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Over the last 20 years, we have seen a tremendous increase in demand for

broadband internet access and cellular use. Many technological advances were made

throughout this time period to increase internet access speeds and improve the voice

service quality. But despite these advances, one of the current limitations in the cur-

rent technology is that it cannot simultaneously provide both high-speed internet

access equivalent to cable/DSL and coverage equivalent to the cellular networks.

To overcome this limitation, WiMAX was developed to be the solution to this lim-

itation. WiMAX is an emerging and powerful technology in broadband wireless

communications in that it can provide high-speed broadband voice and data ser-

vices over distances much greater than Wi-Fi.

However, like in any wireless system, signal distortion due to channel fading,

noise, and Doppler can limit the overall transmission data rate and coverage. To

minimize the degradation in system performance caused by the channel, channel es-

timation must be performed to remove the effects of the channel. To aid the channel

estimation process, known pilot subcarriers are embedded into each OFDM symbol

and used by the receiver to measure the channel. Because the pilot arrangement



depends on the mode or feature employed by WiMAX, different channel estimation

algorithms must be developed to optimize performance.

We first develop and present several channel estimation algorithms for the

various modes and features supported by WiMAX. More specifically, we develop

channel estimation algorithms that can be used in the PUSC and AMC subcarrier

permutation and channel sounding feature. We then use analytical modeling and

simulation to illustrate and analyze the performance of each algorithm under various

channel conditions and compare them to an estimator with perfect channel knowl-

edge. Our results show that channel delay spread and signal-to-noise ratio influence

the performance of each algorithm and that some estimators perform better in cer-

tain channels and worse in others. With this knowledge, we can use a combination

of our proposed algorithms and tune them according to the channel conditions to

enhance the system’s performance. By the end of this study, we will have a better

understanding of the types of channels each algorithm performs best in and explain

why each algorithm performs the way it does.
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Chapter 1

Introduction

Over the last 20 years, there has been a tremendous growth in demand for

broadband internet access and cellular use. Broadband internet access and cellular

use have grown to the point that it has become much a part of daily life that most

people cannot live without now. At the same time, we have also seen the require-

ments for the technology providing these services increase in order to provide users

with a better overall experience. The technology for internet access has developed

from low dial-up speeds on the order of kilobits per second to high broadband ca-

ble/DSL speeds on the order of megabits per second. In addition, the development

of Wi-Fi has allowed broadband internet access to be provided to users within a

small area. In parallel, cellular technology has also developed rapidly from 1G ana-

log networks to 2G digital networks to 3G networks which provide both voice and

low-speed data services.

However, one of the limitations to the current technology is that it does not

allow users to have high speed broadband internet access and be completely mobile
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simultaneously. Cable/DSL forces a user to be fixed to obtain broadband internet

access and Wi-Fi only provides broadband internet coverage to those within a radius

of a couple hundred meters which severely restricts the amount a user can move.

The 3G cellular network allows a user to be mobile but was designed more for

voice services and can only provide data services at speeds equivalent to dial-up

which could not support most multimedia applications. To overcome this limitation,

WiMAX was developed to allow users to have high-speed broadband internet access

at speeds equivalent to cable/DSL and the same mobility provided by the cellular

network simultaneously. WiMAX is a broadband wireless network that combines the

fixed broadband and mobile cellular network into one flexible and easily deployable

network.

1.1 Overview of Uplink Channel Estimation

A problem with any communication system is that its data rate can be limited

by distortion caused by the channel. To mitigate the effect of the channel, the

receiver must perform channel estimation to remove this distortion. The task of

channel estimation is made more difficult in a wireless environment because the

channel is fast-changing and unpredictable. Because of this, good channel estimators

are required to accurately estimate the channel while minimizing the amount of time,

data, and computations necessary to do so.

Recently, we have seen an increased popularity in OFDM-based (Orthogo-

nal Frequency Division Multiplexing) broadband wireless communication systems
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because of its high spectral efficiency and robustness to multipath channel fading.

OFDM is a multicarrier modulation scheme in which data is modulated onto orthog-

onal subcarriers spaced throughout the channel bandwidth. In an OFDM system, all

the subcarriers are simultaneously transmitted so we can model the channel band-

width as a sum of several narrowband subchannels in which the channel response

within each subchannel can be modeled as a flat fading channel. This allows a sim-

ple frequency-domain equalizer to be implemented and hence, significantly reduce

the computational complexity in channel estimation.

WiMAX is also an OFDM-based system, but unique in that it employs OFDMA

(Orthogonal Frequency Division Multiple Access) which is the multi-user version of

OFDM. The difference between WiMAX and other OFDM systems is that it allows

multiple users to simultaneously access the channel by allocating a different set of

subchannels to each user. This extra degree of freedom allows WiMAX to exploit

the frequency-selective channel by allocating subchannels to users with favorable

conditions in those subchannels and/or avoid allocating subchannels to users in

which their channel conditions are poor. However, this unique feature also makes

channel estimation in WiMAX more difficult because fewer subcarriers can be used

in estimating the channel.

To allow multiple access to the channel, WiMAX uses two types of subcar-

rier allocation modes or permutations: Distributed and Adjacent. A distributed

subcarrier permutation pseudorandomly allocates subcarriers to subchannels to ex-

ploit frequency diversity. Partial Usage of Subcarriers (PUSC) is one example of

a distributed subcarrier permutation. An adjacent subcarrier permutation forms
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subchannels of adjacent subcarriers and leaves the responsibility of determining the

optimum allocation to the scheduler. Adaptive Modulation and Coding (AMC) is

one example of an adjacent subcarrier permutation. In AMC, channel sounding

is an optional feature sometimes used to aid the base station in determining each

user’s unique channel condition. This technique is implemented by reserving OFDM

symbols typically at the end of the uplink frame for users to transmit known sound-

ing sequences for the base station to use to estimate the channel of each user in the

system.

A specific pilot arrangement is defined by the IEEE 802.16 standard for each

permutation mode supported by WiMAX so our primary focus in this thesis will

be on channel estimation and interpolation algorithms for WiMAX. Mainly, our

emphasis will be on channel estimation and interpolation algorithms that can be

used for the pilot allocation defined in PUSC and AMC. We will also extend our

analysis to channel estimation algorithms in channel sounding where users may

transmit known signals in any number of subcarriers within an OFDM symbol. In

addition, we will focus our work on channel estimation on the uplink because this is

generally the more difficult problem to solve. On the uplink, the received signal is

distorted by multiple frequency selective channels so the number of subcarriers that

can be used for channel estimation is smaller than on the downlink.
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1.2 Background: OFDM Channel Estimation

Channel estimation has received a lot of attention in recent years because of

its importance in wireless communications. Without a good channel estimator, the

throughput and coverage of the a wireless system is severely limited. OFDM has

become very popular in wireless communication systems including WiMAX because

of its robustness to multipath channel fading and simple channel equalizer so a lot

of research work has been placed in designing a good channel estimator for OFDM

systems.

1.2.1 OFDM Blind Channel Estimation

Channel estimators for OFDM systems can usually be classified as blind or

pilot-assisted. In blind channel estimation, the receiver attempts to estimate the

channel through the use of higher order statistics without the aid of any training

signals. These estimators use an iterative algorithm based on higher order statistics

to converge to the optimal solution. Muquet explored a blind channel estimation

method based on a subspace approach by utilizing the cyclic prefix [6]. He also

presents a semi-blind approach to his estimator to improve performance. While his

approach shows that good performance can be obtained, it requires between 50 to

100 OFDM symbols before converging to the optimal solution. In [1], he presents

a two-stage blind channel equalization approach in which it first uses second-order

cyclostationary statistics to get a rough estimate of the channel and then use the

Constant Modulus Algorithm (CMA) to adapt to the channel.
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1.2.2 OFDM Pilot-Assisted Channel Estimation

While the blind channel estimation methods present above show that a high-

performing solution can be obtained, their convergence rate is often too slow for

most wireless communication systems. In most scenarios, the wireless channel will

have changed before many blind channel estimators will have converged to the opti-

mal solution so many wireless communication systems employ pilot-assisted channel

estimators. In pilot-assisted channel estimation, some of the channel bandwidth is

reserved for transmitting pilot (training) signals to the receiver and using them to

estimate the channel. By sacrificing some bandwidth efficiency to transmit pilot

signals, the pilot-assisted channel estimators can typically make fast and accurate

measurements of the channel. With pilot-assisted channel estimators, there are gen-

erally two often researched topics: Pilot Allocation and Estimation/Interpolation

algorithms.

Pilot Arrangement

In [10], some commonly used pilot patterns in OFDM are presented. Among

those that are presented are a Block-type arrangement in which one symbol is pe-

riodically reserved for just pilot transmission, a Comb-type arrangement in which

a few subcarriers are allocated for pilot transmission in every OFDM symbol, and

a rectangular, parallelogram-shaped and hexagonal grid arrangement in which pi-

lots are distributed in time and frequency according to their respective geometry.

In [2], Garcia shows that a hexagonal pilot arrangement performs better than the
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rectangular arrangement in terms of bit error rate. In [3], Negi shows that a pilot

arrangement distributed among subcarriers and symbols is better than grouping

them all together in one symbol in the mean-squared error sense. And in [4], Zhang

derives a theoretical BER and uses it to determine the optimal pilot arrangement.

In his approach, he proposes to cluster two pilots together and increase the spacing

between each cluster rather than an evenly distribute the pilots. He shows that this

method has better noise reduction features and would be better suited in low SNR

environments. But generally speaking, the optimal number of pilots will depend on

the bandwidth efficiency that can be tolerated and the optimal pilot spacing will

depend on the coherence bandwidth and coherence time of the channel.

Estimation/Interpolation

In OFDM channel estimation, the first step is to perform estimation at the

pilot subcarriers. Two common estimators for performing estimation at the pi-

lot subcarriers are the Minimum Mean-Squared Error (MMSE) Estimator and the

Least-Squares (LS) Estimator [10]. The MMSE estimator is one that depends on

second-order channel statistics and can produce a very accurate estimate when the

channel statistics are known. However, this estimator can be computationally com-

plex because it depends on a matrix inversion and requires knowledge of the channel

to be effective. The LS estimator is simple, low-complexity alternative to the MMSE,

but cannot achieve the level of performance the MMSE estimator can. The LS es-

timator performs well in high SNR environments but quickly degrades as the noise

level increases.
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The next step in OFDM channel estimation is interpolation of the channel

estimates to the data subcarriers. The classification of channel interpolators can

be divided into adaptive and non-adaptive interpolators. Adaptive estimators are

iterative algorithms that use training data to generate an estimate of the channel.

Hou proposed an estimator based on the Least Mean Square (LMS) algorithm which

uses the time and frequency domain correlation of the channel to adaptively track

the channel [7]. Saeed compares a time-domain and frequency-domain Recursive

Least Squares (RLS) estimator to iteratively estimate the channel [8]. Chen presents

an iterative algorithm based on Kalman filtering by using Jake’s channel model to

model the channel’s correlation in time [9].

Two common non-adaptive interpolators used in OFDM are a Polynomial-

Based Interpolator [10] and a Frequency Smoothing/DFT-based Estimator [5]. The

Polynomial-Based Interpolator are popular mainly for the fact that they are easy to

implement and have low computational complexity. But these estimators tend to

be sensitive to noise and depend much on the accuracy of the channel estimate at

the pilots. The Frequency Smoothing approach is another interpolation approach

in which the channel estimates at the pilots are transformed into the time domain

where a window is applied and then transformed back into the frequency domain.

This estimator is equivalent to applying a low-pass filter in the time-domain. The

frequency smoothing algorithm interpolates the data subcarriers in the frequency

domain by eliminating the images in the time-domain. The benefit to this approach

is that this method has very good noise rejection capabilities and can perform well

even without knowledge of the channel. However, this approach is more computa-
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tionally complex because an IDFT and DFT must be used and requires more pilots

that are evenly spaced to be effective.

1.3 WiMAX Channel Estimation

While adaptive algorithms can converge to a solution sufficiently fast even for

a wireless channel, these algorithms cannot be applied for WiMAX because users are

not guaranteed to occupy the same subcarriers. Because WiMAX utilizes different

permutations, users may be constantly assigned different portions of the channel

bandwidth so an adaptive algorithm cannot be considered for WiMAX.

WiMAX supports a wide variety of applications ranging from voice services

that are latency-sensitive to real-time multimedia services where a consistent high

data throughput must be maintained. In addition, users may be using any one of

these services while walking or riding in a car where the wireless channel appears to

be fast-changing to the receiver. Because of these requirements, it is particularly im-

portant that a WiMAX channel estimator be designed to be both fast and accurate.

And while WiMAX is an OFDM-based system, channel estimation is more difficult

in WiMAX than traditional OFDM systems because the estimator has fewer sub-

carriers to use. In addition, we generally cannot consider adaptive algorithms for

channel estimation in WiMAX because users constantly assigned different portions

of the channel bandwidth. In this thesis, we will design and analyze channel estima-

tors that satisfy these constraints. More specifically, we will look at non-adaptive

estimators and interpolators that are accurate and computationally fast for given

9



pilot allocations as defined in WiMAX permutation modes.

1.4 Contributions

While studies of uplink channel estimation algorithms for OFDM have been

done before, none have been done specifically for WiMAX and its subcarrier per-

mutation modes and channel sounding feature. In this thesis, we will develop,

demonstrate, and analyze the performance of many uplink channel estimation algo-

rithms that can be used for WiMAX. We focus our study on algorithms that can be

used in PUSC (distributed subcarrier permutation) and AMC (adjacent subcarrier

permutation) because the IEEE 802.16 standard requires support of these permu-

tations. In addition, we also include a study of channel estimation algorithms for

channel sounding, an optional feature in WiMAX typically used with AMC. More

specifically, the main contributions of this thesis are as follows:

1. We illustrate and evaluate the performance of the linear interpolator in PUSC,

AMC, and channel sounding and compare its performance to the genie-aided

channel estimator (perfect channel knowledge). In addition, we include an

analytical model of the linear interpolator that can be used to predict the

performance of the estimator in different channel conditions and compare its

results to our simulations results.

2. We develop and evaluate the performance of the 4-pilot averaging estimator in

PUSC and compare its performance to the linear interpolator. We also include
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an analytical model of the 4-pilot averaging estimator and compare the results

predicted by the model to our simulation results.

3. We develop and evaluate the performance of a frequency smoothing algorithm

in AMC and channel sounding and compare its performance to other channel

estimators under different channel conditions. We also include an analytical

model of the frequency smoothing algorithm and compare its results to our

simulation results.

4. We develop and evaluate the performance of the linear minimum mean-squared

error (LMMSE) estimator in channel sounding for different parameters and

compare its results other algorithms. In addition, we include an analytical

model of the LMMSE estimator and compare its results to the simulation

generated results.

5. We illustrate the performance of the linear interpolator and frequency smooth-

ing algorithm when users perform channel sounding over the entire channel

allocation and are multiplexed within the sounding zone through decimation

separability.

6. We illustrate the performance of the staircasing method and frequency smooth-

ing algorithm when users perform channel sounding over the entire channel

allocation and are multiplexed within the sounding zone through cyclic-shift

separability.
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1.5 Outline

The organization of this Master’s thesis is as follows:

• In Chapter 2, we provide a more detailed description of WiMAX and some

of the theory behind OFDM. In addition, we describe the system model used

throughout this study and explain how the model was developed.

• In Chapter 3, we illustrate and analyze each channel estimator’s performance

in PUSC. We demonstrate and analyze the system level performance gap

between the current linear interpolator with the genie-aided estimator. In

addition, we introduce a 4-pilot averaging channel estimation technique and

compare its performance to the linear interpolator under different channel

conditions in PUSC.

• In Chapter 4, we illustrate and analyze each channel estimator’s performance

in AMC. We compare the performance of the linear interpolator to the fre-

quency smoothing algorithm and analyze each under different channel condi-

tions.

• In Chapter 5, we demonstrate the performance of each channel estimation

algorithm in channel sounding. We introduce and show the performance of

channel estimation algorithms when users transmit sounding signals over a

part of or over the entire sounding zone.

• In Chapter 6, we summarize the conclusions made from this study and briefly

discuss related areas where future work can be performed.
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Chapter 2

System Overview

2.1 Introduction to WiMAX

WiMAX (Worldwide Interoperability for Microwave ACCess) is an emerging

technology in wireless communications and will play a major role in broadband

wireless metropolitan networks. WiMAX stands for Worldwide Interoperability for

Microwave Access and is based on the IEEE 802.16 (Wireless MAN) standard. When

the IEEE 802.16 standard was initially released in 2001, the only specifications

defined were for the 10-66GHz range and targeted wireless networks where line of

sight was present. However, in 2004, the specification was amended to revision D

(IEEE 802.16d) to include the 2-11GHz frequency band where fixed and low mobility

environments could be supported. In 2005, an amendment was added and the IEEE

802.16e standard was created to support full mobility and included features such

as MIMO and Scalable OFDMA. In general, WiMAX refers to networks that meet

specifications in the IEEE 802.16d and/or IEEE 802.16e revision of the standard.
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WiMAX defines “profiles” which are composed of a subset specifications from the

802.16d and 802.16e standard that vendors can use to certify their products.

Figure 2.1: WiMAX System Level Block Diagram

2.1.1 Benefits to WiMAX

WiMAX has many features that make it one of the more attractive technologies

to those seeking to deploy high-speed and low cost broadband wireless networks.

From a marketing perspective, the benefits to WiMAX are [26]:

• High-Speed and Large Coverage Simultaneously - WiMAX provides high-speed

voice, data, and multimedia service at speeds equivalent to cable and DSL

while still offering the user the mobility equivalent allowed by the cellular

network. Wi-Fi can only provide broadband internet access within a few

hundred meters and the cellular network can only offer data rates equivalent

to dial-up.
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• Solution to the “Last Mile Problem” - One of biggest barriers to providing

broadband internet access is deployment cost. Many residents and businesses

residing in rural areas or environments with a limited wired infrastructure do

not have broadband internet access because it is not cost effective to service

providers. In these areas, the gain to deploying a broadband network does not

outweigh the cost of digging trenches and deploying wires for a small number of

users. However, with WiMAX, a single base station could provide broadband

internet access to all users residing within 30 kilometers of the base station

and greatly reduce the cost of providing broadband internet access.

• Backhaul to Wi-Fi hotspots and cellular networks - WiMAX can support large

capacities and provide wide coverage which make it capable of being used for

backhauling purposes. In addition, because WiMAX can be rapidly and cost-

effectively deployed, service providers can use WiMAX to quickly connect new

Wi-Fi hotspots to the Internet and new cell towers to their existing cellular

network.

• Connect businesses that are scattered within a metropolitan area - Businesses

with many locations scattered throughout a metropolitan area can be inter-

connected through WiMAX. Using WiMAX for this purpose eliminates the

need for each of these locations to be geographically close to each other and

reduces the cost and time required to deploy a wired infrastructure to connect

each site.
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The advanced technological infrastructure of WiMAX allows it to be more effi-

cient and cost-effective solution to providing high-speed voice, data, and multimedia

services. From a technological perspective, the benefits to WiMAX are:

• Adopts OFDMA - At the physical layer, WiMAX employs OFDMA which is

the multiuser version of OFDM. An OFDM system is more spectrally efficient

because the subcarrier spacing is smaller than traditional FDM systems. An

OFDM system is also more robust to multipath channel fading because the

symbol duration is longer and simplifies channel equalization because the entire

channel allocation is divided into many narrowband subchannels.

• Scalable Channel Bandwidths - WiMAX can easily be adjusted to support a

wide range of bandwidths allowing it to be deployed for many different spec-

trum allocation and usage requirements. For example, in rural areas where

broadband access may not exist and wireless spectrum is more readily avail-

able, WiMAX can be deployed with the widest bandwidth to support as many

users as possible. However, in environments where other broadband networks

exist and spectrum is more limited, a WiMAX network can be deployed with

a smaller bandwidth to enhance capacity in the area.

• Dynamic Resource Allocation - At the MAC layer, resources can be allocated

to users on a frame-by-frame basis based on their unique channel conditions

and application requirements. This feature gives the system an extra degree

of freedom to optimize system performance by allowing it to take advantage

of the frequency selective fading channel.
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• Quality of Service (QoS) Support - Because WiMAX can dynamically allocate

resources, QoS requirements can be better enforced and guaranteed. This

helps the system operate more efficiently and predictably because each appli-

cation is guaranteed a certain level of performance and not allocated more or

less than it needs.

2.1.2 Basic OFDM/OFDMA Principles

At the core of WiMAX is OFDMA which is an OFDM-based system that al-

lows multiple users access to the allocated channel. In an OFDM system, a high-rate

data stream is converted into several lower-rate data streams, mapped to a constel-

lation, and then modulated onto orthogonal subcarriers. OFDM-based systems have

been around for many years and until recently, each parallel data stream had to be

modulated/demodulated separately. However, with advances in the digital signal

processors, an efficient implementation of the IFFT/FFT operation can be used to

perform modulation/demodulation respectively. A basic block diagram illustrating

the WiMAX OFDM baseband system model is shown in Figure 2.2.

Figure 2.2: WiMAX OFDM Baseband System Model
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Orthogonality

In an OFDM system, the subcarrier frequencies are chosen so that the sub-

carriers are orthogonal to each other within each OFDM symbol. We define the

kth modulated subcarrier with frequency f k as sk(t) = g(t)cos(2πfkt) where k =

0,1,2,...,N-1 and g(t) is the shaping pulse. For orthogonality, sk(t) must be chosen

such that

1

Ts

∫ Ts

0

si(t)·sj(t)dt = 0 for i 6= j

where Ts is the symbol duration. If we choose the subcarrier spacing to be a multiple

of 1/Ts, then the subcarriers will be orthogonal to each other [28].

1

Ts

∫ Ts

0

si(t)·sj(t)dt =
1

Ts

∫ Ts

0

g(t)cos(2πfit)·g(t)cos(2πfjt)dt

=
1

Ts

∫ Ts

0

g(t)cos(2π(f0 +
i

Ts
)t)·g(t)cos(2π(f0 +

j

Ts
)t)dt

=
1

2Ts

∫ Ts

0

g2(t)cos

(
2π(

i− j
Ts

)t

)
dt

+
1

2Ts

∫ Ts

0

g2(t)cos

(
2π(2f0 +

i+ j

Ts
)t

)
dt

If we assume that g(t) is a slowly varying pulse or approximately constant over the

symbol duration, then the last line of the equation above is approximately 0. With

this approximation, we obtain

1

Ts

∫ Ts

0

si(t)·sj(t)dt =


0 for i 6= j

1
2
Eg for i = j

where Eg is the energy of the shaping pulse.

Typically, g(t) is a raised cosine pulse. If we use this pulse shape with the

orthogonal subcarriers as described above, then the subchannels can overlap without
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interference. Figure 2.3 shows an example. This allows the subcarriers to be more

closely spaced than traditional FDM systems and allows OFDM systems to achieve a

high spectral efficiency. However, one of the weaknesses to an OFDM system is that

these systems to be sensitive to any frequency deviation between the transmitter

and receiver. Doppler and poor frequency synchronization between the transmitter

and receiver could cause frequency deviation and introduce intercarrier interference

(ICI) because the subcarriers lose orthogonality.

Figure 2.3: OFDM Spectrum with 7 Orthogonal Subcarriers

Cyclic Prefix

One of the biggest advantages to an OFDM system is its ability to eliminate

intersymbol interference (ISI). An OFDM system increases the symbol duration by

transmitting several parallel data streams instead of a single high-rate data stream.

Because the duration of each OFDM symbol is longer, a cyclic prefix can be used. A
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cyclic prefix is the last portion of the original symbol duplicated and appended to the

beginning of the OFDM symbol and removed once the receiver receives the symbol.

If the cyclic prefix length is chosen such that it is longer than the maximum delay

spread of the channel, then the system will be free of any intersymbol interference.

The cyclic prefix also makes the transmitted OFDM symbol appear periodic

so the effect of the channel can be modeled with a circular convolution rather than

a linear convolution. The benefit is that when the received signal is transformed

into the frequency domain via the FFT operation, the effect of the channel becomes

multiplicative. By combining this property with the assumption that the entire

channel allocation can be viewed as a sum of many narrowband subchannels, we

can use a simple frequency-domain equalizer to cancel out the effects of the channel

at each subcarrier. Figure 2.4 illustrates the functionality of the cyclic prefix.

Figure 2.4: Function of the Cyclic Prefix

Multiuser Access

A unique feature of WiMAX is its use of the multiuser version of the OFDM.

This feature allows multiple users to transmit simultaneously without interference

since each user is allocated separate resources. Another benefit to multiple access
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is that system parameters can be tuned to meet each user’s Quality of Service

(QoS) requirements. Each user will likely be using WiMAX for different applications

and be transmitting in a different environment and this feature allows the system

to have more control of the data rate for each user. However, this does make

WiMAX more complex because algorithms adaptively assigning subcarriers need

to be developed and coordination between other base stations is required to fully

leverage this capability.

2.1.3 Subcarrier Structure

In WiMAX, each OFDM symbol is composed of data subcarriers, pilot sub-

carriers, and null subcarriers. Data subcarriers carry the actual data payload, pilot

subcarriers are subcarriers with known values that are used in channel estimation,

and null subcarriers are used as guard bands.

2.1.4 Frame Structure

Currently, WiMAX separates the uplink and downlink using time division

duplexing (TDD). While other duplexing methods (Full and Half Duplex FDD) will

be supported in the future, TDD provides the benefit of being able to adjust the

data speed for the uplink and downlink depending on the amount of data that needs

to be transferred.

In the downlink frame, some of the key components are [13]:

• Preamble - First symbol transmitted and used for synchronization purposes
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Figure 2.5: WiMAX Frame Structure [13]

• Frame Control Header (FCH) - Provides message lengths, coding schemes,

and usable subchannels

• DL/UL MAP - Provides information about subchannel allocation

In the uplink frame, some of the key components are [13]:

• Ranging - Subchannels for mobiles to perform time, frequency, and power

adjustments

• CQICH (Channel Quality Indication) - Subchannel used for mobiles to feed-

back channel state information to the base station. This information is used

by the base station to determine the appropriate data rate for each user based

on their channel conditions

• ACK-CH - Subchannels used by mobile to feedback DL hybrid ARQ (HARQ)

information. HARQ is a feature in WiMAX that allows the system to respond

quickly to packet errors.
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2.1.5 Subcarrier Permutations

Subcarrier permutation describes the mapping of subcarriers to subchannels.

These subchannels are then allocated to users in the system. WiMAX supports two

types of subcarrier permutations: Distributed and adjacent. A distributed subcar-

rier permutation generally describes a pseudorandom allocation of subcarriers to

subchannels and exploits a frequency selective channel through frequency diversity.

The idea in a distributed subcarrier permutation is to use frequency hopping to

help any single user avoid large bursts of errors. An adjacent subcarrier permuta-

tion describes a process of mapping adjacent subcarriers to form each subchannel

and leaving the scheduler the responsibility of determining the optimal subchannel

allocation based on each user’s unique channel conditions. Ideally, if the scheduler

knew each user’s channel quality perfectly, it could allocate the high quality sub-

channels and/or avoid allocating the poor quality subchannels to each user. Figure

2.6 is an example of a simple 3 user system where the channel conditions of each

user are shown and how each type of permutation would allocate subchannels to

each user.

Figure 2.6: Illustration of Distributed and Adjacent Subcarrier Permutation

Currently, Partial Usage of Subcarriers (PUSC) is the distributed subcarrier
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permutation and Adaptive Modulation and Coding (AMC) is the adjacent sub-

carrier permutation WiMAX is required to support on the uplink. While other

permutations will be supported later, we focus this study on WiMAX systems using

PUSC and AMC.

PUSC - Distributed Subcarrier Permutation

For PUSC, the mapping of subcarriers to subchannels is different between the

uplink and downlink. Because this study focuses on the uplink, we will only describe

uplink PUSC in detail.

In PUSC, the subcarriers across the entire frequency spectrum (excluding the

guard bands) over 3 OFDMA symbols are divided and grouped into tiles. One tile is

composed of 4 adjacent subcarriers over 3 OFDM symbols. Within each tile, there

are 4 pilot subcarriers and 8 data subcarriers and are assigned as depicted in Figure

2.7. The tiles are then placed into 6 groups based on their location in the allocated

channel spectrum and a subchannel formed by randomly selecting one tile from each

of the 6 groups so that one subchannel is composed of tiles distributed across the

entire spectrum. Therefore, each subchannel contains 48 data subcarriers and 24

pilot subcarriers.
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(a) PUSC Tile (b) PUSC Permutation Process

Figure 2.7: PUSC Tile and Permutation Process

AMC - Adjacent Subcarrier Permutation

In AMC, the permutation is the same for both the uplink and downlink. In

this permutation, one subchannel is composed of 18 adjacent subcarriers over 3

OFDM symbols. In each AMC subchannel, there are 48 data subcarriers and 6

pilot subcarriers assigned as depicted in Figure 2.8.

Figure 2.8: AMC Subchannel

Currently, the WiMAX system profile only requires support for this subchannel

size. Future revisions of the profile may include support for AMC subchannels of

different sizes. Since the scheduler decides how to allocate subchannels to users, it

is possible for a user to be assigned adjacent subchannels.
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2.1.6 Uplink Channel Sounding

A feature included in the IEEE 802.16e standard and the mobile WiMAX

system profile is uplink channel sounding. Channel sounding is a technique used to

provide the base station with channel response information between the base station

and the mobile. In a TDD system, one of the benefits to using channel sounding is

that the estimates calculated can be used for the downlink because of the reciprocity

between the uplink and downlink channel. Therefore, to provide the base station

with as current information as possible, the sounding zone is usually allocated at the

end of the uplink frame. Channel sounding is a simple yet effective feature that can

significantly increase the coverage and reliability of the system by allowing many

closed-loop transmit antenna array techniques such as adaptive beamforming.

2.1.7 System Profiles

One of the benefits to WiMAX is that it can easily be scaled for many channel

bandwidth sizes by simply adjusting the FFT size while keeping the subcarrier spac-

ing fixed. This minimizes the impact to the higher layers and makes WiMAX easily

deployable for many different requirements [13]. Currently, two system profiles that

have been released are for channel bandwidth sizes of 5MHz and 10MHz. Without

loss of generality, we performed our simulations for this study for the 10MHz chan-

nel bandwidth size. A table of the parameters are shown in Table 2.1. It should be

noted that PUSC and AMC have different parameters and that their downlink and

uplink parameters are different from each other.
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Table 2.1: WiMAX OFDMA Symbol Parameters [25]

Parameter DL PUSC UL PUSC DL AMC UL AMC

System Channel Bandwidth 10 MHz

FFT Size (N) 1024

Null Subcarriers 184 184 159 159

Pilot Subcarriers 120 180 96 96

Data Subcarriers 720 560 768 768

Used Subcarriers (Nused) 940 740 865 865

Number of Subchannels 30 35 48 48

Subcarrier Spacing (Tf ) 10.94kHz

Sampling Frequency (1/Tn) 11.2MHz

1/4 FFT Size = 22.8µs

Cyclic Prefix Length 1/8 FFT Size = 11.4µs

1/16 FFT Size = 5.7µs

The WiMAX profile also specifies many modulation and code rates to allow

the system more control of the data rates. On the downlink, QPSK, 16-QAM,

and 64-QAM are the required modulations. On the uplink, QPSK and 16-QAM

are the required modulations while 64-QAM is optional. WiMAX also supports

Convolutional Codes (CC) and Convolutional Turbo Codes with different code rates
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and repetition factors [13]. Table 2.2 shows the modulation and code rates supported

by WiMAX.

Table 2.2: WiMAX supported Modulation and Code Rates [13]

Downlink Uplink

Modulation Code Rate Repetition Modulation Code Rate Repetition

QPSK 1
2
, 2

3
, 3

4
, 5

6
1, 2, 4, 6 QPSK 1

2
, 2

3
, 5

6
1, 2, 4, 6

16-QAM 1
2
, 2

3
, 3

4
, 5

6
1, 2, 4, 6 16-QAM 1

2
, 2

3
, 5

6
1, 2, 4, 6

64-QAM 1
2
, 2

3
, 3

4
, 5

6
1, 2, 4, 6 64-QAM 1

2
, 2

3
, 5

6
1, 2, 4, 6

2.2 Channel Model

In this section, we discuss briefly the development of the channel model used

in our simulations. In a wireless environment, a signal propagating through a wire-

less channel is often distorted by a multipath fading channel. Fading describes an

amplitude and/or phase change in the transmitted signal and the amount of fading

a signal experiences is generally influenced by two factors: Multipath propagation

and Doppler spread.

2.2.1 Multipath

Multipath distortion occurs when multiple copies of the transmitted signal

arrives at the receiver from many different angles at different times. This type of
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distortion is common in outdoor environments where RF waves reflect or refract off

terrestrial objects like buildings and cars. When multiple copies of the signal arrive

at roughly the same time, each copy is vectorially added together at the receiver.

Because each copy undergoes a different amplitude and phase distortion, the signal

strength at the receiver fluctuates. Generally, a multipath channel will have multi-

ple multipath components because the transmitted signal may arrive at the receiver

at different times. Depending on how spread out in time these multipath compo-

nents arrive at the receiver will affect how rapidly the signal changes in frequency.

One measure of this is coherence bandwidth. This measure is used to describe the

frequency separation in which two frequency-domain samples become uncorrelated.

The coherence bandwidth is inversely proportional to the delay spread of the channel

which describes the difference in time between the first arriving signal path and the

last arriving signal path. This dispersion in time can cause distortion in frequency

and can cause intersymbol interference. For a broadband system, we generally de-

scribe the channel as frequency selective because the coherence bandwidth is smaller

than the bandwidth of the transmitted signal. However, in an OFDM system, we

divide the bandwidth into many narrowband subchannels and therefore, use the

assumption that the fade is flat over each narrowband subchannel.

Because the received signal in a multipath channel is composed of copies of the

transmitted signal that have been amplitude and/or phase distorted and delayed in

time, a good model to use for the multipath channel is the tapped-delay line impulse

response where each tap represents one multipath component at a particular time

[18]. To model this distortion, a common statistical model for each multipath fading
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component is Rayleigh fading. In this model, we assume that the envelope of the

signal will fade with a Rayleigh distribution. This model holds in environments

where there is a lot of scattering before the signal arrives at the receiver so that

by Central Limit Theorem, the sum of all copies of the signal that arrive at the

receiver can be modeled as a complex Gaussian process. In an environment where

there is no direct line of sight between the transmitter and receiver, the complex

Gaussian process will have zero mean and uniform phase distribution between 0

and 2π radians. The amplitude response (or envelope) of the channel will then

follow a Rayleigh distribution under the assumption that the real and imaginary

components of the channel response are independent and identically distributed

zero-mean Gaussian processes. If there is a direct line of sight, then it follows a

Rician distribution.

2.2.2 Doppler Spread

Fading can be described as slow or fast depending on the coherence time

and symbol duration. Coherence time is a measure used to describe the time-

varying nature of the channel and defined as the length of time between two time-

domain samples in which they become uncorrelated. This parameter is inversely

proportional to the Doppler spread which is defined as the difference between the

highest and lowest Doppler shifts between signals arriving at the receiver at the same

time. When the coherence time of a channel is smaller than the symbol duration,

then we generally describe the channel as a fast fading channel. When the coherence
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time of a channel is larger than the symbol duration, then we can assume that the

channel stays relatively constant over one or more symbol durations. Doppler can

create distortion because it causes the perceived frequency of the transmitted signal

to be different at the receiver. When the transmitted signal is dispersed in frequency,

distortion may occur in the time-domain [19]. The presence of Doppler can cause the

subcarriers to lose orthogonality which introduces intercarrier interference (ICI) that

can further degrade the system. Intercarrier interference describes the contribution

of other subcarriers to the received signal at the subcarrier of interest. A common

model to describe the correlation of a channel in the time is Jake’s classical model

which will be described in the next section.

2.2.3 Channel Impulse Response Model

To model this multipath fading channel, we represent the channel as a time-

varying impulse response [19]

h(t, τ) =
P∑
i=1

αi(t) · δ(τ − τi) (2.1)

where αi(t) is the complex tap gain and assumed to be a complex Gaussian random

variable, τi is the delay of the ith path, and P is the number of paths in the channel

profile. Then, by definition, the channel frequency response is defined as

H(t, f) =

∫ ∞
−∞

h(t, τ)e−j2πfτdτ =
P∑
i=1

αi(t)e
−j2πfτi (2.2)

It is also useful to have the channel autocorrelation function because it can provide

insight into the performance of each channel estimator. To obtain the channel
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autocorrelation function, we can use the derivation provided in [11]. If we assume

that the tap gains are wide-sense stationary (WSS) and independent of each path,

then using Equation 2.2, the channel autocorrelation function is

RH(4t,4f) = E{H(t+4t, f +4f)H∗(t, f)}

=
P∑
i=1

Rαi(4t)e−j2π4fτi
(2.3)

If each path has the same time-domain correlation function, we can let Rαi(4t) =

σ2
iRt(4t) where Rt(4t) is the normalized time-domain correlation function. Sub-

stituting this into Equation 2.3, we obtain

RH(4t,4f) = Rαi(4t)
P∑
i

σ2
i e
−j2π4fτi

= σ2
HRt(4t)Rf (4f)

(2.4)

where σ2
H is the total average power of the channel impulse response and Rf (4f)

is the normalized frequency-domain correlation function respectively defined as

σ2
H =

∑
i

σ2
i

Rf (4f) =
∑
i

σ2
i

σ2
H

e−j2π4fτi

(2.5)

For an OFDM system, we redefine the time-domain correlation function and

frequency-domain correlation function as such

Rt[4t] = Rt(Ts4t) (2.6)

Rf [4k] = Rf (Tf4k) (2.7)

RH [4t,4k] = σ2
HRt[4t]Rf [4f ] (2.8)
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where k is the subcarrier index, t is the OFDM symbol index, Ts is the symbol

duration and Tf is the subcarrier spacing in frequency.

A common model to use for Rt[4t] is Jake’s classical model where the assump-

tion is that there is uniform scattering of RF waves in the environment [27]. Using

Jake’s classical model, the time-domain correlation function is defined as

Rt[4t] = J0(2πfdTs4t) (2.9)

where J0(x) is the zeroth-order Bessel function of the first kind and fd is the maxi-

mum Doppler spread in hertz.

2.2.4 SUI and ITUR Channel Models

Two types of channel models that have been generally accepted for WiMAX

simulations are the Stanford University Interim (SUI) and the International Telecom-

munication Union Radio Communication (ITUR) channel models. The parameters

defined in the SUI models are generally accepted as good models for fixed wire-

less applications while the parameters defined in the ITUR models are generally

accepted as good models for mobile wireless applications. The table of parameters

for the SUI and ITUR channel models are shown in Table A.3, Table A.1, and Table

A.2 respectively in Appendix A. For purposes of this study, we only use the SUI-

1, SUI-4, SUI-5, Pedestrian-A, and Vehicular-B models in our simulations. These

models were chosen to represent channels of different delay spreads and Doppler

spreads in order to evaluate the performance of our channel estimation algorithms

under different channel conditions.
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2.2.5 Noise

In our wireless communication system, we consider the presence of noise that

can further distort the signal. A common model of noise is the additive white

Gaussian noise model (AWGN) in which a noise signal with constant power spectral

density and amplitude that follows the Gaussian distribution is added to the system.

We include noise as part of the system to model the background distortion in a

channel that is not already modeled by the multipath fading channel. Modeling this

noise as AWGN comes from the fact that one source of noise is thermal noise (or

Johnson noise) which occurs because of the fundamental property of matter [19].

Thermal noise is a result of electrons moving freely in all directions with random

velocities. Over a large period of time, their average velocity is zero. But over a short

period of time, there may be fluctuations in the velocity and these fluctations are

described as thermal noise. This noise was found to have a power spectral density

that was approximately constant for all frequencies and an amplitude distribution

that is Gaussian and at any frequency and uncorrelated in time [19].

2.3 System Model

Figure 2.2 illustrates the OFDM baseband system model. From the diagram,

if we let X(t, k) be the data modulated using QPSK, 16-QAM, or 64-QAM at

subcarrier k and assume a system with N subcarriers and sampling frequency 1
Tn
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then for OFDM symbol t, the signal at time n after the IFFT function is

x[n] =
N−1∑
k=0

X(t, k)ej2πfkn for 0 ≤ n ≤ N − 1 (2.10)

where fk is the subcarrier frequency at the kth subcarrier defined as

fk = f0 + k·Tf for 0 ≤ k ≤ N − 1

After the FFT function, we add the cyclic prefix to protect the signal from ISI

by copying the last fraction of the data payload and appending it to the beginning of

the OFDM symbol. If we assume the cyclic prefix length is Lg, then the transmitted

OFDM symbol is defined as [17]

xg[n] =


x[N + n] for n = −Lg,−Lg + 1, ...,−1

x[n] for n = 0, 1, ..., N − 1

(2.11)

In our system, if we let h[n] be the impulse response of the multipath fading

channel and v[n] be zero-mean complex additive white Gaussian noise, then we can

model the received OFDM symbol as

yr[n] = xg[n] ∗ h[n] + v[n] (2.12)

where ∗ is the convolution operator.

After removing the cyclic prefix from yr[n], the signal y[n] is demodulated

using the FFT operator. If we assume that cyclic prefix eliminates all intersymbol

interference, then we can replace the convolution operator in equation 2.12 with the

circular convolution operator. After the received symbol is demodulated using the

FFT operator, the received signal for the tth OFDM symbol and the kth subcarrier
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is given by

Y (t, k) = X(t, k)H(t, k) + V (t, k) for 0 ≤ k ≤ N − 1 (2.13)

where X(t, k), H(t, k), and V (t, k) are the transmitted signal, the channel response,

and zero-mean additive white Gaussian noise with variance σ2
v respectively. We can

also rewrite Equation 2.13 in matrix notation as given by

Y = XH + V (2.14)

where

Y = [Y (t, 0), Y (t, 1), ..., Y (t, N − 1)]T

X = diag([X(t, 0), X(t, 1), ..., X(t, N − 1)])

H = [H(t, 0), H(t, 1), ..., H(t, N − 1)]T

V = [V (t, 0), V (t, 1), ..., V (t, N − 1)]T

36



Chapter 3

Channel Estimation in PUSC

(Partial Usage of Subcarrier)

3.1 Introduction

PUSC is a distributed permutation mode in WiMAX in which subcarriers are

grouped into tiles and pseudorandomly allocated to form subchannels. The tile is

illustrated in 3.1. Each tile is composed of 12 received samples, Y (t, k) for t = 0,...,2

and k = 0,...,3 in which 4 are reserved for pilots. The set of pilot positions is P

= {(0,0),(0,3),(2,0),(2,3)}. Because subchannels are composed of randomly selected

tiles, the channel estimation algorithm must process each tile independently. By this

statement, we mean that no information from pilots in adjacent tiles can be used.

In this chapter, we will analyze and evaluate the performance of channel estimation

algorithms that can be used to estimate the channel at each subcarrier within a tile.

Specifically, we will derive the MSE using our analytical model for each estimator
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and illustrate each estimator’s performance at the link level using BER plots.

Figure 3.1: PUSC Tile

3.2 Channel Estimation Algorithms

In each of the algorithms, the first step is to generate a baseline channel

estimate at each received pilot. Because both the transmitted and received signal

are known at the receiver, we make estimates at the pilot subcarriers based on a

least squares approach given by

Ĥ(t, k) =
Y (t, k)

X(t, k)
for (t,k) ∈ P (3.1)

The least squares estimate is the best estimate if there is no noise.

3.2.1 Linear Interpolation

The linear interpolation algorithm is currently the common approach to chan-

nel estimation in PUSC. This algorithm first produces least squares estimates at

the pilots and then uses them to linearly interpolate the channel in time and then

in frequency. Given the PUSC tile shown in Figure 3.1, the steps of the algorithm
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described mathematically are

1. Perform Least Squares Estimation at Pilot Positions using Equation 3.1.

2. Interpolate Channel Estimates in Time at Subcarrier between Pilots

Ĥ(1, 0) =
1

2
Ĥ(0, 0) +

1

2
Ĥ(2, 0)

Ĥ(1, 3) =
1

2
Ĥ(0, 3) +

1

2
Ĥ(2, 3)

(3.2)

3. Interpolate Channel Estimates in Frequency at each OFDM symbol

Ĥ(t, 1) =
2

3
Ĥ(t, 0) +

1

3
Ĥ(t, 3) for t = 0, 2

Ĥ(t, 2) =
1

3
Ĥ(t, 0) +

2

3
Ĥ(t, 3) for t = 0, 2

(3.3)

Performance Analysis

We now consider the mean-squared error (MSE) performance of the linear in-

terpolator in the PUSC tile. To evaluate its performance, we calculate the MSE

at each data subcarrier and average them over the 8 data subcarriers in the PUSC

tile. In the PUSC tile, there are 3 types of subcarriers when using the linear in-

terpolator. The first are the subcarriers that are interpolated in time from step 2

of the estimation process. We define these subcarriers as A = {(1, 0), (1, 3)}. The

second are the subcarriers interpolated in frequency in OFDM symbols containing

pilots. Because there are two subcarriers in the same OFDM symbol in which the

channel estimate is produced by interpolating the pilots in frequency, we calculate

the arithmetic average MSE over the pair of subcarriers. We define these subcarrier

positions to be B = {B0,B2}, where B0 = {(0, 1), (0, 2)} and B0 = {(2, 1), (2, 2)}.

This simplifies calculations since the average MSE of the subcarriers in B0 and B2
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are the same. The third are the subcarriers in the middle which are interpolated in

both time and frequency. We define these subcarrier positions as C = {(1, 1), (1, 2)}

In our calculation of average MSE, we assumed that each channel estimate

was made according to Equation 3.1, Equation 3.2, and Equation 3.3. In addi-

tion, we assume that the channel is wide-sense stationary (WSS) and that the noise

is mutually uncorrelated and uncorrelated with the channel to simplify calcula-

tions. If we also assume that for the pilot constellation points all have the same

magnitude,|X(t, k)| = A for (t,k) ∈ P , then the mean-squared error derivation for

each type of subcarrier is

1. Mean-squared error at (t,k) ∈ A

MSEA = E[||Ĥ(t, k)−H(t, k)||2]

= σ2
H{

3

2
Rt[0] +

1

4
(Rt[2] +Rt[−2])− (Rt[1] +Rt[−1])}

+
1

2

σ2
v

A2

(3.4)

where Rt[4t] is the time-domain correlation function defined in Equation 2.6.

2. Average mean-squared error for {(t,k), (t,k+1)} ∈ Bt for t = {0,2}.

MSEBt =
1

2
[MSE(t, k) +MSE(t, k + 1)]

=
1

2

2∑
l=1

E[||Ĥ(t, l)−H(t, l)||2]

= σ2
H{

14

9
Rf [0] +

2

9
(Rf [3] +Rf [−3])

− 4

3
(Rf [1] +Rf [−1])− 2

3
(Rf [2] +Rf [−2])}

+
5

9

σ2
v

A2

(3.5)
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where Rf [4k] is the frequency-domain correlation function defined in Equa-

tion 2.7.

3. Mean-squared error at (t,k) ∈ C

MSEC = E[||Ĥ(t, k)−H(t, k)||2]

=
23

18
RH [0, 0] +

5

36
(RH [2, 0] +RH [−2, 0]) +

1

9
(RH [0, 3] +RH [0,−3])

+
1

18
(RH [2, 3] +RH [−2, 3] +RH [2,−3] +RH [−2,−3])

− 1

3
(RH [1, 1] +RH [1,−1] +RH [−1, 1] +RH [−1,−1])

− 1

6
(RH [1, 2] +RH [1,−2] +RH [−1, 2] +RH [−1,−2])

+
5

18

σ2
v

A2

(3.6)

where RH [4t,4k] is the channel autocorrelation function for the frequency

response at different times and frequencies as defined in Equation 2.8.

Given the MSE at each type of subcarrier within the PUSC tile, the average MSE

in a PUSC tile is defined as

MSELI−PUSC =
2

8
MSEA +

4

8
MSEB +

2

8
MSEC (3.7)

We see from the above theoretical calculations that the average MSE depends

on two factors: interpolation error and noise. The interpolation error depends on

the correlation of the channel. Interpolation error occurs because the estimator uses

a first-order approximation of the channel when the channel may be nonlinear at

the data subcarriers between the pilots. The contribution of noise depends on the

signal to noise ratio.
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Using the above theoretical calculations, we plotted the average MSE of the lin-

ear interpolator in PUSC. We assumed that the channel was Pedestrian-A 3km/hr,

Pedestrian-A 120km/hr, Vehicular-B 3km/hr, and Vehicular-B 120km/hr with power

delay profiles defined in Table A.1 and Table A.2 and calculated their respective cor-

relation by using Equation 2.6 and Equation 2.7.

Figure 3.2: Average MSE Over PUSC tile using Linear Interpolation

The plot indicates that the linear interpolator channel estimation performance

is better in Pedestrian-A than it is in Vehicular-B. We expect this because in a

Pedestrian-A channel, the delay spread is short so the frequency-domain channel

response is relatively flat and a first order approximation is fairly accurate in this

type of channel. From Equation 3.4, 3.5, and 3.6, we see that the interpolation error

equals zero if the channel is perfectly correlated within the PUSC tile. However,

in Vehicular-B, the delay spread is much longer and hence, the channel between
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the pilot subcarriers is less correlated. This means the channel can change rapidly

between adjacent subcarriers and introduce more interpolation error. We can also

see that this curve begins to floor at MSE = -17dB and SNR = 15dB. This indicates

that for SNR levels greater than 15dB, there is no improvement in the linear interpo-

lation channel estimation performance and a system operating in this channel must

choose a modulation code rate that can tolerate at least a MSE of -17dB. The plot

also suggests that Doppler spread does not affect channel estimation performance

much.

3.2.2 4-pilot Averaging

Another approach to performing channel estimation within a PUSC tile is

averagin the 4 received pilots and using that result to estimate the channel. The

motivation to this method is that in channels where noise is the dominant contributor

to distortion, the channel estimates at the pilot positions are too corrupted to use

for interpolation. So the idea behind this technique is that a better estimate of the

channel could be made by using all the pilots to average out some of the noise and

using this estimate at all data subcarriers in the tile. The steps of this algorithm

mathematically are given by

1. Perform Channel Estimation at pilot positions using Equation 3.1.

2. Average the 4 channel estimates at the pilot subcarriers and use at each data

subcarrier. The set of data subcarriers within a tile is D = {(0,1), (0,2), (1,0),
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(1,1), (1,2), (1,3), (2,1), (2,2)}

Ĥ(t, k) =
1

4
Ĥ(0, 0) +

1

4
Ĥ(2, 0) +

1

4
Ĥ(0, 3) +

1

4
Ĥ(2, 3) (3.8)

Analytical Model and Performance Analysis

Similar to the analytical model for the linear interpolator, we also created an

analytical model to evaluate the channel estimation performance with the 4-pilot

averaging technique. If we use the channel estimate calculated using Equation 3.8,

then the MSE at each subcarrier using the 4-pilot averaging technique is given by

MSED(t, k) = E[||Ĥ(t, k)−H(t, k)||2]

=
5

4
RH [0, 0] +

1

8
(RH [2, 0] +RH [−2, 0]) +

1

8
(RH [0, 3] +RH [0,−3])

+
1

16
(RH [2, 3] +RH [−2, 3] +RH [2,−3] +RH [−2,−3])

− 1

4
(RH [t, k] +RH [−t,−k])− 1

4
(RH [t− 2, k] +RH [2− t,−k])

− 1

4
(RH [t, k − 3] +RH [−t, 3− k])

− 1

4
(RH [t− 2, k − 3] +RH [2− t, 3− k]) +

1

4

σ2
v

A2

(3.9)

Therefore, the average MSE within the PUSC tile using the 4-pilot averaging method

is given by

MSE4avg =
1

8

{
2∑

k=1

MSED(0, k) +
3∑

k=0

MSED(1, k) +
2∑

k=1

MSED(2, k)

}
+

1

4

σ2
v

A2

(3.10)

Again, we see that the 4-pilot averaging channel estimation performance de-

pends on the interpolation error and noise. Assuming that the channel was Pedestrian-

A 3km/hr, Pedestrian-A 120km/hr, Vehicular-B 3km/hr, and Vehicular-B 120km/hr
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with power delay profiles defined in Table A.1 and Table A.2 and calculating the

correlation using Equation 2.6 and Equation 2.7, we generated the following plot.

Figure 3.3: Average MSE Over PUSC tile using 4-Pilot Averaging

In essence, the 4-pilot averaging algorithm estimates the channel with a con-

stant. Therefore, inherent in the 4-pilot averaging technique is the assumption that

the channel is highly correlated. However, this estimator to degrades rapidly as the

channel becomes less correlated within the tile due to increased delay spread and/or

Doppler spread. The plot in Figure 3.3 supports this statement because we do see

that the performance is worse in a Vehicular-B channel than it is in a Pedestrian-A

channel and worse at 120km/hr than at 3km/hr.
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3.2.3 Genie-Aided Channel Estimator (Perfect Channel Knowl-

edge)

In our study of PUSC channel estimation algorithms, we also use a genie-aided

channel estimator to compare the performance of our channel estimators with one

that has perfect channel knowledge. The idea to using the genie-aided estimator is

to allow us to understand what the optimal channel estimation performance is in a

WiMAX PUSC system. It can also be used to evaluate what performance a perfectly

adaptive estimator could achieve. To implement the genie-aided estimator, we took

a copy of the transmitted symbol and copy of the received signal without any noise

and correlated them together. These estimates were then passed to the equalizer. A

block diagram illustrating the implementation of the genie-aided channel estimator

is shown in Figure 3.4.

Figure 3.4: Genie-aided Channel Estimator
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3.3 Simulation

For our study of channel estimation algorithms in PUSC, we used a WiMAX

link-level simulator with all the components shown in the WiMAX system block

diagram in Figure 2.1 and therefore, allows us to obtain system level bit-error rate

(BER) curves to evaluate each algorithm’s performance.

3.3.1 Objective

In our simulations, our objective was to first evaluate the performance the

linear interpolation channel estimation algorithm in different types of channel con-

ditions and compare it to the genie-aided channel estimator. We used the results

to identify conditions where improving the channel estimator was warranted. Next,

we then compared our results of the linear interpolator and the 4-pilot averaging

channel estimator.

3.3.2 Simulation Parameters

To conduct our simulation, we tested each algorithm for 8 modulation code

rates with 4 different channel models. The modulation code rates used were QPSK

with code rate 1/2 and repetition 1,2 and 4, QPSK with code rate 3/4, 16QAM with

code rates 1/2 and 3/4 , 64QAM with code rates 2/3, and 3/4. These modulation

code rates were selected to illustrate the performance of our channel estimators

for varying levels of throughput. The channel models we selected were the ITUR

Pedestrian-A at 3km/hr, Pedestrian-A at 120km/hr, Vehicular-B at 3km/hr, and
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Vehicular-B at 120km/hr. This set of channel models were chosen to show how each

channel estimator performs in low/high delay spread and low/high Doppler spread.

The other notable simulation parameters are shown in Table 3.1. One note

to make from this table is that the cyclic prefix was selected to be 1/4 of the data

payload, or about 22.85µs in length. This cyclic prefix size was specifically selected

in order to eliminate ISI from our results.
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Table 3.1: Simulation Parameters for PUSC Channel Estimation Evaluation

Parameter Value

Modulation Code Rate QPSK, R1/2, RPT4

QPSK, R1/2, RPT2

QPSK, R1/2

QPSK, R3/4

16QAM, R1/2

16QAM, R3/4

64QAM, R2/3

64QAM, R3/4

Coding Option CTC (Convolutional Turbo Coder)

Bandwidth Scale Factor 8 (1024 FFT)

Fundamental Bandwidth 1.25MHz

Cyclic Prefix 1/4 (22.85µs)

Number of Tx Antennas 1

Number of Rx Antennas 2

Sampling Rate (Tn) 11.2MHz

Symbol Duration (Ts) 114.3µs
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3.3.3 Linear Interpolation vs. Genie-Aided Estimator

Results

The BER curves comparing the linear interpolator and the genie-aided esti-

mator are shown in this section.

Figure 3.5: BER curves of Linear Interpolator vs. Genie-Aided Channel Estimator

in Ped-A, 3km/hr model
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Figure 3.6: BER curves of Linear Interpolator vs. Genie-Aided Channel Estimator

in Ped-A, 120km/hr model

Figure 3.7: BER curves of Linear Interpolator vs. Genie-Aided Channel Estimator

in Veh-B, 3km/hr model
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Figure 3.8: BER curves of Linear Interpolator vs. Genie-Aided Channel Estimator

in Veh-B, 120km/hr model

Observations

One observation made from these curves is that for Pedestrian-A, there is

a wider gap in performance between the linear interpolator and the genie-aided

channel estimator at low SNR values than at high SNR values. There is about a

4dB difference in SNR for QPSK and about a 2dB difference in SNR for 16QAM

and 64QAM between the linear interpolator and genie-aided channel estimator. We

can explain this result by looking at the linear interpolation MSE curve in Figure

3.2. We can see that the linear interpolator channel estimation error decreases

with increasing SNR. And because the Pedestrian-A channel has a relatively flat

frequency domain channel response, the linear interpolation channel estimation error
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is mostly attributed to noise. So in this channel we would expect the performance

gap between the genie-aided channel estimator and linear interpolator to close as

the SNR increases.

However, we cannot make the same conclusion when we use the Vehicular-

B channel model. While the gap between the linear interpolator and genie-aided

estimator is about 4dB for QPSK, we can see that the gap begins to widen for 16-

QAM and even floors for 16-QAM R3/4 and 64-QAM. We can use the MSE curve

in Figure 3.2 to confirm that because the BER curves (Figure 3.7 and 3.8 and the

MSE curve, we can see that the performance begins to floor at a SNR = 15dB. In

this channel, the delay spread is long which introduces a large interpolation error

that 16-QAM R3/4 and 64QAM cannot support because the constellation points

are too close together to compensate for it.

3.3.4 Linear Interpolation vs. 4-pilot Averaging

Results: Bit-Error Rate

From the BER curves shown in Figures 3.5 - 3.8, we observed that the gap

between the linear interpolator and genie-aided channel estimator is about 4dB for

QPSK. QPSK is typically used in low SNR channels so a technique used to close that

gap is the 4-pilot averaging technique. The idea is to use 4-pilots and average out

some of the effect of noise to produce a better estimate. If we combine Equations

3.4, 3.5, 3.6 with Equation 3.7, we obtain the noise term in the average MSE of

channel estimation in a PUSC tile using linear interpolation to be 17
36

σ2
v

A2 . And if
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we combine 3.9 with 3.7, we obtain the noise term in the average MSE of channel

estimation in a PUSC tile using 4-pilot averaging to be 1
4
σ2
v

A2 . From this perspective,

we can see that 4-pilot averaging removes about twice as much noise as the linear

interpolator. To illustrate their performances at the system level, we also generated

BER curves comparing their performances. The BER curves are shown below.

Figure 3.9: BER curves of Linear Interpolator vs. 4-pilot Averaging in Ped-A,

3km/hr model
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Figure 3.10: BER curves of Linear Interpolator vs. 4-pilot Averaging in Ped-A,

120km/hr model

Figure 3.11: BER curves of Linear Interpolator vs. 4-pilot Averaging in Veh-B,

3km/hr model
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Figure 3.12: BER curves of Linear Interpolator vs. 4-pilot Averaging in Veh-B,

120km/hr model

Observations: Bit-Error Rate

From the results, the 4-pilot averaging estimator appears to outperform the

linear interpolation estimator for all modulation code rates by about 2 dB in the

Pedestrian-A, 3km/hr model and by about 1.5dB for all modulation code rates, ex-

cept 16QAM R3/4, 64QAM R2/3, and 64QAM R3/4 in the Pedestrian-A 120km/hr

model in which the linear interpolation algorithm outperforms the 4-pilot averaging

estimator. In the Vehicular-B models, the 4-pilot averaging estimator appears to

outperform the linear interpolation channel estimator for QPSK, but performs worse

than the linear interpolation channel estimator at the other modulation code rates.
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From these plots, we can conclude that the 4-pilot averaging method does

perform better than the linear interpolator at low SNR. We can explain this result

by the fact that at low SNR, noise is the dominant contributor to distortion and the

4-pilot averaging method reduces about 3dB more noise than the linear interpolator.

However, as we increase the SNR, we can see that the relative performance of the

4-pilot averaging estimator to the linear interpolator decreases in all channels except

in the Pedestrian-A 3km/hr channel. This suggests that the interpolation error in

the 4-pilot averaging method is higher than in the linear interpolator. In the 4-pilot

averaging method, there is an implicit assumption that the channel is perfectly

correlated within the PUSC tile. This is analogous to trying to approximate a curve

with a constant whereas with the linear interpolator, we approximate a curve with a

first order function. And at higher SNRs, the channel is the dominant contributor to

distortion so removing more noise provides marginal improvements in performance.

We can confirm this by overlaying Figure 3.2 and 3.3 onto the same plot as shown

in Figure 3.13.

From this plot, we can identify the points where the linear interpolator be-

gins to outperform the 4-pilot averaging method. First, we can identify that in

Pedestrian-A 3km/hr, the 4-pilot averaging method is about 3dB better because in

this scenario, the interpolation error is small for both estimators while the 4-pilot

averaging method removes twice as much noise. In the Pedestrian-A 120km/hr

channel, there’s a crossover point at SNR = 11dB. In the Vehicular-B channel, at

3km/hr, the crossover point is at SNR = 6dB and at 120km/hr, the crossover point

is at SNR = 4dB. If we compare these points, to the crossover points in the BER
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Figure 3.13: Average MSE Over PUSC tile: Linear Interpolation and 4-pilot Aver-

aging

curves in Figure 3.5 - 3.8, we can see that they are very close. These results show

that the interpolation error in the 4-pilot averaging increases more rapidly when the

channel becomes less correlated due to delay spread and/or Doppler spread.

From an implementation perspective, one way to implement both estimators is

to use the 4-pilot averaging estimator for SNR less than 4dB and the linear interpo-

lator for SNR greater than 4dB. Because we observed that 4dB is the crossover point

in Vehicular-B 120km/hr, we can assume that this channel represents the worst-case

scenario and that using a 4-pilot averaging method for SNR less than 4dB would

provide an improvement in the overall system.
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3.4 Conclusions

In this section, we compared the performance of the linear interpolator to

the genie-aided channel estimator and the performance of the linear interpolator to

the 4-pilot averaging method. In both the linear interpolator and 4-pilot averaging

method, we observed that the 2 factors that contributed to channel estimation error

were interpolation error and noise. We observed that a higher delay spread and

Doppler spread resulted in a channel that was less correlated within the PUSC tile

and hence, led to a higher interpolation error. In comparing the linear interpolator

to the genie-aided channel estimator, we observed that in the Pedestrian-A model,

there was a 4dB difference in performance at low SNR and about a 2dB difference.

However, for Vehicular-B, we observed that there were modulation code rates the

system could not support using the linear interpolator and that the gap between

the linear interpolator and genie-aided channel estimator diverged as the SNR in-

creased. In comparing the 4-pilot averaging method to the linear interpolator, we

observed that the 4-pilot averaging performed better at low SNR no matter what

the channel conditions were because it averaged out about 3dB more noise than the

linear interpolator. However, for channels with larger delay and Doppler spreads,

we noticed that the linear interpolator outperformed the 4-pilot averaging method

after a certain SNR point.
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Chapter 4

Channel Estimation in AMC

(Adaptive Modulation and

Coding)

4.1 Introduction

Adaptive Modulation and Coding (AMC) is another permutation supported

by WiMAX. AMC is classified as an adjacent subcarrier permutation in which sub-

channels are composed of adjacent subcarriers and allocated to users by the MAC

scheduler based on their unique channel conditions. Each subchannel is composed

of 18 adjacent subcarriers over 3 OFDM symbols with 6 pilot subcarriers per sub-

channel. In this chapter, we will explore channel estimation algorithms that can be

used to estimate the channel within an AMC subchannel. In addition, we will also

consider the scenario when two adjacent subchannels (36 adjacent subcarriers over

60



3 OFDM symbols) are allocated to a user in which pilots from both subchannels

can be used to aid in channel estimation. Similar to the analysis performed for

PUSC, we will also derive the MSE using our analytical model for each estimator

and compare the analysis to results obtained in simulation.

Figure 4.1: AMC Subchannel

4.2 Channel Estimation Algorithms

To simplify the channel estimation problem, we have assumed that the channel

remains constant over 3 OFDM symbols. This assumption allows us to assume that

the channel estimate at a particular subcarrier can be used to estimate the same

subcarrier at a different time within the subchannel. By simplifying the problem in

this manner, we can employ channel estimation algorithms that process one OFDM

symbol with M = 18, 36 adjacent subcarriers and a pilot every 3 subcarriers and 1

data subcarrier at the edge of each subchannel. Figure 4.2 shows the arrangement

of pilots within one OFDM symbol under this assumption.

The first step is to generate baseline channel estimates at the pilot subcarriers

using the least squares estimate. Using the arrangement shown in Figure 4.2, if we
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Figure 4.2: Arrangement of Pilots in one OFDM symbol within one AMC subchan-

nel under assumption that channel remains constant over 3 OFDM symbols

let P be the total number of pilots for M total number of subcarriers, then there is

a pilot every D = M/P subcarriers. For AMC, D=3. Therefore, the estimate of the

channel at the pilot subcarriers is given by

Ĥ(t, 3p+ 1) =
Y (t, 3p+ 1)

X(t, 3p+ 1)
for p = 0,1...,P-1 (4.1)

4.2.1 Linear Interpolation

Linear interpolation is the channel estimation algorithm commonly employed

right now. This algorithm estimates the channel at each pilot and then linearly

interpolates the channels at the data subcarriers between two subcarriers and ex-

trapolates the channel at the data subcarriers at the edges of the subchannel. Given

the arrangement shown in Figure 4.2, the steps of the algorithm described mathe-

matically are

1. Generate Baseline Channel Estimates at Pilot Positions using Equation 4.1.

2. Interpolate Channel Estimates in Frequency at Subcarrier between Pilots

Ĥ(t, 3p+ 2) =
2

3
Ĥ(t, 3p+ 1) +

1

3
Ĥ(t, 3p+ 4), for p = 0,1...,P-1

Ĥ(t, 3p+ 3) =
1

3
Ĥ(t, 3p+ 1) +

2

3
Ĥ(t, 3p+ 4), for p = 0,1...,P-1

(4.2)
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3. Extrapolate Channel Estimates in Frequency at Subcarriers at Edges of Sub-

channel

Ĥ(t, 0) =
4

3
Ĥ(t, 1)− 1

3
Ĥ(t, 4)

Ĥ(t,M − 1) =
4

3
Ĥ(t,M − 2)− 1

3
Ĥ(t,M − 5)

(4.3)

Performance Analysis

To evaluate the linear interpolator, we derived the average MSE of an AMC

subchannel using the arrangement shown in Figure 4.2. In this arrangement, there

are 3 types of subcarriers: pilot subcarriers, interpolated subcarriers, and extrapo-

lated subcarriers. To compute the average MSE in an AMC subchannel, we derived

the MSE for each type of subcarriers. The derivations below are provided by [22].

In the derivation, we assume the channel is WSS and that the noise is mutually

uncorrelated and uncorrelated with the channel. If we also assume that the pi-

lot constellation points all have the same magnitude, |X(t, 3p + 1)| = A for p =

0,1...,P-1, then the MSE at each type of subcarrier is given by

1. MSE at pilot subcarriers from Step 1

MSEP = E{||Ĥ(t, 3p+ 1)−H(t, 3p+ 1)||2}

=
σ2
v

A2

(4.4)
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2. Arithmetic average MSE over interpolated subcarriers from Step 2

MSEI =
1

2

2∑
l=1

E{||Ĥ(t, 3p+ 1 + l)−H(t, 3p+ 1 + l)||2}

= σ2
H{

14

9
Rf [0] +

2

9
(Rf [3] +Rf [−3])

− 4

3
(Rf [1] +Rf [−1])− 2

3
(Rf [2] +Rf [−2])}

+
5

9

σ2
v

A2

(4.5)

3. MSE at extrapolated subcarriers from Step 3

MSEE = E{||Ĥ(t, 0)−H(t, 0)||2} = E{||Ĥ(t,M − 1)−H(t,M − 1)||2}

= σ2
H{

26

9
Rf [0] +

1

3
(Rf [4] +Rf [−4])

− 4

3
(Rf [1] +Rf [−1])− 4

9
(Rf [3] +Rf [−3])}

+
17

9

σ2
v

A2

(4.6)

Given the MSE at the pilot, interpolated, and extrapolated subcarriers, we can

calculate the average MSE over an AMC subchannel with M adjacent subcarriers

and P pilot subcarriers.

MSELI−AMC =
1

M
[P ·MSEP + (M − P − 2)·MSEI + 2·MSEE] (4.7)

From the derivation above, we show that the performance of the linear interpolation

channel estimator depends on the interpolation error and noise. The interpolation

error term depends on the channel correlation and the noise term depends on the

SNR of the channel. Using the derivation, we plotted the average MSE of the linear

interpolator over one AMC subchannel (M = 18) for channel models SUI-1, SUI-4,

SUI-5, Pedestrian-A, and Vehicular-B with power delay profiles defined in Table A.3
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and Table A.1 and Table A.2 and correlation defined by Equation 2.7. Again we

Figure 4.3: Average MSE over 1 AMC Subchannel (M = 18) using Linear Interpo-

lation

see that performance of the linear interpolator depends on the delay spread of the

channel. However, we also observe that the performance of the linear interpolator

floors in SUI-5 and Vehicular-B. In these channels, the frequency response changes

too rapidly in frequency for the linear interpolator to accurately estimate the channel

with the given pilot arrangement even as the SNR increases.

4.2.2 Frequency Smoothing

In this algorithm, the idea is to smooth the frequency-domain channel esti-

mates at the pilots by applying a rectangular window in the time-domain. Because

of the duality between the time and frequency domain, this method is analogous to
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applying a low-pass filter in the time-domain (or convolution with a sinc function

in the frequency-domain). However, because in AMC there are only pilots every D

= 3 subcarriers, 3 images of the channel impulse response will appear in the time-

domain. Because of these images, the window size must be selected such that the

images are eliminated. A block diagram illustrating the system implementing the

frequency smoothing algorithm is shown in Figure 4.4.
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Figure 4.4: Block Diagram of WiMAX with Frequency Smoothing Channel Estima-

tion Algorithm

If we assume that each pilot has the same magnitude, |X(t, 3p + 1)| = A for

p = 0,1...,P-1, then the steps of the algorithm described mathematically can be

described as

1. Generate Baseline Channel Estimates at Pilot Positions using Equation 4.1.

2. Construct vector of length M with baseline channel estimates at pilot subcarri-

ers and zero at the data subcarrier positions. Use M-point IDFT to transform

baseline channel estimate to time domain.

ĥ[m] = IDFT{Ĥ} = h[m] +
v[m]

A
(4.8)

3. Zero out samples beyond a set time threshold or multiply time domain re-

sponse by a rectangular window w[m] of length L equal to time threshold. To

calculate L, we select a desired window size in time and use the formula below

to calculate the number of samples that it corresponds to

L = round

(
M ·Window Size in Time

Symbol Duration

)
(4.9)
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w[m] =


1 for m = 0, 1, ..., L-1

0 for m = L, L+1, ..., M-1

(4.10)

ĥfs[m] = w[m]ĥ[m] (4.11)

4. Transform windowed response back to the frequency domain using M-point

DFT to obtain channel estimates

Ĥfs(k) =
L−1∑
m=0

ĥfs[m]e−j2πk
m
M +

L−1∑
m=0

v[m]

A
e−j2πk

m
M (4.12)

In general, we would like to choose a window size that corresponds exactly

to the maximum delay spread of the channel. Assuming that the delay spread of

the channel is less than 1/3 the symbol duration, this would allow us to reject the

images and the most noise possible without losing any channel energy and inducing

a bias in our channel estimates. However, the delay spread is typically unknown

so a fixed window size is pre-determined. But if we choose an arbitrary window

length, L, such that it is longer than the channel delay spread and eliminates the

images, then using Equation 4.12, the average MSE at each subcarrier within the

AMC subchannel is given by

MSEFS = E{||Ĥfs(t, k)−H(t, k)||2} for k = 0, 1, ..., M-1

=
L

M

σ2
v

A2

(4.13)

From Equation 4.13, we can see that the frequency smoothing channel estima-

tion performance depends only on noise if we choose L to be longer than the length

of the channel impulse response. The frequency smoothing channel estimator re-

duces the effect of noise by a factor of L/M. And when we compare the frequency
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smoothing performance to the linear interpolation performance, we can see that

even in a channel that was perfectly correlated, the performance of the frequency

smoothing algorithm will be better as long as L is chosen to be less than 4P+5M+24
9

.

In AMC (P = 6, M = 18), we see that if we choose L < 15, then the frequency

smoothing estimator will outperform the linear interpolator. In WiMAX, for N =

1024 and cyclic prefix fraction = 1/8, the symbol duration is 102.9µs so L = 15 cor-

responds to window length of 85.75µs. Typically, the channel delay spread will be

less than 10µs and out of all the channels we test with, Vehicular-B has the longest

delay spread with a 20µs delay spread. Therefore, for most channels, we can select

a window length such that it will outperform the linear interpolator.

4.3 Simulation

4.3.1 Objective

In our study of AMC channel estimation algorithms, our objective was to com-

pare the performance of the linear interpolator and frequency smoothing algorithm

under different channel conditions. To evaluate the performance of each estimator,

we used the mean-squared error and error vector magnitude metric. The metrics
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are calculated as follows.

EVM(k) = |Ĥ(t, k)−H(t, k)| for k = 0, 1, ... , M-1 (4.14)

MSEdB = 10log10

{
1

M

M−1∑
k=0

|Ĥ(t, k)−H(t, k)|2
}

(4.15)

(4.16)

Currently, we do not have a complete WiMAX link-level simulator supporting

AMC so for purposes of this study, we created our own in MATLAB with a subset

of the components. A block diagram of the simulator used to perform this study is

shown in Figure 4.5. We use the same channel models as we did for our study in

PUSC so for evaluation of channel estimation algorithms, this model is sufficient.

Figure 4.5: WiMAX Matlab Simulator for AMC and Channel Sounding Simulations

4.3.2 Simulation Parameters

For this experiment, we chose to test the performance of the linear interpolator

and frequency smoothing algorithm for AMC subchannel sizes of M = 18 and M

= 36 and assuming a pilot arrangement as shown in Figure 4.2. For the frequency

smoothing algorithm, we chose to test time window lengths of 5µs and 10µs. The

5µs window was chosen because in general, many of the channels encountered in
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practice have a maximum delay spread less than 5µs. We chose the 10µs window

because this is close to the nominal cyclic prefix size for WiMAX and a window

of this length can accommodate those channels with longer than 5µs delay spread.

The system parameters used in this simulation are shown in Table 4.1.

Table 4.1: Simulation Parameters for AMC Channel Estimation Evaluation

System Parameters

Parameter Value

Bandwidth Scale Factor 8 (1024 FFT)

Fundamental Bandwidth 1.25MHz

Cyclic Prefix 1/8 (11.42µs)

Number of Tx Antennas 1

Number of Rx Antennas 2

Sampling Rate 11.2MHz

Symbol Duration 102.9µs

Frequency Smoothing Parameters

Parameter Value

Window Size 5µs, 10µs
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4.3.3 Results: Mean-Squared Error

Using our AMC simulator, we first generated MSE curves using the linear

interpolator, frequency smoothing with 5µs window, and frequency smoothing with

10µs window. In this simulation, we generated 100 realizations of the channel at

each SNR and computed the average MSE over the 100 realizations to generate each

point on the curve. The plots are shown below.

Figure 4.6: MSE, 1 AMC Subchannel (M=18,36), SUI-1
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Figure 4.7: MSE, 1 AMC Subchannel (M=18,36), SUI-4

Figure 4.8: MSE, 1 AMC Subchannel (M=18,36), SUI-5
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Figure 4.9: MSE, 1 AMC Subchannel (M=18,36), Ped-A

Figure 4.10: MSE, 1 AMC Subchannel (M=18,36), Veh-B
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4.3.4 Observations: Mean-Squared Error

From the plots, we observe that the frequency smoothing algorithm is generally

better than the linear interpolator. In the low delay spread channels like SUI-

1 and Pedestrian-A, we expect the frequency smoothing algorithm to always be

better because it rejects more noise than the linear interpolator. However, for the

higher delay spread channels like SUI-4, SUI-5, and Vehicular-B, we see that the

performance of the frequency smoothing algorithm will floor at some point and that

the linear interpolator will outperform the frequency smoothing estimator beyond

a certain SNR point. We can attribute this flooring to the frequency smoothing

algorithm not using a window size large enough to capture all the channel’s energy.

Appendix B displays the channel impulse response of each channel model used in

this experiment. From these plots, we observe that for SUI-4, SUI-5, and Veh-B, the

5µs and 10µs windows do not capture the entire channel impulse response and hence,

introduces a bias in the channel estimates which causes the frequency smoothing

algorithm to floor as the SNR increases.

We also see a tradeoff between bias and noise rejection in the frequency

smoothing algorithm. By choosing a smaller window size, we can eliminate more

noise but also run the risk of not capturing all of the channel’s energy and biasing

the estimates. In channels where the SNR is very low, the frequency smoothing

with 5µs window performs better than with the 10µs window. More specifically,

the frequency smoothing with 5µs window is better than the frequency smoothing

with 10µs window for almost all SNR levels for SUI-1 and Ped-A but only better up
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to about 7dB in SUI-4 and 4dB in SUI-5. For Veh-B, the performance of the 5µs

window is better at low SNR levels and begins to converge as the SNR increases.

If we look at the impulse response of the channel (without noise) after an M-point

IFFT in Appendix B, it can be seen that SUI-1 and Ped-A both have their energy

concentrated in one tap because of their short delay spreads. From Table B.1 in

Appendix B, both the 5µs and 10µs window capture this tap and induce no bias in

the estimate. However, since the 5µs window rejects more noise, its performance is

always better than the 10µs window in these channels. In Veh-B, the delay spread of

the channel is large but has most of its channel energy concentrated in its first two

taps. So when we observe its impulse response after an M-point IFFT, we see that

the impulse response within both the 5µs and 10µs window are very similar. How-

ever, in SUI-4 and SUI-5, we see that the impulse response within the 5µs window

is very different from the response within a 10µs window. We can see that the 10µs

window captures significantly more of the channel’s energy than the 5µs window

and therefore, tends to perform better in high SNR environments. Hence, in these

channels, there is a crossover point in which using a larger frequency smoothing

window is preferred over rejecting more noise.

4.3.5 Results: Error Vector Magnitude

To obtain more insight in the performance of each channel estimation algo-

rithm, we also produced error vector magnitude plots of each channel estimation

algorithm at SNR = -10dB and 20dB. The results are displayed below. These plots
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show the average error at each subcarrier in an AMC subchannel over 100 realiza-

tions of the channel.

Figure 4.11: Error Vector Magnitude, SNR = -10dB, 1 AMC Subchannel (M =

18,36 Subcarriers), SUI-1
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Figure 4.12: Error Vector Magnitude, SNR = 20dB, 1 AMC Subchannel (M = 18,36

Subcarriers), SUI-1

Figure 4.13: Error Vector Magnitude, SNR = -10dB, 1 AMC Subchannel (M =

18,36 Subcarriers), SUI-4

78



Figure 4.14: Error Vector Magnitude, SNR = 20dB, 1 AMC Subchannel (M = 18,36

Subcarriers), SUI-4

Figure 4.15: Error Vector Magnitude, SNR = -10dB, 1 AMC Subchannel (M =

18,36 Subcarriers), SUI-5
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Figure 4.16: Error Vector Magnitude, SNR = 20dB, 1 AMC Subchannel (M = 18,36

Subcarriers), SUI-5

Figure 4.17: Error Vector Magnitude, SNR = -10dB, 1 AMC Subchannel (M =

18,36 Subcarriers), Ped-A
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Figure 4.18: Error Vector Magnitude, SNR = 20dB, 1 AMC Subchannel (M = 18,36

Subcarriers), Ped-A

Figure 4.19: Error Vector Magnitude, SNR = -10dB, 1 AMC Subchannel (M =

18,36 Subcarriers), Veh-B
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Figure 4.20: Error Vector Magnitude, SNR = 20dB, 1 AMC Subchannel (M = 18,36

Subcarriers), Veh-B

Observations: Error Vector Magnitude

At low SNR, the channel estimates at the pilot subcarriers are worse than the

channel estimates that are linearly interpolated. This result occurs because at low

SNR, noise is the dominant contributor to distortion. When two noise-corrupted

pilots are used to interpolate the channel at the subcarriers in between, some of

the noise can be averaged out interpolating these two pilots. And while linearly

interpolating the pilots will introduce interpolation error, the error due to noise will

dominate in low SNR channels. We can support this observation by comparing the

noise terms in Equation 4.4 and 4.5. In addition, the channel estimates at the pilot

subcarriers are worse than the channel estimates that are linearly interpolated in

SUI-1 and Ped-A even at high SNR. In these channels, the frequency-domain channel
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response is relatively flat so the interpolation error is very small. Because of this,

the error at each subcarrier is dependent on the noise term and the interpolated

subcarriers have a smaller noise term.

In these plots, we also see that in the frequency smoothing algorithm, the

estimates at the edge of each subchannel are worse than the estimates in the middle

in SUI-4, SUI-5, and Vehicular-B at high SNR. The result of this is caused by the

edge effect. This occurs because applying a rectangular window to the estimates in

the time domain is equivalent to applying a circular convolution with a sinc function

to the estimates in the frequency domain. This means that Ĥ(−k) = Ĥ(M − k).

Since the baseline channel estimates are circularly convolved with a sinc function,

the estimates at the edge subcarriers are generated by using channel estimates at

both ends of the subchannel. Equation 4.17 shows this mathematically.

Ĥfs(k) = FFT(ĥfs) = (W∗Ĥ)(k)

=
M−1∑
l=0

W (l)X̂(k − l) for k = 0, 1, ..., M-1

(4.17)

where W is a sinc function, Ĥ is a vector containing the baseline channel estimates,

and Ĥfs(k) is the frequency smoothed channel estimates at subcarrier k.

Therefore, the accuracy of the channel estimates at the edges depends on

the correlation between the subcarriers at the both edges of the subchannel. For

higher delay spread channels like SUI-4, SUI-5, and Vehicular-B, the coherence

bandwidth is smaller so the channel at the edges are uncorrelated with each other

and hence, produce poor estimates at the edges. However, in SUI-1 and Ped-A, we

can observe from Figure 4.12 and 4.18 that the performance at the edges is similar
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to the performance in the middle of the subchannel because these channels have a

larger coherence bandwidth and hence, the channel across the entire subchannel is

highly correlated.

4.4 Conclusion

Based on the results of this experiment, it is observed that performing AMC

channel estimation subchannel sizes of M = 18 and M = 36 adjacent subcarriers using

the frequency smoothing channel estimator is better than the linear interpolator.

We see that using a time window to reject noise and eliminate images of the channel

impulse response is better in all channel conditions except those with high delay

spread and high SNR. We also observed that there is a noise rejection and bias

tradeoff from using the frequency smoothing algorithm. While a longer window

creates a less biased estimate, it also captures more noise. Because of this, the

selection of the window length will depend on the delay spread of the channel and

SNR.
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Chapter 5

Channel Estimation in Channel

Sounding

5.1 Introduction

Channel sounding is a simple technique that enables the base station to obtain

a snapshot of each user’s unique channel conditions. This feature is often used with

AMC to aid the scheduler in allocating resources to optimize performance. Figure

5.1 illustrates how channel sounding is enabled and utilized.

Figure 5.1: Frame Sequence of Channel Sounding [16]
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To enable uplink channel sounding, the base station allocates an UL sounding

zone within a frame (typically at the end of the UL frame) and sends a command on

the DL to one or more user to transmit known sounding signals to the base station

within this sounding zone. In the standard, the sounding zone can be composed of 1

to 8 OFDM symbols per uplink frame and partitioned into non-overlapping sound-

ing bands that contain 18 consecutive subcarriers. The 18 subcarriers per sounding

band coincides with the size of an AMC subchannel. A user may be requested to

transmit sounding signals in a set of adjacent non-overlapping sounding bands or

possibly over the entire sounding zone. If users are commanded to transmit sounding

sequences over the entire sounding zone, it is possible to multiplex multiple sound-

ing signals in the same time-frequency resource by using decimation separability or

cyclic-shift separability to maintain signal orthogonality. In decimation separability,

users transmit every Dth subcarrier where D is the spacing between two occupied

subcarriers. In cyclic-shift separability, users transmit in every subcarrier but adjust

their transmitted sequence by a phase shift to maintain orthogonality. In this chap-

ter, we will evaluate the performance of channel estimation algorithms for different

size sounding allocations including over the entire sounding zone using decimation

and cyclic-shift separability.
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5.2 Channel Estimation in a Subset of Sounding

Zone

In this section, we will develop and analyze the performance of channel es-

timation algorithms assuming that a subset of the sounding zone was allocated to

each user and assume that the same time-frequency resource is not shared. For sim-

plicity, we have assumed that the sounding zone only consists of 1 OFDM symbol

per uplink frame and that each user is allocated M adjacent subcarriers within the

sounding zone.

5.2.1 Frequency Smoothing

Similar to the study performed for AMC, we will again demonstrate the per-

formance of the frequency smoothing channel estimator. The idea is the same as it

was in AMC except in channel sounding, using the frequency smoothing estimator

does not produce images of the channel impulse response because all the subcarriers

within the sounding zone are known. Therefore, no aliasing of the impulse response

can occur. Refer to Section 4.2.2 for more details.

5.2.2 Linear Minimum Mean-Squared Error (LMMSE) Es-

timator

In this algorithm, the objective is to find a linear estimator that best estimates

the channel in the mean-squared error sense. This estimator will generate filter
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coefficients to filter the baseline channel estimates such that the mean-squared error

is minimized. A block diagram implementing the LMMSE estimator is shown in

Figure 5.2.

Figure 5.2: Block Diagram of WiMAX with LMMSE channel estimator

Assuming our OFDM system can be described as shown in Equation 2.14

for M subcarriers, we can derive the optimal linear estimator, Aopt and its linear

minimum mean-squared error estimates ĤLMMSE [12].

Aopt = RH(RH + X−1RVX−H)−1 (5.1)

ĤLMMSE = AoptĤ

= RH(RH + X−1RVX−H)−1Ĥ

(5.2)

where RH is the channel autocorrelation matrix, RV is the noise autocorrelation

matrix, Ĥ = X−1Y is the least-squares channel estimate at each subcarrier, and the

superscript (·)H is the Hermitian transpose. We can simplify the result if we assume

that the noise components are mutually uncorrelated and have the same variance

σ2
v and if all the transmitted sounding signals have the same magnitude |X(t, k)| =

A. Under these assumptions, we can then say that RV = σ2
vI and X = AI where I
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is an MxM identity matrix. Then we can rewrite Equation 5.2 as

ĤLMMSE = RH(RH +
σ2
v

A2
I)−1Ĥ (5.3)

Low-rank Modeling using Singular Value Decomposition

One method to reduce the complexity of the LMMSE estimator is to perform a

low-rank approximation on the optimal linear estimator, Aopt, using singular value

decomposition (SVD) [12]. By using SVD, we can diagonalize the channel auto-

correlation matrix, RH, by the unitary matrix Q such that RH = QΛQH where

Λ = diag([λ1, λ2, ..., λM ]) contain the singular values of RH. If we substitute this

quantity into Equation 5.1, then we obtain

Aopt = QΛQH{Q(Λ +
σ2
v

A2
I)QH}−1

= QΛ(Λ +
σ2
v

A2
I)−1QH

= Q∆QH

(5.4)

where ∆ = diag([δ1, δ2, ..., δM ]). If we arrange ∆ such that δ1 ≥ δ2 ≥ ... ≥ δM , then

we can choose the p (less than M) largest values and zero out the remaining singular

values such that ∆ has diagonal values equal to

δm =


λm

λm+
σ2
v
A2

for m = 1,2, ...,p

0 for m = p+1, p+2, ..., M

(5.5)

Because we are using a low-rank approximation of RH, we must use the pseudoin-

verse to calculate the optimal linear estimator. Therefore, the optimal low-rank

linear estimator is defined as

Aopt = QΛ(Λ +
σ2
v

A2
I)†QH (5.6)
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where (·)† is the pseudoinverse operator.

Performance Analysis

From Equation 5.1, we can see that in order to find the optimal LMMSE

estimator, Aopt, we need to perform a matrix inversion each time we need to generate

an estimate. This operation is often too computationally complex for use in a real-

time system so algorithms requiring this operation are often ignored. To workaround

this issue, we can assume a certain channel power delay profile and noise power and

use them to calculate Aopt. However, we will not know the true channel and noise

power in general so this workaround introduces model mismatch errors. But it is

shown in [12] that the channel estimation error due to model mismatch is small

even if we assume a uniform power delay profile (worst-case channel) and use low-

rank modeling. This result comes from the fact that because each OFDM symbol

duration is long relative to most channel power delay profiles encountered, most of

the channel’s power will be contained in the first p singular values. As for the noise

mismatch, it is described in [12] that a design for high SNR channels is preferred

because the distortion due to noise is small and therefore more advantageous to

minimize the channel estimation error.

An expression for the MSE of a rank-p estimate is also provided in [12] that is

used to evaluate the performance of the LMMSE estimator. The expression is given

as

MSELMMSE(p) =
1

M

p∑
m=1

[
µm(1− δm)2 +

σ2
v

A2
δ2
m

]
+

1

M

M∑
m=p+1

µm (5.7)

where δm is defined in Equation 5.5 and µm are the singular values of the pre-
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calculated channel autocorrelation matrix. If we have no mismatch, we can replace

µm with λm

From Equation 5.7, we can reduce the impact of noise by approximately a

factor of p/M if we use low-rank modeling. However, choosing a smaller value

of p introduces a larger bias error. We can view 1
M

∑M
m=p+1 µm as the bias error

introduced from low-rank modeling. As such, there is a tradeoff in bias and noise

from using low-rank modeling. However, if we choose p such that most of the

channel’s power is contained in the first p singular values, then the bias error will

be small.

5.2.3 Simulation: Subset of Sounding Zone

Objective

In this experiment, our objective was to compare the performance of the fre-

quency smoothing algorithm to the LMMSE estimator under different channel con-

ditions. We do not have a link-level simulator with all the components of a WiMAX

system so we use the MATLAB simulator in Figure 4.5. Again, we use average MSE

and the error vector magnitude to evaluate the performance of each algorithm.

EVM(k) = |Ĥ(t, k)−H(t, k)| for k = 0, 1, ... , M-1 (5.8)

MSEdB = 10·log10

{
1

M

M−1∑
k=0

|Ĥ(t, k)−H(t, k)|2
}

(5.9)
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Simulation Setup

In this experiment, we assumed that a user could be allocated between 1 to

4 sounding bands (M = 18, 36, 54, 72) and that the sounding zone is only com-

posed of 1 OFDMA symbol. We have also assumed sounding sequence transmitted

at each subcarrier has the same amplitude and is known to the receiver. We also

needed to define parameters for each channel estimation algorithm. For the fre-

quency smoothing algorithm, we chose to test with a 5µs and 10µs window because

5µs represents the delay spread of a typical urban environment and 10µs is close to

the nominal cyclic prefix size for WiMAX. For the LMMSE estimator, we chose to

test with precomputed channel autocorrelation matrices for a uniform power delay

profile with 5µs delay spread, a uniform power delay profile with 10µs delay spread,

an exponential power delay profile with 1µs RMS delay spread, and an exponential

power delay profile with 2.5µs RMS delay spread. We chose to test the LMMSE

estimator assuming the channel had a uniform power delay profile and exponential

power delay profile because the uniform power delay profile represents the worst-

case channel and the exponential power delay profile is more representative of a

typical urban channel. We also chose to set the parameter p such that the first p

singular values capture at least 99 percent of the total channel’s energy. A table of

simulation parameters is shown in Table 5.1 and 5.2
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Table 5.1: Channel Sounding Simulation Parameters

System Parameters

Parameter Value

Bandwidth Scale Factor 8 (1024 FFT)

Fundamental Bandwidth 1.25MHz

Cyclic Prefix 1/8 (11.42µs)

Number of Tx Antennas 1

Number of Rx Antennas 2

Sampling Rate 11.2MHz

Symbol Duration 102.9µs

Sounding Parameters

Parameter Value

Number of Sounding Bands 1,2,3,4 (M=18,36,54,72)
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Table 5.2: Channel Estimation Parameters

Frequency Smoothing Parameters

Parameter Value

Window Size 5µs, 10µs

LMMSE Estimator Parameters

Parameter Value

Number of Singular Values (p) 0.99 · Sum of Singular Values

Uniform (5µs Delay Spread) Ph(τ) =


1 for 0 ≤ τ ≤ 5µs

0 otherwise

Uniform (10µs Delay Spread) Ph(τ) =


1 for 0 ≤ τ ≤ 10µs

0 otherwise

Exponential (1µs RMS Delay Spread) Ph(τ) =


exp(−τ

1µs
) for 0 ≤ τ ≤ 5µs

0 otherwise

Exponential (2.5µs RMS Delay Spread) Ph(τ) =


exp( −τ

2.5µs
) for 0 ≤ τ ≤ 10µs

0 otherwise
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Results: Mean-Squared Error

Below are MSE curves comparing the Frequency Smoothing and LMMSE es-

timator. We only show the MSE plots assuming M = 72 since results do not vary

much for the other sounding zone sizes. For reference, we also included the per-

formance of the LMMSE estimator assuming that we had perfect knowledge of the

channel autocorrelation matrix and SNR. It sets an upper limit to the achievable

performance that can be obtained in WiMAX. This is used to illustrate the perfor-

mance gap between our proposed algorithms and one that would be able to perfectly

adapt to the changes in the channel.

Figure 5.3: Average MSE in Channel Sounding in Subset of Sounding Zone (M =

72), Frequency Smoothing vs. LMMSE, SUI-1
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Figure 5.4: Average MSE in Channel Sounding in Subset of Sounding Zone (M =

72), Frequency Smoothing vs. LMMSE, SUI-4

Figure 5.5: Average MSE in Channel Sounding in Subset of Sounding Zone (M =

72), Frequency Smoothing vs. LMMSE, SUI-5
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Figure 5.6: Average MSE in Channel Sounding in Subset of Sounding Zone, Fre-

quency Smoothing vs. LMMSE, (M = 72), Ped-A

Figure 5.7: Average MSE in Channel Sounding in Subset of Sounding Zone (M =

72), Frequency Smoothing vs. LMMSE, Veh-B
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Observations: Mean-Squared Error

When comparing the frequency smoothing and LMMSE estimator perfor-

mance to the LMMSE estimator with perfect channel knowledge, we see that there

is generally at least a 5dB improvement in MSE from having perfect channel knowl-

edge. In the higher delay spread channels, we see the curves diverge as the SNR

increases. This is attributed to the bias and noise error in each estimator.

We also observe that the performance of the frequency smoothing channel

estimator is very similar to what we observed in AMC. First, we see that in SUI-

4, SUI-5, and Vehicular-B, that there is a crossover point between the frequency

smoothing with 5µs window and frequency smoothing with 10µs window. This

illustrates the tradeoff between bias error and noise rejection. Using the smaller

window size rejects more noise but creates more bias in the channel estimates. For

low SNR channels, noise is the dominant contributor to distortion and we would

prefer to reject more noise in this scenario. But as the SNR increases, the channel

becomes the larger contributor to distortion and so we see the larger window size

begin to perform better relative to the smaller window because there is less bias.

In both cases, for SUI-4, SUI-5, and Veh-B, we see that the performance of the

frequency smoothing channel estimator floors even as the SNR increases because of

the bias introduced by the window. See Appendix B for more details.

We also see that the frequency smoothing algorithm outperforms the LMMSE

estimator at low SNR. We can attribute this to the fact that more noise is rejected

using this algorithm. We can attribute this mostly to the fact that the frequency
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smoothing window size, L, is smaller than our value of p of the LMMSE estima-

tor. Also, we chose to design the LMMSE estimator for high SNR so we would

expect the performance to be poor at low SNR. At high SNR, we see that the

LMMSE estimator outperforms the frequency smoothing algorithm except for in

SUI-1 and Pedestrian-A. This is attributed to the fact that there is very little bias

in the frequency smoothing algorithm for these channels since the window captures

almost all of the channel’s energy. Combined with its ability to reject noise better,

this algorithm generally outperforms the LMMSE estimator when the channel de-

lay spread is low. However, for the higher delay spread channels like SUI-4, SUI-5,

and Vehicular-B, there is a bias introduced in the frequency smoothing and is of-

ten outperformed by the LMMSE estimator. And the performance gap is largely

dependent on the channel autocorrelation matrix we choose. In SUI-4, we observe

that the LMMSE estimator using the exponential power delay profile with 1µs RMS

delay spread and uniform power delay profile with 5µs delay spread performs the

best while in SUI-5 and Vehicular-B, using the exponential power delay profile with

2.5µs RMS delay spread and uniform power delay profile with 10µs delay spread

performs the best. First, the LMMSE estimator performs better than the frequency

smoothing algorithm at high SNR because we choose a rank p estimator such that

most of the channel’s power lies in the first p singular values. Because of this, the

LMMSE estimator is less biased than the frequency smoothing algorithm. Second,

we also see that a good approximation of the channel delay spread when calculating

the channel autocorrelation matrix can make a significant difference in performance.

The channel delay spread determines how the channel’s power is distributed among
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its singular values. Hence, an accurate measurement of the delay spread can sig-

nificantly reduce the model mismatch error. We see that in the SUI-5 channel, the

performance gap is large between using channels with 10µs delay spread versus 5µs.

We also see that in Vehicular-B, all LMMSE estimators tested performed about the

same because neither estimator estimates the channel delay spread accurately. The

estimators using the exponential PDP with 2.5µs RMS delay spread and uniform

PDP with 10µs delay spread performs slightly better because their approximation

of the channel delay spread is better. In addition, we also see that approximating

the shape of the power delay profile more accurately does not make a significant dif-

ference. The channels that we tested all have exponential-like power delay profiles

so we expected that using an exponential PDP to calculate the channel autocor-

relation matrix to perform better. However, results show that there is almost no

difference between using an exponential PDP and the uniform PDP in all channels.

This observation was made by [12] in which if we use low-rank modeling, the error

due to model mismatch will be small as long as we choose a cutoff p large enough

to capture most of the channel’s energy.

Results: Error Vector Magnitude

To observe the error at each subcarrier, we also plotted the error vector mag-

nitude. Results are shown below comparing the error at each subcarrier for SNR =

20dB is shown below. We only display the EVM plots for M = 72.
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Figure 5.8: Error Vector Magnitude of Frequency Smoothing vs. LMMSE, SNR =

20dB, M = 72, SUI-1

Figure 5.9: Error Vector Magnitude of Frequency Smoothing vs. LMMSE, SNR =

20dB, M = 72, SUI-4

101



Figure 5.10: Error Vector Magnitude of Frequency Smoothing vs. LMMSE, SNR =

20dB, M = 72, SUI-5

Figure 5.11: Error Vector Magnitude of Frequency Smoothing vs. LMMSE, SNR =

20dB, M = 72, Ped-A
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Figure 5.12: Error Vector Magnitude of Frequency Smoothing vs. LMMSE, SNR =

20dB, M = 72, Veh-B

Observations: Error Vector Magnitude

One observation made from these plots is that the LMMSE estimates at the

subcarriers at each edge of the sounding zone were generally better than their re-

spective frequency smoothing channel estimates at SNR = 20dB. In other words, at

the edges, the LMMSE estimator assuming uniform CIR (max delay spread 5µs) and

exponential CIR (1µs RMS delay spread) were better than the frequency smoothing

with 5µs window and the LMMSE estimator assuming uniform CIR (max delay

spread 10µs) and exponential CIR (2.5µs rms delay spread) were better than the

frequency smoothing with 10µs window. For the subcarriers in the middle of the

sounding zone, the results were generally mixed. This is the result of the edge effect

that occurs when using the frequency smoothing algorithm. Because we apply a
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rectangular window to the estimates in the time domain, we are equivalently per-

forming a filtering operation in the frequency-domain through a circular convolution

of a sinc function with the channel. So when we estimate the channel at subcarriers

at the edge of the the sounding zone, we perform the estimate by interpolating the

channel from subcarriers at both ends of the sounding zone. This effect is more

severe in channels with higher delay spreads because the channel at the edges of

the sounding zone are more uncorrelated. We can see from the error vector mag-

nitude plots that the difference in error between the subcarriers at the edges and

the subcarriers in the middle of the sounding zone is small in SUI-1 and Pedestrian-

A because for low delay spread channels, the coherence bandwidth is large so the

channel correlation is still high between subcarriers at both ends of the sounding

zone.

Conclusion: Channel Estimation for a Subset of Sounding Zone

The results of this experiment seem to suggest that we should use frequency

smoothing at low SNR channels and the LMMSE estimator at high SNR. More

specifically, we showed that we should use the LMMSE estimator at high SNR to

estimate the channel at the edge subcarriers to avoid the edge effect. We also ob-

served that one challenge in optimizing both estimators is in determining the channel

delay spread. In the frequency smoothing algorithm, choosing the appropriate win-

dow length can achieve a better performance at high SNR because it can minimize

the bias while rejecting as much noise as possible. We also see in the LMMSE esti-

mator that the approximation of the channel delay spread in calculating the channel
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autocorrelation plays a large role in improving performance because the model mis-

match is reduced. Without a good estimate of the channel delay spread, we saw

that both estimators significantly degraded in performance.

5.3 Channel Estimation with Decimation Separa-

bility

In channel sounding, users can also be commanded to transmit over the entire

sounding zone. But to maintain orthogonality in the signal each user will be given a

decimation factor D and decimation offset d. The decimation factor represents the

spacing between subcarriers allocated to the same user and the decimation offset

represents the starting position of the 1st occupied subcarrier. According to [23],

decimation factors of 4, 8, 16, 32, and 64 are to be supported and the decimation

offset is between 0 and D-1. In this section, we will analyze the performance of the

linear interpolator and frequency smoothing algorithm when users sound every Dth

subcarrier over the entire sounding zone.

Figure 5.13: Decimation Separability Example (D = 4)
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5.3.1 Linear Interpolation

When using linear interpolation, we must first perform the least-squares chan-

nel estimate at the subcarriers in which a sounding signal was transmitted and then

interpolate the channel estimate linearly. At the ends of the sounding zone, some

extrapolation will need to be done depending on the decimation offset. If we let

P be the total number of occupied subcarriers, then the linear interpolator channel

estimator in channel sounding with decimation separability can be summarized as

such.

1. Generate Baseline Channel Estimates using Least Squares estimation at Oc-

cupied Subcarriers

Ĥ(t, d+Dp) =
Y (t, d+Dp)

X(t, d+Dp)
, p = 0, 1, ... , P-1 (5.10)

2. Interpolate Channel Estimates in Frequency

Ĥ(t, d+Dp+ l) =
D − l
D

Ĥ(t, d+Dp) +
l

D
Ĥ(t, d+ (D + 1)p), l = 1, ..., D-1

(5.11)

3. Extrapolate Channnel Estimates at Subcarriers at Edges of Sounding Zone

Ĥ(t, d− l) =
−l
D
Ĥ(t, d+ 2D) +

D + l

D
Ĥ(t, d+D)

for l = 1, ..., d

Ĥ(t, d+ (P − 1)D + l) =
−l
D
Ĥ(t, d+ (P − 2)D) +

D + l

D
Ĥ(t, d+ (P − 1)D)

for l = 1, ..., D-d

(5.12)
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Using the derivation provided by [22], we can calculate the mean-squared

error at the occupied subcarriers, the interpolated subcarriers, and extrapolated

subcarriers. For simplicity in calculation, we will assume that the decimation offset

is 0 and that the magnitude of the transmitted sounding signal at each occupied

subcarrier is the same (|X(t, d+Dp)| = A for p = 0, 1, ... , P-1)

1. MSE at pilot subcarriers

MSEP = E[||Ĥ(t,Dp+ 1)−H(t,Dp+ 1)||2]

=
σ2
v

A2

(5.13)

2. MSE at interpolated subcarriers from Step 2

MSEI =
1

D − 1

D−1∑
l=1

E[||Ĥ(t,Dp+ l)−H(t,Dp+ l)||2]

= σ2
H{

5D − 1

3D
Rf [0] +

D + 1

6D
(Rf [D] +Rf [−D])− α}

+
2D − 1

3D

σ2
v

A2

(5.14)

where Rf [4k] is the frequency-domain correlation function defined in Equa-

tion 2.7 and

α =
1

D − 1

D−1∑
l=1

{
D − l
D

(Rf [l] +Rf [−l]) +
l

D
(Rf [D − l] +Rf [l −D])

}

3. MSE at extrapolated subcarriers from Step 3

MSEE =
1

D − 1

D−1∑
l=1

E[||Ĥ(t, (P − 1)D + l)−H(t, (P − 1)D + l)||2]

= σ2
H{

11D − 1

3D
Rf [0]− 5D − 1

6D
(Rf [D] +Rf [−D])− β}

+
8D − 1

3D

σ2
v

A2

(5.15)
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where

β =
1

D − 1

D−1∑
l=1

{
D + l

D
(Rf [l] +Rf [−l])−

l

D
(Rf [D + l] +Rf [−D − l])

}

Using Equations 5.13, 5.14, and 5.15, we can derive the average MSE for each

user using linear interpolation within the sounding zone as such.

MSELI−Dec =
1

D
MSEP + (

D − 1

D
− D − 1

M
)MSEI +

D − 1

M
MSEE (5.16)

where M is the number of subcarriers in the sounding zone

When we look at average MSE for linear interpolation, we see that the contrib-

utors to channel estimation error are interpolation error and noise. From Equations

5.13, 5.14, 5.15, and 5.16, we see that the interpolation error is dependent on the

decimation factor D and the frequency domain correlation function Rf [4k]. When

we evaluated the linear interpolator in AMC in Section 4.2.1, we compared its perfor-

mance in different channels with a decimation factor of 3. In this part, we compare

the performance of the linear interpolator for different decimation factors given a

specific channel. The plots are shown below.
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Figure 5.14: Linear Interpolation Average MSE over Sounding Zone With Decima-

tion Separability, SUI-1

Figure 5.15: Linear Interpolation Average MSE over Sounding Zone With Decima-

tion Separability, SUI-4
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Figure 5.16: Linear Interpolation Average MSE over Sounding Zone With Decima-

tion Separability, SUI-5

Figure 5.17: Linear Interpolation Average MSE over Sounding Zone With Decima-

tion Separability, Ped-A
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Figure 5.18: Linear Interpolation Average MSE over Sounding Zone With Decima-

tion Separability, Veh-B

We expected to see the performance deterioriate as the decimation factor in-

creased and the curves in the SUI-1, SUI-4, and Pedestrian-A channels illustrated

that. We do see a slight improvement in performance for the larger decimation fac-

tor in the SUI-5 and Vehicular-B models. This can be attributed to the calculated

frequency-domain channel correlation having interpolated or extrapolated subcarri-

ers being more correlated with the occupied subcarriers. From Equation 5.14 and

5.15, we see that α and β can reduce the MSE more if the correlation of the interpo-

lated or extrapolated subcarriers with respect to the occupied subcarriers is higher.

We plotted the channel correlation for each channel we tested in Figure 5.19.

For example, we see in the average MSE plots for SUI-5 that using decimation

factor D = 32 is slightly better than using decimation factor D = 16. When we
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Figure 5.19: Frequency-Domain Channel Autocorrelation Function

look at the SUI-5 channel correlation in Figure 5.19, we see that after 4k = 16,

the correlation continues to increase and peak at 4k = 20. Because the correlation

increases in this range, when we use decimation factor D = 32, the average MSE

of the interpolated and extrapolated subcarriers is slightly better for decimation

factor D = 32 than for D = 16. We will not read into this too much because the

performance is poor in both cases. The conclusion that can be made from the

average MSE plots in each channel is that linear interpolation works well for most

decimation factors in channels like SUI-1 and Pedestrian-A. In SUI-4, we see a large

degradation in performance for increasing decimation factors so linear interpolation

should only be used in this channel if the decimation factor can be kept small. And

for SUI-5 and Vehicular-B, we see that the performance is very poor except for

decimation factor 4.
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5.3.2 Frequency Smoothing

The frequency smoothing algorithm used in this study is the same algorithm

that we have considered throughout this study. For specific details, refer to Section

4.2.2. However, in this particular section, we do have to take in consideration the

potential overlap of the channel impulse response caused by subsampling in the

frequency domain. In addition, we also have to be careful about the window size we

choose because decimation factors supported by WiMAX can cause the images to

move very close together. And in order to obtain an accurate estimate, the window

size must be chosen such that only one image is captured. For example, for N =

1024, cyclic prefix fraction of 1/8, and symbol duration of 102.9µs, if the decimation

factor is 32, then for no aliasing, the channel delay spread cannot be longer than

3.22µs. At the same time, we have to avoid selecting a window size longer than

3.22µs because we would capture more than one image.

5.3.3 Simulation: Decimation Separability

We compare the linear interpolation and frequency smoothing channel estima-

tion performance in different channel conditions and different decimation factors.

We will use the Matlab model illustrated in Figure 4.5 for simulation and mean-

squared error for performance evaluation.
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Simulation Parameters

For simulation, we will assume that the sounding zone is only one OFDM

symbol and that the sounding sequence is known to the transmitter and receiver. We

will test the performance of the linear interpolator and frequency smoothing channel

estimator for decimation factors D = 4, 8, 16, and 32. For the frequency smoothing

algorithm, we will choose window lengths corresponding to each decimation factor

to ensure that only one image of the channel impulse response is captured. In

addition, we will also test the performance of the frequency smoothing algorithm

with fixed window sizes of 5µs and 10µs. A table summarizing the parameters are

shown below.
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Table 5.3: Channel Sounding Simulation Parameters: Decimation Separability

System Parameters

Parameter Value

Bandwidth Scale Factor 8 (1024 FFT)

Fundamental Bandwidth 1.25MHz

Cyclic Prefix 1/8 (11.42µs)

Number of Tx Antennas 1

Number of Rx Antennas 2

Sampling Rate 11.2MHz

Symbol Duration 102.9µs

Sounding Parameters

Parameter Value

Decimation Factors D ={4, 8, 16, 32}

Decimation Offset d = 0, 1, ..., D-1

Frequency Smoothing Parameters

Parameter Value

Window Size

5µs, 10µs

25.73µs for D = 4, 12.86µs for D = 8

6.43µs for D = 16, 3.22µs for D = 32

115



Results: Mean-Squared Error

Below are MSE curves comparing the linear interpolator and frequency smooth-

ing channel estimator.

Figure 5.20: MSE, Channel Sounding with Decimation Separability, SUI-1
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Figure 5.21: MSE, Channel Sounding with Decimation Separability, SUI-4

Figure 5.22: MSE, Channel Sounding with Decimation Separability, SUI-5
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Figure 5.23: MSE, Channel Sounding with Decimation Separability, Ped-A

Figure 5.24: MSE, Channel Sounding with Decimation Separability, Veh-B
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Observations

First, we see that overlap of the channel impulse response can cause the fre-

quency smoothing estimates to be biased. The relative performance of the frequency

smoothing algorithm to the linear interpolator is dictated by how much bias is in the

channel estimates or equivalently, how much of the channel’s energy is not captured

by the frequency smoothing window. For example, we see that in SUI-4 and deci-

mation factor 32 that there is some overlap of the images because the spacing is only

3.22µs but the delay spread is 4µs. However, only one tap is lost and this tap has

a small average power so even though this tap is not captured by the window, the

bias error is still less than the interpolation error which explains why the frequency

smoothing still performs better in this scenario. However, in SUI-5 and Vehicular-

B, we see for decimation factor 32 that aliasing occurs and causes the frequency

smoothing estimates to be very inaccurate. In addition, only 1 out of 3 taps of the

SUI-5 channel profile and 2 out of the 6 taps of the Vehicular-B channel profile is

captured by the frequency smoothing window with window length of 3.22µs. This

induces a large bias in the channel estimates and causes the error to be higher than

the interpolation error of the linear interpolator which is already high.

We also see an interesting phenomenon in the shorter delay spread channels

like SUI-1 and Pedestrian-A where no aliasing of the images occur. From these plots,

we first observe that in SUI-1 and Pedestrian-A, the frequency smoothing with 5µs

and 10µs window generally perform as well or outperform the linear interpolator for

decimation factor 4 and 8. However, when we test the performance for decimation
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factor 16 and 32, we see that the linear interpolator performs better than each of the

frequency smoothing windows we tested with. For the 5µs and 10µs window, we can

explain this degradation in performance because these windows capture more than

one image of the channel impulse response at these decimation factors. However,

it can be seen that even for the window adjusted to capture just one image is

outperformed by the linear interpolator in these channels. This can be explained by

the fact that there is a “sinc-like” spreading of each tap in the time-domain caused

by the guard bands on each end of the sounding zone. In the frequency-domain,

we only transmit sounding signals every D subcarriers for M subcarriers with guard

subcarriers on each edge. When we transform this into the time-domain, we get D

images of the channel impulse response convolved with a sinc function because we

used an N-point IFFT and results in a “sinc-like” spreading in the time-domain.

Now if we use the frequency smoothing algorithm and apply a rectangular window

in the time-domain, we may capture the energy from another image depending on

the length of the window and the decimation factor D. This could induce an error

in our channel estimate and the magnitude of the error would depend on how close

the images were to each other. Because of this result, we should choose a window

length that is smaller than the designed spacing between images to avoid the effect

of the “sinc-like” spreading caused by the guard bands of the sounding zone. More

detail about this effect is provided in Appendix C.
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5.4 Channel Estimation with Cyclic-Shift Sepa-

rability

Another method of multiplexing users when commanded to transmit over the

entire sounding zone is to use cyclic-shift separability. If we define all the subcarriers

in the sounding zone to be in S and M to be the size of the sounding zone, then

in channel sounding with cyclic-shift separability, each user will transmit the same

sounding sequence at all subcarriers in S, but with a different phase shift e−j
2πkI
P in

the frequency-domain (or cyclic-shift in the time-domain) where k is the subcarrier

index, P is the maximum cyclic shift index and I is the cyclic time shift index between

0 and P-1 assigned to each user in order to maintain signal orthogonality. According

to [23], maximum cyclic shift indices of 4, 8, 16, and 32 are to be supported. In this

section, we will compare a staircasing channel estimation technique to the frequency

smoothing channel estimation algorithm and evaluate their performance for different

maximum cyclic shift indices and channels.

Figure 5.25: Cyclic Shift Separability
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5.4.1 Staircasing Channel Estimation

The first step in the staircasing method is to generate baseline channel esti-

mates using the least squares estimate at each subcarrier. However, in this scenario,

we will also need to separate each user’s transmitted signal from the received signal

because users are allowed to transmit in the same time and frequency resource. To

accomplish this, we must group the channel estimates into P subcarriers and corre-

late over the P channel estimates in each group by undoing a user’s unique cyclic-

shift at each subcarrier and summing over all the subcarriers within the group to

remove all other users. We summarize the steps of this algorithm mathematically

below.

1. Generate Baseline Channel Estimates using Least Squares Estimate at each

subcarrier

Ĥ(t, k) =
Y (t, k)

X(t, k)
for (t,k) ∈ S (5.17)

2. Correlate baseline channel estimate over P subcarriers to isolate user of inter-

est. If we divide the sounding zone into groups of P subcarriers and let i be the

group index where 0 ≤ i ≤ Nused

P
and ki be the leftmost subcarrier in within

each group, then the channel estimate for the ith group and mth subcarrier

within each group is

Ĥsc(t, ki +m) =
1

P

P−1∑
l=0

Ĥ(t, ki + l)ej
2π(ki+l)I

P for m = 0, 1, ... , P-1 (5.18)

The result of this technique is a channel estimate that resembles a staircase because

we generate the same channel estimate for each group of P subcarriers. To analyze
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the performance of the staircasing method, we derive the mean-squared error at each

subcarrier and computed the arithmetic average over each group. To simplify the

derivation, we will assume that the channel is WSS, noise is mutually uncorrelated

and uncorrelated with the channel, and the magnitude of the transmitted sounding

signal at each occupied subcarrier is the same |X(t, k)| = A for (t,k) ∈ S

MSEsc =
1

P

P−1∑
m=0

E[||Ĥsc(t, ki +m)−H(t, ki +m)||2]

=
1

P

P−1∑
m=0

E[|| 1
P

P−1∑
l=0

Ĥ(t, ki + l)ej
2π(ki+l)I

P −H(t, ki +m)||2]

=
1

P

P−1∑
m=0

{σ2
H(

1

P 2

P−1∑
r=0

P−1∑
l=0

Rf [l − r]ej
2π(l−r)I

P +Rf [0]

− 1

P

P−1∑
l=0

Rf [l −m]ej
2π(ki+l)I

P − 1

P

P−1∑
l=0

Rf [m− l]e−j
2π(ki+l)I

P )

+
1

P

σ2
v

A2
}

(5.19)

From the derivation, we see similar to the linear interpolator that the components of

channel estimation error is due to interpolation error and noise. The interpolation

error comes from the fact that we essentially calculate an average of the least-squares

channel estimates over P subcarriers and use this to estimate the channel at each

subcarrier within the group. The magnitude of the interpolation error is dependent

on the frequency-domain channel correlation and the maximum cyclic shift index P.

We also see on average that the contribution of noise is reduced by approximately

a factor of 1/P. Using the derivation in Equation 5.19, we also plotted the average

MSE for each maximum cyclic-shift index and compared them in the SUI-1, SUI-4,

SUI-5, Pedestrian-A, and Vehicular-B channels.
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Figure 5.26: Average MSE over Sounding Zone With Cyclic-Shift Separability, SUI-1

Figure 5.27: Average MSE over Sounding Zone With Cyclic-Shift Separability, SUI-4
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Figure 5.28: Average MSE over Sounding Zone With Cyclic-Shift Separability, SUI-5

Figure 5.29: Average MSE over Sounding Zone With Cyclic-Shift Separability, Ped-

A
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Figure 5.30: Average MSE over Sounding Zone With Cyclic-Shift Separability, Veh-

B

From the plots, we observe that the performance of the staircasing estimator

generally floors at a higher MSE for larger values of P because the resolution of the

estimator is lower. We also observe that for SUI-1 and Pedestrian-A that perfor-

mance is better for larger values of P because these channels are highly correlated

so the interpolation error is very small no matter what value of P we use. In these

channels the error depends only on noise and from Equation 5.19, we see that the

noise error is lower for larger values of P. This also explains why at low SNR, using

larger values of P for the staircasing method performs better.
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5.4.2 Frequency Smoothing

The frequency smoothing algorithm can also be applied in channel sounding

with cyclic-shift separability. Refer to Section 4.2.2 for more detail. With cyclic-shift

separability, the frequency smoothing window must also be shifted cyclically in time

by the same cyclic shift applied to the sounding sequence in order to eliminate the

other users. As with decimation separability, the possibility of overlapping channel

impulse responses is possible if users are not cyclically shifted far enough from

each other. Assuming again that the number of subcarriers N = 1024, the cyclic

prefix fraction is 1/8, and the symbol duration is 102.9µs, then if the system uses a

maximum cyclic shift index of 32 and user 1 and user 2 have a cyclic time-shift index

I of 0 and 1 respectively, they will only be separated by 3.22µs in the time-domain.

In this situation, if we use a frequency smoothing window longer than 3.22µs to

user 1, the window will capture part of user 2’s channel response and result in a less

accurate measurement. Similar to our study with decimation separability, we will

evaluate the performance of frequency smoothing windows of length 5µs, 10µs, and

one that is adjusted according to the maximum cyclic shift index to ensure only one

user’s channel captured.

5.4.3 Simulation: Cyclic-Shift Separability

Simulation Setup

In this study, we will test the performance of the staircasing and frequency

smoothing algorithm for different maximum cyclic shift factors in different chan-
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nel conditions. We will again use the Matlab model illustrated in Figure 4.5 for

simulation and mean-squared error for performance evaluation. However, for this

particular study, we assume only two users in the system and each are assigned a

cyclic-shift time index of 0 and 1. The system and algorithm parameters are shown

below.
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Table 5.4: Channel Sounding Simulation Parameters: Cyclic Shift Separability

System Parameters

Parameter Value

Bandwidth Scale Factor 8 (1024 FFT)

Fundamental Bandwidth 1.25MHz

Cyclic Prefix 1/8 (11.42µs)

Number of Tx Antennas 1

Number of Rx Antennas 2

Sampling Rate 11.2MHz

Symbol Duration 102.9µs

Sounding Parameters

Parameter Value

Maximum Cyclic Shift Index D ={4, 8, 16, 32}

Cyclic Shift Time Index I = 0, 1, ... ,P-1

Frequency Smoothing Parameters

Parameter Value

Window Size

5µs, 10µs

25.73µs for P = 4, 12.86µs for P = 8

6.43µs for P = 16, 3.22µs for P = 32
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Results: Mean-Squared Error

Below are mean-squared error plots comparing the staircasing estimator to the

frequency smoothing estimator.

Figure 5.31: MSE, Channel Sounding with Cyclic Shift Separability, SUI-1
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Figure 5.32: MSE, Channel Sounding with Cyclic Shift Separability, SUI-4

Figure 5.33: MSE, Channel Sounding with Cyclic Shift Separability, SUI-5
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Figure 5.34: MSE, Channel Sounding with Cyclic Shift Separability, Ped-A

Figure 5.35: MSE, Channel Sounding with Cyclic Shift Separability, Veh-B
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Observations: Mean-Squared Error

At low SNR, we see that the frequency smoothing algorithm generally performs

better than the staircasing estimator except for maximum cyclic shift factor 32. We

can attribute this to the fact that the frequency smoothing algorithm rejects more

noise than the staircasing estimator except when the staircasing estimator averages

the estimates over a large number of subcarriers and averages out a significant

amount of noise. It can be seen from Equation 5.19 that for P = 32 that the noise

is reduced a factor of 1/32 and this factor is often smaller than L/M which is the

factor that the frequency smoothing algorithm reduces noise by.

For the frequency smoothing algorithm, we see that the performance relative to

the staircasing estimator is worse in long delay spread channels and large maximum

cyclic shift indices. This degradation in performance is due to the fact that when the

delay spread of the channel exceeds the spacing between cyclically-shifted users, the

received signal of each user overlap in the time-domain so the frequency smoothing

window cannot capture all of the channel’s energy without capturing another user’s

channel. Similarly, if we choose a frequency smoothing window length such that it

exceeds the spacing between cyclically-shifted users, then the window will capture

part of another user’s channel and result in an inaccurate channel estimate.

We also observe that in low delay spread channels like SUI-1 and Pedestrian-A

that frequency smoothing with a 5µs and 10µs window generally performs better

than the staircasing estimator for maximum cyclic shift indices of 4 and 8. However,

as we increase the maximum cyclic shift index to 16 and 32, we see the staircasing
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estimator generally outperform the frequency smoothing window even though the

channel response does not overlap with each other in the time-domain. We can

attribute this to the “sinc-like” spreading of each tap in the time-domain caused by

the guard bands on each end of the sounding zone. In the frequency-domain, we only

transmit sounding signals in M out of N subcarriers with guard subcarriers on each

edge. When we transform this into the time-domain, we get a sinc function because

we use an N-point IFFT. This sinc function is then convolved with the channel

impulse response and the result is a “sinc-like” spreading in the time-domain. The

effect is that the spacing between cyclically shifted users is reduced. Now if we use

the frequency smoothing algorithm and apply a rectangular window in the time-

domain, we may capture the energy from another user’s channel depending on the

length of the window and the choice of the maximum cyclic shift index P. This

phenomenon also explains why the frequency smoothing algorithm with window

length adjusted to capture exactly one user’s channel performs poorly for almost all

channels. More detail about this effect is described in Appendix C.

5.5 Decimation Separability vs. Cyclic-Shift Sep-

arability

One question often asked is if channel sounding with decimation separability

or cyclic-shift separability is preferred. According to [24], using cyclic-shift separa-

bility results in better overall link-level and system-level performance. One of the
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advantages to using cyclic-shift separability is the higher processing gain. Because

users transmit over every subcarrier within the sounding zone, it spreads the signal’s

energy over a wider range of frequencies and makes it less susceptible to interference.

Another advantage to using cyclic-shift separability is its flexibility in multiplexing

users in low and high delay spread channels. With cyclic-shift separability, the sys-

tem has the flexibility to assign users a cyclic shift index according to their channel’s

delay spread such that there is adequate spacing between users. For example, if user

1 had a channel with 10µs delay spread and user 2 had a channel with 5µs delay

spread, we could cyclically shift user 2 by an amount that is at least 10µs to maintain

orthogonality. However, in decimation separability, we do not have this flexibility

because in most situations, we cannot reduce the decimation factor for high delay

spread users or increase the decimation factor for low delay spread users because

the occupied subcarriers may overlap. Therefore, in general, we would prefer to use

cyclic-shift separability when performing channel sounding over the entire sounding

zone.

5.6 Conclusion

In a system with channel sounding enabled, a user may be commanded by the

base station to transmit sounding signals in a fixed number of sounding bands each

containing 18 adjacent subcarriers or over the entire zone. If a user transmits over a

fixed number of sounding bands, we can apply the frequency smoothing algorithm

or use the LMMSE estimator to perform channel estimation. From the results, we

135



see that at low SNR, the frequency smoothing estimator generally performs bet-

ter because it rejects more noise. However, as we increase the SNR, we see that

the LMMSE estimator can outperform the frequency smoothing algorithm if our

LMMSE estimator utilizes low-rank modeling and approximates the channel delay

spread accurately. In addition, we tend to see significant improvement at the edge

subcarriers of each sounding band from using the LMMSE estimator because using

the frequency smoothing algorithm suffers from the edge effect. If a base station

commands the users to sound over the entire sounding zone, it may do so through

decimation separability or cyclic-shift separability. In decimation separability, a user

occupies every Dth subcarrier so we can apply a linear interpolation algorithm or

frequency smoothing algorithm to perform channel estimation. Our results showed

that for small decimation factors, the frequency smoothing algorithm generally per-

formed better than the linear interpolator. But for larger delay spread channels and

higher decimation factors, we observed that the relative performance depended on

whether the frequency smoothing window captured other images or did not capture

all of the channel’s energy. In cyclic-shift separability, each user occupies the entire

sounding zone but with a different cyclic time-shift. For this multiplexing method,

we evaluated the staircasing estimator and the frequency smoothing algorithm. We

observed that again the frequency smoothing algorithm generally performed better

in low SNR channels. But its performance relative to the staircasing estimator was

mixed for higher maximum cyclic shift factors and higher delay spread channels.

We observed that the staircasing method generally performed better when the spac-

ing in time between each user’s transmitted signal was too close for the frequency
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smoothing window to capture just one user’s signal energy or caused the channel

impulse response of each user to overlap in time.
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Chapter 6

Conclusion

In our study, we explored many channel estimation algorithms that can be used

in WiMAX. Channel estimation is an important feature in any wireless communica-

tion system because it aids the receiver in undoing any distortion in the transmitted

signal caused by the wireless channel. If the channel estimator has good tracking

capabilities, it can significantly improve the coverage, throughput, and reliability of

the overall system.

WiMAX utilizes pilots to aid in channel estimation and arranges the pilots

differently depending on the permutation it employs. In PUSC, we analyzed the

performance of the linear interpolator and 4-pilot averaging and observed that the

4-pilot averaging performed better in low SNR channels. But as the SNR increased

and the channel delay spread and Doppler spread increased, we observed that the

linear interpolator performed better. In AMC, we introduced a frequency smoothing

algorithm and compared its performance to the linear interpolator. We observed

that the frequency smoothing algorithm generally outperformed the linear interpo-
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lator except when the window length was not chosen long enough to capture all of

the channel’s energy.

WiMAX also utilizes a feature called uplink channel sounding in which the base

station allocates a sounding zone for users to transmit known sequences to allow it

to obtain each user’s unique channel conditions. We analyzed the performance of

the frequency smoothing and linear minimum mean-squared error (LMMSE) chan-

nel estimator for when the base station commanded each user to transmit in a

fixed number of sounding bands. We found that the frequency smoothing algo-

rithm performed well in low SNR channels but was generally outperformed by the

LMMSE estimator when we made a good estimate of the channel delay spread. We

also analyzed channel estimation performance in channel sounding with decimation

separability and cyclic-shift separability. In decimation separability, we compared

the frequency smoothing algorithm to the linear interpolator and observed that fre-

quency smoothing performed well when the images of the channel were not too close

together and/or when the channel delay spread did not exceed the spacing between

adjacent images. In cyclic-shift separability, we evaluated a staircasing estimator

and compared it to the frequency smoothing algorithm. We found again that the fre-

quency smoothing estimator performed better when each user were cyclically shifted

in time far enough from each other such that the channel responses do not overlap

with each other in time.
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6.1 Future Work

While this thesis covers much in the area of channel estimation for WiMAX,

there are still some areas in which this study can be expanded upon.

1. Study of the time evolution of the channel - In this study, our focus was

primarily on channel estimation and interpolation in frequency. This study

could be expanded to include an analysis about the evolution of the channel

in time and algorithms that can applied across the time.

2. Development of a link-level simulator supporting AMC and channel sounding

- In our study for AMC and channel sounding, we used MSE as our primary

metric to evaluate each algorithm. However, a better metric to evaluate each

algorithm is bit-error rate, frame-error rate, and throughput and to accomplish

this, we need to integrate our algorithm with a link-level simulator with all

the components in a WiMAX system.

3. Different windowing methods for the frequency smoothing algorithm - For fre-

quency smoothing, we tested the algorithm using a rectangular window and

observed that one consequence of this is the edge effect. One alternative to

combat the edge effect is to use a different window (e.g. Raised-cosine Win-

dow).

4. Channel estimation in the MIMO case - This study only considers the SIMO

case and could be extended to study channel estimation algorithms that can

be used in the MIMO case.
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Appendix A

SUI and ITUR Channel Models
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Table A.1: ITUR: Pedestrian Channel Model Parameters

Pedestrian-A

Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6

Delay(µs) 0 0.11 0.19 0.41

Power(dB) 0 -9.7 -19.2 -22.8

K Factor 0 0 0 0

Doppler(Hz) 3km/hr(10Hz), 30km/hr(100Hz), 120km/hr(400Hz)

Pedestrian-B

Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6

Delay(µs) 0 0.20 0.80 1.2 2.3 3.7

Power(dB) 0 -0.9 -4.9 -8.0 -7.8 -23.9

K Factor 0 0 0 0 0 0

Doppler(Hz) 3km/hr(10Hz)
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Table A.2: ITUR: Vehicular Channel Model Parameters

Vehicular-A

Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6

Delay(µs) 0 0.31 0.71 1.09 1.73 2.51

Power(dB) 0 -1.0 -9.0 -10.0 -15.0 -20.0

K Factor 0 0 0 0 0 0

Doppler(Hz) 30km/hr(100Hz), 120km/hr(400Hz), 250km/hr(833Hz)

Vehicular-B

Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6

Delay(µs) 0 0.30 8.9 12.9 17.1 20.0

Power(dB) -2.5 0.0 -12.8 -10.0 -25.2 -16.0

K Factor 0 0 0 0 0 0

Doppler(Hz) 30km/hr(100Hz), 120km/hr(400Hz), 250km/hr(833Hz)
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Table A.3: SUI Channel Model Parameters

SUI-1 SUI-4

Tap 1 Tap 2 Tap 3 Tap 1 Tap 2 Tap 3

Delay(µs) 0 0.4 0.8 Delay(µs) 0 2.0 4.0

Power(dB) 0 -15 -20 Power(dB) 0 -4 -8

K Factor 18 0 0 K Factor 0 0 0

Doppler(Hz) 0.4 0.4 0.4 Doppler(Hz) 1 1 1

SUI-2 SUI-5

Tap 1 Tap 2 Tap 3 Tap 1 Tap 2 Tap 3

Delay(µs) 0 0.5 1.0 Delay(µs) 0 5.0 10.0

Power(dB) 0 -12 -15 Power(dB) 0 -5 -10

K Factor 10 0 0 K Factor 0 0 0

Doppler(Hz) 0.4 0.4 0.4 Doppler(Hz) 2 2 2

SUI-3 SUI-6

Tap 1 Tap 2 Tap 3 Tap 1 Tap 2 Tap 3

Delay(µs) 0 0.5 1.0 Delay(µs) 0 14.0 20.0

Power(dB) 0 -5 -10 Power(dB) 0 -10 -14

K Factor 1 0 0 K Factor 0 0 0

Doppler(Hz) 1 1 1 Doppler(Hz) 0.4 0.4 0.4
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Appendix B

Impact of Frequency Smoothing

Window on Channel Estimates

In this appendix, we calculate the window lengths, L, used in this simulation.

The purpose of this section is to illustrate how much of the channel impulse response

after an M-point IFFT a 5µs and 10µs window captures.

L = round

(
M ·Window Size in Time

Symbol Duration

)
(B.1)

For a 1/Tn = 11.2MHz, N = 1024, and cyclic prefix fraction of 1/8, the

symbol duration is 102.9µs. Using Equation B.1, we can calculate the window

length for different size subchannel/sounding zone sizes. Table B.1 shows different

the truncation points used in the frequency smoothing channel estimation algorithm.

For example, for sounding zone size M = 54, a 5µs window captures the first 3 taps

of the impulse response and a 10µs window captures the first 5 taps of the impulse

response.

145



When analyzing the performance of the frequency smoothing algorithm, we

look at how many taps of the channel impulse response the window captures. If the

difference between the 5µs and 10µs window is large, then we expect the performance

to be significantly better using the 10µs window at high SNR. From these plots, we

see that the most noticeable difference between the 5µs and 10µs window occur in

SUI-4 and SUI-5. SUI-1 and Pedestrian-A both have short delay spreads so both

capture most of the channel’s energy. Vehicular-B has a very long delay spread so

both windows fail to capture a lot of the channel’s energy.

Table B.1: Window Length Calculations

Adjacent Subcarriers (M) Length for 5µs Window Length for 10µs Window

18 1 2

36 2 3

54 3 5

72 3 7
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Figure B.1: Time-Domain Response after M-point IDFT in Frequency Smoothing

Algorithm, No Noise, SUI-1

Figure B.2: Time-Domain Response after M-point IDFT in Frequency Smoothing

Algorithm, No Noise, SUI-4
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Figure B.3: Time-Domain Response after M-point IDFT in Frequency Smoothing

Algorithm, No Noise, SUI-5

Figure B.4: Time-Domain Response after M-point IDFT in Frequency Smoothing

Algorithm, No Noise, Ped-A
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Figure B.5: Time-Domain Response after M-point IDFT in Frequency Smoothing

Algorithm, No Noise, Veh-B
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Appendix C

Effect of Using IDFT/DFT Larger

than Number of Occupied

Subcarriers

We observed in channel sounding that because we have guard subcarriers at

the edges of each subchannel, it can cause a sinc-like spreading of the signal in the

time-domain. This is also the reason for choosing IDFT/DFT that is equal to the

subchannel size in AMC or sounding zone size in channel sounding in order to avoid

this effect.

By definition, the N-point IDFT and DFT is defined as

ĥ[n] =
1

N

N−1∑
k=0

Ĥ(k)ej2πn
k
N (C.1)

Ĥ(k) =
N−1∑
n=0

ĥ[n]e−j2πn
k
N (C.2)

If we let M (¡ N) be the size of the subchannel or sounding zone, then we can
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rewrite the N-point IDFT as

ĥ[n] =
1

N

k0+(M−1)∑
k=k0

Ĥ(k)ej2πn
k
N (C.3)

where k0 is the leftmost subcarrier of the subchannel or sounding zone.

Without loss of generality, we assume that the channel impulse response has

one tap and therefore, the frequency response is a constant. With this assumption,

we can simplify the above equation to

ĥ[n] =
1

N

k0+(M−1)∑
k=k0

Ĥej2πn
k
N

=
Ĥ

N
ej2πn

k0
n

M−1∑
k=0

ej2πn
k
N

=
Ĥ

N
ej2πn

k0
n [

1− ej2πnMN
1− e 2πn

N

]

(C.4)

This simplification shows that the time-domain impulse response is a sinc

function spread over n. To use frequency smoothing with a rectangular window, we

choose a window of length L and keep the first L samples of the impulse response.

Therefore, the frequency response of the windowed impulse response is,

Ĥ(k) =
L−1∑
n=0

ĥ[n]e−j2πk
n
N

=
L−1∑
n=0

{Ĥ
N
ej2πn

k0
n [

1− ej2πnMN
1− e 2πn

N

]}e−j2πk
n
N

=
Ĥ

N
ej2πn

k0−k
n

L−1∑
n=0

1− ej2πnMN
1− e 2πn

N

(C.5)

We can see from the equation in the last line that instead of obtaining a

constant frequency-domain channel response, we get a sinc function that is only

summed from 0 to L-1 instead of 0 to N-1 and hence introducing a bias into the
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estimates because we do not capture all of the channel’s energy. For this reason, we

choose the M-point IDFT/DFT in the frequency smoothing algorithm to be of the

same length as the subchannel or sounding zone of interest to avoid spreading the

signal more in the time-domain.
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Appendix D

Mean-Squared Error Derivations

This section supplements the MSE derivations shown in Section 3.2.1, Section

3.2.2, Section 4.2.1, and Section 5.3.1. In these derivations, we assume |X(t, k)| = A

for all (t,k) at pilot subcarriers.

D.1 PUSC: Linear Interpolation

Given the PUSC tile shown in Figure 3.1, we define A = {(1, 0), (1, 3)}, B =

{B0,B2}, where B0 = {(0, 1), (0, 2)} and B0 = {(2, 1), (2, 2)}, C = {(1, 1), (1, 2)},

and P = {(0,0), (0,3), (2,0), (2,3)}. If we perform linear interpolation at the data

subcarriers using Equation 3.2 and Equation 3.3, then we can derive the MSE for

subcarriers in A,B, C to be given by
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1. Mean-Squared Error for (t,k) ∈ A

MSEA = E[||Ĥ(1, 0)−H(1, 0)||2] = E[||Ĥ(1, 3)−H(1, 3)||2]

= E[||1
2
Ĥ(0, 0) +

1

2
Ĥ(2, 0)−H(1, 0)||2]

= E[||1
2

(H(0, 0) +
V (0, 0)

A
) +

1

2
(H(2, 0) +

V (2, 0)

A
)−H(1, 0)||2]

= E[
1

4
H(0, 0)H∗(0, 0) +

1

4
H(2, 0)H∗(0, 0)− 1

2
H(1, 0)H∗(0, 0)

+
1

4
H(0, 0)H∗(2, 0) +

1

4
H(2, 0)H∗(2, 0)− 1

2
H(1, 0)H∗(2, 0)

− 1

2
H(0, 0)H∗(1, 0)− 1

2
H(2, 0)H∗(1, 0) +H(1, 0)H∗(1, 0)

+
V (0, 0)V ∗(0, 0)

4A2
+
V (2, 0)V ∗(2, 0)

4A2
]

Using Equation 2.3, we can simplify the equation to

MSEA =
1

4
RH [0, 0] +

1

4
RH [2, 0]− 1

2
RH [1, 0]

+
1

4
RH [−2, 0] +

1

4
RH [0, 0]− 1

2
RH [−1, 0]

− 1

2
RH [−1, 0]− 1

2
RH [1, 0] +RH [0, 0] +

1

2

σ2
v

A2

Because 4f = 0, Rf [0] = 1 and we can simplify the result to

MSEA = σ2
H{

3

2
Rt[0] +

1

4
(Rt[2] +Rt[−2])− (Rt[1] +Rt[−1])}+

1

2

σ2
v

A2

2. Average mean-squared error for {(t,k), (t,k+1)} ∈ Bt for t = {0,2}.

MSEBt =
1

2
[MSE(t, k) +MSE(t, k + 1)]

=
1

2

2∑
l=1

E[||Ĥ(0, l)−H(0, l)||2] =
1

2

2∑
l=1

E[||Ĥ(2, l)−H(2, l)||2]

=
1

2
E[||Ĥ(0, 1)−H(0, 1)||2] +

1

2
E[||Ĥ(0, 2)−H(0, 2)||2]

=
1

2
E[||2

3
(H(0, 0) +

V (0, 0)

A
) +

1

3
(H(0, 3) +

V (0, 3)

A
)−H(0, 1)||2]

+
1

2
E[||1

3
(H(0, 0) +

V (0, 0)

A
) +

2

3
(H(0, 3) +

V (0, 3)

A
)−H(0, 2)||2]
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Using Equation 2.3, we can simplify the derivation to

MSEBt =
1

2
{4

9
RH [0, 0] +

2

9
RH [0, 3]− 2

3
RH [0, 1] +

2

9
RH [0,−3]

+
1

9
RH [0, 0]− 1

3
RH [0,−2]− 2

3
RH [0,−1]− 1

3
RH [0, 2]

+RH [0, 0] +
4

9

σ2
v

A2
+

1

9

σ2
v

A2
}

+
1

2
{1

9
RH [0, 0] +

4

9
RH [0, 3]− 1

3
RH [0, 1] +

2

9
RH [0,−3]

+
4

9
RH [0, 0]− 2

3
RH [0,−2]− 1

3
RH [0,−1]− 2

3
RH [0, 2]

+RH [0, 0] +
1

9

σ2
v

A2
+

4

9

σ2
v

A2
}

Since 4t = 0, Rt[0] = 1 and the result can be simplified to

MSEBt = σ2
H{

14

9
Rf [0] +

2

9
(Rf [3] +Rf [−3])

− 4

3
(Rf [1] +Rf [−1])− 2

3
(Rf [2] +Rf [−2])}+

5

9

σ2
v

A2

3. Mean-squared error at (t,k) ∈ C

MSEC = E[||Ĥ(1, 1)−H(1, 1)||2] = E[||Ĥ(1, 2)−H(1, 2)||2]

= E[||1
3

(H(0, 0) +
V (0, 0)

A
) +

1

6
(H(0, 3) +

V (0, 3)

A
)

+
1

3
(H(2, 0) +

V (2, 0)

A
) +

1

6
(H(2, 3) +

V (2, 3)

A
)−H(1, 1)||2]

= E[{(1

9
H(0, 0) +

1

9
H(2, 0) +

1

18
H(0, 3) +

1

18
H(2, 3)− 1

3
H(1, 1))H∗(0, 0)

+ (
1

9
H(0, 0) +

1

9
H(2, 0) +

1

18
H(0, 3) +

1

18
H(2, 3)− 1

3
H(1, 1))H∗(2, 0)

+ (
1

18
H(0, 0) +

1

18
H(2, 0) +

1

36
H(0, 3) +

1

36
H(2, 3)− 1

6
H(1, 1))H∗(0, 3)

+ (
1

18
H(0, 0) +

1

18
H(2, 0) +

1

36
H(0, 3) +

1

36
H(2, 3)− 1

6
H(1, 1))H∗(2, 3)

− (
1

3
H(0, 0) +

1

3
H(2, 0) +

1

6
H(0, 3) +

1

6
H(2, 3)−H(1, 1))H∗(1, 1)

+
V (0, 0)V ∗(0, 0)

9A2
+
V (2, 0)V ∗(2, 0)

9A2
+
V (0, 3)V ∗(0, 3)

36A2

+
V (2, 3)V ∗(2, 3)

36A2
}]
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Using Equation 2.3, we can simplify the equation to

MSEC =
1

9
RH [0, 0] +

1

9
RH [2, 0] +

1

18
RH [0, 3] +

1

18
RH [2, 3]− 1

3
RH [1, 1]

+
1

9
RH [−2, 0] +

1

9
RH [0, 0] +

1

18
RH [−2, 3] +

1

18
RH [0, 3]− 1

3
RH [−1, 1]

+
1

18
RH [0,−3] +

1

18
RH [2,−3] +

1

36
RH [0, 0] +

1

36
RH [2, 0]

− 1

6
RH [1,−2] +

1

18
RH [−2,−3] +

1

18
RH [0,−3] +

1

36
RH [−2, 0]

+
1

36
RH [0, 0]− 1

6
RH [−1,−2]− 1

3
RH [−1,−1]− 1

3
RH [1,−1]

− 1

6
RH [−1, 2]− 1

6
RH [1, 2] +RH [0, 0] +

5

18

σ2
v

A2

=
23

18
RH [0, 0] +

5

36
(RH [2, 0] +RH [−2, 0]) +

1

9
(RH [0, 3] +RH [0,−3])

+
1

18
(RH [2, 3] +RH [−2, 3] +RH [2,−3] +RH [−2,−3])

− 1

3
(RH [1, 1] +RH [1,−1] +RH [−1, 1] +RH [−1,−1])

− 1

6
(RH [1, 2] +RH [1,−2] +RH [−1, 2] +RH [−1,−2]) +

5

18

σ2
v

A2

D.2 PUSC: 4-Pilot Averaging

Given the PUSC tile shown in Figure 3.1, we define D = {(0,1), (0,2), (1,0),

(1,1), (1,2), (1,3), (2,1), (2,2)}. Assuming we use the 4-pilot averaging estimator

in Equation 3.8 to estimate the channel at each data subcarrier, the MSE at each

subcarrier is given by
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MSED(t, k) = E[||Ĥ(t, k)−H(t, k)||2]

= E[||1
4
Ĥ(0, 0) +

1

4
Ĥ(2, 0) +

1

4
Ĥ(0, 3) +

1

4
Ĥ(2, 3)−H(t, k)||2]

= E[||1
4

(H(0, 0) +
V (0, 0)

A
) +

1

4
(H(2, 0) +

V (2, 0)

A
)

+
1

4
(H(0, 3) +

V (0, 3)

A
) +

1

4
(H(2, 3) +

V (2, 3)

A
)−H(t, k)||2]

= E[{( 1

16
H(0, 0) +

1

16
H(2, 0) +

1

16
H(0, 3) +

1

16
H(2, 3)− 1

4
H(t, k))H∗(0, 0)

+ (
1

16
H(0, 0) +

1

16
H(2, 0) +

1

16
H(0, 3) +

1

16
H(2, 3)− 1

4
H(t, k))H∗(2, 0)

+ (
1

16
H(0, 0) +

1

16
H(2, 0) +

1

16
H(0, 3) +

1

16
H(2, 3)− 1

4
H(t, k))H∗(0, 3)

+ (
1

16
H(0, 0) +

1

16
H(2, 0) +

1

16
H(0, 3) +

1

16
H(2, 3)− 1

4
H(t, k))H∗(2, 3)

− (
1

4
H(0, 0) +

1

4
H(2, 0) +

1

4
H(0, 3) +

1

4
H(2, 3)−H(t, k))H∗(t, k)

+
V (0, 0)V ∗(0, 0)

16A2
+
V (2, 0)V ∗(2, 0)

16A2
+
V (0, 3)V ∗(0, 3)

16A2
+
V (2, 3)V ∗(2, 3)

16A2
}]
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Using Equation 2.3, we can simplify the result to

MSED(t, k) =
1

16
RH [0, 0] +

1

16
RH [2, 0] +

1

16
RH [0, 3] +

1

16
RH [2, 3]− 1

4
RH [t, k]

+
1

16
RH [−2, 0] +

1

16
RH [0, 0] +

1

16
RH [−2, 3] +

1

16
RH [0, 3]− 1

4
RH [t− 2, k]

+
1

16
RH [0,−3] +

1

16
RH [2,−3] +

1

16
RH [0, 0] +

1

16
RH [2, 0]− 1

4
RH [t, k − 3]

+
1

16
RH [−2,−3] +

1

16
RH [0,−3] +

1

16
RH [−2, 0] +

1

16
RH [0, 0]

− 1

4
R[t− 2, k − 3]− 1

4
RH [−t,−k]− 1

4
RH [2− t,−k]− 1

4
RH [−t, 3− k]

+
1

4
RH [2− t, 3− k] +RH [0, 0] +

1

4

σ2
v

A2

=
5

4
RH [0, 0] +

1

8
(RH [2, 0] +RH [−2, 0]) +

1

8
(RH [0, 3] +RH [0,−3])

+
1

16
(RH [2, 3] +RH [−2, 3] +RH [2,−3] +RH [−2,−3])

− 1

4
(RH [t, k] +RH [−t,−k])− 1

4
(RH [t− 2, k] +RH [2− t,−k])

− 1

4
(RH [t, k − 3] +RH [−t, 3− k])− 1

4
(RH [t− 2, k − 3] +RH [2− t, 3− k])

+
1

4

σ2
v

A2

D.3 AMC and Channel Sounding: Linear Inter-

polation

When using linear interpolation in AMC and channel sounding, we calculate

the MSE at the pilot subcarriers, interpolated subcarriers, and extrapolated subcar-

riers. In this derivation, we let P be the total number of pilots, M total number of

subcarriers and D = M/P be the number of subcarriers for every pilot. For AMC, M

= 18 and P = 6. For simplicity, we let the leftmost subcarrier be a pilot subcarrier.
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1. MSE at Pilot Subcarriers

MSEP = E[||Ĥ(t,Dp)−H(t,Dp)||2] for p = 0, 1, ..., P − 1

= E[||H(t,Dp) +
V (t,Dp)

A
−H(t,Dp)||2]

= E[||V (t,Dp)

A
||2] =

σ2
v

A2

(D.1)

2. MSE at Interpolated Subcarriers

MSEI =
1

D − 1

D−1∑
l=1

E[||Ĥ(t,Dp+ l)−H(t,Dp+ l)||2]

=
1

D − 1

D−1∑
l=1

E[||D − l
D

Ĥ(t,Dp) +
l

D
Ĥ(t,D(p+ 1))−H(t,Dp+ l)||2]

=
1

D − 1

D−1∑
l=1

E[||D − l
D

(H(t,Dp) +
V (t,Dp)

A
)

+
l

D
(H(t,D(p+ 1)) +

V (t,D(p+ 1))

A
)−H(t,Dp+ l)||2]

=
1

D − 1

D−1∑
l=1

{(D − l
D

)2RH [0, 0] +
(D − l)l
D2

RH [0,−D]− D − l
D

RH [0,−l]

+
l(D − l)
D2

RH [0, D] + (
l

D
)2RH [0, 0]− l

D
RH [0, D − l]

− D − l
D

RH [0, l]− l

D
RH [0, l −D] +RH [0, 0]}

+
1

D − 1

D−1∑
l=1

{(D − l
D

)2 σ
2
v

A2
+ (

l

D
)2 σ

2
v

A2
}

Since 4t = 0 and
∑D−1

l=1 l = (D−1)D
2

and
∑D−1

l=1 l2 = (D−1)(D)(2D−1)
6

, we can

simplify the above equation to

MSEI = σ2
H

{
5D − 1

3D
Rf [0] +

D + 1

6D
(Rf [D] +Rf [−D])− α

}
+

2D − 1

3D

σ2
v

A2

where

α =
1

D − 1

D−1∑
l=1

{
D − l
D

(Rf [l] +Rf [−l]) +
l

D
(Rf [D − l] +Rf [l −D])

}
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3. MSE at Extrapolated Subcarriers assuming that all extrapolated subcarriers

are on right-hand side of subchannel (decimation offset = 0)

MSEE =
1

D − 1

D−1∑
l=1

E[||Ĥ(t, (P − 1)D + l)−H(t, (P − 1)D + l)||2]

=
1

D − 1

D−1∑
l=1

E[||−l
D
Ĥ(t, (P − 2)D) +

D + l

D
Ĥ(t, (P − 1)D)

−H(t, (P − 1)D + l)||2]

=
1

D − 1

D−1∑
l=1

E[||−l
D

(H(t, (P − 2)D) +
V (t, (P − 2)D)

A
)

+
D + l

D
(H(t, (P − 1)D) +

V (t, (P − 1)D)

A
)−H(t, (P − 1)D + l)||2]

=
1

D − 1

D−1∑
l=1

{( l
D

)2RH [0, 0]− (D + l)l

D2
RH [0, D] +

l

D
RH [0, D + l]

− (D + l)l

D2
RH [0,−D] + (

D + l

D
)2RH [0, 0]− D + l

D
RH [0, l]

+
l

D
RH [0,−D − l]− D + l

D
RH [0,−l] +RH [0, 0]}

+
1

D − 1

D−1∑
l=1

{( l
D

)2 σ
2
v

A2
+ (

D + l

D
)2 σ

2
v

A2
}

Since 4t = 0 and
∑D−1

l=1 l = (D−1)D
2

and
∑D−1

l=1 l2 = (D−1)(D)(2D−1)
6

, we can

simplify the above equation to

MSEE = σ2
H

{
11D − 1

3D
Rf [0]− 5D − 1

6D
(Rf [D] +Rf [−D])− β

}
+

8D − 1

3D

σ2
v

A2

where

β =
1

D − 1

D−1∑
l=1

{
D + l

D
(Rf [l] +Rf [−l])−

l

D
(Rf [D + l] +Rf [−D − l])

}
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