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With the widespread use of web services, there is a need for adequate security and

privacy support to protect the sensitive information these services could provide. As a

result, there has been a great interest in access control policy languages which accom-

modate large, open, distributed and heterogeneous environments like the Web. XACML

has emerged as a popular access control language, but because of its rich expressiveness

and informal official semantics, it suffers from a) a lack of understanding of its formal

properties, and b) a lack of automated, compile-time services that can detect errors in

expressive, distributed and heterogeneous policies.

In this dissertation, I present a logic-based framework for XACML that addresses

the above issues. One component of the framework is a Datalog-based mapping for

XACML v3.0 that provides a theoretical foundation for the language: a concise and

formal semantics and complexity results for full XACML and various fragments. Addi-

tionally, considering that most previous work on access control is based on some variant

of Datalog, my mapping discovers close relationships between XACML and other logic

based languages such as the Flexible Authorization Framework.



The second component of this framework provides a practical foundation for static

analysis of expressive XACML policies. The analysis services detect semantic errors

or differences between policies before they are deployed. To provide these services, I

present a mapping from XACML to the Web Ontology Language (OWL), which is the

standardized language for representing the semantics of information on the Web. In par-

ticular, I focus on the OWL-DL sub-language, which is a logic-based fragment of OWL.

Finally, to demonstrate the practicality of using OWL-DL reasoners as policy analyzers, I

have implemented an OWL-based XACML analyzer and performed extensive empirical

evaluation using both real world and synthetic policy sets.
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Chapter 1

Introduction

1.1 Motivation

With the ever-increasing amount of data being made accessible on the Web, there

is a corresponding increasing need for information publishers and data owners to control

access to sensitive segments of their data. While access control specification and manage-

ment has been an active field for more than 30 years1, applying these security mechanisms

in an open, distributed and heterogeneous environment like the World Wide Web (or the

enterprise) presents novel challenges. For example, an access control language for such

distributed environment should be powerful and flexible enough to express many differ-

ent types of security policies (e.g., mandatory, discretionary and role-based access control

policies) and support various datatype functions. In such an environment the resources

that are being protected might be distributed, but also the policy specifications themselves

could be also distributed, so a mechanism for references among policies and policy inte-

gration is needed.

There has been great interest coming from industry and academia in developing an

expressive access control policy language for open, heterogeneous and distributed envi-

ronments that can cover the above access control requirements [113, 15, 27, 87, 34, 72,

128]. To facilitate interoperability, there has been a strong push (mostly by enterprise

1One of the seminal papers on secure computer systems (by Bell and LaPadula) was published in
1973[28].
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application providers like Oracle and SAP) to standardize one of the proposed security

languages.

The eXtensible Access Control Markup Language (XACML [113]) has emerged as

the language preferred by most leading enterprise application providers: it was standard-

ized by OASIS in 2003. XACML was originally developed by Sun Microsystems and has

gained momentum over the years: it is currently deployed or supported by more than 65

systems and projects [16]. The language has also attracted academic attention – there are

more than 200 peer-reviewed papers published on XACML since 2003 [16].

XACML is a declarative access control language with a variety of features: it allows

for distributed policies and resources, it supports attribute-based (as opposed to identity-

based) access control, negative authorization (Deny policies), conflict resolution algo-

rithms to integrate distributed policies and role-based access control (RBAC). Moreover,

the language has more than 200 built-in functions that range from data-type comparison

and conversion to boolean functions and even some with higher order flavor. The lan-

guage is based on XML and specifies a processing model for checking policy compliance

at run time. As an example, following is a XACML rule which returns a Permit only

when the value of the action-id attribute is read.

<Rule RuleId="ReadRule" Effect="Permit">

<Target>

<Actions>

<Action>

<ActionMatch MatchId="...:string-equal">

<AttributeValue DataType="#string">read</AttributeValue>

<ActionAttributeDesignator DataType="...#string"

AttributeId="...:action-id"/>

</ActionMatch>

</Action>

</Actions>
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</Target>

</Rule>

1.1.1 Motivation: Lack of Formal Semantics

The specification of XACML v1.0 was published in 2003, and since then there has

been continuing work on the standard. As of March 2008, XACML v3.0[113], which in-

cludes delegation policies, is close to standardization. During this time, the OASIS work-

ing group developing XACML has not yet provided a formal semantics for the language

– the official semantics of XACML is given informally, in normative documents. Pre-

vious academic efforts [68] that formalized early versions of XACML notwithstanding,

currently there is no formal semantics that covers XACML 3.0 and includes the profiles

that are part of its latest version: delegation policies [114] and Web Service access control

policies (WS-XACML)[19].

One consequence of the lack of a formal treatment is that the computational com-

plexity properties of the language are still unknown. For example, consider access request

checking, the main service the XACML processing model provides: given an access re-

quest R and a policy P, determine the access decision of P for R2. Given the rich set of

features of XACML, its verbose specifications, and its lack of a formal treatment, it is

still unknown if access request checking is tractable.

A formal, declarative semantics would also shed light on the relationship between

XACML and previous work on languages for distributed access control policies. Even

before work on XACML began, there were numerous policy language proposals coming

2XACML supports Permit, Deny, Indeterminate (for errors) and NotApplicable as access deci-
sion.
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from both academia and industry [87, 32, 27, 72, 12]. While there have been some at-

tempts to compare XACML to its closest competitors from industry (e.g., EPAL [15]),

there has been no in-depth comparison with formal security languages such as the Flexi-

ble Authorization Framework [72], Delegation Logic [87] or SecPal [27]. Most of these

academic policy languages have a formal foundation (usually logic-based) and tractable

(polynomial) complexity. From an academic viewpoint, a logic-based semantics for

XACML would help us understand where the language fits in (in terms of expressive-

ness and computational complexity) in the active research field of access control policy

specification. If it can be shown that XACML is close to some of these languages, then

from a practical perspective, these similarities could provide possible areas of improve-

ment for XACML itself by adding features available in other languages.

1.1.2 Motivation: Analysis Services for Distributed Policies

Due to the expressiveness of XACML and its lack of ”compile time” support, it

is non-trivial for a policy developer to understand the overall effect and consequences of

the XACML policies he/she writes. Even arguably the most important feature in access

control - checking that the policy will not result in leakage of permissions to an unintended

or unauthorized principal, i.e., safety - is difficult (if not impossible) to do manually. For

example, incomplete security policies might unintentionally give access to an intruder.

How can a security administrator be certain that her policy covers all possible corner

cases? Even if the administrator does discover a bug in the policy, and fixes it accordingly,

the consequences of that fix (policy change) are difficult to analyze.
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One approach for verifying correctness of policies is to perform testing [98], where

a test case for a policy would consist of an access request and expected outcome (Permit,

Deny, NotApplicable or Indeterminate). However, testing is not exhaustive and it is

difficult to think of all possible scenarios that need to be tested.

To illustrate the limitations of testing, consider the following example. In this sce-

nario, there are only two roles: Manager and Developer, one resource: Report, and two

actions: read, write. The main (root) policy contains two policies which are combined us-

ing First-Applicable combining algorithm. First-Applicable is a XACML com-

bining algorithm that, given a set of policies, returns the decision of the first policy that is

successfully applied while ignoring the decisions of the subsequent policies. In the exam-

ple below, if P1 returns a decision (Permit or Deny), this decision would be propagated

to the parent policy PS 1 without taking into account the decision of PS 2.

The policy is presented in graphical form in Figure 1.1.

Figure 1.1: Example Policy
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In this example, a security administrator could specify a test condition for this pol-

icy in the form of a XACML access request, ”Developer requests write access to report”,

and the expected outcome, Deny. Testing policies in such manner is not exhaustive, since

it is difficult to think of all possible conditions that need to be tested. In this particular ex-

ample, the simple test would pass, since the Deny rule R3 would fire, however the policy

would be still vulnerable. Consider what happens if a user tries to both read and write

to File as part of the same access request. In this case, rule R2 will fire as well, thus the

policy set would return a Permit. Essentially, this policy allows an invalid request (a

write+read request) to piggyback on top of a valid one (read request).

Violations such as above will not necessarily be caught by simple testing. For this

purpose, techniques such as formal verification of a policy against security properties have

been investigated in literature [67, 74, 50, 131]. Formal verification explores all possible

combinations of attributes in a policy in an attempt to break the security property, so it

would catch the security error in the above example.

The above examples illustrated the benefits of formal verification of policies, and

there has been some interest in providing such services for XACML [50, 66, 131]. How-

ever, the analysis approaches of previous work do not capture more expressive language

features needed for the type of heterogeneous and distributed environments that XACML

is intended to be deployed in. These features include:

• Data-types and functions. XACML supports all of the XML Schema Datatypes

and in addition it defines four datatypes of its own: ipAddress, x500Name, rfc-

822Name and dnsName. The language supports a powerful set of more than 200
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functions that make use of these datatypes: from data-type matching functions (e.g.,

string-equal, date-time-greater-than) to boolean and set operations and functions

with higher order flavor (i.e., functions that operate on other functions).

• Heterogeneous policies. There has also been interest in extending XACML with

expressive policy descriptions and support for data integration, for the purpose of

federated access control management. Consider what happens when access con-

trol is federated across multiple, independent organizations. These organizations

might use different attribute schemes to describe subjects, actions and resources.

For example, in an e-commerce scenario, an online book store might use a boolean

attribute adultAge to represent adult customers, whereas a video rental store might

use an integer attribute age. In a large enterprise with many different departments

where each department potentially has a different attribute scheme, integrating and

reasoning about such heterogeneous security information is a challenging problem.

• Delegation policies. XACML allows users to specify delegation policies in addi-

tion to access policies. Delegation policies can specify which users have rights

to add access policies: ’HR-Admins can create policies concerning the Payroll

servers’ , or can be used for delegation as well: ’Jack can approve expenses while

Mary is on vacation’.

In previous work, there exists no formal analysis framework that can reason about

XACML policies with the above features.
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1.2 Proposed Solution

This dissertation presents a theoretical and practical foundation for analysis of ex-

pressive XACML policies. The theoretical component presents a formal, proof-theoretic

semantics for XACML 3.0 based on natural deduction rules. The semantics covers the

core of XACML along with its Delegation and Web Service Policies Profile, and repre-

sents a concise and unambiguous version of the informal semantics given in the language

specification. To determine XACML’s complexity properties, I provide a translation of

various subsets of the language to variants of the rule-based language Datalog, thus es-

tablishing its polynomial data complexity and close relationship to other logic-based lan-

guages such as the Flexible Authorization Framework [73]. Additionally, I show that

access request checking in XACML with arbitrary references between policies is NP-

complete.

The practical component of this thesis presents a logic-based analysis framework

that can reason about administrative and heterogeneous XACML policies. The analysis

support is done at compile-time and enables discovery of semantic errors or differences

between policies before they are deployed. One of the goals of this dissertation is to

provide these analysis services while hiding the details of the logic formalism used and

the internals of the analysis tool. To accomplish this, I allow users to specify security

properties in XACML and present the verification results back in XACML. In addition to

verification, the analysis framework also provides policy comparison (including checking

for subsumption and compatibility/disjointness), and detecting redundant (”dead”) poli-

cies.
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As a basis for the practical analysis framework, I use Description Logics (DL),

which are a family of formalisms that are decidable subsets of First-Order logic, and are

the formal basis for the Web Ontology Language(OWL3) [45]. Because of the correspon-

dence of policy analysis services to DL reasoning services (e.g., policy comparison can

be reduced to concept subsumption, whereas formal verification can be reduced to con-

cept satisfiability), my framework can leverage off-the-shelf DL reasoners optimized to

provide the above-mentioned analysis services.

An important benefit of using a logic compatible with OWL is that I can leverage

OWL being a W3C standard for representing and integrating information on the Web.

Thus, the analysis framework has built-in support for representing expressive vocabulary

domains for policies (as OWL ontologies), so it is able to reason about heterogeneous

XACML policies distributed across the enterprise (or the Web).

To evaluate the practicality of my approach, I implemented the framework as a

XACML analysis tool that reduces policy analysis services to DL reasoning tasks. I per-

formed empirical evaluations using real-world XACML policies, testing the performance

of my approach against other scalable XACML analyzers. Additionally, to fully evaluate

the expressive features of the analysis framework, including support for information inte-

gration across heterogeneous policies, I used two real-world policy use cases: the NASA

Federated Data Access use case[118] and an RBAC policy from the healthcare domain

[62] (the policy is part of the Health Level 7 standard). Considering the size and com-

plexity of both of these real-world policies, my empirical evaluation shows the approach

3OWL has three subsets: OWL-Lite, OWL-DL and OWL Full, the first two of which are grounded in
description logics. From now on, I will use OWL to refer to the OWL-DL sublanguage.
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is practical for large and expressive XACML policy sets.

1.3 Contributions

The contributions of this thesis are as follows:

• A formal, proof-theoretic semantics of XACML v3.0 that covers the core specifi-

cation and the Administrative Policy Profile. The semantics is given using natural

deduction rules.

• A mapping of XACML to Datalog that provides a model-theoretic semantics and

computational complexity results for full XACML and various fragments. Addi-

tionally, an extensive comparison with other logic-based languages such as Flexible

Authorization Framework [73] based on the Datalog mapping.

• A static analysis framework based on OWL-DL that can reason about expressive

XACML policies. A comprehensive set of services are provided with this mapping:

formal verification, policy comparison (change analysis) and redundancy checking.

• Demonstration that the analysis framework is applicable to other domains. This

was accomplished by formalizing and analyzing the W3C standard language for

web service policies (WS-Policy [129]) .

• An empirical evaluation of the scalability of the analysis framework. The evaluation

demonstrates the scalability of the analysis framework using real-world policies: a

XACML policy test suite consisting of policies used to evaluate other XACML
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analyzers, as well as datasets from two real-world use cases for expressive policies

(NASA HQ data access and healthcare RBAC policies).

1.4 Organization

This thesis is organized as follows: Chapter 2 introduces background information

and necessary preliminaries needed to understand the technical contributions of the dis-

sertation. Chapter 3 surveys related work to this dissertation, namely: access control

policy models and languages, and policy analysis and verification approaches. In Chapter

4 a formal, proof-theoretic semantics for XACML 3.0 is presented using natural deduc-

tion rules. Chapter 4 also provides a translation of various subsets of the language to

locally stratified Datalog, thus establishing its polynomial data complexity and close re-

lationship to other logic-based access control languages. Chapter 5 presents an analysis

approach that can reason about both distributed and heterogeneous XACML policies. In

particular, I show how with a mapping to description logics (DL), we can perform change

analysis, formal verification, and coverage checking for XACML policies. An application

of the formal framework to other domains is presented in Chapter 6. In particular, WS-

Policy (a web services policy language) is formalized and analyzed in a similar fashion

to XACML. In Chapter 7, I present my prototype implementation of a XACML-to-DL

mapper and policy analyzer. I have performed an extensive empirical evaluation to de-

termine if DL reasoners are suitable as policy analyzers; the results of the evaluation are

also presented in Chapter 7. Finally, Chapter 8 presents concluding remarks as well as

possible areas of future work.
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Chapter 2

Preliminaries

In this chapter, I present background information on the language that is the focus

of this dissertation: XACML, and on the logical formalisms used to analyze XACML,

namely: Datalog and Description Logics. The purpose is to present the basic concepts,

terminology and definitions that are used throughout this thesis.

2.1 XACML

The eXtensible Access Control Markup Language (XACML [113]) is a standard-

ized, expressive and increasingly popular XML-based language for writing access control

policies about distributed resources.

Before I discuss the syntax of XACML policies, I present a brief overview of the

high level XACML policy model. Essentially, there are two high level components of a

XACML-enabled system. A PDP, or Policy Decision Point, is the processing engine that

evaluates access requests against XACML policies. A PEP, or Policy Enforcement Point,

is the application-specific element that physically enforces access to a resource. The PEP

generates the access requests to be sent to the PDP and enforces the access decisions

made by the PDP. The focus of my dissertation is on how policy decisions are made (not

enforced), so the discussion from now on will be mostly regarding the PDP.

At the root of all XACML policies is a Policy or a PolicySet. A PolicySet is a
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container that can hold other Policies or PolicySets, as well as references to policies

found in remote locations. A Policy represents a single access control policy, expressed

through a set of Rules. Each XACML policy document contains exactly one Policy or

PolicySet root element. Following, an explanation of the basic elements of XACML

(Rules, Targets and Attributes) is provided and then more advanced features of the

language are discussed.

2.1.1 Rules, Targets, Attributes and Requests

Rule is the most basic policy element of XACML that actually makes an access

decision. Essentially, a Rule is a function that takes an access request as input and yields

a Permit, Deny or Not-Applicable. To determine if a Rule is applicable to an access

request, the Target element is used.

The Target defines the set of requests to which the rule is intended to apply in

the form of a logical expression on attributes in the request. Target is comprised of a

conjunction of DisjunctiveMatch elements, where each DisjunctiveMatch contains

a set of ConjunctiveMatch elements. Finally, each ConjunctiveMatch contains a list

of attributes and values.

Attributes are the atomic unit in XACML. They represent characteristics of the

subjects, resources, actions or the environment where the access request was made. For

example, a user’s role, their name, the file they want to access and the current date are

all attribute values. Access requests in XACML are represented as a set of attribute-value

pairs. Each attribute can belong to a category - the most common categories in XACML
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are Subject, Resource, Action and Environment1.

An example of a rule that returns Deny for access requests that have value read for

action-type attribute is given below:

<Rule RuleId="rule" Effect="Deny">

<Target>

<DisjunctiveMatch>

<ConjunctiveMatch>

<Match MatchId="function:string-equal">

<AttributeValue DataType="#string">read</AttributeValue>

<AttributeDesignator

AttributeId="action-type"

Category="...attribute-category:action"

DataType="...#string"/>

</Match>

</ConjunctiveMatch>

</DisjunctiveMatch>

</Target>

</Rule>

2.1.2 Combining Algorithms

Because a Policy or PolicySet may contain multiple policies or Rules, each of

which may evaluate to different access control decisions, XACML a mechanism to com-

bine access decisions. This is accomplished using a collection of combining algorithms,

where each algorithm represents a different way of combining multiple access decisions

into a single one. Following is a list of the most common combining algorithms:

• Permit-overrides. If any rule evaluates to Permit, then the combined decision

is also Permit.

• Deny-overrides. If any rule evaluates to Deny, then the combined decision is

also Deny.
1The full names of these categories consist of a lenghty prefix, e.g., urn:oasis:names:tc:xacml:-

3.0:attribute-category:Action. For clarity, I use shortened names in this dissertation.
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• First-applicable. The effect of the first rule that applies is the decision of the

policy. The rules must be evaluated in the order that they are listed.

• Only-one-applicable. If more than one rule is applicable, return Indetermina-

te. Otherwise return the access decision of the applicable rule.

In this dissertation, I use the following notation: for a XACML policy element

P, I refer to its Target, Effect (in cases of Rules), its ordered list of children policy

elements, its parent policy element and combining algorithm using P.target, P.e f f ect,

P.children, P.parent, P.comb respectively. P.pos is used to refer to the position of P w.r.t

its sibling policy elements.

2.1.3 Administrative XACML

So far, I have only been discussing XACML access policies, i.e., policies that spec-

ify the situations under which users are granted or denied access to a resource. However,

XACML 3.0 also supports administrative (or delegation) policies, which essentially are

policies that authorize access policies. For example, an administrative policy might state

that members of group Clinicians are allowed to write access policies about PatientRe-

ports. This section described the basic elements of an administrative policy.

Policy Issuers and Delegates A policy in XACML can contain a PolicyIssuer ele-

ment that describes the source of the policy. A special form of the PolicyIssuer el-

ement, called the trusted issuer, is used to specify that a policy is trusted by the Policy

Decision Point (PDP). A missing PolicyIssuer element is shorthand for the trusted
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issuer. In previous versions of XACML with only access policies, the PolicyIssuer

element is missing and all access policies are trusted (authorized) by default. If a policy’s

issuer is not trusted, then the policies has to be authorized by using available administra-

tive policies.

The Delegate element of the administrative policy is used for matching against

other policies. Essentially, if the Delegate of policy A matches the PolicyIssuer of

policy B, that means that A can authorize policy B.

When an administrative policy authorizes an access policy, it can also specify under

which conditions the access policy is authorized. This is called a constrained situation in

[114], and is analogous to the Target attribute in access policies.

2.1.4 Hierarchical and Multiple Resource Profile

The policy evaluation performed by a XACML PDP is defined in terms of a single

requested resource, with the authorization decision contained in a single Result element

in the response. However, A Policy Enforcement Point, or PEP, may wish to submit a

single request context for access to multiple resources, and may wish to obtain a sin-

gle response context that contains a separate authorization decision (Result) for each

requested resource. Such a request context might be used to avoid sending multiple de-

cision request messages between a PEP and PDP, for example. Alternatively, a PEP may

wish to submit a single request context for all the nodes in a hierarchy, and may wish to

obtain a single authorization decision that indicates whether access is permitted to all of

the requested nodes.
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The Multiple Resource Profile provides a mechanism such that a PEP can request

authorization decisions for multiple resources in a single request context. It is important

to note that the Multiple Resource Profile does not affect the policy itself. It deals with

the XACML Access Requests, introducing syntactic shorthand so that multiple requests

contexts can be merged into one.

The Hierarchical Resource Profile[18] allows users to specify one policy that ap-

plies to an entire subtree of a hierarchy, rather than having to specify a separate policy

for each node of the subtree. In this Profile, a resource organized as a hierarchy may

be a with a single root (tree) or multiple roots (forest), however cycles are not allowed.

The nodes in a hierarchical resource are treated as individual resources. An authorization

decision that permits (or denies) access to an interior node does not imply that access to

its descendant nodes is permitted (or denied).

2.2 Logic Preliminaries

2.2.1 Datalog

Datalog [111] is a logical language typically used to specify facts, rules and queries

in deductive databases (i.e, databases that can infer information based on existing facts

and rules). The basic building blocks of Datalog are the following:

• term can be either a constant or a variable (variables are denoted with a starting

’?’)

• atom – is of the form Pi(t1, . . . , tk) where Pi is a predicate symbol and ti are terms.
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Given an atom A, a literal stands for A or ¬A. S(P) denotes the set of all predicate

symbols in the datalog program P.

• fact – assertion about a relevant piece of the world. Facts are expressed using literals

that do not have any variable terms. For example, ’Vlad is enrolled at University of

Maryland’ can be expressed as enrolled(Vlad,UniversityMaryland)

• rule – logical sentence that allows us to infer facts from other facts. For example, ’If

X is enrolled at a university, then X is a student’ is a rule. The following Prolog-like

syntax will be used to describe rules:

H :- B1, . . . , Bn

where H and Bi are literals. H represents the head of the Datalog rule and B1, . . . , Bn

the body literals. Given this, the rule example above can be written as:

student(?X) :- enrolled(?X, ?Y), university(?Y)

A predicate that occurs in the head of some rule is called an IDB (intensional

database) predicate, while all other predicates are called extensional (EDB). The pred-

icates occurring in the body can be either intensional or extensional.

Datalog can be considered as a special case of general logic programming, since it

imposes the following conditions on logic programs:

• Safety condition: each variable that occurs in the head of a rule must also occur in
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the body of the same rule. This condition guarantees that the set of all facts that can

be derived from a Datalog program is finite.

• Datalog does not allow nesting of terms terms (i.e., no function symbols). For

example, terms such as F(G(?x)) are not allowed.

2.2.1.1 Semantics of Datalog

The Herbrand Base HB of a Datalog program P is the set of all facts (ground atoms)

defined over the predicates in S(P). A Herbrand interpretationM is simply a subset of

the Herbrand Base HB, which contains all of the ground facts that are true underM. A

Datalog rule of the form H0 : −B1, . . . , Bn is true underM iff for each substitution θ which

replaces variables by constants, whenever θ(B1), . . . , θ(Bn) ∈ M, then it also holds that

θ(H0) ∈ M.

A Herbrand interpretation where all of the rules and clauses in a program are true is

called a Herbrand model for the program P. A modelM is minimal if no subset ofM is

a model for P. Assuming P is finite and there is no negation of IDB predicates, then there

exists a unique minimal Herbrand model, which represents the meaning of the program

P.

2.2.1.2 Negation in Datalog

In positive Datalog, negated literals are not allowed in heads or bodies of rules.

However, by adopting the Closed World Assumption (CWA) it is still possible to infer

negative facts from a set of positive Datalog clauses. CWA states that if we cannot infer a
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fact from a set of Datalog rules, then we infer the negation of that fact.

Adding unrestricted negation in rule bodies produces more complicated seman-

tics for the datalog program. Consider the following program consisting of one rule

Pa = {student(John) :- ¬pro f essor(John)}. Pa has two minimal Herbrand models

M1 = {student(John)} and M2 = {pro f essor(John)}. Having multiple minimal mod-

els produces more complicated semantics, since it is unclear which one of these models

should be chosen during query answering (it also increases the computational complexity

of the language).

To retain the unique minimal model property, there is a version of Datalog called

stratified Datalog that allows a restricted form of negation. The intuition behind it is

as follows: when evaluating a rule with one or more negative literals in the body, first

evaluate the predicates corresponding to these negative literals. To evaluate these negative

literals, we might need to evaluate additional rules that can have negative body literals as

well, so we have to make sure that the program will allow such step-by-step evaluation

without running into a cycle. Datalog programs that allow such evaluation are called

stratified.

Definition 1 Stratified Datalog. A Datalog program is called stratified if there is a parti-

tion P = P1 ∪ . . . ∪ PN such that the following conditions hold for i = 1, 2, . . . , n:

1. Each IDB predicate in P has all of its defining rules (i.e., rules where the predicate

occurs in the head) in one partition of P,

2. Each partition Pi contains only rules where the negative literals correspond to pred-

icates defined in partitions P j where j < i.
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Each partition Pi is called a stratum of P. The level of a predicate symbol is the index of

the strata within which it is defined.

Query answering in positive and stratified Datalog has polynomial data complexity,

whereas Datalog with unrestricted negation is data complete for co-NP [44] under the

stable model semantics [54].

2.2.2 Description Logics

Description Logics (DL) are a family of knowledge representation languages which

can be used to represent the terminological knowledge of an application domain in a

structured and formally well-understood manner [22]. The name comes from the facts

that, on the one hand, the application domains are described using concept descriptions

and, on the other hand, they possess formal, logic-based semantics which can be given by

a translation into first-order logic (FOL).

Each DL consists of the following building blocks: atomic concepts, atomic roles

and individuals. Atomic concepts correspond to unary predicates in FOL (e.g., S tudent(x)),

atomic roles correspond to binary predicates in FOL (e.g., enrolledIn(x, y)) and individu-

als represent constant terms in FOL.

Atomic concepts and roles are elementary descriptions of objects; complex ones

can be built on top of them using DL constructors. For example, applying a concept dis-

junction constructor (t) on the atomic concepts Male and Female, we retrieve the set of

all individuals who are either Male or Female: MaletFemale. In addition to disjunction,

DLs typically provide the standard boolean operators as constructors: concept conjunc-
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tion (u) and concept negation (¬). Most DLs also provide a restricted quantification, in

terms of universal and existential restrictions on roles. There are many other additional

concept and role constructors; they will be discussed in Section 2.2.2.2.

In addition to constructors that allow us to form complex concepts and roles, a

DL also provides means for expressing axioms (logical relations) involving concepts and

roles. For example, we can specify concept inclusion of the form S tudent v Person

stating that every student is a person, and role inclusion such as isBrother v isRelated

stating that if two individuals are brothers, that implies that they are related.

DL knowledge bases (KB) typically consists of the following components:

• A TBox containing intensional knowledge (axioms and concepts) in the form of a

terminology. The axioms in the TBox are concept inclusions of the form C1 v C2

where C1 and C2 are concepts (not necessarily atomic).

• An RBox containing role inclusion axioms of the form R1 v R2 where R1 and R2

are DL Roles.

• An ABox containing extensional knowledge about the individuals in the domain.

Axioms in the ABox are of the form C(a), called concept (or type) assertions and

R(a,b), called role assertions, where a,b are individual names, R is a role and C is a

concept.

There are different types of TBoxes depending on the nature of the concepts occur

in their axioms. The simplest TBox type consists of a restricted form of concept inclusion

axioms called concept definitions: sentences of the form A v C or A ≡ C, where A is

atomic. Restricting a TBox to concept definitions which are both unique (each atomic
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concept occurs only once on the LHS of an inclusion axiom) and acyclic (the RHS of an

axiom cannot refer, directly or indirectly, to the concept in the LHS) yields a definitorial

TBox. On the other hand, if a TBox contains axioms of the form C v D where C is

non-atomic, then the axiom is called a general concept inclusion axiom (GCI) and the

TBox is called a general TBox. The distinction between definitorial and general TBoxes

is important since a definitorial TBox greatly reduces reasoning complexity.

A very common example of DL concept constructors often referred to in this thesis

are DL number restrictions. The most expressive form is qualified number restrictions,

which allow building of the concepts ≥ nR.C and ≤ nR.C from a role R, a natural number

n and a concept C. For example, qualified number restrictions can be used to represent a

father of exactly two sons:

Maleu ≤ 2hasChild.Maleu ≥ 2hasChild.Male

A more restricted form are unqualified number restrictions – these do not allow to specify

a what kind of concept is used as role filler in the restriction. For example, unqualified

number restrictions can be used to denote a father of exactly two children:

Maleu ≤ 2hasChildu ≥ 2hasChild

Finally, a very important feature of DL for the purpose of this thesis is their datatype

support, i.e., support for describing concepts using numbers, strings, regular expressions,

IP addresses, etc. The main approach is to provide DLs with an interface to concrete
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domains, together with a set of built-in predicates which are associated with that interface.

The interface is achieved by using a new type of roles, called datatype (or concrete)

roles, which link abstract objects from the DL domain with datatype predicates from the

concrete domain. Also, new concept constructors related to these datatype roles is added.

For example, we can denote the set of all people who are more than 18 years old using

a datatype role: ∃age. ≥18. Since concrete domains are important for the purposes of

this thesis, in the next section we formally present their definition and properties. The

concrete domains presentation is based on [104].

2.2.2.1 Concrete Domains

Informally, a concrete domain provides a set of predicates with a predefined inter-

pretation. If a decision procedure for checking satisfiability of finite conjunctions over

concrete domain predicates exists, many DLs can be coupled with a concrete domain

while retaining decidability. However, in [96] it was shown that a logic with GCIs and

concrete domains is undecidable. In order to retain decidability, several restrictions were

investigated (a survey is available at [97]). The Web Ontology Language, OWL [45] sup-

ports a basic form of concrete domains, referred to as OWL datatypes; thus, any OWL

reasoner implementation also supports reasoning with (limited) concrete domains.

Definition 2 A concrete domain D is a pair (4D,Φ), where where 4D is a set called the

domain of D, and Φ is a finite set of predicate names. Each d ∈ Φ is associated with an

arity n and an extension dD ⊂ 4n
D. A concrete domain D is admissible if the following

conditions holds:
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• Φ is closed under negation. In other words, for each d ∈ Φ, there exists a predicate

¬d ∈ Φ with ¬d = 4n
D \ dD

• Φ contains a unary predicate >D interpreted as the universal concept (4D)

• satisfiability of finite conjunctions of the form
∧n

i=1 di(xi) is decidable

The interpretation of concrete objects is usually separated from the interpretation

of the other (abstract) DL objects in the logic to retain decidability.

Additionally, for web ontology languages such as OWL, the coupling has been

such that only unary concrete predicates are allowed. However, the definition for concrete

domains does not have such restriction. In fact, there are implementations of DL reasoners

coupled with n-ary concrete domains (see RacerPro [58]) – this is important since n-

ary concrete domains are extensively used in access control policy languages such as

XACML.

Finally, without loss of generality we can consider only one concrete domain at a

time, since an approach for combining two or more concrete domains into one has been

presented in [23].

2.2.2.2 Syntax and Semantics of SHIQ(D)

There has been a great amount of attention to developing reasoning algorithms for

increasingly more expressive logics in the DL family. In this following section, I will

formally present the syntax and semantics of the very expressive logic SHIQ(D) , which

is expressive enough for the purposes of this thesis.
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Syntax of SHIQ(D)

Definition 3 SHIQ(D) Roles Let NR, Nc
R be the disjoint sets of abstract and concrete

atomic roles. The set of SHIQ(D) abstract roles is the set NR ∪ {R− | R ∈ NR}, where

R− denotes the inverse of the atomic role R. To avoid considering roles such as R−−, we

define the function Inv such that Inv(R) = R− and Inv(R−) = R for R ∈ NR. There are

no inverses on concrete roles, so the set of SHIQ(D) concrete roles is simply Nc
R. A

role inclusion axiom is of the form R v S where R, S ∈ NR, or of the form u v v, where

u, v ∈ Nc
R. A transitivity axiom is an expression of the form Trans(R), where R ∈ NR.

Finally, an RBox R is a set of role inclusion and transitivity axioms.

Let v∗ be the reflexive-transitive closure of v. A role R is transitive if there is a role

S s.t. Trans(S ) ∈ R with S v∗ R and R v∗ S . R is called a simple role if there is no role

S s.t. S v∗ R and S is transitive.

Definition 4 SHIQ(D) Concepts Let NC,NI stand for the set of concept and individual

names, andD = (4D,ΦD) be a concrete domain, where 4D stands for the domain, and ΦD

for the set of predicate names inD. The set of SHIQ(D) -concepts is defined inductively

as the smallest set for which the following holds:

• every concept name C ∈ NC is a concept

• if C and D are concepts and R is a role, then (C u D), (C t D), (¬C), (∀R.C) and

(∃R.C) are also concepts

• if C is a concept, R a simple role and n a natural number, then (≤ nR.C) and
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(≥ nR.C) are also concepts (called at-most and at-least qualified number restric-

tions)

• If P ∈ ΦD and u ∈ Nc
R then (∃u.P), (∀u.P), (≤ nu.P) , (≥ nu.P) are also concepts.

We write > and ⊥ to abbreviate C t ¬C and C u ¬C respectively.

For concepts C,D, a concept inclusion axiom is an expression of the form C v D.

A TBox T is a finite set of concept inclusion axioms. An ABox A is a finite set of concept

assertions of the form C(a) (where C can be an arbitrary concept expression), role asser-

tions of the form R(a, b), concrete domain predicate assertions of the form P(x1, . . . , xn)

and concrete role assertions u(a, x) where P ∈ ΦD, a ∈ NI , xi ∈ 4D and u ∈ Rd.

Given all of the above, a SHIQ(D) KB K is a triple (T ,R ,A ) consisting of a TBox

T , RBox R and ABox A .

Semantics of SHIQ(D)

The semantics of SHIQ(D) is defined using an interpretation I, which is a pair I =

(4, .I), where 4 is a non-empty set, called the domain of the interpretation, disjoint from

the concrete domain 4D and .I is the interpretation function. The interpretation function

assigns to each atomic concept A a subset of 4, to each role R a subset of of 4 × 4 and

to each individual a an element of 4. Additionally, the interpretation function assigns to

each concrete atomic role u ∈ Nc
R a subset of 4 × 4D, to each predicate P ∈ ΦD a subset

of 4D and to each x ∈ D an element of 4D. The interpretation function is extended to

complex roles and concepts is given in Table 2.2.2.2 (note that R is an abstract role, S is a

simple abstract role, u is a concrete role and # denotes cardinality). The model-theoretic

semantics of SHIQ(D) axioms is shown in Table 2.2.2.2.
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>I = 4

⊥I = ∅

(¬C)I = 4 \CI

(C u D)I = CI ∧ DI

(C t D)I = CI ∨ DI

(∀R.C)I = {x | ∀y : (x, y) ∈ RI → y ∈ CI}

(∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

(≤ nR.C)I = {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n}
(≥ nR.C)I = {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n}
(Inv(R))I = {(a, b)|(b, a) ∈ RI}

(∀u.P)I = {a | ∀x ∈ 4D : (a, x) ∈ uI → x ∈ PI}

(∃u.P)I = {a | ∃x ∈ 4D : (a, x) ∈ uI ∧ x ∈ PI}

(≤ nu.P)I = {a | #{x ∈ 4D | (a, x) ∈ uI ∧ x ∈ PI} ≤ n}
(≥ nu.P)I = {a | #{x ∈ 4D | (a, x) ∈ uI ∧ x ∈ PI} ≥ n}

Table 2.1: Interpretations of SHIQ(D) Concepts and Roles

C v D = CI ⊆ DI

C ≡ D = CI = DI

R v S = RI ⊆ S I

u v v = uI ⊆ vI

Trans(R) = (RI)+ ⊆ RI

C(a) = aI ∈ CI

R(a, b) = (aI , bI) ∈ CI

u(a, x) = (aI , xI) ∈ uI

a = b = aI = bI

a , b = aI , bI

Table 2.2: Interpretations of SHIQ(D) Axioms
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The interpretation I is a model of the RBox R (respectively of the TBox T and

ABox A ) if it satisfies all the axioms in R (respectively T and A ). I is a model of

K = (T,R,A), denoted by I |= K, iff I is a model of T , R and A .

A KB K is inconsistent if there is no possible model for it, i.e., there is no interpre-

tation I that satisfies the semantics of all of the axioms in T ,R and A .

2.2.2.3 DL Reasoning Services

There are a few basic reasoning services in DL, which allow users to deduce implicit

knowledge from explicitly represented knowledge:

• Consistency Checking – The process of ensuring that the knowledge base has a

model (i.e., does not contain contradictory facts).

• Concept Satisfiability – Given a concept C, checking if C is satisfiable w.r.t KB K is

the task of determining if there exists an interpretation I of K s.t. the interpretation

of C (CI) is non empty.

• Subsumption – Given concepts C and D, C is subsumed by D w.r.t K , denoted

K |= C v D, if in all interpretations I of K , CI ⊆ DI .

• Instance checking – determines instance relationships: an individual i is an instance

of concept C if in all interpretations I of K , aI ∈ CI .

It is important to note that all of the above services can be reduced to consistency

checking. For example, if we want to check if a concept C is satisfiable w.r.t KB K ,

when we generate a new individual a s.t. aI ∈ CI , and check the consistency of the KB
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K ∪ {C(a)}. If K is consistent, that means the interpretation of C is non-empty and C is

satisfiable.

Reasoning in DL is usually done using systems based on tableau algorithms (see

[24] for a survey). Tableau algorithms are already used for consistency checking in var-

ious optimized DL reasoners that are freely or commercially available, such as RACER

[124], FACT++ [65] and Pellet [109].

2.3 Semantic Web

The Semantic Web is intended to be an extension of the current World Wide Web in

which information on the Web is represented in a machine processable format with a well

defined meaning (semantics). Representing the knowledge on the Web in such a manner

provides a variety of benefits including ease of knowledge exchange and integration and

machine-automated reasoning. A set of standardized knowledge representation languages

(published as W3C recommendations) form the foundation of the Semantic Web and are

structured as a layered stack. Following is a brief overview of the standardized Semantic

Web languages:

• The Resource Description Framework (RDF [35] ) is a fairly simple language to

describe resources on the web and relations between them. The RDF model is based

on the idea of making statements about resources in the form of triples: subject-

predicate-object expressions. RDF is based on the same architectural principles that

made the Web successful: it uses Universal Resource Identifiers (URI) to identify

and link resources on the web. Unlike traditional URLs, however, RDF URIs can
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refer to any identifiable thing, including things that may not be directly retrievable

on the web.

• RDF Schema [39] is a vocabulary for describing properties and classes of RDF

resources. It is a more expressive modeling language than RDF, with the capa-

bility for expressing subclasses and subproperties, along with domain and range

constraints on properties.

• OWL [45] adds even more vocabulary for describing properties and classes: among

others, relations between classes (e.g. disjointness), cardinality (e.g. ”exactly

one”), equality, richer typing of properties, characteristics of properties (e.g. sym-

metry), and enumerated classes. OWL comes in three different flavors with in-

creasing expressivity: OWL Lite, OWL DL and OWL Full. OWL DL and OWL

Lite build on the research tradition of Description Logics (they are firmly grounded

in DL), so they are both decidable with well studied decision procedures.

Since OWL is based on the successful architecture of the Web, it is designed to be

open, scalable and distributed which makes it suitable for a web policy representation lan-

guage. Its key properties as an ontology language include the use of the URI (Universal

Resource Identifier) as the unique identifier for named OWL classes, properties and indi-

viduals, and the ability to freely link and/or import ontology models using URIs directly.

In addition, OWL assumes open-world semantics, which makes it different from closed-

world database-schema languages in that information which is not explicitly asserted in

the OWL KB is assumed to be unknown or missing instead of non-existent or false.
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Chapter 3

Related Work

In this chapter, an overview of related work in access control languages, access

models and verification approaches is presented. First, in Section 3.1 a discussion of the

most common access control models (DAC, MAC and RBAC) is presented, followed by

an overview of research on access policy languages (Section 3.2). In Section 3.3, I discuss

related work in formal verification of access control languages (including XACML), using

both state-based and logic-based techniques.

3.1 Access Control Models

For the purpose of this thesis, a general understanding of basic access control mod-

els is necessary, so this section contains an overview. The three most widely recognized

access control models are the following:

Mandatory Access Control (MAC) In MAC [8], the access policy is enforced inde-

pendently of users’ preferences – in other words, even though a user might be an owner of

a resource, he is not allowed to specify an access policy for that resource. MAC is used in

systems that process highly sensitive information (e.g., military). One of the most widely

used MAC systems is the Multi-Level Security (MLS) policy, i.e., the Bell-LaPadula secu-

rity model [28]. The Bell-LaPadula model represents a set of simple access control rules
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which use security labels on objects and clearances for subjects. These labels form a lat-

tice; for example, a well known set of labels is unclassi f ied ≤ con f idential ≤ secret ≤

top-secret. Given these labels, there are only two access rules in the model:

• The Simple Security Property states that a subject at a given security level may not

read an object at a higher security level (no read-up).

• The *-property (star-property) states that a subject at a given security level is not

allowed to write to any object at a lower security level (no write-down). This prop-

erty is used to prevent users or programs from declassifying sensitive information.

Because of its inflexible nature (only two fixed access rules), MAC has not been

deemed expressive enough for commercial purposes.

Discretionary Access Control (DAC) In DAC [9], the access policy about an object is

determined solely by the object’s owner. An example of this is file ownership in the Unix

file system: every file in the system has an owner, and the file’s initial owner can specify

its access privileges for other users. Additionally, in DAC users can also delegate control

over objects to other users. Discretionary Access Control has been widely used to enforce

access policies in operating systems. The most common types of DAC implementations

are discussed below.

An Access control matrix is a a two-dimensional matrix representing users on the

rows and objects on the columns. Each entry in the matrix represents the access type held

by that user to that object. Since access control matrices are usually sparsely populated,

there exist other, more storage-efficient mechanisms such as access control lists (ACL)
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and capability-based matrices. ACLs represent each column of the matrix as a list, hence

each object is associated with the set of authorized users. An ACL-like mechanism is

used in the UNIX file system, where each file is associated with access rights for its owner,

group, and everyone else in the system. On the other hand, capability-based systems store

the access control matrix by rows. In such systems, each subject is associated with a list

of objects he is authorized to access.

While more flexible than MAC, Discretionary Access Control suffers from some

drawbacks as well. In particular, managing systems with a large number of subjects of

objects can be very time-consuming. For example, removing a user (i.e., subject) from

the system involves traversing and removing the subject from the ACL of each object.

Role Based Access Control RBAC [10] is a newer alternative to MAC and DAC, ex-

pressive enough to cover both. In RBAC, roles are created for various job functions. Each

role can have a number of permissions assigned to it; these permissions refer to certain

operations needed for the particular function. Users are then assigned particular roles,

and through these assignments acquire the permissions needed to perform the job func-

tions. RBAC differs from ACLs in that it assigns permissions to specific operations with

meaning in the organization, rather than to low level data objects.

There has been a lot of interest in developing RBAC models in the past years [116,

107, 106, 125, 100], however the consensus is that RBAC0 [116] has emerged as the core

RBAC model (it is also being standardized by NIST [10]). In RBAC0, the key components

are sets of users (U), roles (R) and permissions (P). The policy is then specified by a user

assignment relation, associating users to roles they hold, and a permission assignment
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relation linking roles to sets of permissions. Additionally, roles have to be activated within

sessions. A user can activate multiple roles in a single session; she can also act in multiple

sessions at the same time.

There have been a number of extensions to RBAC0, the most important being role

hierarchies (RBAC1) and constraints (RBAC2). Role hierarchies allow a role to inherit all

of the access privileges of another role. For example, one can state that role Manager is

senior to Intern, so a user activating the Manager role will inherit all of the permissions

of Intern.

RBAC2 supports constraints, which essentially impose restrictions on acceptable

configurations of the different RBAC components. A common motivation for constraints

is the example of mutually disjoint roles, such as purchasing manager and accounts man-

ager. In most organizations, the same individual will not be permitted to be a member of

both roles, because this creates a possibility for committing fraud. This is the well-known

security principle of separation of duties, and is available as a constraint in RBAC2. Ad-

ditionally, it is possible to limit the number of roles which an individual user can activate

(using a cardinality constraint).

Since XACML subsumes RBAC2 in terms of expressiveness [17], all of the XAML

analysis services presented in this dissertation apply to RBAC implementations as well.

3.2 Access Control Languages

This section contains an overview of related work in logic-based security languages

as well policy languages based on Semantic Web techniques. The goal is to compare my
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logic-based, semantic web-enabled policy framework with previous work in the area.

3.2.1 Logic-Based Languages

The languages discussed in this section all benefit from having unambiguous se-

mantics and well understood computational properties. Most of them are based on Dat-

alog, so evaluating whether a request satisfies the policy is done in PTIME. Some of the

proposals [72] even materialize the unique model of the underlying Datalog program to

avoid doing any reasoning at runtime.

3.2.1.1 Centralized Policies

Centralized access policies refers to security systems with only one PDP (Policy

Decision Point). Note that this still allows the policies to be distributed – however, during

deployment they have to be retrieved and evaluated at a single PDP. There are many logic-

based policy frameworks that fit this description [30, 71, 73, 32]. This section presents

two representative approaches: the work by Woo and Lam [128], which is one of the

earliest attempts at a logic-based authorization framework, and the Flexible Authorization

Framework (FAF) [71] which represents one of the most influential policy frameworks.

Authorization using Default Logic (Woo and Lam) One of the earliest attempts at a

general, logic-based framework for expressing authorizations was made by Woo and Lam

[128], who proposed the use of default logic to model authorization and control rules.

Default logic is a very expressive framework, allowing the authors to cover both open and

closed policy bases with their languages, as well as the Bell-LaPadula model.

36



To overcome the complexity drawbacks of default logic (it’s undecidable in the

general case), the authors used a subset of the logic called extended logic programs (ELP)

as the basis for their framework. ELPs are essentially a class of stratified logic programs

with both classical negation and negation as failure, but with a unique minimal model that

can be computed in quadratic time. The authors, however, did not address the question of

how this restriction will affect the expressiveness of their policies. Additionally, they did

not provide any analysis services such as formal verification of policies.

Flexible Authorization Framework (FAF) Jajodia et al.[71] proposed a logical lan-

guage for specification of authorizations that allows users to specify, together with the

authorizations, the policy according to which access control decisions are to be made.

Policies are expressed by means of rules which enforce derivation of authorizations, con-

flict resolution, access control, and integrity constraint checking.

The architecture of FAF consists of the following components:

• A history table whose rows describe the access requests processed.

• An authorization table whose rows are composed of authorization triples (o,s,+a)

and (o,s,-a). Informally, (o,s,+a) is a positive authorization triple – it means

that subject s can perform action a on object o; (o,s,-a) forbids the action.

• A propagation policy that specifies how to derive authorizations from the explicit

authorization table above. In particular, FAF supports the following propagation

policies: no propagation, no overriding, most specific overrides and path overrides.

• A conflict resolution and decision policy that specifies how to override conflicts
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when one or two conflicting authorizations apply to a given authorization triple. Ex-

amples of conflict resolution policies supported by FAF include: no-conflict (con-

flicts are considered errors), denials-take-precedence, permissions-take-precedence

and nothing-takes-precedence (conflicts remain unsolved). The decision policy also

determines the system’s final response to every access request. For example, the

decision policy can force a deny decision whenever conflicts occur, or can force

a decision to fill in the gaps in the absence of any access decision for a particular

access request.

• A set of integrity constraints that impose restrictions on the content of the individual

components in FAF.

The authorization table in FAF is viewed as a database. The propagation, conflict

resolution and decision policies are expressed using stratified logic programs, guarantee-

ing that the overall policy system has a unique stable model. As a result, FAF corresponds

to a quadratic time data complexity fragment of logic programming. To improve scala-

bility of the framework, the authors proposed a materialization technique that allows for

incremental updates of the unique stable model at run-time.

One of the contributions of my work is a detailed comparison between XACML

and FAF, provided in Chapter 5.

3.2.1.2 Distributed Policies

By distributed access policies I refer to policies that exist in a distributed envi-

ronment such as the Web and security systems with multiple PDPs. Such decentralized
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environments have the following distinctive characteristics:

• Identity of all possible access requesters cannot be known before hand, so subjects

present digital credentials (which may be distributed themselves) in order to gain

access.

• In addition to the access policy on the server, the access subjects (clients) might

have policies for their own data as well. In such case, there exists a need for trust

negotiation to determine if client’s and server’s policies are compatible.

• Delegation is essential to distributed PDPs. Depending on the object o being ac-

cessed, a particular security point might not be qualified to make an access decision

about o; in such cases, the access request is delegated to a security point with the

system that has authority over objects of type o.

In the following, a survey of logic-based approaches to distributed policy authoriza-

tion is presented.

Delegation Logic [88] combines the following features: it is based on logic pro-

grams, can express delegation depth explicitly and supports a wide variety of complex

delegation principles (e.g., k-out-of-n threshold). In addition, Delegation Logic provides

a concept of proof-of-compliance that is based on model-theoretic semantics. The frame-

work is based on a restricted class of logic programming called Ordinary Logic Programs

(OLP [56]), and a transformation is presented from OLP to positive Datalog programs.

However, the transformation is exponential in the number of logical variables used in the

policy, and no evaluation is presented, so it is unclear whether the approach scales.
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Additionally, Delegation Logic can be extended with non-monotonicity, negation

and prioritized conflict handling; however, severe restrictions on the usage of the delega-

tion constructs are placed to ensure tractability [85].

PeerAccess [127] is a trust negotiation framework for reasoning about authoriza-

tion in open distributed systems. It supports a declarative description of the behavior of

peers that selectively push and/or pull information from certain other peers. PeerAccess

local knowledge bases encode the basic knowledge of each peer, its policies governing the

release of each possible piece of information to other peers.PeerAccess proofs of autho-

rization are verifiable and nonrepudiable, and their construction relies only on the local

information possessed by peers and their parameterized behavior with respect to query

answering, information push/pull and information release policies.

In addition to PeerAccess and Delegation Logic, there are other Datalog-based lan-

guages that support delegation; SecPal [27], Binder [46], SD3 [75], RT [90] and Cas-

sandra [101] all use Datalog as basis for syntax and semantics. (Cassandra and RTC are

based on Datalog with constraints for higher flexibility.)

In contrast to the above approaches, Proof-carrying Authorization (PCA) and re-

lated distributed proof systems [26] are an authorization framework based on a higher-

order logic where different domains in the system use different, less expressive, application-

specific logics. The higher-order logic (AF logic) used to check the proofs is undecidable,

though this problem is avoided by forcing clients to generate proofs on their own, using

only a decidable subset of AF logic. Consequently, the authorizing servers task of proof-

checking is reduced to a tractable type-checking problem - however this leads to large

rate of increase of sizes of the client proof.
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3.2.1.3 Dynamic/Temporal Access Policy Languages

Most of previous work that was discussed dealt with static authorization, i.e., access

policies where the authorizations do not change over time and do not have any temporal

dependencies. This section surveys approaches that deal with dynamic policies. First,

I discuss a seminal approach that supports evolving subjects, resources and authoriza-

tions, and then discuss a more recent policy language extension of RBAC that supports

temporally dependent authorizations.

The framework of Harrison, Ruzzo and Ullman [61] is one of the earliest ap-

proaches that allows for changing number of subjects, roles, resources, and authoriza-

tions. The HRU model is very expressive; it could model most of the protection systems

in use at that time when it was proposed. However, because of the expressiveness, there

is no algorithm to decide if a given subject can eventually obtain an access privilege to a

given object (it is undecidable).

Bertino et al [29] presented a temporal extension of the RBAC model called TR-

BAC. TRBAC supports periodic role enabling and disabling—possibly with individual

exceptions for particular users—and temporal dependencies among such actions, ex-

pressed by means of role triggers. Role trigger actions may be either immediately ex-

ecuted, or deferred by an explicitly specified amount of time. Enabling and disabling

actions may be given a priority, which is used to solve conflicting actions. A formal se-

mantics for the specification language was provided, and a polynomial safeness check was

introduced to reject ambiguous or inconsistent specifications. The authors also presented

an implementation of TRBAC on top of a conventional DBMS.
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3.2.2 Semantic Web-Based languages

Recently there has been a great amount of attention to how Semantic Web tech-

nologies can be used in policy systems. In particular, there have been a number of

proposals that show how to ground or express policies in a Semantic Web framework

[126, 77, 78, 122].

Rei [77] is a policy specification language based on a combination of OWL-Lite,

logic-like variables and rules. It allows users to develop declarative policies over domain

specific ontologies in RDF and OWL. Rei allows policies to be specified as constraints

over allowable and obligated actions on resources in the environment. A distinguishing

feature of Rei is that it includes specifications for speech acts for remote policy manage-

ment and policy analysis specifications like what-if analysis and use-case management.

The successor of Rei is Rein [78], which is a policy framework grounded in se-

mantic web technologies that allows for different policy languages and supports hetero-

geneous policy systems. Rein provides an ontology for describing policy domains in a

decentralized manner and provides a reasoning engine built on top of CWM, an N3 rules

reasoner. Using Rein and CWM, the authors showed how it is possible to develop domain

and policy language specific security systems. Rein has been successfully used as a pol-

icy management system in the Policy Aware Web project [126], which in turn provides an

architecture for scalable, discretionary, rule-based access control in open and distributed

environments.

PeerTrust [52] deals with discretionary access control on the web using seman-

tic web technologies. It provides a mechanism for gaining access to secure informa-
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tion/services on the web by using semantic annotations, policies and automated trust ne-

gotiation. In PeerTrust, trust is established incrementally through an iterative process

which involves gradually disclosing credentials and requests for credentials. PeerTrust’s

policy language for expressing access control policies is based on definite Horn clauses.

A distinguishing feature of PeerTrust is that it expects both parties to exchange credentials

in order to trust each other and assumes that policies are private, which is appropriate for

critical resources such as military applications and e-commerce sites.

Finally, KaOS Policy and Domain Services [122] use ontology concepts encoded

in OWL to build policies. These policies constrain allowable actions performed by actors

which may be clients or agents. The KAoS Policy Service distinguishes between autho-

rizations and obligations. The applicability of the policy is defined by a class of situations

which definition can contain components specifying required history, state and currently

undertaken action.

3.2.3 Discussion

One of the goals of this section was to demonstrate that recently there has been a

great amount of interest in logic-based policy languages, and that most of these languages

are based on some variant of logic programming (most often, Datalog). Given that, it is

surprising that a standardized and widely distributed language such as XACML has not

been formally compared to these languages. The main impediment for this was the lack

of formal, logic-based semantics for the language. This problem is addressed in Chapter

5, where I show that the core of XACML can be embedded in stratified Datalog.
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Additionally, note that most of the policy languages discussed in this section ad-

dress the challenges that a policy system should overcome to be usable in a massively

open and distributed setting. Thus, they mostly discuss the architectural, privacy and

scalability aspects of a policy framework. Much less attention is being paid to security

analysis issues such as formal verification of policies against security properties, change

analysis of different policies and coverage checking which are important to ensure the ac-

cess policy has no bugs. Most of the above approaches base their semantics in Datalog, in

order to maintain balance between policy expressiveness and computational complexity.

However, as shown in [31], in Datalog-based models it is very hard (actually undecid-

able) to provide change analysis, i.e., for two policies expressed as Datalog programs to

determine if they would always return the same access decision for any potential access

request. To provide such analysis services, instead of logic programming I use a different

family of logics, called Description Logics – more information is presented in Chapter 6.

3.3 Policy Analysis and Verification

The policy languages surveyed in the previous section usually offer two basic ser-

vices: 1) checking the consistency of an access policy set, i.e., determining if there are any

conflicting policies in the system, and 2) for a given request R and a policy P determining

the access decision of P for R. However, recently, there has been a great amount of interest

into other types of analysis services for policies [92, 91, 14, 83, 50, 66, 131, 117, 50, 36],

the most common being verification of a policy against given safety properties. For ex-

ample, as a part of a company-wide access policy, one could state ’Junior developers

44



should never be allowed to sign expense reports’ or ’At any given time, a user cannot

activate more than one of the following three roles {JuniorDeveloper, SeniorDeveloper,

AccountsClerk}’. Then, company security officers would use automated tools to verify

that these constraints will not be violated against all possible access requests. In the event

violations are discovered and the policy is updated, change analysis can be performed

to ensure no new bugs were unintentionally introduced – for example, using queries of

the form ’Show me all requests involving Expense Reports that used to map to Deny but

now are mapping to Permit’. The above mentioned services of verification and change

analysis have been proposed as the building block of a useful policy analysis tool ([50]).

This section surveys previous work on such analysis services for access control

policies. First, I provide an overview of security policy analysis (using state-based or

logic-based approaches), then in Section 3.3.1 I discuss approaches that embed existing

policy languages into a logic, thus providing analysis services previously not available.

Finally, in Section 3.3.2 I survey such logical embeddings of XACML itself.

Elisa Bertino et al [31] proposed a formal framework for reasoning about differ-

ent access control models. Their framework is logic-based and can capture DAC, MAC

and RBAC models. Each instance of the proposed framework corresponds to a Datalog

program, interpreted according to the stable model semantics. To demonstrate its expres-

siveness, the authors mapped the Bell and LaPadula model [28] and NIST RBAC [116]

to the framework. They also proposed some parameters (along with decidability results)

along which access control models can be compared. For example, they showed that

checking for structural subsumption/equivalence between different access control models

is decidable, however access request equivalence is not. The difference with our work
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is the language we analyze (XACML) and the services we provide (e.g., we show that

access request equivalence is decidable for XACML).

Chomicki and Lobo [38] introduced a declarative policy description language called

PDL in which policies are described as sets of event-condition-action (ECA) rules. They

provided a framework for detecting and resolving conflicts between the ECA rules and

any action constraints. This is performed using a policy monitor, which, in order to

resolve conflicts chooses or ignores certain events, essentially preventing the ECA rule

from activating and causing the conflict. The semantics of the ECA rules and conflict

detection and resolution are defined using logic programs. Unlike XACML, where con-

flict resolution is built in the language, in their framework whenever a conflict occurs the

policy engine has to generate a minimal set of actions to be removed in order to remain

consistent.

Dougherty et al. [48] presented a model for formal analysis of access-control poli-

cies in dynamic environments, taking into account the possible interactions of the policies

with their environments. For this model, they proposed two analysis services: a) goal

reachability, which checks if there is some accessible state in the dynamic access model

which satisfies some boolean expression over the policy facts and b) contextual policy

containment, which essentially checks if one policy is more permissive than another.

These services are provided using a combination of relational and temporal reasoning.

Policies that change their environment are not addressed in my thesis; on the other hand,

we perform static analysis services on a richer policy language ([48] does not support

concrete domains and ontology-based policy models).

Lithium [59] is a language for reasoning about digital rights and is based on a

46



fragment of first order logic. It is different from Datalog-based approaches since it allows

full negation in the conclusion as well as in the premises of policy rules. To show its

expressiveness, the authors gathered a large collection of policies from different types of

libraries and mapped them to Lithium. They also showed how large fragments of XrML

[60] and ODRL [112] can be translated in the language. Two core analysis services are

provided:

• Given a set of policies, a policy environment and an access request, does it follow

that the access request is permitted by the policy set?

• Consistency checking of a policy set. Unlike [71], the language does not support

conflict resolution mechanisms, so whenever both a permit and deny is returned by

a policy, it is treated as an error.

In order to remain decidable, Lithium restricts recursion and cannot easily express dele-

gation. Unlike XACML, Lithium does not provide any conflict resolution mechanisms,

and it does not support change analysis and coverage checking of policies.

There has also been research on security analysis for access control [92, 91] that

uses the notions of states of policy systems and transitions (for example, adding a role, or

changing a permission) that alter those states. Then, usually a set of queries is proposed

that investigates the possible consequences of certain changes in the policy. Simple safety

checking is an example of a query; it checks if there exists a reachable state in which a

(presumably untrusted) principal has access to a resource. Although early results showed

that this type of safety analysis can easily lead to undecidability [61], there has been recent

work that demonstrates a class of access control models and queries for which safety is
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decidable and efficient algorithms exist [92]. Unfortunately, there are limitations to the

expressiveness of the models that are analyzed: the states are described using positive

Datalog programs, so there is no support for classical negation. No classical negation

in turn implies no support for negative authorizations and common constraints such as

mutually exclusive roles.

As another state-based approach, Schaad et al. [117] examineed the problem of

verifying a policy that is subject to change coming from another policy. Using the Alloy

[70] specification language and its model-checking facilities, they showed how to spec-

ify an RBAC96-style model, ARBAC97-style extensions and a set of separation of duty

properties. There were no implementation or evaluation results given, so it is difficult to

compare with our approach.

In [131] the authors presented a model-checking algorithm which can be used to

evaluate access control policies, and a tool which implements it. Their tool provides

reachability analysis: not only checks whether the policies give legitimate users enough

permissions to reach their goals, but also whether the policies prevent intruders from

reaching their malicious goals. Policies of the access control system and goals of agents

are described in the language RW [57]. RW and the analysis framework presented in this

thesis provide a complementary set of services: theirs is reachability analysis in presence

of rule interactions, cooperating agents and multi-step actions, while in this thesis the

services provided are change analysis, coverage checking and formal verification for a

static policy system.

There are also proposals for analyzing policies based on description [132] or modal

logics [99]. Both of these provide a formalization of RBAC, and show how tableau-based
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decision methods can be used for consistency checking of policies, evaluating access re-

quests and verifying policies against security properties. Zhao et al [132] presented a

formalization of RBAC based on the description logic ALCQ. They also showed how

RBAC policy constraints (separation of duty, role hierarchies) can be captured in this

logic. Massacci [99] formalized RBAC using multi modal logic and presented a deci-

sion method based on analytic tableaux. Because tableau-based algorithms are used ,

services similar to ours are provided: logical consequence, model generation and consis-

tency checking of policies. The analysis framework in my thesis is for a more expressive

language (e.g., neither of the approaches supports conflict resolution algorithms or con-

crete domains).

In [14], the authors proposed a set of services under the name of policy ratification.

In particular, they presented algorithms for analysis tasks such as dominance, coverage

and consistency check that can be performed independently of policy model and language

and require little domain-specific knowledge. They presented algorithms from constraint,

linear, and logic programming disciplines to help perform ratification tasks. Also, an al-

gorithm is provided to efficiently assign priorities to the policies based on relative policy

preferences indicated by policy administrators. Finally, they present how these algorithms

have been integrated with a working policy system to provide feedback to a policy admin-

istrator regarding potential interactions of policies. The techniques the authors use for

ratification are similar to the algorithms used for datatype reasoning in this thesis. How-

ever, our work can be considered an extension of theirs since it covers a more expressive

policy language (XACML).
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3.3.1 Embedding Policy Languages in Logic

As mentioned in the previous section, the authors of Lithium showed that large

fragments of ODRL [112] and XrML [60] can be translated to their FOL-based language.

In addition to giving ODRL formal semantics, the authors considered the practical prob-

lem of determining whether a set of ODRL statements imply a permission or prohibition.

Using their semantics, they formally defined the problem and showed that it is NP-hard.

They also showed that by removing a component of ODRL whose meaning seems to be

somewhat unclear, a tractable fragment of the language results. They proved that the frag-

ment is tractable by creating a polynomial-time algorithm to determine whether a set of

ODRL statements imply a permission (or prohibition). They presented a similar contribu-

tion for XrML in [60]: propose a formal semantics, show that deciding access requests in

the language is NP-hard, then show an expressive fragment of the language for which de-

ciding access requests is polynomial. The relationship between XrML and ODRL on one

hand and XACML on the other is unclear; however we discussed the differences between

Lithium (the language used to formalize XrML and ODRL) and our formal framework in

the previous section.

In [89] the authors presented a first-order logic (FOL) semantics for the Simple

Distributed Security Infrastructure (SDSI [115]). The authors proved that the FOL se-

mantics is equivalent to the string rewriting semantics used by SDSI designers, for all

queries associated with the rewriting semantics. Using their semantics, they discovered a

few problems in the proof procedures for SDSI. Finally, they compared SDSI with RT1
C,

a datalog-based language that is part of the RT policy framework [90]. The authors did
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not discuss formal verification or change analysis for their language.

3.3.2 XACML Analysis and Verification

In this section I will discuss approaches that formalize and analyze fragments of

XACML [66, 131, 117, 50, 121, 36, 40] and are most related to my dissertation.

Hughes et al. [66] proposed a framework for automated verification of XACML

policies based on relational First-Order Logic. They introduced a formal model for sys-

tematically specifying access to resources, and showed that XACML policies can be trans-

lated to a simple form which partitions the input domain to four classes: permit, deny,

error, and notapplicable. The authors showed how to automatically verify policies using

an existing automated analysis tool, Alloy [70]. Because using the first-order constructs

of Alloy to model XACML policies is prohibitively expensive (in terms of performance),

the authors used only the propositional constructs. The limitation of their approach is

that they do not fully support data-types, policy vocabularies and delegation policies. I

have provided a thorough empirical comparison of my prototype analyzer against their

XACML analysis tool; results are discussed in Chapter 8.

Bryans et al. [36] formalized XACML policies using a process algebra known as

Communicating Sequential Processes (CSP [63]). This allows them to use model check-

ers such as FDR for formally verifying properties of policies and for comparing access

control policies. In addition, the authors showed how limited workflows can also be

mapped to CSP. The workflow is sequential in nature and in that sense their approach is

more expressive than first-order logic approaches. The authors provide no information on
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any empirical results or prototype implementation, so I have not performed an comparison

with my XACML reasoner.

In [50], the authors expressed XACML policies using Multi-Terminal Binary De-

cision Diagrams (MTBDDs). MTBDDs [51] are a more general version of Binary Deci-

sion Diagrams, that maps bit vectors over a set of variables to a finite set of results. In

[50], variables in the decision diagram are used to represent attribute/value pairs (such

as role=Student, action=View, etc.) and the policy results (Deny, Permit, Indeterminate)

are mapped to diagram terminals. The approach from their paper is implemented in Mar-

grave, a tool for analyzing XACML policies. Margrave provides verification and compre-

hensive change-impact analysis support based on the semantic differences between the

MTBDDs representing the policies. Compared to Margrave, our analysis framework cov-

ers a richer subset of XACML (administrative policies, datatypes, ontology-based policy

models). In addition, for the subset that both Margrave and our tool support, I provide a

detailed performance comparison of the tools in Chapter 8.

Finally, in [42] the authors extended the work by Fisler et al. [50] by adding more

expressiveness to the language being analyzed and supporting additional analysis ser-

vices. Their tool, called EXAM (comprehensive framework for analysis of access control

policies), in addition to supporting core XACML defined in [50] also supports datatype

domains. One of the components in the framework is a policy similarity analyzer [93]

which is used to filter out policies with low similarity score. While EXAM provides

datatype support, it does not explicitly address ontology-based policy models or delega-

tion policies.

.
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Chapter 4

Operational Semantics of XACML

In this chapter, a formal semantics for XACML v3.0 is presented. The semantics is

provided through a concise set of rules that capture the meaning of the XACML constructs

as presented in the official specification. This semantics is used to prove the correctness

of the Datalog and Description Logic mappings presented in Chapters 5 and 6.

4.1 Syntax

To avoid the verbose XML representation of XACML, a lisp-like syntax is used,

similarly to [121]. A typewriter font denotes names of syntax elements as they occur in

the XACML specification. Thus, Policy refers to the XACML syntactic element that

contains Rules, whereas a policy can refer to a set of Policy or PolicySet elements.

Also, terminal nodes in the syntax grammar below are denoted by a lower case starting

letter.

The syntax for XACML Policies, PolicySets and Rules is shown in Table 4.1.

Table 4.2 presents the syntax of Targets and matching functions.

Table 4.3 shows the syntax of Condition elements in Rules. Note that arbitrary

nesting of functions is allowed in the Condition element. I only show a few of the sup-

ported functions in the table; a full listing can be found in the XACML 3.0 Specification

[113]. Finally, Table 4.4 contains the syntax for XACML access requests.
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S ::= (PolicySet Comb T S∗ id)
| (Policy Comb T R∗ id)

R ::= (Rule Cond T Effect)
Comb ::= permit-Overrides

| deny-Overrides

| first-Applicable

| only-One-Applicable

Effect ::= Permit | Deny

Table 4.1: Syntax of Policy Elements.

T ::= (Target DM∗)
DM ::= (DisjunctiveMatch CM+)
CM ::= (ConjunctiveMatchM+)

M ::= (Match AV AD MatchFcn)
| (Match AV AS MatchFcn)

AD ::= (AttributeDesignator cat attr-ID
Type issuer? mustBePresent?)

AS ::= (AttributeSelector contextPath Type present?)
AV ::= (AttributeValue value Type)

MatchFcn ::= type-equal | type-greater-than |
type-greater-than-or-equal| type-less-than |
type-less-than-or-equal | type-regexp-match

Type ::= string | boolean | integer | . . .

Table 4.2: Syntax of Targets and Matching Functions.

Example 4.1.0.1 This example illustrates how a XACML Rule element in normative

XML syntax is translated to my abbreviated lisp-like representation.

<Rule RuleId= "example:SimpleRule1" Effect="Permit">

<Target>

<DisjunctiveMatch>

<ConjunctiveMatch>

<Match MatchId="...:rfc822Name-match">

<AttributeValue DataType="...#string">

med.example.com

</AttributeValue>

<AttributeDesignator

Category="...subject-category:access-subject"

AttributeId="...:subject:subject-id"

DataType="...:rfc822Name"/>

</Match>

</ConjunctiveMatch>
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Cond ::= (Condition Expr∗)
Expr ::= Apply | AS | AV

| Function | VariableReference | AD
Apply ::= (Fcn-ID Expr∗)

Function ::= (Fcn-ID Expr∗)
Fcn-ID ::= any-of | all-of |regexp-match . . .

Table 4.3: Syntax of Condition element.

RQ ::= (Request ATS∗)
ATS ::= (Attributes (AT content)∗ cat)

AT ::= (Attribute AV∗ attr-ID issuer)
ARQ ::= (Request Delegated Del-info Delegate ATS∗)

Delegate ::= ((AT content)∗ delegate)
Del-info ::= ((AT content)∗ del-info)

Delegated ::= ((AT content)∗ delegated)

Table 4.4: Syntax of access requests. ARQ represents an administrative request (a special
case of access requests).

</DisjunctiveMatch>

</Target>

</Rule>

The example Rule is abbreviated as:

(Rule SimpleRule1 ()

(Target

(DisjunctiveMatch

(ConjunctiveMatch

(Match

(AttributeValue med.example.com string)

(AttributeDesignator access-subject subject-id rfc822Name ()())

rfc822Name-match ))))

Permit)

4.2 Proof-theoretic Semantics

In this section, a proof-theoretic semantics of XACML is presented using natural

deduction rules. I use the following notation: for a syntactic element P, XP refers to a
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child element of P that is of type X. For example, for a Policy element P, TP refers to its

Target.

4.2.1 Matching Functions

XACML is an attribute-based language, so in its most basic form it matches at-

tribute values from a request with policy Targets. This section (specifically Tables 4.5

and 4.6) presents the inference rules that determine if a Request matches a Target.

Table 4.5 contains the inference rules that determine how an AttributeDesignator

or AttributeSelector element in a policy selects an attribute value from a Request.

In the case of an AttributeDesignator, the value will be selected only if the attribute

id, category and datatype all match (Rules 1 and 2). For AttributeSelectors, an

AttributeValue is selected by evaluating the xpath function in the selector against the

Request (Rule 3). Rules 4 and 5 are for cases when no AttributeValue is selected, yet

mustBePresent is set to true; in those cases, Indeterminate is returned.

Table 4.6 contains the inference rules that determine how a Request is matched

against a Target. Rule 1 matches a selected AttributeValue from the Request against

the comparison function in the Match element. If the comparison function is true, the

Request RQ matches the Match element M. The rest of the rules in Table 4.6 show how

this match can be propagated through ConjunctiveMatch and DisjunctiveMatch to

Target elements.

In Table 4.7, the semantics of matching a Request against a Rule are presented.

Notice that in Rule 1, the rule firing depends on the evaluation of its Condition ele-
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ment. Note that in XACML v3.0, a total of 237 different functions are allowed in the

Condition. The semantics of these functions has already been covered in [68], so I omit

their discussion here.

If a syntax error occurs during matching, in the specification Indeterminate is

returned as result. Since this chapter focuses on the semantic properties of XACML,

it is assumed that the policy and request in question are syntactically correct. Observe

that even with a syntactically correct policy set, an Indeterminate could be returned –

e.g., if the mustBePresent attribute of an AttributeDesignator is true and there is no

attribute in the request that matches it (Rule 3 in 4.5).

R 1
attr-idAD = attr-idAT

typeAVAT
= typeAD

∀issuerAD, issuerAT : issuerAD = issuerAT

AD,AT |= AVAT

R 2
∃ATS ∈ RQ,AT ∈ ATS :

catAD = catATS AD,AT |= AVAT

AD,RQ |= AVAT

R 3
Value = xpath-select(RQ, contextPathAS )

AS,RQ |= Value

R 4
∀ATS ∈ RQ,∀AT ∈ ATS : AD,RQ 6|= AVAT

mustBePresentAD = True

AD,RQ |= Indeterminate

R 5
AS,RQ 6|= Value mustBePresentAS = True

AS,RQ |= Indeterminate

Table 4.5: Matching AttributeDesignator and AttributeSelector with attributes
in Request.
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R 1
∃AD ∈ M :

AD,RQ |= AVAT

fcnM(AVM,AVAT ) = True

M,RQ |= True

R 2
∃AD ∈ M : AD,RQ |= Indeterminate

M,RQ |= Indeterminate

R 3
∃AS ∈ M :

AS,RQ |= AVAT

fcnM(AVM,AVAT ) = True

M,RQ |= True

R 4
∃AS ∈ M : AS,RQ |= Indeterminate

M,RQ |= Indeterminate

R 5
∀MCM : MCM,RQ |= True

CM,RQ |= True

R 6
∀MCM : MCM,RQ |= Indeterminate

CM,RQ |= Indeterminate

R 7
∃CMDM : CMDM,RQ |= True

DM,RQ |= True

R 8
∀CMDM : CMDM,RQ |= Indeterminate

DM,RQ |= Indeterminate

R 9
∀DMT : DMT ,RQ |= True

T,RQ |= True

R 10
∃DMT : DMT ,RQ |= Indeterminate

T,RQ |= Indeterminate

Table 4.6: Matching a Request(RQ) with a Target(T).

R 1
TR,RQ |= True CondR,RQ |= True

R,RQ |= EffectR

R 2
TR,RQ |= Indeterminate

R,RQ |= Indeterminate

R 3
R,RQ 6|= EffectR R,RQ 6|= Indeterminate

R,RQ |= NotApplicable

Table 4.7: Evaluating a Rule against a Request.
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4.2.2 Rules, Policies, PolicySets

This section contains rules that capture the semantics of the four basic rule- and

policy-combining algorithms: permit-overrides, deny-overrides, first-applicable and only-

one-applicable. The rule- and policy-combining algorithms are very similar; the only dif-

ference occurs when an Indeterminate is returned while evaluating a child element.

In a PermitOverrides rule-combining algorithm, an Indeterminate decision over-

rides a Deny, whereas in the equivalent policy-combining algorithm Deny decision would

override Indeterminate.

Table 4.8 contains the inference rules for Permit-Overrides and Deny-Overrides

rule-combining algorithms. Because the rules for Permit- and Deny-Overrides are sym-

metrical, I have presented only one set of them (using a shorthand notation ε to stand

for Permit/Deny). Notice that for Permit-Overrides (resp. Deny-Overrides) if a

Permit (resp. Deny) Rule returns Indeterminate, then assuming that there are no

Deny (resp. Permit) rules that fired, the parent Policy would return Indeterminate

as well. This subtle behavior was missed in previous formalizations of XACML [121].

Tables 4.9 and 4.10 present the semantics for First-Applicable and OnlyOne-

Applicable rule-combining algorithms, respectively. While evaluating First-Applicable,

the Rules are ordered according to their position in the Policy element. Given such or-

dering, as soon as a decision is returned from a Rule, that decision is returned and all

subsequent Rules are ignored.

In Table 4.11, the semantics for Permit-Overrides and Deny-Overrides are

shown. Note that unlike their rule-combining counterparts, Permit-Overrides and
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R 1
∃i : Ri,RQ |= ε T,RQ |= True

(Policy ε-Overrides T R1, . . . ,Rn),RQ |= ε

R 2
∃i : Ri,RQ |= Indeterminate ∧ EffectRi = ε

T,RQ |= True
∀ j : R j,RQ 6|= ε

(Policy ε-Overrides T R1, . . . ,Rn),RQ |= Indeterminate

R 3
∀i : Ri,RQ 6|= Indeterminate ∨ EffectRi = ε̄

∃i : Ri,RQ |= ε̄ T,RQ |= True
∀ j : R j,RQ 6|= ε

(Policy ε-Overrides T R1, . . . ,Rn),RQ |= ε̄

Table 4.8: ε-Overrides Rule Combining Algorithm. ε stands for Permit or Deny, and ε̄
for the opposite.

R 1
Effect ∈ {Permit, Deny, Indeterminate} T,RQ |= True

∃Ri s.t. Ri,RQ |= Effect
∀R js.t. j < i :

R j,RQ |= NotApplicable

(Policy First-Applicable T R1, . . . ,Rn),RQ |= Effect

Table 4.9: First-Applicable Rule Combining Algorithms.
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R 1
∃i : Ri,RQ |= Indeterminate T,RQ |= True

(Policy Only-One-Applicable T R1, . . . ,Rn),RQ |= Indeterminate

R 2
∃i, j : (Ri,RQ |= Deny ∨ Ri,RQ |= Permit)∧

(R j,RQ |= Deny ∨ R j,RQ |= Permit)∧
i , j

T,RQ |= True

(Policy Only-One-Applicable T R1, . . . ,Rn),RQ |= Indeterminate

R 3
∃i : Ri,RQ |= Effect

∀j s.t. j , i : R j,RQ |= NotApplicable
T,RQ |= True

(Policy Only-One-Applicable T R1, . . . ,Rn),RQ |= Effect

Table 4.10: Only-One-Applicable Rule Overriding Algorithm.

Deny-Overrides are not symmetrical. The Only-One-Applicable and First-Applicable

policy-combining algorithms are same as for Rules, so they are not shown here.

Finally, Table 4.12 contains the generic rules that hold regardless of the combining

algorithm in question. These rules are used to infer Indeterminate or NotApplicable

and are always applied with lowest priority, only in cases when no access decision was

made using other inference rules.

4.2.3 Multiple Resource and Hierarchical Profile

While an important part of XACML, the Multiple Resource [20] and Hierarchical

Profile [18] profiles do not actually add any expressive power to the language. Instead,

they introduce abbreviated syntax that can be used to express access requests covering

multiple resource in a concise manner. The semantics of such requests is given by ’un-
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R 1
∃i : Pi,RQ |= Permit T,RQ |= True

(PolicySet Permit-Overrides T P1, . . . ,Pn),RQ |= Permit

R 2
∃i : Pi,RQ |= Deny T,RQ |= True

∀ j : P j,RQ 6|= Permit

(PolicySet Permit-Overrides T P1, . . . ,Pn),RQ |= Deny

R 3
∃i : Pi,RQ |= Deny ∨ Pi,RQ |= Indeterminate T,RQ |= True

(PolicySet Deny-Overrides T P1, . . . ,Pn),RQ |= Deny

R 4
∃i : Pi,RQ |= Permit T,RQ |= True

∀ j : P j,RQ 6|= Deny ∧ P j,RQ 6|= Indeterminate

(PolicySet Deny-Overrides T P1, . . . ,Pn),RQ |= Permit

Table 4.11: Permit-Overrides and Deny-Overrides Policy Combining Algorithms.

R 1
Comb , Deny-Overrides
∃i : Pi,RQ |= Indeterminate

T,RQ |= True
∀ j : P j,RQ |= Indeterminate ∨ P j,RQ |= NotApplicable

(PolicySet Comb T P1, . . . ,Pn),RQ |= Indeterminate

R 2
∃i : Ri,RQ |= Indeterminate

T,RQ |= True
∀ j : R j,RQ 6|= Permit ∧ R j,RQ 6|= Deny

(Policy Comb T R1, . . . ,Rn),RQ |= Indeterminate

R 3
P,RQ 6|= Permit P,RQ 6|= Deny

P,RQ 6|= Indeterminate

P,RQ |= NotApplicable

Table 4.12: Generic Indeterminate rule for policies and rules.
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wrapping’ them into individual access requests, and then evaluating each request sep-

arately. Without any loss of generality, the discussion is focused on individual access

requests.

4.2.4 Administrative Profile

So far, I have only been discussing access policies, i.e., policies that specify the

situations under which users are granted or denied access. An administrative policy, on

the other hand, specifies who (and under what conditions) is authorized to write access

policies. For example, an administrative policy might state that members of group Ad-

ministrators are allowed to write access policies about Files. Following, I describe the

basic processing model of administrative XACML.

When a new access request R is to be checked against a XACML policy, it is first

applied against all access policies in the set. If some policy applies to R and yields an

access decision, then the access decision needs to be authorized by a trusted policy using

a process defined in [114] as reduction.

Reduction is performed by applying the access request against any administrative

policy Ps which is sibling of P, generating administrative requests ARQ. Then, using

the administrative requests and other policies reduction edges are generated between the

policies. The semantics of reduction is shown in Table 4.13. Finally, a search is performed

through the reduction graph starting from the original access policy P, following reduction

edges until a trusted policy is reached. The access decision of P is authorized only if the

graph search reaches a trusted policy. The propagation rules (pertaining to the graph
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search) are shown in Table 4.14.

R 3
ARQ = (Request Delegated Del-Info Delegate ATS-Admin)

ARQ,P |=redε (Request ATS-Admin ε IssuerP ∅)

R 1
∀Pi,P j, s.t.parent(Pi) = parent(P j)

RQ,Pi |=redε AR AR,P j |= ε

εP(Pi,P j)

R 2
∀Pi,P j, s.t.parent(Pi) = parent(P j)

RQ,Pi |=redε AR
AR,P j |= Indeterminate

εI(Pi,P j)

Table 4.13: Reduction Rules. ε stands for a Permit or Deny.

R 1
RQ,P |= ε

∃path = (P, . . . ,Pn) s.t. ∀1 ≤ i < n :
εP(Pi,Pi+1) ∧ issuerPn = trusted

RQ,P |=auth ε

R 2
RQ,P |= ε ∨ RQ,P |= Indeterminate
∃path = (P, . . . ,Pn) s.t. ∀1 < i < n :

(εP(Pi,Pi+1) ∨ εI(Pi,Pi+1))∧
issuerPn = trusted

RQ,P |=auth Indeterminate

Table 4.14: Propagation Rules

4.3 Discussion

This chapter presented a proof theoretic semantics for XACML v3.0 using natural

deduction rules. These deduction rules closely follow the official XACML specification

– in cases of ambiguities, I consulted the public XACML mailing list1. To verify the

correctness of my interpretation of XACML, I also used Sun’s reference implementation2

of a XACML policy engine.

1OASIS XACML mailing list is available at http://lists.oasis-open.org/archives/xacml/
2Project information (including source code) available at http://sunxacml.sourceforge.net
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The operational semantics is a contribution in itself since it presents a concise, un-

ambiguous version of the official XACML specification (which, including the Adminis-

trative Profile specification, is over 150 pages) and it extends and improves previous work

by covering more XACML features and fixing errors from previous semantics proposals

(e.g., treatment of Permit-Overrides rule-combining algorithm as discussed in Section

4.2.2). For the purpose of this dissertation, this operational semantics is crucial since it is

used to prove the correctness of the Datalog and Description Logic mappings presented

in Chapters 5 and 6.
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Chapter 5

Datalog-Based Theoretical Foundation of XACML

The first version of XACML was published in 2003, and since then there has been

ongoing work on new versions – currently, XACML 3.0 [113] is close to standardization.

Despite the amount of interest in XACML, the language does not have an official formal

semantics that could clarify the official (informal) language specification and provide a

comparison to other formal access control languages.

There has been previous work on providing formal treatments of XACML [66, 131,

117, 50, 36], mostly for the purpose of providing analysis services such as formal veri-

fication. Additionally, there has been work on providing a formal semantics for an early

version of XACML [68], as well as an investigation of the compositional properties of the

language [121]. While previous work does provide insight into some formal properties of

the language, the following questions have still remained open:

• What is the complexity of access request checking in XACML (given an access

request R and a policy P, determining the access decision of P for R) ?

• If access request checking is intractable for full XACML, then what are the subsets

that make it polynomial? Which language features lead to intractability?

• How does XACML compare to other logic-based access control languages such as

the Flexible Authorization Framework (FAF)? Can we extend XACML with fea-

tures from FAF without compromising the worst case complexity of the language?
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To answer the above questions, in this chapter I present a semantics of XACML

based on a variant of Datalog. This formalization covers the latest version (3.0) of the

language [113], including its Administrative Policy Profile [114]. Using this semantics, I

provide complexity bounds for full XACML and various fragments. Additionally, using

this Datalog semantics I discover features of XACML that are underspecified and am-

biguous in the official specification, such as cyclic references of PolicySets. Finally,

using the Datalog mapping I provide a comparison of XACML to other rule-based pol-

icy frameworks such as FAF and show how XACML can be extended with features from

FAF while preserving the desirable computational properties of Datalog (polynomial data

complexity and unique model property).

5.1 Mapping XACML to Datalog

This section provides a polynomial time reduction of XACML to the logic pro-

gramming language Datalog such that access request checking in XACML is reduced to

entailment in Datalog. Using this mapping, I show which fragments of XACML have

provably polynomial data complexity and provide a comparison to other Datalog-based

policy languages.

In this section, I will use a Prolog-like syntax to represent Datalog rules:

H0:-B0 ∧ . . . Bn, c

where Bi represents a literal, and c a boolean constraint. Datalog is a well-studied logic

programming language [37], with a clear and concise semantics and polynomial data

67



complexity. There is a variant of Datalog that allows limited negation of predicates in

bodies of rules, called stratified Datalog – this variant maintains the desirable computa-

tional properties (i.e., unique minimal model and polynomial data complexity) [43]. More

information about stratified Datalog can be found in Chapter 2.

The mapping takes a policy set PS and request RQ as input and generates a Datalog

program P. It is organized as follows:

• A set of extensional (EDB) predicates is generated to represent the relations be-

tween the policies in PS and their child elements. In this step, EDB predicates such

as hasRule and hasTarget are instantiated for each Policy element.

• A series of rules and intensional (IDB) predicates are added to P to represent the

semantics of matching access Requests against Targets, and the propagation of

access decisions made by Rules to Policies and PolicySets. These first two

steps are independent of the request; they are done before the policy is deployed.

• During runtime, each Request is compiled to a set of extensional predicates and

these are added to P. The access decision is retrieved after computing the unique

minimal model of P.

5.1.1 Mapping XACML policy structure to Datalog

I assume that each policy element – not only Rules, Policies and PolicySets

but also AttributeDesignators, AttributeSelectors, and all other Target syntax

elements – has a unique ID, so it can be distinguished it from the other elements. For an

element P, Pid is used to refer to P’s identifier.
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To capture the parent/child relationship between policy elements in XACML, facts

(binary predicates) are added to the Datalog program. For example, if a Policy P con-

tains a Rule element R, then hasRule(Pid,Rid) is added to the Datalog program. To

capture these relationships, I start from the root policy element and traverse the whole

policy. Given a policy element S which contains of a list of children elements of type Xi:

S ::= (Element X1 . . . Xn)

the following facts are generated:

• If Xi is a terminal node, then the fact hasXi(S id, Xi
val) is added where S id is the

identifier of S and Xi
val is the value of the child element.

• If Xi is non-terminal, then the fact hasXi(S id, Xi
id) is added where Xi

id is the identifier

of the child element Xi.

Similarly to above, for a Request R and for each attribute AT in the request,

unique IDs are generated. For a Request R and each of its Attribute elements AT ,

the following predicate symbols are added: hasAT(R-id, AT -id), hasCat(AT -id, cat),

hasAttrID(AT -id, attr-id), hasIssuer(AT -id, issuer) and hasValue(AT -id, AV).

Example 5.1.1.1 Consider the following Rule element.

(Rule ()

(Target

(DisjunctiveMatch

(ConjunctiveMatch

(Match

(AttributeValue 25 integer)

(AttributeDesignator subject-cat age integer () false)
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integer-equal))))

Permit))

Assume that r-id, t-id, dm-id, cm-id, m-id, ad-id are the unique ID’s generated for

the Rule, Target, DisjunctiveMatch, ConjunctiveMatch, Match and Attribute-

Designator elements above, respectively.

The following facts would be added for the Rule: hasEffect(r-id, Permit) and

hasT(r-id, t-id), linking the rule with its Target element. To capture the relationship be-

tween Target and its children, the following facts are added: hasDM(t-id, dm-id), hasCM(dm-

id, cm-id) and hasM(cm-id, m-id). hasValue(m-id, 25), hasValueType(m-id, integer)

are added to denote the relationship between the Match element above and its Attribute-

Value. Finally, the following relations are added to P to initialize the Attribute-

Designator: hasAD(m-id, ad-id), hasCat(ad-id, subject-cat), has-attr-id(ad-id, age),

hasType(ad-id, integer), mustBePresent(ad-id, false), hasMatchFcn(m-id, integer-equal).

5.1.2 Mapping Rules, Policies and PolicySets

To capture access decisions, I use four intensional (head) predicates (permit, deny,

indet, na) for each policy element type. For example, for Rules the following predi-

cates are introduced: permitR(?P, ?RQ), denyR(?P, ?RQ), indetR(?P, ?RQ) and naR(?P,

?RQ). The semantics of these predicates is such that inferring εP(Rid, RQid) for a rule Rid

and request RQid corresponds to Rid,RQid |= ε in the natural semantics1.

I present a translation of the natural deduction rules presented in Chapter 4 to Dat-

alog. The mapping consists of three Datalog programs:
1ε is shorthand for any one member of { permit, deny, indet, na}
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• A program PR capturing the rules needed to match a Request against a Rule.

• A Datalog program PP that contains the rules needed to propagate an access deci-

sion from Rules to Policies.

• A programPPS that contains the rules needed to propagate access decisions through

Policies and PolicySets.

The final result of this translation will be a Datalog program P = PR ∪ PP ∪ PPS

s.t. for any policy element P, request RQ and access decision ε,

P |= εP(Pid,RQid)↔ Pid,RQid |= ε

5.1.2.1 Matching Requests to Rules

For the purposes of matching requests to Targets, the following intensional pred-

icates are added: matchAD, matchM, matchCM, matchDM, matchT (indet predicates are

added as well). These elements have similar meaning to the effect predicates used for

Rules and Policies; the only difference being that matchAD in addition to matching it

also selects an attribute value from the request, so it is a ternary predicate: matchAD(?AD,?RQ,

?V). All other intensional predicates in this section are binary, having only the matching

element and the request as arguments.

The Datalog rules that are used to match a request against an AttributeDesignator

and a Target are shown in Table 5.1 and 5.2 respectively. Note that fcn(?V, ?VM) is the

only constraint function that occurs, and is treated as a boolean constraint, i.e., both ar-

guments will be ground by the time the fcn is being evaluated. Finally, the rules used to
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determine the access decision for a Rule are shown in Table 5.3. The Condition element

is omitted here since its discussion warrants a separate section (Section 5.1.4).

matchAD(?AD, ?RQ, ?V) :– hasAttribute(?RQ, ?AT ) ∧ hasValue(?AT, ?V)
hasAttrID(?AD, ?id) ∧ hasAttrID(?AT, ?id)∧
hasType(?AT, ?type) ∧ hasType(?AD, ?type)∧
hasIssuer(?AT, ?issuer) ∧ hasIssuer(?AD, ?issuer)∧
hasCat(?AT, ?cat) ∧ hasCat(?AD, ?cat)∧

indetAD(?AD, ?RQ) :– ¬matchAD(?AD, ?RQ, ?V) ∧ mustBePresent(?AD, true).

Table 5.1: Matching a request (?RQ) against an AttributeDesignator (?AD) in Data-
log.

To handle AttributeSelectors, I pre-process the policies in the following way:

whenever an AttributeSelector AS encountered used, it is replaced it with a set of

AttributeValues that are returned when AS is applied against the request. I use a

predicate selected(?AS, ?RQ, ?V), which is instantiated with values (?V) selected when

applying the AttributeSelector against the Request ?RQ. Because this operation

is request-dependent, it might be considered an overhead at runtime. However, during

the normal operation of a XACML engine these evaluations will have to be performed

regardless, so I believe that such preprocessing does not add any substantial overhead.

Rules 3 and 4 in Table 5.2 capture the semantics of matching AttributeSelectors.

The following lemma shows the Datalog mapping of Rules is consistent with re-

spect to the XACML semantics presented earlier in this chapter.

Lemma 1 For a XACML Rule RQ, a request R, and ε one of {indeterminate, not-

applicable, permit, deny}:

P |= εP(Rid,RQid)↔ Rid,RQid |= ε.
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matchM(?M, ?RQ) :– matchAD(?AD, ?RQ, ?V) ∧ hasValue(?M, ?VM),
f cn(?V, ?VM) = True.

indetM(?M, ?RQ) :– indetAD(?AD, ?RQ) ∧ hasAD(?M, ?AD).
matchM(?M, ?RQ) :– selected(?AS , ?RQ, ?V) ∧ hasValue(?M, ?VM),

fcn(?V, ?VM) = True.
indetM(?M, ?RQ) :– indetAS(?AS , ?RQ) ∧ hasAS(?M, ?AS ).
matchCM(?CM, ?RQ) :–

∧
Mi∈CM(matchT(?Mi, ?RQ))

indetCM(?CM, ?RQ) :– indetM(?M, ?RQ) ∧ hasM(?CM, ?M).
matchDM(?DM, ?RQ) :– matchCM(?CM, ?RQ) ∧ hasCM(?DM, ?CM).
indetDM(?DM, ?RQ) :–

∧
CMi∈DM (indetCM(?CMi, ?RQ))

matchT(?T, ?RQ) :–
∧

DMi∈T (matchT(?DMi, ?RQ))
indetT(?T, ?RQ) :– indetDM(?DM, ?RQ) ∧ hasDM(?T, ?DM).

Table 5.2: Matching a request (?RQ) against a target (?T) in Datalog.

indetR(?R, ?RQ) :– indetT(?T, ?RQ) ∧ hasT(?R, ?T ).
εR(?R, ?Q) :– matchT(?T, ?RQ) ∧ hasT(?R, ?T ) ∧

hasEffect(?R, ε).
naR(?R, ?RQ) :– ¬indetR(?R, ?RQ) ∧

¬denyR(?R, ?RQ) ∧

¬permitR(?R, ?RQ).

Table 5.3: Matching a Request (?RQ) against a Rule (?R) in Datalog.

Proof Sketch The proof is fairly simple since the Datalog rules presented in this

chapter are a rewrite of the natural deduction rules from Chapter 4. The correspondence

between the deduction rules used to infer that Rid,RQid |= ε and the Datalog rules used to

infer P |= εP(Rid,RQid is shown in Table 5.4. For brevity, instead of the whole rules, only

references to their definitions are provided.

Natural Deduction Rule Datalog Rule
Rule 1 and Rule 2, Table 4.5 Rule 1, Table 5.1
Rule 4, Table 4.5 Rule 2, Table 5.1
Rule i (1 ≤ i ≤ 10), Table 4.6 Rule i (1 ≤ i ≤ 10), Table 5.2
Rule i (1 ≤ i ≤ 3), Table 4.7 Rule i (1 ≤ i ≤ 3), Table 5.3

Table 5.4: Correspondence of Natural Deduction rules and Datalog rules for XACML
request matching
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�

Lemma 2 PR is a Datalog program with a unique minimal model and polynomial data

complexity.

Proof 1 The lemma is proved by showing that PR is a Datalog program with stratified

negation. First, notice that in all rules in PR, negated predicates occur only in the body.

Second, it can be shown that the negation is stratified by presenting a valid stratification,

as presented in Table 5.5.

Stratum Predicate
0 hasAttribute, hasT, etc. (EDB predicates)
1 matchAD

2 indetAD

3 matchM, indetM
matchCM, indetCM
matchDM, indetDM
matchT, indetT

4 indetR, permitR, denyR
5 naR

Table 5.5: Strata ordering of PR.

5.1.2.2 Matching Requests to Policies

In this section, I show how access decisions are propagated from Rules to Poli-

cies. This section is categorized by the type of rule-combining algorithm.

Permit-Overrides and Deny-Overrides Note that Permit- and Deny-Overrides are

essentially symmetrical in their meaning. Thus, in Table 5.6 I only show one overriding

algorithm – a placeholder variable ε is used to stand for either Permit or Deny, and ε̄ to

stand for the opposite of ε.
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εP(?P, ?RQ) :– hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
hasRule(?P, ?R) ∧ εR(?R, ?RQ) ∧
hasComb(?P, ε-Overrides).

indetP(?P, ?RQ) :– ¬εP(?P, ?RQ) ∧ indetR(?R, ?RQ) ∧
hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
hasRule(?P, ?R) ∧ hasEffect(?R, ε) ∧
indetR(?R, ?RQ) ∧ hasComb(?P, ε-Overrides).

ε̄P(?P, ?RQ) :– ¬εP(?P, ?RQ) ∧ ¬indetP(?P, ?RQ) ∧
hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
hasRule(?P, ?R) ∧ ε̄R(?R, ?RQ) ∧
hasComb(?P, ε-Overrides).

Table 5.6: Mapping Permit- and Deny-Overrides rule-combining algorithm to Data-
log.

First-Applicable Again, ε is used to stand for Permit, Deny or Indeterminate, to

avoid repeating similar rules. Given a policy P with n rules, for each rule at position i, the

rule from Table 5.7 is generated.

εP(?P, ?RQ) :– hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧

hasComb(?P,First-Applicable) ∧

hasRule(?P, ?Ri) ∧ εR(?R, ?RQ) ∧∧
hasRule(?P,?R j), j<i

(
naR(?R j, ?RQ)

)
.

Table 5.7: Mapping First-Applicable rule-combining algorithm to Datalog.

Only-One-Applicable If a Policy P has n rules, then for each rule at position i, the

Datalog rules in Table 5.8 are generated.

Lemma 3 For a XACML Policy element P, a request R, and result one of { indeterminate,

notapplicable, permit, deny }

PR |= resultP(Pid,Rid)↔ Pid,Rid |= result.
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εP(?P, ?RQ) :– hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
εR(?Ri, ?RQ) ∧ hasRule(?P, ?Ri) ∧
hasComb(?P,Only-One-Applicable).∧
hasRule(?P,?R j), j,i

(
naR(?R j, ?RQ)

)
.

indetP(?P, ?RQ) :– hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
hasComb(?P, ’Only-One-Applicable’) ∧ hasRule(?P, ?R) ∧
indetR(?R, ?RQ).

indetP(?P, ?RQ) :– hasT(?P, ?T ) ∧ matchT(?T, ?RQ) ∧
hasComb(?P,Only-One-Applicable) ∧ hasRule(?P, ?Ri) ∧
εR(?Ri, ?RQ) ∧ hasRule(?P, ?R j) ∧
εR(?R j, ?RQ), i , j .

Table 5.8: Representation of Only-One-Applicable rule-combining algorithm in Dat-
alog. ε stands for either a Permit or Deny.

Proof Sketch Similarly to the Rule case, the proof is fairly simple since the Data-

log rules presented in this chapter are a rewrite of the natural deduction rules from Chapter

4. For brevity, instead of the whole rules, only references to their definitions are provided.

in Table 5.9.

Natural Deduction Rule Datalog Rule
Rule i (1 ≤ i ≤ 3), Table 4.8 Rule i (1 ≤ i ≤ 10), Table 5.6
Rule 1, Table 4.9 Rule 1, Table 5.7
Rule i (1 ≤ i ≤ 3), Table 4.10 Rule i (1 ≤ i ≤ 10), Table 5.8

Table 5.9: Correspondence of operational semantics and Datalog rules for XACML policy
matching

�

Lemma 4 PP ∪ PR is a Datalog program with a unique minimal model and polynomial

data complexity.

Proof 2 Similarly to the unique model proof for PR, I will show that PP∪PR has a unique,

minimal model since it is a program with stratified negation. Again, notice in all of the

rules in PP, negation occurs only in the body of the rules. Moreover, most of the rules in
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PP have negation of predicates of PR, which suggests a possible valid stratification. We

show that the negation is stratified by presenting the strata of PP (Table 5.10).

combining algorithm stratification
permit-overrides PR ≺ permitP ≺ indetP ≺ denyP ≺ naP
deny-overrides PR ≺ denyP ≺ indetP ≺ permitP ≺ naP
first-applicable PR ≺ denyP, permitP, indetP ≺ naP
only-one-applicable PR ≺ denyP, permitP, indetP ≺ naP

Table 5.10: Strata of PR ∪ PP.

5.1.2.3 Matching Requests to PolicySets

Unlike Policy elements, which only contain Rules, a PolicySet can contain Po-

licies or other PolicySets. Given this, in Table 5.11, I present the Datalog rules for

Permit-Overrides and Deny-Overrides. The First-Applicable and Only-One-Applicable

policy combining algorithms have the same semantics as their rule combining counter-

parts discussed above, so they are omitted here.

εPS(?PS , ?RQ) :– hasT(?PS , ?T ) ∧ matchT(?T, ?RQ) ∧
hasP(?PS , ?P) ∧ εP(?P, ?RQ) ∧
hasComb(?PS , ε-Overrides).

ε̄PS(?PS , ?RQ) :– hasT(?PS , ?T ) ∧ matchT(?T, ?RQ) ∧
hasP(?PS , ?P) ∧ ε̄P(?P, ?RQ) ∧
hasComb(?PS , ε-Overrides) ∧ ¬εPS(?PS , ?RQ).

εPS(?PS , ?RQ) :– hasT(?PS , ?T ) ∧ matchT(?T, ?RQ) ∧
hasPS(?PS , ?PS 1) ∧ εPS(?PS 1, ?RQ) ∧
hasComb(?PS , ε-Overrides).

ε̄PS(?PS , ?RQ) :– hasT(?PS , ?T ) ∧ matchT(?T, ?RQ) ∧
hasPS(?PS , ?PS 1) ∧ ε̄PS(?PS 1, ?RQ) ∧
hasComb(?PS , ε-Overrides) ∧ ¬εPS(?PS , ?RQ).

Table 5.11: Representation of Permit- and Deny-Overrides policy combining algo-
rithms in Datalog.
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Lemma 5 For a XACML PolicySet element PS , a request R, and ε one of {indeter-

minate, notapplicable, permit, deny}:

P |= resultP(PSid,Rid)↔ PSid,Rid |= ε.

Proof Sketch Similarly to the Rule and Policy case, the proof is fairly simple

since the Datalog rules presented in this chapter are a rewrite of the natural deduction

rules from Chapter 4. Note that there are two sets of rules in Table 5.11: one where

decisions are propagated from child Policies (rules 1 and 2), and another set where

decisions are propagated from child PolicySets (rules 3 and 4). This is because in the

datalog mapping there are different intensional predicates used to infer access decisions

for Policies and PolicySets. In the natural semantics rules (Table 4.11 in Chapter 4),

there is no distinction on the type of child policy element.

It is straightforward to see that Each of the four rules in Table 5.11 corresponds to

a rule with the same index in Table 4.11 (operational semantics rules).

�

UnlikePR andPP, the Datalog program that captures the semantics of PolicySets

(PPS ) is not stratifiable. This follows from the fact that arbitrary references between

PolicySets are allowed in XACML. Consider the rules in Table 5.11; observe that ¬εPS

and ε̄PS occur in both the body of the rules, thus in cases of cyclical references among

PolicySets negation and recursion will be intertwined and the program will not be strati-

fiable. The discussion about the computational properties of XACML with PolicySets is

presented in a Section 5.2.
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5.1.3 Administrative Profile

In this section, I will show how the administrative profile of XACML can also be

mapped to Datalog.

5.1.3.1 Reduction Rules

In XACML, administrative requests are generated by reducing access requests against

policies. For this purpose, for each PolicySet or Policy P I introduce two predicates:

reducep(ARid, Rid, Pid) and reduced(ARid, Rid, Pid), where Rid is the ID of the original

request, and ARid is an ID for the administrative request that is generated when R is re-

duced against P. The predicate reduced(ARid, Rid, Pid) means that the access request Rid

has been reduced to the administrative request ARid using the policy Pid according to the

semantics of the reduction procedure defined in XACML’s Administrative Profile. The

Datalog version of the reduction rules is shown in Table 5.12.

hasDelegate(?AR, ?I) :– reduceε(?AR, ?RQ, ?P) ∧ hasIssuer(?P, ?I).
hasAttr(?AR, ?AT ) :– reduceε(?AR, ?RQ, ?P) ∧ hasAttr(?R, ?AT ) ∧

hasCat(?RQ, ?AT, delegated).
hasAttr(?AR, ?AT ) ∧
hasCat(?AR, ?AT,
concat(’delegated’, ?C)) :– reduceε(?AR, ?RQ, ?P) ∧ hasAttr(?R, ?AT )∧

hasCat(?RQ, ?AT, ?C), ?C , delegated.

Table 5.12: Datalog version of reduction rules in XACML 3.0.

Note that I have extended the hasCat predicate to include the request where the

attribute belongs; this was done to avoid conflating hasCat predicates belonging to dif-

ferent requests (e.g., the predicates in the RHS and LHS of the last rule above).
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The Datalog rules used to capture the semantics of generating edges in the reduction

graph are shown in Table 5.13.

εP(?Pi, ?P j):– hasParent(?Pi, ?par) ∧hasParent(?P j, ?par) ∧
reduceε(?AR, ?RQ, ?Pi) ∧permitP(?AR, ?P j).

εI(?Pi, ?P j):– hasParent(?Pi, ?par) ∧hasParent(?P j, ?par) ∧
reduceε(AR,RQ, Pi) ∧indetP(?AR, ?P j).

Table 5.13: Rules to generate edges in reduction graph.

5.1.3.2 Propagation Rules

Propagation is done by a breadth-first-search along PP edges until a policy with a

trusted issuer is encountered. Predicates visitedPP and startingPolicy are initialized

to contain only the node whose access decision it is being authorized. The Datalog rules

for authorizing Permit decisions are shown in Table 5.14; The rules for authorizing Deny

decisions are omitted since they are equivalent to the Permit ones.

visitedPP(?P j):– visitedPP(?Pi) ∧PP(?Pi, ?P j).
visitedPI(?P j):– visitedPP(?Pi) ∧PI(?Pi, ?P j).
visitedAll(?X):– visitedPP(?X).
visitedAll(?X):– visitedPI(?X).
εAuth(?X):– visitedPP(?Pi) ∧trusted(?Pi)∧

starting(?X) ∧¬visitedPI(?Pi).
indetAuth(?X):– visitedAll(?Pi) ∧trusted(?Pi)∧

starting(?X) ∧¬εAuth(?X).

Table 5.14: Authorization rules for access decision in reduction graph.

The program above is stratified, so it has polynomial data complexity. However,

worst case running time increases by a factor of n3 (n corresponds to the number of poli-

cies in the set), since additional evaluation is required for administrative policies. This

is because for each evaluation of a request against a policy, first a reduction graph needs
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to be generated by evaluating the request against each pair of policies of the set (which

takes O(n2) where n is the number of policies). Then, the access decision needs to be au-

thorized by performing a breadth-first search on the generated reduction graph (following

the rules in Table 5.14), which is O(n). Thus, the total computational overhead of using

the administrative profile is O(n2) + O(n) which is O(n2).

5.1.4 Functions in XACML

One of the most powerful features of XACML is its wide array of functions avail-

able to compare attributes. These functions are available as part of the Condition el-

ement in Rules, and act as constraints on the access request. There are different types

of constraints available: from datatype comparison, arithmetic and set-oriented to higher

level functions.

Adding constraint functions to Datalog is non-trivial – even if the constraints are

decidable, coupling them with rules can easily lead to an undecidable combination [86].

Extending Datalog with constraints has attracted a great amount of interest from the re-

search community; however, in most proposals the expressiveness of the constraint do-

mains is severely limited and certainly not expressive enough to cover all of the functions

supported by XACML.

Fortunately, there are two implicit assumptions in XACML regarding its support

for functions/constraints:

• Functions only occur in the Condition and Match elements, and in both cases they

return a boolean value
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• Functions do not have any side-effects, i.e., they do not modify the values of any

attribute in the request or policy.

The above observations indicate it is possible to avoid doing any constraint solving

at run-time. Instead, given that the functions are boolean and assuming that all of the

arguments are ground, much simpler constraint checking can be performed. This approach

was used in SecPal [27], where the authors defined a safety condition for their language:

each variable that goes in the constraints has to be bound before evaluating the constraints.

It can be easily shown that XACML satisfies SecPal’s safety condition. This is be-

cause the only input variables Condition and Match are given using AttributeSelector

and AttributeDesignator elements. In order to make sure all input arguments are

ground, the policy can be pre-processed by evaluating each AttributeSelector and

AttributeDesignator against the request and replacing it with a bag of constant val-

ues selected. In both cases, the variable referenced in the function is bound to a bag of

attribute values, which can then be used as input to the function. Thus, while Condition

elements support a wide range of functions, during run-time all of the input arguments for

those functions are bound to bags of constant values, effectively satisfying the groundness

safety condition and simplifying function evaluation.

5.2 Complexity of XACML

5.2.1 XACML with cyclical PolicySets

If cyclical PolicySet references are allowed, then the access decision of a policy

for a given request will be sometimes be inconsistent – depending on the order of evalua-
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tion, different access decisions might be produced. Consider the following example.

Example 5.2.1.1 There are two PolicySets, PS 1 and PS 2. PS 1 has a DenyOverrides

combining algorithm, whereas PS 2 is PermitOverrides. In addition to their joint ref-

erences, they also contain a policy each, as shown in the diagram below.

PS 1(Deny-Overrides)

vvmmmmmmmmmmmmmm

��
P1 PS 2(Permit-Overrides)

OO

��
P2

Now, consider what would happen if a request came in such that P2 yielded a Deny

and P1 a Permit. Depending on the order of evaluation of PS 1 and PS 2, different results

would be obtained for the same request. If I choose to evaluate PS 1 first, then PS 1 would

yield a Permit and PS 2 would also return a Permit (since it is Permit-Overrides and PS 1

returned a Permit). However, if PS 2 is evaluated first, it would return a Deny, and PS 1,

having a Deny-Overrides combining algorithm, would return a Deny itself.

The Datalog program produced by mapping the example above is presented below.
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permitPS(?X, PS 2) : − permitPS(?X, PS 1).

permitPS(?X, PS 2) : − permitP(?X, P2).

denyPS(?X, PS 2) : − denyPS(?X, PS 1),¬permitPS(?X, PS 2).

denyPS(?X, PS 2) : − denyP(?X, P2), permitPS(?X, PS 2).

denyPS(?X, PS 1) : − denyP(?X, P1).

denyPS(?X, PS 1) : − denyPS(?X, PS 2).

permitPS(?X, PS 1) : − permitP(X, P2),¬denyPS(X, PS 2).

permitPS(?X, PS 1) : − permitPS(X, PS 2),¬denyPS(X, PS 2).

permitP(R, P1).

denyP(R, P2).

The logic program above is not stratified (nor locally stratified) since denyPS and

permitPS occur negatively in the bodies of the rules above. To provide semantics for

such unstratifiable programs, the most well-studied approaches from logic programming

are stable models [54] and well-founded semantics [123].

The above program has multiple models under the stable model semantics, where

both permit and deny decisions are inferred for PS1 and PS2 depending on the model.

The possibility of multiple models for a logic program is highly undesirable for policies

since it implies ambiguity, i.e., a policy that returns different access decisions for the same

access request. This ambiguity, along with the co-NP data complexity [44] of computing

stable models renders the stable model semantics impractical for XACML.

The well-founded semantics of a logic program partitions all ground atoms into
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three sets: true, false and unknown. The well founded model can be generated by an

constructing an alternating fixpoint [53], that is, building up a set of negative conclusions

until the lest fixpoint is reached, and then deriving the positive conclusions that follow

(without deriving any further negative ones) using traditional Datalog semantics. The

alternating fixpoint for the above program does not contain any inferences for PS1 or

PS2, so the access decision of the above program will be unknown under the well founded

semantics.

Thus, applying the two standard semantics for unrestricted negation in logic pro-

grams yields ambiguity in one case and underspecification in the other case. To show that

this behavior is an issue with XACML itself, and is independent of the type of logic pro-

gramming applied, I show a proof that in XACML with arbitrary references, the problem

of determining if a set of policies yields a Permit for a request is NP-complete.

For a policy set PS and a request R, I refer to each distinct and valid order of

evaluation of R against the policies in PS as a model of PS for R (written M(PS ,R)).

Obviously, depending on the cycles in the program there may be many possible models

Mi(PS ,R), where some of them can have conflicting access decisions for R. Thus, in order

to provide an unambiguous answer, the decisions of all the models have to be combined

when processing the request – this can be done similarly to how decisions of Rule or

Policy elements are combined.

Theorem 5.2.1 Give a cyclical XACML policy set PS with a root PolicySet PS 0 and re-

quest R, the problem of determining an evaluation order M(PS ,R) such that permit(PS 0,R) ∈

M(PS ,R) is NP-complete w.r.t to the size of PS .
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Proof. Membership. If I were given an evaluation order M(PS ,R) and a request R it is

easy to see that checking if PS yields a Permit for R under M(PS ,R) is polynomial: I

simply follow the ordering in M(PS ,R), evaluate each policy element and combine the

results. Since each policy element in P ∈ PS is evaluated only once, testing if R yields a

Permit for PS 0 under ordering M is also polynomial.

Hardness. This will be shown by reducing the well known boolean satisfiability

(3SAT) problem to ours. In 3SAT, a formula F of the following type is given:

(x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . ∧ (xn1 ∨ xn2 ∨ xn3)

where each xi j is a (possibly negated) boolean variable. (The same variable might repeat

in the formula.) The 3SAT problem is to find an assignment of values for the variables

such that F is true overall.

To represent a boolean variable xi j, I generate the following combination of Policy-

Sets:

PS 0
i j(Deny-Overrides)

��

// PS 1
i j(Permit-Overrides)oo

��
P1 P2

All of the policy elements above have an empty Target element that is empty,

so they match all requests. Additionally, P2 always returns Deny and P1 always returns

Permit. As explained in the example in Section 5.1, depending on the order of evaluation,

this set will return either a Permit or Deny (e.g., evaluating PS 0
i j before PS 1

i j will yield a

Permit). This set is used to simulate a truth assignment of variable xi j – if the set returns
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Permit, then the value of xi j is true (if it returns Deny, then xi j is false).

C(Permit-Overrides)

rrffffffffffffffffffffffffffffff

vvnnnnnnnnnnnnnn

tthhhhhhhhhhhhhhhhhhhhhh

vvnnnnnnnnnnnnnn

�� ((PPPPPPPPPPPPPP

**VVVVVVVVVVVVVVVVVVVVVV

PS 0
11

��

// PS 1
11

oo

��

PS 0
12

��

// PS 1
12

oo

��

PS 0
13

��

// PS 1
13

oo

��
P0

11 P1
11 P0

12 P1
12 P0

13 P1
13

Table 5.15: Representing a clause consisting of three variables with a XACML policy
structure.

The variables corresponding to a 3-clause are combined in Table 5.15. Since each

clause represents a disjunction of the atoms, a PermitOverrides combining algorithm

is used – it will yield a Permit iff at least one of the variables in the clause is true. All of

the clauses are referenced by the root policy set F, which represents the top level formula.

The combining algorithm for F is DenyOverrides, since the F represents a conjunction

of all its clauses. �

5.2.2 Tractable Fragments

Let us denote the fragment of XACML where cyclical references are not allowed

with XACML−. This assumption does not change the rules of program PPS , so it is still

not stratifiable. However, I will show that the translation of the nested XACML− policy

sets comprises a locally stratifiable Datalog program, i.e., if I consider the ground atoms

as propositional symbols, then the instantiated version of PPS will be stratified. Locally

stratified programs have the same nice properties as stratified Datalog: they have a unique

minimal model that can be computed in quadratic time.

Since there are no cycles allowed in XACML−, there is a partial order which can be
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used to evaluate PolicySets. Consider the policy set below:

PS 1

}}{{
{{

{{
{{

""FFFFFFFF

��

P1 PS 2

||xxxxxxx
x

""FFFFFFFF

PS 3 PS 4

In this example policy, a directed edge P → D means that PolicySet P refer-

ences(includes) PolicySet (or Policy) D. Since their references do not form cycles, there

exists a partial order among the policy elements in the set. In the scenario above, for

example, PS 4, P1 and PS 3 will be evaluated first, then PS 2 and in the last step, the root

policy set PS 1. Because the Datalog rules follow this evaluation ordering, the instantiated

intensional predicates (permitPS, denyPS) can be split in separate strata that match the

partial order of the references relation for policy sets. As a result, PPS is locally stratifi-

able.

Theorem 5.2.2 The Datalog programP = PR∪PP∪PPS has a unique and minimal model

that can be computed in quadratic time.

Proof. We will show thatPPS∪PP∪PR has a unique, minimal model since it is a variant of

Datalog with locally stratified negation. It was shown above that PPS is a locally stratified

Datalog program. Notice that in the rules in PPS , negated IDB predicates from PP can

also occur (since PolicySets can refer to Policies as well.) Given this, P is stratified

as follows:

PR ≺ PP ≺ PPS
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Thus, the predicates from PR will be evaluated first (for those predicates, the order-

ing in Table 5.5 holds). Then, the rules that propagate an access decision from a Rule

to a Policy are evaluated – the ordering of those predicates depends on the combining

algorithm and is described in Table 5.10. Finally, the results are combined in the root

policy sets according to the Datalog rules presented in Section 5.1.2.3. In this case, the

order of evaluation depends on the references among the policy sets (no cycles allowed in

XACML−). Since the ground atoms for PR, PP, PPS are disjoint, and I have shown that

they are all (locally) stratifiable, I can infer that the P is locally stratifiable as well.

Being a locally stratified Datalog program, the XACML− translation has a unique

stable model [54]. Moreover, since a) in [25] it was shown that well founded semantics

coincides with the stable model semantics, and b) well-founded semantics can be com-

puted in O(N2) where N is the size of data [123], it follows that XACML− has quadratic

time data complexity.

�

5.3 XACML and Logic-Based Languages

In this chapter, a comprehensive mapping of XACML v3.0 to Datalog was pre-

sented. Using this mapping, I showed that a large subset XACML, i.e., XACML without

cyclical references among policies, has polynomial data complexity and unique, minimal

model property. The mapping also showed the overhead of using the Administrative Pro-

file, which results in increasing the worst case complexity by a factor of O(n2), where n

represents the number of policies in the set.
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In addition to the complexity results, this Datalog-based mapping opens the door

to 1) detailed comparison with well-studied academic and industry logic-based access

control languages, and 2) possibility of extending the language with features from other

Datalog-based languages. I will cover both these points in this section, first by comparing

XACML with the Flexible Authorization Framework (FAF [71]), and then showing how

features from FAF that are missing in XACML can be added to the latter.

The version of XACML without references and constraints is very similar to FAF

– they both can be embedded in locally stratified Datalog, they both allow for specifying

propagation and conflict resolution policies and they both have the unique minimal model

property. An in-depth comparison is presented below:

• Hierarchies. While FAF fully supports subject and object hierarchies (including

role hierarchies), the support of such features in XACML is limited. In particular,

XACML does not support hierarchies among subject groups (e.g., stating that a

user John is in group GraduateStudents which is a subgroup of Students) and has

limited support for role hierarchies. Some of these limitations are illustrated with

an example below.

• Propagation of access decisions. Both approaches support propagation of access

decision, with the difference being that in FAF propagation is done along hierar-

chies, whereas in XACML, propagation is done along the parent-child relationship

of policy elements (hasRule , hasPolicy and hasPolicySet predicates in my map-

ping).

• Conflict Resolution. XACML and FAF both provide similar functionality for con-
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flict resolution: they both support permit-overrides and deny-overrides combining

algorithms. Additionally, given the XACML-to-Datalog mapping, the conflict res-

olution algorithms that are available in FAF and not in XACML can be easily added

to the latter as well.

• Datatypes and Functions. XACML has a very powerful built-in support for

various functions through its Condition element. In FAF, data-types and datatype

matching functions are not explicitly addressed.

To illustrate XACML’s incomplete support for role hierarchies, consider the follow-

ing policy. It has three roles: Doctor, Nurse and Administrator, where Doctor is a senior

role of both Nurse and Administrator. There is a set of permissions PPS N associated

with Nurse role and a set of permissions PPS A associated with the Administrator role. To

represent the seniority of Doctor roles, in XACML the Doctor policy would look like:

<PolicySet PolicySetId="PPS_D"

PolicyCombininAlgId="Permit-Overrides">

<Target/>

<PolicySetIdReference>

PPS_A.xml

</PolicySetIdReference>

<PolicySetIdReference>

PPS_N.xml

</PolicySetIdReference>

</PolicySet>

Consider what happens if a new PolicySet is added (PPS B), which is associated

with people who have activated the roles of both Nurse and Admin. Since doctors inherit

the privileges of nurses and admins in this example, they should be able to access this

policy set. However, for this to happen, the doctor policy will have to be manually updated
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and the PPS B set added to its list of references. It is unfortunate that every time a new

permission is added, this manual updating is required to make sure the hierarchy still

works. Obviously, an automatic approach would be preferred where the policy engine is

smart enough to realize that a Doctor role inherits the privileges of both Nurse and Admin,

and is therefore able to access PPS B.

There is support in FAF for this functionality, using hierarchy predicates. Given my

XACML-to-Datalog semantics, these predicates can be added to XACML as well, essen-

tially adding a new feature to the language without sacrificing computational properties.

Adapting the hierarchy predicates from FAF has to be done at the attribute matching level

in XACML, for example:

hasAttrValue(role,Nurse) :- hasAttrValue(role,Doctor)

hasAttrValue(role,Admin) :- hasAttrValue(role,Doctor)

The above rules state that whenever a Request arrives with a value of Doctor for

the role attribute, then the engine will automatically infer it has values Nurse and Admin

as well, so the permissions written for nurses and admins will be inherited. With this

simple addition, added for each role relationship, the policy engine would automatically

infer that Doctor has access to PPS B without any need to modify its policy.

Other useful feature of FAF is its history table , i.e., a table whose rows describe

the access requests processed. A history table can be used to model various policy

constraints such as the Chinese Wall security policy, and will not change the computa-

tional complexity of XACML if it were added. Additionally, FAF provides other sug-

gestions for future extensions of XACML. For example, combining algorithms such as
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most-specific-overrides and no-overriding can also be easily adapted to XACML: most-

specific-overrides can be performed by comparing the Targets of the two policy ele-

ments to be combined, whereas for no-overriding a clause can be added to throw Indeterminate

whenever conflicting access decisions are returned. The mapping I have presented in this

section provides a framework for experimenting with such extensions.
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Chapter 6

XACML Analysis Services

In the previous chapter, I described a formal framework for XACML based on Dat-

alog where access request checking was provided in PTIME in the case with no cyclical

references between policies. That chapter, however, did not address the lack of support

for comparing and debugging policies nor the lack of compile-time services for XACML

in general. The following example scenario illustrates some of these services (note that

formal verification services were discussed in Chapter 1).

Analysis Service Example Consider an access control policy for a bank for this ex-

ample. There is a general, high-level access control policy assigned by the bank’s main

branch (headquarters), which must be followed by the policy of each branch. Each local

branch policy subsumes the general one and extends it appropriately, essentially customiz-

ing the general policy for its own needs. The main requirement is that each local policy

conforms to the general policy; namely, for any given access request, whenever the gen-

eral policy returns Permit (or Deny), the local branch policy should also return Permit

(or Deny). This scenario motivates the need for automated policy comparison. Checking

policy subsumption, such as in this example, is one type of comparison, others include:

checking policy disjointness (i.e., there is no access request s.t. both policies apply) and

equivalence (for any access request, both policies will yield the same decision). For large

policy sets written in an expressive language, performing these services manually would
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be very tedious and error-prone, so an automated approach is preferred [118].

Federated Policies Example Continuing on the access control policy of a bank exam-

ple, consider what happens when access control is federated across multiple, (to some ex-

tent) independent branches of the bank. Each branch might use different attribute schemes

to describe subjects, actions and resources that comprise its access policy. For example,

keeping in mind that XACML is an attribute based language, one bank branch might use

a boolean attribute adultAge to represent adult customers, whereas another might use a

numeric constraint on an integer attribute age. In a large organization with many different

departments, reconciling such vocabulary information is non-trivial. Thus, there exists a

need for a mechanism that will simplify specification and management of policies from

heterogeneous sources - and as importantly, support all of the common analysis services

discussed here and in previous work: change analysis (policy comparison), formal verifi-

cation and redundancy checking.

In this chapter, I present a logic-based analysis framework that can reason about ex-

pressive XACML policies and provide services such as above. As a basis for this frame-

work I use Description Logics (DL), which are a family of formalisms that are decidable

subsets of First-Order logic, and are the formal basis for the Web Ontology Language

[45]. Because of the correspondence of policy analysis services to DL reasoning services

(e.g., policy comparison can be reduced to concept subsumption, whereas formal verifi-

cation can be reduced to concept satisfiability), the framework can leverage off-the-shelf

DL reasoners optimized to provide the above-mentioned analysis services.

An important benefit of using a logic compatible with OWL is that we can leverage
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OWL being a W3C standard for representing information on the Web. Thus, I extend

previous work of coupling XACML with OWL ontologies [40] by providing a unified

reasoning framework about that covers both XACML and OWL.

This chapter is organized as follows. In Section 6.1 the algorithm to map a XACML

policy set to a Description Logic knowledge base is presented. The mapping covers

XACML Policy Elements (PolicySet, Policy, Rule, Target, Request), along with Datatypes

and Administrative Policies. Given this mapping, Section 6.2 describes how formal veri-

fication, policy compariosn and redundancy checking can be provided. In Section 6.3, the

mapping is extended with support for OWL, which in turn provides a semantic extension

of XACML (supporting data integration and rich policy models). Finally, Section 6.4

contains a discussion of limitations of the analysis framework as well as a comparison to

other analysis approaches.

6.1 Mapping XACML

This section will provide details of the mapping of XACML policy elements to

Description Logic (DL) concept expressions.

At the core of the mapping there are two translation functions. Given a DL KB K,

decision type ε ∈ {Permit, Deny, Indeterminate}, policy element P ∈ {PolicySet,

Policy, Rule}, and Target element T, the translation functions are defined as:

π : T × ε ⇒ C τ : P × K⇒ K′

The function π(ε,T) takes an access decision and a target element T as input, and
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returns a concept expression C s.t. whenever the mapping of the access request is of type

C, the original request will also yield the access decision ε when evaluated against T, and

vice-versa. The translation function τ(P,K) takes a policy element P and a DL KB K , and

generates axioms in K to capture the semantics of P. More specifically, for each policy

element P (Rule, Policy or PolicySet) three DL concepts are introduced: Permit-P,

Deny-P and Indeterminate-P. Informally, whenever the mapping of the request is of type

ε-P, that means that when evaluated against P, the original request will return ε, and

vice-versa.

In the remainder of this section, I will present formal descriptions of π and τ. First,

the translation function πwill be discussed in detail; I will describe how a XACML access

request and a Target are mapped to Description Logics. After that, the presentation will

move on to τ and types of axioms added to the KB to capture the semantics of XACML

combining algorithms. After these results for core XACML, I will discuss the more ad-

vanced parts of the language (administrative policies, datatypes, hierarchical resources)

and their corresponding DL mapping. Note that from now on, unless specified differently,

K is assumed to refer to the DL KB that we’re mapping the XACML policies into.

6.1.1 Mapping Requests

XACML access requests represent a conjunction of attribute-value pairs. For illus-

trative purposes, an example of a request containing a single subject-id attribute and value

is shown below:

<Request xmlns="urn:oasis:names:tc:xacml:3.0:schema:os"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
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<Attributes

Category="...:tc:xacml:1.0:subject-category:access-subject">

<Attribute AttributeId="...:tc:xacml:1.0:subject:subject-id"

Issuer="med.example.com">

<AttributeValue

DataType=".../XMLSchema#string">Julius Hibbert

</AttributeValue>

</Attribute>

</Attributes>

</Request>

A XACML access request is mapped to a DL concept expression; details of the

DL mapping are presented in Table 6.1. Note that no matching functions are allowed in

requests, so the only data-type restriction used type-equal.

Syntax Mapping π
RQ ::= (Request ATS∗) π(ATS1) u . . . u π(ATSn)
ATS ::= (Attributes (AT content)∗ cat) π(AT1, cat) u . . . u π(ATn, cat)
AT, cat ::= (Attribute AV∗ attr-ID Issuer) ∃r.π(typeAV-equal, AV) where r ∈ R s.t.

name(r) = concat(π(attr-ID), π(Issuer),
π(cat), π(TypeAV))

Table 6.1: Mapping Request to a DL concept expression

This mapping is not complete because of the open world assumption present in

Description Logics. The following additions to the concept expression corresponding to

the request essentially close-off the information carried in a request:

1. To make sure that the request RQ is not augmented with additional attributes (apart

from the ones it initially contains), for each attribute A that occurs in the policy P

but not in RQ I add:

π(RQ)← π(RQ) u ∀π(A).⊥
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2. To make sure that the request RQ is not augmented with additional values for the

attribute it already contains, for each attribute that occurs in RQ the following is

added:

π(RQ)← π(RQ) u =nA

, where n stands for the number of distinct attribute values for A that occur in RQ.

In a concise format, a full mapping of a Request RQ would be the following:

π(RQ) ≡
�

AV∈RQ

(
∃rAV .π(typeAV-equal, AV)

)
u

�
AT<RQ, AT∈P

(∀rAT .⊥)u

�
AT∈P, n=#AV s.t. AV∈AT

(= nrAT )

(6.1)

Given this mapping, to check whether a request RQ matches a target T , we only

need to check whether K |= {π(RQ) v π(T )} (equivalent to subsumption checking in

Description Logics).

6.1.2 Mapping Target

Target represents the prerequisites that need to be satisfied by an access request

for the policy element to apply - it is similar to the body of a rule. A Target el-

ement in XACML 3.0 is a conjunction of DisjunctiveMatch elements, where each

DisjunctiveMatch is a disjunction of ConjunctiveMatches. A Target is matched if

and only all DisjunctiveMatches are matched, and a DisjunctiveMatch is matched

if at least one of its ConjunctiveMatches is matched. Finally, a ConjunctiveMatch is

a (conjunctive) list of attribute-value pairs (Match elements).
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Intuitively, I translate the Target element T to a DL concept expression C s.t. C

captures all of the access requests that would match T . The main idea is that XACML

attributes are mapped to DL roles (properties) and XACML attribute values are mapped

to DL datatype values. Since in the formal semantics of XACML (discussed in Chapter

4), matching attributes depends on their datatype, id,issuer and category, in the mapping

there is a one-to-one function that creates a unique DL role for each such combination

of (datatype, id,issuer, category). Given this, attribute value pairs are mapped to exis-

tential restrictions – for example (role Developer) would be mapped to ∃role.Developer.

Attribute-value pairs from different ConjunctiveMatch and DisjunctiveMatch are

combined using the appropriate conjunctive and disjunctive DL constructs (resp. u,t).

The mapping function is split in two parts, depending on the access decision ε.

Table 6.2 contains the semantics of π(True,T ) which covers the cases when RQ,T |=

True, which happens when a request RQ matches the a Target element T. Note that

π(fcn, AV) maps the attribute value to a datatype expression in the logic depending on

the matching function in XACML. The discussion of the datatype mapping warrants a

separate section - which can be found in Section 6.1.7.

In Table 6.3 the mapping is presented for the cases when RQ,T |= Indeterminate.

According to the XACML semantics, the only case where Indeterminate can occur

while matching a request against a Target is when there are no attribute values in the

request that match the AttributeDesignator, and the mustBePresent attribute is true.

Thus, in the mapping for indeterminate, a Match element is mapped as the following:

π(Indeterminate, (Match (AV AD MatchFcn))) = ∀π(AD).⊥
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The mapping will capture all requests that do not have a value for the attribute identified

by AD. Also, note that in the case of an empty Target, > is used, which in DL represents

the whole interpretation domain, so it will match any possible attribute value.

Syntax Elements E Mapping π(True,E)
T ::= (Target DM∗)

�
π(True,DMi)

DM ::= (DisjunctiveMatch CM+)
⊔
π(True,CMi)

CM ::= (ConjunctiveMatchM+)
�
π(True,Mi)

M ::= (Match (AV AD fcn)) ∃π(AD).π(fcn, AV)
AD ::= (AttributeDesignator Cat attr-ID r ∈ R s.t. name(r) =

Type Issuer? MustBePresent?) concat(π(attr-ID),
π(Issuer),
π(cat),
π(Type))

Table 6.2: Mapping access requests that match Target to a DL concept expression

Syntax Elements E Mapping π(Indeterminate,E)
T ::= (Target DM∗)

⊔
π(Indeterminate,DMi)

DM ::= (DisjunctiveMatch CM+)
�
π(Indeterminate,CMi)

CM ::= (ConjunctiveMatchM+)
⊔
π(Indeterminate,Mi)

M ::= (Match (AV AD MatchFcn)) ∀π(AD).⊥
AD ::= (AttributeDesignator Cat attr-ID r ∈ R s.t. name(r) =

Type Issuer? MustBePresent?) concat(π(attr-ID),
π(Issuer),
π(cat),
π(Type))

Table 6.3: Mapping access requests that return Indeterminate when matched against
Target to a DL concept expression

The next lemma states the correspondence between my DL mapping of Target

elements and the proof-theoretic semantics from Chapter 4. In particular, the lemma

shows that if the mapping of the Request π(RQ) is subsumed by the mapping of the

Target element π(T ), then RQ will match T according to the proof-theoretic semantics

(and vice-versa).
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Lemma 6 For a Target element T, and a Request RQ:

K |= π(RQ) v π(True,T)⇔ RQ,T |= True

K |= π(RQ) v π(Indeterminate,T)⇔ RQ,T |= Indeterminate

(6.2)

Proof. The proof of this lemma is in Appendix A. �

Lemma 7 For a Target element T, and a Request RQ:

K |= π(RQ) v ¬π(True,T)⇔ RQ,T 6|= True

K |= π(RQ) v ¬π(Indeterminate,T)⇔ RQ,T 6|= Indeterminate

(6.3)

Proof.

If case We know that π(RQ) v ¬π(True,T). This proof is done by contradiction: as-

sume that if π(RQ) v ¬π(True,T), then RQ,T |= True. However, in that case, according

to Lemma 6, for the same request the following will hold as well: π(RQ) v π(True,T).

Note that π(RQ) cannot be subsumed by both π(True,T) and ¬π(True,T) at the same

time since I have assumed that π(RQ) is satisfiable, so we have reached a contradiction.

Thus,

K |= π(RQ) v ¬π(True,T)⇔ RQ,T 6|= True

It can be shown for Indeterminate in the same manner.

Else case. Else case is more involved, since in DL KB 6|= π(RQ) v π(True,T) (which

can be easily shown) is not the same as K |= π(RQ) v ¬π(True,T) (which needs to be

102



shown). The proof can be done by induction on the XACML deduction rules in Section

4.2. The full proof is available in the Appendix.

�

6.1.3 Mapping XACML Rules

For each XACML Rule R, I introduce a Permit-R, Deny-R and Indeterminate-R

concept. The general idea is that for a request RQ, if π(RQ) is of type Permit-R, then RQ

would yield a Permit when evaluated against R (and vice-versa).

Rules in XACML consist of an identifier (ID), Target representing the types of

request the rule matches, Condition representing additional conditions that need to be

satisfied for the rule to fire and an Effect, representing the head of the rule (can be

either Permit or Deny). The Permit and Deny concepts for a rule depend on the effect

of the rule itself. For example, for a rule R that yields a Permit, the Deny-R concept

will be equal to ⊥, because there cannot be an access request where R will yield a Deny.

Assuming there there is no Condition element, the Permit-P concept for R will be equal

to the mapping of the Target of R.

Definition 5 Mapping a Rule Element.

For a rule (Rule ID T Permit), τ(K,R) is defined as follows:

τ(K, (Rule ID T Permit)) = K ∪



Indeterminate-ID ≡ π(Indeterminate,TR)

Permit-ID ≡ π(True,TR)

Deny-ID ≡ ⊥
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Analogously, for a rule (Rule ID T Deny), τ(K,R) is defined as:

τ(K, (Rule ID T Deny)) = K ∪



Indeterminate-ID ≡ π(Indeterminate,TR)

Permit-ID ≡ ⊥

Deny-ID ≡ π(True,TR)


Example 6.1.3.1 I present here a running example (similar to Chapter 1) that will be used

to illustrate the main concepts underlying this mapping. In this toy example, initially

there are two security roles, Manager and Developer; one resource: Report; and two ac-

tions: read, write. The root policy set contains two policy sets which are combined using

First-applicable combining algorithm. Assume there are no complicated matching

functions; in each Target, the matching function is simply string-equal. The policy is

presented in graphical form in Figure 6.1.

Figure 6.1: Example Policy
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The Rules in this example are mapped to:

Permit-R1 ≡∃role.Manager u ∃resource.Report u (∃action.read t ∃action.write)

Deny-R1 ≡⊥ Indeterminate-R1 ≡ ⊥

Permit-R2 ≡ ∃role.Developer u ∃action.read u ∃resource.Report

Deny-R2 ≡⊥ Indeterminate-R2 ≡ ⊥

Permit-R3 ≡⊥ Indeterminate-R3 ≡ ⊥

Deny-R3 ≡>

Permit-R4 ≡∃role.Developer u ∃action-type.write u ∃resource.Report

Deny-R4 ≡⊥ Indeterminate-R4 ≡ ⊥

For brevity, this example is slightly simplified by omitting the data-type, category and

issuer information for each attribute.

Lemma 8 For a Rule R and Request RQ:

RQ,R |= Effect ⇔ K |= π(RQ) v Effect-R (6.4)

where Effect ∈ {Permit, Deny, Indeterminate}.

Proof. Proof can be found in the Appendix. �
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Lemma 9 For a Rule R and Request RQ:

RQ,R 6|= Effect ⇔ K |= π(RQ) v ¬Effect-R (6.5)

where Effect ∈ {Permit, Deny, Indeterminate}.

Proof.

If case This proof is done by contradiction: assume that if π(RQ) v ¬Effect-R, then

RQ,R |= Effect. However, in that case, according to Lemma 6, for the same request RQ

the following will hold: π(RQ) v Effect-R. Since RQ cannot be of type Effect-R and

¬Effect-R at the same time, we have reached a contradiction. Thus,

K |= π(RQ) v ¬Effect-R⇒ RQ,R 6|= Effect

Else case. Else case is more involved; the proof is done by structural induction on the

XACML semantics rules in Section 4.2, and is available in the Appendix. �

6.1.4 Mapping Policies

A Policy contains a Target element, a collection of rules, and a rule combining

algorithm that specified how the access decision of the children Rules are to be com-

bined. For a Policy P, the Permit and Deny concepts have to take into account the

Target, and in addition the Permit- and Deny- concepts of P’s children. This is because
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the access decision a Policy yields depends on the Target and the results of its chil-

dren’s decisions.

Intuitively, a Permit-P is matched by a request only if P’s Target is matched and

at least one of its children’s Permit concepts is matched as well. However, depending on

the overriding algorithm, for each child policy element, we might need to make sure that

whenever it yields a Permit it will not be overridden by a Deny from a different child

element. Given these considerations, the mapping function τ for XACML Policies is

developed based on the semantics of the rule-combining algorithms (see Tables 4.8, 4.9,

4.10).

In this section, first I discuss the case of Permit-Overrides rule combining al-

gorithm: P = (Policy Permit-Overrides T R1, . . . ,Rn) . The logic axioms that result

from the mapping and are added to K are presented in the definition below. The concept

Permit-P has somewhat obvious semantics, since we only need to infer that at least one of

the child Rules returns a Permit. However, the axiom for Deny-P is not as straightfor-

ward, since if a rule returns an Indeterminate, and the effect of the rule is Permit, then

according to the XACML semantics, that rule will override all sibling rules that returned

a Deny.

Definition 6 Mapping Axioms for P = (Policy Permit-Overrides T R1, . . . ,Rn)
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Permit-P ≡ π(True,T ) u

⊔
Ri∈P

Permit-Ri


Deny-P ≡ π(True,T ) u

⊔
Ri∈P

Deny-Ri u

�
R j∈P

¬Permit-R j

 u
 �

Rk∈P, EffectRk =Permit

¬Indet-Rk




Indet-P ≡ π(True,T ) u

 ⊔
Ri∈P,EffectRi =Permit

Indet-Ri u

�
R j∈P

¬Permit-R j




(6.6)

For Deny-Overrides, the axioms for the mapping concepts are very similar as

in the Permit-Overrides case (it is enough simply to swap Permit and Deny in the

definitions).

Definition 7 Mapping Axioms for P = (Policy Deny-Overrides T R1, . . . ,Rn)

Deny-P ≡ π(True,T ) u

⊔
Ri∈P

Deny-Ri


Permit-P ≡ π(True,T ) u

⊔
Ri∈P

Permit-Ri u

�
R j∈P

¬Deny-R j

 u
 �

Rk∈P, EffectRk =Deny

¬Indet-Rk




Indet-P ≡ π(True,T ) u

 ⊔
Ri∈P,EffectRi =Deny

Indet-Ri u

�
R j∈P

¬Deny-R j




(6.7)

For First-Applicable, the single axiom states that, for some access decision α

made by a rule Ri, the parent policy will return that access decision only if all of the rules

R j prior to Ri did not not apply.
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Definition 8 Mapping Axioms for P = (Policy First-Applicable T R1, . . . ,Rn)

Effect-P ≡ π(True,T ) u

⊔
Ri∈P

Effect-Ri u

�
R j∈P

¬Deny-R j u ¬Permit-R j u ¬Indet-R j




where i > j, Effect ∈ {Permit,Deny, Indet}

(6.8)

For Only-One-Applicable, the only way a policy to return a Permit(resp. Deny)

is for exactly one rule to apply and return Permit (resp. Deny). In the case when two

or more rules apply, Indeterminate is to be returned. Also, if at least one rule returns

Indeterminate, then the parent policy will return Indeterminate as well.

Definition 9 Mapping Axioms for P = (Policy Only-One-Applicable T R1, . . . ,Rn)

Indet-P ≡ π(True,T ) u

⊔
Ri∈P

Indet-Ri


Indet-P ≡ π(True,T ) u

 ⊔
Ri∈P, R j∈P

((Permit-Ri t Deny-Ri) u (Permit-R j t Deny-R j))


where i , j

Permit-P ≡ π(True,T ) u

⊔
Ri∈P

Permit-Ri u

 �
R j∈P, j,i

¬Deny-R j u ¬Permit-R j u ¬Indet-R j




Deny-P ≡ π(True,T ) u

⊔
Ri∈P

Deny-Ri u

 �
R j∈P, j,i

¬Deny-R j u ¬Permit-R j u ¬Indet-R j




(6.9)
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Lemma 10 For a Policy P and Request RQ:

RQ,P |= Effect ⇔ K |= π(RQ) v π(Effect,P) (6.10)

Proof. Proof can be found in the Appendix. �

Lemma 11 For a Policy P and Request RQ:

RQ,P 6|= Effect ⇔ K |= π(RQ) v ¬π(Effect,P) (6.11)

where Effect ∈ {Permit, Deny, Indeterminate}.

Proof.

If case This proof is done by contradiction: assume that if π(RQ) : ¬Effect-P, then

RQ,P |= Effect. However, in that case, according to Lemma 10, for the same request

RQ the following will hold: π(RQ) : Effect-P. Since RQ cannot be of type Effect-P

and ¬Effect-P at the same time, we have reached a contradiction. Thus,

K |= π(RQ) v ¬Effect-P⇒ RQ,P 6|= Effect

Else case. Proof is available in the Appendix. �
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6.1.5 Mapping PolicySets

The Permit and Deny concepts for PolicySets are somewhat simpler from the

Policy ones. In this section, I present the mappings for DenyOverrides and Permit-

Overrides only, since the semantics for the other two combining algorithms is same as

in the Policy case.

First, I will discuss the case of P = (PolicySet Permit-Overrides T P1, . . . ,Pn).

The mapping axioms that are to be added to K are presented below.

Definition 10 Mapping Axioms for PS = (PolicySet Permit-Overrides T P1, . . . ,Pn)

Permit-PS ≡ π(T ) u

 ⊔
Pi∈PS

Permit-Pi


Deny-PS ≡ π(T ) u

 ⊔
Pi∈PS

Deny-Pi u

�
P j∈PS

¬Permit-P j




(6.12)

The axioms for Deny-Overrides are very similar with Permit-Overrides; only

difference is that when a child element returns an Indeterminate, the parent must return

a Deny access decision.

Definition 11 Mapping Axioms for PS = (PolicySet Deny-Overrides T P1, . . . ,Pn)

Deny-PS ≡ π(T ) u

 ⊔
Pi∈PS

Deny-Ri t Indet-Ri


Permit-PS ≡ π(T ) u

 ⊔
Pi∈PS

Permit-Pi u

�
P j∈PS

¬Deny-P j u ¬Indet-P j




(6.13)
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Example 6.1.5.1 The policies and policy sets in our running example are mapped below.

Note that a) for brevity, I have assumed that ∀P : Indeterminate − P ≡ ⊥, and b) the

targets of all of the policies and policysets in the examples are empty, thus π(T,True) ≡ >

for all of them.

Permit-PS 1 ≡> u Permit-P1 t (Permit-PS 2 u ¬Deny-P1)

Deny-PS 1 ≡> u Deny-P1 t (Deny-PS 2 u ¬Permit-P1)

Permit-P1 ≡> u Permit-R1 t Permit-R2

Deny-P1 ≡> u Deny-R3 u ¬(Permit-R1 t Permit-R2)

Permit-PS 2 ≡> u Permit-P2

Deny-PS 2 ≡> u Deny-P2

Permit-P2 ≡> u Permit-R2

Deny-P2 ≡> u Deny-R4

Lemma 12 For a PolicySet PS and Request RQ:

RQ,PS |= Effect ⇔ K |= π(RQ) v π(Effect,PS) (6.14)

Proof. Proof can be found in the Appendix. �

112



Lemma 13 For a PolicySet PS and Request RQ:

RQ,PS 6|= Effect ⇔ K |= π(RQ) v ¬π(Effect,PS) (6.15)

where Effect ∈ {Permit, Deny, Indeterminate}.

Proof.

If case This proof is done by contradiction: assume that if π(RQ) v ¬Effect-PS,

then RQ,PS |= Effect. However, in that case, according to Lemma 12, for the same

request RQ the following will hold: π(RQ) v Effect-PS. Since RQ cannot be of type

Effect-PS and ¬Effect-PS at the same time, we have reached a contradiction. Thus,

K |= π(RQ) v ¬Effect-PS⇒ RQ,PS 6|= Effect

Else case. Else case is more involved; the proof is done by structural induction on the

XACML deduction rules in Section 4.2, and is available in the Appendix. �

6.1.6 Mapping Administrative XACML

The Administrative Policy Profile[113] adds support for administrative/delegation

policies to XACML 3.0. In this version of XACML, after a policy element yields an

access decision, that decision might need to be authorized by an administrative policy.

In contrast, in previous versions of XACML all access decisions were assumed to be
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authorized by default.

An overview of administrative policies in XACML is provided in Section 2.1.3, and

the formal semantics is given in Chapter 4. In this section, I will discuss their translation to

DL. The mapping uses the same data structure, a reduction graph, as the official XACML

Administrative Profile Specification.

Definition 12 Reduction Graph A reduction graph is a directed graph G = {V, E} where

each v ∈ V corresponds to a XACML Policy and has four labels: target, issuer, delegate

and trusted. For a node v, v.target corresponds to the situation (target) to which v applies,

v.issuer holds the attributes that describe the issuer of v and v.delegate contains informa-

tion about the issuer to whom v can be delegated. In addition, v.trusted is a boolean field

that indicates if v was issued by a trusted issuer.

For two nodes v,w that correspond to two sibling policy elements, a directed edge

(v,w) ∈ E exists if and only if v.issuer v w.delegate.

Intuitively, the edges in G indicate whether the issuer and delegate of two policy

nodes are compatible. If (v,w) < E, that means it is not possible to reduce an admin-

istrative request from v to w. Target elements of each node in the reduction graph are

mapped to DL concept expressions in a similar manner as Targets of access policies

(presented in Section 5.1). In cases when the node is an access policy, the delegate field

is empty.
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6.1.6.1 Extending the XACML Mapping

Permit-P, Deny-P and Indet-P concept definitions are augmented with the con-

straints from the administrative policies in the following manner:

Permit-P-Auth ≡ Permit-P u get admin expr(P,G)

Deny-P-Auth ≡ Deny-P u get admin expr(P,G)

The function get admin expr generates a concept expression that is a disjunction

of all unique reduction paths from the current policy (P) to a policy with a trusted issuer.

Since according to the official semantics of XACML, this is the only way a policy decision

can be authorized, the result of get admin expr is added as a constraint to the existing

Permit-P and Deny-P concepts.

Details of get admin expr are shown in Algorithm 1. The function takes the re-

duction graph G and the node corresponding to policy being authorized P as input, and

generates a disjunction of all unique possible paths from P to a trusted policy, following

the XACML semantics. The algorithm that generates the paths (lines 5-11) performs a

depth first search on the reduction graph. It starts with the policy being authorized, and

tries to build a path consisting of administrative policies to a trusted node, accumulat-

ing constraints along the way. These constraints come from the Target elements of each

administrative policy, since administrative policies can restrict the cases where they are

applied. When the accumulated constraints become unsatisfiable at a point in the path,

the algorithm backtracks and tries a different node. All unique paths are added to the

Permit-P-Auth or Deny-P-Auth concept.
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Algorithm 1 get admin expr(node,G)
Input:

node: node in graph corresponding to input policy
G: reduction graph of composed of node’s sibling policies

Output:
b: returns an expression that corresponds to all possible ways node can be authorized

1: paths← []
2: if node has trusted issuer then
3: paths.add(constraint) . found a new path, remember constraint
4: else
5: for nbor in n.getnbors() do
6: if !nbor.getVisited() and constraint u nbor.target 6|= ⊥ then
7: nbor.setVisited(true)
8: searchGraph(nbor, constraint u nbor.target, paths)
9: nbor.setVisited(false)

10: end if
11: end for
12: end if
13: result ← ⊥
14: for expr in paths do
15: result ← result t expr
16: end for
17: return result

6.1.7 XACML Datatypes and Functions

XACML supports the XML schema data-types and in addition it defines four data-

types of its own: ipAddress, dnsName, rfc822Name, x500Name. As part of the process-

ing model, it also supports a wide variety of functions over these datatypes, ranging from

comparison, arithmetic, regular expression and Xpath matching to higher order map func-

tions. In this section I will discuss how these datatypes and functions are handled by this

XACML-to-DL mapping.

Datatype Support in Description Logics Horrocks and Sattler [64] presented an ap-

proach of combining DLs and types systems that allows for deriving new datatypes from
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existing ones. DLs already provide support for the various datatype comparison func-

tions in XACML (such as datetime-greater-than) by way of user-defined XML schema

datatypes. This support is currently being standardized in OWL 1.1 [105] and is imple-

mented in Fact++ and Pellet. User-defined (restricted) datatypes are supported through

the datatypeRestriction constructor, which creates a restricted range by applying a facet

to a particular data range. Built-in XML schema facets include: length, minLength,

maxLength, pattern, minInclusive, minExclusive, maxInclusive, maxExclusive, totalDig-

its, and fractionDigits. These facets cover the numeric and non-numeric comparison func-

tions in the XACML specification (Appendix A.3 in [113]).

Since DL reasoners such as Pellet[109] and Fact++[120] already have built-in

reasoning support for XML schema datatypes, mapping the encountered datatypes at-

tribute values in XACML is trivial: for each datatype attribute value I create the same

datatype value in the DL KB. Given this, the mapping supports the following XML

schema datatypes: string, boolean, integer, double, time, date, datetime, anyURI, hexBi-

nary and base64Binary.

More detailed information about the mapping is presented in Table 6.1.7. For

brevity, the table only contains integer datatypes; comparison functions involving the

other XML schema datatypes can be mapped in the same manner. Since the OWL func-

tional syntax is already standardized for user-defined datatypes, it is used instead of a

more concise DL syntax. For a XACML attribute matching function f cn, attribute a, and

value v, I map a to a DL datatype role and map v to a datatype value (with the appropriate

type) in the KB.

In addition to the above unary datatype predicates, some DL reasoners also support
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Matching function f cn π(AV, fcn)
type-equal DatatypeRestriction (type valueAV)
type-greater-than DatatypeRestriction (type minExclusive valueAV)
type-greater-than-or-equal DatatypeRestriction (type minInclusive valueAV)
type-less DatatypeRestriction (type maxExclusive valueAV)
type-less-than-or-equal DatatypeRestriction (type maxInclusive valueAV)
type-regexp-match DatatypeRestriction (type pattern valueAV)
xpath-node-match DatatypeRestriction (xpath-expression pattern

valueAV)

Table 6.4: Mapping matching functions.

more advanced datatype functions such as n-ary datatype predicates. For example, the

DL reasoner RacerPro [124] supports natural numbers, integers, reals, complex numbers

and strings. The types of predicates supported are shown in Table 6.1.7. The predicates

below can capture a subset of XACML’s functions; e.g., linear inequality predicates cover

the XACML integer comparison and arithmetic functions.

Datatype Domain Predicates
N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients

Strings equiality and inequality

Table 6.5: Predicates supported by Racer (table taken from RacerPro user guide [82]).

Example 6.1.7.1 Mapping the XPath-Node-Match Function.

The xpath-node-match function is used to write policies that apply to multiple

nodes. This function is used as part of the ResourceMatch object, as shown below:

<ResourceMatch MatchId="...:xpath-node-match">

<AttributeValue DataType="...#string">

/md:record

</AttributeValue>

<ResourceAttributeDesignator

AttributeId="...:resource:xpath"
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DataType="...#string"/>

</ResourceMatch>

In the above example, both the attribute value of resource:xpath and ”/md:record”

are treated as XPath expressions; the matching succeeds iff the at least one of the nodes

selected by ”/md:record” matches at least one node selected by the ResourceAttribut-

eDesignator. A resource match element with an attribute value of AV , an attribute ID of

AttrID and an xpath-node-match function would be mapped to ∃π(AttrID).π(AV), where

π(AttrID) generates a DL role to correspond to the attribute. To map AV , I generate a

unary predicate in the XPath concrete domain.

Note that I am able to use XPath data-types in the static analysis framework since it

was shown in [55] that the XPath fragment covered by XPAT H is closed under negation

and the problem of satisfiability of a conjunction of predicates is decidable. A prototype

XPath reasoner (developed by Geneves et al. [55]) was used as a data-type reasoner for

the purpose of my analysis framework.

6.1.7.1 AttributeSelector

Another element of XACML that warrants discussion in this section is the Attribute-

Selector, which selects attribute values from a request (similarly to an Attribute-

Designator). The main difference is that the AttributeSelector uses an XPath ex-

pression to locate the attribute value in the request. Consider the following example:

<Resource>

<ResourceMatch

MatchId="...:string-equal">
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<AttributeValue

DataType="...#string">

application=webservicesJwsSimpleEar,

contextPath=/jws_basic_simple,

webService=SimpleSoapPort

</AttributeValue>

<AttributeSelector

RequestContextPath="//md:patient-number/text()"

DataType="...#string" />

</ResourceMatch>

</Resource>

In this case, the expression in RequestContextPath is applied against the XML

content element that is piggybacked on the access request and a bag of values is returned.

The match is successful if at least one of the returned values matches the above attribute

value.

A resource match element with an attribute selector (with an xpath expresion X)

and an attribute value AV is mapped to the following DL expression:

∃π(Attr-ID).PAV ,

which looks the same as the mapping for xpath-node-match. However, note that

there might be some interaction (e.g., subsumption, disjointness) between the different

xpath expressions used as in the attribute selectors. As an example, consider the following

two attribute selectors:

<AttributeSelector RequestContextPath="/descendant::Role"

DataType="...#string" />

<AttributeSelector RequestContextPath="/descendant-or-self::Role"

DataType="...#string" />

In this case, the first expression selects all descendants of the root node that are of

type Role, whereas the second expression will select all Role descendants of root, and
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additionally the root itself, if it is a Role node. The result set of the second expression

will always subsume the result set of the first one - this type of relationship will not be

captured by the mapping described above.

To capture these subsumption relations between Attribute Selectors, I pre-process

the policy set, and for each pair of Selectors I compare their XPath expressions using an

XPath reasoner [55]. Then, if there is a subsumption, i.e., the expressions in AS 1 and AS 2

subsume each other, I add the following axiom in the DL KB:

π(AS 1) v π(AS 2)

6.2 Services

This section will discuss the analysis services provided by the DL mapping de-

scribed in the previous section.

6.2.1 Formal Verification

Formal verification is the most commonly offered analysis service for access poli-

cies. In most previous work, the security property to be verified is specified program-

matically using the particular analysis tool’s API, thus requiring users to be familiar with

the internals of the tool. My approach, on the other hand, allows users to specify their

security properties in XACML and also presents the verification results back in XACML.

To accomplish this, the verification service is exposed as an adaptation of the well known

software engineering technique of unit testing.
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Traditional unit testing applied to policies amounts to users creating an access re-

quest (the unit test) and specifying its expected value (Permit, Deny, NotApplicable or

Indeterminate). Then, whenever changes are made to the access policy, all of the test

requests are run against a XACML engine to make sure no bugs (security holes) are intro-

duced. However, writing such unit tests in this manner is tedious and error-prone, since it

is difficult to think of all possible conditions that need to be tested. Consider our running

example (Figure 1.1 in Chapter 1): it could happen that a user logs in with both a de-

veloper and a manager role – activating both of these grants him write access to reports.

Since the unit test I used in the example in Chapter 1 only tests for a request containing

the developer role by itself, this violation will not be caught.

A verification-based approach to testing overcomes the above limitations. Instead

of taking the access request literally and performing a shallow test based on the explic-

itly mentioned attributes in the request, the verification approach proposed in this thesis

attempts to build a logic model where the attributes in the original request produce a test

failure. While building this model the DL reasoner explores all possible combinations

of additional attributes in the request that could lead to a test failure. The test condition

holds only when such a model cannot be built.

The input for this service consists of a XACML policy file P (for the access policy

being tested), a XACML file that contains the test condition T , and a string denoting

the type of test condition. Supported types of properties are alwaysPermit, alwaysDeny,

neverPermit and neverDeny - these are similar to assertions for unit tests. Details on how

these are reduced to entailment checking in Description Logics are presented in Table

6.2.1. If the policy fails, output is in the form of a XACML access request, which consists
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of the counter example that brings about the test failure.

Type of Property Entailment Check
alwaysPermit π(T.target) u ¬Permit-P |= ⊥

alwaysDeny π(T.target) u ¬Deny-P |= ⊥

neverPermit π(T.target) u Permit-P |= ⊥

neverDeny π(T.target) u Deny-P |= ⊥

Table 6.6: Mappings of Common Types of Policy Tests. T refers to the test policy
(containing the security property) and P refers to the top level policy set. Property holds
if and only if the entailment holds, i.e., the concept expression is not satisfiable.

6.2.1.1 Tracing

In cases when the test fails, the analysis framework extracts the counter example

directly from the logic model, maps it back to XACML and presents it as an access re-

quest. The procedure that extracts a counter-example XACML policy from a DL concept

expression is shown in Algorithm 2.

However, with large policy sets, it can be difficult to find out exactly which policy

elements were responsible for the error. For this purpose, I provide a ’stack trace’ output

of every policy that was fired while generating the counter example. Generating the trace

is straightforward, assuming the counter example XACML request is available - the re-

quest is run against the policy using a XACML engine (Sun’s reference implementation1

is used), and the access decisions at each policy element are stored.

1http://sunxacml.sourceforge.net
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Algorithm 2 extract request(x)
Input:

x: individual used generated to check satisfiability of concept
Output:

LAT : list of attributes and values that represent a valid XACML Request

1: if type expressions of the form ∃P.Q ∈ L(x) then
2: for each ∃P.Q ∈ L(x) do
3: P = getAttribute(P) . from the name of the DL role P we retrieve the

important attribute information:category, issuer, ID and datatype
4: V = getValue(Q) . if Q is a datatype predicate that maps to multiple values,

then a value is randomly selected from the value space characterized by Q
5: LAT = LAT ∪ (P,V)
6: end for
7: else . no ∃P.Q occur in concept expression
8: Select a DL role P corresponding to a attribute in the policy s.t. L(x) ∩ ∃P.Q is

satisfiable
9: P = getAttribute(P) . from the name of the DL role P we retrieve the important

attribute information:category, issuer, ID and datatype
10: V = getValue(Q) . if Q is a datatype predicate that maps to multiple values,

then a value is randomly selected from the value space characterized by Q
11: LAT = LAT ∪ (P,V)
12: end if
13: return LAT

6.2.2 Policy Comparison

The Permit-P and Deny-P concepts defined previously allow us to easily compare

the behaviors of two policies. For example, we can check for policy subsumption: P2

subsumes P1 iff if whenever P1 produces access decision α, P2 also yields the same ac-

cess decision. We can restrict our attention to Permit, Deny or both. In my framework,

policy subsumption is reduced to checking subsumption between the Permit and/or Deny

concepts. For example, to check if P2 subsumes P1 w.r.t Permit, we ask the DL reasoner

if K |= Permit-P1 v Permit-P2.

To illustrate the service, consider adding a new role , LeadDeveloper, to our run-

ning example. The updated policy now contains an additional Rule (R3):
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Figure 6.2: Updated Policy (with LeadDev role)

To check whether we have given any unintended access to the other roles, we use

the policy subsumption algorithm, that is, we generate the following concept expressions:

Permit-PSold,Deny-PSold and Permit-PSnew,Deny-PSnew. Subsumption holds only if both

of the following hold:

Permit-PS old v Permit-PS new

Deny-PS old v Deny-PS new

The analyzer reports the first subsumption holds , which is rather obvious from since

the Rule added in PS new yields a Permit). However, the analyzer reports subsumption

does not hold w.r.t. Deny.

In cases of non-subsumption, it is useful to know what are the counter examples,

i.e., to show the user a request where PS new and PS old would yield different decisions.

Since I use a tableau-based DL reasoner for policy analysis, to check whether A v B, the

reasoner tries to build a model for Au¬B. If a model can be built, it means the subsump-
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tion does not hold. In that case the model that was just built can easily be extracted from

the internals of the reasoner and used as a counter example. Here we get a number of

counter-examples:

1) role=LeadDev, action=read, resource=report, action=write,

resource=report

2) role=LeadDev, action=write, resource=report

3) role=LeadDev, role=Developer, action=write,

resource=report

The first two are expected (because of the new Permit rule), however the third

counter example represents a potentially dangerous access leak to a person who is a mem-

ber of role Developer. It is possible to fix this bug by adding a separation of duty con-

straint for the roles of Developer and LeadDev. The constraint is presented below, in DL

syntax.

∃role.LeadDev v ¬∃role.Developer

Note that separation of duty constraints can also be serialized in XACML. To ac-

complish this, a new Policy should be created, having the two disjoint roles in its

Target. Since we want to prohibit a requester that has both of the roles, the effect of

this new is Deny. Finally, this new policy needs to be set with highest priority (e.g., add it

at the beginning of the root policy set and use First-Applicable algorithm) to ensure

that the separation of duty constraint can never be overridden.

The technique used for policy subsumption can be generalized to policy compari-

son. For two policies P1 and P2, we first specify the access decisions we are interested in
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(say, Deny for the first policy and Permit for the second), and then check satisfiability of

the corresponding concept expressions for those decisions :

Deny-P1 u Permit-P2

If the above expression is not satisfiable, then there cannot be an access request s.t.

the first policy yields a Deny and the second one yields a Permit. If it is satisfiable, there

is such a request, and we can extract the counter example from the reasoner. To get all

counter examples, we need to retrieve all consistent models that the concept expression

admits; this involves saturation of the tableau, a technique for which DL reasoners are not

particularly optimized.

Change verification was introduced in [50], and I show here that it can be accom-

plished in DL as well. Because the policy differences are expressed as concept descrip-

tions, performing verification of changes is no different than performing verification of

policies themselves. The safety properties to be verified are simply added to the change

expression. For example, if we want to verify that all changes from Permit to Deny in the

above policy involved the LeadDev role, we could test the following concept expression:

map(Permit-PS old) u map(Deny-PS new) u ∀role.¬LeadDev

6.2.3 Redundancy Checking

Another service provided by the analysis framework is finding redundant Rules2.

A redundant rule is one that whenever fires, it is always overridden by some other rule or

policy with higher priority. A simple way to check redundancy of a rule r is to perform
2The technique can be easily generalized to Policies or PolicySets – for brevity I focus on Rules

only.
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Algorithm 3 is redundant(r,D)
Input:

r = (ID T α): XACML Rule
Output:

b: returns true if r is redundant, false otherwise
1: J ← ⊥
2: rold ← r . cache r
3: while r , null do
4: for policy element q s.t. q , r and q.parent = r.parent do
5: if overrides(Permit, q, r) then . Permit decision of q overrides r
6: J ← J t Permit-q
7: end if
8: if overrides(Deny, q, r) then . Deny decision of q overrides r
9: J ← J t Deny-q

10: end if
11: end for
12: r ← r.parent
13: end while
14: if rold.target v J then . request is subsumed
15: return true
16: else
17: return false
18: end if

change impact analysis for a policy with and without the rule. Here I present a more

guided approach for checking redundancy, by building a concept expression that ignores

the policy elements that cannot override the rule being checked. Algorithm 3 contains the

pseudo-code.

The function starts with an input Rule r and works its way up to the root policy

element. At the same time, it builds a disjunction that consists of the concept expressions

for every Policy or PolicySet that can override the access decision made by r. In line

5, overrides(Permit, q, r) functions returns true if when q yields a Permit decision, it will

always override the decision made by r (no matter what it is). If r is subsumed by this

disjunction of overriding policies, then the access decision of r will always be covered by
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some policy element. In this case, r is redundant.

Redundant rules do not have to be evaluated, and can be safely removed from a

policy file. This simplifies the policy and improves runtime performance of the policy

evaluator because there are less rules to match requests against.

Please note that in a policy set, there may be multiple possible minimal non-redundant

subsets. As an example, consider a policy set containing of three policies: P1 applies to

Students of GraduateStudents, P2 applies to GraduateStudents of Professors, and P3 ap-

plies to Professors or Students. In this example, {P1,P2} and {P2,P3} are minimal redun-

dant subsets. To find such minimal redundant subsets, a modified version of the minimal

set cover algorithm can be used, which is NP-complete. Finding and evaluating minimal

redundant subsets of a policy set is not handled by my thesis, although it is an interesting

area of future work and is discussed in Chapter 9.

6.3 Analyzing Heterogeneous XACML Policies

Given that one of the crucial requirements for this analysis framework was rea-

soning about heterogeneous policy domains, in this section I will show how this can be

accomplished by leveraging Semantic Web technologies.

Recently, there has been a great amount of interest in extending the expressive

power of XACML with Semantic Web technologies [40, 41, 21] for the purposes of het-

erogeneous policy integration. This is because the Semantic Web provides a data sharing

and re-use framework for applications across enterprise and community boundaries. One

of the foundational languages of the Semantic Web is the Web Ontology Language (OWL)
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[45], which is a W3C standard for representing shared information.

Previous work has focused on extending XACML with support for rich ontology-

based models representing subject and resource information. These extensions were ac-

complished by adding new matching functions and extended conditions to refer to the

background ontologies. While these extensions do increase the expressive power of

XACML, they do not offer analysis support for such ontology-extended XACML poli-

cies.

In this section, I will present a generalization of previous work by providing a

unified formal framework for OWL ontology-extended XACML policies. To add the

functionality, I extend the XACML policy syntax with a new matching function, called

ontology-match. Following is an example of a Match element with a semantic-match

function.

<Match MatchId="...:function:ontology-match">

<AttributeValue DataType=".../XMLSchema#string">

http://policy#Administrator

</AttributeValue>

<SubjectAttributeDesignator

AttributeId="http://policy#role"

Category="...:Subject"

DataType="URI"/>

</SubjectMatch>

The semantics of the above extension is explained here: consider that we have

already mapped the policy set P to DL using the above mapping , so there exists a DL

KB K that contains the mapped concepts for each policy element in P and the request is

mapped to a DL individual i in K . Given this, the Match element M above is mapped

to a triple: (i π(ATADM ) π(AVM)) where i is the individual corresponding to the request,

π(ATADM ) is the DL role corresponding to the attribute id, and π(AVM) is the individual
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corresponding to the attribute value. Then, to check if the ontology-match applies, we

simply check if:

K |= (i π(ATADM ) π(AVM))

The ontology-match function extends XACML with support for expressive policy

vocabularies based on OWL ontologies. Given the XACML mapping to Description Log-

ics (DL) provided in this section, and the fact the semantics of OWL is grounded in DL,

it follows that all of the analysis services described in this section can be seamlessly ap-

plied to ontology-extended XACML policies as well. To the best of our knowledge, the

DL mapping provided in this paper combined with the ontology-based XACML extension

discussed above is the first unified analysis framework that can reason about XACML ex-

tended with ontology support. Following I will discuss how some common policy idioms

that are not easily expressible in XACML can be captured in these ontology-based policy

models.

6.3.1 Representing Policy Idioms

In this section, I will discuss how a domain ontology can be used to provide seman-

tic descriptions for the entities used in the access policy. For the policy in our running

example, we could develop an ontology that describes the company domain, and link the

policy entities with concepts in the ontology using subclass relationships. For example,

we can state that a Manager is of type Employee who is a boss of at least one Person:

Manager v Employee u ∃boss.Person
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Using such ontologies, I show how common policy idioms can be expressed in De-

scription Logics. DL syntax is used for brevity, but the following can be easily serialized

in OWL:

1. Role hierarchies are easily captured with subclass axioms. For example ,stating

that a LeadDeveloper inherits all of the access privileges of the Developer role can

be expressed as:

∃role.LeadDeveloper v ∃role.Developer

2. Hierarchies on Attributes, can be captured using property hierarchies in DL. For

example, to state that if a person is a CIO of a company, that means he is also an

employee of that company, we write:

CIO-o f v employee-o f

3. Separation of duty constraints can be captured with disjoint axioms. To state sepa-

ration of duty for two role types A and B, we use:

∃role.A v ¬∃role.B

4. Cardinality constraints can be expressed on any given attribute. To state that the

role attribute cannot have more than k values, we can write:

≥ k role.> v ⊥

We can even specify maximum number of users that a role can have, with a combi-

nation of inverses and cardinality constraints. For example, the following says that

a role cannot have more than k users:
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≥ k role−.> v ⊥

6.4 Discussion

This chapter provided a framework for practical analysis services for XACML

based on a mapping to Description Logics. Using this mapping, I showed how formal

verification, change analysis and redundancy checking can be provided. The mapping

covers XACML v3.0 including delegation policies and attribute matching functions using

datatypes. Additionally, I showed how the framework can also reason about ontology-

extended XACML policies, which have attracted attention in previous work.

One issue not fully covered in this chapter is all of XACML’s 200+ datatype func-

tions (I showed how subsets of these functions can be handled using OWL-DL datatypes).

Because of the expressiveness of the functions in XACML, covering all of them can easily

lead to undecidability. For example, using only the following three functions:

urn:oasis:names:tc:xacml:1.0:function:integer-multiply

urn:oasis:names:tc:xacml:1.0:function:integer-add

urn:oasis:names:tc:xacml:1.0:function:integer-equal

it is possible to construct a system of non-linear Diophantine equations, which have been

shown to be undecidable. Thus, there cannot exist a sound, complete and terminating

reasoning procedure that covers all XACML functions.

Note that in this chapter, I showed how there exists a mechanism that allows us

to couple data-type reasoners with Description Logics reasoners. My implementation

of a XACML analyzer, does not provide a separate data-type reasoner for all possible
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decidable data-type domains; instead, it is designed such that XACML developers can

extend it with their own specific data-type reasoners. The only restriction to keep in

mind is that the data-type domain has to be closed under negation and there needs to be

an algorithm that checks for satisfiability of arbitraty conjunctions of predicates in the

domain.

Another valid question is how OWL-DL reasoners fare as XACML policy engines.

Description Logics suffer from bad worst case complexity - even the limited subset we

need for this mapping (ALCQ) is EXPTIME. This seems significantly worse than the

polynomial data complexity of the formalization in the previous section - however, dif-

ferent problems are tackled this section. In the previous chapter, the main problem we

investigated was access request checking - which is done at run-time, so fast performance

is crucial. The services discussed in this section are meant to be performed at compile-

time, before the policies are even used, so I assume that the performance requirements

for my analysis tool are not as stringent. Given this, the empirical evaluation described

in Chapter 8 shows that OWL-DL reasoners are surprisingly efficient at reasoning about

XACML policies, and are comparable even to binary decision diagram (BDD)-based pol-

icy engines.
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Chapter 7

Formalizing and Analyzing Web Service Policies

So far in thesis, the formal methods and techniques have been applied to access

control (authorization) policies only. This chapter generalizes the approach by applying

it to a different domain: web service policies.

In the web services (WS) domain, WS-Policy [129] has emerged as a standard

for specification of constraints and capabilities (i.e., policies) of WS clients and service

providers. In WS-Policy, a policy is defined to be a collection of one or more assertions;

WS-Policy defines operators that build policy expressions on top of these assertions. A

policy assertion represents an individual requirement placed on a web service - it contains

domain-specific information (e.g., a client needs to use a particular encryption in order to

be able to access the web service). Specifying syntax and semantics for assertions is not

covered by the WS-Policy standard.

WS-XACML [95] provides an expressive, domain-independent language for spec-

ification of WS-Policy assertions. WS-XACML is a profile of XACML: it essentially

specifies ways to use XACML in the context of web services for authorization, access

control and privacy policies. While WS-Policy provides the processing model and opera-

tors for combining individual assertions, WS-XACML provides a language for specifying

the assertions themselves.

WS-Policy and WS-XACML provide a run-time model for matching policies and
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assertions, respectively. However, there is no defined ’compile-time’ support for analyz-

ing and debugging web service policies. Similarly to the XACML issues, because of the

expressiveness of WS-Policy and WS-XACML, it is non-trivial for a policy developer to

understand the implications of all of the policies in the system. Mapping both WS-Policy

and WS-XACML languages into the same background formalism could potentially pro-

vide the first static analysis and verification tool that covers both languages. Additionally,

by providing a formal foundation for these policy languages it is possible to acquire a

clear semantics, as well as a good sense of the computational aspects.

It was shown in Chapters 5 and 6 how a logic-based formalization of policy lan-

guages (XACML) can provide a theoretical and practical foundation for static analysis of

access control policies. In this chapter, the analysis framework is applied to web service

policies by presenting an OWL-DL mapping for both WS-Policy and WS-XACML. The

mapping is built on top of the XACML transformation described in Chapter 6, and it pro-

vides the same services: consistency checking, policy verification and policy comparison

(containment).

Organization of this chapter is as follows: Section 7.1 presents the WS-Policy to

OWL-DL mapping. This includes discussion of the WS-Policy operators (wsp:ExactlyOne

and wsp:All), the operations supported (merge and intersection) along with the analysis

services provided by the mapping. The second half of this chapter provides a similar

treatment for WS-XACML: the syntax and semantics of the language is presented in Sec-

tions 7.2.1 and 7.2.2, and the OWL mapping is shown in Section 7.2.3. Finally, in Section

7.3 I show how both of the mappings can be integrated in a single reasoning framework

where WS-Policy specifies the high-level processing model for policies and WS-XACML
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specifies individual policy assertions.

7.1 WS-Policy

WS-Policy provides a general purpose model and syntax to describe the policies

of a Web service. It specifies a base set of constructs that can be used and extended by

other Web service specifications to describe a broad range of service requirements and

capabilities. This section will present the WS-Policy mapping to OWL-DL that allows us

to use off-the-shelf OWL editors and reasoners to do policy administration and processing

tasks.

7.1.1 Mapping WS-Policy Operators to OWL-DL

In this section, I present a formalization of the WS-Policy constructs by mapping

a normal form policy expression to OWL class expression. A policy in a normal form

is represented as an XML document, where a root Policy element enumerates each of its

alternatives, and each alternative in turn enumerates its assertions. Following is a schema

outline for the normal form of a policy expression:

<wsp: Policy>

<wsp:ExactlyOne>

[ <wsp:All> [<Assertion> </Assertion>]* </wsp:All> ]*

</wsp:ExactlyOne>

</wsp:Policy>

Listing 1. Normal form of a policy expression
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Policy expressions can also be represented in more compact forms, using additional

operators such as wsp:Optional, however as shown in [129] the policy expressions can

all be expanded to normal form. Therefore we only provide a mapping of the constructs

used in a normal form policy expression: wsp:ExactlyOne and wsp:All.

First, policy assertions are mapped directly into OWL-DL class expressions. In-

stead of mapping separately each domain-specific assertion language into OWL, I provide

a mapping of domain-independent WS-XACML instead. The mapping of WS-XACML

is discussed in Section 7.2.

Mapping wsp:All to OWL is straightforward because wsp:All means that all of

the policy assertions enclosed by this operator have to be satisfied in order for commu-

nication to be initiated between the endpoints. Thus, it is a logical conjunction and can

be represented as OWL intersection. Each of the members of the intersection is a policy

assertion, and the resulting class expression is a custom-made policy class that expresses

the same semantics as the WS-Policy one.

Because the description of wsp:exactlyOne in the WS-Policy specification is am-

biguous, there are here are two possible interpretations for the operator:

wsp:ExactlyOne as an exclusive OR wsp:ExactlyOnemeans that only one, not more,

of the alternatives should be supported in order for the requester to support the policy.

This is supported by the official specification[129], where it is stated that although policy

alternatives are meant to be mutually exclusive, it cannot be decided in general whether or

not more than one alternative can be supported at the same time. To cover this more com-

plicated case, I translate Wsp:ExactlyOne in the following way: for n different policy
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WS-Policy Construct OWL Expression
Wsp:All (policies A and B) owl:intersectionOf(A B)

Wsp:ExactlyOne intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B)
)

Table 7.1: Mapping of WS-Policy Constructs to OWL

assertions, expressed as OWL classes themselves, wsp:ExactlyOne is the class expres-

sion consisting of those individuals in each separate policy class that do not also belong

to another policy class. In OWL terms, it is the union of all of the classes with the

complement of their pair-wise intersections. Because of the pair-wise intersections there

is a quadratic increase in the size of the OWL construct that is used as a mapping for

wsp:ExactlyOne.

wsp:ExactlyOne as an inclusive OR However, due to the open world assumption present

in OWL-DL, the above mapping produces non-intuitive results. For example, if a request

r comes in such that r : A, and the policy P contains only two alternatives, A and B, we

will not be able to infer that the request r satisfies P (i.e., r is of type (A t B) u ¬(A u B))

unless we explicitly state that r : ¬B. To overcome this issue, I offer a simplified mapping

to represent <wsp:exactlyOne> as logical disjunction (inclusive OR), and in addition I

have made the classes representing the alternatives pair-wise disjoint, so even though a

requester supports more than one alternative, he cannot use more than one at a time. This

updated translation is more concise than the one presented above (compare A t B with

(A t B) u ¬(A u B)). In this scenario, if a requester comes in that is a member of two

alternatives, a logical inconsistency will occur.
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(01) <wsp:Policy
xmlns:sp=”http://schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy” >

(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <sp:RequireDerivedKeys />
(05) <sp:WssUsernameToken10 />
(06) </wsp:All>
(07) <wsp:All>
(08) <sp:RequireDerivedKeys />
(09) <sp:WssUsernameToken11 />
(10) </wsp:All>
(11) </wsp:ExactlyOne>
(12) </wsp:Policy>

Figure 7.1: Example policy

Example 7.1.1.1 Consider the example policy in Figure 7.1. For each policy assertion,

a separate OWL class (RequireDerivedKeys, WssUsernameToken10, WssUsernameTo-

ken11) is generated. Then, each alternative is simply the conjunction of its constituent

assertions.

Alt1 ≡ RequireDerivedKeys uWssUsernameToken10

Alt2 ≡ RequireDerivedKeys uWssUsernameToken11

Finally, the policy class P is equivalent to the disjunction of the alternative classes:

P ≡ Alt1 t Alt2

If, for example, these two alternatives have to be disjoint, then a disjoint axiom is

added:

Alt1 v ¬Alt2.

With this mapping, checking whether a web service requester satisfies a particular

policy can then be reduced to instance checking: simply checking whether the OWL in-

dividual representing the requester is a member of the OWL class representing the policy.
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To more compactly express complex policies, WS-Policy allows nesting of opera-

tors. To convert a policy from a compact to a normal form, the properties of wsp:ExactlyOne

and wsp:All can be used. To show that the OWL translation correctly captures the

meaning of wsp:ExactlyOne and wsp:All, I need to prove that the mappings from

Table 7.1.1 have the same properties as the WS-Policy operators. wsp:ExactlyOne

and wsp:All have the following properties: commutativity, associativity, idempotency

and distributivity. It can be easily shown that the logical constructs corresponding to

wsp:ExactlyOne and wsp:All, which are essentially a logical conjunction and disjunc-

tion, also satisfy these properties.

7.1.2 Mapping Policy Assertions to OWL

Web Services Policy assertions indicate domain-specific capabilities and require-

ments and are defined in separate specifications.The WS-Policy standard does not define

the syntax and semantics of assertions - this task is delegated to experts in their respective

domains.

Recently, there has been a proposal of a generic, domain-independent policy lan-

guage that is able to capture the above domains. The proposal is WS-XACML, and it

uses a subset of the functions of core XACML. Instead of formalizing and analyzing all

of the domains separately, this chapter provides a mapping of domain-independent WS-

XACML. The mapping is presented in Section 7.2.
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7.1.3 WS-Policy Merge and Intersection

As part of the specification, WS-Policy also defines two operations on policies:

merge and intersection.

Merge Merge is the process of combining sub-policies together to form a single pol-

icy. This operation is needed because a policy might be specified in a distributed way,

having its fragments defined in separate files. It is necessary to combine all these policy

fragments together to form a single merged policy which could be processed further.

Merge works on policies already converted to normal form. The merged policy

is a Cartesian product of the alternatives in the first policy and the alternatives in the

second policy. There is a straightforward way of doing the Merge operation in OWL-DL.

First, we translate each of the input policies into OWL-DL as described above. Then, the

merged policy is simply the intersection of the input policies. Thus, Merge also maps

cleanly onto OWL-DL. An outline of the proof is shown in [84].

Intersection Policy intersection is used when a web service requester and provider both

express policies and want to compute the compatible policy alternatives between them.

Like in Merge, the process of coming up with an intersection is carried out in a cross

product fashion, comparing each alternative from the first policy with every alternative

from the other one. However, in the case of Intersection, if the two alternatives that

are being combined do not agree on the same vocabulary, then the combined alternative

is not added to the new policy. A vocabulary of an alternative is simply defined as the set

of QNames of the assertions in that alternative. If the alternatives do agree on the same
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vocabulary, then as defined in [129], two alternatives are compatible if each assertion in

the first alternative is compatible with an assertion in the second, and vice-versa.

Checking whether two assertions are compatible is outside of the scope of WS-

Policy. To overcome this, I use WS-XACML to represent the individual policy asser-

tions, since WS-XACML defines a processing model that checks if two assertions are

compatible. More information is presented in Section 7.2.

7.1.4 Policy Processing

One benefit of expressing policies using OWL is the ability to reason about policy

containment - i.e., checking if the requirements for supporting one policy are a subset

of the requirements for another. That would allow us to be more flexible in determining

whether a particular requester supports a policy, in the cases where the requester supports

a superset of the requirements established by the policy. Policy containment is only one

of the services supported out of the box; a full listing follows:

1. policy equivalence (A owl:equivalentTo B);

2. policy incompatibility (if x meets policy A then it cannot meet policy B; a.k.a, A

owl:disjointWith B);

3. policy incoherence (nothing can meet policy A; a.k.a., A is unsatisfiable)

4. policy conformance (x meets policy A; a.k.a, x rdf:type A)

5. policy containment (if x meets policy A then it also meets policy B; a.k.a., A

rdfs:subClassOf B);
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There is an additional reasoning service that is useful for policies and warrants more

discussion. It can been argued that explanation is a crucial requirement for a policy lan-

guage. To address this requirement, we can use recent advances in the field of debugging

OWL ontologies [80], esp. in providing explanations for both ontology inconsistencies

and arbitrary entailments for OWL-DL. For example, if a user asks why the requester r

satisfies (or does not satisfy) the policy P, then the debugging framework is simply asked

to provide justification for the type assertion r:P. On the other hand, if a web service

request causes an inconsistency (for example because of violating a domain disjointness

constraint), then the debugging framework can provide explanation of why the inconsis-

tency occurred. More specifically, if an OWL-DL ontology is inconsistent, the work by

Kalyanpur et al. [80] provides an algorithm to extract the minimal set of axioms in the

ontology that causes the inconsistency.

Thus, with a fairly simple mapping, one can use an off-the-shelf OWL reasoner

as a policy engine and analysis tool, and an off-the-shelf OWL editor as a policy devel-

opment and integration environment. OWL editors can also be used to develop domain

specific assertion languages (essentially, domain ontologies) with a uniform syntax and

well specified semantics. This mapping can also be used to experiment with extensions

to WS-Policy, by using more expressive constructs from OWL as the policy language and

assertion language level. We can experiment with policy language extensions without

having to write yet another policy engine for them.

Furthermore, ontology development techniques can be useful for policy develop-

ment as well. Iterative development is a popular ontology engineering approach [119],

where specializations are added to the class tree over time. Similarly, we can build up our
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XA ::= (XACMLAssertion REQ∗ CAP∗)
REQ ::= (Requirements VocabRef (S | CONS∗))
CAP ::= (Capabilities VocabRef (RQ | polDoc | CONS∗))

CONS ::= (AttributeDesignator AV AD fcn) |
(AttributeSelector AV AS fcn)

Table 7.2: Syntax of Web Service Profile of XACML.

policies from more general ones. A general policy could be very restrictive, setting tough

guidelines for all organization’s policies - then different departments could subsume and

extend this general policy.

7.2 WS-XACML

This section will focus on WS-XACML, which is a XACML profile for web ser-

vice policy assertions. Concise syntax and semantics is presented first, followed by a

presentation of the WS-XACML to OWL-DL formal mapping.

7.2.1 Syntax of WS-XACML

The top-level element of a WS-XACML policy is an assertion. A XACML-based

Web Services Policy Assertion is a description of an entity’s Web Service’s policy w.r.t.

to some policy domain. An assertion in WS-XACML can be used to express both require-

ments and capabilities.

Requirements The requirements for an assertion element can be expressed in terms of a

Policy, PolicySet or a Constraint. Additionally, the Requirements element con-

tains a VocabularyRef, which contains the URI’s associated with a given policy vocab-

145



ulary. Each XACML attribute referenced in Requirementsmust be defined in one of the

policy vocabularies specified by a VocabularyRef.

Capabilities Capabilities of a web service endpoint are expressed in terms of Requests

or Constraints. Requests can be reduced to Constraints as follows: for each

Attribute A in the Request a new Constraint is generated. The Constraint con-

tains all attribute values occurring in the Request for A.

Constraint A Constraint is represented by a boolean function. The attribute refer-

enced using an AttributeDesignator or AttributeSelector is one of the arguments

to the function. A Constraint is satisfied if the function used in the constraint evalu-

ates to True when evaluated against a given value for the Attribute. The set of values for

which the function evaluates to True is the set of acceptable values for the policy vocab-

ulary variable.Exactly one attribute must be referenced by each Constraint. Following

is an example of a constraint:

<Constraint FunctionId="...:integer-less-than">

<xacml:Apply FunctionId="...:integer-one-and-only">

<xacml:AttributeDesignator AttributeId="max-data-retention-days"

DataType="http://www.w3.org/2001/XMLSchema#integer"/>

</xacml:Apply>

<xacml:AttributeValue DataType="...#integer"/>

90

</xacml:AttributeValue>

</Constraint>

Only a limited number of comparison functions are allowed in Constraints and

Constraints themselves cannot be nested. Finally, note that a Constraint can easily

be translated to a XACML Rule element with the same semantics, simply by generating

a Rule with an empty target and including the Constraint in the Rule’s Condition.
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7.2.2 Semantics of WS-XACML

This section presents an intuitive description of the semantics of WS-XACML as-

sertion matching, along with a more formal presentation based on natural deduction rules.

WS-XACML can be used to check if the constraints and capabilities of a web ser-

vice provider are compatible with the constraints and capabilities with a web service con-

sumer; thus, the main service WS-XACML provides is assertion matching. The rules for

matching XACML Assertions are shown in Table 6.4. Two Assertions A and B match if

at least one Requirements element in A matches one Capabilities element in B, and

vice-versa. A missing Requirements (resp. Capabilities) in one assertion matches

any Capabilities (resp. Requirements) element in the other assertion.

The semantics of matching Requirements against Capabilities is presented in

Table 6.3. Intuitively, it is done in the following way:

• A match between Policy or PolicySet p from Requirements and a Request r

from Capabilities is successful iff P yields a Permit on r.

• A match between Constraint c from Requirements and a Request r from Ca-

pabilities is successful iff the translation of c to a Rule P returns a Permit for

r.

• A match between Constraint cr from Requirements and a Constraint cc from

Capabilities is successful iff the intersection of the two is nonempty. In the pres-

ence of multiple Constraint elements in Requirements, they are treated as a log-

ical AND, i.e., all Constraints must be satisfied in order for the Requirements

element to be satisfied. Thus, for each Constraint in Requirements, there
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should be at least one matching Constraint from Capabilities for the match to

be successful overall. Intersection of Constraints is defined in the next section.

fcn-2(AD,AV-2) ∩ fcn-1(AD,AV-1) 6|= ⊥

(Constraint AV-1 AD fcn-1) (Constraint AV-2 AD fcn-2) |= match

∀CONSi :
∃CONS js.t.CONSi,CONS j |= match

(Requirements VocabRef (CONS∗)), (Capabilities VocabRef (CONS∗)) |= match

∀CONSi :
∃RQs.t.CONSi,RQ |= Permit

(Requirements VocabRef (CONS∗)), (Capabilities VocabRef RQ) |= match

∀S : ∃RQs.t.S,RQ |= Permit

(Requirements VocabRef S), (Capabilities VocabRef RQ) |= match

(Requirements),CAP |= match REQ, (Capabilities) |= match

Table 7.3: Matching Requirements with Capabilities.

7.2.2.1 Matching Constraints

If the constraints Ca and Cb that are matched do not refer to the same XACML at-

tribute, the match still succeeds; however, the intersection is then defined as a conjunction

of Ca and Cb. If the constraints refer to the same attribute (a), then matching is done by

checking if the specified values for a are compatible. The constraints are compatible iff

there exist some value v for a that satisfies both Ca and Cb.

Consider the following two constraints:

<Constraint FunctionId="...:integer-less-than">

<xacml:AttributeDesignator AttributeId="...:max-data-retention-days"

DataType="...#integer"/>
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REQi ∈ REQ-1,CAP j ∈ CAP-2
REQi,CAP j |= match

(XACMLAssertion REQ-1), (XACMLAssertion REQ-2 CAP-2) |= match

REQk ∈ REQ-2,CAPl ∈ CAP-1
REQl,CAPl |= match

(XACMLAssertion CAP-1), (XACMLAssertion REQ-2 CAP-2) |= match

REQi ∈ REQ-1,CAP j ∈ CAP-2
REQi,CAP j |= match

REQk ∈ REQ-2,CAPl ∈ CAP-1
REQl,CAPl |= match

(XACMLAssertion REQ-1CAP-1), (XACMLAssertion REQ-2 CAP-2) |= match

Table 7.4: Matching XACML Assertions.

<xacml:AttributeValue DataType= "...#integer"/>90

</xacml:AttributeValue>

</Constraint>

and

<Constraint FunctionId="...:integer-more-than">

<xacml:AttributeDesignator AttributeId=":max-data-retention-days"

DataType="...#integer"/>

<xacml:AttributeValue DataType= "...#integer"/>45

</xacml:AttributeValue>

</Constraint>

Intersecting the two constraints, we see the allowed values for max-data-retention-days

are between 45 and 90, so the constraints are compatible. Since the allowed compari-

son functions are limited (mostly of type-equal, type-less-than, type-greater-than, etc.)

and Constraints cannot be nested, computing the intersection of two Constraints

is relatively straightforward. A detailed listing of supported constraint functions in WS-

XACML and a decision procedure for computing intersection of Constraints can be found

in Appendix A in the WS-XACML specification [95].
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7.2.3 Mapping WS-XACML

Similarly to the XACML-to-DL mapping, I introduce a mapping function π that

takes WS-XACML expresions as input and returns DL concept expressions. For a XACML

assertion A we will refer to its set of requirements and capabilities as A.req and A.cap,

respectively. A XACML assertion

A = (XACMLAssertion (REQ1, . . . ,REQn) (CAP1, . . . ,CAPn))

is mapped in the following manner:

π(A) = (π(REQ1)t, . . . ,tπ(REQn)) u (π(CAP1)t, . . . ,tπ(CAPm))

Mapping Requirements There are three cases for a Requirements R element:

• R is empty; in which case π(R) = >, since R being empty is compatible with

everything.

• R is of type Policy or PolicySet; for this case, the mapping function π(R) is

already defined in Chapter 6.

• R contains one or more Constraints c1, . . . , cn; π(R) ≡ π(c1)u, . . . ,uπ(cn). Mul-

tiple Constraints in a Requirements element are treated as a conjunction in the

specification. The mapping function for constraints is defined in the next section.

Mapping Capabilities There are three cases for a Capabilities element C:
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• C is empty; in which case π(C) = >, since an empty Capabilities element is

compatible with everything.

• C is of type Request; then π(C) is already defined in Chapter 6.

• C contains one or more Constraints c1, . . . , cn; π(R) ≡ π(c1)t, . . . ,tπ(cn). Mul-

tiple Constraints in a Requirements element are treated as a disjunction in the

WS-XACML specification. The mapping function for constraints is defined in the

next section.

Please note that WS-XACML also allows for PolicyDocument elements, that con-

tain an XML document with domain specific policy vocabulary information. The seman-

tics of PolicyDocument elements is outside the scope of the WS-XACML profile, hence

it is not covered in this thesis.

7.2.3.1 Mapping Constraints

A Constraint is simply a datatype function f performed on a single XACML

attribute a and attribute value(s) v. (I will use shorthand f (a, v) to represent Constraints

henceforth.) A WS-XACML Constraint is very similar to a Match element in XACML,

with the only difference being the type of comparison functions supported. For the basic

matching functions, the behavior (and hence the OWL-DL mapping) is the same. For

example, given a Constraint where the comparison function f is of type string-equal,

and the attribute value v is of type string, the mapping generates a concrete (datatype)

OWL-DL property to capture the attribute a, and a user-defined string datatype to capture

v. For other basic comparison functions that occur in Constraints and Match elements,
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the mapping is shown in Table 7.5.

Matching function f cn π(AV, fcn)
type-equal DatatypeRestriction (type valueAV)
type-greater-than DatatypeRestriction (type minExclusive valueAV)
type-greater-than-or-equal DatatypeRestriction (type minInclusive valueAV)
type-less DatatypeRestriction (type maxExclusive valueAV)
type-less-than-or-equal DatatypeRestriction (type maxInclusive valueAV)
type-regexp-match DatatypeRestriction (type pattern valueAV)
xpath-node-match DatatypeRestriction (xpath-expression pattern

valueAV)

Table 7.5: Mapping matching functions.

However, there are some additional matching functions that are allowed in Constraints,

but not in Match elements: type-set-equals, type-subset, time-in-range. Given a Constraint

f (a, v), type-subset is easiest to map since it simply corresponds to creating a conjunction

of all of the attribute values in vi ∈ v. This is because for a request to satisfy this con-

straint, all of the values in v must occur in that request (additional ones are allowed as

well). Type-subset-equals is more involved, since we have to make sure no additional val-

ues for that attribute are present (apart from the ones in v). For this purpose, a cardinality

constraint on attribute a is added , which essentially limits the number of possible values

to #v. Finally, time-in-range is handled by generating a user defined date-time datatype

(using min and max facets of XML schema). Formal representation of mapping in Table

7.6.

7.2.3.2 Analysis Services

The OWL-DL mapping of WS-XACML presented in this section allows us to pro-

vide a variety of reasoning services for WS-XACML assertions out of the box, similarly

152



Matching function f (a, v) π( f (a, v))
type-subset(a, v) u∃π(a).vi for each vi ∈ v
type-set-equals π(type-subset(a, v)) u =nπ(a).> where n = #v
time-in-range(a, v1, v2) (DataHasValue(π(a) DatatypeRestriction (type min-

Inclusive v1)) DataHasValue(π(a) DatatypeRestric-
tion (type maxInclusive v2))

must-be-present(a) ∃π(a).>
must-not-be-present(a) ∀π(a).⊥

Table 7.6: Mapping Constraint functions.

to WS-Policy:

• assertion containment - given two XACMLAssertions A and B, checking contain-

ment (subsumption) is reduced to checking if π(A) v π(B)

• assertion incompatibility - if a request matches assertion A , then it will not match

assertion B. This is reduced to checking disjointness of π(A) and π(B) : π(A) u

π(B) |= ⊥

• assertion satisfiability (nothing can match the assertion A, reduced to satisfiability

check of π(A))

• formal verification of a policy. In particular, we’re presented with a set of WS

assertions that must be satisfied and a set of assertions that have to be filtered by our

XACMLAssertion. This is similar to verification for policies, where a set of tests

(in form of access requests) and expected outcomes for those tests are provided. In

order to make sure there is no possible instantiation of the XACMLAssertion that

can break the properties, for a policy A and test input (in the form of an assertion,
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too) C we perform the following satisfiability check:

π(A.req) u π(C.cap)

π(C.req) u π(A.cap)

If the assertion C needs to be compatible with A, then the verification test succeeds

when both expressions above are satisfiable, whereas for an incompatibility test,

verification is successful when at least one of the expressions above are be unsatis-

fiable

7.3 Putting it All Together

To illustrate how the mappings of WS-Policy and WS-XACML can be integrated,

consider the following example

(01) <wsp:Policy
xmlns:sp=”http://schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy” >

(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <ws-xacml:XACMLAuthzAssertion id=”XA-1” />
(05) <ws-xacml:XACMLAuthzAssertion id=”XA-2” />
(06) </wsp:All>
(07) <wsp:All>
(08) <ws-xacml:XACMLAuthzAssertion id=”XA-3” />
(09) <ws-xacml:XACMLAuthzAssertion id=”XA-2” />
(10) </wsp:All>
(11) </wsp:ExactlyOne>
(12) </wsp:Policy>

Figure 7.2: Example policy

Example 7.3.0.1 This example contains a revised version of the policy from Figure 7.1.
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Instead of domain-specific assertions, here WS-XACML policy assertions are used (be-

cause of their verboseness, only the ID element is included in the description). Each WS-

XACML assertion is mapped to an OWL class expression using the mapping function π

described in this section. Given this, each WS-Policy alternative is simply a conjunction

of its constituent assertions.

Alt1 ≡ π(XA-1) u π(XA-2)

Alt2 ≡ π(XA-3) u π(XA-2)

Finally, the policy class P is equivalent to the disjunction of the alternative classes:

P ≡ Alt1 t Alt2

As it can be seen from this example, given that both WS-Policy and WS-XACML are

mapped to OWL-DL, their integration is straightforward.

7.4 Summary

This chapter generalized the framework presented in Chapters 4 and 5 by applying

it to a different domain (web service policies). The main difference between the access

control policies discussed earlier and the web service policies discussed here is that both

web service requesters and web service providers can have policies of their own, unlike

in access control where the requesters usually does not have an access policy. Because

of this, checking whether two web service policies match each other in our framework is

done using a satisfiability check, i.e., by trying to find a model where both policies will

be satisfied.
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Given this generalization the analysis framework was applied to web service poli-

cies by presenting an OWL-DL mapping for both WS-Policy and WS-XACML. The map-

ping was built on top of the XACML transformation described in Chapter 5 and it provides

formal verification of policies, policy comparison (containment) and checking coherency

(consistency) of web service policies.
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Chapter 8

Implementation and Evaluation

In this chapter, I show the logic-based framework presented in Chapters 6 and 7

can provide analysis tasks such as formal verification, policy comparison and redundancy

checking for large and expressive XACML policies in a practical manner. For this pur-

pose, I have implemented the XACML mapping as a policy analysis tool that is based

on OWL-DL reasoners. An overview of the analysis tool and its novel optimizations are

discussed in Section 8.1.

Most of this chapter contains a discussion on the extensive empirical evaluation

performed on my policy analysis tool. The empirical evaluation consists of two parts.

The first part (Section 8.2) consists of a policy test suite where the performance of my ap-

proach is compared to two of the most scalable XACML analyzers: BDD-based Margrave[50]

and a SAT-based analyzer by Hughes et al. [67]. The policy test suite contains 5 non-

trivial real-world XACML policies with limited expressiveness so the other tools can

process them; the evaluation shows that the performance of my analyzer is comparable to

the other approaches for these policies.

The second part of the evaluation (Sections 8.3 and 8.4) uses two real world ac-

cess control policies that employ more expressive features such as policy vocabulary do-

mains, datatype functions and policy constraints: NASA Federated Data Access Use Case

[118] and RBAC policies from the healthcare domain [62]. I converted these policies in
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XACML and showed by empirical testing of formal verification and policy comparison

service that my analysis tool can load and analyze these large policy sets in a practical

manner.

8.1 Implementation

The three main components of the analysis framework are a mapper, which converts

XACML policies to DL knowledge bases, an analyzer, which reduces policy analysis

services to DL reasoning tasks, and an output generator, which extracts counter examples

from the internals of the reasoner and converts them to XACML access requests. I have

provided an API so different DL reasoners can be plugged in and used as analyzers; so

far, I have used the open source reasoners Pellet [110] and Fact++ [120]. An architectural

diagram of the implemented prototype is presented in Figure 8.1.

Figure 8.1: Architecture of Analysis Framework.

I also implemented a few optimizations in the mapper to improve performance of
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analysis services - these are briefly discussed below:

• Grouping by categories - A practical performance gain can be achieved by assum-

ing the attributes for different categories are disjoint (which was the case for every

XACML policy that I have used in the evaluation). This is because we can group

the attributes based on the category they belong to, and then minimize unnecessary

interaction between attributes in different categories (this idea is similar to con-

junctive partitioning in model checking [130]). The partitioning is accomplished

by introducing an additional (functional) DL role for each category like Subject,

Resource, Action, and then adding the attribute values as role fillers of the corre-

sponding category roles. To illustrate how it works, consider the mapping of a rule

before:

Deny-R3 ≡∃role.(Manager t Developer) t

∃action-type.(read t write) t

∃resource-type.Report

and after:

Deny-R3 ≡∃sub ject.∃role.(Manager t Developer) t

∃action.∃action-type.(read t write) t

∃resource.∃resource-type.Report
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• Simplification of concept expressions. To improve performance, tableau reasoners

reduce concept expressions to a simplified normal form before checking for concept

satisfiability. Due to the size of the Permit-P and Deny-P axioms returned from

the mapping function, simplifying the DL concepts as they’re generated by the

mapping, before reasoning, reduces the amount of work the policy analyzer has to

perform during reasoning.

An example of output of the tool is shown in Figure 8.2. The service ran is formal

verification, and the analyzer found a counter-example which is presented in XACML

syntax. Additionally, a stack trace of policies that produced the counter-example is pro-

vided.

Figure 8.2: Sample Output of Formal Verification Service.
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8.2 Policy Test Suite

This section presents the first part of the evaluation: applying the analysis frame-

work to a data set consisting of publicly available real-world XACML policies. To eval-

uate the performance of the analysis tool, I tested the following services: formal verifi-

cation, policy comparison (change analysis) and redundancy checking. The reason for

testing only these services is that all the others (policy equivalence, disjointness, formal

verification of policy differences) can be reduced to either formal verification or policy

comparison; thus, the running time for the other services should not differ substantially.

The empirical dataset consists of XACML policies being used in various applica-

tions; each of these policies is briefly described below:

• Continue [11] is a web application for paper submissions, reviews, and PC meet-

ings. Continue contains 26 policy files (each one representing a PolicySet) in the

set, with a total of 13 attributes and 36 attribute values. Although it does not have

many attributes and/or values, the policies are fairly interconnected and nested (up

to 5 levels), which makes it non-trivial to analyze.

• Fedora [4] is an open source digital management repository. It provides an exten-

sible architecture for digital asset management (DAM), upon which many types of

digital library, institutional repositories, digital archives, and digital libraries sys-

tems might be built. Out-of-the-box, the Fedora repository is configured with a

default set of XACML access control policies that provide for a highly restricted

management service and an open access service for digital objects.
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• Generic Authorization, Authentication and Accounting Framework (GAAA [1]) is

aimed at developing a Web Services-based open source toolit that will enable ap-

plication developers to incorporate access control functions as part of workflow

management in a Grid environment. In particular, the research uses the problem

of on demand provisioning of network connections across multiple domains as a

proof of concept. As part of the prototype, a set of policies is developed and made

publicly available.

• eXist [3] is an open source XML Database. It supports XACML as means of spec-

ifying access control for XML resources, and it provides a default XACML policy

set to control access to Java methods from XQuery

• Network [67] is a set of non-trivial access control policies used in testing the SAT-

based XACML analyzer developed by Hughes et al [67].

The general characteristics of the policies are shown in Table 8.1.

Name Attributes/Values PolicySet Elements Depth
Continue 14/36 26 5
Fedora 7/15 14 2
eXist 9/37 5 2

Network 5/10 6 2
GAAA 3/47 2 2

Table 8.1: General Information on Policies in Test Suite.

In addition to testing my prototype, I also processed these policies using other

XACML analyzers such as Margrave [50] and the analyzer described by Hughes et al

[67] (referred to as HSAT from now on). These two were chosen since they are the fastest

available XACML analyzers. Margrave is based on a mapping of a XACML policy to a
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multi-terminal binary decision diagram (MTBDD) which is a data structure used to com-

pactly represent boolean formulas. Similarly to Margrave, HSAT also translates policy

verification queries to Boolean satisfiability problems; the difference is that they use a

SAT solver (zchaff [102]) to obtain an answer.

Both Margrave and HSAT are less expressive than my analyzer; in particular they

lack the support for vocabulary domains in policies, data-types (HSAT has some incom-

plete support) and non-trivial Condition elements in Rules. The policies were chosen

so that at least one other analyzer (other than mine) can process them – the goal being to

investigate on how my approach would fare against analyzers optimized for less expres-

sive policies. Note that the expressive policies discussed in Sections 7.3 and 7.4 cannot

be handled by the other approaches.

The experiments where run on a Linux machine with 2Gb of RAM and a 3.06GHz

Intel Xeon CPU. In all of the figures, the X-axis corresponds to the policy being analyzed,

while the Y-axis is the average time in seconds for performing the analysis service in

question.

8.2.1 Formal Verification Results

In order to perform formal verification, the following inputs are needed: a policy

to be verified, a test case (represented as a XACML policy as well), and the expected

outcome of the test case (e.g., NeverPermit, AlwaysDeny, etc.). Fortunately, the Continue

policy contains 11 test cases and outcomes already specified by its security developers.

For the other policies, however, I developed synthetic test cases based on the information
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in the input policy. Essentially, I generated test properties as boolean functions consisting

of attribute and values taken from the input policy being tested. The generated boolean

functions were serialized to a XACML policy set and an expected outcome also randomly

chosen.

The results for verification are shown in Figure 8.3. Due to expressiveness limita-

tions, Margrave was able to load only the Continue and Network policies, which consist

of simple prerequisites in Target and no data-type functions. Please note that the loading

– which includes parsing the policy and converting it to the corresponding logic format –

for my approach is relatively stable; i.e., in in all cases it takes a few seconds to parse the

policy and convert it to an OWL-DL knowledge base. The conversion time for HSAT, on

the other hand, varies wildly: in the cases of eXist, Fedora and GAAA which use func-

tions in the Condition element, it takes 100+ seconds (HSAT timed out while loading

the GAAA policy after 16 minutes). With respect to verification time only, my approach

exhibits the slowest performance, however notice that in all cases it still takes only around

a second, which is acceptable performance for compile-time policy analysis; also, notice

that the dominant component in all approaches seems to be policy loading and conversion

time.

8.2.2 Policy Comparison Results

Policy comparison refers to checking for semantic differences between two poli-

cies, i.e., finding all possible access requests where the policies would return different

decisions. To evaluate this service, for every policy in the test suite, I performed 1) a

164



Figure 8.3: Verification results for OWL-DL-based, HSAT and Margrave. Times
shown are for formal verification of security properties. Top left figure contains the
time for parsing the XACML policy and loading/converting into the appropriate struc-
ture (BDD, conjunctive formula, OWL-DL ontology). The top right figure contains the
verification time, once the structure is converted. Bottom figure contains aggregate (load-
ing+verification) timings.

comparison of the policy against a copy of itself and 2) a comparison of the policy against

a modified version of itself (5 randomly selected rules were removed to produce this

modified copy). The results are shown in Table 8.4; they represent the average of 5 runs.

Notice that the results for policy comparison results are similar to the ones for

verification, since in all approaches the services are reduced to the same basic reasoning

tasks. The main difference between HSAT and my approach (DL) on one hand, and

Margrave on the other is that Margrave finds all possible differences between policies in

a very fast manner. My analysis framework is not optimized for finding all differences,

so it only presents the first difference between the two policies that it finds (if a difference
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Figure 8.4: Policy comparison results for OWL-DL-based, SAT and Margrave. Times
shown are for checking policy equivalence. The figure contains the aggregate (load-
ing+comparing) timings.

exists).

8.2.3 Redundancy Checking Results

Finally, I also performed redundancy checking of each Rule, Policy and PolicySet

element in the policy test suite. Since the other tools do not support this services, only the

results of my analyzer are shown in Table 8.5. Notice that Continue takes significantly

more time than the others because of its nesting and interlinking; a single Policy element

might be included in different PolicySets, so it becomes more involved to check all of

the possible implications if the particular Policy element is removed.

Interestingly, the analyzer did find a redundant Policy and Rule in Continue’s pol-

icy: the third Policy in PPS paper-assignments rc PolicySet. Upon closer inspection,

it seems that whenever the prerequisite of the third Policy is matched, the first Policy

in that set will fire as well, and since the PolicySet is using the First-Applicable
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combining algorithm, the decision of the first Policy will always override the third one.

Figure 8.5: Checking redundancy of Rule, Policy and PolicySets. Times shown are
aggregate (loading the policy, converting it to OWL-DL form and processing each policy
element).

8.2.4 Extended Policies

Since the performance of my approach was on the order of few seconds for all of

the policies in the suite, I decided to test its scalability for larger versions of the test suite

policies. For this purpose, I implemented a tool that for a given input policy generates a

’slightly’ modified version of the policy. In particular, the modified policy has the same

structure as the original (same number of Rules,Policies and PolicySets and same

relationships between them); the only difference is that the constants that are used as

attribute values in the policies are randomly permuted and new attribute values are added.

Using this tool, for each policy set (such as Continue), I generated a meta-policy that
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combines the original one with a number of slightly modified versions of it. An example

of such meta-policy is shown below :

<PolicySet xmlns="urn:oasis:names:tc:xacml:1.0:policy"

PolicySetId="top"

PolicyCombiningAlgId="...:first-applicable">

<Target />

<PolicySetIdReference>continue</PolicySetIdReference>

<PolicySetIdReference>continue1</PolicySetIdReference>

<PolicySetIdReference>continue2</PolicySetIdReference>

<PolicySetIdReference>continue3</PolicySetIdReference>

</PolicySet>

In the example above, continue refers to the original policy, whereas continue1,

continue2, continue3 point to slightly modified versions. The goal of extending policies

in such manner is to test the analyzers on larger policy sets that still preserve the structure

of the original policy.

The formal verification results for extended versions of Continue and Fedora are

shown in Tables 8.6 and 8.7. As the size of Fedora and Continue increases, my approach

scales very well. Most of the performance degradation comes from increased verification

time, while the loading and conversion time remains stable.

In the case of Continue, notice that Margrave is unable to load the larger policies.

This is because each attribute/value pair from the policy is mapped to a node in the BDD

structure used by Margrave. BDDs trade memory for speed, so the size of the structure is

exponential to the number of variables (i.e., attribute-value pairs) in the worst case – this

causes memory problems when loading larger policies.
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Figure 8.6: Testing the policy analyzers on an extended version of Continue. con-
tinuex1 refers to the original version of the policy, continuexn denotes a policy that is n
times large than the original. The Y-axis denotes the total time needed to load the policy
and verify all 11 security properties.

8.2.5 Summary

To show that the performance of my analysis framework is comparable to that of the

fastest XACML analyzers available (Margrave and HSAT), in this first part of the evalua-

tion I used a policy test suite consisting of 5 publicly available real XACML policies. The

selected policies selected are relatively inexpressive but also non-trivial: they use a lim-

ited set of XACML features (so the other approaches can process them), but each policy

contains dozens of XACML Rule and Policy elements and they are fairly nested and

interconnected. The results from this section show that even for these limited fragments

of XACML where the propositional-logic based approaches are expected to dominate, my

tool performs surprisingly well and is comparable overall to the other approaches.
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Figure 8.7: Testing the policy analyzers on an extended version of Fedora. fedorax1
refers to the original version of the policy and fedoraxn denotes a policy that is n times
large than the original. The Y-axis denotes the total time needed to load the policy and
verify 5 randomly generated security properties.

8.3 NASA Federated Data Access Use Case

In order to evaluate the more expressive features of the analysis framework, such

as policy domains and datatypes, I collaborated with NASA HQ to develop an expressive

set of realistic XACML policies [118]. Given the immense amount of heterogeneous data

generated in different parts of the agency, information management is a major challenge

for NASA. Several efforts are underway across the agency to use semantic technologies,

including RDF and OWL, to respond to this information integration challenge. Some

examples of Semantic Web applications at NASA include: BIANCA [2], an RDF-based

data integration application, POPS [81] which provides faceted browsing across different

domains and the NASA Taxonomy [49], which is a controlled vocabulary consisting of 7

hierarchies used to facilitate interoperability and search.

The difficulties of integrating and managing information across different organiza-

170



tions in the agency is manifested in the domain of access policy management. In par-

ticular, integrating from multiple data sources presents challenges in policy management

since the data sources typically have heterogeneous access control policies. Determin-

ing how the policies of the constituent sources align and the subsequent specification of

a policy for the integrated data is a labor-intensive process that is time consuming and

error-prone. Because of these issues (referred to as the NASA HQ Federated Data Ac-

cess Use Case) NASA HQ is interested in approaches that provide flexible and expressive

policy management for heterogeneous and distributed policy sets [118].

For the purpose of this dissertation, I collaborated with representatives from NASA

HQ to develop a set of policies for the Federated Data Access Use Case. The application

we investigated was BIANCA (the name is an acronym for Business Impact Analysis for

Networked Computer Assets). BIANCA provides a single integrated view of information

about (including relationships between) applications, servers, network services, networks

and change items for NASA HQ. BIANCA analyzes dependencies between these assets in

order to provide services like repair plans, outage cost estimates, and dependency reports.

Users can query across the federated information store and browse the data in a web

browser in order, for example, to track the impact that a failure of one system, subsystem,

or application would have on other systems and customers. BIANCA has an RDFS data

reference model that can be reused by other applications.

171



8.3.1 BIANCA Policy Set

This section contains a description of the BIANCA Policy set that we developed.

The policy follows the Role-Based Access Control (RBAC) model; thus, there is a sepa-

rate XACML PolicySet that contains the set of permissions for each role. Additionally,

the permissions are split among the different types of resources – these include the four

broad categories of networks, network services, servers and applications. A fragment of

the BIANCA policy is shown in Table 8.2.

Department Role Action Resource Decision

Financial
Operations

Intern Read ExpenseReport Permit
Employee Read OR Write ExpenseReport Permit
Project Manager Write or Read Any Permit
Any Any Any Deny

Missions &
Projects

Scientists(Internal) Read InternalPaper Permit
Scientists(Internal) Write InternalPaper Permit
Scientists(External) Read PublicDoc Permit
Project Manager Read OR Write Any Permit
Any Any Any Deny

Institutions
and
Management

CivilServant Write OrgHierarchy Permit
Employee Read OrgHierarchy Permit
Project Manager Write Any Permit
Any Any Any Deny

Table 8.2: Fragment of BIANCA Policy Set.

We used the NASA Taxonomy [49] to describe policy entities such as types of

resources. The Taxonomy includes seven facets, some of which can be used as policy

vocabularies to express roles, access controls, competencies and organizations in NASA.

Given that the taxonomy is in SKOS format, for this evaluation I converted it to OWL

first and used the XACML-OWL coupling mechanism described in Chapter 6 to extend

the XACML policy set.
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In total, there are 4 main policy sets: a general, agency-wide policy representing

rules that each department-specific policy has to conform to and three department policies

for Institutions and Management, Missions & Projects and Financial Operations. Each

departmental PolicySet in turns contains a policy for each type of role (the number of

roles ranges from 5 to 50).

8.3.2 Empirical Results

Given the BIANCA policy set described above, the analysis services I tested were

formal verification and policy containment. For formal verification, I used a number of

queries that emerged from our discussion with representatives from NASA:

• Q1 – PII: For a policy Pa, check if there is a way for an access request to get a

Permit from Pa without disclosing personally identifiable information (PII). PII is

expressed as a XACML Policy containing a combination of attributes: SSN, street

address, full name, IP address, email, etc.

• Q2 – Compliance of department-specific policies to general policy: whenever the

base policy yields a Permit (resp. Deny), check if the department-specific policy

will also return a Permit (resp. Deny).

• Q3 – Disjointness query : For two policies P1 and P2, check if there can exist an

access request s.t. both policies apply to it.

The results of evaluating these queries are shown in Figures 8.8,8.9 and 8.10. No-

tice that even in the case with the largest policy set, the total processing time for all of the
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queries was less than 10 seconds, which the NASA engineers felt was more than accept-

able given the size of the policies and the task at hand. Most of the running time is spent

on loading and converting the Policy; this is because the policy refers to various segments

of the OWL-based NASA Taxonomy, so the NASA ontologies are also loaded during this

step. Because the ontologies are relatively inexpressive, reasoning about them is very fast

(order of milliseconds), so the only noticeable overhead is during loading the policy.

Figure 8.8: Analysis time for the Personally Identifiable Information Query on vari-
ous policies addressing the NASA HQ federated data access use case.

8.4 Healthcare Access Policy

This final section of the chapter presents an empirical evaluation of my framework

using a real-world access control policy from the healthcare domain. Similarly to the

NASA access use case, the healthcare policy motivates the need for vocabulary domains

and datatypes in policies; unlike the NASA policy, this use case is fully developed as part
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Figure 8.9: Analysis time for the Policy Comparison (compliance) query on various
policies addressing the NASA HQ federated data access use case.

Figure 8.10: Analysis time for the Policy Disjointness Query on various policies ad-
dressing the NASA HQ federated data access use case.
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of an ongoing international standardization effort (HL7 1). In the following, I provide

a brief background on the developments of standards for accessing patient’s electronic

health records and then present the RBAC policy that is provided as part of the HL7

standard. I converted this RBAC policy to XACML form and used it to evaluate my

XACML analysis tool. The empirical results along with some discussion are presented in

Section 8.4.4.

8.4.1 Background: HL7 and Electronic Health Records

Health Level 7 (HL7) is an international community of healthcare subject experts

and information scientists collaborating to create standards for the exchange, manage-

ment and integration of electronic healthcare information. The goal of HL7 is to have a

degree of interoperability among healthcare providers such that health information can be

exchanged so that a patients medical information can be made portable and available to

his/her clinicians (at least to the extent that the patient allows it to be).

The aspect of guarding patient’s privacy and confidentiality is crucial in this set-

ting. Because of this, a major component of HL7 called the Security Technical Commit-

tee2 deals with specifying security policies for controlling access to patient’s confidential

information. The standardization work produced by this committee includes a set of role-

based permissions [62] and recommended access policy scenarios [5] that were directly

used to evaluate the performance of my policy analysis framework.

1Health Level 7 is an accredited Standards Developing Organizations operating in the healthcare arena.
HL7s domain is clinical and administrative data.

2http://www.hl7.org/Special/committees/secure/index.cfm
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8.4.2 HL7 RBAC Policy

Representatives from HL7 have worked closely with the US Department of Veteran

Affairs (VA) to develop a standard set of permissions for healthcare access policies. The

reason is that VA currently has the largest electronic health record system in the country,

with more than 4 million patients, 180,000 medical personnel and deployed in more than

160 hospitals throughout the US [7].

Working with representatives from VA, the HL7 committee has published a stan-

dard of role-based access control (RBAC) permissions [62] recommended as building

blocks for access control policies for health information systems. This set of permissions

will be referred to as HL7-RBAC. An RBAC policy associates a role in the organization

with a set of permissions for that role. Since users are not assigned permissions directly,

but only acquire them through their role (or roles), management of individual user rights

becomes a matter of simply assigning the appropriate roles to the user.

As part of HL7-RBAC, two general categories of roles are allowed: structural and

functional roles. Functional Roles consist of all the permissions needed to perform a

task. Functional role names are associated with groups of permissions for convenience in

assigning to users. Structural roles, on the other hand, denote the placement of people in

the organizational hierarchy as belonging to categories of healthcare personnel warranting

differing levels of access control. Examples of structural roles include Clinician, Patient,

PhysicalAssistant, etc. There are no permissions associated with structural roles – they

are simply used as prerequisites for functional roles.
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8.4.3 Converting HL7-RBAC to XACML

HL7-RBAC is specified using a tabular format in [62], so I converted the policy to

XACML first in order to evaluate my analyzer. The conversion was done as follows: a

functional role with an associated set of permissions was converted to a XACML Policy

which contains the permissions as part of its Target elements. For example, the func-

tional role PPD-036 which contains create permissions for New Patient/Family Prefer-

ences is expressed in XACML as:

<Policy PolicySetId="PPD-036"

RuleCombiningAlgId="...combining-algorithm:first-applicable">

<Target>

<Actions>

<Action>

<ActionMatch MatchId="...:string-equal">

<AttributeValue DataType="...#string">

create

</AttributeValue>

<ActionAttributeDesignator AttributeId="action-type"

DataType="...#string"/>

</ActionMatch>

</Action>

</Actions>

<Resources>

<Resource>

<ResourceMatch MatchId="...:string-equal">

<AttributeValue DataType="...#string">

Patient_Preferences

</AttributeValue>

<ResourceAttributeDesignator

AttributeId="resource-type"

DataType="...#string"/>

</ResourceMatch>

</Resource>

</Resources>

</Target>

<Rule RuleId="rule" Effect="Permit"><Target/></Rule>

</Policy>
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Since structural roles are prerequisites for the permissions in functional roles, they

are added to the Target element of a policy representing a functional role. Because

XACML does not have built-in support to express the type of semantic hierarchies needed

for structural roles [15], I used an OWL ontology to capture these hierarchical relation-

ships. In addition to expressing relationships between structural roles, I also used OWL to

provide integer and date-time datatype support (e.g., Regular Doctors can access Patient

Records during business hours, whereas ER Doctors should have access at all times) and

role-based cardinality constraints (e.g., Chief-of-Staff role has cardinality of 1).

8.4.4 Empirical Results

The standard documents discussed above present the basic building blocks of an

access policy: a set of permissions and a set of roles that are to be associated with those

permissions. Given these permissions, the Department of Veteran Affairs has presented a

reference collection of RBAC scenarios [5] that denotes the access control policies used

in their health information system. The reference collection contains 39 scenarios, and

each of them describes a situation where a particular structural role (or a combination of

roles) is presented and set of permissions is given that is required for that role.

I converted these RBAC scenarios to a XACML policy by associating the structural

roles referenced in the scenarios with the corresponding functional roles described in the

previous section. The end result of this conversion is a large and expressive XACML pol-

icy (referred to as HL7-RBAC) that was used to evaluated the analysis services provided

by my framework.

HL7-RBAC contains a total of 107 PolicySets. It uses only 3 different attributes
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(action-type, subject-role-type and resource-type), however it has 102 different values: 5

values for action attributes (create, read, update, delete, execute), 51 attribute values to

represent objects(resources) and 46 attributes to represent subject roles types (Physician,

Patient, Clerk, etc.).

The two analysis services tested against HL7-RBAC were formal verification and

policy comparison. The results for these services are shown in Figure 8.11 and Figure

8.12, respectively. Since for both of these services, the analyzer performed surprisingly

well (a few seconds to verify properties and perform comparison), I also experimented

with an extended version of the policy. Thus, HL7x2 and HL7x3 in the figures refers to a

policy that is two and three times larger than the original HL7-RBAC. I should note that

the the analysis framework scales very well as the size of these policies increases. Also,

I should note that these are very large policies – HL7x5 for example, refers to a dataset

with 535 PolicySet elements, and 250 attribute values.

Figure 8.11: Formal Verification of HL7 policy. Please note that HL7x1 refers to the
original policy whereas HL7xn refers to a meta-policy containing n policies of the same
size and structure as HL7.

180



Figure 8.12: Policy Comparison timings for HL7 policy. Please note that HL7x1 refers
to the original policy whereas HL7xn refers to a meta-policy containing n policies of the
same size and structure as HL7.

8.4.5 Summary

The healthcare policy described in this section is a great use case for my analysis

framework: it is large, with dozens of roles and hundreds of attribute values and it is ex-

pressive (with RBAC constraints, data-types and domain vocabularies for heterogeneous

policies). By evaluating my analysis tool on this policy (after I converted it to XACML) I

showed that my approach can formally verify and compare large, real-world policies in a

practical manner. This use case also demonstrates the benefits of grounding the analysis

framework on OWL-DL, since I used OWL ontologies to represent structural role hierar-

chies. Note that there has already been interest in formalizing the HL7 reference model

in OWL [108] – I leveraged some of this previous work to develop the role hierarchies.

Finally, I have made my XACML version of the HL7-RBAC policy publicly available 3

so it can be used as a benchmark to evaluate other XACML processors.

3Available at http://www.mindswap.org/˜kolovski/hl7rbac.zip
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8.5 Discussion

The second part of the evaluation used real world access control policies with ex-

pressive features such as policy vocabulary domains, datatype functions and policy con-

straints. The policies used (NASA HQ Data Access Use Case and Healthcare RBAC

Policy) are a great match for the analysis framework since they both motivate the need for

expressive background domains (ontologies) in order to facilitate information exchange

and interoperability across different parts of an enterprise system. Both of the policies

are quite large: 100s of PolicySet elements and 100+ attribute values in each case. I

showed through empirical testing that the analysis framework scales very nicely as the

size of these policies increases. Considering that the framework is supposed to be used

at development time, before the policies are deployed (so the performance requirement

is not as critical as a deployed policy engine), the empirical results shown in this section

prove that my analyzer is practical for very large and expressive policy sets.

182



Chapter 9
Conclusions and Future Work

In this thesis, I identified some important challenges facing XACML; namely, a lack

of understanding of its formal properties, and a lack of automated, design-time analysis

services that provide support for distributed and heterogeneous policies.

To address the first issue above, in Chapter 4 a formal, proof-theoretic semantics

for XACML 3.0 was given using natural deduction rules. The semantics covers the core

of XACML along with its Administrative Profile, and represents a concise and formal

version of the informal semantics given in the official language specification. To deter-

mine XACML’s complexity properties, I provided a translation of various subsets of the

language to locally stratified Datalog in Chapter 5, thus establishing its polynomial data

complexity and close relationship to other logic-based languages such as the Flexible Au-

thorization Framework. Additionally, I showed that access request checking in XACML

with cyclical references between policies is NP-complete.

The other issue addressed in this dissertation is the lack of compile-time services

that can detect inconsistencies in the presence of distributed and heterogeneous XACML

policies. This issue has been motivated by recent interest in extending XACML with

both distributed policies (Administrative Policy Profile in XACML v3.0) and rich policy

domain models that provide additional expressiveness [13, 47] and support for integration

of policies about different types of data resources [40, 21, 118].

Given these requirements, in Chapter 6 an analysis framework was presented that

can reason about both distributed and heterogeneous XACML policies. In particular, I
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showed how with a mapping to Description Logics, we can do change analysis, formal

verification and coverage checking for XACML policies using DL reasoners. Since De-

scription Logics are the logical formalism underlying the OWL-DL sub-language, the

analysis framework presented in this thesis can easily cover XACML policies extended

with OWL ontologies [40]. This compatibility with OWL – which is a W3C standard for

representing information on the Web – and the full mapping of the Administrative Profile

presented in Chapter 6, enables the analysis framework to cover the expressive features

of XACML that allow for distributed and heterogeneous policies.

In Chapter 7, I demonstrated that the analysis framework can be applied to domains

other than access control. In particular, I mapped WS-Policy ( a web services policy

language) to OWL-DL and provided the same analysis services as for XACML.

Finally, in Chapter 8 I presented my prototype implementation of a XACML-to-DL

mapper and policy analyzer. Since DLs in general have very bad worst case complexity,

I showed through an extensive performance evaluation using real world policy sets that

OWL-DL reasoners are practical for static policy analysis. The performance results were

presented in Chapter 8.

9.1 Contributions

The contributions of this thesis are as follows:

• A formal, proof-theoretic semantics of XACML v3.0 that covers the core specifi-

cation and the Administrative Policy Profile.

• A mapping of XACML to Datalog that provides a model-theoretic semantics and
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computational complexity results for full XACML and various fragments. Addi-

tionally, an extensive comparison with other logic-based languages such as Flexible

Authorization Framework and SecPal based on the Datalog mapping.

• A static analysis framework based on Description Logics that can reason about

expressive XACML policies. Using a XACML-to-Description Logics mapping, a

comprehensive set of services are provided: formal verification, policy comparison

(change analysis) and redundancy checking.

• Demonstrated more general applicability of the framework by using it to formalize

and analyze policies in the web services domain.

• An empirical evaluation of the scalability of the analysis framework using real

world policy data sets.

9.2 Future Work

In this section, I will discuss the limitations and open issues of this dissertation.

Additionally, I discuss possible avenues of future work, split in two sections: extensions

of theoretical framework and improvements to analysis services support.

9.2.1 Theoretical Framework

9.2.1.1 Dynamic Environment and Obligations

In this dissertation, an assumption is made that the response to an access request is

simply yes/no, i.e., it does not change the state of the policy environment. However, it has

been recognized that a yes/no response to every scenario is insufficient for many modern

systems and applications [33]. Many policies require certain conditions to be satisfied
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and actions to be performed before or after a decision is made. Thus, there has been great

amount of interest in policy languages that support dynamic environments [33, 48, 69].

For example, XACML allows for policy obligations, meaning that after being granted

access, the subject must perform the actions associated with the grant.

Most logic-based formalisms for dynamic policies are based on First-Order tem-

poral logics [103, 94], which cannot be easily combined with Datalog (or Description

Logics, for that matter). An interesting area of future work involves exploring decidable

extensions of the logic-based formalization presented in this thesis with dynamic policies.

9.2.1.2 Extensions of XACML

In Chapter 5 I showed that there exists a polynomial reduction of XACML to a

variant of Datalog. Given this mapping, and the existence of numerous policy languages

coming from academia and industry that are also based on Datalog, one possible direction

of future work is to investigate extending XACML with features from these languages.

A potentially useful feature of the Flexible Authorization Framework (FAF) is its

history table , i.e., a table whose rows describe the access requests already processed. A

history table can be used to model various policy constraints such as the Chinese Wall

security policy, and will not change the computational complexity of XACML if it were

added. Also, combining algorithms such as most-specific-overrides and no-overriding can

also be easily adapted to XACML: most-specific-overrides can be performed by compar-

ing the Targets of the two policy elements to be combined, whereas for no-overriding a

clause can be added to throw Indeterminate whenever conflicting access decisions are

returned.
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Other, non-trivial features worth exploring are delegation constraints. While XAC-

ML does have an Administrative Policy Profile, there is no explicit support in it for com-

mon delegation constraints such as depth-bounded delegation (i.e., limiting the number of

times an access decision can be delegated) or threshold-constrained trust (i.e., at least k

out of n given principles must sign a given access request). Both of these features, among

others, are supported by Datalog-based languages such as as SecPal [27] and Delegation

Logic [87], so an interesting research problem would be how to incorporate them into

XACML.

9.2.2 Analysis Services

9.2.2.1 Computing All Differences between Policies

One of the analysis services provided in Chapter 6 was change impact analysis. A

limitation of the approach is that when comparing two policies, if the policies have dif-

ferences among them, then the analyzer returns only one access request corresponding

to one difference. As part of future work, I would like to extend this approach in order

to provide comprehensive change impact analysis, as done in Margrave [50]. To provide

this service, I plan to use a technique based on computation of all models that admit a De-

scription Logic concept expression, which is done by tableau saturation. Saturation of the

tableau completion graph is done by continuing application of the completion rules until

all choice points are explored and no more rules are applicable. While most DL reasoner

optimizations are not applicable during saturation, there are still some optimizations that

can be used (such as absorption), and it is possible that other significant optimizations

could be applied due to the nature of the XACML-to-DL mapping.
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9.2.2.2 Policy Repair

Most of the analysis services discussed in the thesis help policy developers discover

errors in their policies, be it unauthorized access after an update, or corner cases that do

not satisfy given test cases. The next step is to help policy developers recover when they

do find errors in their policies. To illustrate this service, consider the example in Figure

9.1 below.

Figure 9.1: Example Policy

The security property is : Developer should not be able to write to Report. When

checking the policy against this property, our analyzer returns two counter examples:

role=Manager, role=Developer, action=write, resource=report

role=Developer, action=write, action=read, resource=report

Thus, if a requester comes along that is a member of both roles (Manager and

Developer), then she can gain write access to Report. The other way for a Developer

to gain write access is if he tries to both read and write to Report at the same time. To
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prevent unauthorized access in this example, two constraints can be added; first one to

make Manager and Developer mutually exclusive roles, and the second one to make sure

that only a singleton value for the action attribute of a request is admitted.

However, there are also other ways to repair the policy. For example, if the goal

is to add as few axioms as possible to fix the policy, then there exists a better solution,

involving only one constraint:

∃role.{Developer} v ¬∃action.{write}

This axiom explicitly prohibits developers from writing to anything. This constraint

is adequate for our toy policy because there is only one type of resource that can be written

to (Report). In a larger policy, we might not necessarily want to prevent Developers from

writing to other types of resources. In that case, we will need somehow to measure and

to compare the impact of each individual repair strategy.

The idea of policy repair was inspired by recent work by Kalyanpur et al. [79] in

repairing unsatisfiable concepts in Description Logics. There the authors present a new

DL service (ontology repair), which semi-automatically selects which axioms need to

be removed (or rewritten) from the ontology in order to render the concept satisfiable.

To select likely candidate axioms for removal, their work uses algorithms that rank the

axioms depending on a set of criteria. There is one essential difference between the work

by Kalyanpur et al. and the future work proposed here: whereas in their case axioms are

removed to fix errors in ontologies, in my case axioms (representing policy constraints)

will be added to the KB in order to fix access control errors in policies.

The problem of which axioms need to be added to make the policy concept unsat-
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isfiable is hard since there are infinitely many solutions. However, for the purposes of

access control policy repair, the search space could be constrained to DL axioms that cor-

respond to policy constraints in the analysis framework. In that way, finding repair plans

will be easier, and presenting them to policy developers will be easier since no knowledge

of Description Logics will be required. As a first step, the following common types of

policy constraints could be used: separation of duty, role cardinality constraints, single-

ton values for attributes and role hierarchies. As part of future work, I plan to devise an

algorithm to compute sets of axioms that need to be added and then investigate possible

ranking strategies similar to the ones in [79], but adapted for our access control scenario.

9.2.2.3 Extending and Evaluating Redundancy Checking

In Chapter 6 I presented an algorithm for determining if a policy is redundant. Ad-

ditionally, I presented an algorithm for finding all non-redundant policy subsets for a

given policy set. Considering that computing all of the non-redundant subsets is likely

to be non-practical for large policies (e.g., with more than 20-30 PolicySets), a possi-

ble next step would be to devise an approach that considers user input on which of the

redundant policies to remove. For example, users could rank different policies based on

specific criteria: size of policy, number of children, etc., and the analysis tool would gen-

erate a non-redundant policy subset based on these criteria. A comprehensive evaluation

(possibly through a user study) of such an approach would have to be performed to deter-

mine whether the tool provides enough information to guide users during the process of

removing redundant policies.
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9.2.3 Analyzing Business Rules

An interesting research problem to pursue would be applying the analysis frame-

work to the domain of business rules. Business rules are much more general than access

control policies; they specify the operations, definitions and constraints that apply to an

organization. There exist a few business rule languages proposals [76, 6], and there has

been a great amount of interest in rule engines that support verification, accountability

and enforcement of business rules.
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Appendix A

Proofs

Proof of Lemma 6, If case. For a request RQ, we need to show that:

if RQ,T |=m True then KB |= π(True,T)(π(RQ)) (A.1)

The proof will be done by structural induction. We will show that (A.1) holds for

Match elements first, and afterwards, by going through the XACML semantics rules, we

will show it also holds for Target elements.

Match Element I will show that the following holds:

if RQ,M |=m True then KB |= π(True,M)(π(RQ)) (A.2)

In order to show that KB |= π(True,M)(π(RQ)) we need to show that the expression

π(RQ) u ¬π(True,M) is unsatisfiable. In Sections 6.1.2 and 6.1.1 the DL mapping was

defined as:

π(True,M) ≡ ∃π(ADM).π(fcn, AVM)

π(RQ) ≡
� (
∃rAV .π(typeAV-equal, AV)

)
forall AV ∈ AT,AT ∈ ATS,ATS ∈ RQ

(A.3)
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To prove (A.2), it needs to be shown that:

∀π(ADM).¬π(fcnM, AVM) u
� (
∃rAVi .π(typeAVi

-equal, AVi)
)

(A.4)

is unsatisfiable for some AVi ∈ AT,AT ∈ ATS,ATS ∈ RQ.

Assume that the left hand side of the implication in Equation A.2 holds. By the

inference rules in Table 4.6, RQ,M |=m True means there exists an attribute value AV s.t.

the following holds:

1. AV ∈ AT, AT ∈ ATS , ATS ∈ RQ

2. typeADM
= typeAV , attr-idADM = attr-idAT , issuerADM = issuerAT , catADM = catATS

3. fcn(AVM,AV) = True

Condition 2) implies the DL role used in π(ADM) will match the DL role used in

the mapping of AV . (This is because the role names are generated as a function of attr-id,

issuer, cat and Type, and they all match in this case.) Because of this match, the role filler

of π(ADM) will have the following DL expression occurring in its label:

π(typeAV-equal, AV) u ¬π(fcn(AVM)) (A.5)

From condition 6) above we know that the value of AV belongs in the value space

characterized by fcn(AVM). However, note that in our mapping π(fcn(AVM)) creates a

user defined datatype that has the same interpretation as fcn(AVM). This is because the

user defined datatype in our mapping has the same base XML schema type, and the facets
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we use to limit the value space have the same semantics as the matching functions used in

XACML (as shown in Table 6.1.7). Thus, π(typeAV-equal, AV) will belong in the space

defined by π(fcn(AVM)) . That in turn implies that equation (A.5) will produce a clash,

rendering the expression ¬π(True,M) u π(RQ) unsatisfiable and showing that:

if RQ,M |=m True then KB |= π(True,M)(π(RQ))

Indeterminate If RQ,M |=m Indeterminate, that means that there is no attribute

AT ∈ ATS , ATS ∈ RQ that matches the attribute designator ADM; additionally, the

mustBePresent property must be set to true. As shown in Section 6.1.1, whenever an

attribute ADP is not present, we add (conjunct) the expression ∀π(ATP).⊥ to π(RQ).

According to the mapping axioms in Section 6.1.2:

¬π(Indeterminate,M) ≡ ∃π(ADM).>

Thus, to check satisfiability of ¬π(Indeterminate,M) u π(RQ), we have

π(RQ) u ∃π(ADM).> (A.6)

Because RQ,M |=m Indeterminate, we know that the attribute designated by

ADM does not occur in the request - thus, when checking for satisfiability of equation

(A.6) we will get a clash, which proves that:

if RQ,M |=m Indeterminate then KB |= π(Indeterminate,M)(π(RQ))
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Extending the proof to ConjunctiveMatch, DisjunctiveMatch and Target Elements.

First I will show that

if RQ,CM |=m E then KB |= π(E,CM)(π(RQ))

where E ∈ {True, Indeterminate}, and then inductively extend the proof for DM and T.

I will only show for E = True - the proof for the Indeterminate is very similar

Following the deduction rules in Table 4.2.1, if RQ,CM |=m True then it must be

that ∀MCM : RQ,MCM |=m True. From the above proof for M, we also know that

if RQ,M |=m True then KB |= π(True,M)(π(RQ))

Taking the above axioms into account and using the mapping for π(True,CM) defined in

Section 6.1.2, we can conclude that KB |= π(True,CM)(π(RQ)).

Following the inference rules again, if RQ,DM |=m True then exist at least one

CMi ∈ DM s.t. RQ,CMi |=m True. From the previous proof for CM, we know that for

this CMi,

KB |= π(True,CMi)(π(RQ))

Using the above result, and taking the mapping axiom for DM into account:

π(True,DM) ≡ π(True,CM1) t . . . t π(True,CMn)

implies that KB |= π(True,DM)(π(RQ)).
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Finally, if RQ,T |=m True then ∀DMT : RQ,DMT |=m True. From the previous

step for DM, we know that for all DMT ,

∀DMT : RQ,DMT |=m True→ ∀DMT : KB |= π(True,DMT )(π(RQ))

Taking the mapping axiom for T into account:

π(True,T) ≡ π(True,DM1) u . . . u π(True,DMn)

it follows that KB |= π(True,T)(π(RQ)). �

Proof of Lemma 6, Else case. We break down the proof by going through the case when

KB |= π(True,M)(π(RQ)) first and then for KB |= π(Indeterminate,M)(π(RQ)).

True case We know that KB |= π(True,M)(π(RQ)) In Sections 6.1.2 and 6.1.1 the DL

mapping was defined as:

π(True,M) ≡ ∃π(ADM).π(fcn, AVM) (A.7)

Thus, π(RQ) is of type ∃π(ADM).π(fcn, AVM). In Section 6.2.1.1 we see that:

• π(ADM) is mapped back to an attribute AT that matches (in datatype, ID, category

and issuer) the one specified by the attribute designator ADM.

• π(fcn, AVM) is mapped nondeterministically to a value in the data value range that

satisfies the function fcn(AVM).
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Essentially, π(ADM).π(fcn(AVM)) maps back to an attribute AT and attribute value

AV that will match the designator ADM and the attribute match function fcn, s.t.M,RQ |=m

True.

To extend the proof to CM, consider that:

π(True,CM) ≡ π(True,M1) u . . . u π(True,Mn)

Thus, π(RQ) is of type π(True,M1) u . . . u π(True,Mn). It was shown above that

π(RQ) : π(True,M)→ M,RQ |=m True

so for each Mi ∈ M above we know that RQ will match it. However, if RQ matches all of

Mi ∈ M, then by virtue of rule 1 in Table 4.2.1:

CM,RQ |=m True

To extend the proof to DM, we use the mapping axiom from Section 6.1.2:

π(True,DM) ≡ π(True,CM1) t . . . t π(True,CMn)

Thus, π(RQ) : π(True,CM1) t . . . t π(True,CMn). It was shown above that

π(RQ) : π(True,CM)→ CM,RQ |=m True
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, so for at least one CMi ∈ DM it follows that CMi,RQ |=m True . However, if RQ

matches at least one of CMi ∈ DM, then by virtue of rule 4.2.1:

DM,RQ |=m True

To extend to T , we use the mapping axiom from Section 6.1.2:

π(True,T) ≡ π(True,DM1) u . . . u π(True,DMn)

Thus, π(RQ) : π(True,DM1) u . . . u π(True,DMn). It was shown above that

π(RQ) : π(True,DM)→ DM,RQ |=m True

so for all DMi ∈ T above we know that DMi,RQ |=m True . However, if RQ matches all

of DMi ∈ T , then by following the inference rules in Table 4.2.1:T,RQ |=m True. I have

shown that:

KB |= π(RQ) : π(True,T)→ T,RQ |=m True

Indeterminate case We assume the attribute mustBePresent is set to true. In this case,

KB |= π(Indeterminate,M)(π(RQ)). The mapping axioms for indeterminate is defined

in Section 6.1.2 as:

π(Indeterminate,M) ≡ ∀π(ADM).⊥
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Thus, π(RQ) will map back to a request RQ that has no values for the attribute specified

by ADM. However, if RQ has no values for ADM then according to the inference rules in

Table 4.2.1,

M,RQ |=m Indeterminate

Extending the proof to CM, DM and T can be done in the same manner as for the

True case above, we omit it here for brevity.

�

Proof of Lemma 7. For a request RQ, we need to show that:

if RQ,T 6|=m True then KB |= ¬π(True,T)(π(RQ)) (A.8)

True Case We will start with M, and show that the following holds:

if RQ,M 6|=m True then KB |= ¬π(True,M)(π(RQ)) (A.9)

In order to show that KB |= ¬π(True,M)(π(RQ)) we need to show that the expres-

sion π(RQ) u π(True,M) is unsatisfiable. In Sections 6.1.2 and 6.1.1 the DL mapping

was defined as:

π(True,M) ≡ ∃π(ADM).π(fcn, AVM)

π(RQ) ≡
�

AV∈RQ

(
∃rAV .π(typeAV-equal, AV)

)
u

�
AT<RQ, AT∈P

(∀rAT .⊥)u

�
AT∈P, n=#AV s.t. AV∈AT

(= nrAT .)

(A.10)
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Assume that the left hand side of the implication in Equation A.9 holds. By the

inference rules in Table 4.6, whenever RQ,M 6|=m True that means one of the following

holds:

1. ADM,RQ 6|=m AVAT. That means that there is no attribute AT ∈ RQ s.t. ADM,RQ |=m

AVAT, and mustBePresent is set to false. However, if there is no attribute that

matches ADM, then ∀π(ADM).⊥ will occur as a conjunct in π(RQ) – which will

clash with ∃π(ADM).π(fcn, AVM), rendering the expression in (A.4) unsatisfiable.

2. ADM,RQ |=m AVAT : fcnM(AVM,AVAT ) = False. This implies that there is at

least one attribute AT ∈ RQ s.t. AVAT is returned by ADM, however the comparison

function f cn evaluates to false. Thus, there will be a subexpression in π(RQ) u

π(True,M):

∃π(ADM).π(fcnM, AVM) u
� (
∃rAVm .π(typeAVi

-equal, AVi)
)

where name(rAVm) = name(π(ADM)). Now, we also take into account the cardinal-

ity constraint that we have added to requests, which allows for exactly as many

distinct fillers for role rAVm as there are values for that attribute in the request.

Notice that ∃π(ADM).π(fcnM, AVM) will introduce another role filler for the role

π(ADM).When there are n+1 role fillers for a role that has cardinality n, the DL

semantics is such that two of the role fillers will be nondeterministically selected

and a merge will be attempted. There are two cases:

• The DL reasoning algorithm will try to merge the role fillers that represent
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two values for the same attribute in the request. In that case, if they have dif-

ferent datatype values a clash will occur. We assume that we prune duplicate

attribute values in the request beforehand, so a clash will always occur in this

case.

• The DL tableau algorithm will select the role fillers that corresponds to the

attribute value in M (AVM), and try to merge it with some role filler corre-

sponding to an attribute value (for the same attribute) in the request. Thus, the

following expression

π(fcnM, AVM) u π(typeAVi
-equal, AVi) (A.11)

will occur in the label for some attribute values in RQ whose attributes matches

the ADM. However, since fcnM(AVM,AVi) = False it follows that AVi <

fcnM(AVM), which implies that a clash will occur for all possible AVi ∈ RQ

that match ADM in

I have shown that in both cases, π(RQ) : ¬π(True,M)

Indeterminate Case For a request RQ, we need to show that:

if RQ,M 6|=m Indeterminate then KB |= ¬π(Indeterminate,M)(π(RQ)) (A.12)

In order to show that KB |= ¬π(Indeterminate,M)(π(RQ)) we need to show that

the expression π(RQ) u π(Indeterminate,M) is unsatisfiable. In Sections 6.1.2 and
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6.1.1 the DL mapping was defined as:

π(Indeterminate,M) ≡ ∀π(ADM).⊥ (A.13)

Thus, we essentially need to show that:

π(RQ) u ∀π(ADM).⊥ (A.14)

is unsatisfiable. Since RQ,M 6|=m Indeterminate that means the attribute does occur

in the Request (according to the semantics rules in Table 4.2.1). Thus, there will exist a

conjunct ∃rADM .π(typeAVi
-equal, AVi) as part of π(RQ), which will clash with π(ADM).⊥,

thus implying that KB |= ¬π(Indeterminate,T)(π(RQ)).

Extending to CM First I will show that:

if RQ,CM 6|=m E then KB |= ¬π(E,CM)(π(RQ))

where E ∈ {True, Indeterminate}. I will only show for E = True - the Indeterminate

case can be shown in the same manner. To show KB |= ¬π(True,CM)(π(RQ)) we need

to show that the expression

π(True,CM) u π(RQ)

is unsatisfiable.

Following the deduction rules in Table 4.2.1, if RQ,CM 6|=m True then there must
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be some Mi ∈ CM s.t. Mi : RQ,Mi 6|=m True. Thus the following holds:

π(RQ) : ¬π(Mi,True)

From the mapping axioms in Section 6.1.2 it is also known that:

π(True,CM) ≡ π(M1, True) u . . . u π(Mn, True)

- this implies that the expression π(True,CM)u π(RQ) will not be satisfiable, since there

will be a conflict on the π(Mi,True) conjunct. Thus, KB |= ¬π(True,CM)(π(RQ)).

Extending to DM Here I will show that:

if RQ,DM 6|=m E then KB |= ¬π(E,DM)(π(RQ))

where E ∈ {True, Indeterminate}.

• True case. To show KB |= ¬π(True,DM)(π(RQ)) we need to show that the expres-

sion

π(True,DM) u π(RQ)

is unsatisfiable.

Following the deduction rules in Table 4.2.1, if RQ,DM 6|=m True then for all

CMi ∈ DM : CMi : RQ,CMi 6|=m True. Thus the following holds for all CMi ∈

DM:π(RQ) : ¬π(CMi,True)
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From the mapping axioms in Section 6.1.2 it is known that:

π(True,DM) ≡ π(CM1, True) t . . . u π(CMn, True)

- this implies that the expression π(True,DM)uπ(RQ) will not be satisfiable, since

there will be a clash for each π(CMi,True) disjunct. Thus, KB |= ¬π(True,DM)(π(RQ)).

• Indeterminate Case. To show KB |= ¬π(Indeterminate,DM)(π(RQ)) we need to

show that the expression

π(Indeterminate,CM) u π(RQ)

is unsatisfiable.

Following the deduction rules in Table 4.2.1, if RQ,DM 6|=m Indeterminate then

there must be some CMi ∈ DM s.t. CMi : RQ,Mi 6|=m Indeterminate. Thus the

following holds:

π(RQ) : ¬π(CMi, Indeterminate)

From the mapping axioms in Section 6.1.2 it is also known that:

π(Indeterminate,DM) ≡ π(CM1, Indeterminate)u. . .u π(CMn, Indeterminate)

This implies that the expression π(Indeterminate,DM) u π(RQ) will not be sat-

isfiable, since there will be a conflict on the π(CMi, Indeterminate) conjunct. Thus,

KB |= ¬π(Indeterminate,DM)(π(RQ)).
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Extending to T Here I will show that:

if RQ,DM 6|=m E then KB |= ¬π(E,DM)(π(RQ))

where E ∈ {True, Indeterminate}.

• True case. Can be shown in same manner as the proof for the True case for CM -

simply replace the references to CM with T.

• Indeterminate case. To show KB |= ¬π(Indeterminate,T )(π(RQ)) we need to

show that the expression

π(Indeterminate,T ) u π(RQ)

is unsatisfiable.

Following the deduction rules in Table 4.2.1, if RQ,T 6|=m Indeterminate then

for all DMi ∈ T : DMi : RQ,DMi 6|=m Indeterminate. Thus the following holds

for all DMi ∈ T:π(RQ) : ¬π(DMi, Indeterminate).

From the mapping axioms in Section 6.1.2 it is also known that:

π(Indeterminate,T ) ≡ π(DM1, Indeterminate)t. . .u π(DMn, Indeterminate)

- this implies that the expression π(Indeterminate,T ) u π(RQ) will not be sat-

isfiable, since there will be a clash for each π(DMi, Indeterminate) disjunct. Thus,

KB |= ¬π(Indeterminate,DM)(π(RQ)).
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�

Proof of Lemma 8.

If case We will consider the case there EffectR = Permit first. The mapping for a rule

(Rule ID T Permit) is defined as:

Permit-ID ≡ π(True,TR), Deny-ID ≡ ⊥

Indeterminate-ID ≡ π(Indeterminate,TR)

(A.15)

According to the inference rules in Table 4.7, the only way that RQ,R |= Permit

can be inferred is if RQ,T |= Permit. However, RQ,T |= Permit and the mapping

axioms in A.15 imply that KB |= π(Permit,R)(π(RQ)). It can be shown in the same

manner for Deny and Indeterminate.

Else case For a Rule R and decision Effect ∈ {Permit, Deny}, we are given that

π(RQ) : Effect-ID, and Effect-ID ≡ π(TR,True) (mapping axiom in Section 6.1.3). This,

combined with Lemma 6 implies that T,RQ |=m True. Finally, if T,RQ |=m True then

by virtue of the XACML semantics rules in Table 4.7, and assuming Cond always re-

turns True, it follows that: R,RQ |= Effect. It can be shown in the same manner for

Indeterminate. �

Proof of Lemma 9. We will consider the case there EffectR = Permit first. The mapping
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will then be as follows:

Permit-ID ≡ π(True,TR), Deny-ID ≡ ⊥

Indeterminate-ID ≡ π(Indeterminate,TR)

(A.16)

We need to show that Permit-ID u π(RQ) is unsatisfiable. Notice that RQ,R 6|= Permit –

the only way it could occur is if RQ,TR 6|= True, which implies that

π(RQ) : ¬π(TT , True)

This in turn clashes with Permit-ID, so the expression Permit-IDuπ(RQ) is unsatisifable.

It can be shown in the same manner for Indeterminate and Deny. �

Proof of Lemma 10, If case. We will split the proofs depending on the type of combining

algorithm.

Permit-Overrides We will consider the different access decisions separately:

• P,RQ |= Permit. This means that there exist some rule Ri ∈ P s.t. Ri,RQ |=

Permit, and also TP,RQ |=m Permit. This, together with our previous proofs

(Lemmas 8, 6), in turn implies that KB |= π(RQ) : π(Permit-Ri and KB |= π(RQ) :

π(TP,True). Combining the two results we get:

KB |= π(RQ) : π(TP,True) u π(Permit-Ri,RQ)

which implies π(RQ) : Permit-P.
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• P,RQ |= Deny. This means that there exist some rule Ri ∈ P s.t. Ri,RQ |= Deny,

all other rules R j do not yield a Permit (∀R j : R j,RQ 6|= Permit), and all other

rules where the effect is Permit do not yield an Indeterminate: ∀Rk s.t. EffectRk =

Permit : Rk,RQ 6|= Indeterminate . Taking these prerequisites and Lemmas 8,

6 into account we have:

KB |= π(RQ) : π(TP,True) u π(Deny-Ri,RQ)

KB |= ∀ j : π(RQ) : ¬π(Permit-R j,RQ)

KB |= ∀k s.t. EffectRk = Permit : π(RQ) : ¬π(Indeterminate-Rk,RQ)

which implies π(RQ) : Deny-P.

• P,RQ |= Indeterminate. This means that there exist some rule Ri ∈ P that has a

Permit effect and yields Indeterminate Ri,RQ |= Indeterminate; in addition,

all other rules R j do not yield a Permit: ∀R j : R j,RQ 6|= Permit. Taking these

prerequisites into account we have:

KB |= π(RQ) : π(TP,True) u π(Indeterminate-Ri,RQ)

KB |= ∀ j : π(RQ) : ¬π(Permit-R j,RQ)

which implies KB |= π(RQ) : Indeterminate-P.

Deny-Overrides This case is very similar to the Permit-Overrides.
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• P,RQ |= Deny. This means that there exist some rule Ri ∈ P s.t. Ri,RQ |= Deny,

and also TP,RQ |=m Deny. This, together with our previous proofs (Lemmas 8, 6),

in turn implies that KB |= π(Deny-Ri,RQ) and KB |= π(TP,True)(π(RQ)). Com-

bining the two results we get:

π(RQ) : π(TP,True) u π(Deny-Ri,RQ)

which implies π(RQ) : Deny-P.

• P,RQ |= Permit. This means that there exist some rule Ri ∈ P s.t. Ri,RQ |=

Permit, all other rules R j do not yield a Deny (∀R j : R j,RQ 6|= Deny), and all other

rules where the effect is Deny do not yield an Indeterminate: ∀Rk s.t. EffectRk =

Deny : Rk,RQ 6|= Indeterminate . Taking these prerequisites and Lemmas 8, 6

into account we have:

KB |= π(RQ) : π(TP,True) u π(Permit-Ri,RQ)

KB |= ∀ j : π(RQ) : ¬π(Deny-R j,RQ)

KB |= ∀k s.t. EffectRk = Deny : π(RQ) : ¬π(Indeterminate-Rk,RQ)

which implies π(RQ) : Permit-P.

• P,RQ |= Indeterminate. This means that there exist some rule Ri ∈ P that yields

has a Deny effect and Ri,RQ |= Indeterminate, and all other rules R j do not yield
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a Deny : ∀R j : R j,RQ 6|= Deny. Taking these prerequisites into account we have:

KB |= π(RQ) : π(TP,True) u π(Indeterminate-Ri,RQ)

KB |= ∀ j : π(RQ) : ¬π(Deny-R j,RQ)

which implies KB |= π(RQ) : Indeterminate-P.

First-Applicable Since the deduction rules are the same regardless of the effect decison,

we will simply use Effect in this proof as substitute for Permit, Deny or Indeterminate.

P,RQ |= Effect implies two things (according to inference rules in Table 4.9):

• ∃Ri ∈ P : Ri,RQ |= Effect

• ∀R j ∈ P s.t. j < i : R j,RQ 6|= Permit ∧ R j,RQ 6|= Deny ∧ R j,RQ 6|= Indeterminate

From the above conditions (and Lemmas 10, we know that

π(RQ) : Effect-Ri

and

∀R js.t. j < i : π(RQ) : ¬Permit-R j u ¬Deny-R j u ¬Indeterminate-R j

which in turn implies π(RQ) : Effect-Pi.

Only-One-Applicable

• P,RQ |= Indeterminate. This means that there exist some rule Ri ∈ P s.t.
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Ri,RQ |= Indeterminate or there is a pair of rules R j,Rk ∈ P s.t. R j,RQ |= E

and Rk,RQ |= E (where E1, E2 are either Permit or Deny). Thus, one of the two

conditions holds:

π(RQ) : Indeterminate-Ri

or

∀R j,Rk s.t. j , i : π(RQ) : (Permit-R j t Deny-R j) u (Permit-Rk t Deny-Rk)

which implies π(RQ) : Indeterminate-Pi

• P,RQ |= Effect, where Effect is Permit or Deny. This implies that there exist

some rule Ri ∈ P s.t. Ri,RQ |= Effect and for all rules R j ∈ P where j , i:

R j,RQ 6|= Permit ∧ R j,RQ 6|= Deny ∧ R j,RQ 6|= Indeterminate. Thus, both of the

following conditions hold:

π(RQ) : Effect-Ri

and

∀R j s.t. j , i : π(RQ) : ¬Permit-R j u ¬Deny-R j u ¬Indeterminate-R j

which implies π(RQ) : Effect-Pi

�

Proof of Lemma 10, Else case. We will break down the proof based on the different types

of rule combining algorithm available.
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Permit-Overrides

• KB |= π(RQ) : Permit-P. Since

Permit-P ≡ π(True,T ) u
(⊔

Permit-Ri

)

this means that π(RQ) : π(T ) and π(RQ) : Permit-Ri for some rule Ri ∈ P. Com-

bining these results with Lemmas 8 and 6 implies that RQ satisfies both of the

prerequisites of inference rule 1 in Table 4.8, thus P,RQ |= Permit.

• KB |= π(RQ) : Deny-P. The mapping axioms for this case in Section 6.1.4 is

defined as:

Deny-P ≡ π(T ) u
(⊔

Deny-Ri u
(�
¬Permit-R j

)
u (
�
¬Indeterminate-Rk)

)
where EffectRk = Permit

(A.17)

This implies all of the following:

– π(RQ) : π(T,True), which by virtue of Lemma 6 means one of the prerequi-

sites of rule 2 in Table 4.8 is satisfied.

– There exist some rule Ri ∈ P s.t. π(RQ) : Deny-Ri. This satisfies another

prerequisite of rule 2 in Table 4.8.

– For the particular rule Ri ∈ P where π(RQ) : Deny-Ri, for all of the other

rules R j, π(RQ) : ¬Permit-R j. Additionally, for all rules Rk ∈ P where

EffectRk = Permit, π(RQ) : ¬Indeterminate-Rk. (This all follows directly
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from the mapping axioms in Section 6.1.4). These statements together with

Lemma 8 satisfy the last prerequisite of rule 2 in Table 4.8.

I have shown how with these three conditions all of the prerequisites of the rule that

entails P,RQ |= Deny are satisfied, so:

KB |= π(RQ) : Deny-P→ (P Permit-Overrides T Ri),RQ |= Deny

• KB |= π(RQ) : Indeterminate-P. Since

Indeterminate-P ≡ π(True,T) u
(⊔

Indeterminate-Ri u
(�
¬Permit-R j

))
where EffectRi = Permit

(A.18)

This implies all of the following:

– π(RQ) : π(True,T).

– There exist some rule Ri ∈ P where EffectRi = Permit s.t. π(RQ) : Indeterminate-Ri.

– For all other rules R j ∈ P, π(RQ) : ¬Permit-R j.

The three conditions above satisfy all of the prerequisites of the rule in Table 4.8

that entails P,RQ |= Indeterminate are satisfied, thus:

KB |= π(RQ) : Indeterminate-P→ P Permit-Overrides T Ri,RQ |= Indeterminate
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Deny-Overrides Done in same manner as the Permit-Overrides case – it is enough

simply to swap Permit and Deny wherever they are referenced in the proof.

First-Applicable Since the deduction rules are the same regardless of the effect deci-

sion, we will simply use Effect in this proof as substitute for Permit, Deny or Indetermi-

nate.

KB |= π(RQ) : Effect-P implies two things (according to mapping axioms in Sec-

tion 6.1.4):

• π(RQ) : π(T,True), which by virtue of Lemma 6 means one of the prerequisites of

rule 1 in Table 4.9 is satisfied.

• π(RQ) :
(⊔

Effect-Ri u
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

))
, where

i > j. Thus, there exists some rule Ri ∈ P s.t. π(RQ) : Effect-Ri. Additionally, for

all R j ∈ P s.t. j < i : π(RQ) :
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

)
,

which in turn implies that R j,RQ 6|= Deny, R j,RQ 6|= Permit and R j,RQ 6|= Indeterminate

for all j < i.

The above conditions , together with Lemma 8 satisfy all of the prerequisites for

the rule in Table 4.9, thus:

KB |= π(RQ) : Effect-P→ P First-Applicable T Ri,RQ |= Effect-P

Only-One-Applicable In this case, we use Effect as a substitute for Permit or Deny.

• According to the mapping axioms in Section 6.1.4, KB |= π(RQ) : Effect-P implies

the following holds:
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– π(RQ) : π(True,T).

– π(RQ) : Effect-Ri for some Ri ∈ P.

– π(RQ) : ¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j for all R j ∈ P.

The above three conditions together with Lemma 8 satisfy all of the prerequisites

for rule 3 in Table 4.10, thus:

KB |= π(RQ) : Effect-P→ P Only-One-Applicable T Ri,RQ |= Effect-P

• Indeterminate. According to the mapping axioms in Section 6.1.4, KB |= π(RQ) :

Effect-P implies at least one of the following:

– π(RQ) : π(T ) and π(RQ) : Indeterminate-Ri for some Ri ∈ P.

– π(RQ) : π(T ) and there exist Ri,R j ∈ P , i , j s.t. π(RQ) : Effect-Ri and

π(RQ) : Effect-R j, where Effect-Ri,Effect-R j can be Permit or Deny.

Satisfying either of the above conditions , together with Lemma 8 is enough to infer

that:

KB |= π(RQ) : Effect-P→ P Only-One-Applicable T Ri,RQ |= Indeterminate

After covering all of the rule combining algorithms , I proved that:

KB |= π(RQ) : Effect-P→ P,RQ |= Effect
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�

Proof of Lemma 11. This proof has a few sections, depending on what type of rule com-

bining algorithm is being considered.

Permit-Overrides

• P,RQ 6|= Permit. Considering that semantics rule 1 is the only one that can entail

P,RQ |= Permit in Table 4.8, we have:

T,RQ 6|= True ∨ (∀Ri ∈ P : Ri,RQ 6|= Permit)

which together with Lemmas 7 and 9 implies that

(KB |= π(RQ) : ¬π(T,True)) OR (∀Ri ∈ P : KB |= π(RQ) : ¬Permit-Ri)

Since

Permit-P ≡ π(T,True) u
(⊔

Permit-Ri

)
,

when we try to evaluate satisfiability of Permit-Pu (¬π(T,True)t (
�
¬Permit-Ri))

we will always get a clash, proving that KB |= π(RQ) : ¬Permit-P

• P,RQ 6|= Deny. The mapping axiom for Deny in Section 6.1.4 is defined as follows:

Deny-P ≡ π(True,T) u
(⊔

Deny-Ri u
(�
¬Permit-R j

)
u (
�
¬Indeterminate-Rk)

)
where EffectRk = Permit

(A.19)
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Since inference rule 2 in Table 4.8 is the only one that can entail P,RQ |= Deny,

that means that at least one of the following holds:

– T,RQ 6|= True, which implies KB |= π(RQ) : ¬π(T,True). Notice that this

expression will clash with the first conjunct in equation (A.19), rendering

Deny-P u π(RQ) unsatisfiable.

– ∀Ri ∈ P : Ri,RQ 6|= Deny. This means that for each Ri ∈ P, KB |=

π(RQ) : ¬Deny-Ri, which means that there always will be a clash with the

first item in the second conjunct in equation (A.19) (
⊔

Deny-Ri), again ren-

dering Deny-P u π(RQ) unsatisfiable.

– ∃Ri ∈ P : Ri,RQ |= Indeterminate where EffectRi = Permit. The map-

ping of this expression will clash with the last item in the second conjunct

(
�
¬Indeterminate-Rk), which is only focused on rules where the effect is

Permit.

– ∃Ri ∈ P : Ri,RQ |= Permit – this implies that for some Ri ∈ P, KB |= π(RQ) :

Permit-Ri which will clash with the second item in the second conjunct.

Since I showed that in all three cases the expression Deny-Pu π(RQ) will be unsat-

isfiable, it will always follow that KB |= π(RQ) : ¬Deny-P for this case.

• P,RQ 6|= Indeterminate. The mapping axiom for Indeterminate in Section

6.1.4 is:

Indeterminate-P ≡ π(T ) u
(⊔

Indeterminate-Ri u
(�
¬Permit-R j

))
where EffectRi = Permit

(A.20)
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This is the case of inference rule 3 in Table 4.8. If that rule did not fire, that means

one of the following conditions holds:

– T,RQ 6|= True, which implies KB |= π(RQ) : ¬π(T,True). This expres-

sion will clash with the first conjunct in equation (A.20), thus the expression

Indeterminate-P u π(RQ) is unsatisfiable.

– ∀Ri ∈ P : Ri,RQ 6|= Indeterminate whereEffectRi = Permit. The mapping of

this expression will be:

∀Ri ∈ P : KB |= π(RQ) : ¬Indeterminate-Ri where EffectRi = Permit,

which will clash with (
⊔

Indeterminate-Ri), which is only focused on rules

where the effect is Permit.

– ∃Ri ∈ P : Ri,RQ |= Permit – this implies that for some Ri ∈ P, KB |= π(RQ) :

Permit-Ri which will clash with
(�
¬Permit-R j

)
, rendering Indeterminate-Pu

π(RQ) unsatisfiable.

Deny-Overrides To show that:

RQ,P |= Effect then KB |= π(Effect,P)(π(RQ))

in the Deny-Overrides case the same approach as in Permit-Overrides can be used.

First-Applicable The mapping axiom for First-Applicable is defined as:
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Effect-P ≡ π(T ) u
(⊔

Effect-Ri u
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

))
where i > j

(A.21)

Since the deduction rules are the same regardless of the effect decision, we will

simply use Effect in this proof as substitute for Permit, Deny or Indeterminate.

P,RQ 6|= Effect means one of the following things holds(according to inference

rules in Table 4.9):

• T,RQ 6|= True. This implies KB |= π(RQ) : ¬π(T,True). This expression will clash

with the first conjunct in equation (A.21), thus the expression Effect-P u π(RQ) is

unsatisfiable.

• ∀Ri ∈ P s.t. Ri,RQ 6|= Effect. This implies that

∀Ri ∈ P : KB |= π(RQ) : ¬Effect-Ri

Which means that there will be a clash between the term
⊔

Effect-Ri from equation

(A.21) and π(RQ).

• ∃R js.t. j < i : R j,RQ |= Indeterminate ∨ R j,RQ |= Permit ∨ R j,RQ |= Deny

which means that

∃R j ∈ P where j < i : KB |= π(RQ) : Indeterminate-R j t Deny-R j t Permit-R j
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which will always clash with
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

)
,

thus rendering Effect-P u π(RQ) unsatisfiable.

I showed in any of the three conditions that implies P,RQ 6|= Effect, KB |=

π(RQ) : ¬Effect-P, thus

(P,RQ 6|= Effect)→ (KB |= π(RQ) : ¬Effect-P)

Only-One-Applicable We will show for the Permit/Deny case first, then for Indetermi-

nate.

• Permit/Deny. The mapping axiom for Permit/Deny in First-Applicable is de-

fined as:

Effect-P ≡ π(T ) u
(⊔

Effect-Ri u
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

))
where i , j

(A.22)

P,RQ 6|= Effect means one of the following things holds(according to inference

rules in Table 4.10):

– T,RQ 6|= True. This implies KB |= π(RQ) : ¬π(T,True). This expression will

clash with the first conjunct in equation (A.22).
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– ∀Ri ∈ P s.t. Ri,RQ 6|= Effect. This implies that

∀Ri ∈ P : KB |= π(RQ) : ¬Effect-Ri

Which means that there will be a clash between the term
⊔

Effect-Ri from

equation (A.22) and π(RQ).

– ∃R j ∈ P s.t. R j,RQ |= Effectx where Effectx is a Permit, Deny or Indetermi-

nate. This in turn implies

KB |= π(RQ) : Permit-R j t Deny-R j t Indeterminate-R j

which will always produce a clash with
(�
¬Deny-R j u ¬Permit-R j u ¬Indeterminate-R j

)
.

• P,RQ 6|= Indeterminate. The mapping axioms are defined in Section 6.1.4 as:

Indeterminate-P ≡ π(T ) u
(⊔

Indeterminate-Ri

)
Indeterminate-P ≡ π(T ) u

(⊔
((Permit-Ri t Deny-Ri) u (Permit-R j t Deny-R j))

)
where i , j

(A.23)

According to the inference rules in Table 4.10 , there are only two cases s.t. P,RQ 6|=

Indeterminate:

– ∀Ri ∈ P : R,RQ 6|= Indeterminate. This implies ∀Ri ∈ P : KB |= π(RQ) :

¬Indeterminate-Ri which , in conjunction with the first axiom in (A.23), will
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produce a clash.

– ∀Ri,R j ∈ P where i , j : R,RQ 6|= Effectx ∨ R,RQ 6|= Effecty where

Effectx,Effecty are either a Permit or a Deny. This, together with the results

from the previous proofs implies that:

∀Ri,R j ∈ P where i , j : KB |= π(RQ) : ¬Effectx t ¬Effecty

which in conjunction with the mapping axioms in (A.23) implies that the ex-

pression π(RQ) u Indeterminate-P will be unsatisfiable.

By covering all possible rule combining algorithms, I have shown that

(P,RQ 6|= Effect)→ (KB |= π(RQ) : ¬Effect-P)

�

Proof of Lemma 12, If case. As in the previous proof, we itemize by the type of combin-

ing algorithm. Notice that we will only cover Permit-Overrides and Deny-Overrides,

since the other two combining algorithms can be handled same as in the Policy proof.

Permit-Overrides

• PS,RQ |= Permit. This means that there exist a policy Pi ∈ PS s.t. Pi,RQ |=

Permit, and also TP,RQ |=m Permit. This, together with our previous proofs (10),

in turn implies that KB |= π(RQ) : π(Permit-Pi) and KB |= π(RQ) : π(TP,True).
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Combining the two results we get:

π(RQ) : π(TP,True) u π(Permit-Pi,RQ)

which implies π(RQ) : Permit-PS.

• PS,RQ |= Deny. This means that there exist a policy Pi ∈ PS s.t. Pi,RQ |= Deny,

and all other rules P j do not yield a Permit: ∀P j : P j,RQ 6|= Permit. Taking these

prerequisites into account we have:

KB |= π(RQ) : π(TP,True) u π(Deny-Pi,RQ)

KB |= ∀ j : π(RQ) : ¬π(Permit-P j,RQ)

which implies π(RQ) : Deny-PS.

Deny-Overrides

• PS,RQ |= Deny. This means that there exist a policy Pi ∈ PS s.t. Pi,RQ |= Deny or

Pi,RQ |= Indeterminate, and also TP,RQ |=m True. Thus, one of the following

conditions holds:

KB |= π(Deny-Pi,RQ)

or

KB |= π(Indeterminate-Pi,RQ)

which implies π(RQ) : Deny-PS.
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• PS,RQ |= Permit. This means that there exist a policy Pi ∈ PS s.t. Pi,RQ |=

Permit, and all other rules P j do not yield a Deny or Indeterminate: ∀P j :

P j,RQ 6|= Deny ∨ P j,RQ 6|= Indeterminate. Taking these prerequisites into ac-

count we have:

KB |= π(RQ) : π(TP,True) u π(Permit-Pi,RQ)

KB |= ∀ j : π(RQ) : ¬π(Deny-P j,RQ) u ¬π(Indeterminate-P j,RQ)

which implies π(RQ) : Permit-PS.

�

Proof of Lemma 12, Else case. As in the Policy case, the proof is split based on the

different types of policy combining algorithms.

Permit-Overrides

• KB |= π(RQ) : Permit-PS. Since

Permit-PS ≡ π(True,T) u
(⊔

Permit-Pi

)

this means that π(RQ) : π(T ) and π(RQ) : Permit-Pi for some policy Pi ∈ PS .

Combining these results with Lemmas 10 and 6 implies that RQ satisfies both of

the prerequisites of inference rule 1 in Table 4.11, thus PS,RQ |= Permit.
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• KB |= π(RQ) : Deny-PS. Since

Deny-PS ≡ π(True,T) u
(⊔

Deny-Pi u
(�
¬Permit-P j

))
(A.24)

This implies all of the following:

– π(RQ) : π(True,T), which by virtue of Lemma 6 means one of the prerequi-

sites of rule 2 in Table 4.11 is satisfied.

– There exist some policy Pi ∈ P s.t. π(RQ) : Deny-Pi.

– For all policies P j ∈ PS , π(RQ) : ¬Permit-P j. These statements together with

Lemma 10 satisfy the last prerequisite of rule 2 in Table 4.11.

I have shown how with the three conditions above all of the prerequisites of the rule

that entails PS,RQ |= Deny are satisfied, so:

KB |= π(RQ) : Deny-PS→ PS Permit-Overrides T Pi,RQ |= Deny

Deny-Overrides

• KB |= π(RQ) : Deny-PS. Since

Deny-PS ≡ π(T ) u
(⊔

Deny-Ri t Indeterminate-Ri

)

this means that π(RQ) : π(T ) and either π(RQ) : Deny-Pi or π(RQ) : Indeterminate-Pi

for some policy Pi ∈ PS . Combining these results with Lemmas 10 and 6 implies
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that RQ satisfies both of the prerequisites of inference rule 3 in Table 4.11, thus

PS,RQ |= Deny.

• KB |= π(RQ) : Permit-PS. Since

Permit-PS ≡ π(T ) u
(⊔

Permit-Pi u
(�
¬Deny-P j u ¬Indeterminate-P j

))
(A.25)

This implies all of the following:

– π(RQ) : π(T,True), which by virtue of Lemma 6 means one of the prerequi-

sites of rule 4 in 4.11 is satisfied.

– There exist some policy Pi ∈ PS s.t. π(RQ) : Permit-Pi.

– For all policies P j ∈ PS , π(RQ) : ¬Deny-P j and π(RQ) : ¬Indeterminate-P j.

These statements together with Lemma 10 satisfy the last prerequisite of rule

4 in Table 4.11.

With the above three conditions above all prerequisites of the rule that entails

PS,RQ |= Permit are satisfied, so:

KB |= π(RQ) : Permit-PS→ PS Deny-Overrides T Pi,RQ |= Permit

First-Applicable Can be done in same manner as the Policy proof.

Only-One-Applicable Can be done in same manner as the Policy proof.
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After covering all of the rule combining algorithms , I proved that:

KB |= π(RQ) : Effect-PS→ PS,RQ |= Effect

�

Proof of Lemma 13. This proof has a few sections, depending on what type of rule com-

bining algorithm is being considered.

Permit-Overrides

• PS,RQ 6|= Permit. Since inference rule 1 is the only one that can entail PS,RQ |=

Permit in Table 4.11, if that rule doesn’t hold then:

T,RQ 6|= True ∨ (∀Pi ∈ PS : Pi,RQ 6|= Permit)

which together with Lemmas 7 and 11 implies that

(KB |= π(RQ) : ¬π(T,True)) OR (∀Pi ∈ PS : KB |= π(RQ) : ¬Permit-Pi)

Since

Permit-PS ≡ π(True,T) u
(⊔

Permit-Pi

)
,

when we try to evaluate satisfiability of Permit-PSu (¬π(T,True)t¬Permit-Pi) we
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will always get a clash, thus proving that

KB |= π(RQ) : ¬Permit-PS

• PS,RQ 6|= Deny. The mapping axiom for Deny in Section 6.1.5 is defined as:

Deny-PS ≡ π(True,T) u
(⊔

Deny-Pi u
(�
¬Permit-P j

))
(A.26)

Since inference rule 2 in Table4.11 is the only one that can entail PS,RQ |= Deny,

that means that one of the following happened:

– T,RQ 6|= True, which implies KB |= π(RQ) : ¬π(T,True). Notice that this

expression will clash with the first conjunct in equation (A.26).

– ∀Pi ∈ PS : Pi,RQ 6|= Deny. This means that for each Pi ∈ PS, KB |= π(RQ) :

¬Deny-Pi, which means that there always will be a clash with the first item in

the second conjunct in equation (A.26) (
⊔

Deny-Pi).

– ∃Pi ∈ PS : Pi,RQ |= Permit – this implies that for some Pi ∈ PS, KB |=

π(RQ) : Permit-Pi which again will produce a clash so the expression Deny-PSu

π(RQ) will be unsatisfiable.

Since in all three cases the expression Deny-PSuπ(RQ) will be unsatisfiable, it will

always follow that KB |= π(RQ) : ¬Deny-PS for this case.

Deny-Overrides The proof is slightly different than the Permit-Overrides case.
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• PS,RQ 6|= Deny. Since inference rule 3 is the only one that can entail PS,RQ |=

Deny in Table 4.11, that implies:

T,RQ 6|= True ∨ (∀Pi ∈ PS : Pi,RQ 6|= Deny ∧ Pi,RQ 6|= Indeterminate)

which together with Lemmas 7 and 11 implies

(KB |= π(RQ) : ¬π(T,True)) OR

(∀Pi ∈ PS : KB |= π(RQ) : ¬Indeterminate-Ri u ¬Deny-Ri)

Since

Deny-PS ≡ π(T ) u
(⊔

Deny-Ri t Indeterminate-Ri

)
,

when we try to evaluate satisfiability of

Deny-PS u (¬π(T,True) t (¬Indeterminate-Ri u ¬Deny-Ri))

we will always get a clash, thus proving that

KB |= π(RQ) : ¬Deny-IDPS

• PS,RQ 6|= Permit. The mapping axiom for Permit in Section 6.1.5 is defined as
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follows:

Permit-PS ≡ π(T ) u
(⊔

Permit-Pi u
(�
¬Deny-P j u ¬Indeterminate-P j

))
(A.27)

Since inference rule 4 in Table 4.11 is the only one that can entail PS,RQ |=

Permit, that means that one of the following holds:

– T,RQ 6|= True, which implies KB |= ¬π(RQ) : π(T,True). Notice that this

expression will clash with the first conjunct in equation (A.27), rendering

Permit-PS u π(RQ) unsatisfiable.

– ∀Pi ∈ PS : Pi,RQ 6|= Permit. This means that for each Pi ∈ PS, KB |= π(RQ) :

¬Permit-Pi, which means that there always will be a clash with the expression

in equation (A.27) (
⊔

Permit-Ri).

– ∃P j ∈ PS : P j,RQ |= Deny ∨ P j,RQ |= Indeterminate. This means that

there exists a Pi ∈ PS s.t. KB |= π(RQ) : Indeterminate-Pi t Deny-Pi, which

means that there always will be a clash with the expression in equation (A.27)(�
¬Deny-P j u ¬Indeterminate-P j

)
.

Since I showed that in all three cases the expression Permit-P u π(RQ) will be

unsatisfiable, that it will always follow that KB |= π(RQ) : ¬Permit-P for this case.

First-Applicable Proof can be done in same way as for the Policy case (since the

semantics is the same).
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Only-One-Applicable Proof is same as for the Policy case..

�
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