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This paper examines how category judgments are influenced by categorical 

structure and the formatting of tag clouds. Despite the enormous research on 

categorization, little research has been directed at investigating whether one person 

can recognize another’s categorical structure. A novel approach to measure similarity 

and categorical structure is proposed. This approach involves the use of latent 

semantic analyses to compute semantic distances between category exemplars. The 

empirical domain will be tag clouds, a new development in social computing that 

provides a particularly useful paradigm for investigating how people identify the 

categorical structures of others. Three experiments examine how categorical structure 

and different formatting styles used in tag clouds might affect categorization. 

Findings reveal that categorization judgments are influenced by categorical structure 

and tighter structures result in higher accuracy. Format variables such as font size and 

sorting order were also found to influence accuracy. Future experimental directions 

are detailed.   
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Chapter 1: Introduction 

Cognitive and developmental psychology research shows that humans exhibit 

the ability to form categories and concepts early in their development (Daehler, 

Lonardo, & Bukatko, 1979; Mervis, & Crisafi, 1982; Smith, 1981). Categorization 

theory has undergone a theoretic progression from a classical view where members of 

a category share necessary and sufficient attributes to a probabilistic view where 

members of a category share a certain level of overall similarity (Smith & Medin, 

1981; Medin, 1989; Komatsu, 1992). This shift originated with experiments that 

showed that variables such as typicality or structure influenced category judgment in 

a manner that the classical view could not explain. Despite the enormous amount of 

research on categorization, little research has been directed at investigating whether 

one person can recognize another’s categorical structure. The issue is important at 

both theoretical and applied levels. At the theoretical level, this research will suggest 

a novel approach to measure similarity and categorical structure and how this metric 

can predict categorization judgments. At a practical level, this research can be used in 

addressing social issues regarding how people categorize the world around them. It 

can also facilitate the growth of what is now called “social computing,” in which the 

usage of software and technology facilitates social interaction and communication.  

Probabilistic models of categorization theory are founded on the use of 

similarity as a measure of category membership. The use of this metric has raised 

many objections. It has been argued that similarity is too flexible and that there is no 

consensus on its definition. I am proposing an approach to measure similarity which I 

believe is capable of withstanding such objections. This approach is quite practical 
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and adaptable. Similarity between words can be computed by means of a latent 

semantic analysis (LSA) on a text corpus. It is practical as a consequence of the wide 

availability of software packages that perform these analyses. It is adaptable 

inasmuch that the corpus can be in any language and in any domain1.  

While my research is aimed at broadening theory in general, the application 

domain will be tag clouds.  Tag clouds are a new development in social computing 

that provide a particularly useful paradigm for investigating how people identify the 

categorical structures of others and form mental representations of other people’s 

interests and expertise. Social and collaborative software sites use a terminology for 

book marking called “tagging”. Tagging is the process by which a user assigns 

metadata to a document in the form of keywords – tags. This mechanism allows a 

user to organize content for future navigation, filtering or search (Golder & 

Huberman, 2006). Information is categorized by “tags” or keywords and can be 

visualized using “tag clouds”. Tag clouds use attributes of the text – such as size, 

weight, or color – to represent features of the associated terms. For example, the 

prevalence of a term in the set could be represented by its size. Figure 1 presents an 

example tag cloud for information represented in this paper. Note that the terms or 

tags in the figure are concepts prevalent in this paper.  Tag clouds are increasingly 

common on social software sites as links to the tagged websites and can serve as 

tables of contents. Tag clouds can represent the terms assigned by a single person. 

Just as a table of contents can give a reader the gist of what a book is about, tag 

clouds can provide an impression of that person and his or her interests and expertise.  

                                                
1 For example, in order to measure similarity in the medical domain, one could use the collection of 
medical journals as the input corpus. 
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Figure 1 

 
Figure 1. Hypothetical tag cloud representing keywords related to this paper. 
 

This paper will examine how category judgments are influenced by 

categorical structure and tag cloud formatting. The empirical component of this 

research is twofold: study people’s ability to verify a given category in a tag cloud 

and to discover (retrieve) one or several categories in a tag cloud. The experimental 

paradigm will incorporate categorization theory in addition to the various dimensions 

used to construct a tag cloud into the manipulations. I will propose a new measure to 

assess the variability of a structure and how it can predict category retrieval and 

verification. I will be using Posner and Keele’s (1968) terminology, in which tight 

structures are categories with high degrees of within-category associations and loose 

structures are categories with low degrees of within-category associations. As an 

example, a tag cloud may contain categories that have either tight or loose structures. 

The category “music” could be a tight category, it could be composed of websites 

related to and tagged with: “guitar”, “concert”,  “jazz”, “songs”, etc. The category 

“vacations” could be a loose category, it could be composed of websites related to 

and tagged with: “hotel”, “weather”, “airport”, “Paris”, etc. Categories with loose 

structure might be harder to identify. Boundaries for these types of categories may be 
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fuzzier than for ones with a tighter structure, resulting in misclassification. I will 

examine how different formatting styles used in tag cloud visualizations might affect 

category retrieval and verification. More specifically, I will investigate tag cloud 

layout and prominence.   

In the next section, I will review the classical and probabilistic views of 

categorization and address the objections used against the use of similarity as a 

construct to determine category membership. I will introduce the use of LSA to 

compute a measure for similarity and categorical structure and end the section by 

explaining how the experimental paradigm I am employing can be used to investigate 

category research. I will then present three experiments that examine how 

manipulations of categorical structure and format affect judgments of category 

membership. I will conclude by discussing the use of semantic distance in 

categorization theory and provide a set of guidelines on how to visually present tags 

so that the information they represent can be accurately transmitted. 

Categorization 

The process of categorization involves regarding different entities as members 

of an equivalence class. It is assumed that members of the same class share one or 

more unobserved properties and equivalence classes can be systematically sorted into 

hierarchical levels (Mervis & Rosch, 1981). Categorization is a process that is 

conducive to organization of knowledge by enabling the formation of taxonomies 

when the levels are related to each other by class inclusion (Sloutsky, 2003). 

Categorization therefore is not equivalent to mere grouping of entities, but rather may 

offer a coherent structure that can be used by people to make inferences.  
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The theory of categorization has its origins in philosophy with Aristotle and in 

experimental psychology with Hull’s 1920 monograph on concept attainment (as 

cited by Smith & Medin, 1981).  This first inception into categorization theory is 

referred to as the classical view (Smith & Medin, 1981; Medin, 1989). It states that 

categories are determinately created by necessary and sufficient conditions 

(attributes) for membership. There are three main problems with this view: First, a 

comprehensive and exhaustive list of attributes is generally impossible to define. 

Research that asked experts to give a complete list of attributes that define a category 

showed there was considerable disagreement as to what exactly those necessary and 

characteristics attributes were (Murphy & Wright, 1984; Tanaka & Taylor, 1991). 

Second, category members are nonequivalent. As per the classical view, if judgments 

of category membership are based on a list of attributes that denote the specific 

category, then any member should be cognitively equivalent to any other member of 

the same category (Mervis & Rosch, 1981). However, members of categories exhibit 

degrees of variability amongst themselves. For example a monkey is more easily 

classified as a mammal than a whale. Berlin and Kay (1969) obtained experimental 

data from several languages using native speakers. They extracted the basic color 

terms of a language and then mapped these terms to a chart of fully saturated color 

chips. They found that the number of color terms and boundaries of color categories 

vary widely across cultures and languages. However, they were able to discover a 

very limited and universal set of color terms in all languages that they studied. Third, 

there are unclear cases of category membership. Research has shown that there are 

certain cases when a stimulus is difficult to assign to a specific category. Basic-level 
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categories are easier to identify than sub- or super-ordinate categories. Children are 

quite capable of identifying basic-level categories, while developmental differences 

occur once tasks involving sub- or super-ordinate categories are used (Rosch, Mervis, 

Gray, Johnson & Boyes-Braem, 1976).  

This evidence suggested that categories have ill defined or fuzzy definitions 

leading to a new perspective of categorization theory. The probabilistic view states 

that judgments of category membership are based on family resemblance. There are 

several models developed within this view: prototype models, exemplar models and 

decision-bound models.   

In prototype models (Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 

1975), category membership is assessed by the similarity between the probe and an 

ideal element – the prototype -- that represents the category. In prototype theory, 

similarity is assessed by the representation of an additive combination of cues. Reed 

(1972) suggested that category membership is assigned by calculating the distance2 

from the prototype. Participants were asked to assign faces into categories that were 

defined by sets of exemplars and not by logical rules. The results showed that the 

distance from the prototype best predicted the data. Evidence favorable of prototype 

models have shown in learning studies that a prototypic stimulus pattern that is new 

may be correctly categorized on a subsequent test with probability as high or higher 

than old patterns (Posner & Keele, 1968). There are several problems with prototype 

                                                
2 Distance is not a physical distance, but a mathematical representation that satisfies the following 
axioms: 

(i) Minimality: 

! 

" a,b( ) # " a,a( ) = 0  
(ii) Symmetry: 

! 

" a,b( ) # " b,a( ) 
(iii) The triangle Inequality: 

! 

" a,b( ) + " b,c( ) # " a,c( ) 
.  
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models. First, prototype theory states that the classification of a stimulus will remain 

constant in different contexts.  However, there is evidence that the surrounding 

context can affect judgments of similarity. One of the many demonstrations of these 

context effects is an experiment in which the subjects were presented with four 

countries that naturally formed two clusters (Tversky, 1977). Properties that are 

useful for categorization exert greater influence on similarity judgments. When one of 

the countries was substituted for another, the clustering of the countries changed. An 

example of this sort would be the quadruple formed by “Iran, Israel, Syria and 

England”. Iran and Syria are judged similar based on religion (Muslim countries), 

while Israel and England are judged to be similar (non-Muslim countries). In a 

different context, where only one country of the quadruple is changed the similarity 

between two stimuli is considered differently. For example, if Iran is substituted with 

France, Israel and England are no longer judged similar but rather new natural 

categories are formed (France and England – European countries, Israel and Syria – 

Middle Eastern countries). This in turn had an effect on judged similarity of Israel 

and England where they were judged to be more similar when presented in the first 

group than in the second group. Second, prototype theory does not consider that the 

size, distribution or variance of the category will affect how similarity judgments are 

made (Medin & Shaffer, 1978; Homa & Cultice, 1984). A very variable category is 

supposed to be represented exclusively by its prototype. As an example, in the bird 

category, a robin could be described as the prototype. An ostrich would be a stimulus 

that belongs to the bird category but is quite different than a robin. Third, prototype 

theory does not do well with fuzzy set theory. Osherson and Smith (1981) describe 



 

 8 
 

how prototype theory fails to demonstrate several of the consequences implied by 

Zadeh’s fuzzy set theory (Zadeh, 1965). Critics have argued that the mental 

computations that would be needed to form prototypes are quite difficult (Smith & 

Medin, 1981). Estes (1986) proposed a general array model for categorization. Within 

the framework of this model the author stated that if the exemplars of a category can 

be represented in memory in terms of features, then the computations required to 

generate a prototype are no more difficult than those needed to estimate feature 

probabilities.  

Exemplar models predict that classifications are made based on the means of 

examples within a category. Category membership is determined by the retrieval of 

exemplar information, where retrieval is a global match between the stimulus and 

memory representation (Smith & Medin, 1981). In the exemplar theory, similarity is 

assessed by a multiplicative combination of cues. This multiplicative representation 

gives a heavier weight than prototype theory to the absence of necessary cues (Medin 

& Shaffer, 1978). Exemplar models fair better than prototype models. They are 

context sensitive and allow predictions on partial information. The context model 

developed by Medin and Shaffer uses multiple binary dimensions. Exemplars in this 

model contain information about the dimensions and the context of the stimulus. 

Nosofsky (1986) developed an exemplar model with multiple continuous dimensions. 

Decision-bound models assume that people perceive category membership 

with some degree of error. These models are based on Ashby and Maddox’s (1993) 

multidimensional version of signal detection theory called general recognition theory 

(GRT). An exemplar in the context model is represented as a point in a 
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multidimensional space, while an exemplar in GRT is represented as a multivariate 

distribution. A category is a probabilistic mixture of multivariate distributions. A 

perceptual space in GRT is delimited by a boundary; persons assign a stimulus to a 

category depending in which region the stimulus falls. The shape of this boundary 

changes according to different assumptions. For example, responses with no noise 

and categories with a normal distribution set the shape of the boundary as a quadratic 

function and a deterministic model is predicted. Ashby and Maddox listed different 

assumptions that described when GRT and other category models predict the same 

behavior. If the distribution is logistic and similarity is a weighted distance in 

Euclidean space, GRT is a version of a probabilistic prototype model. The most 

general type of GRT models is a special case of weighted additive exemplar models.  

I believe probabilistic views should be considered for theories of 

categorization. It is clear that categories have fuzzy boundaries and that instances of a 

class may vary in their degree of features associated with the class. Category 

membership should be considered a function of intra-class similarity. 

Similarity 

The development of categorization is based on perceptual and attentional 

mechanisms capable of detecting similarities in the environment. Similarity can 

operate as the premise by which people classify objects, form concepts, and make 

generalizations (Tversky, 1977). The construct of similarity is used because of its 

central role in categorization theory. One of the Gestalt principles of perceptual 

organization states that similar things will tend to be grouped together. Goldstone 

(1994a) stated that similarity is an indirect instrument used by psychologists to 
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examine both the structure of mental entities and the processes that operate on these 

entities. Two important theories of categorization -- prototype theory and exemplar 

theory -- assume that people categorize based on the similarity between the object to 

be categorized and the categories’ reference class (Goldstone, 1994b). As per 

prototype theories, an item is classified in reference class A and not B if it is more 

similar to A’s best representation for its class (A’s prototype) than it is to B’s (Posner 

& Keele, 1968; Reed, 1972; Rosch & Mervis, 1975). As per exemplar theories, an 

item is classified in reference class A and not B if it is more similar to all items that 

belong to class A than it is to those that belong to class B (Medin & Schaffer, 1978; 

Nosofsky, 1986). Among the several assumptions associated with Medin and 

Schaffer’s context model, three deal specifically with similarity: 

[…] 

2. The probability of classifying exemplar i into category j is an increasing 

function of the similarity of exemplar i to stored category j exemplars and a 

decreasing function of the similarity of exemplar i to stored exemplars 

associated with alternative categories. 

[…] 

4. The similarity of two cues along a dimension can be represented by a 

similarity parameter whose value can range between 0 and 1. 

5. The various cue dimensions compromising stimuli in some context are 

combined in an interactive, specifically multiplicative, manner to determine 

the overall similarity of two stimuli. The interactive rule has the potential to 

represent the effects of necessary features without the theory committing itself 

to the idea that category membership is defined in terms of singly necessary 

and jointly sufficient features. (p. 211-212) 

The use of similarity in cognition has been criticized. Similarity needs to be 

specified by attributes, attribute relations, and higher order relations. The use of 
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similarity as the source of categorization predicts quite well how items will be 

categorized. However, justifying a specific classification scheme based on similarity 

is relatively difficult. Proponents of theory-based categorization believe that it is 

deliberative and capable of such justifications. Proponents of similarity-based 

categorization believe that similarity is not limited to sensory properties and it does 

not require sophisticated knowledge such as that required for theory-based 

categorization (Goldstone, 1994b). 

Rips (1989) presented an experiment that showed that classification based on 

similarity may differ from classification based on rules. Subjects were presented with 

objects that had three dimensions where two of them did not vary and one was quite 

variable. An example of such tasks was to categorize a silver 3’-diameter circle and 

the possible categories were pizzas and quarters. Participants classified the object in 

the pizza class (variable category) but judged the objects to be more similar to the 

quarters class (fixed category). Rips (1989) showed a judgment dissociation where 

categorization decisions favored one category while similarity decisions favored 

another. Smith and Sloman (1994) tried to replicate this finding and concluded that 

similarity-based categorization is performed in an automatic manner, while rule-based 

classification is performed in a deliberative manner. The replication worked for trials 

that used a verbal protocol and that did not hint of time pressure. The authors 

suggested that participants employed rule-based classification when they felt 

encouraged to explain their reasons for categorization. When there was no verbal 

protocol, participants employed similarity-based classification. Goldstone (1994b) 

uses Smith and Sloman’s (1994) study as evidence against the claim that 
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categorization requires sophisticated processes. In the study, participants were aware 

of the correct categorization rule but still relied on similarity in order to make 

categorization judgments. It may be premature to support one view over the other. 

Similarity may well have sufficient power to ground many categorizations.  

Most similarity-based models assume that similarity can be specified as a 

distance metric in a multidimensional space. According to these models, any object 

can be represented by its coordinates in a similarity space. The closer the two objects 

are in this space, the more similar they are. Various multidimensional scaling 

procedures have been developed on the basis of this idea (e.g. Torgerson, 1952; 

Shepard, 1987). These methods use a matrix of pairwise distances between the 

objects to represent the objects in a space defined by a limited number of dimensions. 

Tversky (1977) has demonstrated that this metric assumption is sometimes violated. 

The metric assumption requires that the following three axioms be satisfied: 

minimality, symmetry and triangle inequality. The minimality axiom states that an 

object is most similar to itself than to other objects. However, there are occasions 

when an object is considered more similar to other objects than to itself. The 

symmetry axiom states that if a is similar to b, then b is similar to a. This 

directionality of the comparison plays an important role in the symmetry assumption. 

Similarity may depend on whether the object is the subject or referent of the 

comparison.  Usually less prominent objects are considered more similar to more 

prominent objects than vice versa. Mervis and Rosch (1981) mention the violation of 

this axiom but use the term “representativeness” instead of “prominence” (p.97). 

Another example of a violation of the symmetry axiom can be found in a 
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psycholinguistic study by Whitten, Suter and Frank (1979), which was intended to 

investigate synonymy norms. A strong directional effect was found as perceived 

synonymy was significantly affected by encoding order of the rated noun pairs. The 

triangle inequality axiom states that if a is similar to b and b is similar to c, then a 

should be similar to c. For example, a comparison between Jamaica and Cuba would 

result in considering the pair of countries similar based on their location. A 

comparison between Cuba and China would result in considering this new pair of 

countries similar based on their politics. However, it would be difficult to justify, 

based on the triangle inequality, that Jamaica and China are similar. Tversky 

proposed a feature matching model3 that does not need a metric assumption. The 

matching is a function of the similarities and dissimilarities of two objects.  

Goodman (1972) argued that similarity is too flexible and vague, that it 

requires a frame of reference. Tversky and Kahneman (1996) have argued that it is 

not necessary to define similarity because it can be assessed experimentally. The 

assessment of similarity can follow the methodology used to measure psychophysical 

qualities such as loudness, which are defined experimentally in terms of respondents’ 

judgments. Medin, Goldstone and Gentner (1991) agreed with the view of similarity 

as a flexible construct; but argued that the similarity comparison process could 

systematically fix similarity by setting constraints on similarity. Alignment in the 

comparison process could provide a reference for similarity judgments. Goldstone’s 

(1994a) study argued, by means of empirical data and computational modeling, for 

the inclusion of structural alignment in a theory of similarity. Similarity judgments 

                                                
3 Because the feature matching function is a contrasting function, this model is also known as the 
contrast model. 
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require alignment of the pairs of the compared scenes.  These individual alignments 

are influenced by the overall pattern of other emerging alignments. The comparison 

process may be able to predict the directionality of similarity judgments, with the 

subject of the comparison assumed to be the more salient item (Tversky, 1977). If 

directionality is stated in the instructions -- as in “a is similar to b” -- the properties of 

b (the subject of the comparison) are given more weight than those of a (the referent). 

Ambiguous features could be clarified during a comparison process (Medin et al., 

1991); participants assign more weight to common features and less weight to 

distinctive features in similarity judgments (Gati & Tversky, 1984; Tversky, 1977). 

Constraints on similarity could come from the context of comparison. Certain 

contexts increase the diagnostic value of particular features and affect the judgments 

of similarity more than in other contexts. Another study performed by Tversky (1977) 

demonstrated that the surrounding context affected the judgments of similarity 

between two objects4. Medin et al. (1993) performed a study that investigated 

ambiguity and context-specific features. Participants were asked to list common 

features between two stimuli. In one condition, stimulus B was compared with 

stimulus A alone and in another condition, B was compared with stimulus C alone. 

The authors proposed that activated properties of one entity in a comparison would be 

evaluated as candidate properties of the other entity. Stimulus B was construed so that 

its properties would be ambiguous, one property could be construed as exclusive of A 

and incompatible with C and another property as exclusive of C and incompatible 

with A. The results showed that participants interpreted B’s ambiguous properties 

depending on the context of the comparison. The fact that similarity judgments can 
                                                
4 A more elaborate summary of this study was previously presented in this paper. See p. 15 
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vary does not mean that similarity is unreliable as Goodman (1972) suggests. Medin 

et al. (1993) argue that entities participating in a comparison process jointly constrain 

one another and determine the outcome of a similarity judgment. Their paper -- 

“Respects for similarity” -- list the following statements that reiterate their position: 

1. Similarity comparisons involve mutually constraining property 

instantiation and interpretations.  

2. Similarity comparisons are informative and may be directional. 

3. The respects associated with similarity assessments are influenced by the 

comparison context. 

4. Similarity comparisons involve alignment driven by global constraint 

satisfaction. 

5. The contribution of a match to similarity comparisons depends on the 

overall pattern of correspondences between entities. (p. 272) 

I believe that two distinct processes can be used to categorize common objects: rule-

based and similarity-based categorization. The former process is applied under 

conditions that require elaborate judgment and the latter process is a heuristic type 

approach. However, this should not diminish the relevance of the construct of 

similarity. On the contrary, this construct should be further investigated because of 

this tendency to use similarity in certain situations. Reliable measures of similarity 

should be constructed. Further, it has been proposed that similarity is a construct not 

exclusive to categorization. Other areas of cognition might be influenced by 

similarity. 

People make judgments of the likelihood that an object belongs to a class by 

assessing the similarity between that object and an exemplar from that class 

(Kahneman and Tversky, 1972). In likelihood judgments, similarity appears to 

perform the function of a heuristic. This representativeness heuristic can lead to 
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departures from normative expectations that subjective probabilities are predicted to 

obey. The representativeness heuristic can produce biased results, because the factors 

that affect similarity do not necessarily affect likelihood. Consequences of the use of 

the representativeness heuristic are: (a) Biases in considering the effect of sample 

size. People assess the likelihood of a sample result by its similarity to the 

corresponding parameter disregarding sampling theory (Tversky & Kahneman, 1974). 

(b) Misconceptions of chance. People judge the sequence of coin tosses H-T-H-T-T-

H to be more likely than H-H-H-T-T-T because the former appears more random 

(Tversky & Kahneman, 1974). (c) Insensitivity to prior probability of outcomes. In 

problems such as the ones that present sets composed of different proportions of 

lawyers and engineers, when subjects are asked to predict a person’s occupation 

based on a description of the person, the person is assigned to the occupation for 

which the match between personal description and occupation stereotype is obtained 

disregarding proportion information (Kahneman & Tversky, 1973). (d) 

Overestimation of concurring events. This bias is commonly known as the 

conjunction fallacy that occurs in Linda-like problems, where people believe that the 

likelihood of that two specific conditions is greater than one general one because the 

two conditions appear more representative of Linda’s description, even though it is 

mathematically less likely (Tversky & Kahneman, 1983). 

Medin, Goldstone and Markman (1995) have suggested that similarity 

judgments and decision making share component processes: 

 (a) Weighing of dimensions. Tversky’s seminal paper “Intransitivity of 

preferences” (1969) suggested that when choosing among multidimensional options, 
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people evaluate and compare options in reference to a single dimension. People do 

not integrate multiple dimensions when making a choice. A rational decision rule that 

selects the option with the highest attribute value can yield intransitive preferences 

when more than one dimension is relevant to the decision maker. One of the 

paradigms used by Tversky provided participants with a choice between two options 

that varied in the amount and the probability of winning some or no money. Small 

differences that showed a decrease in monetary reward with an increase in probability 

resulted in favoring the choice with the higher reward. However, when this difference 

was bigger, participants favored the choice with the higher probability resulting in 

intransitivity of choice. A study performed by Goldstone and Medin (as cited by 

Medin et al., 1995) found intransitive similarity judgments. Participants were asked to 

select which of two alternatives was most similar to a standard. One of the available 

strategies was to base selection on the largest dimensional difference. In one case the 

strategy led participants to choose a stimulus based on the color dimension; in another 

case, based on the size dimension; and in a third case, based on the angle dimension. 

This strategy induced intransitivity in similarity. Both of these examples of decision 

making and similarity judgments display value-specific dimension weighing in which 

small differences between choices in a specific dimension have a smaller effect than 

large differences on the same dimension.  

(b) Common Scale. Luce and Raiffa (1957) proposed that preference among 

gambles might be mapped into a numerical utility function. Examples of framing 

effects have shown that preferences are not always converted into a single scale 

(Kahneman & Tversky, 1979). A gain of $100 is not perceived equally as a loss of 
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$100. Losses appear larger than gains. In similarity judgments, prototype and 

exemplar theory use featural overlap as a common metric. Similarity between two 

objects increases as function of the number of features they share and decreases as a 

function of mismatching features. However, different methods for obtaining 

judgments produce different values. In similarity judgments, participants assign more 

weight to common features and less weight to distinctive features. In dissimilarity 

judgments, more weight is give to distinctive features (Gati & Tversky, 1984; 

Tversky, 1977). Theories for both decision making and similarity judgments have 

proposed the use of a common scale for comparisons. These last two examples 

suggest that this is not necessarily so.  

(c) Reference Points and Asymmetry. A study by Lowenstein (as cited by 

Medin et al. 1995) found that reference points determine the value of a purchased 

good. People requested a higher compensation when they agreed to delay the 

reception of a purchased good than what they offered to pay for a rush delivery of 

said good, resulting in asymmetries in judgment. Similarity comparisons can also 

produce asymmetries. The subject of the comparison often appears to be more salient 

than the referent and its features are given more weight (Tversky, 1977). The referent 

is judged more similar to the subject than vice versa. For example, people rate the 

similarity of China to North Korea to be less than the similarity of North Korea to 

China. The parallels described in (a), (b) and (c) suggest a correspondence between 

similarity judgments and decision making. 
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Dimensionality in Categorization Judgments 

Research in psychology is based on the assumption that stimuli are perceived 

and judged in a dimensionally organized fashion (Krantz & Tversky, 1975). A 

category can be represented as a collection of points in multidimensional space, 

where each point represents a category member. The multidimensional space 

represents one dimension for each dimension of similarity among the category 

members. A categorization judgment is made by processing a subset of the most 

salient dimensions. In fact, a series of categorization studies performed by Medin, 

Wattenmaker and Hampton (1987) suggest that people prefer to use a subset 

containing only one dimension.  

An example of unidimensional categorization is the experiment in which the 

subjects were presented with four countries that naturally formed two clusters 

(Tversky, 1977). Context effects increase the salience of one dimension over another. 

Panel A in Figure 2 shows how the countries are grouped based on the religion 

dimension. Panel B shows how the countries are grouped based on the location 

dimension. 

Figure 2 

                       
Figure 2. Dimensionality in Categorization Judgments: Panel A presents natural groupings based on 
the religion dimension. Panel B presents natural groupings based on the location dimension. 

B A 
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Categorical Structure 

Rosch et al. (1976) have argued that categories are formed to communicate the 

contingency structure of attributes in the real world. Categorical structure is a 

measure of within- and between-category association. 

Research performed by McCloskey and Glucksberg (1978) suggest that 

natural categories do not have clear boundaries that separate category members from 

non-members. Participants were give exemplar-category name pairs that varied in 

typicality and were asked to verify category membership. Participants were consistent 

within sessions and amongst themselves for highly typical objects (chair-furniture) 

and for unrelated objects (cucumber-furniture), but not for intermediately typical 

items (bookends-furniture). 

Homa and Cultice (1984) performed several studies in which categorical 

structure was varied. A prototype was created by randomly assigning and connecting 

dots within a grid with a line. Moving each dot as per a previously designed statistical 

rule produced members of the same category. The degree of categorical structure was 

determined by how far each dot was moved. Their results showed that correct 

classification of novel exemplars is strongly and negatively correlated with degree of 

distortion of the exemplar from their respective prototype. When feedback was given 

regarding the correctness of classification, categories consisting of low distortions 

were learned faster than those consisting of large distortions. The authors concluded 

that highly structured material should be rapidly learned. A study by Posner, 

Goldsmith and Welton (as cited by Posner & Keele, 1968) had similar findings. As 
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the variability amongst instances of a category increased, the rate at which a category 

was learned decreased.  

There are two facets of categorical structure: (a) the relation of members of a 

category to each other, and (b) their relation to items outside the category. This study 

is interested in the former. I view categorization as a process that is not solely 

influenced by the individual instances that belong to a category but by the properties 

these instances share within their reference class. Different categories can vary in 

their organization of exemplars. The degree of within-category associations has been 

proposed as a theoretical property of categories (Joelson & Herrmann, 1978). Posner 

and Keele (1968) referred to tight concepts as those with low variability and loose 

concepts as those with high variability.  

Figure 3 
 
  

      
 
Figure 3. Examples of loose and tight categories represented in semantic space: Panel A presents a 
loose category (“home repair”). Panel B presents a tight category (“author”).  
 

Imagine all members of a category represented in a semantic space (See 

Figure 3). Categories with tight structures will have items that are semantically close 

to each other. A tight structure is one that has high inter-item similarities. Categories 

with loose structures will have items that are semantically far from each other. A 

B A 
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loose structure is one that has low inter-item similarities. It is foreseeable that the 

degree of within-category associations could influence categorization judgments. 

Before discussing this hypothesis, I will propose a new approach to measure 

categorical structure. 

Semantic distance 

Rips, Shoben & Smith (1975) performed a series of experiments exploring 

semantic distance. Following a multidimensional scaling analysis of ratings for 

semantic distance, they concluded that this metric could be represented as Euclidean 

distance in a semantic space. Additionally, semantic distance was able to predict 

response time in a categorization task and choices in an analogy task. 

The semantic similarity5 for two words can be assessed by analyzing the set of 

documents in which these words occur and assigning a metric based on their semantic 

content. Word similarity measures are computational means for calculating the 

association strength between terms. They can be obtained in two forms: (a) By 

performing a relationship analysis of a thesaurus (or an ontology). Miller (1995) 

developed a method that quantifies similarity relationships based on information from 

the manually crafted WordNet thesaurus. The thesaurus is represented as a hierarchy 

and its terms (words) are represented as nodes. Similarity is the minimal distance 

between the term nodes. In theory, this method can be used with any ontology. (b) Or 

by analyzing co-occurrence statistics in a text corpus. One line of work in the 

information retrieval literature considers two words as similar if they occur often in 

                                                
5 Throughout the paper I will use the terms similarity and semantic similarity interchangeably. 
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the same documents (Widdows & Dorow, 2002; Dorow & Widdows, 2003). These 

techniques are based on statistics, information retrieval and computational linguistics. 

The use of ontologies such as WordNet to investigate semantic similarity has 

been criticized due to its manual nature. Domains are rapidly changing (i.e. 

technology) and the means required to recognize and classify new terms is resource 

intensive. Researchers would need to update their ontologies constantly to reflect 

current usage of the English language. The use of co-occurrence statistics in a text 

corpus bypasses this problem. There is no need of human resources to recognize and 

classify new terms. Once the appropriate corpus is obtained, a computer program can 

analyze association strength between terms even when they are new.  I will be using 

this last approach to calculate a word similarity measure for all stimuli used in this 

study. Particularly, I will be using the Infomap software provided by the 

Computational Semantics Lab from Stanford University (n.d. a). This software builds 

a multidimensional space -- called WORDSPACE -- for a text corpus (Computational 

Semantics Lab from Stanford University, n.d. b).  Terms are represented as word 

vectors that encode information about how the word is distributed over the corpus. 

Each word vector represents a list of coordinates that point towards a specific location 

in a multidimensional vector space. A term document matrix can be created, where 

rows represent terms, columns represent documents and cells specify how many times 

a term occurred in a particular document. A problem usually encountered when 

building such matrices is that similar words are seldom used in the same document. 

The Infomap software instead builds a co-occurrence matrix as in Figure 4, where 

rows represent special content bearing terms, columns represent terms and cells 
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specify how often regular terms co-occurred with content-terms (within a pre-

established window). To differentiate content-terms with regular-terms, Infomap 

selects the 1,000 most frequent words in a corpus as content-terms, excluding 

stopwords. A stopword is a frequently used word, such as “a” or “the”, that is filtered 

out prior to the processing of natural language data. Stopwords are usually not used in 

search engine queries nor indexed in online documents.  

Figure 4 

 
Figure 4. Hypothetical example of a Co-Occurrence Matrix, based on the second figure presented in 
“Infomap algorithm description.” (Computational Semantics Lab from Stanford University, n.d. b). 
 

Note that the dimensionality of the WORDSPACE at the moment is quite high 

and has at least 1,000 coordinates. The Infomap software is able to reduce the number 

of dimensions by means of latent semantic analysis6 (LSA). The reduced number of 

dimensions used for this study is 1007. If two dimensions have an equivalent context, 

LSA combines these two axes into a single “latent” axis. This scaling method permits 

words with similar meaning to have similar vector representations even though they 

                                                
6 Latent semantic analysis is also called latent semantic indexing or singular value decomposition. 
7 This is also the default number of dimensions for the Infomap software. A different number of 
dimensions can be calculated by performing additional singular value decomposition analyses. It 
would require licensing a different software: SVDPACKC (Retrieved February 5, 2008, from 
http://www.netlib.org/svdpack/index.html) 
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may have never co-occurred in the same document. As a result, a more accurate 

representation of the relationship between words is created  (Steyvers, Griffiths and 

Dennis, 2006). LSA is one of several methods used to analyze document collections. 

For example, the Hyperspace Analog to Language (HAL) model uses word vectors 

with coordinates that represent weighted co-occurrence values between words (Lund 

& Burgess, 1996). LSA uses word vectors with coordinates that represent co-

occurrence between words and the documents they occur in. The assignment of 

coordinates in this manner implies that HAL does not use documents as boundaries 

and LSA does. Another example is probabilistic topic models, which assume that a 

document is composed of a collection of topics. These models represent words using 

topics. The topics can be identified manually or by assigning the topic label to the 

word with the highest probability8. LSA represents words as vectors in a multi-

dimensional space. Both LSA and probabilistic topic models use words and 

documents and are considered to be “similar in spirit” (Steyvers et al., 2006, p. 331).  

Word similarity is obtained by calculating the cosine of the angle between two 

word vectors as specified in equation 1:  

! 

cos a,b( ) =
a " b

a b
 [1] 

One word, Α, is represented by vector  

! 

a  with coordinates 
  

! 

a
1
,a
2
,L,a

n[ ] ; a 

second word, B, is represented by vector 

! 

b with coordinates   

! 

b
1
,b
2
,L,b

n[ ] . The 

cosine similarity is obtained by dividing the scalar product by the norms of vectors 

! 

a  

and 

! 

b. The scalar product between vectors 

! 

a  and 

! 

b is calculated by the sum of 

                                                
8 For example, the word play is represented with topic 077 – music – in a specific document and is 
represented with topic 082 – literature – in another document (Steyvers et al., 2006, Figure 1, p. 330). 
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products of their coordinates (  

! 

a " b = a
1
b
1

+ a
2
b
2

+L+ a
n
b
n ). The norm of a vector is 

calculated by obtaining the square root of the sum of its squared coordinates 

(  

! 

a = a
1

2
+ a

2

2
+L+ a

n

2

). The use of the cosine of the angle between two word 

vectors indicates that it is the direction – not the length -- of the vectors that is 

relevant to calculate word similarity. Most cosines between words are positive, 

though small negative values are common. The study will use stimuli with word 

similarities between [0, 1], where 1 signifies high similarity and 0 signifies little 

similarity.  

Family resemblance is a construct that denotes the extent to which category 

members share attributes with other category members. Rosch and Mervis (1975) 

showed that items that have the highest family resemblance also have the fewest 

attributes in common with members of related contrast categories. This is not the case 

with the similarity measure used in this study. An item can have high similarity 

correlations with all members in its category but there are no restrictions as to 

whether that same item should have low similarity correlations with members of other 

categories.  

Research has demonstrated that words that are semantically similar usually 

occur with similar distributions and in similar contexts (Miller and Charles, as cited in 

Widdows & Dorow, 2002) leading to similar word vectors. In order to create the 

stimuli for each category, a list of words needs to be extracted using the notion of 

semantic similarity. The Infomap software uses an incremental algorithm for 

extracting categories of similar words as specified by Widdows and Dorow (2002): 
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Let 

! 

A  be a set of nodes and let 

! 

N A( ), the neighbors of 

! 

A , be the nodes which 

are linked to any 

! 

a" A. (So   

! 

N A( ) = U
a"A N A( ).) 

The best new node is taken to be the node 

! 

b" N A( ) \ Awith the highest 

proportion of links to 

! 

N A( ). More precisely, for each 

! 

u" N A( ) \ A , let the 

affinity between 

! 

u  and 

! 

A  be given by the ratio 

! 

N u( )"N A( )
N u( )

 

The best new node 

! 

b" N A( ) \ A  is the node which maximizes this affinity 

score. (p. 1095) 

This algorithm can be explained in five steps. First, a seed word is fed to the 

algorithm. Second, it starts counting the co-occurrence of words and seed words 

within the corpus. Third, it calculates the affinity score upon these counts to select 

new seed words. Fourth, steps 2 and 3 are iterated n times. Fifth, it uses the affinity 

score to rank words for category membership. For this study, a list of seed words was 

created and manually fed into the algorithm. This was done to control the types of 

categories used as stimuli (e.g. types of categories are occupation, location, hobby or 

sport). 

The co-occurrence statistics approach is also used for document retrieval 

systems. Scatter/Gather (Pirolli, Schank, Hearst & Diehl, 1996) is a cluster-based 

browsing system for document collections. It uses a measure of inter-document 

similarity to cluster documents. Documents are represented as vectors, with each 

vector coordinate associated with a unique content word (previously defined in the 

document collection). The similarity of two documents is computed by the cosine of 
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the angle between the two vectors representing each document.  They call this the 

cosine measure or normalized correlation. As a side note, the Scatter/Gather interface 

has a similar purpose as that of tag clouds. They both provide an interactive method 

to support the browsing of a text collection by means of a summary of the content of 

the said text collection. 

Table 1 

 

 

Table 1. Table 1-A (top panel) presents word-to-word similarities for the category “home repair”. 
Table 1-B (bottom panel) presents word-to-word similarities for the category “author”. The first 
column in each table represents the similarity vector for this category (this vector is highlighted with 
Boundary V). Each entire table represents the similarity matrix for this category (the matrix is 
highlighted with Boundary M).  
 

The organization of exemplars within a category can be represented by means 

of a similarity vector or by a similarity matrix. For each category, semantic distances 

between exemplars and the category label can be computed. These distances can be 

B 

A 
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arranged into a similarity vector with words as coordinates. For each category a 

matrix of pairwise similarities can be computed with cells within the matrix 

representing word-to-word semantic distances as obtained through LSA. Table 1 

presents examples of vectors and matrices for two categories. A measure of central 

tendency for both vectors and matrices can be calculated. Categorical structure will 

be operationalized by this measure.   

Figure 5 
 

  

           
 

             
 
Figure 5. Pictorial depictions of information represented by a similarity vector and matrix. A similarity 
vector represents the semantic distances between the category label and the category members, as seen 
in Panels A and B. Panel A presents a loose category (home repair). Panel B presents a tight category 
(author). A similarity matrix represents the semantic distances within all members of a category 
(including its label), as seen in Panels C and D. Panel C presents a loose category (home repair). Panel 
D presents a tight category (author).  

 

B A 

D C 
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A category’s similarity vector and matrix are two different representations of 

categorical structure. A vector represents structure by computing the relationship 

between members and the category label. A matrix represents structure by computing 

the relationship within all members of the category (including its label). The 

difference between these two methods can be pictorially illustrated (See Figure 5). 

One could claim that a matrix’s mean of pairwise similarities is a stronger measure of 

categorical structure because it takes into account all elements of a class and all 

relationships between these elements. One could also claim that a vector’s mean of 

similarities is a better measure of categorical structure because of its simpler 

computation and that people may not exhaustively compute all inter-item similarities. 

It is apparent, based on their mathematical definition, that these two measures are 

highly correlated. This paper will use both measures in all related analyses in order to 

compare them.   

It has been argued that similarity is too flexible. Similarity is flexible. Two 

items may have different degrees of similarity depending on the context in which they 

are compared. For example, items such as “cotton” and “drip” could be judged to be 

more similar if they are compared in a medical context. The use of LSA allows 

researchers to make provision for such flexibility. The semantic distance for this pair 

is .68 in a general text corpus such as the New York Times. The semantic distance is 

.75 in a medical text corpus such as the MEDLINE database9. It has been argued that 

                                                
9 The New York Times corpus spans from 1994 through 1996, it was obtained from the North 
American News Text Corpus published by the Linguistic Data Consortium with approximately 143M 
words and 370K documents (Widdows, 2003). The MEDLINE database is a collection of 270 medical 
journals spanning from 1987 through 1991. This collection is also known as the Ohsumed corpus of 
medical documents, which contains approximately 40M words and 230Kdocuments (Hersh, Buckley, 
Leone, & Hickman, 1994; Widdows, 2003). 
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there is no consensus on what similarity is. The use of semantic distance as measured 

by LSA permits a narrow definition for similarity. Similarity between two items is 

defined by the usage of those items in a predetermined language and, if necessary, a 

predetermined domain.  

The role that dimensionality played in categorization was previously 

mentioned; only a subset of dimensions may be attended to in order to group similar 

objects. This selective process relies on the assumption that stimulus dimensions are 

separable (Garner, 1978). Dimensions of real-world entities are not always 

independent of one another. The importance of scaling solutions is they suggest that 

the multiple dimensions that describe an entity may be reduced to a single semantic 

distance, regardless of their interconnectedness while preserving as much as possible 

the covariation structure of words and documents. 

Categorization, Tagging and Tag Clouds 

Social book marking tools permit individuals to create metadata for websites 

they encounter online. This activity is called tagging. Tagging-based systems enable 

users to assign keywords and/or insert their own explanations to web resources in 

order to organize these resources (Halvey & Keane, 2007). Tagging could be 

considered as a categorizing mechanism. Once a webpage that requires bookmarking 

is encountered, the person compares the content of the page to different concepts and 

chooses one (or more) of these categories as tags. Individuals are able to organize and 

display a document collection with meaningful labels by using tags. Tagging is a 

more flexible and convenient method of categorizing for several reasons: (a) the 

person can assign multiple tags to a webpage, thus the webpage or document can 
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belong to more than one category (this overcomes the limitation of traditional 

hierarchically organized folders that most browsers offer), (b) tags can be suggested 

based on the semantic content of the webpage, and (c) if the specific webpage has 

been previously tagged by others, the system can also suggest what tags are related. 

Tagging is also a more complex method of categorization because a person needs to 

consider additional elements when assigning a tag. If a webpage is assigned a generic 

tag, akin to a basic-level category, the documents contained in this tag can be quite 

numerous. If this is the case, then the webpage may be difficult to find in the future. 

The person also needs to consider the architecture supported by the tagging site. 

Humans start by learning basic categories, for example, dogs. As they develop, they 

learn sub- and super-ordinate categories. For example, dachshunds and beagles are 

types of dogs and dogs are types of mammals. The cognitive system is able to build 

taxonomies naturally. A computer system is not and will require user effort to make 

the changes and re-organize the tags in a taxonomy.  

Tag clouds are text-based visual depictions of content tags that belong to a 

person’s or group’s bookmarks. Tag importance – or frequency of occurrence – is  

usually emphasized by the use of font size, although factors such as order, color and 

boldness have been also used to denote importance. Trends in social software have 

increased the popularity of tag clouds. Websites that employ tag clouds provide users 

with a content overview of its document repository. For example, the photo sharing 

site – flickr.com (Marlow, Naaman, Boyd and Davis, 2006) – allows users to upload 

personal images to make them publicly accessible. Uploaders can organize pictures 

by tagging them. Flickr uses a tag cloud to visualize the most popular tags and 
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provide users an overview of the type of images it contains. Another example is the 

social bookmarking website del.icio.us. Users organize bookmarked websites by 

tagging them. Del.icio.us also uses tag clouds to provide overviews of the type of 

websites it provides links to10. In social bookmarking sites, individual tags are 

clickable and link to subsets of repository content. For example, clicking on a tag for 

“Seattle” will link to a subset of tags and websites related to the “Seattle” tag. Tag 

clouds function as both summaries of the information they represent and as means of 

topical browsing. Tagging systems offer two different navigation mechanisms of a 

document repository. First, a user can click on the name of other users in order to see 

their bookmarks and can get a sense of the topics of interest and/or expertise of a 

particular user. A tag cloud can provide a meaningful reflection of the topics of 

general interest of the tag cloud owner (Millen, Feinberg & Kerr, 2005). Second, a 

user can click a particular tag to see all bookmarks that share that common tag and 

can browse this new set of bookmarks to search for new sources. By browsing 

specific people and tags, users can find people that share common interests and new 

relevant websites (Golder & Huberman, 2006). A case study of enterprise-wide social 

bookmarking performed by Millen, Feinberg and Kerr (2005) found that during the 

initial usage period of their company’s social bookmarking system, 42 percent of its 

300 users created bookmarks and 57 percent navigated to an original document 

tagged by others. As a note of caution, the social nature of tagging systems has the 

potential of creating confusion during browsing and missing sources of interest. 

                                                
10 Following are the direct links to flickr’s and del.icio.us’ tag cloud webpages. Retrieved on February 
4, 2008, from:  
http://www.flickr.com/photos/tags/ 
http://del.icio.us/tag 
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Research has shown that categories do not necessarily have clear boundaries 

(McCloskey & Glucksberg, 1978), add to the mix the fuzziness of linguistic 

boundaries and the tagging system could result in a collection of idiosyncratic 

personal categories in addition to basic categories (Golder & Huberman, 2006). 

Tag clouds are prime candidates for stimuli in categorization research. The 

elements (tags) that compose these visualizations are a byproduct of categorization 

processes. Despite the increasing popularity of tag clouds, there have been few 

experimental studies evaluating their effectiveness (Rivadeneira, Gruen, Muller & 

Millen, 2007). An additional goal of this paper is to provide guidelines on how to 

visually present tags so that the information they represent can be accurately 

transmitted.  

Questions of Interest, Predictions and Hypotheses 

I am arguing that the measure of categorical structure presented in this study is 

a measurable construct based on the use of the English language. This proposition can 

be assessed by examining whether the measures obtained through a latent semantic 

analysis of an English corpus translate unto actual judgments. To test this idea, I have 

designed three experiments aimed at exploring judgments of category membership. 

The stimuli used in all experiments share the same framework: tag clouds. In 

Experiment 1, participants perform category retrieval tasks after each stimulus is 

presented. A test of memory recognition follows each categorization judgment. 

Experiment 2 simultaneously presents a stimulus and asks participants to perform a 

category verification task. Confidence judgments are collected for each categorization 

judgment. Experiment 3 simultaneously presents a stimulus and asks participants to 
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perform a category retrieval task. These experiments will test how categorical 

structure and different formats affect judgments of category membership.  

Categorical Structure 

To the extent that categorization is based on categorical structure, it should be 

more specifically affected by manipulations of categorical structure. Differences in 

observed accuracy of categorization for classes with loose structure and those with 

tight structures would foretell a categorization process rooted on categorical structure. 

I hypothesize that there will be a correspondence between the degree of categorical 

structure and judgments of category membership. 

Format 

Salience of particular dimensions can influence selective attention resulting in 

changes in the degree of judged similarity between two items (Medin & Shaffer, 

1978). Research on attention has found an effect of reading direction. English-

speaking participants show a left-to-right bias and Arabic-speaking participants show 

a right-to-left bias (Spalek & Hammad, 2005). Such biases suggest that the layout of 

items on a screen may result in increasing the attention of particular items over 

others. Research has suggested that prominence is a variable that affects judgments of 

similarity (Tversky, 1977; Mervis & Rosch, 1981). Font size has been studied as a 

variable that affects the performance of signal words in warnings. A study by Adams 

and Edworthy (1995) found an increasing linear relationship between font size and 

perceived urgency. Words with larger fonts may be considered as more prominent 

than words with smaller fonts. It has been argued that categorization is based on 
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similarity and consequently it should be sensitive to factors that influence similarity, 

such as prominence and selective attention. Different font sizes and layouts are 

hypothesized to produce differences in judgments of category membership. 
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Chapter 2: Experiment 1 

In Experiment 1, participants perform category retrieval tasks after each 

stimulus is presented. A test of memory recognition follows each categorization 

judgment.  

Methods 

Participants 

University of Maryland undergraduate students (n=17; 6 males and 11 

females) and IBM employees (n=13; 10 males and 3 females) participated in 

Experiment 1. Employees volunteered and students received course extra credit. All 

subjects had normal or corrected-to-normal vision. Participants were run individually 

in single sessions lasting approximately 30 minutes. 

Materials 

Materials included 52 tag clouds that varied among some dimensions of 

format and were presented in PC-based equipment using MediaLab research software 

(Jarvis, 2006). 

Font Type 

A study performed by Mansfield, Legge and Bane (1996) found a small 

advantage of a fixed-width, sans-serif font over a proportionally-spaced serif font for 

subjects with low vision. For subjects with normal vision, the differences were 

slighter, with the proportionally-spaced serif font having an advantage for reading 

speed. The experiments will control for people with normal vision. Additionally, the 
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study is concerned in controlling for reading comprehension rather than reading 

speed. The font that will be used in the tag cloud stimuli is “Gill Sans”, which is a 

proportionally-spaced sans-serif font. 

 

Contrast Polarity 

Research in psychophysics for normal vision has found that contrast polarity 

has little effect on reading (Legge, Pelli, Rubin, & Schleske, 1985). Contrast polarity 

will not be manipulated; all stimuli will be black-on-white, black fonts on a white 

background.  

Layout 

Figure 6 presents the different layouts used in the experiment. A study 

performed by Vitu, Kapolua, Lancelin and Lavigne (2004) found a systematic bias of 

the eye behavior towards the center of the visual display. They proposed that this 

systematic deviation is resource efficient, as eye movements should be contained 

within the part of the visual configuration where stimuli are displayed. A layout was 

created with the largest word located towards the center of the tag cloud, the Spatial 

Layout (Feinberg’s algorithm11). Research has shown that reading direction has an 

effect on word recognition. Rivadeneira et al. (2007) performed a memory study 

using spatial tag clouds where they investigated what effects the different locations 

within the tag cloud had on a free recall test. A quadrant effect was found, words 

located on the top-left quadrant were retrieved more frequently than other areas in the 

tag cloud. This effect is usually expected on stimuli that require westernized reading 

                                                
11 This algorithm is proprietary to IBM. I have been able to use it to create my stimuli thanks to my 
collaborators at the Collaborative User Experience group from IBM Research: Daniel Gruen, Michael 
Muller, David Miller and the algorithm creator, Jonathan Feinberg. 
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(left-to-right and top-to-bottom).  Battista and Kalloniatis (2002) demonstrated that a 

reading direction effect is a consequence of attending to a particular area of visual 

space as part of the normal reading habit. Another effect of reading direction was 

shown in a study by Morikawa and McBeath (1992) where results provided strong 

evidence that reading habits can influence directionality in motion perception 

(participants used to Westernized-reading exhibited a bias to experience leftward 

movement with ambiguous motion stimuli). The Sequential Layouts facilitate left-to-

right reading and the Single Column List Layout facilitates top-to-bottom reading. In 

addition, these types of layouts are among the most common types found in the 

industry. The Sequential Layout with Alphabetical Sorting is found on flickr 

(Marlow, Naaman, Boyd and Davis, 2006) and Josuha Schacther’s del.icio.us (Golder 

& Huberman, 2006). The Sequential Layout with Frequency Sorting and the Single 

Column List with Frequency Sorting are features available to del.icio.us’ users. The 

Spatial Layout is used in IBM’s enterprise-wide bookmarking site.  

Note that the Single Column List with Frequency Sorting has a scrollbar on 

the right. The initial monitors used for Experiment 1 were small and did not permit 

the presentation of this layout in a single screen. Participants needed to scroll through 

this tag cloud in order to see all words presented.  
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Figure 6 

 
Figure 6. Figure 6 presents an example stimulus formatted based on the four different layouts used: 
Sequential with Alphabetical Sorting, Sequential with Frequency Sorting, Spatial Layout and Single 
Column List with Frequency Sorting. Note that there are four different categories present: doctor, 
winery, travel and human rights – in decreasing order of prominence. 
 

Category, Words and Tag Clouds 

Fifty-two categories and 764 words were obtained from the Information 

Mapping Project (Computational Semantics Lab from Stanford University, n.d. a). 

Categories are obtained by the distribution of co-occurrences between a word and 

some set of content-bearing terms. The document collection used for this study is the 

New York Times corpus spanning from 1994 through 1996, from the North American 
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News Text Corpus published by the Linguistic Data Consortium with approximately 

143M words, 370K documents (Widdows, 2003). 

 Four categories appeared per tag cloud; one related to an occupation and the 

other three were either hobbies or travel locations. The category seed was not used as 

stimulus. Ten words per category were used for each tag cloud, for a total of 40 

words. A tag-per-person analysis for repeat users of IBM’s enterprise-wide social 

bookmarking site through April of 2006 reveals a mean of 39 tags/person 

(Rivadeneira et al., 2007). Each category was associated with four distractor words to 

be used in the memory recognition test. One of these distractors was semantically 

unrelated to the category, two were semantically related and one was the category 

seed12. Thirteen tag clouds were created in all four layouts for a total of fifty-two tag 

clouds.  

Design and Procedure 

Experiment 1 consisted of three phases: a presentation phase, a category 

retrieval phase, and a recognition phase. Initial instructions welcomed the participants 

and provided them with the definition of a tag cloud and a general example of one. A 

tag cloud was said to represent the general interests of a person who was named “the 

tag cloud owner”. Subjects performed one practice trial and twelve experimental 

trials. Participants were informed that no data would be collected during the practice 

trial. After the practice trial, participants were given the opportunity to ask questions 

before the experimental trials started. Participants were further informed of the details 

of the experimental procedure. Each trial encompassed all three phases and started 

                                                
12 Throughout the paper I will use the terms „category seed“ and „ category label“ interchangeably. 
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with the presentation of a blank screen for a period of 1 s. The presentation phase 

presented a tag cloud for a period of 30 s. Participants were told to study each tag 

cloud and try to make an inference as to what were the main interests of the person 

being represented in each tag cloud. In addition, they were told to remember the 

individual words presented in the tag cloud for a word recognition test. Participants 

were not informed that there were four main interests (categories) listed in each tag 

cloud. The category retrieval phase was self-paced but had a maximum allowable 

time of 120 s and participants were informed of this time limit in the instructions. 

This phase asked the participants to list the main interests of the tag cloud owner. 

Responses were collected in an essay form and participants had complete editorial 

freedom. They could use sentences or single words as descriptors and could list as 

many interests to better describe the tag cloud owner. The instructions also informed 

participants that once they had finished responding, they could click a continue link in 

order to go to the next phase. The category retrieval phase was also a distractor task 

and was meant to eliminate any recency effects for the memory test that followed. 

The recognition phase consisted of an old-new recognition test. It contained 16 

targets, 12 semantically related distractors, and 4 unrelated distractors. Among the 12 

semantically related distractors: 4 words were the category labels, 4 had high 

semantic similarities (similarity > .80) and 4 had medium semantic similarities (.60 > 

similarity > .80). The recognition phase presented one word at time, participants had 

to press the button labeled “True” if they thought the word had appeared in the tag 

cloud and the button labeled “False” if they thought the word had not appeared in the 

tag cloud. Pressing these buttons would allow participants to advance through the 
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recognition phase. This phase was also self-paced. However, if participants delayed 

their responses (no response after a period of 5 s), a warning message would appear 

advising participants to respond faster. Once the recognition phase was finished, 

participants were notified that the next trial was to begin. These three phases repeated 

until all trials were completed. See Appendix A for a diagram of an example trial. 

Several factors were manipulated in this experiment. First, categorical 

structure varied among the categories presented. The measures of central tendency for 

the similarity vectors ranged between .572 and .957 and between .761 and .947 for 

the similarity matrices. Second, the tag cloud layout was manipulated. Each tag cloud 

was represented in four different fashions: Sequential with Alphabetical Sorting, 

Sequential with Frequency Sorting, Spatial Layout and Single Column List with 

Frequency Sorting (See Figure 6). Third, font size was manipulated into five different 

levels (F1 to F5, big to small) for the Sequential and Spatial Layouts. Font 

manipulation influenced the perceived prominence for each category. Although 

technically prominence is not a direct manipulation, it is a key variable of interest and 

I will refer to it as a manipulation. This manipulation was performed in systematic 

manner so that there would be three different levels of category prominence (high, 

medium and low) in every tag cloud. This prominence variable is observable in 

common tag clouds, where the most popular or most frequent terms are highlighted 

by means of either font size, weight or color  (Kaser & Lemire, 2007; Rivadeneira et 

al., 2007). The assignment of the different levels of Font Size to each of the forty 

words in the tag cloud was translated into frequency of usage for each word. Thus 

level F1 not only represents the word with the largest Font Size but also the most 
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frequent occurring keyword in the tag cloud. For example, the word “patient” seen in 

Figure 6 is the most frequent term associated with documents tagged “patient” by the 

tag cloud owner. This frequency/font-size information was additionally used to 

construct the frequency layouts: Sequential with Frequency Sorting and Single 

Column List with Frequency Sorting. Table 2 presents how each level of prominence 

was manipulated. For example, the high prominent category contained one word with 

the largest font (F1), two words with the second largest font (F2), three words with 

the third largest font (F3) and four words with the second to smallest font (F4). Each 

tag cloud had four categories: one category with high prominence, two categories 

with medium prominence and one category with low prominence. Although the 

Single Column List with Frequency Sorting does not have a Font Size manipulation, 

it has a prominence manipulation. Prominence is operationalized in this case by 

sorting order. Words that appear higher in the list are those that otherwise would have 

larger fonts in the other three layouts. For example, the words “patient”, “physician”, 

“nurse”, “reservations” and “vineyards” are the five most largest words in the 

Sequential and Spatial Layouts. They correspond to the high prominent category 

“doctor” and to the two medium prominent categories “travel” and “winery”. These 

five words are the top five words in the Single Column List Layout. 
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Table 2 

 Prominence 
 Low Medium High 

Font Size  (human rights)  (travel) (winery)  (doctor) 
     

F1    patient 
F2    physician 

  reservations vineyards nurse 
F3  Trips wines hospital 

  sightseeing chardonnay clinic 
 abuses booking cabernet transplant 

F4 amnesty Fares sauvignon medical 
 activist destination monterey hmo 
 repression accommodations tasting surgery 
 apartheid lodging gallo outpatient 

F5 advocates Flier oaks  
 freedoms Tours grapes  
 dissidents    
 torture    
 privileges    

 
Table 2. Table 2 presents an example on how Font Size, and thus Prominence, was manipulated. There 
were five different levels of Font Size (F1 thru F5, big to small), three levels of prominence (high, 
medium, low). Each tag cloud consisted of 4 categories with 10 words per category. There was one 
category with high prominence, two categories with medium prominence and one category with low 
prominence. This example shows the tag cloud represented in Figure 6, the high prominence category 
is “doctor”, the medium prominence categories are “winery” and “travel”, and the low prominence 
category is “human rights”. 
 

The practice trial was the same for all participants: the stimulus presented was 

a tag cloud in a Spatial Layout. There were twelve experimental trials in which tag 

clouds varied in layout. These trials were randomized for all participants.  A 

counterbalancing scheme was used to diffuse any effects of category on layout (See 

Appendix B). For example, the “doctor” category (represented in Tag Cloud 1) was 

presented for Group 1 as a Single Column List with Frequency Sorting, for Group 2 

as a Sequential Layout with Alphabetical Sorting, for Group 3 as a Spatial Layout and 

for Group 4 as a Sequential with Layout Frequency Sorting. 
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Results 

Data Analysis 

Two dependent variables were analyzed: correct category retrieval and 

recognition accuracy. A score was assigned to measure correct category retrieval. A 

point was given each time a subject correctly identified one of the categories 

presented in each tag cloud. Full credit was given when the category label or 

synonyms of the category label were used (i.e. “clinician” for “doctor”). Partial credit 

was given if the participants used words similar to the category (i.e. “surgery” instead 

of “doctor”).  Four judges performed this scoring procedure. The inter-rater reliability 

was high (Average Measure Intraclass Correlation Coefficient =  .955). There were 

no significant differences between the two groups of participants (IBM employees 

and UMD students), thus the data analysis will encompass all 30 participants.  

Categorical Structure 

I examined the correspondence between the percent of correct category 

retrieval and the two measures of categorical structure: means of similarity vectors 

and similarity matrices13. The unit of interest for the correlation analysis is at the 

category level. This implies averaging the scores from all participants and correlating 

that average score with each measure of categorical structure. Before averaging, I first 

tested whether the data was stationary. The equation to test homogeneity of 

correlations (Hedges & Olkin, 1985) is: 

                                                
13 These two measures of categorical structure were significantly correlated (r(46)= .816, p< .05). This 
makes sense because of the mathematical origin of both measures.  
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! 
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In Equation 2, 

! 

n  represents the sample size used to estimate a particular 

correlation; 

! 

Z
i
 represents the Fisher 

! 

Z
i
-transformed correlation14; and 

! 

Z  represents 

the average correlation. The 

! 

Q statistic has 

! 

k "1 degrees of freedom and is 

distributed as a chi-square distribution. Obtaining a non-significant

! 

Q implies that one 

cannot reject the possibility that the correlations come from the same population. 

Table 3 shows that the data is stationary and can be averaged.   

Table 3 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Correct Category Retrieval   

Pearson Correlation (

! 

r ) .280* .308* 
df 46 46 

! 

R
2 .078 .095 

   
Gamma Correlation (

! 

G) .220* .223* 
   

Q-statistic 17.34 17.05 
df 29 29 

 n.s. n.s. 
*p< .05 
 
Table 3. Relationship between Category Retrieval and Categorical Structure as measured by the mean 
of each category’s similarity vector and by the mean of each category’s pairwise similarity matrix. Q 
values were derived from Equation 2 and represent tests of homogeneity.  
 

Table 3 and Figure 7 show positive relationships between categorical structure 

and category judgments. Both the Pearson15 and Gamma (Gonzalez & Nelson, 1995) 

                                                
14 Fisher 
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15 A potential problem with the correlations found is the influence that outliers may exert on the 
results. Cook’s distances (Cohen, Cohen, West & Aiken, 2003) were calculated to detect data points 
with unusual leverage. The findings are robust; new correlations obtained through analysis of influence 
statistics are in line with the results presented. 
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correlations were significant. The strength of these relationships was moderate16. 

Note that categorical structure appears to vary more when similarity vectors measure 

it. Structures appear to “tighten up” when pairwise similarities among all category 

members are introduced into categorical structure measures as those given by 

similarity matrices.  

Figure 7 

  

  
Figure 7. Effect of Categorical Structure on category retrieval: Panel A illustrates the relationship 
between Category Retrieval and Categorical Structure as measured by the mean of each category’s 
similarity vector. Panel B illustrates the relationship between Category Retrieval and Categorical 
Structure as measured by the mean of each category’s pairwise similarity matrix.  
                                                                                                                                      
 
16 Cohen (1988, pp. 78-83) provides the following guidelines for interpreting the size of correlational 
effects: 
 

! 

R
2

= .01 is a small effect 
 

! 

R
2

= .09 is a moderate effect 
 

! 

R
2

= .25 is a large effect 
 

A 

B 
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Format 

Category Retrieval 

 
I first examined the effect of prominence on category retrieval. Prominence 

was manipulated by two variables: Font Size and Order. There were no significant 

main effects of prominence on category retrieval (See Table 4). It appears that 

regardless of the prominence given to a category, they are all retrieved with an 

accuracy rate that varies around fifty percent.  

Table 4  

 
Prominence  
(manipulated by Font Size) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

 

Correct Category 
Retrieval 

.497 (.044) .441(.023) .524 (.033) F(2,58)=1.48, p> 
.05 

     
Prominence  
(manipulated by  
Font Size and Order) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

 

Correct Category 
Retrieval 

.486 (.043) .445(.021) .513 (.031) F(2,58)=1.10, p> 
.05 

 
Table 4. Effect of Prominence on category retrieval compares three different levels of prominence. The 
top panel summarizes the results for the Prominence factor when it is manipulated by Font Size. The 
bottom panel summarizes the results for the Prominence factor when it is manipulated by Font Size 
and Order.  
 

Next, I examined the effect of layout on category retrieval. There was a main 

effect of layout (F(3,87)= 5.81, p< .01, 

! 

" 2
= .107). There is some evidence that the 

Single Column List with Frequency Sorting transmitted more accurate information 

than the other layouts as shown in Table 5. A post-hoc analysis17 showed that this 

layout had a slightly higher but significantly different accuracy rate when compared 

                                                
17 Bonferroni adjustments were performed on all post-hoc analyses, 

! 

"adjusted =
"

4
=
.05

4
= .0125 . 
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to the Sequential Layout with Alphabetical Sorting and the Spatial Layout, but not 

when compared to the Sequential Layout with Frequency Sorting.   

Table 5 

 Correct Category 
Retrieval 

Layout M SE 
Sequential Layout with Alphabetical Sorting .456 .027 
Spatial Layout .435 .019 
Sequential Layout with Frequency Sorting .467 .021 
Single Column List with Frequency Sorting .532 .028 
 
Table 5. Effect of Layout on category retrieval compares four different types of layout – Sequential 
Layout with Alphabetical Sorting, Spatial Layout, Sequential Layout with Frequency Sorting, Single 
Column List with Frequency Sorting. 
 
 
Recognition 

Table 6 summarizes results showing that recognition for words with a larger 

font size was significantly higher than for words with a smaller font size 

(F(4,116)=96.17, p< .001).  

Table 6  

 Correct Recognition 
 M SE 

Font Size 1 (High) .822 .027 
Font Size 2 .746 .024 
Font Size 3 .599 .026 
Font Size 4 .454 .027 

Font Size 5 (Low) .381 .026 
 
Table 6. Effect of Font Size on accuracy of recognition compares five different levels of font size. 
Accuracy of recognition is given as a proportion of correct recognition. 
 

There was no significant effect of layout on recognition for either targets or 

distractors (F(3,87)<1). As can be seen in Table 7, semantically related distractors 

had more false positives than unrelated distractors (F(2,58)=292.27, p< .001). There 

were three types of semantically related distractors: (a) the category label, with a  .38 



 

 51 
 

rate of false alarms; (b) a high semantic lure, with a .28 rate of false alarms; and (c) a 

medium semantic lure, with a .15 rate of false alarms18.  Note the rate of false alarms 

for the category labels and note the rate of hits for words with the smallest font size – 

items that were not presented were falsely recognized at about the same rate as those 

that were presented, albeit those with the least favorable prominence. 

Table 7  

  Proportion 
of Hits 

 Proportion of  
False Alarms 

  Targets  Sem. Related 
Distractors 

Sem. Unrelated 
Distractors 

Layout  M SE  M SE M SE 
Sequential Layout with 
Alphabetical Sorting 

 .593 .027  .281 .036 .047 .017 

Spatial Layout  .596 .021  .291 .033 .069 .024 
Sequential Layout with 
Frequency Sorting 

 .608 .020  .284 .026 .042 .014 

Single Column List with 
Frequency Sorting 

 .598 .025  .331 .028 .067 .020 

 
Table 7. Effect of Layout on proportion of hits and false alarms compares four different types of layout 
– Sequential Layout with Alphabetical Sorting, Spatial Layout, Sequential Layout with Frequency 
Sorting, Single Column List with Frequency Sorting and compares targets and semantically related 
distractors (Sem. Related) and semantically unrelated distractors (Sem. Unrelated). 
 

Discussion 

In Experiment 1, evidence suggested that the two measures of categorical 

structure are related to category judgments. Both the means of the similarity vectors 

and the means of the similarity matrices displayed a moderately positive relationship 

with correct category retrieval. This result is an indication that categories with tighter 

structures are easier to identify than categories with looser structures.  

                                                
18 These rates were calculated by collapsing all tag clouds and layouts. 
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The effect of tag cloud format studied in Experiment 1 produced mixed 

results. Experiment 1 was unable to find an effect of prominence on correct category 

retrieval. This lack of evidence could be due to the low number of participants in this 

study. The recognition test that followed all categorization judgments provided some 

evidence that prominence should not be discounted. Fonts with larger sizes resulted in 

higher recognition rates than those with smaller sizes. This variable should be further 

investigated before conclusions on its influence on categorization can be drawn. 

There was a moderate effect of layout on correct category retrieval, where the Single 

Column List with Frequency Sorting appeared to contribute to higher accuracy rates. 

This is surprising when one takes into consideration that participants needed to scroll 

in order to see the entire tag cloud. However, this layout was not significantly 

different from the Sequential Layout with Frequency Sorting. This may suggest that 

perhaps sorting is driving the effect found.  

There was no evidence that layout influenced the memory recognition tests. 

An interesting result from Experiment 1 was the increase of false positives for 

semantically related distractors exhibited.  This increase may be a result of 

participants encoding the categories presented in each tag cloud. This encoding 

process may inhibit their ability to correctly discriminate new items that belong to the 

same category. This result is similar to the creation of false memories in studies using 

the Deese-Roediger-McDermott (DRM) paradigm. Subjects are given lists of words 

that are all associated with a critical word, which is not presented. For example, if the 

critical word is sleep, the list would consist of the twelve words most highly 

associated with sleep: bed, rest, awake, tired, dream, wake, snooze, blanket, doze, 
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slumber, snore, nap, peace, yawn, drowsy. The DRM effect refers to the false recall 

or recognition of the critical words. This false recall or recognition often exceeds that 

of other high associate distractors and even the correct recall or recognition of low-

associate targets19 (Deese, 1959; Roediger & McDermott, 1995). This is similar to the 

results of Posner and Keele (1970) who showed dot patterns to participants that were 

distortions from a prototypic pattern. During the test, participants recognized the 

prototype at a higher rate than patterns that had been presented during study.   

Another possible explanation for this increase can be obtained from   

Alba and Hasher’s (1983) prototypical schema theory of memory. The term schema is 

used to describe the general knowledge a person has regarding a specific domain. 

Schema theorists are particularly interested in how information is encoded, stored and 

retrieved. The theory presented by Alba and Hasher (1983) assumes four encoding 

processes: selection, abstraction, interpretation and integration that occur sequentially 

after information is presented to a person. During selection, people discriminate 

which information to use for representation. Information that has been selected is 

further reduced by abstraction. This process stores the meaning of the information but 

not its original syntactic or lexical format. The interpretation process uses previous 

knowledge to assist comprehension. Integration uses the inputs generated by the 

previous three processes to form a single memory representation.  The selection 

process is built upon traditional schema theories, such as Owens, Bower, & Black’s 

                                                
19 Deese (1959) investigated the relationship between the percentage frequency of occurrence of the 
stimulus word as an intrusion in recall and the mean percentage frequency of the stimulus word as an 
association to items on the list and obtained a Pearson correlation of .873 (p< .01) (p. 19). Similarly, I 
calculated the correlation between the percentage of false alarms of category labels and the means of 
similarity vectors and matrices and obtained significant and positive Pearson correlations, albeit 
considerably lower than the one reported by Deese (Similarity vectors: r= .372, p< .01; Similarity 
matrices: r= .315, p< .05). 
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(as cited in Alba & Hasher, 1983), that contend that the ideas that are most important 

to the theme of the information are given special attention and will be remembered 

best. In this study, sixty-six percent of the times a recognition test item resulted in a 

hit, its category had been correctly retrieved. The abstraction process assumes that 

humans are resource efficient; and consequently, they will store lexical expressions 

with the same meaning into a single abstracted expression. This in turn will result in 

incorrect recall or recognition of words that are semantically related to the originally 

presented words (Alba and Hasher cite several studies that show these type of 

behavior p. 208). Table 7 shows that semantically related words had a higher 

proportion of false positives than unrelated words. Sixty-three percent of the times a 

semantically related word resulted in a false positive, its category had been correctly 

retrieved.  

A serious objection to the findings from Experiment 1 is that categorization 

judgments needed to rely on memory. The paradigm used in Experiment 1 presented 

the phases serially: the category retrieval phase came after the presentation phase. 

The next two experiments will use concurrent phases. Participants will be asked to 

make categorization judgments while concurrently observing the tag cloud. 
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Chapter 3: Experiment 2  

Experiment 1 provided an initial investigation of the effects of categorical 

structure and tag cloud format on categorization. Categorization judgments were in 

the form of category retrieval tasks. Judgments were elicited after the presentation of 

each stimulus. In Experiment 2 judgments were elicited in the form of category 

verification and these tasks were performed during stimuli presentation. 

Methods 

Participants 

University of Maryland undergraduate students (n=123; 49 males and 74 

females) participated in Experiment 2 for course extra credit. All subjects had normal 

or corrected-to-normal vision. Participants were run individually in single sessions 

lasting approximately 60 minutes.   

Materials 

Materials included sixty-eight tag clouds and were presented in PC-based 

equipment using MediaLab and DirectRT research software (Jarvis, 2006). The 

formatting scheme was the same as the one used in Experiment 1. All layouts were 

able to fit in a single screen; no scroll bars were used for Experiment 2.  

 

Category, Words and Tag Clouds 

Sixty-eight categories and 816 words were obtained using the same software 

and document collection as in Experiment 1. 
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 Four categories appeared per tag cloud; one related to an occupation and the 

other three were either hobbies or locations. The category seed was not used as 

stimulus. Ten words per category were used for each tag cloud, for a total of 40 

words. The category verification phase used the category label and a semantically 

unrelated distractor for each category.  

Seventeen tag clouds were created in all four layouts for a total of 68 tag 

clouds.  

Design and Procedure 

Experiment 2 consisted of three phases: a presentation phase, a category 

verification phase, and a confidence judgment phase. Initial instructions welcomed 

the participants and provided them with the definition of a tag cloud and a general 

example of one. A tag cloud was said to represent the general interests of a person 

who was named “the tag cloud owner”. Subjects performed three practice trials and 

128 experimental trials. Participants were informed that no data would be collected 

during the practice trials. After the practice, participants were given the opportunity to 

ask questions before the experimental trials started. Participants were further 

informed of the details of the experimental procedure. Each trial encompassed all 

three phases. The presentation phase consisted of the presentation of a tag cloud for a 

period of 5 s. Participants were told to try to make an inference as to what were the 

main interests of the tag cloud owner. Participants were not notified that there were 

four main interests (categories) listed in each tag cloud. The category verification 

phase presented a statement regarding the interests of the tag cloud owner (Figure 8 

shows a screen shot with a sample true statement regarding the tag cloud presented). 
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This statement was presented concurrently with the tag cloud. Participants had to 

press the letter “T” if they thought the statement was true and the letter “F” if they 

thought the statement was false. This phase was self-paced with the restraint 

participants had to view each statement for a minimum of 5 s before they were 

allowed to respond true or false. There was no time limit for their answers. Response 

time data was collected. Pressing these letters would allow participants to advance to 

the confidence judgment phase.  

Figure 8 

 

Figure 8. Figure 8 presents an example stimulus during the category verification phase. The statement 
shown is true. 

 

The confidence judgment phase asked participants how confident they were 

that they provided the correct answer. They were given a six-point scale that varied 

between 50% and 100% as shown in Figure 9. In order to respond, participants were 

told to press the number assigned to each confidence level. Additionally, instructions 

attempted to explain how confidence judgments are given. Following is an excerpt of 

such instructions: 



 

 58 
 

If you guessed the veracity of the statement, then you should say you are 50% 
confident. Since there are only two possible answers (true or false) you have a 50% 
chance of being correct. You should press “1”. 
 
If you are absolutely sure that you are correct then you should say that you are 100% 
confident. You should press “6”. 

 
For the other percentages you should proceed as this example:  
If you assign an 80% confidence level to your answer, this means you believe your 
answer has an 80% chance of being correct. You should press “4”. 

 

This phase was also self-paced. Once the confidence judgment phase was finished, 

the next trial appeared. These three phases repeated until all trials were completed. To 

avoid fatigue and automatic responses, two one-minute breaks were interlaced within 

the trials. Participants were told to relax their eyes within each break. At the end of 

the break, participants heard a tone and saw a different color screen that notified them 

the break was over. Participants had to click the space bar in order to continue with 

the next set of trials. 

Figure 9 

 

Figure 9. Figure 9 presents a clip from the screen participants viewed during confidence judgments. 
 

The same factors as in Experiment 1 were manipulated in this experiment: 

categorical structure, prominence and layout. In Experiment 2, the measures of 

central tendency for the similarity vectors ranged between .531 and .957 and for the 

similarity matrices between .537 and .947. Categories were created automatically 

from the New York Time corpus by the Infomap software. This automated process 
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resulted in a significant number of categories with high central tendency measures of 

similarity. A potential problem with this negatively skewed distribution of categorical 

structure is the range restriction that it entails. 

Practice was the same for all participants. It consisted of three trials that 

presented the same tag cloud in three different layouts: Sequential with Frequency 

Sorting, Spatial Layout, and Single Column List with Frequency Sorting. Among the 

three trials, two had true statements and one had a false statement. The experimental 

trials presented sixteen tag clouds that varied in layout. A counterbalancing scheme 

was used to diffuse any effects of category on layout (See Appendix B). For example, 

the “doctor” category (represented in Tag Cloud 1) was presented for Group 1 as a 

Sequential Layout with Alphabetical Sorting, for Group 2 as a Sequential with Layout 

Frequency Sorting, for Group 3 as a Spatial Layout and for Group 4 as a Single 

Column List with Frequency Sorting. There were eight trials per tag cloud: four trials 

contained true statements in which the category label was included and four trials 

contained false statements in which the distractor was included. Experimental trials 

were randomized for all participants.  

Results 

Data Analysis 

Three dependent variables were analyzed: correct category verification, 

response time and confidence judgments. All analyses that involved response time 
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(RT) were performed on its logarithmic transformation20. For ease of interpretation, 

the results will be summarized using the non-transformed data.  

Categorical Structure 

I examined the correspondence between the dependent variables and the two 

measures of categorical structure: means of similarity vectors and similarity 

matrices21. 

Category Verification 

The unit of interest for the correlation analysis is at the category level. Before 

averaging the scores from all participants and correlating that average score with each 

measure of categorical structure, I first tested whether the data was stationary. The 

non-significant Q-statistic in Table 8 shows that the data is stationary.   

Table 8 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Correct Category Verification   

Pearson Correlation (

! 

r ) .313* .326** 
df 62 62 

! 

R
2 .098 .106 

   

Gamma Correlation (

! 

G) .156 .182* 
   

Q-statistic 125.39 138.12 
df 122 122 

 n.s. n.s. 
* p< .05; **  p< .01 
 
Table 8. Relationship between Category Verification and Categorical Structure as measured by the 
mean of each category’s similarity vector and by the mean of each category’s pairwise similarity 
matrix. Q values were derived from Equation 2 and represent tests of homogeneity.  
                                                
20 Logarithmic transformations are recommend for positively skewed measures of response time (Kirk, 
1995). This is true for the current data. 
 
21 These two measures of categorical structure were significantly correlated (r(62)= .85, p< .001). This 
makes sense because of the mathematical origin of both measures.  
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Figure 10 

 

 
 
Figure 10. Effect of Categorical Structure on category verification: Panel A presents the relationship 
between Category Verification and Categorical Structure as measured by the mean of each category’s 
similarity vector. Panel B presents the relationship between Category Verification and Categorical 
Structure as measured by the mean of each category’s pairwise similarity matrix.  

 

Table 8 and Figure 10 show positive relationships between categorical 

structure and category judgments. Both Pearson correlations were significant22. The 

strength of these relationships was moderate. The Gamma correlation for categorical 

structure as measured by the mean of each similarity matrix was significant, while the 

Gamma correlation for categorical structure as measured by the mean of each 

                                                
22 Cook’s distances (Cohen, et al., 2003) were calculated to detect data points with unusual leverage. 
The findings are robust; new correlations obtained through analysis of influence statistics are in line 
with the results presented. 
 

A 

B 
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similarity vector was not. Note again that categorical structure appears to tighten 

slightly when pairwise similarity matrices are used to measure it.  

Response Time 

 The unit of interest for the correlation analysis is at the category level. The 

non-significant Q-statistic in Table 9 shows that the data is stationary and can be 

averaged.   

Table 9 and Figure 11 show a negative relationship between categorical 

structure and response time of category judgments. However, none of these 

correlations were significant. 

Figure 11 
  

 
 
Figure 11. Effect of Categorical Structure on response time: Panel A presents the relationship between 
Response Time and Categorical Structure as measured by the mean of each category’s similarity 
vector. Panel B presents the relationship between Response Time and Categorical Structure as 
measured by the mean of each category’s pairwise similarity matrix. 

A 

B 
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Table 9 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Response Time   

Pearson Correlation (

! 

r ) -.202 -.170 
df 62 62 

! 

R
2 .041 .029 

   

Gamma Correlation (

! 

G) -.101 -.122 
   

Q-statistic 106.34 119.17 
df 122 122 

 n.s. n.s. 
 
Table 9. Relationship between Response Time and Categorical Structure as measured by the mean of 
each category’s similarity vector and by the mean of each category’s pairwise similarity matrix. Q 
values were derived from Equation 2 and represent tests of homogeneity.  
 
 
Confidence Judgments 

 A calibration analysis was performed to investigate the correspondence 

between confidence judgments and categorical structure23. The unit of interest for the 

correlation analysis is at the category level.  

Brier (1950) proposed an overall measure of  judgment accuracy – the Brier 

Score (PS). Low values indicate good judgment.  A Brier Scores is given by 

! 

P S f ,d( ) =
1

N

" 

# 
$ 

% 

& 
' f i ( di( )

2

i=1

N

)  [3] 

In Equation 3, 

! 

N   is the number of judgments; 

! 

f  denotes the probability 

assigned to the target event the judge is trying to predict and 

! 

d  is the outcome index 

for the target event. If the target event occurs then 

! 

d =1; if the target event does not 

occur then 

! 

d = 0 . The target event was defined as “My preferred answer is correct”.  

                                                
23 There were no significant correlations between mean confidence judgments and categorical structure 
(Categorical Structure as measured by the Mean of Similarity Vectors: r(62)= .128, p> .05; Categorical 
Structure as measured by the Mean of Similarity Matrices: r(62)= .101, p> .05). 
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In order to provide separate measures of different aspects of judgment 

accuracy, Murphy (1973) proposed a decomposition of the Brier Score: 

! 

P S f ,d( ) = d 1" d ( ) +
1

N

# 

$ 
% 

& 

' 
( N j f j " d j( )

2

j=1

J

) "
1

N

# 

$ 
% 

& 

' 
( N j d j " d ( )

2

j=1

J

)  [4] 

In Equation 4, the mean outcome index, 

! 

d , is the proportion correct; 

! 

N   is the 

number of judgments; 

! 

j  indexes the response category; 

! 

J  is the number of response 

categories (

! 

J = 6 in this study); 

! 

N j  is the number of responses in category 

! 

j ; 

! 

f j  is 

the probability assigned by the judge; and 

! 

d j  is the proportion of correct responses in 

category 

! 

j . 

The first term in Murphy’s decomposition, 

! 

d 1" d ( ), is the variance of the 

outcome index (VOI). The second term in Murphy’s decomposition, 

! 

1

N

" 

# 
$ 

% 

& 
' N j f j ( d j( )

2

j=1

J

)
, is a measure of the extent that the probabilistic judgments are 

well calibrated (i.e. that the proportion correct at each level of confidence equals the 

stated level of confidence). This term is known as reliability-in-the-small (Yates, 

1982) or calibration index (CI) (Ariely et al., 2000). The third term in Murphy’s 

decomposition, 

! 

1

N

" 

# 
$ 

% 

& 
' N j d j ( d ( )

2

j=1

J

)
, is the resolution of the collection of forecasts. 

This term is known as the Murphy resolution (Yates, 1982) or discrimination index 

(DI) (Ariely et al., 2000). 
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Table 10 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Brier Scores (PS)   

Pearson Correlation (

! 

r ) -.323** -.344** 
df 62 62 

! 

R
2 .104 .118 

   

Gamma Correlation (

! 

G) -.161 -.180* 
Outcome Index Variance (VOI)  

Pearson Correlation (

! 

r ) -.241 -.204 
df 62 62 

! 

R
2 .058 .042 

   

Gamma Correlation (

! 

G) -.163 -.174 
Calibration Index (CI)   

Pearson Correlation (

! 

r ) -.321* -.404** 
df 62 62 

! 

R
2 .103 .163 

   

Gamma Correlation (

! 

G) -.161 -.183* 
Discrimination Index (DI)   

Pearson Correlation (

! 

r ) .067 .080 
df 62 62 

! 

R
2 .004 .006 

   

Gamma Correlation (

! 

G) .036 .080 
* p< .05; **  p< .01 
 
Table 10. Relationship between Calibration and Categorical Structure as measured by the mean of each 
category’s similarity vector and by the mean of each category’s pairwise similarity matrix.  
 

Table 10 and Figure 12 show a significant negative relationship between 

categorical structure and PS24. Table 10 and Figure 13 show that once the Brier 

Scores are partitioned; both VOI and the CI have negative relationships with 

categorical structure. However, only the correlations for CI are significant. The non- 

significant correlation analysis found for VOI is attributed to a restriction in range. 

Equation 4 indicates that VOI is a transformation of the proportion of correct scores. 

                                                
24 Cook’s distances (Cohen, et al., 2003) were calculated to detect data points with unusual leverage. 
New correlations obtained through analysis of influence statistics are in line with the results presented. 
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The results presented in Table 8 showed that categorical structure had a significant 

relationship with proportion of correct scores. The Gamma correlations for both PS 

and the CI with the means of the similarity vectors decreased and were no longer 

significant. No relationship was found between DI and categorical structure. All the 

correlations presented in Table 8 may be affected by restrictions in range. Values for 

the X-axis – categorical structure – were more abundant in the higher end of the scale. 

Values for the Y-axis – PS, VOI, CI and DI – were close to zero. These correlations 

may increase if issues of range restrictions can be resolved.

Figure 12 
  

 

 
 
Figure 12. Effect of Categorical Structure on calibration: Panel A presents the relationship between 
Brier Scores (PS) and Categorical Structure as measured by the mean of each category’s similarity 
vector. Panel B presents the relationship between Brier Scores (PS) and Categorical Structure as 
measured by the mean of each category’s pairwise similarity matrix. 
 

A 
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Figure 13 
  

  

 
 
Figure 13. Effect of Categorical Structure on calibration: Panel A presents the relationship between Outcome Index Variance (OIV) and Categorical Structure as 
measured by the mean of each category’s similarity vector. Panel B presents the relationship between Calibration Index (CI) and Categorical Structure as 
measured by the mean of each category’s similarity vector. Panel C presents the relationship between Discrimination Index (DI) and Categorical Structure as 
measured by the mean of each category’s similarity vector. Panel D presents the relationship between Outcome Index Variance (OIV) and Categorical Structure 
as measured by the mean of each category’s pairwise similarity matrix. Panel E presents the relationship between Calibration Index (CI) and Categorical 
Structure as measured by the mean of each category’s pairwise similarity matrix. Panel F presents the relationship between Discrimination Index (DI) and 
Categorical Structure as measured by the mean of each category’s pairwise similarity matrix. 

A B C 

D E F 
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Format 

Prominence 

Table 11  

Prominence  
(manipulated by  
Font Size) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

  

Correct Category 
Verification 

.705  
(.012) 

.743 
(.011) 

.797 
(.011) 

F(2,244)=24.09 
*** 

! 

" 2
= .111 

Response time  
(ms) 

1514 
(2.00) 

1521 
(1.08) 

1216 
(1.08) 

F(2,244)=13.87 
*** 

! 

" 2
= .065 

Confidence 
(%) 

81  
(0.90) 

80  
(0.80) 

81  
(0.80) 

F(2,244)=4.04  
* 

! 

" 2
= .016 

      
Prominence  
(manipulated by  
Font Size and Order) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

  

Correct Category 
Verification 

.738 
(.011) 

.767 
(.009) 

.787 
(.011) 

F(2,244)=8.44  
*** 

! 

" 2
= .039 

Response time (ms) 1500 
(1.07) 

1489 
(1.07) 

1236 
(1.08) 

F(2,244)=15.72 
*** 

! 

" 2
= .074  

Confidence 
(%) 

81  
(0.80) 

80  
(0.80) 

81  
(0.80) 

F(2,244)=1.67  
 

! 

" 2
= .004  

* p< .05; ***  p< .001 
 
Table 11. Effect of Prominence on category verification: compares three different levels of 
prominence. The top panel summarizes the results for the Prominence factor when it is manipulated by 
Font Size. The bottom panel summarizes the results for the Prominence factor when it is manipulated 
by Font Size and Order.  
 

Prominence was manipulated by two variables: Font Size and Order. Table 11 

shows a significant main effect of prominence on category verification. Higher 

prominence resulted in higher accuracies. There was a significant effect of 

prominence on response time. Higher prominence resulted in faster responses. The 

strength of association explained by Prominence was moderate25. There was a 

stronger effect on category verification when Prominence was manipulated by Font 

                                                
25 Cohen (1988, pp. 284-288) provides the following guidelines for interpreting strength of association: 
 

! 

" 2
=  .010 is a small association 

 

! 

" 2
=  .059 is a moderate association 

 

! 

" 2
=  .138 or larger is a large association 
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Size than when it was manipulated by both Font Size and Order. There was a small 

effect on confidence when Prominence was manipulated by Font Size and no effect 

when it was manipulated by both Font Size and Order. On average, participants were 

overconfident – their average confidence judgments were higher than their average 

accuracy rates26. 

  
Layout 

Table 12 

 Correct Category 
Verification 

Confidence 
Judgments (%) 

Layout M SE M SE 
Sequential Layout with Alphabetical 
Sorting 

.725 .014 81 0.8 

Spatial Layout .722 .014 81 0.8 
Sequential Layout with Frequency Sorting .800 .014 78 0.9 
Single Column List with Frequency 
Sorting 

.812 .012 80 0.9 

 
Table 12. Effect of Layout on category verification and confidence, compares four different types of 
layout – Sequential Layout with Alphabetical Sorting, Spatial Layout, Sequential Layout with 
Frequency Sorting, Single Column List with Frequency Sorting. 
 

There was a main effect of layout on category verification (F(3,366)= 14.28, 

p< .001, 

! 

" 2
= .075) and on confidence (F(3,366)= 3.98, p< .05, 

! 

" 2
= .018)  . A post-

hoc analysis27 showed that the Single Column List with Frequency Sorting and the 

Sequential Layout with Frequency Sorting transmit more accurate information than 

the other layouts (Sequential Layout with Alphabetical Sorting and Spatial Layout; 

see Table 12). Slightly smaller confidence judgments are given when interacting with 

                                                
26 Brier Scores were calculated for the three different levels of prominence. Participants increased their 
calibration as prominence increased (Low Prominence: PS= .206, Medium Prominence: PS= .200, 
High Prominence: PS=. 178). 
 
27 Bonferroni adjustments were performed on all post-hoc analyses, 

! 

"adjusted =
"

4
=
.05

4
= .0125 . 
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the Sequential Layout with Frequency Sorting28. There were no effects of layout on 

RT (F(3,366)= 1.72, p> .05). All layouts had an average response time of 

approximately 1,400 ms.  

Figure 14 

 

 

Figure 14. Panel A: Interaction between Layout and Prominence on the percent of correct category 
verification. Panel B: Interaction between Layout and Prominence on confidence judgments. Four 
different types of layout (Sequential Layout with Alphabetical Sorting (Alpha), Spatial Layout 
(Spatial), Sequential Layout with Frequency Sorting (Freq), Single Column List with Frequency 
Sorting (List by Freq)) and three levels of prominence (High (Hi), Medium (Med) and Lo (Low) are 
compared. 
 

                                                
28 Brier Scores were calculated for the four different layouts. Participants were slightly more calibrated 
when interacting with the frequency layouts (Sequential Layout with Alphabetical Sorting: PS= .135, 
Spatial Layout: PS= .131, Sequential Layout with Frequency Sorting: PS= .126,  Single Column List 
with Frequency Sorting: PS=. 125). 

A 

B 
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There was a significant interaction between prominence and layout (F(6,732)= 

16.49, p< .001) for category verification and for confidence judgments (F(6,732)= 

7.54, p< .001). Although prominence had a significant influence on accuracy of 

category verification, it appears not to have influenced all layouts in the same degree. 

It can be observed in Figure 14 that prominence has an increasing effect on the 

accuracy rate for layouts with alphabetical and spatial sorting. Tests of simple 

effects29 suggest this increasing influence for both alphabetical (F(2,1464) = 26.27, 

p< .0125) and spatial sorting (F(2,1464) = 9.88, p< .0125). However, for layouts with 

frequency sorting, prominence does not show this increasing influence. Tests of 

simple effects suggest a decreasing effect for the single column list with frequency 

sorting  (F(2,1464) = 6.39, p< .0125) and no effect for the sequential layout with 

frequency sorting  (F(2,1464) = 2.31, p> .0125). Tests of simple effects of 

prominence on confidence judgments were not significant. 

Discussion 

Experiment 2 provided additional evidence suggesting that the two measures 

of categorical structure are related to category judgments. Both the means of the 

similarity vectors and similarity matrices displayed a moderate and positive 

relationship with correct category verification. This result is an indication that 

categories with tighter structures are easier to authenticate than categories with looser 

structures. Another finding of Experiment 2 is that categorical structure and 

calibration have a moderate and negative relationship. The negative correlation with 

Brier Scores implies that participants are able to more accurately judge their 
                                                
29 Bonferroni adjustments were performed on all tests of simple effects, 

! 

"adjusted =
"

4
=
.05

4
= .0125 . 
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performance with tighter structures. The correlation analyses using Murphy’s (1973) 

partitions of the Brier Score suggest that the root of this relationship is provided by 

the calibration index and the variance outcome index. The first index is a local 

measure of calibration and the latter index is a measure of overall accuracy. 

Categorical structure has a correspondence with participants’ reliability rather than 

their discriminability.  It was surprising not to find a relationship between categorical 

structure and response time. Category membership verification of representative 

exemplars usually results in shorter response times than for non-representative 

exemplars (Mervis & Rosch, 1981). A tight category is akin to a collection of highly 

representative exemplars and would imply similar findings. The correlations for 

Experiment 2 were in the right direction (negative); but they were not significant.   

Prominence had a significant effect on Experiment 2 as opposed to 

Experiment 1. Attention theory predicts such an effect, which made it puzzling not to 

see one in Experiment 1. Prominence resulted in higher categorization accuracy rates 

and faster response times. The stronger effect of the Font Size manipulation on 

category verification makes sense. Both the Sequential Layout with Alphabetical 

Sorting and the Spatial Layout rely solely on font size to transmit similarity measures. 

Larger fonts imply higher similarity scores. The effect of the Font Size and Order 

manipulation is somewhat smaller because it does not benefit all layouts equally. 

Both the Sequential Layout with Frequency Sorting and the Single Column List with 

Frequency Sorting benefit from both Font Size and Order to transmit similarity 

measures. Larger fonts and higher frequencies imply higher similarity scores. 
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There was a main effect of layout on correct category verification, where 

layouts with frequency sorting contributed to higher accuracy rates. This finding adds 

evidence to the suggestion presented in the previous section that sorting may be 

driving the effect. Confidence judgments for the Sequential Layout with Frequency 

Sorting were slightly smaller than for the other layouts. 

Experiment 2 was a response to any objections that could be raised to 

Experiment 1, where categorization judgments relied on memory. The paradigm used 

in Experiment 2 set the categorization process to be performed concurrently with the 

presentation of the material. Categorization judgments were in the form of category 

verification.  An objection that could be raised against Experiment 2 is that category 

verification may result in higher accuracies because participants are shown the 

category labels. This objection leads to Experiment 3 where categorization judgments 

will be in the form of category retrieval tasks. Participants are required to retrieve 

category labels from prior knowledge.  
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Chapter 4: Experiment 3 

In Experiment 1, categorization judgments were in the form of category 

retrieval tasks. Judgments were elicited after the presentation of each stimulus. In 

Experiment 2, categorization judgments were in the form of category verification 

tasks. Judgments were elicited during stimuli presentation. Experiment 3 followed the 

pattern of Experiment 2; judgments were elicited during stimuli presentation. 

Categorization judgments were in the form of category retrieval tasks. 

Methods 

Participants 

University of Maryland undergraduate students (n=119) participated in 

Experiment 3 for course extra credit. All subjects had normal or corrected-to-normal 

vision. Participants were run individually in single sessions lasting approximately 30 

minutes. 

Materials 

Materials included fifty-two tag clouds and were presented in PC-based 

equipment using MediaLab research software (Jarvis, 2006). The formatting scheme 

was the same as the one used in Experiment 1 and 2. All layouts were able to fit in a 

single screen; no scroll bars were used for Experiment 3. 
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Category, Words and Tag Clouds 

Sixty categories and 720 words were obtained using the same software and 

document collection as in Experiments 1 and 2. 

Categories were of the following type: a profession, a sport, a hobby and a 

location.  Each of these four categories appeared per tag cloud. The category seed was 

not used as stimulus. Ten words per category were used for each tag cloud, for a total 

of 40 words. There was one distractor per category to be used in the priming phase. 

Fifteen tag clouds were created in all four layouts for a total of 60 tag clouds.  

Design and Procedure 

Eliciting categorization retrieval judgments implicated an open-ended 

response format where participants were allowed to input in a free-text field. Previous 

experience with open-ended responses, as in Experiment 1, suggested the need to 

reduce the variability of responses. In order to facilitate coding, a priming phase was 

designed for this experiment. Participants were presented with a list of six possible 

categories associated with the tag clouds they were about to see. Half of the list 

contained category labels and half contained distractors. The main purpose of this 

priming phase was intended to reduce response variability and not to investigate or 

manipulate responses based on priming.  

Trials in Experiment 3 consisted of three phases: a priming phase, a 

presentation phase and a category retrieval phase. Initial instructions welcomed the 

participants and provided them with the definition of a tag cloud and a general 

example of one. A tag cloud was said to represent the general interests of a person 

who was named “the tag cloud owner”. Subjects performed three practice trials and 
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twelve experimental trials. Participants were informed that no data would be collected 

during the practice trials. After the practice, participants were given the opportunity to 

ask questions before the experimental trials started. Participants were further 

informed of the details of the experimental procedure. Each trial was composed of 

one initial priming phase and three presentation and category retrieval phases. Blocks 

of three tag clouds were used. Each block was associated with only one type of 

interest (profession, sport, hobby or location). The priming phase notified participants 

that the next group of people was interested in some of the following professions 

(sports, hobbies or locations). A list of six such interests was given. Three were 

category labels associated with the tag clouds and three were distractors. Initial 

instructions warned participants that the list contained correct and incorrect answers. 

The priming phase lasted 10 s. Three presentation and category retrieval phases 

followed – one for each tag cloud within the block. The presentation phase consisted 

of the presentation of a tag cloud for a period of 10 s. Participants were told to try to 

make an inference as to what were the main interests of the tag cloud owner. They 

were encouraged to look for the type of interest mentioned during priming 

(profession, sport, hobby or location). The category retrieval phase asked participants 

to enter the tag cloud owner’s interest based on the tag cloud, type of interest within 

the block and the list of words used during priming. An example question would be: 

“Based on the list of words and the tag cloud, what profession is this person interested 

in?” After typing their answers, participants had to press the Enter-key in order to 

continue. Blank responses were not permitted, if participants did not know the answer 

they were instructed to type “I don’t know”. This phase was self-paced with no time 
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limit for responses. These two phases repeated until the block of three tag clouds was 

finished. The next trial would start with a priming phase and a block for three 

presentation and category retrieval phases. To avoid fatigue and automatic responses, 

two one-minute breaks were interlaced within the trials. Participants were told to 

relax their eyes within each break. At the end of the break, participants heard a tone 

and saw a different color screen that notified them the break was over. Participants 

had to click the space bar in order to continue with the next set of trials. 

Practice was the same for all participants. It consisted of three trials; the first 

two trials had two tag clouds per block and the third trail had three tag clouds per 

block. The practice trials differed from the experimental trials with respect to 

feedback. After each trial, participants were informed what were the correct and 

incorrect answers. Correct answers were further stressed by highlighting the words in 

the tag cloud associated with such answers (See Figure 15). Feedback was provided 

to illustrate the task. Participants were notified that feedback would only be given 

during practice.  

The same factors as in Experiment 1 and 2 were manipulated in this 

experiment: categorical structure, prominence and layout. In Experiment 3, the 

measures of central tendency for the similarity vectors ranged between .572 and .957 

and for the similarity matrices between .732 and .947. Categories were created 

manually using the Infomap software and the New York Time corpus. A seed was 

used to create an initial list of words representing a category.  Then these words were 

used iteratively as seeds to obtain additional words with greater semantic distances 

from the original seed. This process was done in order to create stimuli with a varying 



 

 78 
 

degree of categorical structure and to avoid the skewed distribution that appeared in 

Experiment 2. However, the concern of range restriction is still valid for Experiment 

3. It was quite difficult to obtain categories with low categorical structures.  

 Figure 15 

 

Figure 15. Figure 15 presents an example of feedback given during practice in Experiment 3. 
 

The experimental trials presented twelve tag clouds that varied in layout. 

There were four presentations per tag cloud – one presentation per category. A 

different layout was used for every presentation. Thus, participants would see a 

specific tag cloud in each of the four layouts. Experimental trials were randomized for 

all participants. A counterbalancing scheme was used to diffuse any effects of type of 

interest and category on layout (See Appendix B). For example, when profession was 

primed the “doctor” category (represented in Tag Cloud 1) was presented for Group 1 

as a Sequential Layout with Alphabetical Sorting, for Group 2 as a Single Column 

List with Frequency Sorting, for Group 3 as a Sequential with Layout Frequency 

Sorting, and for Group 4 as a Spatial Layout. 
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Results 

Data Analysis 

Two dependent variables were analyzed: correct category retrieval and 

response time. A score was assigned to measure correct category retrieval. The 

scoring procedure was the same as described in Experiment 1. Four judges performed 

this scoring procedure. The inter-rater reliability was high (Average Measure 

Intraclass Correlation Coefficient =  .964). All analyses that involved response time 

(RT) were performed on its logarithmic transformation. For ease of interpretation, the 

results will be summarized using the non-transformed data.  

Categorical Structure 

I examined the correspondence between the percent of correct category 

retrieval and the two measures of categorical structure: means of similarity vectors 

and similarity matrices30.  

 

Category Retrieval 

The unit of interest for the correlation analysis is at the category level. Before 

averaging the scores from all participants and correlating that average score with each 

measure of categorical structure, I first tested whether the data was stationary. The 

non-significant Q statistic in Table 13 shows that the data is stationary and can be 

averaged.   

                                                
30 These two measures of categorical structure were significantly correlated (r(46)= .826, p< .05). This 
makes sense because of the mathematical origin of both measures.  
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Table 13 and Figure 16 show positive relationships between categorical 

structure and category judgments. Both the Pearson and Gamma correlations were 

significant31. The strength of these relationships was moderate. Note again that 

categorical structure appears to tighten slightly when pairwise similarity matrices are 

used to measure it.  

 

Figure 16 

 

 
 
Figure 16. Effect of Categorical Structure on category retrieval: Panel A presents the relationship 
between Category Retrieval and Categorical Structure as measured by the mean of each category’s 
similarity vector. Panel B presents the relationship between Category Retrieval and Categorical 
Structure as measured by the mean of each category’s pairwise similarity matrix. 
 

                                                
31 Cook’s distances (Cohen, et al., 2003) were calculated to detect data points with unusual leverage. 
New correlations obtained through analysis of influence statistics are in line with the results presented. 
 

A 

B 
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Table 13 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Correct Category Retrieval   

Pearson Correlation (

! 

r ) .299* .376** 
df 62 62 

! 

R
2 .089 .141 

   

Gamma Correlation (

! 

G) .222* .261** 
   

Q-statistic 90.15 113.92 
df 118 118 

 n.s. n.s. 
* p< .05; **  p< .01 
 
Table 13. Relationship between Category Retrieval and Categorical Structure as measured by the mean 
of each category’s similarity vector and by the mean of each category’s pairwise similarity matrix. Q 
values were derived from Equation 2 and represent tests of homogeneity.  
 

Response Time 

 The unit of interest for the correlation analysis is at the category level. The 

non-significant Q-statistic in Table 14 shows that the data is stationary and can be 

averaged.   

Table 14 

 Categorical Structure 
 Mean of Similarity Vector Mean of Similarity Matrix 
Response Time   

Pearson Correlation (

! 

r ) -.318* -.471** 
df 46 46 

! 

R
2 .101 .222 

   

Gamma Correlation (

! 

G) -.241** -.309*** 
   

Q-statistic 102.34 142.47 
df 118 118 

 n.s. n.s. 
* p< .05; ** p< .01; ***  p< .001 
 
Table 14. Relationship between Response Time and Categorical Structure as measured by the mean of 
each category’s similarity vector and by the mean of each category’s pairwise similarity matrix. Q 
values were derived from Equation 2 and represent tests of homogeneity.  
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Table 14 and Figure 17 show a negative relationship between categorical 

structure and response time of category judgments. Both the Pearson and Gamma 

correlations were significant32. The strength of these relationships was moderate for 

vectors and strong for matrices.  

Figure 17 

  

 

 
 
Figure 17. Effect of Categorical Structure on response time: Panel A presents the relationship between 
Response Time and Categorical Structure as measured by the mean of each category’s similarity 
vector. Panel B presents the relationship between Response Time and Categorical Structure as 
measured by the mean of each category’s pairwise similarity matrix. 

                                                
32 Cook’s distances (Cohen, et al., 2003) were calculated to detect data points with unusual leverage. 
New correlations obtained through analysis of influence statistics are in line with the results presented. 
 

A 

B 
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Format 

Prominence 

Prominence was manipulated by two variables: Font Size and Order. Table 15 

shows a significant main effect of prominence on category retrieval. Higher 

prominence resulted in higher accuracies. There was a significant effect of 

prominence on response time. Higher prominence resulted in faster responses. The 

strength of association explained by Prominence was large for accuracy and moderate 

for response time.  

Table 15 

Prominence  
(manipulated by  
Font Size) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

  

Correct Category 
Retrieval 

.552  
(.017) 

.587 
(.014) 

.689  
(.018) 

F(2,236)=28.12 
*** 

! 

" 2
= .132 

Response time  
(ms) 

6339 
(1.05) 

6310 
(1.05) 

5521 
(1.05) 

F(2,236)=11.54 
*** 

! 

" 2
= .056 

      
Prominence  
(manipulated by  
Font Size and Order) 

Low 
M (SE) 

Medium 
M (SE) 

High 
M (SE) 

  

Correct Category 
Retrieval 

.558 
(.015) 

.587 
(.013) 

.673 
(.015) 

F(2,236)=23.93  
*** 

! 

" 2
= .114  

Response time (ms) 6295 
(1.05) 

6237 
(1.04) 

5535 
(1.04) 

F(2,236)=14.03 
*** 

! 

" 2
= .068 

* p< .05; ***  p< .001 
 
Table 15. Effect of Prominence on category retrieval: compares three different levels of prominence. 
The top panel summarizes the results for the Prominence factor when it is manipulated by Font Size. 
The bottom panel summarizes the results for the Prominence factor when it is manipulated by Font 
Size and Order.  
  
Layout 

There was no effect of layout on category retrieval nor on response time 

(F(3,354) < 1). All layouts had an average accuracy rate of 60%. All layouts had an 

average response time of approximately 6,000 ms. There were no significant 

interactions between prominence and layout for either category retrieval or response 

time. 
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Discussion 

Experiment 3 provided additional evidence suggesting that the two measures 

of categorical structure are related to category judgments. Both the means of the 

similarity vectors and similarity matrices displayed a moderate and positive 

relationship with correct category retrieval. This result is an indication that categories 

with tighter structures are easier to identify than categories with looser structures. 

Both the means of the similarity vectors and similarity matrices displayed moderate 

and strong negative relationships with response time. This result is an indication that 

categories with tighter structures are identified faster than categories with looser 

structures. The significant relationship between categorical structure and response 

time found in Experiment 3, as opposed to Experiment 2, is predicted by theory. 

Studies investigating categorical structure and typicality have reported a decrease in 

categorization time with the increase of structure and typicality (Rosch, 1975; Rosch, 

et al., 1976; Rips et al. 1975). Experiment 3 had higher average response times than 

Experiment 2. This is a product of the nature of the different category judgment tasks 

used for each experiment. In Experiment 2, participants performed a category 

verification task: for each trial, the category label was presented and they had to 

respond true or false. In Experiment 3, participants performed a category retrieval 

task: participants had to retrieve from long term memory the category label associated 

with each trial. The difference between Experiment 2 and 3 in average response time 

and correlation results may be due to the nature of the different tasks employed. 

Experiment 3 provided additional evidence on the influence of prominence. 

Prominence resulted in higher categorization accuracy rates and faster response times. 
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Again, there was a stronger effect of the Font Size manipulation. The effect of the 

Font Size and Order manipulation is somewhat smaller because it does not benefit all 

layouts equally.  

There was no effect of layout on correct category retrieval or response time. 

This lack of evidence is at odds with the previous two experiments that found effects 

of layout on category judgments. A possible explanation for this null effect could be a 

reduction in the familiarity participants may have perceived with a particular tag 

cloud’s layout. To illustrate this point, please refer to Appendix B. In Experiment 1, a 

participant in Group 1 was required to look at Tag Cloud 4 presented in a Spatial 

Layout for 30 s before being allowed to answer. In Experiment 2, a participant in 

Group 1 was required to look at Tag Cloud 3 presented in a Spatial Layout for a 

minimum of 10 s before being allowed to answer. This was performed eight times – 

four for each category and four distractors. In Experiment 3, a participant in Group 1 

was required to look at Tag Cloud 1 for a minimum of 10 s before being allowed to 

answer. This was performed four times – four for each category. However for each of 

those four times, Tag Cloud 1 was presented in one of the different four layouts. The 

familiarity the variable layout may have provided for a particular tag cloud in 

Experiments 1 and 2 may not have been transmitted in Experiment 3. Every time a 

particular tag cloud appeared, it did so in a different layout. 

This experiment was designed as a result of any objections that could have 

been raised against Experiment 1 due to its reliance on memory. Experiments 2 and 3 

complement each other; categorization judgments have been elicited in terms of 

category verification (Experiment 2) and category retrieval (Experiment 3).  
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Chapter 5:  General Discussion 

 
The purpose of this research was to examine how categorical structure and tag 

cloud format affect categorization. The influence of the degree of within-category 

association on judgments of category membership was examined. Semantic distances 

were calculated to measure similarity between category members. These distances 

were obtained from a latent semantic analysis performed on a general text corpus. In 

order to represent categories, exemplars and their inter-item similarities were used as 

coordinates of similarity vectors and matrices. Categorical structure was 

operationalized as a central tendency measure of said similarity vectors and matrices. 

Regarding tag cloud format, different known layouts used for tag clouds were 

compared to investigate their effect on categorization judgments. Other formats that 

were investigated were font size and sorting order. These formats were suggested to 

determine the perceived prominence of the presented stimuli. 

Several general findings from the experiments are of importance. First, a 

relationship between categorical structure and categorization was found. Loose 

structures result in lower rates of categorization accuracy and tighter structures result 

in higher rates of categorization accuracy. Second, prominence positively influenced 

categorization. Prominence was operationalized by manipulating font size and sorting 

order. Larger fonts contribute to higher rates of categorization accuracy. The sorting 

of category exemplars played a role on categorization. Layouts with frequency sorting 

produce more accurate judgments. Frequency was operationalized by semantic 

distance to the category label. Terms that were more similar to the category label 
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were assigned higher frequency. Font size was operationalized in this same manner. 

Terms more similar to the category label were assigned larger fonts. Similarity is the 

driving element of these results. 

Table 16 

  Experiment 1 Experiment 2 Experiment 3 

  Vector Matrix Vector Matrix Vector Matrix 

+ + + + + + r 
      
+ + + + + + 

Categorization  
Judgments 

G 
      

- - - - r   
    
- - - - 

Response  
Time 

G   
    
- - r   
    

- - 

Calibration:  
PS, CI 

G 
      

   significant results;  non significant results 
 
Table 16. Summary of correlational analyses between Categorical Structure and Categorization 
Judgments, Response Time and Calibration. PS= Brier Scores, CI= Calibration Index, + = positive 
correlations, - = negative correlations.  
 
  

The influence of categorical structure on categorization was evaluated by its 

relationship with category retrieval, category verification, calibration and response 

time. A summary of the direction and statistical significance of these relationships is 

presented in Table 16. Categorical structure showed a positive relationship with 

category retrieval (Experiments 1 and 3) and category verification (Experiment 2, 

except for the Gamma correlation for the Similarity Vectors); tighter structures result 

in higher accuracies. Categorical structure showed a negative relationship with 

response time (Experiment 2: negative correlation but not statistically significant, 

Experiment 3: significant negative correlation); tighter structures result in faster 
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categorization judgments. Categorical structure showed a negative relationship with 

calibration (Experiment 2, except for the Gamma correlation for the Similarity 

Vectors); tighter structures result in better judgments of participants’ performance.  

Table 17 

 Experiment 1 Experiment 2 Experiment 3 Effect Size  

! 

" 2 
Prom Layout  Prom Layout Prom Layout Prom Layout 

FS FSO  

Categorization 
Judgments 

      .121 .076 .081 

Response 
Time       .061 .071 n.s. 

Confidence 
 

      .016 n.s. .018 

   significant results;  non significant results; 
   one variable with significant results and one without 
 
Table 17. Summary of the effects of format on Categorization Judgments, Response Time and 
Confidence. Effect Sizes are weighted averages of a significant variable’s individual effect size in each 
experiment. Prom = Prominence, FS = Font Size Manipulation, FSO = Font Size and Order 
Manipulation.  
 

The influence of tag cloud format on categorization was evaluated by 

examining the effects of prominence (font size and sorting order) and layout on 

category retrieval, category verification, confidence judgments and response time. A 

summary of the effects of format is presented in Table 17. The effect sizes presented 

in the summary table are weighted averages of a significant variable’s individual 

effect size in each experiment; the weights are the corresponding number of 

participants. The variables were analyzed as fixed effects; thus, their effect size is 

descriptive of a participant’s performance in this study. Prominence influenced 



 

 89 
 

category retrieval (Experiment 333) and category verification (Experiment 2); higher 

prominence results in higher accuracy. Prominence influenced response time 

(Experiment 2 and 3); higher prominence results in faster responses. The effect of 

prominence on confidence judgments is unresolved. An effect was found for font size 

but not for order. In addition, the direction of this effect was not interpretable; both 

low and high prominent categories resulted in slightly higher confidence judgments 

than categories with medium prominence. Layout influenced category retrieval 

(Experiment 1) and category verification (Experiment 2); layouts with frequency 

sorting result in higher accuracy. However, there was no effect of layout on category 

retrieval in Experiment 3. It was suggested that this null effect could be explained by 

a reduction in familiarity with the layouts assigned to specific tag clouds. Layout did 

not influence response time (Experiment 2 and 3). Layout influenced confidence 

judgments (Experiment 2); the sequential layout with frequency sorting resulted in 

smaller confidence judgments.  

Theoretical Implications 

The measure of categorical structure presented in this study was obtained 

through an automated analysis of the English language. Similarity between two words 

is defined by the usage and distribution of those words in a linguistic context. The co-

occurrence statistics of a set of words in a general text corpus translate into a measure 

of semantic distance. For each category, semantic distances between category 

members and the category label can be computed. These distances can be arranged as 

a similarity vector with words as coordinates or as a matrix of pairwise similarities. In 
                                                
33 The non-significant influence of prominence on category retrieval on Experiment 1 is ascribed to its 
low statistical power. 
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this study, categorical structure is defined as a measure of central tendency for both 

vectors and matrices.  

A vector represents categorical structure by computing the relationship 

between members and the category label. A matrix represents categorical structure by 

computing the relationship within all members of the category – including the label. 

A theoretical question that researchers usually face relates to the selection of 

measures. A matrix’s mean of pairwise similarities is a comprehensive measure; it 

takes into account all elements of a class and all relationships between these elements. 

A vector’s mean of similarities is a practical measure; it requires simpler 

computations, not all inter-item similarities are required. It is interesting to note that 

one measure of categorical structure displays more sensitivity with the same stimuli 

set as opposed to the other measure (Figures 7, 10-13, 16, 17). Similarity vectors 

show a wider range for the same stimuli than matrices. Is a more sensitive measure 

superior to a less sensitive measure? The first step in answering this question is to 

investigate if the higher sensitivity found in the similarity vectors accurately 

represents the measured construct. For all categorical structure analyses, the 

conclusions resulting from the Gamma and Pearson correlations were in accordance 

except for three occasions (Experiment 2: analyses of Category Verification, Brier 

Scores and Calibration Index). Gamma correlations for the means of similarity 

vectors led to non-significant conclusions, while Pearson correlations led to 

significant correlations. In addition, the less sensitive measure – means of similarity 

matrices – is explaining slightly more variance than the more sensitive measure (the 

increase of 

! 

R
2 was between .01 and .12). This small increase would suggest that 
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either measure – means of vectors or means of matrices – can be used to represent 

categorical structure. However, the discrepancy found in some of the correlation 

analyses would suggest using similarity matrices would produce more consistent 

results.  

This study has presented two measures of categorical structure that have been 

able to explain a moderate amount of variance in categorization judgments. The 

advantage of using the proposed measures lies on how they are obtained. Categorical 

structure for artificial stimuli is usually defined a priori by the experimenter with the 

application of a predetermined rule (Homa & Cultice, 1984; Rosch, et al. 1976). 

Categorical structure for natural stimuli is usually obtained by a post hoc analysis of 

ratings of semantic distance (Rips et al., 1975). All experiments in this study utilized 

natural stimuli, in the sense that words representing general interests were used. 

Findings relating to the categorical structure variable were in line with theoretical 

predictions. Categorical structure values were obtained by a latent semantic analysis 

of The New York Times corpus.  

 The use of Latent Semantic Analysis (LSA) to obtain measures of semantic 

distance and categorical structure is superior for several reasons. First, the measures 

obtained are not subjective – they do not require explicit human judgments; they are 

calculated based on how the stimuli are distributed in a text corpus – similarity and 

meaning of words are implicitly expressed by the authors of the text being analyzed. 

Second, narrow measures are possible; specific domains can be investigated if the 

researcher has access to a corpus relevant to that particular domain. Third, the 

calculations are effortless; LSA software packages are widely available. However, 
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there are weaknesses with this application of LSA. Using a deterministic measure of 

similarity – as the one obtained from a static corpus – reduces the inherent noise 

related with people. There will be some noise present as a consequence of the number 

of authors associated with the corpus or as a result of a change in writing style over 

time. Multidimensional analyses of participant’s similarity ratings are capable of 

capturing more noise than LSA. Another possible weakness is that the measure of 

similarity obtained through LSA is dependent on the corpus used to construct the 

latent space. It could be argued that the measures obtained are only applicable to the 

population for which the corpus is intended. For example, the New York Times 

corpus provides different similarity measures than the Wall Street Journal corpus. I 

believe that this last weakness of LSA could be construed as a strength, as it 

illustrates the flexibility of the similarity construct. Judgments of similarity are 

dependent on the context in which they are elicited.     

Applications of Research 

Depending on the contexts in which they appear, tag clouds can support user 

tasks ranging from locating specific items to providing an overview of the underlying 

content. Such tasks can include: (a) Search. Locating a specific term or a desired 

concept; (b) Browsing. Using tag clouds as a means to browse; (c) Impression 

Formation. Looking at the tag cloud as a means to form a general impression of the 

underlying data set; (d) Recognition/Matching. Recognizing which of several sets of 

information or entities a tag cloud is likely to represent.  An example is determining 

which of two John Smith’s is the one you met at a conference based on their personal 



 

 93 
 

tag clouds (Rivadeneira et al., 2007). The results found in this study apply to 

situations that do not require precise navigation.   

The prominence and layout of tag clouds were used to investigate how format 

affects categorization judgments. The study found that highly prominent categories 

resulted in higher accuracies and faster response times. Prominence was 

operationalized by font size and order. Layouts sorted by frequency produced higher 

accuracy rates when compared to the other layouts.  

One of the goals of this study was to provide a set of guidelines on how to 

visually present tags so that the information they represent could be accurately 

transmitted. The results suggest the following recommendations:  

1. Take advantage of Font Size. More important tags should be represented 

with larger fonts. 

Font Size is the formatting variable that generated higher degrees of influence. When 

prominence was uniquely manipulated by Font Size, it had a moderate-to-large effect 

on categorization accuracy and a moderate effect on response time34 (See Table 17).  

Note that the designer should consider the ratio of change used to increment the size 

of a word from one level to the next. If the tag cloud is populated by a majority of 

words with large fonts, the effect of font size may dissipate. This study used 2:1 

increment between levels. 

2. Use layouts with frequency sorting. More important tags should be listed 

first in a sequence.  

                                                
34 See Footnote 25 for guidelines for interpreting strength of association. 
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When Sorting Order was included in the prominence manipulation, it had a moderate 

effect on categorization accuracy and a moderate effect on response time (See Table 

17). In addition, the post-hoc tests mentioned in both Experiments 1 and 2 suggested 

that layouts ordered by frequency resulted in higher categorization accuracies. 

3. Maintain consistency. If the tag cloud does not change over time, keep it 

consistent35.   

The effect of Layout on categorization accuracy was moderate when consistency was 

maintained (Experiments 1 and 2) and it was eliminated when tag clouds appeared in 

different formats (Experiment 3). There was no effect of Layout on response time. 

The recommendations presented are for tag clouds used in overview tasks. A 

specific search task, for example, would benefit more from an alphabetical sorting 

than a frequency sorting (Halvey & Keane, 2007).  

The guidelines provided are aimed for tag cloud designers and do not include 

information regarding categorical structure. It is assumed that the designer is not 

responsible for the content associated with the tag cloud. However, if the designer is 

also responsible for a semantic analysis of the underlying content, there is one last 

recommendation: 

4.  Increase categorical structure. Reduce the number of unique tags by 

combining synonyms or highly semantically related terms. It may be better 

to have less tags with high degrees of within-category association than more 

tags with low degrees of within-category association.    

                                                
35 I have met tag cloud designers that have purposefully added an element of randomness to their tag 
cloud algorithms in order to produce a sense of freshness to their tag clouds, not realizing the adverse 
effect this decision entails. 
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The strength of the relationship between categorical structure and categorization 

accuracy was moderate, as evidenced in the 

! 

R
2’s for all experiments. It is 

hypothesized that the size of these correlational effects are smaller in this study than 

in actuality. The measures of categorical structure for the stimuli experienced range 

restriction. It was quite difficult to feed the Infomap algorithm (Computational 

Semantics Lab from Stanford University, n.d. b) with seeds that would result in 

categories with low degrees of categorical structure. 

Categorization, Tag Clouds and Social Perception 

A parallel exists between research in impression formation and categorization. 

Researchers in impression formation present participants with stimuli, which are 

persons described by a list of personality traits. Participants are usually requested to 

give a rating in some measure of likeability or a judgment of fit for a particular 

context (Fiske, Neuberg, Beattle, & Milberg, 1987). Researchers in categorization 

provide participants with stimuli, which are described by a set of dimensions. 

Participants are requested to give a judgment of fit for a particular category. In fact, 

some categorization experiments use stimuli with personality traits and ask 

participants to form impressions before classification (e.g. Experiments 2 and 6 in 

Medin et al., 1987). 

Generally, when first impressions are formed, a number of perceptual cues are 

available for a person to process. Taylor, Fiske, Etcoff, and Ruderman (1978) 

proposed a two-step process for social perception. First, people process information 

about social groups by categorizing the group members as a way of organizing 

information about them. Categorization reduces within-group differences and reveals 
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between-group differences. Following categorization, the behavior of members of the 

new subgroups is interpreted in stereotyped terms. “Stereotypes can be thought of as 

attributes that are tagged to category labels (e.g., race, sex) and imputed to individuals 

as a function of their being placed in that category, much as attributes of other 

categories are imputed to objects placed in those categories” (Taylor et al., p. 792). 

Processes that underlie person perception and impression formation have much in 

common with those that underlie object perception, particularly categorization 

processes.  

The use of tag clouds in social computing is quite beneficial. In addition to 

providing a navigation mechanism, tag clouds provide an overview of the information 

they represent. A tag cloud can provide a meaningful reflection of the topics of 

interest and/or expertise of a particular user. Hearst and Rosner (2008) conducted a 

series of interviews with visualization designers and found evidence that the primary 

reason people use tag clouds is because of their perceived social component. The 

interviewees believed that tag clouds were able to communicate what a person or a 

group of people is interested in.  

Tag clouds can be regarded as the stimuli presented in an impression 

formation task. The findings of this study are applicable for person perception. High 

categorical structure, high prominence and layouts with frequency sorting will 

provide more accurate perceptions of the individual represented in the tag cloud. In 

the same manner, the findings are applicable to issues regarding impression 

management. Impression management is the process through which people try to 

shape the impressions of others. If the impression manager wants to transmit a 
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specific idea in a tag cloud, the idea should have a high categorical structure and be 

represented by tags listed first in a sequential layout and with high prominence.  

Future Research 

There are several lines of research still pending. Other possible measures of 

categorical structure based on semantic distance can be investigated. Several come to 

mind: the determinant of a similarity matrix, the cohesion factor of a similarity 

matrix, the surface area of the category represented in multidimensional space and the 

number of factors a category has (based on a factor analysis of the similarity 

matrices). The data obtained for this study could be used for follow up analyses with 

these suggested measures.    

An interesting question refers to the effect of judging category membership in 

the context of multiple categories. The study presented tag clouds with four 

categories. Participants in categorization retrieval and categorization verification 

studies are usually asked to judge one category at a time. Participants in sorting and 

classification studies are presented with exemplars from multiple categories. The 

accuracy results reported in all three experiments are considerably lower than those 

reported in categorization retrieval and categorization verification studies. Perhaps the 

presence of other categories reduced participants’ performance. An experiment can be 

designed to compare stimuli with multiple categories versus one category. It is 

predicted that categorical structure and tag cloud format will influence categorization 

accuracy in the same manner as this study; however, the accuracy rate will increase 

for tag clouds with only one category.     
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Several studies performed by Homa and colleagues provided evidence that the 

degree of positive transfer to new instances is influenced by category size, resulting in 

superior transfer for the categories defined by a larger number of stimuli (Homa, 

Cross, Cornell, Goldman & Shwartz, 1973; Homa & Vosburgh, 1976). Similar results 

were found in a study performed by Hintzman (1988, Experiment 1), where accurate 

recognition of studied category members and false recognition of lures from that 

category increased as a function of category size. It would be interesting to find a 

categorical structure and category size trade off: how big does a category with low 

structure have to be so that it reaches the same accuracy level as one with a high 

structure? 

 The present research is not an attempt to construct a model of semantic 

memory. However, the fitting of models to the data of the present research is 

considered a further stage of investigation.  
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Appendix A 

Figure A1 
 
 

 
 
Figure A1. Diagram of an example trial in Experiment 1. 
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Figure A2 
 

 
 
Figure A2. Diagram of an example trial in Experiment 2. 
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Figure A3 

 
 
Figure A3. Diagram of an example trial in Experiment 3. 
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Appendix B 

Table B1 
  Group 1 Group 2 Group 3 Group 4 

Practice 
Trial 

Spatial Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 

Tag Cloud 7 Tag Cloud 1 Tag Cloud 4 Tag Cloud 10 
Tag Cloud 8 Tag Cloud 2 Tag Cloud 5 Tag Cloud 11 Alpha 
Tag Cloud 9 Tag Cloud 3 Tag Cloud 6 Tag Cloud 12 

Tag Cloud 10 Tag Cloud 4 Tag Cloud 7 Tag Cloud 1 
Tag Cloud 11 Tag Cloud 5 Tag Cloud 8 Tag Cloud 2 Freq 
Tag Cloud 12 Tag Cloud 6 Tag Cloud 9 Tag Cloud 3 
Tag Cloud 4 Tag Cloud 10 Tag Cloud 1 Tag Cloud 7 
Tag Cloud 5 Tag Cloud 11 Tag Cloud 2 Tag Cloud 8 Spatial 
Tag Cloud 6 Tag Cloud 12 Tag Cloud 3 Tag Cloud 9 
Tag Cloud 1 Tag Cloud 7 Tag Cloud 10 Tag Cloud 4 
Tag Cloud 2 Tag Cloud 8 Tag Cloud 11 Tag Cloud 5 

Ex
pe

rim
en

ta
l T

ria
ls

 

List by 
Freq 

Tag Cloud 3 Tag Cloud 9 Tag Cloud 12 Tag Cloud 6 
 
Table B1. Table B1 presents the counterbalancing scheme for Experiment 1. Sequential Layout with 
Alphabetical Sorting (Alpha), Spatial Layout (Spatial), Sequential Layout with Frequency Sorting 
(Freq), Single Column List with Frequency Sorting (List by Freq). 
 

Table B2 
  Group 1 Group 2 Group 3 Group 4 

Freq Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 
Spatial Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 Practice 

Trials List by Freq Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 Tag Cloud 0 
Tag Cloud 1 Tag Cloud 4 Tag Cloud 3 Tag Cloud 2 
Tag Cloud 5 Tag Cloud 8 Tag Cloud 7 Tag Cloud 6 
Tag Cloud 9 Tag Cloud 12 Tag Cloud 11 Tag Cloud 10 Alpha 

Tag Cloud 13 Tag Cloud 16 Tag Cloud 15 Tag Cloud 14 
Tag Cloud 2 Tag Cloud 1 Tag Cloud 4 Tag Cloud 3 
Tag Cloud 6 Tag Cloud 5 Tag Cloud 8 Tag Cloud 7 
Tag Cloud 10 Tag Cloud 9 Tag Cloud 12 Tag Cloud 11 Freq 

Tag Cloud 14 Tag Cloud 13 Tag Cloud 16 Tag Cloud 15 
Tag Cloud 3 Tag Cloud 2 Tag Cloud 1 Tag Cloud 4 
Tag Cloud 7 Tag Cloud 6 Tag Cloud 5 Tag Cloud 8 
Tag Cloud 11 Tag Cloud 10 Tag Cloud 9 Tag Cloud 12 Spatial 

Tag Cloud 15 Tag Cloud 14 Tag Cloud 13 Tag Cloud 16 
Tag Cloud 4 Tag Cloud 3 Tag Cloud 2 Tag Cloud 1 
Tag Cloud 8 Tag Cloud 7 Tag Cloud 6 Tag Cloud 5 
Tag Cloud 12 Tag Cloud 11 Tag Cloud 10 Tag Cloud 9 

Ex
pe

rim
en

ta
l T

ria
ls

 

List by Freq 

Tag Cloud 16 Tag Cloud 15 Tag Cloud 14 Tag Cloud 13 
 

Table B2. Table B2 presents the counterbalancing scheme for Experiment 2. Sequential Layout with 
Alphabetical Sorting (Alpha), Spatial Layout (Spatial), Sequential Layout with Frequency Sorting 
(Freq), Single Column List with Frequency Sorting (List by Freq). 
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Table B3 

 
Type of Interest Layout Tag Cloud Type of Interest Layout Tag Cloud Type of Interest Layout Tag Cloud Type of Interest Layout Tag Cloud

Alpha 0-3 Alpha 0-3 Alpha 0-3 Alpha 0-3

Freq 0-2 Freq 0-2 Freq 0-2 Freq 0-2

List by Freq 0-1 List by Freq 0-1 List by Freq 0-1 List by Freq 0-1

Spatial 0-2 Spatial 0-2 Spatial 0-2 Spatial 0-2

Spatial 0-3 Spatial 0-3 Spatial 0-3 Spatial 0-3

Alpha 0-1 Alpha 0-1 Alpha 0-1 Alpha 0-1

List by Freq 0-2 List by Freq 0-2 List by Freq 0-2 List by Freq 0-2

Alpha 1 Spatial 1 List by Freq 1 Alpha 2

List by Freq 2 List by Freq 11 Alpha 2 List by Freq 7

Freq 3 Freq 12 Freq 12 Freq 8

Spatial 7 Freq 2 Alpha 1 Spatial 2

Freq 8 Spatial 3 List by Freq 2 Freq 3

List by Freq 9 Alpha 4 Spatial 12 List by Freq 8

Spatial 10 Spatial 2 Alpha 3 Alpha 4

Alpha 11 Freq 3 List by Freq 4 Freq 6

List by Freq 12 List by Freq 4 Freq 5 Spatial 11

Alpha 4 Alpha 2 List by Freq 3 Spatial 9

Spatial 5 List by Freq 3 Alpha 4 Alpha 10

Freq 6 Freq 4 Spatial 5 List by Freq 11

Alpha 7 List by Freq 2 Freq 3 Freq 1

List by Freq 8 Alpha 3 Spatial 4 List by Freq 6

Freq 9 Spatial 4 Alpha 5 Alpha 11

List by Freq 7 Spatial 5 Spatial 3 Freq 2

Alpha 8 Alpha 6 Freq 4 Spatial 7

Spatial 9 List by Freq 7 List by Freq 5 List by Freq 9

Spatial 4 Freq 5 List by Freq 6 Alpha 1

Alpha 5 List by Freq 6 Freq 7 Spatial 6

List by Freq 6 Alpha 7 Spatial 8 Freq 11

Alpha 10 List by Freq 5 Alpha 6 List by Freq 5

Spatial 11 Freq 6 Spatial 7 Freq 10

Freq 12 Spatial 7 Freq 8 Alpha 12

Freq 10 Alpha 5 Spatial 6 List by Freq 4

List by Freq 11 Spatial 6 Alpha 7 Alpha 9

Alpha 12 Freq 7 List by Freq 8 Spatial 10

List by Freq 4 Spatial 8 Freq 6 Spatial 1

Freq 5 Freq 9 List by Freq 7 Freq 4

Spatial 6 List by Freq 10 Alpha 8 Alpha 6

List by Freq 1 Freq 8 List by Freq 9 Spatial 4

Alpha 2 Spatial 9 Alpha 10 Freq 9

Spatial 3 Alpha 10 Spatial 11 List by Freq 10

Freq 7 List by Freq 8 Alpha 9 Alpha 5

Spatial 8 Alpha 9 List by Freq 10 Freq 7

Alpha 9 Spatial 10 Freq 11 List by Freq 12

Freq 4 Alpha 8 Spatial 9 List by Freq 1

List by Freq 5 List by Freq 9 Freq 10 Spatial 3

Alpha 6 Freq 10 List by Freq 11 Alpha 8

List by Freq 10 Alpha 1 Freq 9 List by Freq 2

Freq 11 Freq 11 Spatial 10 Alpha 3

Spatial 12 List by Freq 12 Alpha 11 Spatial 12

Spatial 1 List by Freq 1 Spatial 1 List by Freq 3

Freq 2 Spatial 11 Freq 2 Spatial 5

List by Freq 3 Alpha 12 Alpha 12 Freq 12

Freq 1 Freq 1 Freq 1 Freq 5

Spatial 2 Alpha 11 Spatial 2 Alpha 7

Alpha 3 Spatial 12 List by Freq 12 Spatial 8
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hobby
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hobby

location

hobby

profession
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location
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Table B3. Table B3 presents the counterbalancing scheme for Experiment 3. Sequential Layout with 
Alphabetical Sorting (Alpha), Spatial Layout (Spatial), Sequential Layout with Frequency Sorting 
(Freq), Single Column List with Frequency Sorting (List by Freq). 
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