazovsky, Nature 

Park , and Southern Sikhote-Alin) in the southern section of the RFE are small (~ 

25,000-180,000 ha) and narrow (15-44 km across).  The width of these narrow 

protected areas is not sufficient to ensure habitat connectivity under the current levels 

of fire occurrence (Figure 7-2) and is likely to become less sufficient under the 10-

20% annual increase in fire occurrence, projected for the end of the 21st century.  

Based on the sizes of observed fire scars in catastrophic year of 2003, protected areas 

larger than 50,000 ha and broader (in their narrowest part) than 35 km may be 

required to maintain habitat connectivity under the projected increase in wildland fire 

occurrence.  While no significant change in fire threat to the tigers is expected over 

the northern part of the RFE, these areas currently represent low quality habitat types 

(larch and dark coniferous forests) and thus are unlikely to provide a reasonable 

substitute for the lost range in the south. 

Since the designation of additional protected areas may not be practical or 

possible due to competing land uses and economic development, habitat connectivity 
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can be ensured through strategic planning of forest use aimed at maintaining a 

sufficient portion of connected forested landscapes at various stages of regrowth 

necessary to support sufficient prey densities and ensure distribution of tigers across 

landscapes.   

 

 

Figure 7-2.  Burned areas detected during 2001-2005 within the areas of the habitat 

protection plan (habitat protection plan is adapted from Miquelle et al., 1999b)  
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However, this strategic planning will require close collaboration from various 

stakeholders, including timber harvesting industries, forest management, recreational 

hunting, and wildlife protection, and the regional and federal government support.   

Because tigers are a conservation dependant species (Dinerstein et al., 2006), 

their survival depends on our ability to develop a flexible and comprehensive 

approach to strategic planning for habitat availability.  Modeling allows for 

development of scenarios aimed at evaluating impacts of various aspects of 

anthropogenic and environmental phenomena beyond the range of our current 

experience.  The fire threat model developed in this research presents a tool and 

provides a framework for expanding the modeling capabilities to further investigate 

threat assessment in the context of tiger conservation.  

 

7.2. Modeling fire and impacts of climate change on terrestrial ecosystems 

Future functioning of terrestrial ecosystems under changing climate is an 

important question in Earth system science.  Numerous national and international 

programs focus on developing an understanding of drivers of ecosystem change and 

forecasting ecosystems development in the future.  The research carried out within 

this project presents methodological advancements enabling an assessment of the 

drivers and potential future scenarios of change in ecosystem functioning in the RFE 

through fire threat modeling. 

 The fire threat model, developed as part of this research, provides a flexible 

environment that can support evaluation of fire threat to various resources across the 

globe and develop future scenarios of fire impact under changing climate or land use.  
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The availability of global satellite observations ensures the applicability of this 

modeling framework worldwide.  Remotely sensed data driven parameterization of 

the fire danger model has been shown to provide realistic fire danger estimates in the 

RFE.  This is particularly important as there is no reliable long-term record of fire 

occurrence or supporting high resolution information available to apply other 

conventional fire danger rating methods. 

The fire danger and fire threat models also provide a framework for evaluating 

potential future scenarios.  Fire danger modeling using outputs from a Global 

Circulation Model (GCM) enables the assessment of changing fire regimes under 

various emission scenarios.  However, the accuracy and the resolution of the future 

scenarios are limited by the resolution and accuracy of the existing GCM outputs.  

This research showed a large discrepancy between the GCM modeled weather 

parameters and the observed meteorological conditions in the RFE at the end of the 

20th century. In this region the ECHAM5 model appears to significantly overestimate 

oceanic influence on the area’s climate expressed through temperature, humidity, and 

precipitation.  Further development of high resolution regional climate models fine-

tuned to realistically represent climatic processes at the regional scale, with a 

particularly important ability to forecast extreme or uncharacteristic climatic 

conditions, is imperative to improving our future predictive capabilities.  Similarly, 

increased emphasis is needed to sustain and enhance in-situ meteorological 

measurements in this region and their real time availability. 

Accuracy, resolution, and availability of satellite products present the second 

most important limiting factor in our modeling capabilities.  In many areas of the 
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world satellite observations present the only reliable and consistent source of 

information about the state of terrestrial ecosystems.  The development of early 

warning systems for wildland fire, emphasized by the Food and Agricultural 

Organization (FAO, 2001) and the Northern Eurasia Earth Science Partnership 

Initiative (NEESPI, 2004), require the development of a suite of standardized and 

validated satellite-based products to support a global view of fire drivers and post-fire 

impacts on ecosystem functioning.  In particular, products detailing fuel availability 

and structure, live vegetation moisture content, and integrated fire intensity and burn 

severity are of critical importance. 

In summary, the fire threat model, developed in this research, provides a 

suitable framework for developing global early warning systems of fire danger and 

fire threat.  The existing approaches can be applied to successfully monitor fire 

danger at the regional scale.  However, improvement of satellite-based products, 

including development of region- and application-specific land cover classifications, 

mapping 3-dimentional vegetation structure, development of a consistent long-term 

record of land cover and land use change, and production of reliable estimates of air 

temperature, humidity, and precipitation, in addition to an increase in density of 

meteorological observations in remote areas will further our understanding of fire 

ecology worldwide and improve the model’s predictive capabilities.  GCM scenarios 

of climate change currently produce an oversimplified view of regional climate of the 

RFE.  Development of realistic scenarios of fire danger/threat change directly 

comparable to observed conditions require considerable investment in building 

regional climate models operating at high resolution (~1 km) with reliable accuracy.  
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Given the importance of the monsoon in ameliorating the potential impacts of fire in 

this region it will be important for the climate models to realistically simulate the 

monsoon processes and investigate any potential shifts or changes in the regional 

climate.   

7.3. Future research directions 

Future research will continue the assessment of long-term habitat availability 

in the RFE within the framework of tiger conservation landscapes.  This study 

addressed the threat to tigers and their habitat arising from potential future climate 

driven increase in natural catastrophes and specifically wildland fire.  A 

comprehensive assessment of compound effects from multiple drivers of habitat 

modification (such as climate induced vegetation change, timber harvesting, human 

population growth, etc) and their feedbacks will help to evaluate the feasibility of 

reaching the goals of increasing the tiger population in the RFE tiger conservation 

landscapes and maintaining the population long-term (i.e. MVP).  This 

comprehensive approach will allow for identification of newly developing areas, 

capable of supporting tiger presence, as well as sections of habitat, lost to fire or 

timber harvesting, thus providing a structure for habitat monitoring and projecting 

dynamic shifts in habitat availability and potential for habitat management. 

The immediate objectives of future research will address the uncertainties 

remaining within the potential impacts of wildland fire on habitat availability.  In 

particular, the short record of data availability for fire threat modeling (2005-2007) 

limits our understanding of potential fire impacts on the Amur tiger and its habitat 

during years of large fire occurrence.  The analysis of fire regimes presented in this 
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work shows that these seasons result in 3-5 times greater amounts of burned area than 

low fire severity seasons.   In addition, these large burns occur in remote areas of tiger 

habitat as opposed to areas close to human presence, which is typical of mild fire 

seasons.  Future research will focus on extending the modeling record forward and 

backward in time to incorporate several high fire severity seasons and improve our 

understanding of wildland fire threat to the Amur tiger. 

This research focused on evaluating fire danger and fire threat under climate 

induced changes on fire weather.  However, climate change impacts on ecosystems 

are multi-dimensional and are likely to impact vegetation composition, trajectories of 

post fire vegetation recovery and species composition, and the ranges for tigers and 

their prey as well.  These changes can be addressed using the existing structure of the 

fire threat model by coupling the model with a suite of related models aimed at 

understanding climate change impact on individual ecosystem components.  A 

modeling initiative for coupling the fire threat model with a vegetation model to 

evaluate potential scenarios of changes in habitat restoration and connectivity under 

increasing pressures from climate change is currently underway in collaboration with 

the University of Virginia.   

Further development of the model’s predictive capabilities will also involve 

addition of a land use modeling component (Messina and Cochrane, 2007).  This 

addition will allow for evaluation of a compound climate and land use impact on fire 

threat to the Amur tiger as well as development of a set of land use management 

scenarios aimed at minimizing climate induced fire threat increase. 
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Finally, the flexible structure of fire danger and fire threat modeling and 

developed methodologies for remotely-sensed data model parameterization allow for 

easy expansion of fire danger and fire threat modeling to other regions, particularly 

those within Northern Eurasia.  Future research will evaluate fire danger as a function 

of socio-economic and environmental drivers across various ecosystems of Northern 

Eurasia, develop an early warning system for wildland fire within the modeling 

framework of fire threat, and evaluate potential future wildland fire impacts. 
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