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Vapnik Chervonenkis dimension is a basic combinatorial notion with applications

in machine learning, stability theory, and statistics. We explore what effect model

theoretic structure has on the VC dimension of formulas, considered as parameterized

families of sets, with respect to long disjunctions and conjunctions. If the growth in VC

dimension is linear in the number of disjunctions, then the theory under consideration

has a certain kind of good structure. We have found a general class of theories in which

this structure obtains, as well as situations where it fails.

We relate “compression schemes” of computational learning theory to model theo-

retic type definitions, and explore the model theoretic implications. All stable definable

families are shown to have finite compression schemes, with specific bounds in the case

of NFCP theories.

Notions of maximality in VC classes are discussed, and classified according to their

first order properties. While maximum classes can be characterized in first-order logic,

maximal classes can not.
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0.1 Preface

In [38], two Russian probabilists made a discovery which relates certain desirable

behavior in a family of sets1 to a combinatorial property of the sets. This is now

known as Vapnik Chervonenkis (VC) dimension in their honor. In one of the

strange coincidences in the history of mathematics, their discovery was echoed

by independent papers from several authors shortly afterward [33, 31].

The idea of Vapnik Chervonenkis dimension has turned out to have implica-

tions for almost all disciplines in which parameterized families of sets are studied.

This ranges from modern model theory, to empirical processes, theoretical prob-

ability, computational learning theory, and combinatorics.2

Recently the term “VC theory” has been introduced to refer to questions

involving VC dimension; several articles have been produced which study VC

dimension in its own right [1, 26]. There is no treatise on the subject, however,

which joins the results in various fields into an organic presentation. This paper

is certainly not such a work, but it does seek to relate at least a few of the above

sets of practices: those of mathematical logic, computational learning theory, and

combinatorics.

There has been some success in this line already. In [23], after the central role

of VC dimension in Valiant’s model of PAC learning had been realized, the obser-

vation was made that VC dimension was already a well-studied phenomenon in

logic, under the guise of the Independence Property. This immediately answered

1In the case of Vapnik and Chervonenkis, this was a uniform convergence of relative fre-

quency to probability. Other interesting conditions are also implied by finite VC dimension,

such as a law of large numbers, and a central limit theorem on boolean valued functions.

2See, respectively, [1, 10, 38, 5, 26].
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at least one interesting question, whether feedforward sigmoidal neural networks

always have finite VC dimension [19]. More generally, the laborious quest of spe-

cific arguments to show finite VC dimension in certain set systems was no longer

necessary, since most interesting systems were already known to be definable in

so-called dependent theories.3

Unfortunately, while the existing logical theory provides proofs of finitude,

it does not give reasonable bounds on VC dimension. Most theories known to

be dependent have been shown to be so through a “sufficiency of one variable”

argument [23, 33]. This means that every formula in a theory has finite VC

dimension iff the statement is true for every formula in a single variable. Since the

one dimensional definable families are frequently more simple4 than the definable

families in higher dimensions, this gives a straightforward route for proofs of

dependence. Unfortunately the collapse to a single variable invokes Ramsey’s

theorem, and the resulting bounds on complexity, while finite, are large.

As an attempt to establish practical bounds, we try to find maps from syntac-

tical complexity to VC dimension. In an ideal world, tight bounds on VC dimen-

sion of formulas would follow simply by knowing the VC dimension of the atomic

formulas, and the syntactical composition of the formula in question. Good map-

pings of this type, for specific situations, can be found in [19, 16, 34, 11, 5], and

in many other papers.

For the sake of simplicity, we consider a single parameterized formula, and

analyze changes in VC dimension under long disjunctions and conjunctions. The

3These are the theories in which all definable parameterized set systems have finite VC

dimension.

4In o-minimal, weakly o-minimal and strongly minimal formulas this is particularly true.
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conjunctions and disjunctions fix the variables, but the number of parameters

increases linearly with the length of the composition; every new conjunction

brings an independent set of new parameters for the original formula. The papers

cited above, as we will see, show that the growth in VC dimension in such a

situation is at worst log-linear. For many years it was unclear whether the log-

linear upper bound ever held, but [12] demonstrated that this is indeed the case.

This essentially unique counter-example is interesting for two reasons. Firstly,

the family produced is stable, following from the fact that the elements in the

family are almost disjoint.5 Secondly, aside from the almost disjointness, the

family has very little structure, having been shown to exist by a probabilistic

method.

In most applications, the log-linear bound is used because of its generality

[16, 5, 26], and possibly because the performance difference between linear and

log-linear growth is relatively unsubstantial. This leaves open the question, how-

ever, whether there is a qualitative dichotomy between structures in which the

log-linear bound is possible, and those in which it is not. Here we give the first ex-

ample of a non-trivial theory in which the log-linear bound is not attainable, and

where in fact growth in VC dimension (in the above sense) is linearly bounded. A

plausible goal is to characterize (algebraically, or model theoretically) the division

between the two types of behavior. In other words:

• What are some algebraic factors which determine when a set system com-

bines with itself in a simple way, with respect to VC dimension?

In exploring this question, we show that for long disjunctions of the above

5The size of intersection is uniformly bounded by a natural number.
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type, the independence dimension (dual VC dimension) is linear in the number

of parameters. These results constitute Chapter 2.

0.1.1

The remaining two chapters do not answer questions with such a long history.

We first discuss Chapter 3.

In model theory, a type is the signature, with respect to first-order formulas, of an

element of the universe of some structure. The type of an element gives a complete

description of the first-order relationships between the element and the other

elements in the universe. The compactness theorem makes it possible to answer

many questions about types by considering not all formulas, but rather instances

of a single formula, where instance means that the only difference between two

formulas in the type is a reassignment of parameters, and perhaps a negation.

When restricted to a formula, the information contained in a type amounts to

a specification of which tuples of the universe provide parameters corresponding

to positive (or negative) instances in the type. The type of an element, in this

light, is a subset of the universe. If we fix the restricting formula and consider

other element types, we get a family of subsets. In other words, we get a concept

class, or set system.

It has long been observed [32] that in the presence of strong structure, the

information contained in a type, restricted to a formula, has a finite description,

and in fact this description can be given in terms of the restricting formula. There

is a name and a large body of work devoted to such strong structures: They are

4



called stable, and the study of them is referred to as Stability Theory.

A similar, but different, phenomenon can be observed in collections of geomet-

ric objects. Consider the set of all rectangles in the plane, with sides parallel to

one of the two cartesian axes.6 If one considers a rectangle from this class and its

relationship with a finite set of points, the properties of the rectangle (from the

point of view of the finite set) can be captured by considering a set of only four

points, which describe the boundary of the rectangle. Similar “compressions” can

be found, in all dimensions, for balls, half-spaces, and even semi-algebraic sets.7

In each case, a uniformly bounded amount of finite information is sufficient to

describe the boundary of an object, on any finite set, however large.

These compressions are known as compression schemes, and were presented in

[24], then later developed in [13, 4, 14, 22]. A small compression scheme on a set

system of finite VC dimension can give better bounds on the number of examples

needed for PAC learning than VC dimension alone, and also allows concepts to

be learned in a space-bounded manner [13, 14].

The set of rectangles, as above, can be described uniformly by a single formula.

In fact compression schemes are operations on types, just as type definitions are.

In the rectangular case, the “element” whose type is considered is a tuple deter-

mining a certain rectangle (say, two diagonal corners), the restricting formula is

the formula for rectangles, and the type gives a description of the relationship

between the tuple and all points in the plane, vis a vis the “rectangle” relation.

The picture of a rectangle in the plane in this sense is a type.

This suggests that the existence of a type compression (or definition) has

6See Figure A.1.

7There is a proviso here that the discrete set is in “general position.”
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a certain relation with the existence a geometric compression scheme on the

same type. The main theorem in Chapter 3 establishes this formally. The class

of “geometrically compressible” set systems of finite VC dimension is thereby

extended to include all stable families. An account of the non-stable geometrically

compressible families can be found in [4].

An interesting question is raised: Are dependent theories characterized by

the existence of compression schemes, in a way similar to the characterization of

stable theories in terms of type definitions?

0.1.2

Chapter 4 explores a maximality condition on a set system in a first order context.

For any set system of a certain VC dimension, we can imagine adding new sets

until it is not possible to add more sets without increasing the VC dimension.

Sauer’s lemma (p. 20) establishes that the size of a class of VC dimension d on

a finite domain of size n is always bounded by a polynomial in n of degree d.

Many natural classes attain this maximum size. On the other hand, it is possible

to reach a “dead end” before the class is maximum, in which case the class is

traditionally said to be maximal.8 In the infinite case, a class is maximum if it

is maximum when restricted to any finite domain.

For many interesting questions about VC dimension, it suffices to consider

only the maximal examples.9 While it is clear that the property of being max-

imum is first-order, the property of being maximal is less clear. If a class is

not maximum, there must be a local reason, but for maximality this is not the

8See the footnote on page 23.

9For example, the existence of compression schemes.
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case. The argument in Chapter 4 gives a formal argument that there is no first

order sentence expressing the maximality of a definable family. We also show

that maximality for any definable family is in fact a very strong condition, which

never holds many natural situations. This partly explains a previously remarked

upon absence of natural examples of maximal families.
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Chapter 1

Introduction

1.1 Concept classes and Stone spaces

There has been a trend in the history of VC dimension of authors in different

disciplines independently discovering the same results in different contexts. As

a result, there has not much standardization of notation. Along with different

notations, there are concepts in the literature of VC dimension which can be

morally identified with the same concept. There are hypergraphs in graph the-

ory, range spaces and concept classes in computer science, definable families in

mathematical logic, and other notions. They are all ways of describing, albeit

with different emphases, an abstract set system, that is, a set X together with

some C ⊆ P(X).1

Here we adopt arguably the broadest possible notation for studying VC di-

mension, the formulas of first-order logic. In certain situations, however, logical

notation carries an extra burden of complication, and we occasionally use other

descriptions. We try to make the equivalence between these different ways of

describing clear.

1This is the power set, P(X) = {A : A ⊆ X}.
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In the following definition, and throughout, we use ω to denote the set of all

finite ordinal numbers.

Vapnik Chervonenkis Dimension: Let X any set, and C ⊆ P(X). Then, for

any n ∈ ω, we say that VC(C) ≥ n if there is some A ⊆ X, |A| = n, such that

{c∩A : c ∈ C} = P(A). That is, VC(C) ≥ n if some size n subset of X is shattered

by C. Then VC(C) = n if VC(C) ≥ n and VC(C) � n + 1. If VC(C) ≥ n for all

n ∈ ω, we say VC(C) = ∞.

The model-theoretic notion of a definable family will be main object of interest

in what follows. In order to introduce it, we give a brief description of model

theory. For a reference, see [25] or [8].

By a language, denoted L, we mean a collection of relation, function and

constant symbols, together with the usual logical symbols, i.e. quantifiers, vari-

able symbols, conjunction, disjunction, negation and equality. The relation and

function symbols are of a fixed arity, and there is a syntax2 for composing well-

formed formulas from the symbols. By a L-formula we mean a string of symbols,

admissible with respect to the syntax.3 A sentence is a formula with no free

variables. A theory, or axiom system, is a collection of sentences, which we will

always assume to be consistent. A theory is said to be complete if the truth value

of every sentence is determined by the theory.

A model M of a theory (in a language L) interprets the symbols of L in a

way which is consistent with the axioms of T , and provides a set of elements,

2In this paper we will use only the standard first-order syntax.

3The atomic L-formulas consist of single relation symbols from L, with terms (compositions

of functions) as inputs. If φ(x) and ψ(z) are L-formulas, then so are φ(x)∧ψ(z), ∃(x)φ(x), and

¬ψ(z). There are also rules for substitution of variable symbols, etc.
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with respect to which L formulas and sentences are either true or false. These

elements are the universe of M. The notation M |= T expresses that M is a

model of T .

Fix a language L and a formula ϕ(v1, . . . , vn). We will deal with ϕ as a

partitioned formula ϕ(x̄; ỹ) (or ϕ(x̄, ỹ).) This means that, ϕ(x̄; ỹ) = ϕ(v1, . . . , vn),

but there is a separation of (v1, . . . , vn) into object and parameter variables. We

always consider a formula ϕ with respect to some L-theory T , which is almost

always assumed to be complete, with an infinite model.

To simplify things, we choose a large model C of a complete theory T , which

is saturated in some extremely large cardinal κ, and regard any model discussed

as being an elementary substructure of C.4 This is sometimes referred to as the

“monster model,” and we will denote ours by C. By adopting a monster, we

can speak of ambient sets A,B,C etc, without worrying very much about which

universe they belong to; they belong to the universe of the monster.

We will sometimes write, |= ϕ(a1, . . . , an), rather than the more formal C(a1,...,an) |=
ϕ(a1, . . . , an). Either of these says that ϕ(a1, . . . , an), with (a1, . . . , an) ∈ Cn, is

true in C(a1,...,an), where the subscript indicates that the language has been ex-

panded to include names for the ai.

For any formula ψ(z̄), z̄ = (z1, . . . , zn), it is standard to let, for any model

M of T , ψ(M) := {ā ∈ Mn :|= ψ(ā)}, and if D = ψ(M), to say that D is a

definable subset of M, defined by ψ. There is an obvious and analogous meaning

for ψ(A), when A is some unadorned subset of M (or Mn.) To make the case

where A ⊆Mn clear, by ψ(A), when A ⊆M|x̄|, we mean {ā ∈ A : M |= ψ(ā)}.
4M is an elementary substructure of C iff M ⊆ C, and any sentence with constants from

M is true in M iff it is true in C.
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Given a partitioned formula ϕ(x̄; ỹ), and a set A ⊆ M|x̄|, the concept class,

or definable family, associated with ϕ on A is,

CMϕ (A) := {ϕ(A, b̃) : b̃ ∈M|ỹ|}.

If no model M is specified, then Cϕ(A) is taken to be {ϕ(A, b̃) : b̃ ∈ C|ỹ|},
where C is the monster model. There is a subtle but important difference in

CMϕ (A) and Cϕ(A), when A ⊆M; in the former case, the parameters must come

from M. This will not effect the VC dimension of the class, but it will be used

in Chapter 4.

Note that Cϕ(A) ⊆ P(A), and so (A,Cϕ(A)) can be regarded as a familiar

hypergraph, set system, etc. It thus has a well defined VC dimension. By the

VC dimension of ϕ on A, denoted VCA(ϕ), we mean the VC dimension of Cϕ(A).

Proposition 1.1.1. For any modelsM and N of a complete theory T , VC(Cϕ(M))

= VC(Cϕ(N )).

Proof. The following sentence, in T , says that the VC dimension of ϕ is at least

d:

∃ȳ1 . . . ∃ȳ2d∃x̄1 . . . x̄d


 ∧

w⊆[d]


∧
i∈w

ϕ(xi; yf(w)) ∧
∧

i∈[d]\w
¬ϕ(xi; yf(w))





 .5

It is clear from the above, and the definition of VC dimension, that VC(ϕ)

can be expressed in a sentence. Since M and N agree on all sentences, they

agree on VC(ϕ).

Definition Let A,B ⊆ P(X). We say that B is an extension of A if A ⊆ B.

5Here f is any bijection between P([d]) and [2d].
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Definition Let A ⊆ P(X), and X0 ⊆ X. Then the restriction of A to X0,

denoted A ¹X0 , is defined by

A ¹X0 := {a ∩X0 : a ∈ A}.

While an extension increases the parameter set (or number of sets) in a con-

cept class, a restriction alters the domain. The VC dimension is monotone with

respect to extensions and restrictions in the following way.

Proposition 1.1.2. For any X, and any C1,C2 ⊆ P(X), if C1 ⊆ C2, then

VC(C1) ≤ VC(C2).

Proof. Suppose A ⊆ X is shattered by sets in C1. Then A is shattered by the

same sets in C2.

Proposition 1.1.3. For any X, any X0 ⊆ X, and A ⊆ P(X),

VC(A ¹X0) ≤ VC(A).

Proof. Suppose B ⊆ X0 is shattered by A ¹X0 . Then A also shatters this set as

a subset of X.

We note that, for any set A whatever, VC(Cϕ(A)) ≤ VC(Cϕ(C)).

There are various types of operations defined on VC classes, such as simple

set theoretical operations, so called ‘shifts’, cartesian products and others. These

are investigated in [11] and [15]. We will be primarily interested in the “box

union” and “box intersection” operations. The following notation, or something

similar, can be found in [11], [5] and [12].

Proposition 1.1.4. Suppose A and B are concept classes on X. Then the fol-

lowing are also concept classes on X.

12



1. A tB := {a ∪ b : a ∈ A, and b ∈ B}.

2. A uB := {a ∩ b : a ∈ A, and b ∈ B}.

3. ¬A := {X \ a : a ∈ A}.

Also, for any formulas ϕ(x̄, ỹ), ψ(x̄, z̃), and set A ⊆ C|x̄|,

1. Cϕ(A) t Cψ(A) = Cϕ(x̄,ỹ)∨ψ(x̄,z̃)(A).

2. Cϕ(A) u Cψ(A) = Cϕ(x̄,ỹ)∧ψ(x̄,z̃)(A).

3. ¬Cϕ(A) = C¬ϕ(A).

At several points we will be interested in the ‘asymptotic’ VC dimension of a

formula. By this we mean the behavior of, say,

VC(
m∧
i=1

ϕ(x̄, ỹi)),

as m grows arbitrarily large. Proposition 1.1.4 establishes that this is the same

question as the one studied on box products in [11], [5] and [12]. Note that while

the x̄ variables are fixed, every new conjunction provides an independent set of

parameters.

The following, which will figure largely in the next chapter, has been known

since at least [5]. It is true for any boolean combination (in u, t, and ¬) though

for simplicity we write the statement with the disjunction symbol.

Proposition 1.1.5. Let Ci ⊆ P(X), V C(Ci) = d, for i ∈ ω. Let, for any m ∈ ω,

β(m) = VC(
m⊔
i=1

Ci).

Then β(m) is O(m logm), where the log function has base 2.

13



Proof. The bound will come from the Sauer-Shelah lemma, Lemma 1.2.1. Let

A ⊆ X, finite, |A| = n. Then

|
(

m⊔
i=1

Ci

)
¹A | ≤ |C1 ¹A | · · · · · |Cm ¹A | ≤

(
d∑
i=1

(
n

i

))m

.

Since
∑d

i=1

(
n
i

)
is O(nd), there is some K0 ∈ ω, depending only on d, such that

the number of subsets of A cut out by tmi=1C is at most Km
0 n

dm.

We claim that for all but finitely many values of m,

2(2d)m logm > Km
0 ((2d)m logm)dm.

Because,

2(2d)m logm > Km
0 ((2d)m logm)dm

⇐⇒
m(2d)m > Km

0 ((2d)m logm)dm

⇐⇒
m2d > K0((2d)m logm)d

⇐⇒
md > K0((2d) logm)d

The last inequality clearly holds for all sufficiently large m.

Now we have shown, β(m) is O(m logm). For if not, a contradiction occurs

when a set of size (2d)m logm is shattered, for sufficiently large m.

It has recently been shown6 in [12] that this bound is tight, provided d ≥ 5.

In fact, something stronger is shown, because in the argument of Eisenstat and

6We make a straightforward adaptation that smooths the result to the infinite case in section

2.6 of Chapter 2.
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Angluin (as well as our adaptation) the bound is achieved using a single definable

family, whereas in the above, the ω many classes have no necessary relationships.

1.1.1 Types

In chapters 3 and 4 we will make use of an object which is dual, in the abstract,

to Cϕ(A). We call this a ϕ-type over some parameter set.

The word type describes a set of formulas, all in the same variables, assumed

here to be consistent. Our ϕ-types will just be consistent types in which the only

formulas allowed are formulas of the form ϕ(x̄, ã) or ¬ϕ(x̄, ã), where ã is some

parameter set. The definitions which follow use the set theoretical properties of

ordinal numbers (eg, 2 = {0, 1}), and the notation AB, which represents the set

of all functions from A to B.

Definition 1. Suppose ϕ(x̄, ỹ) is a formula. For i ∈ {0, 1},

ϕ(x̄, ỹ)i :=





ϕ(x̄, ỹ) if i = 1,

¬ϕ(x̄, ỹ) if i = 0.

2. If A is a set, |ỹ| = l, and η ∈ Al2, let

rA,ϕη (x̄) := {ϕ(x̄, ã)η(ã) : ã ∈ Al}.

3. The set of formulas rA,ϕη (x̄) is consistent iff for every finite subset

{ϕ(x̄, ã1)
i1 , . . . , ϕ(x̄, ãn)

in} of rA,ϕη (x̄), ij ∈ {0, 1},

|= ∃x̄
n∧
j=1

ϕ(x̄, ãj)
ij .

(By the compactness theorem and the |A|+-saturation of C, this is equiva-

lent to the existence of some b̄ ∈ C such that |= rA,ϕη (b̄). Such a b̄ is said to

realize the type rA,ϕη (x̄).)
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4. For a formula ϕ(x̄, ã) and set A, the Stone space of ϕ over A is defined as

Sϕ(A) := {rA,ϕη (x̄) : η ∈ Al2 and rA,ϕη (x̄) is consistent}.

As we alluded earlier, the Stone space of ϕ and the concept class associated with

ϕ are dual. We now make the relationship precise. By the dual of a formula

ϕ(x̄, ỹ), we mean ϕ∗(ỹ, x̄) := ϕ(x̄, ỹ). That is, the formula is syntactically the

same, but we regard the object variables and parameters as reversed.

Definition For ϕ(x̄, ỹ) a formula, A ⊆ C|x̄| a set, define

[Cϕ(A)] := {fc : c ∈ Cϕ(A)},

where fc ∈ A2 is the indicator function for c. Similarly, let

[Sϕ(A)] := {η : rA,ϕη (x̄) ∈ Sϕ(A)}.

Proposition 1.1.6. If ϕ(x̄, ỹ) is a formula, ϕ∗(ỹ, x̄) its dual, and A any set, then

[Cϕ∗(A)] = [Sϕ(A)].

Proof. Let fc ∈ [Cϕ∗(A)], where c = ϕ∗(A, b̄) for some b̄ ∈ C|x̄|. Then rA,ϕfc
(x̄) =

{ϕ(x̄, ã)fc(ã) : ã ∈ A|ỹ|}. But this is consistent because |= rA,ϕfc
(b̄). Thus rA,ϕfc

(x̄) ∈
Sϕ(A), and so fc ∈ [Sϕ(A)]. This gives [Cϕ∗(A)] ⊆ [Sϕ(A)].

For the other direction, take η ∈ A|ỹ|2, such that rA,ϕη (x̄) is consistent. Then by

the compactness theorem and the ℵ0+|A|+-saturation of C, there is some b̄ ∈ C|x̄|

realizing rA,ϕη (x̄). Then for any ã ∈ A|ỹ|, we have η(ã) ⇐⇒ |= ϕ(b̄, ã) ⇐⇒ |=
ϕ∗(ã, b̄). Thus if c = ϕ∗(A, b̄), fc = η, and so η ∈ [Cϕ∗(A)].

Therefore [Cϕ∗(A)] = [Sϕ(A)].
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We make some well known remarks about the relations between VC(Cϕ∗(A))

and VC(Cϕ(A)) [23, 28]. First we define the notion of so-called set-theoretic

independence. Intuitively, it is the largest ‘topological’ Venn-diagram that can

be created from elements of a concept class. We use the ordinal definition of a

natural number, k := {0, 1, 2, . . . , k − 1}.

Definition Let X a set, C ⊆ P(X). Then the independence dimension of C,

denoted IN(C) is the largest n ∈ ω such that there are c0, c1, ..., cn−1 in C such

that, for any w ⊆ n,
⋂
i∈w

ci ∩
⋂

i∈n\w
X \ ci 6= ®.

If there is no such largest n, we say IN(C) = ∞.

The independence dimension of a formula ϕ(x̄, ỹ) will be the independence

dimension of its associated concept class, and will be denoted IN(ϕ). The inde-

pendence dimension of a formula ϕ(x̄, ỹ) over A ⊆ C|ỹ| will be the independence

dimension of its associated concept class restricted to sets defined by ϕ parame-

terized with tuples from A, and will be denoted INA(ϕ).

The following shorthand will be used many times.

Definition We write “B ⊆κ A” to mean: B ⊆ A and |B| < κ.

Proposition 1.1.7. 1. For any formula ϕ(x̄, ỹ), and any set A ⊆ C|ỹ|, INA(ϕ) =

VCA(ϕ∗). In particular, IN(ϕ) = VC(ϕ∗).

2. Let ϕ(x̄, ỹ), A ⊆ C|ỹ|, and k ∈ ω be given. The following are equivalent.

(a) INA(ϕ) ≥ k

(b) There is B ⊆k+1 A such that |Cϕ∗(B)| = 2k
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(c) There are D0, D1, ..., Dk−1, where for all i ∈ k, Di is defined by ϕ(x̄, ãi),

some ãi ∈ A, and for any w ⊆ k,

⋂
i∈w

Di ∩
⋂

i∈k\w
D̄i 6= ®.

3. Let ϕ(x̄, ỹ) a formula. Then

VC(ϕ) ≤ 2IN(ϕ),

and

IN(ϕ) ≤ 2VC(ϕ).

A proof for the above can be found in [23]. A less model-theoretic formulation

may be sought in [37]. Note that 1.1.7 (3) implies that ‘finite VC dimension’ and

‘finite independence dimension’ are equivalent.

1.1.2 Topology

Sϕ(A) (or Cϕ(A)) is equipped with a nice topology, called the Stone topology. It

makes sense, then, to henceforth think of its elements as points, and to denote

them by simple p’s and q’s. Because we will eventually make reference to the

Stone space topology, we will make an excursion into its properties.

Definition 1. A ±instance of ϕ(x̄, ỹ) is a formula ψ(x̄) of the form ϕ(x, ã) or

¬ϕ(x̄, ã), where ã is any tuple (in C).

2. A basic open set of Sϕ(A) is a set of the form

Uψ(x̄) := {p ∈ Sϕ(A) : ψ ∈ p},

where ψ is a ±instance of ϕ.
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The Stone space Sϕ(A), has the topology induced by the above described base of

open sets.

Recall that if 2 = {0, 1} is regarded as a discrete space, and B is any set,

then 2B (which we will identify with B2) can be equipped with the Tychonov (or

product) topology, where the basic open sets are of the form Uη,b := {µ ∈ B2 :

µ(b) = η(b)}, where η is any member of B2, and b ∈ B. Then the Stone space

topology is just the subspace topology on [Sϕ(A)] ⊆ A|ỹ|2, where A|ỹ|2 is given the

product topology on 2. More formally,

Proposition 1.1.8. Let (A
|ỹ|

2, τ) be the topological space given by the product

topology on 2, and let ([Sϕ(A)], τ ′) ⊆ (A
|ỹ|

2, τ) have the subspace topology. Then

if (Sϕ(A), ρ) denotes the usual Stone topology on Sϕ(A), we have the following

homeomorphism:

(Sϕ(A), ρ) ∼= ([Sϕ(A)], τ ′).

From this we get that Sϕ(A) is Tychonov7, since 2 is Tychonov, and the prop-

erty is preserved under products and subspaces. The content of the compactness

theorem (in this local setting) is that [Sϕ(A)] is a closed, equivalently compact,

subspace of the compact Hausdorff space A|ỹ|2.

1.2 Maximal classes and Sauer’s lemma

The most important property a concept class has as a result of finite VC dimen-

sion, particularly outside of logic, is the existence of a polynomial bound on size

of the trace function of the system. The technical statement of this fact is the

Sauer-Shelah-VC lemma.

7Completely regular and Hausdorff
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Lemma 1.2.1 (Sauer’s lemma). Let X a set C ⊆ P(X). Then for any finite set

A ⊆ X,

|C ¹ A| ≤
d∑
i=0

(|A|
i

)
.

where d is the VC dimension of C.

Proof. We introduce the semi-standard notation Φd(n) :=
∑d

i=0

(
n
i

)
, and note

that the following recurrence relation is satisfied:8

Φd(n) = Φd(n− 1) + Φd−1(n− 1).

The argument will be by double induction on d and n. If d = 0, then for any

finite A, |C ¹ A| ≤ 1 and the statement holds. Also, if |A| = 0 then the statement

holds for any d.

Suppose the statement holds for any A′ of size less than n and any d′ < d.

Let A of size n and suppose C has VC dimension d on A. Pick any a ∈ A, and

make the following definitions:

C− a := C ¹A\{a}

C{a} := {c ∈ C− a : c ∈ C and (c ∪ {a}) ∈ C}.

Clearly VC(C − a) ≤ d, and C − a is a concept class on the set A \ {a} of size

n − 1. The class C{a} is also a class on A \ {a}, and has VC dimension at most

d − 1; otherwise if C{a} shatters B of size d, then C ¹A shatters B ∪ {a} of size

d+ 1
⊗

.

Now we observe, since every element of C{a} extends to two separate elements

of C ¹A,

|C ¹A | = 2|C{a}|+ (|C− a| − |C{a}|) = |C{a}|+ |C− a|.
8If we require Φd(0) = Φ0(m) = 1, then this relation in fact characterizes Φd(n) [20].
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By inductive hypothesis,

|C{a}|+ |C− a| ≤ Φd−1(n− 1) + Φd(n− 1) = Φd(n).

This establishes the lemma.

A concept class which has the maximum size allowable by Sauer’s lemma has

interesting properties as a result. See, for instance [39, 13, 14, 22, 15].

Definition Suppose X is a set, C ⊆ P(X), VC(C) = d, and for every finite

subset A of X, |C ¹ A| =
∑d

i=0

(|A|
i

)
. Then C is Sauer maximal, abbreviated as

S-maximal.

Not only is the bound given by Sauer’s lemma tight, it obtains in many natural

situations. We enumerate a few examples of S-maximal families to illustrate.

1. The concept class of all convex subsets in a dense linear order is S-maximal.

2. For any natural number e+ 1, there is a dense subset X of Re+1, such that

(X,C) is a S-maximal class of VC dimension e, where C is the set of all

positive half-spaces in Re+1, restricted to X [13].

3. (X, [X]≤d), where d ∈ ω, and X has size at least d.

Model theoretically, such classes can be stable, as in C = [X]≤d, or unstable,

as in the case of (1).

The notion of combinatorial density is from [11, 2].

Definition For C ⊆ P(X), the combinatorial density of C, denoted dens(C), is

a real number defined as:

dens(C) := inf{r : r > 0 and ∃K ∈ ω ∀n ∈ ω ∀A ⊆n+1 X, |C ¹A | ≤ Knr}.
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Whereas VC dimension describes, a priori, the behavior of C on a single set,

combinatorial density describes how C acts on arbitrarily large sets. A class may

have a very large VC dimension, and yet have combinatorial density zero. The

fundamental result of Vapnik and Chervonenkis states that the combinatorial

density of a class is always at most the VC dimension [38].9

Dudley observed that combinatorial density of classes always combines lin-

early. From the proof of the following proposition, it is clear that the operator

does not matter; the same fact is true for conjunction.

Proposition 1.2.2 (Dudley). Let C,A ⊆ P(X), with r = dens(C) and s =

dens(A). Then dens(C t A) ≤ r + s.

Proof. Fix A ⊆ X. Clearly |C t A ¹A | ≤ |C ¹A | · |A ¹A |.

Proposition 1.2.3. Let C ⊆ P(X) of VC dimension d, and suppose there is an

infinite subset X ′ ⊆ X such that C ¹X′ is S-maximal of VC dimension d. Then

dens(C) = VC(C).

Proof. Clear by the definition, and the fact that
∑d

i=0

(
n
i

)
is O(nd).

Most of the nice properties of S-maximal classes are preserved under sub-

structure (ie, subset if the set system), so it is of interest to know which set

systems (X,C) of VC dimension d can be extended to S-maximal classes of the

same VC dimension. We offer the following, which can be omitted with no loss

for subsequent chapters.

Proposition 1.2.4. Let C ⊆ P(X) be a concept class of VC dimension d. Then

C extends to a S-maximal class on X iff C ¹A extends to a S-maximal class on

A for every finite A ⊆ X.

9Sauer’s lemma can be thought of as a more precise statement of this fact.
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Proof. The forward direction is trivial.

For the reverse direction, consider C represented as the definable family asso-

ciated with R in the structure M = (X,Y,R(x, y)), R ⊆ X × Y .

Let ∆X,Y (M) be the basic diagram ofM with constants from X, Y . For every

finite X0 ⊆ X, let θX0 say that R is S-maximal of dimension d on X0. We want

to show that ∆X,Y (M)∪⋃
X0⊆ωX{θX0} is consistent. It suffices, by compactness,

to show that for every X0,

∆X0,Y (M) ∪ {θX0}

is consistent. But this is true because any finite restriction of C has an S-maximal

extension of VC dimension d. Thus, using a theorem from basic model theory,

there is some structure M′, in the same language as M, such that M ⊆M′.10

Since CR(M′) ¹M is S-maximal on M of VC dimension d, this is the desired

extension.

One might wonder whether any concept class C can be extended to a S-maximal

class simply by adding new subsets of X, one after another, until it is no longer

possible to add a new subset without increasing the VC dimension of C. Some

easy finite counter-examples show that things are not so simple. Thus we need a

different notion of ‘maximality’ to describe a class to which no new subsets can

be added, unless such an addition increases the VC dimension.

Definition Let X a set, and C ⊆ P(X), of VC dimension d ∈ ω. We say that

C is Dudley maximal, or D-maximal, if for any set A ⊆ X, A ∈ P(X) \ C =⇒
VC(C ∪ {A}) > d.11

10That is, M is a model theoretic substructure of M′.

11What we have defined as S-maximal classes are elsewhere known as ‘complete’ [39], or max-
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1.3 Stability

In this section we will define what it means for a concept class to be stable, in

the model theoretic sense. The standard definition is related to the notion of

a ‘definable type,’ as discussed in Chapter 3. The notion of stability and the

propositions in this section are due to Shelah.

Let ϕ(x̄, ỹ) a L formula, M a L model, and B ⊆M.

Definition For C ∈ Cϕ(B), A ⊆ M, say that C is definable over A if there is

an L formula δ(x̄), with parameters only from A, such that for all b̄ ∈ B|x̄|,

b̄ ∈ C ⇐⇒ |= δ(b̄).

We will define stability in terms of definability. First we need a way to fix a

language for an arbitrary concept class.

Definition For A ⊆ P(X), the natural structure associated with A will be the

model M = (X, Y,R(x, y)), where YM = A, and for all b ∈ X, C ∈ Y ,

M |= R(b, C) ⇐⇒ b ∈ C.

Note that A = CMR (M), when M is the natural structure associated with A.

Definition Let A ⊆ P(X), and M the associated natural structure. Let C be

the monster model of Th(M). We say that A is stable if for all A ⊆ C, every

C ∈ CR(A) is definable over A.

imum [13, 14]. On the other hand, what we identify as D-maximal classes below are sometimes

called simply ‘maximal’ classes. Since maximum/maximal is difficult to keep straight, and

‘complete’ has other connotations in model theory, I have adopted the S-maximal/D-maximal

scheme. So far as I know, Dudley was the first to investigate classes of the relevant maximality

type [11].
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We say that a L formula ϕ(x̄, ỹ) is stable with respect to a complete L theory

T if Cϕ(M) is stable for some model M of T .12

The following proposition shows that the notion of stability of a formula is

well-defined.

Proposition 1.3.1. Let ϕ(x̄, ỹ) a L formula, T a complete L theory, and M,N
models of T . Then Cϕ(M) is stable ⇐⇒ Cϕ(N ) is stable.

Proof. The natural structures associated with Cϕ(M) and Cϕ(N ) are elementar-

ily equivalent. Thus if C |= Th(Cϕ(N )) is the monster model of their natural

structure, it contains both as elementary substructures.

From the above, stability is a ‘property of the theory,’ in the sense that

the stability of a formula is a quality which is invariant across all models of a

complete theory. Therefore we say that a complete L theory T is stable if every

parameterized L formula is stable with respect to T .

Examples of stable theories are [25]:

1. The theory of any algebraically closed field

2. The theory of any differentially closed field

3. The theory of any Z-group

Unfortunately, most of the standard geometric families are unstable, as can

be seen by constructing infinite descending chains. Such chains give a family the

strict order property.

12Note that this is saying that every element of Cϕ(A) is definable by a formula in the

language L ¹ϕ(x̄,ỹ) with parameters from A whenever A ⊆ C.
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Definition Let ϕ(x̄, ỹ) an L-formula, and T a complete L theory. We say that

ϕ(x̄, ỹ) has the strict order property with respect to T , if for some (equivalently

every) model M of T , and every n ∈ ω, there are C1, . . . , Cn in CMϕ (M), such

that

C1 ) C2 ) · · · ) Cn.

Figure 1.1: Axis parallel rectangles are unstable, because of infinite descending

chains.

We take a moment to establish that the strict order property implies the

absence of stability.

Proposition 1.3.2. Let T a complete L theory, and ϕ(x̄, ỹ) a L formula. Suppose

ϕ(x̄, ỹ) has the strict order property with respect to T . Then ϕ(x̄, ỹ) is not stable

with respect to T .

Proof. Suppose ϕ(x̄, ỹ) is stable with respect to T . Let T ′ be the complete theory

of the natural structure associated with Cϕ(N ) for some model N of T . By way

of contradiction, assume also that ϕ(x̄, ỹ) has the strict order property. Then

by the compactness theorem, we can find a countable model M of T ′, such that

Cϕ(M)13 contains an infinite subset S, where S is linearly ordered by inclusion.

13We use ϕ and R interchangeably here.
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That is, we can define a linear ordering <inc on S by

A <inc B ⇐⇒ A ( B,

for all A,B ∈ S. In fact, also by compactness, we can do this in such a way

that (S,<inc) and (Q, <) are isomorphic as orderings. Fix such an isomorphism

f : (Q, <) → (S,<inc), and for every p ∈ Q, denote the parameter set defining

the corresponding element of S by ãp. That is, for all p ∈ Q, ϕ(M, ãp) = f(p).

Let B = {ãp : p ∈ Q}. For any ã ∈ B, define a formula θã(ỹ) by

θã(ỹ) = ∃x̄(¬ϕ(x̄, ã) ∧ ϕ(x̄, ỹ)) ∧ ∀x̄(ϕ(x̄, ã) → ϕ(x̄, ỹ)).

This says that if |= θã(b̃), then ϕ(M, ã) ( ϕ(M, b̃).

For any real number r, define a set of formulas Γr(ỹ) by

Γr(ỹ) = {θãp(ỹ) : p ∈ Q, p < r}∪

{¬θãp(ỹ) : p ∈ Q, p ≥ r}.

By the properties of dense linear order, Γr(ỹ) is consistent for every r ∈ R.

Also, for any real numbers r, t, r 6= t, Γr(ỹ) and Γt(ỹ) are inconsistent. Finally,

if s ∈ Sϕ∗(M), and ã, b̃ ∈ M|ỹ| are such that |= s(ã) and |= s(b̃), then for any

r ∈ R, |= Γr(ã) ⇐⇒ |= Γr(b̃).

Thus Sϕ∗(M) has cardinality |R| = 2ℵ0 .

On the other hand, since ϕ(x̄, ỹ) is stable, every element of Cϕ(M) is defin-

able over M. In fact, if FmL′(M) denotes the formulas of L′ = {X, Y,R(x, y)}
with parameters in M, then this set is countable. This implies that Cϕ(M) is

countable. But since necessarily |Cϕ(M)| = |Sϕ∗(M)|, this is a contradiction.

This shows, in Chapter 3, that the existence of a compression scheme for a

concept class is strictly weaker than stability.
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There are many equivalent definitions of stability. The following is one of the

most common. We will not prove or assume its equivalence.

Definition A formula ϕ(x̄, ỹ) is said to have the order property with respect to

a complete theory T if there are sequences 〈āi : i ∈ ω〉, 〈c̃i : i ∈ ω〉 in C such that

for all i, j ∈ ω,

|= ϕ(āi, c̃j) ⇐⇒ i < j.

For the proof of Proposition 3.2.1, we will use Conclusion I, 2.11 from [32].

Conclusion I, 2.11: If for some A ⊆ C, |Sϕ(A)| > |A|+ℵ0, then ϕ(x̄, ỹ) has

the order property.

From a cardinality argument very similar to the one in the proof of Proposition

1.3.2, it can be seen that the converse of Conclusion I, 2.11 holds as well.

We will need:

Lemma 1.3.3. If for some A ⊆ C, and some formula ϕ(x̄, ỹ), |Sϕ(A)| > |A|+ℵ0,

then there is some B ⊆ C such that |Cϕ(B)| > |B|+ ℵ0.

Proof. Suppose, for some A ⊆ C, that |Sϕ(A)| > |A| + ℵ0. By Conclusion I,

2.11, ϕ(x̄, ỹ) has the order property. By compactness, we can find sequences

〈āi : i ∈ Q〉, 〈c̃i : i ∈ R〉 such that

|= ϕ(āi, c̃j) ⇐⇒ i < j.

Let B denote the elements of 〈āi : i ∈ Q〉, and D denote the elements of 〈c̃i : i ∈
R〉. For every r ∈ R, define a type pr ∈ Sϕ∗(B) by

pr = {ϕ∗(ỹ, āi) : i < r} ∪ {¬ϕ∗(ỹ, āi) : i ≥ r}.

Each pr is consistent, since |= pr(c̃r). Then the mapping f : D → Sϕ∗(B),

c̃r 7−→ pr, is 1-1, and so |Sϕ∗(B)| ≥ 2ℵ0 . However, it is clear that |B| = |Q| = ℵ0.

Since |Cϕ(B)| = |Sϕ∗(B)|, the lemma is proved.
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1.4 Geometric Examples

We go over some standard geometric families, emphasizing their definability or

non-definability, and compute their VC dimensions.14

Example 1.4.0.1. Axis Parallel Rectangles

Let X = R2. We can define the class of all axis parallel rectangles in euclidean

space as Cϕ(R), where

ϕ(x1, x2; yl, yr, yb, yt) := x1 > yl ∧ x1 < yr ∧ x2 > yb ∧ x2 < yt,

and T is the complete theory of (R,≤).

We show that the VC dimension of ϕ is 4. We must show that some set of

size 4 is shattered by C, and that C shatters no set of size 5. The set of points

pictured below will be referred to as A.

Figure 1.2: The 4 point set A.

According to the definition of VC dimension, we must be able to realize any

subset B ⊆ A by intersecting A with an element of C. Below we represent B

by labeling the diagram with the symbols {+,−}, where the positively labeled

points are the elements of B, and the negatively labeled points are the elements

of A \B.

To cut out the set B from A, it suffices to find an axis parallel rectangle which

includes exactly the positive points in the labeled diagram of A. This is done in

Figure 1.4, below.

14The results and proof techniques in this section are well-known.
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Figure 1.3: The subset B of A.

Figure 1.4: Realizing the labeling

There are 2|A| = 16 possible labellings, or subsets, of A; realizing the others

is left as an exercise.

Now that we have shown C shatters a set of size 4, we must show it shatters

no sets of size 5. It suffices to consider only convex sets of points, for the reason

illustrated in Figure 1.5.

Figure 1.5: A labeling of a size 5 set not realizable with a rectangle.

Since every element of C is convex, no element can realize the labeling of a

nonconvex set which includes the generators of the convex hull of the set, but

omits an interior point.

We now consider a generic convex 5 point set A. We may choose 4 points of

A, representing the leftmost, topmost, rightmost, and bottommost elements, as

shown in Figure 1.6. It may happen that two distinct points are both the, say,
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“leftmost” points of A, but we leave this case to the reader, and assume a good

general position.

Figure 1.6: A convex five point set, with the extremal points relative to the two

axes labeled positively.

Now it is clear that no axis parallel rectangle can realize the configuration in

figure 1.6, because any rectangle including the extremal points must also include

the negatively labeled point.

Figure 1.7: A labeling of a size 5 set not realizable with a rectangle.

Thus no size 5 set is shattered, and so the VC dimension of C is 4. A similar

argument shows that the VC dimension of axis parallel hyper-rectangles in Rd is

at most 2d.

Example 1.4.0.2. Convex sets in Rd

Let X = Rd, and

Cdconv = {A : A ⊆ Rd ∧ A is convex}.
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We show VC(Cdconv) = ∞.

The general case is clear from the proof for d = 2. Let A be any finite number

of points arranged on a 1-sphere in R2.

Figure 1.8: A set A of points, arranged on a circle.

For any labeling of the points in figure 1.8, there is a convex set which realizes

the labeling. In fact there is a convex polygon which realizes the labeling, showing

that the class of all convex polytopes has infinite VC dimension as well.

It is significant that Cdconv is not realizable as a definable family for any formula

in a natural algebraic structure. Mathematical systems may be separated into

those which are dependent, meaning that any parameterized formula gives rise

to a set system with finite VC dimension, and the remainder, which are said to

be independent. Important examples of independent systems are natural number

arithmetic, (N,+, ·, 0, 1), and (R, ·,+, sin(x), 0, 1). The reader may wish to find

a formula for each of these respective systems with infinite VC dimension.

The following venerable theorem, can be found in [26]. It is one of the most

important tools in establishing upper bounds on VC dimension in geometric set

systems.

Theorem 1.4.1 (Radon’s lemma). Let A be a set of d + 2 points in Rd. Then

there exist two disjoint subsets A1, A2 ⊆ A such that

conv(A1) ∩ conv(A2) 6= ∅.
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Example 1.4.0.3. Balls in Rd

Let X = Rd

Cd◦ = {{x̄ ∈ Rd : ||x̄− ȳ|| < r} : ȳ ∈ Rd ∧ r ∈ R}
VC(Cd◦) = d+ 1

Since the definition of this family is phrased in terms of the usual euclidian

distance metric, it is easy to see that it will be definable in any expansion of the

real field. The dependence of the real field therefore provides a quick argument

that the VC dimension is finite.

To see that it is the claimed value, suppose by way of contradiction that a set

A of size d+2 is shattered. By Radon’s theorem15 we can write A as the disjoint

union of C and D, where conv(C) ∩ conv(D) 6= ∅. The hypothesis then implies

that there are balls bC , bD ∈ Cd◦ such that bC ∩A = C and bD ∩A = D. Since bC

and bD are convex, conv(C) ⊆ bC and conv(D) ⊆ bD. Therefore bC ∩ bD 6= ∅.
The intersection of the open balls bC and bD determines a unique hyperplane

h in Rd, which separates A into disjoint sets C and D. The two open halfspaces

(positive h+ and negative h−) associated with h are both convex, and so, without

loss, conv(C) ⊆ h+ and conv(D) ⊆ h−. But then h+ ∩ h− 6= ∅, which is absurd.

On the other hand, the d + 1 points determined by the unit vectors and the

origin are always shattered.16

15This states that any set of d + 2 points in Rd can be partitioned into two disjoint sets

whose convex hulls intersect.

16Hint: Shatter the points with half-spaces, then replace the hyperplanes with sufficiently

large spheres.
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Chapter 2

VC linearity

2.1 Introduction

In this chapter we define what it means for a formula to be linear in VC dimen-

sion, and give some examples. We also prove the existence of VC linear theories,

including the theory of R-modules, and draw some consequences. The Veronese

mapping is studied as a means of transferring linearity results from one class to

another. Some uses of Tychonov closures in VC theory are introduced.

2.1.1 Definitions

There is a well known result, which states that the VC dimension ofm intervals on

the real line is 2m. From the standpoint of formulas, this says that if ϕ(x, y1, y2) =

x < y1 ∧ y2 < x, then, with respect to (R,≤),

VC(
m∨
i=1

ϕ(x, (y1, y2)i)) = 2m.

Proof. The following inclusion/exclusion pattern on a set of 2m + 1 points can

not be realized:
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Figure 2.1: 2m+ 1 points with an unrealizable labeling.

This is the archetypal example of a formula which is VC linear. We formally

define VC linearity as follows.

Definition 1 Let ψ(x̄, ỹ) be any formula with object variables x̄ and parameter

variables ỹ. We say that ψ is VC linear if there is a K ∈ ω such that for all

m ∈ ω,

VC(
m∧
i=1

ψ(x̄, ỹi)) ≤ Km,

and

VC(
m∨
i=1

ψ(x̄, ỹi)) ≤ Km.

We will say that a complete theory T is VC linear, if every formula is VC

linear with respect to T .

Proposition 1.1.5 and Theorem 2.6.1 show that this definition indeed refines

the class of dependent formulas.

2.2 R-modules are VC linear

The model theory of R-modules has been studied by [3, 40, 30], and others. The

natural language of R-modules, LR = {+, 0, {·r : r ∈ R}}, is clearly dependent

on the pre-chosen ring R; each scalar corresponds to a unique function symbol in

1We always work with respect to some complete theory, even when one is not mentioned.
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the language.2

This hard-coding of scalars has the side-effect of making it impossible to

parameterize families in terms of “slope”; as a consequence any definable family

consists of a class of subsets which are, in a sense, parallel. The benefit is that

families which are definable in such a system are extremely simple, which allows

for the following theorem.

Theorem 2.2.1. Let R any ring, and T the L-theory of an R module in the

language L = {+, 0, {·r : r ∈ R}}. Then T is a VC linear theory.

We must show that if ϕ(x̄, ỹ) is any L-formula, ϕ(x̄, ỹ) is VC linear with

respect to T .

To prove this result, we use a quantifier elimination result stated in [3].

Definition A formula ϕ(x̄) = ϕ(x1, . . . , xn) is a positive primitive (p.p.) for-

mula, if it is equivalent in TR to a formula of the form:

(∃z̄)
∧
i<p

(∑
j<m

ai,jzj +
∑

k<n

bi,kxk = 0

)
,

for some m,n, p < ω, where the a’s and b’s are scalars.

All formulas in R-modules are equivalent to a boolean combination of p.p.

formulas. We summarize some important properties of p.p. formulas, described

in more detail in [3, 40, 30].

• A p.p. formula asserts the solvability of a finite system of linear equations.

• Any p.p. formula ϕ(x1, . . . , xn) with no parameters defines a subgroup of

Mn for some (any) model M of TR.

2Axioms of course specify that the functions behave in the expected way, satisfying the usual

axioms of R-modules.
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• For any p.p. formula ϕ(x̄, ỹ) with parameters, ϕ(x̄, 0̃) also defines a sub-

group, where 0̃ denotes a vector of 0’s. Furthermore, if ã ∈M is such that

ϕ(x̄, ã) is consistent, then there is a b̄ ∈M such that ϕ(x̄, ã) = b̄+ϕ(M, 0̃).

That is, ϕ(x̄, ã) is a translate, or coset, of the subgroup ϕ(M, 0̃).

A corollary to the above is:

Lemma 2.2.2. For any p.p formula ϕ(x̄, ỹ), any ã, b̃ ∈ M, either ϕ(x̄, ã) and

ϕ(x̄, b̃) are equivalent, or else they are inconsistent.

We now give our first combinatorial lemma towards the proof of the theorem.

Lemma 2.2.3. Let ψ1(x̄, ỹ1), . . . , ψk(x̄, ỹk), ρ1(x̄, w̃1), . . . , ρl(x̄, w̃l) be p.p. formu-

las, k, l ∈ ω. For any m ∈ ω,

VC

(
m∨
i=1

(
k∧
j=1

¬ψj(x̄, ỹj,i) ∧
l∧

r=1

ρr(x̄, w̃r,i)

))
≤ mξ(k) + 1,

where ξ(k) = 1 + k + k(k − 1) + · · ·+ k!.

Proof. Note that for any k, (ξ(k) − 1)/k = ξ(k − 1). Suppose, by way of con-

tradiction, that A ⊆M is shattered, |A| > mξ(k) + 1, M |= T . For readability,

we denote sets defined by instances of ¬ψj(x̄, ỹj,i) as Bj,i, and sets defined by

instances of ρr(x̄, w̃r,i) as Cr,i. We denote intersection R ∩Q as RQ.

Since A is shattered, there must be B1,1, . . . , Bk,m, C1,1, . . . , Cl,m, such that

A (B1,1 · · ·Bk,1C1,1 · · ·Cl,1 ∪ · · · ∪ B1,m · · ·Bk,mC1,m · · ·Cl,m) = A.

Without loss of generality, and by the pigeon-hole principle, B1,1 · · ·Bk,1C1,1 · · ·Cl,1
contains some A1 ⊆ A, |A1| > ξ(k). Suppose A1 = {a1

0, . . . , a
1
ξ(k)}. Again since A

is shattered, there must be some B1
1 , . . . , B

1
k, C

1
1 , . . . , C

1
l such that

B1
1 · · ·B1

kC
1
1 · · ·C1

l A
1 = {a1

0}.
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By Lemma 2.2.2, for all s = 1, . . . , l, C1
s = Cs,1. Since |A1 \ {a1

0}| > ξ(k) − 1,

without loss B1
1 omits more than (ξ(k)− 1)/k = ξ(k − 1) elements of A1 \ {a1

0}.
Let these be denoted by A2 = {a2

0, . . . , a
2
ξ(k−1)}. Since A is shattered, there must

now be B2
1 , . . . , B

2
k, C

2
1 , . . . , C

2
l such that

B2
1 · · ·B2

kC
2
1 · · ·C2

l A
2 = {a2

0}.

Again, by Lemma 2.2.2, for all s = 1, . . . , l, C2
s = Cs,1. Then |A2 \ {a2

0}| >
ξ(k− 1)− 1. We claim B2

1 ⊇ A2 \ {a2
0}. For if B2

1 omits, say a∗ ∈ A2 \ {a2
0}, then

by Lemma 2.2.2, B2
1 = B1

1 . Then a2
0 ∈ B1

1 ⊗. Therefore, without loss, B2
2 omits

> (ξ(k − 1)− 1)/(k − 1) = ξ(k − 2) elements of A2 \ {a2
0}. Let these be denoted

A3.

Performing this process k + 1 times, we get a set Ak+1 of size > ξ(k − k) =

ξ(0) = 1. SayAk+1 = {ak+1
0 , ak+1

1 }. There must be someBk+1
1 , . . . , Bk+1

k , Ck+1
1 , . . . , Ck+1

l

such that

Bk+1
1 · · ·Bk+1

k Ck+1
1 · · ·Ck+1

l Ak+1 = {ak+1
0 }.

But ak+1
1 can not be omitted by any Bk+1

i , contradiction.

With the following lemmas, the above argument will give VC linearity for a

formula in disjunctive normal form.

Lemma 2.2.4 (Dudley). Suppose X is a set, C,A ⊆ P(X), d =VC(C), and

e =VC(A). Then

VC(C ∪ A) ≤ d+ e+ 1.

Lemma 2.2.5 (Pollard [29]). Suppose X is a set, C ⊆ P(X), and d =VC(C).

Then

VC(C t C) ≤ 10d.
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Since C t A ⊆ (C ∪ A) t (C ∪ A), these two lemmas together imply that

VC(C t A) ≤ 10(d + e + 1). More generally, the following follows by an easy

induction.

Lemma 2.2.6. Suppose θ(x̄, ỹ1, . . . , ỹn) is a simple boolean combination of for-

mulas ψi(x̄, ỹi), . . . , ψn(x̄, ỹn). That is, θ is of the form

ψ1(x̄, ỹ1)
η(1) ¡1 · · ·¡n−1 ψn(x̄, ỹn)

η(n),

where ¡i is either conjunction or disjunction, and η ∈ [n]2. Then, if di =VC(ψi(x̄, ỹi)),

VC(θ) ≤ 10n−1(d1 + d2 + · · ·+ dn + n).

Lemma 2.2.7. Suppose

ϕ(x̄, ỹ) =
n∨
i=1

ψi(x̄, z̃i),

where ỹ = z̃1 · · · z̃n. Assume, for all i = 1, . . . , n, ψi(x̄, z̃i) is VC linear under

disjunctions, with linearity constant Kψi. Then for all m ∈ ω,

VC(
m∨
i=1

ϕ(x̄, ỹi)) ≤ 10n−1m(Kψ1 +Kψ2 + · · ·+Kψn + n).

Proof. The proof will be by induction on n. For n = 1, there is nothing to show..

Suppose the theorem is true for all values less than n, and that ψ1(x̄, z̃1), . . . , ψn(x̄, z̃n)

are VC linear under disjunction. Then:

m∨
i=1

n∨
j=1

ψj(x̄, z̃j,i) =
m∨
i=1

(
n−1∨
j=1

ψj(x̄, z̃j,i) ∨ ψn(x̄, z̃n,i)
)

=
m∨
i=1

(
n−1∨
j=1

ψj(x̄, z̃j,i)

)
∨

m∨
i=1

ψn(x̄, z̃n,i).

Then by inductive hypothesis and Lemma 2.2.6, VC(
∨m
i=1 ϕ(x̄, ỹi)) ≤ 10(10n−1m(Kψ1+

Kψ2 + · · ·+Kψn +n)+Kψn+1m+1), and this is equal to the desired 10nm(Kψ1 +

· · ·+Kψn+1 + n+ 1).
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Lemma 2.2.8. If ϕ(x̄, ỹ) is VC linear, then so is ¬ϕ(x̄, ỹ).

Proof.

VC(
m∨
i=1

ϕ(x̄, ỹi)) = VC(¬
m∨
i=1

ϕ(x̄, ỹi)) = VC(
m∧
i=1

¬ϕ(x̄, ỹi)).

Similarly for conjunctions.

Proof of Theorem 2.2.1. Any formula in an R-module can be written as a boolean

combination of p.p. formulas in disjunctive normal form:

n∨
i=1

(
ki∧
j=1

¬ψj,i(x̄, ỹj,i) ∧
li∧
r=1

ρr,i(x̄, w̃r,i)

)
(*)

Lemma 2.2.3 establishes that, for any fixed i,

ki∧
j=1

¬ψj,i(x̄, ỹj,i) ∧
li∧
r=1

ρr,i(x̄, w̃r,i)

is VC linear under disjunctions, with linearity constant ξ(ki) + 1. Let θ(x̄, ˜̃v) :=

θ(x̄, ỹ1,1, . . . , ỹn,kn , w̃1,1, . . . , w̃n,ln) represent a boolean combination of p.p. formu-

las in disjunctive normal form, as in (*). By Lemma 2.2.7,

VC(
m∨
i=1

θ(x̄, ˜̃vi) ≤ 10n−1m(ξ(k1) + · · ·+ ξ(kn) + 2n− 1).

Since ¬θ also has a DNF, VC linearity holds under conjunctions as well, by

Lemma 2.2.8. This completes the proof.

Corollary 2.2.9. if G = (G,+, 0) is any abelian group, then the complete theory

of G is VC linear.

Proof. Any abelian group is a Z-module.

The following gives a geometric application of the theorem.
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Definition By an unclipped polytope in Rd with s faces3, s ∈ ω, is defined to

be a polytope in Rd with s faces, for which the hyperplane constituting each

respective side is extended indefinitely.

Figure 2.2 illustrates an unclipped polytope in R2.

Figure 2.2: An unclipped polytope, with its vertices numbered.

Corollary 2.2.10. Let P any unclipped polytope in Rd, and define CP to be {P}
closed under translations and rigid dilations of P . Then CP is VC linear.

Proof. The polytope P , with s faces of dimension (d− 1), can be written in the

R-module (R,+, 0, ·r)r∈R as

s∨
i=1

ψi(x1, . . . , xd, ci),

where, for each i, ψi(x1, . . . , xd, yi) parameterizes a family of parallel hyper-

planes, and where ci represents the xd intercept of the hyperplane. The coeffi-

cients are fixed elements of R, which means we are considering (R,+, 0) as an R

module in the language from Theorem 2.2.1.

The class resulting from {P} closed under translation can then be written as

θ(x1, . . . , xd; c1, . . . , cs, t1, . . . , td) =
s∨
i=1

ψ(x1 + t1, . . . , xd + td, ci),

3We mean only the d− 1 faces.
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where t1, . . . , td parameterize the translation.

Now consider a fixed translation t1, . . . , td of P , denoted by Pt̄. Let P ′̄t be

some rigid dilation of Pt̄. Consider a single (d − 1)-face of Pt̄, determined by

some ψi(x1 + t1, . . . , xd+ td, ci). There is a corresponding (d−1)-face of P ′̄t , which

is parallel to the (d−1)-face of Pt̄ determined by ψi(x1+t1, . . . , xd+td, ci). But the

xd intercept of the hyperplane given by ψi(x1 + t1, . . . , xd + td, ci) is controlled by

ci, and as this value changes, the hyperplane defined by the formula varies across

all hyperplanes parallel to it. Thus there is c′i such that ψi(x1 + t1, . . . , xd+ td, c
′
i)

defines the (d−1)-face of P ′̄t corresponding under the dilation to the (d−1)-face of

Pt̄ determined by ψi(x1 + t1, . . . , xd+ td, ci). In other words, P ′̄t is in the definable

family given by

θ(x1, . . . , xd; y1, . . . , ys, t1, . . . , td) =
s∨
i=1

ψ(x1 + t1, . . . , xd + td, yi).

Since (R,+, 0) as a module over R has a VC linear theory, Cθ is VC linear.

Because the class mentioned in the statement of the proposition is a subclass of

Cθ, the conclusion follows.

The following may sometimes be useful:

Proposition 2.2.11. Suppose X a set, and C,A ⊆ P(X) are both VC linear

families. Then C ∪ A is also a VC linear family.

Proof. Let KC and KA be the linear proportionality constants for C and A, re-

spectively. Fix m ∈ ω. The family

(C ∪ A) t · · · t (C ∪ A)︸ ︷︷ ︸
m times
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is a subfamily of (
C t · · · t C︸ ︷︷ ︸

m times

)
t

(
A t · · · t A︸ ︷︷ ︸

m times

)
.

The parenthetical terms have VC dimensions bounded by, respectively, mKC, and

mKA. Therefore, by Lemma 2.2.5, the entire expression has VC dimension at

most 10m(KC +KA + 1). The case with conjunctions works similarly.

2.3 Special cases

Here we look at special types of VC linearity in formulas, for theories which are

o-minimal, or weakly o-minimal.

Definition 1. T is an o-minimal theory if every dimension 1 definable subset

in any model is a finite union of points and intervals.

2. T is weakly o-minimal if every dimension 1 definable subset in any model

is a finite union of convex sets.4

The notion of combinatorial density (p. 21) from the previous chapter shows

that sets on which a formula is not VC linear must be “thin” in a certain sense.

Proposition 2.3.3 partly quantifies this intuition. The following lemma is well-

known.

Lemma 2.3.1. Suppose T is (weakly) o-minimal, M |= T , and ϕ(x, ỹ) a formula.

For ã ∈M|ỹ|, let nã ∈ ω denote the number of connected components of ϕ(M, ã).

Then there is n∗ ∈ ω such that

n∗ ≥ sup{nã : ã ∈M|ỹ|}.
4The boundary of any convex set may not actually be in the model.
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Proof. By compactness.

Corollary 2.3.2. Any formula ϕ(x, ỹ) is VC linear in a (weakly) o-minimal

structure.

Proof. The definable family associated with a length m boolean (conjunction)

disjunction of ϕ is contained in
mn∗⊔
i=1

CInt,

where n∗ is as in Lemma 2.3.1, and CInt = {(a, b) : a, b ∈M∪{∞,−∞}}.5 Since

CInt is VC linear, so is ϕ.

Proposition 2.3.3. Suppose T is (weakly) o-minimal, and M |= T . Then if

A ⊆ M|x̄| is such that ϕ(x̄, ỹ) is not VC linear on A, then there is no definable

line l in M|x̄| containing A.

Proof. By way of contradiction, assume the situation obtains. Let γ(x) : M→
M|x̄| be a definable function whose image is l. Then γ−1(ϕ(x̄, ỹ)) is a parameter-

ized relation on M, and is definable. By the above lemma, it is VC linear, with

some linearity constant K ∈ ω. Let m ∈ ω be such that
∨m
i=1 ϕ(x̄, ỹi) shatters a

set A0 ⊆ A of size mK + 1. Let A′0 := γ−1(A0).
6 Then A′0 is shattered by

m∨
i=1

γ−1(ϕ(x̄, ỹi)),

a contradiction.

5This seems to leave out points and non-open intervals, but since every shattered set is

finite, the VC linearity of this class is still sufficient to show the VC linearity of ϕ. If desired,

CInt may be replaced by its Tychonov closure (p. 49), in which case the statement becomes

exactly precise.

6It will not hurt here to assume that γ is injective. Otherwise we take a subset of the inverse

image, picking out |A0| many points that all come from distinct elements of A0.

44



Sontag has studied questions related to VC linearity in certain o-minimal

structures [34]. VC linearity must occur in any formula in 1-variable for strongly

minimal theories, because of the existence of a uniform bound much like 2.3.1.

Similarly, any dependent formula will be VC linear on a set or sequence of indis-

cernibles, also due to uniform bounds.

2.4 Transfer techniques

Given the success of showing the VC linearity of R-modules, it is natural to

ask whether we can use the same approach to show the VC linearity of the real

field. This theory has a famous quantifier elimination result, which states that

any formula is equivalent to a boolean combination of polynomial inequalities.

Therefore to show the VC linearity of the real field, it suffices to show the VC

linearity of an arbitrary boolean combination of polynomial inequalities.

Unfortunately, this question is still open. In fact it is unknown whether half

spaces in Rd are VC linear when d is higher than 3. Surprisingly, this second

seemingly simpler question is equivalent to the first. This is because of a technique

known as the Veronese mapping [26], which embeds any concept class associated

with a polynomial inequality into a class associated with a linear inequality in a

way that preserves VC linearity. The argument is easy, but useful, so we make it

explicit. For simplicity we assume we are working in the real field, but it is clear

that the technique generalizes to some situations in expansions of the real field,

e.g. boolean combinations of exponential polynomials.

Definition Let Md,D be an ordered set of all nonconstant monomials of degree

at most D in x1, . . . , xd, for D and d fixed natural numbers. For example if

45



d = D = 2, then M2,2 = (x1, x2, x1x2, x
2
1, x

2
2). For any (x1, . . . , xd) ∈ Rd, define

fM(x1, . . . , xd) so that the ith coordinate of fM(x1, . . . , xd) is the ith monomial in

Md,D. (If d = D = 2, then fM(x1, x2) = (x1, x2, x1x2, x
2
1, x

2
2).) Then fM : Rd →

R|M| is an injective mapping, called the Veronese mapping.

Proposition 2.4.1. Let M,N be L-structures, with M ⊆ N . Suppose R(x̄, ỹ)

is some quantifier free formula. Then if R is VC linear in N , it is also VC linear

in M.

Proof. Since M ⊆ N , NM |= ∆(M), the basic diagram of M. ∆(M) includes

any quantifier free combination of R, with constants from M. By way of contra-

diction, assume that for any K ∈ ω, there is some mK ∈ ω such that

M |= VC(

mK∨
i=1

R(x, yi)) > KmK .

For each K, let AK ⊆ M be a set of size more than KmK which is shat-

tered by
∨mK
i=1 R(x, yi) with respect to Th(M). Define θK(x, y1, y2, . . . , ymK ) =

∨mK
i=1 R(x, yi).

Let BK ⊆ MmK be the parameters used in the shattering of AK . Suppose

BK = {b̃w : w ⊆ AK}, where for any a ∈ AK , M |= θK(a, b̃w) if and only if

a ∈ w.

Then

ψK :=
∧

w⊆AK

∧
a∈w

θK(a, b̃w) ∧
∧

a∈Ak\w
¬θK(a, b̃w)

is a sentence in the basic diagram of M. Thus NM |= ψK . But this means that

R is not VC linear in Th(N ). For if it were, with linearity constant K∗, this

would contradict ψK∗ .

Since R was assumed to be VC linear in Th(N ), this is a contradiction.

46



Definition Given a formula ϕ(x̄, ỹ), and model M, define the bipartite graph

associated with ϕ(x̄, ỹ) on M, denoted Pϕ(M), as a 2-sorted bipartite graph

structure (X, Y,R), where X = M|x̄|, Y = M|ỹ|, and for all a ∈ X and b ∈ Y ,

Pϕ(M) |= R(a, b) ⇐⇒M |= ϕ(a, b).

The only difference, “platonically” between a bipartite graph and a concept

class is that a bipartite graph may not be extensional, in the sense that two

distinct elements of, say, X, may be connected to the same elements of Y , whereas

if two elements of a concept class contain the same points, they must be identical.

This will not be relevant for our purposes; we introduce graphs only because they

provide a convenient way to define embeddings between definable families. This

was implicitly done in [4], and the present discussion owes much to that paper.

Definition Let ϕ(x̄, ỹ) a L1 formula, ψ(z̄, w̃) a L2 formula, M a L1 structure

and N a L2 structure. Say that ϕ is embeddable, as a definable family, into

ψ, denoted ϕ(x̄, ỹ) ⊆M,N ψ(z̄, w̃), if Pϕ(M) is isomorphically embeddable into

Pψ(N ). That is, there is a function f : X
⊎
Y → Z

⊎
W , such that

M |= ϕ(x̄, ỹ) ⇐⇒ N |= ψ(f(x̄), f(ỹ)).

Lemma 2.4.2. Let ϕ(x̄, ỹ), ψ(z̄, w̃) be formulas, and suppose ϕ(x̄, ỹ) ⊆M,N ψ(z̄, w̃).

Then if ψ is VC linear, then ϕ is VC linear.

Proof. Proposition 2.4.1.

Proposition 2.4.3. The following are equivalent:

1. All concept classes of the form Cϕ(x̄,ỹ)(R) for a polynomial inequality ϕ(x̄, ỹ)

in variables x̄ with coefficient parameter variables ỹ are VC linear.
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2. All concept classes of the form Cϕ(x̄,ỹ)(R) for a linear inequality ϕ(x̄, ỹ) in

variables x̄ with scalar parameter variables ỹ are VC linear.

Proof. The implication (1) =⇒ (2) is obvious. We show the converse.

Let k = |Md,D|, and p(x1, . . . , xd; y0, . . . , yk) ∈ R[x1, . . . , xd] be a polynomial

of degree at most D, with coefficient parameters y0, . . . , yk, and take

ϕ(x̄, ỹ) = p(x1, . . . , xd; y0, . . . , yk) ≥ 0.

We must demonstrate that ϕ(x̄, ỹ) is VC linear. Define

ψ(z1, . . . , zk, y0, . . . , yk) = ykzk + yk−1zk−1 + · · ·+ y1z1 + y0 ≥ 0.

There exists f : Rd → Rk, a Veronese mapping which orders the monomials of

(x1, . . . , xd) in such a way that it induces an isomorphic embedding of ϕ into

ψ. Thus if ψ is VC linear, then so is ϕ. Since ψ is a linear inequality, we are

done.

2.5 Euclidean half spaces

While it is unknown whether half spaces in Rd are VC linear if d > 3, it is

known that half spaces are VC linear under conjunction for d = 1, 2, 3 [9]. A

short argument, using Tychonov closures, shows that this implies VC linearity

under disjunctions as well. Where the following definition uses 2 = {0,1} with

the discrete topology, it would be permissible to substitute an arbitrary compact

space, though we will not need so much generality. See [36] for more on Tychonov

closures. Recall from Chapter 1 that [Cϕ(A)] := {fc : c ∈ Cϕ(A)}, where fc : A→
2 is the characteristic function of c.
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Definition Let A a set, and F ⊆ A2 a collection of functions from A to 2 = {0, 1}.
Then F has a closure, with respect to the Tychonov topology on A2. This is the

Tychonov closure of F, denoted cl(F).

By abuse of notation, we identify cl(C) and cl([C]). Item (1) in Proposition

2.5 was observed in [11].

Proposition 2.5.1. Let X a set, and C ⊆ P(X) of finite VC dimension, and let

C̄ be any D-maximal extension of C.7

1. cl(C̄) = C̄

2. VC(C) = VC(cl(C))

3. for all m ∈ ω
VC(umi=1C) = VC(umi=1cl(C)). (*)

Proof of 1. We must show that [C̄] is closed as a subset of X2. Let f ∈ X2 \ [C̄].

Suppose VC(C) = d. Then [C̄] ∪ {f} shatters a set B ⊆ X, |B| = d + 1. Let

Uf¹B = {g ∈ X2 : g ¹B= f ¹B}. Clearly Uf¹B is an open set separating {f} and

[C̄]. Thus the complement of [C̄] is open, and [C̄] is closed.

Proof of 2. Since VC(C) = VC(C̄), and C ⊆ cl(C) ⊆ C̄, this is clear by (1).

Proof of 3. The “≤” direction is clear. Fix m ∈ ω. We must show VC(umi=1C) ≥
VC(umi=1cl(C)). Let A ⊆ X be a finite set, and suppose B ⊆ A is cut out by

f1 ∧ · · · ∧ fm in umi=1cl(C)), ie B = {a ∈ A : f1(a) = 1 ∧ · · · ∧ fm(a) = 1}. For

7This exists by Proposition 4.1.2.
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each i = 1, . . . ,m, fi ∈ [cl(C)]. However, every open set containing fi intersects

[C], and so we can pick f ′1, . . . , f
′
m with f ′i ∈ [C] such that f ′i ¹A= fi ¹A for all i.

Thus B ⊆ A is cut out by f ′1∧ · · · ∧ f ′m. Then if umi=1cl(C) shatters A, umi=1C does

also, and so VC(umi=1C) ≥ VC(umi=1cl(C)).

Note that the proof of (3) makes it clear that it is immaterial what boolean

combination of C is used in (*). A corollary of Proposition 2.5 is the following.

Corollary 2.5.2. Fix d ∈ ω, and let H be the collection of all half spaces in Rd,

open and closed. Let C⇓ be the collection of all closed downward facing half spaces

in Rd. Then H is VC linear iff C⇓ is VC linear under conjunctions.

Proof. The “=⇒” direction is clear.

Suppose C⇓ is VC linear under conjunctions. Let C⇑ denote the set of all

closed upward facing half spaces in Rd, and Co⇑ denote the set of all open upward

facing half spaces. First we show C⇓ is VC linear (with respect to unions as well

as intersections).

VC(tmi=1C⇓) = VC(¬ umi=1 Co⇑) = VC(umi=1C
o
⇑)

By Proposition 2.5, (3), this last quantity is equal to VC(umi=1C⇑), since C⇑ and

Co⇑ have the same Tychonov closure. But, by symmetry,

VC(umi=1C⇑) = VC(umi=1C⇓).

This shows that C⇓ is VC linear. Then clearly C⇓∪¬C⇓ is VC linear by Proposition

2.2.11, noting that ¬C⇓ is VC linear, by Lemma 2.2.8. Since H ⊆ cl(C⇓ ∪ ¬C⇓),

and cl(C⇓ ∪ ¬C⇓) is VC linear by Proposition 2.5, H is VC linear.
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2.5.1 Low dimensions

We will use the above corollary to give a proof that half spaces are VC linear

in dimension 2. The inspiration for the argument came from [9],8 though it

is different. In particular it throws out a general position requirement on the

shattered points (though the general position assumption in the original paper is

claimed to be unnecessary) and has an inductive quality.

Define the formula ϕ(x1, x2;m, b) := “mx1 + b ≤ x2, ”, and let H2 denote the

set of all open and closed half spaces in R2.

To show that H2 is VC linear, it suffices to show that ϕ is VC linear, by

Corollary 2.5.2. Note that Cϕ(R) is the set of all downward facing closed half

spaces in two dimensional Euclidean space.

Proposition 2.5.3. There exists a K ∈ ω such that for all m ∈ ω,

VC(
m∧
i=1

ϕ(x̄, ỹi) ≤ Km.

Proof. Fix m ∈ ω. Clearly the intersection of m half spaces in R2 is a convex

polytope. Let X, |X| ≥ 3, be a set of points shattered by
∧m
i=1 ϕ(x̄, ỹi). We claim

that every point in X must lie on the boundary of the convex hull of X, conv(X).

Suppose not, and let p ∈ X be a witness. Then it is clear that no element of

CVm
i=1 ϕ(x̄,ỹi)(R) can realize the subset X \ p of X, contradicting the assumption

that X is shattered.

Since all elements of CVm
i=1 ϕ(x̄,ỹi)(R) are unbounded below, no two points of X

are on the same vertical line. In fact we can say more.

8The paper shows that the VC dimension of the intersection of m half planes is 2m + 1,

crediting Welzl.
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Figure 2.3: An unrealizable non-convex configuration.

Figure 2.4: The 1-dimensional complex G.

Let G denote the boundary of conv(X), viewed as a 1 dimensional complex,

with points of X acting as vertices. Then, since X is convex, G is either a loop

or else a tree with branching factor 1 (in the event that X is colinear). Suppose

that G is a loop, and let L denote the lower envelope of G. That is, L consists of

all the points p of G such that a vertical ray emanating downwards from p does

not intersect G. We argue that L contains exactly two vertices, or equivalently,

two elements of X.

Let vl and vr denote the leftmost and rightmost points of L; these must

obviously be vertices of G. L may be thought of as a connected path, and so

we can speak of elements between vl and vr on the path L. Suppose, by way of

contradiction, that there is a vertex v′ between vl and vr in L. Then because

every element of CVm
i=1 ϕ(x̄,ỹi)(R) is convex and unbounded below, any element of

CVm
i=1 ϕ(x̄,ỹi)(R) which contains vl and vr must also contain v′, and consequently

X is not shattered. This is a contradiction.

Thus, without loss of generality, tossing out the edge between vl and vr if

necessary, G can be regarded as a path with no vertical edges. Let π : R2 → R

be downward projection, and consider the set of points π(X) on the real line.
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Whenever a downward half-space h is intersected with the path G, the comple-

ment of the intersection is connected in G; whatever set of vertices is cut out by

h in G, the complementary set of points can be cut out of π(X) by an interval I.

Moreover, the set of vertices cut out of G by the intersection of some k downward

half-spaces h1, . . . , hk, the complementary set of points can be cut out of π(X)

by a union of the corresponding intervals I1, . . . , Ik. Thus if X is shattered by

the conjunction of m downward facing half spaces, π(X) is shattered by the dis-

junction of m intervals. Therefore the linearity of intervals implies the linearity

of downward facing half spaces in R2.

A less serpentine argument for the above can be found in [9]. The authors

use a general position assumption on X, which they claim can be obviated by

a perturbation argument; at any rate, the assumption does not seem necessary,

provided the reader is willing to do extra work. They also prove the analogous

fact for dimension 3, using a beautiful application of the 4-color theorem, the

idea for which they attribute to E. Welzl.

2.6 A stable family which is not VC linear

We will define a structure M in the language of a single 2-sorted relation L =

{R(x, y)} such that for any K ∈ ω there exists some m ∈ ω, with

M |= VC(
m∨
i=0

ϕ(x, yi)) ≥ Km (*)

where ϕ = RM, and ϕ is stable with respect to T = Th(M). Since M is 2-sorted,

we will think of the universe M as X
⊎
Y , the disjoint union of the x and y

variable sorts, respectively.
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The existence of such a structure establishes:

Theorem 2.6.1. There exists a stable definable family which is not VC linear.

2.6.1 A finite case of non-linearity in VC dimension

The argument will use a construction from [12].

Definition An Eisenstat-Angluin random L-structure Mn is constructed as fol-

lows.

1. The X component of the universe of Mn is [n2n] = {1, 2, . . . , n2n}.

2. For each singleton i ∈ [n2n], define a new element y{i} of the Y sort by

ϕ(Mn, y{i}) = {i}. Additionally, define y∅ by ϕ(Mn, y∅) = ∅.

3. For each b = 1, . . . , plog nq, define Yb = {y1
b , . . . , y

t
b}, where t = 2(2+o(1))n,

such that ϕ(Mn, y
1
b ), . . . , ϕ(Mn, y

t
b) are independently selected random sub-

sets (of X) of size pn/bq.

4. Take Y := {y∅} ∪ {y{i} : i ∈ [n2n]} ∪⋃plognq
b=0 Yb.

In their paper, Eisenstat and Angluin establish that an E-A random structure

has the following properties.

Theorem 2.6.2. Let Mn denote an E-A random L-structure. Then

1. For some α ∈ (0, 1] and all sufficiently large n ∈ ω, Mn models the sentence

expressing

VC(
n∨
i=0

ϕ(x, yi)) ≥ αn log n

with probability at least 1− plog nqe−n.
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2. The probability that the VC dimension of ϕ with respect to Mn is more than

5 is at most 2−(1+o(1))n.

The second part of the above theorem follows from:

Lemma 2.6.3. Let Mn denote an E-A random L-structure. Then the probability

that Mn models the sentence expressing ∃c∃d [|ϕ(Mn, c) ∧ ϕ(Mn, d)| ≥ 5] is at

most 2−(1+o(1))n.

This establishes that for sufficiently large n, we can actually find structures

with the properties listed in Theorem 2.6.2. This is used in the theorem below.

Theorem 2.6.4. For some α ∈ (0, 1], there is a strictly increasing f : ω → ω,

and a sequence of models
〈
Mf(i) : i ∈ ω〉

such that for all i ∈ ω,

Mf(i) |=

V C(

f(i)∨
j=0

ϕ(x, yj)) ≥ αf(i) log f(i)




and

Mf(i) |= ¬∃c∃d [|ϕ(Mf(i), c) ∧ ϕ(Mf(i), d)| ≥ 5
]

.

2.6.2 Application

We now give an infinite model and a stable formula which is not VC linear in the

model.

Let
〈
Mf(i) : i ∈ ω〉

be the sequence from Theorem 2.6.4. LetXM :=
⊎
XMf(i) ,

and Y M :=
⊎
Y Mf(i) . Fix α as in Theorem 2.6.4.

Definition The model M will be the structure with universe XM
⊎
Y M, and

M |= ϕ(x, y) ⇐⇒ ∃i ∈ ω [
x ∈ XMf(i) ∧ y ∈ Y Mf(i) ∧Mf(i) |= ϕ(x, y)

]
.
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We now show that (*) holds for M, and that ϕ is stable with respect to Th(M).

Claim 1 For arbitrarily large m ∈ ω,

M |=
[
V C(

m∨
i=0

ϕ(x, yi)) ≥ αm logm

]
.

Proof. Fix N ∈ ω, and choose i ∈ ω with f(i) > N . It is clear from the definition

that M |=
[
V C(

∨f(i)
j=0 ϕ(x, yj)) ≥ αf(i) log f(i)

]
.

Claim 2

M |= ¬∃c∃d [|ϕ(M, c) ∧ ϕ(M, d)| ≥ 5]

Proof. Suppose not. Let c, d ∈ Y M with |ϕ(M, c) ∧ ϕ(M, d)| ≥ 5. Then there

must be some i ∈ ω such that c, d ∈ Y Mf(i) , and thus |ϕ(Mf(i), c)∧ϕ(Mf(i), d)| ≥
5, contradicting the choice of Mf(i).

Proposition 2.6.5. ϕM is stable.

Proof. Let C be a large saturated model of Th(M). We will show that for any

A ⊆ C, every C ∈ Cϕ(A) is definable over A by a formula in L ¹ϕ.

Fix A and C as above.

Case 1: |C| is finite. Suppose C = {a1, . . . , an} for some n ∈ ω. Let

δ(x) =
n∨
i=1

x = ai.

Case 2: |C| is infinite. In this case, let {a1, . . . , a6} ⊆ C, all distinct. Let

δ(x) = ∃y
(
ϕ(x, y) ∧

6∧
i=1

ϕ(ai, y)

)
.

Now if there is some a ∈ δ(A) \ C, let b ∈ C be such that

|=
(
ϕ(a, b) ∧

6∧
i=1

ϕ(ai, b)

)
.
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Then |ϕ(M, b) ∩ ϕ(M, c)| ≥ 6 where C = ϕ(M, c), a contradiction. Any a ∈
C \ δ(A) gives a similar contradiction.

Claim 1 establishes that (*) holds for M. This completes the argument.

2.7 Linearity of independence dimension

As remarked in the first chapter, independence dimension intuitively corresponds

to the maximal number of elements from a family which can be arranged in a

Venn diagram.9 In this section we show that while VC dimension is not always

linear under disjunctions (conjunctions), there is a sense in which linearity does

always hold for independence dimension.

Note that in the statement of the theorem below, the parameter variables are

increased with each disjunction, but not the object variables. As usual, everything

is with respect to some fixed complete theory T .

Theorem 2.7.1. For any partitioned formula ϕ(x̄, ỹ), of finite independence di-

mension (equivalently finite VC dimension), there is a K ∈ ω such that for all

m ∈ ω,

IN(
m∨
i=1

ϕ(x̄, ỹi)) ≤ Km,

where IN(·) denotes the independence dimension of a formula.

We illustrate the geometric meaning of this statement by considering a class C

of all closed discs in R2. The independence dimension of C is 3, because at most 3

9We mean, a little vaguely, that e elements can be arranged to divide the space into 2e

regions. See [17].
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discs can be arranged in such a way that any inclusion/exclusion condition has a

witness. This corresponds to m = 1. For m = 2, we consider how many matched

pairs of discs can be arranged in such a way that any inclusion/exclusion condition

on the pairs has a witness. Higher values of m involve matched collections of m

discs. A similar question is asked in [17], Theorem 2.

The theorem will be proved with the aid of a series of lemmas. As we go

along, the reader may wish to observe that while the theorem is stated for a

simple disjunction, the statement holds for any boolean combination of ϕ in

which the parameters are increased and the object variables fixed.

Lemma 2.7.2. Let X a set, and A ⊆ Xm, finite, with m ∈ ω. For any i =

1, . . . ,m, let Ai denote the projection of A onto the ith coordinate. Put A∗ =

⋃m
i=1Ai. Then |A∗| ≤ m|A|.

Proof. Each Ai has size at most |A|. Thus the disjoint union, and hence the

union, of the Ai has size bounded by m|A|.

For the rest of the section we take θm(x̄, ỹ1, . . . , ỹm) =
∨m
i=1 ϕ(x̄, ỹi). The dual

of θm(x̄, ỹ1, . . . , ỹm), denoted θ∗m(ỹ1, . . . , ỹm, x̄), has object variables ỹ1, . . . , ỹm and

parameter variables x̄. We fix e = IN(ϕ) for the remainder of the section.

Lemma 2.7.3. Let M |= T , and A ⊆Mm|ỹ|, n = |A|, k = |ỹ|. Then

|Cθ∗m(ỹ1,...,ỹm,x̄)(A)| ≤
e∑
i=0

(
(mkn)k

i

)
.

Proof. Claim 1: |Cθ∗m(ỹ1,...,ỹm,x̄)(A)| ≤ |Sθm(x̄,ỹ1,...,ỹm)(A
∗)|.

This is true because there is an injection given by θ∗m(A, ā) 7−→ tpθm(ā/A∗),

where

tpθm(ā/A∗) := {θm(x̄, ã1, . . . , ãm) : ãi ∈ A∗|ỹ|, |= θm(ā, ã1, . . . , ãm)}∪
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{¬θm(x̄, ã1, . . . , ãm) : ãi ∈ A∗|ỹ|, |= ¬θm(ā, ã1, . . . , ãm)}.

Claim 2: |Sθm(x̄,ỹ1,...,ỹm)(A
∗)| ≤ |Sϕ(x̄,ỹ)(A

∗)|
Because if tpϕ(ā/A

∗) = tpϕ(b̄/A
∗), then tpθm(ā/A∗) = tpθm(b̄/A∗).

Claim 3: |Sϕ(x̄,ỹ)(A
∗)| ≤ |Cϕ∗(ỹ,x̄)((A∗)k)|

This is Proposition 1.1.6.

Claim 4: |Cϕ∗(ỹ,x̄)((A∗)k)| ≤
∑e

i=0

(
(mkn)k

i

)

By the Sauer-Shelah lemma, |Cϕ∗(ỹ,x̄)((A∗)k)| ≤
∑d

i=0

(|A∗|k
i

)
, where d = VC(Cϕ∗(ỹ,x̄)((A

∗)k)).

But d ≤ e by Proposition 1.1.7. By Lemma 2.7.2, |A∗|k ≤ (mkn)k.

Let k = |ỹ| as in the above.

Lemma 2.7.4. There is K0 ∈ ω such that, for all m ∈ ω, and all A ⊆ Mm|ỹ|

with |A| = n, |Cθ∗m(ỹ1,...,ỹm,x̄)(A)| ≤ K0(mn)ke.

Proof. It is well known that, for fixed d,
∑d

i=0

(
n
i

)
is O(nd). Thus by Lemma

2.7.3 there is K ′
0 ∈ ω such that, for all m ∈ ω, and all A ⊆Mm|ỹ| with |A| = n,

|Cθ∗m(ỹ1,...,ỹm,x̄)(A)| ≤
e∑
i=0

(
(mkn)k

i

)
≤ K ′

0(mkn)ke.

Now take K0 := K ′
0k

ke.

Fix K0 as in the above lemma.

Proof of Theorem 2.7.1. Let N ∈ ω be least such that 2N > K0N
2ke. Define

K = N . Suppose, by way of contradiction, that IN(θm(x̄, ỹ1, . . . , ỹm)) ≥ Km. Let

A ⊆ Mm|ỹ| be a set of Km parameters witnessing the independence dimension.

Then |Cθ∗m(ỹ1,...,ỹm,x̄)(A)| = 2Km. Then by Lemma 2.7.4,

2Km ≤ K0(m(Km))ke = K0(m
2K)ke ≤ K0(mK)2ke.

59



On the other hand, since Km > N ,

2Km > K0(mK)2ke,

a contradiction.

2.8 Remaining questions

Many interesting questions remain to be asked about VC linearity of formulas

and theories. Foremost, while we have shown that there is a stable family which is

superlinear in VC dimension, we have not shown there is a stable theory which is

not VC linear. In fact the theory given in our (essentially unique) counterexample

may not even be dependent. Thus it is natural to ask for an example of a non

VC linear theory which is dependent.

In particular, it is interesting to ask whether an ordered structure, such as

RCOF, could be VC linear. The question should first be resolved for the theory of

dense linear order. At the time of this writing, the author knows of no argument

showing the VC linearity even of axis parallel rectangles; this would clearly follow

from the VC linearity of DLO.

Regarding the VC linearity of half spaces in high dimensions, it would be

sufficient to show (following the proof for the VC linearity of half spaces in di-

mension 3) that, for any euclidean dimension d, there is a uniform finite bound

on chromatic number of any graph corresponding to the surface of a polytope in

Rd. For d = 3, this is the 4-color theorem.

Finally, there is a question of whether linearity is likely to hold in a broad

class of families (such as all families in all dependent theories). There are sev-

eral phenomena in discrete geometry that have easy log-linear upper bounds on

60



complexity, which in fact grow at a rate strictly between linear and log-linear.

Davenport-Schinzel sequences [26] provide an example. These can be made to

correspond to the complexity (number of alternations) of the lower envelope of

n line segments in the plane. It has been shown that the rate of growth in this

situation is nα(n), where

α(n) = min{k ≥ 1 : A(k) ≥ n},

and A(k) is the Ackermann function. This gives an example of a geometric

situation in which the log-linear rate is much too high, but the true rate is more

subtle than simple linearity.
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Chapter 3

Compression Schemes

3.1 Introduction

In this chapter we discuss a notion of sample compression schemes from the

literature on computational learning theory. The use of compression schemes,

and some classical examples, are given in [13, 14, 22]. Additionally, there is

a short appendix, on page 92. We focus solely on model-theoretic aspects of

compression schemes in this section.

In section 3.1.1 we give basic definitions, and a few interesting properties.

The main results of this chapter are stated in sections 3.2 and 3.3. In section 3.2

it is shown that any stable definable family has a compression scheme of finite

size. Section 3.3 gives a slightly more informative proof for the special case in

which the theory does not have the finite cover property (is NFCP). A topological

characterization of what we call consistent compressibility is given in section 3.4,

along with a few properties. There is a brief discussion of how compressibility

behaves over boolean combinations of formulas in section 3.5, and the final section

lists possible avenues for further exploration.

We state for clarity that neither of the bounds given for the size of a com-
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pression scheme in this chapter (one arising from compactness, the other from

NFCP) relate to the VC dimension of the family considered.

3.1.1 Basic definitions

We begin with a few definitions. Let ϕ(x, y) a formula.1 For A ⊆ C,

tpϕ∗(b/A) := {ψ(y) :|= ψ(b), and ψ(y) ∈ {ϕ∗(y, a),¬ϕ∗(y, a)}, some a ∈ A}.

Definition For any complete theory T , with monster model C, any formula

ϕ(x; y), and any A,B ⊆ C,

SBϕ∗(A) := {tpϕ∗(y/A) :|= tpϕ∗(b/A) for some b ∈ B}.

Let A,B ⊆ C, and e ∈ ω.

Let

SBϕ∗(A)<ω :=
⋃
{SBϕ∗(C) : C ⊆ω A},

and for e ∈ ω,

SBϕ∗(A)≤e :=
⋃
{SBϕ∗(C) : C ⊆e+1 A}.

Define, for any η ∈ A2,

rη(y) = {ϕ∗(y, a)η(a) : a ∈ A}.

Note that rη is a possibly inconsistent ϕ∗-type over A. (Later we will draw some

extra conclusions assuming rη is consistent.)

1We use object and parameter variables of arity 1 for simplicity; all results are true for all

finite arities of variables.
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Definition A partitioned formula ϕ(x; y) is called e-compressible over A with

realizers from B if there are two functions

comp : SBϕ∗(A)<ω → SBϕ∗(A)≤e

and

ext : SBϕ∗(A)≤e → {rη : η ∈ A2},

such that for any p ∈ SBϕ∗(A)<ω, comp(p) ⊆ p ⊆ ext ◦ comp(p). If no B is speci-

fied, the realizers are assumed to come from C.

Additionally, ϕ(x; y) is consistently e-compressible if there is such an ext whose

range is Sϕ∗(A).

Thus ϕ compresses over A just in case every complete ϕ∗-type over a finite

subset of A is essentially determined by some subtype of size at most e. The

above definition captures the intuitive idea of compression and expansion that

was part of the original conception of Littlestone and Warmuth. However, it

sometimes simplifies things to suppress the comp function. This observation is

from [4].

Proposition 3.1.1. Suppose there is a function ext : SBϕ∗(A)≤e → {rη : η ∈ A2}
such that for every finite C ⊆ A, and every p ∈ SBϕ∗(C), there is some C0 ⊆e+1 C

such that ext(p ¹ C0) ⊇ p. Then ϕ e-compresses over A with realizers from B.

Proof. Clear from the definitions.

Proposition 3.1.2. If A′ ⊆ A and B′ ⊆ B, then if SBϕ∗(A) is e-compressible,

then so is SB
′

ϕ∗(A
′).

Proof. From the definitions.
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From [4], we also have:

Proposition 3.1.3. ϕ(x; y) e-compresses over A if and only if ϕ(x; y) e-compresses

over every finite B ⊆ A.

Proof. “=⇒” Trivial.

“⇐=”: Let M |= T , A ⊆M. We may assume without loss that the language

is L = {X, Y, ϕ(x; y)}, and that XM = A, and YM = M .2

Add to the language of M a set of new constant symbols for A, and a new

relation symbol H(x1, . . . , xe, z1, ..., ze, x).

For B ⊆ω A, let θB be the following formula. For readability we write ā _ b̄

for (a1, ..., ae, b1, ..., be).

∀y ∈ Y
( ∨

ā_b̄∈B2e

e∧
i=1

(ai = bi ⇐⇒ ϕ∗(y, ai))∧

∧
c∈B

[H(a1, . . . , ae, b1, ..., be, c) ⇐⇒ ϕ∗(y, c)]

)

This says that for every realizer of a ϕ∗-type over B, there is some labeled example

set of size e, such that H, instantiated with the labeled example, defines the type

of the realizer over B. By “labeled” we mean that the bi variables code the truth

value of ϕ on the respective ai parameters.

Let Perm(e) = {σ ∈ [e][e] : σ is a permutation}, and Let ψB be the formula

∧

ā_b̄∈B2e

∧

σ∈Perm(e)

(H(a1, . . . , ae, b1, ..., be, x) ⇐⇒

H(aσ(1), . . . , aσ(e), bσ(1), ..., bσ(e), x))

This says that the order of the labeled examples does not influence H.

2If this is not the case, we can perform the subsequent argument in a new language and

structure where the assumptions hold, as is done in 1.2.4.
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Let Σ = {θB : B ⊆ω A}∪{ψB : B ⊆ω A}∪∆A,M(M). By the hypothesis (and

the compactness theorem), Σ is consistent, and there is some M′ with M⊆M′

such thatM′ |= Σ. Then HM′
defines an e compression on SM

′
ϕ∗ (A). Since ϕ(x; y)

is atomic, SMϕ∗ (A) ⊆ SM
′

ϕ∗ (A), and thus ϕ(x; y) e-compresses over A, by 3.1.2.

This shows that e-compressibility is a “property of the theory.” In other

words,

Corollary 3.1.4. For any complete theory T , formula ϕ(x, y), and M,N |= T ,

ϕ(x, y) is e-compressible over M iff ϕ(x, y) is e-compressible over N .

Proof. Suppose ϕ(x, y) is not e-compressible over M. Then there must be some

finite C ⊆M such that ϕ(x, y) is not e-compressible over C. Since C is finite, it

is possible to pick a finite subset B ⊆M such that SBϕ∗(C) = Sϕ∗(C).

By elementary equivalence, there are C ′, B′ ⊆ N such that SBϕ∗(C) and

SB
′

ϕ∗(C
′) are isomorphic as set systems.3 Thus SB

′
ϕ∗(C

′) is not e-compressible,

and the result follows.

3.2 Compressibility of Stable Families

The compressibility of stable definable families is essentially a consequence of

the existence of “uniform definitions” for elements in the Stone space of a stable

formula. The existence of such definitions is a standard result in stability theory.

For convenience, we give a short exposition of definability (which can be found

also in also [32], and [3]).

We give these definitions in terms of an arbitrary formula, δ(x, y), to avoid

confusion concerning ϕ and ϕ∗.

3Specifically, we can write them as structures in the language (X,Y,R(x, y)), given in 1.2.4.
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Definition Given a type p ∈ Sδ(x;y)(A), we say that p is δ-definable over B if

there is a formula ψ(y), with parameters from B, such that:

∀a ∈ A (|= ψ(a) ⇐⇒ δ(x; a) ∈ p)

Definition We say that ψ(y, z̄) is a uniform definition for Sδ(x;y)(A) over B if

for every p ∈ Sδ(x;y)(A) there is a tuple āp,A ∈ B|z̄| such that ψ(y, āp,A) is a

δ-definition of p.

Shelah established in [32] that either kind of definability of types is equivalent

(where A is arbitrary) to the stability of δ. It will be made clear below that the

uniform defining formula ψ(y, z̄) depends only on δ(x; y), not on A or p.

The type definitions we will be concerned with are based around important

finite subsets of the types they define. Loosely speaking, these subtypes restrict

the possible extensions of p just as strongly as p itself does.

We make this precise by introducing the notion of a ϕ-tree [18].

A ϕ-tree over p is a binary tree of consistent but mutually exclusive extensions

of the type p using instances of ϕ. The following formal definition is rather

compact; a more verbose statement may be found in [18, 3, 32].

Definition Given a formula ϕ(x; y) and a type p, a full ϕ-tree on p of height n

is a collection of formulas
⋃{rη(xη) : η ∈ n2} over a set of parameters {aµ : µ ∈

<n2}, where for all µ, aµ_0 = aµ_1, and where rη(xη) = {ϕ(xη, aη¹k)η(k) : k =

0, 1, 2, . . . , n− 1}, and p(xη) ∪ rη(xη) is consistent for all η ∈ n2.

If Tϕ is a full ϕ-tree on p, let ht(Tϕ) represent its height.

Definition Given any type p, the ϕ-depth of p, denoted ϕ-dp, is sup {ht(Tϕ) : Tϕ

is a full ϕ-tree on p}. If no p is specified, ϕ-dp is assumed to mean the ϕ-depth

of {x = x}.

67



Figure 3.1: ϕ-depth

It turns out that finite ϕ-depth is one of the many characterizations of stability.

Proposition 3.2.1. ϕ(x; y) is stable iff ϕ-dp is finite.

Proof. Assume ϕ(x; y) is stable, and by way of contradiction, that ϕ-dp is infinite.

Then by compactness, there exists a countably infinite B ⊆ C such that there

is a complete binary ϕ-tree on B of height ω. Each of the 2ℵ0 paths through

this tree gives a consistent ϕ type on some subset of B. As types, each of the

paths are pairwise inconsistent. Extending each of the types given by a path to

a complete ϕ type over B shows that |Sϕ(B)| > |B|.
By Lemma 1.3.3, it follows that there is some infinite A ⊆ C such that

|Cϕ(A)| > |A|. But, by stability of ϕ, every element of Cϕ(A) is definable by a

formula in L ¹ϕ with parameters from |A|. Thus we get |Cϕ(A)| ≤ |A|. This is a

contradiction, and so ϕ-dp is finite.
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The reverse direction is shown in Lemma 3.2.3.

Furthermore, for any type p, ϕ-dp p is at most ϕ-dp. Thus if ϕ is stable, then

every ϕ type has finite ϕ-depth.

We need the following to build a defining formula for a type in the Stone space

of a stable ϕ.

Proposition 3.2.2. For any formula ϕ(x; y) and type p, there is a finite p0 ⊆ p

such that ϕ-dp p = ϕ-dp p0.

Proof. If ϕ-dp p is infinite, this is obvious by compactness. Assume that there is

n ∈ ω such that ϕ-dp p = n.

By way of contradiction, assume that every finite p0 ⊆ p has ϕ-dp p0 ≥ n+1.

By adding constants A = {aµ : µ ∈ <n+12} ∪ {bη : η ∈ n+12} to the language,

we can construct a set of sentences whose consistency expresses that ϕ-dp p is

at least n + 1. Namely, let Σ = {p(bη) : η ∈ n+12} ∪ {rη(bη) : η ∈ n+12}, where

rη(bη) = {ϕ(bη, aη¹i)η(i) : i < n+ 1}.
By hypothesis, Σ is finitely consistent, and hence consistent by compactness.

Thus any model of T ∪Σ, reducted to L, shows ϕ-dp p > n. This is a contradic-

tion.

The crucial observations for building a compression (type definition) can be

listed as fairly self-evident facts. The second assertion is justified by noting that

its negation would add another level to the maximal ϕ-tree on p. In order for

this to be a contradiction, we need the assumption that ϕ-depth of p is finite.

1. The finiteness of p0 ⊆ p, ϕ-dp p0 = ϕ-dp p, allows the statement “ϕ-dp

p = e” to be written in first order form.
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2. If p is over A, then for all a ∈ A exactly one of p0 ∪ {ϕ(x, a)} and p0 ∪
{¬ϕ(x, a)} has ϕ-depth equal to ϕ-dp p.

We can now construct a δ-definition for an arbitrary p ∈ Sδ(x,y)(A), provided δ is

stable.

Definition Let δ(x; y) a formula. For any n ∈ ω, d ∈ ω, and η ∈ n2, a (n, d, η)

depth expansion formula for δ is a formula

ψn,d,η(y; y1, . . . , yn) = θη,d(y1, . . . , yn) ∧ ¬θη,d+1(y1, . . . , yn) ∧ γη,d(y1, . . . , yn, y),

where for any m ∈ ω,

θη,m(y1, . . . , yn) = ∃(ε∈m2)xε∃(µ∈<m2)zµ
∧

µ∈<m−12

zµ_0 = zµ_1∧

∧
ε∈m2

(
n∧
i=1

δ(xε, yi)
η(i)

)
∧

∧
ε∈m2

m∧
i=1

δ(xε, zε¹i)
ε(i),

and

γη,m(y1, . . . , yn, y) = θη_1,m(y1, . . . , yn, y)

That is, θη,d(y1, . . . , yn) says that the boolean combination of δ-formulas corre-

sponding to η, instantiated appropriately with the yi parameters, has δ-depth

at least d. The formula γη,d(y1, . . . , yn, y) says that the boolean combination of

δ-formulas corresponding to η, conjoined with the new instance δ(x, y), still has

δ-depth d. The entire formula ψn,d,η(y; y1, . . . , yn) then defines the unique exten-

sion (possibly inconsistent) of the δ-type determined by η and the parameters

y1, . . . , yn, which has the same δ-depth.

A formula is simply a depth expansion formula if it is a depth expansion

formula for some choice of (n, d, η).
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Lemma 3.2.3. Suppose δ(x, y) and p ∈ Sδ(x,y)(A) are such that δ-dp p is finite.

Then p has a δ-definition over A, which is a depth expansion formula for δ.

Proof. Let d = δ-dp p, p0 ⊆ω p of δ-depth d. Let ρ0(x, a1, a2, . . . , an) be the

conjunction of the finitely many δ-formulas in p0. In particular,

ρ0(x, a1, a2, . . . , an) =
n∧
i=0

δ(x, ai)
η(i),

where η : [n] → {0, 1} by i 7−→ 1 if δ(x, ai) ∈ p0, and i 7−→ 0 if ¬δ(x, ai) ∈ p0.

It is clear from definition 3.2 that we can construct ψ(y, z1, z2, . . . , zn), a first

order formula, such that ∀y∀z1 . . . ∀zn[|= ψ(y, z1, . . . , zn) ⇐⇒ ρ0(x, z1, . . . , zn)∧
δ(x; y) has depth d]. And clearly ρ0(x, a1, . . . , an)∧δ(x, b) has depth d if and only

if p0 ∪ {δ(x; b)} has δ-depth equal to δ-dp p. Thus

∀b ∈ A [|= ψ(b, a1, . . . , an) ⇐⇒ δ(x; b) ∈ p] .

In other words, ψ(y, a1, . . . , an) is a δ-definition of p over A. Moreover, ψ is a

(n, d, η) depth expansion formula for δ.

Definition A δ-definition ψ(y, a1, . . . , al), with parameters from A, of a type

p ∈ Sδ(x,y)(A) is said to be set-parameterized modulo δ if for any permutation

σ ∈ [l][l] such that for all i = 1, . . . , l, δ(x, ai) ∈ p ⇐⇒ δ(x, aσ(i)) ∈ p,

|= ψ(y, a1, . . . , al) ⇐⇒ ψ(y, aσ(1), . . . , aσ(l)).

Proposition 3.2.4. For any A, any type p ∈ Sδ(x,y)(A), any δ depth expansion

formula which serves as a δ-definition for p is set-parameterized modulo δ.

Proof. Let ψn,d,η(y; y1, . . . , yn) be a (n, d, η) depth expansion formula for δ(x; y),

and suppose for ā ∈ An, ψn,d,η(y; a1, . . . , an) defines pδ. Let σ ∈ [n][n] be a
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δ-preserving permutation (with respect to p). Then since

n∧
i=0

δ(x, ai)
η(i) ≡

n∧
i=0

δ(x, aσ(i))
η(σ(i)),

it is clear from the definition that ψn,d,η(y; a1, . . . , an) ≡ ψn,d,η◦σ(y; aσ(1), . . . , aσ(n)).

Lemma 3.2.5 (Shelah). For any stable δ(x, y), there is a finite set ∆ of depth

expansion formulas for δ such that for any set A, |A| ≥ 2, and any p ∈ Sδ(x,y)(A),

p is δ-defined by some instance of a ∆-formula with parameters from A.

Proof. We show that there is a finite set of formulas ∆(y) = {ψi(y, z̄i) : i =

1, 2, . . . ,m}, all depth expansion formulas for δ, such that every p ∈ Sδ(x;y)(A) is

defined by some ψi(y, āp), āp ∈ A|z̄i|.
Suppose not. We will use compactness to produce a set B and a q ∈ Sδ(x;y)(B)

which is not defined by a depth expansion formula for δ, contradicting Lemma

3.2.3.

Let c a new constant symbol and P a new one-place predicate. For any not

necessarily finite set ∆ of depth expansion formulas for δ, ψ(y, z̄ψ), let

T∆ = T∪


¬∃z1, . . . ,∃z|z̄ψ |



|z̄ψ |∧

l=1

P (zl) ∧ ∀y
[
P (y) →

(
δ(c, y) ≡ ψ(y, z1, . . . , z|z̄ψ |)

)]

 : ψ ∈ ∆



 .

Now T∆ must be consistent. Thus if ∆∗ is the set of all depth expansion

formulas for δ, T∆∗ is consistent. Let M |= T∆∗ , B = PM. Put M′ as the

reduct of M to L, and let q = tpM
′

δ (cM/B).4 Then q is not δ-defined by any

4This is the δ-type of theM interpretation of c, with parameters in the instances of δ coming

from B.
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depth expansion formula for δ. This contradiction establishes the existence of

the desired finite ∆.

The finite ∆ produced in Lemma 3.2.5 may be encoded into a single uniform

defining formula, as illustrated in the proof of Proposition 3.3.2. Since this will

not simplify the argument in the following theorem, we work with ∆.

Theorem 3.2.6. For any formula ϕ(x; y), if ϕ is stable for T , then there exists

e ∈ ω such that ϕ is e-compressible over all sets A.

Proof. Let ∆ as in Lemma 3.2.5. Let e = max{n : ψ ∈ ∆ is a (n, d, η) depth

expansion formula for ϕ∗}. Fix a set A, any p ∈ Sϕ∗(A), and let B ⊆ A, finite.

Then there is b̄p¹B ∈ Bn, n ≤ e, such that for some ψi ∈ ∆, ψi(x, b̄p¹B) defines

p ¹ B. Let comp(p ¹ B) be p0 = p ¹ dom(b̄p¹B). This defines comp. It is

important for the expansion to note that ψi(x, b̄p¹B), assuming it is a (n, d, η)

depth expansion formula, actually asserts that ϕ∗-dp p0 = d.

Now let p ¹ B0 = comp(p ¹ B) for B0 ⊆e+1 B be given. We must define

ext(p ¹ B0). Suppose B0 = {b1, . . . , bn}. Then n = |B0|. Let d = ϕ∗-dp p ¹ B0,

and let η ∈ n2 be defined by η(i) = 1 iff ϕ∗(y, bi) ∈ p ¹ B0. By the definition

of comp, there must be some5 (n, d, η) depth expansion formula for ϕ∗ in ∆, say

ψ(n,d,η)(x, x1, . . . , xn). (Possibly we need to apply a ϕ∗-preserving permutation to

η, and the ordering on B0, but we have shown this doesn’t matter in Proposition

3.2.4.) Then let ext(p ¹ B0) be the type defined by ψ(n,d,η)(x, b1, . . . , bn).

5This formula will be unique up to equivalence.
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3.3 The Finite Cover Property

Here we improve the result from the previous section. In the event that the stable

theory under consideration is also NFCP, the size of the compression scheme can

be given by a naturally occurring constant.

The reader may recall an interesting result from combinatorial geometry, due

to Eduard Helly [26].

Theorem 3.3.1. 6[Helly’s Theorem] If {Xi : i ∈ κ} is a family of convex subsets

of Rd, d ∈ ω, and ω > κ > d, and for every subfamily Xi1 , . . . , Xid+1
,

d+1⋂
j=1

Xij 6= ∅,

then
⋂{Xi : i ∈ κ} 6= ∅.

Theories without the finite cover property are characterized by an analogous

behavior in their definable families.

Definition Say that a formula ϕ(x; y) does not have the finite cover property (is

NFCP) if there exists some k ∈ ω such that for any set Γ of positive instances

of ϕ, Γ is consistent if and only if every subset of size k is consistent. If ϕ(x; y)

is NFCP, let NFCP(ϕ) denote the least k ∈ ω which suffices in the definition of

NFCP.

A theory T is said to not have the finite cover property (to be NFCP) if every

formula is NFCP with respect to T . It is a classical result of Shelah that all

NFCP theories are stable. Any ℵ1-categorical theory is NFCP [21].

6The assumption that κ be finite is not necessary if the Xi are all compact, or if one is

willing to have it be merely consistent that the intersection exists.
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Proposition 3.3.2 (Shelah). Suppose T is NFCP and

∆(x1, . . . , xn) = {χi(x1, . . . , xn, ȳi) : i = 1, . . . , l}

is a finite set of formulas. Then there is a k ∈ ω such that any set Γ(x1, . . . , xn) of

positive ∆-formulas is consistent if and only if every subset of size k is consistent.

Proof. Define a formula ϕ by

ϕ(x1, . . . , xn; ȳ1, . . . , ȳl, z∗, z1, . . . , zl) =
l∧

i=1

z∗ = zi → χi(x1, . . . , xn, ȳi).

Since T is NFCP there is k ∈ ω such that any set Γ′(x1, . . . , xn) of positive

instances of ϕ is consistent iff any subset of size k is consistent. Clearly every

positive ∆-formula is equivalent to a positive instance of ϕ.

Note that in Proposition 3.3.2, the requirement that the instances of the ∆-

formulas be “positive” can easily be removed by also coding the negations of the

χi formulas into ϕ.

If ∆(x1, . . . , xn) is a finite set of formulas as above, define NFCP(∆) to be

NFCP(ϕ), where ϕ is the associated coding formula given above.

We will show that in an NFCP theory, every definable family given by some

ϕ(x; y) has a compression scheme of finite size, and that in fact this size can be

given in terms of NFCP({ϕ(x; y),¬ϕ(x; y)}).

Proposition 3.3.3 (Shelah). If T is NFCP, then for any δ(x, y) there is an

e ∈ ω such that for any A, any p ∈ Sδ(x,y)(A), there is some p0 ⊆ p, of size at

most e, such that δ-dp p0 = δ-dp p. Moreover, we can choose e =NFCP({δ,¬δ}).

75



Proof. Suppose not. Then there is some δ such that for all k ∈ ω there exists a

set Ak and a type pk ∈ Sδ(x,y)(Ak) such that pk has no subtype of cardinality k

with the same δ-depth as pk.

Choose K ∈ ω such that any set Γ of instances of δ is consistent if and only

if it is K-consistent. We can do this by choosing ∆ = {δ(x, y1),¬δ(x, y0)}, as in

Proposition 3.3.2.

Let p ∈ Sδ(x,y)(A) be such that p has no subtype of size K with identical

δ-depth.

Let n ∈ ω be δ-dp p. Take Σ to be the set of formulas:

Σ = {p(xη) : η ∈ n+12} ∪ {rη(xη) : η ∈ n+12},

Where rη(xη) = {δ(xη, aη¹i)η(i) : i < n + 1}, and {aµ : µ ∈ <n+12} is a set of new

constant symbols, with aµ_0 = aµ_1 for all µ ∈ <n2.

Then Σ is a set of instances of δ, and is consistent if and only if it is K-

consistent. But Σ is K consistent, because every size K subset of p has δ-depth

at least n+ 1. This is a contradiction, because Σ implies that δ-dp p 6= n.

Now we are able to prove the main theorem for this section:

Theorem 3.3.4. For any formula ϕ(x, y), if T is NFCP, then the definable

family associated with ϕ has a compression scheme of finite size. In particular,

it has a compression of size e ∈ ω, where e is minimal such that any set of

∆ = {ϕ∗(y, x1),¬ϕ∗(y, x0)} formulas is consistent iff it is e-consistent.

Proof. For concreteness, work in Sϕ∗(B), for some set B. Let e be such that any

ϕ∗(y;x)-type over B has a size e subtype with the same ϕ∗-depth. Define the

function comp by, for any p ∈ Sϕ∗(B), and A ⊆ω B, p ¹ A 7−→ p ¹ A0, where A0

is any set such that A0 ⊆e+1 A, and ϕ∗-dp p ¹ A0 = ϕ∗-dp p ¹ A.
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Define the ext function as follows. Let p ¹ A0 be a type of size at most e, and

a any parameter not in A0. If (p ¹ A0) ∪ {ϕ∗(y, a)} has the same ϕ∗-depth as

p ¹ A0, then put ϕ∗(y, a) in ext(p ¹ A0). Otherwise, put ¬ϕ∗(y, a) in ext(p ¹ A0).

This defines a complete (possibly inconsistent) ϕ∗-type over B.

It is clear that ext ◦ comp(p ¹ A) extends p ¹ A.

3.4 Consistent Compressions

We now make a few more remarks about consistent compressions (definition

3.1.1.) The requirement that a compression scheme be consistent does not seem

to be especially restrictive. While the range of a consistent expansion function

may be a strict superset of the original concept class, it will be contained in the

Tychonov closure of the original class.

The next few propositions show the generality of the notion.

Proposition 3.4.1. Let ϕ any formula, A any set, and consider a compres-

sion scheme on ϕ over A determined by the functions comp and ext. Let p0 ∈
dom(ext). Then if, for any finite B ⊇ dom(p0), there is some q ∈ Sϕ∗(A) such

that comp(q ¹ B) = p0, then ext(p0) is consistent.

Proof. The definition then shows that ext(p0) is finitely consistent, and hence

consistent.

The compression schemes referred to by the following propositions are given

in the appendix.

Proposition 3.4.2. The compression scheme on axis-parallel rectangles is con-

sistent.
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Proof. By Proposition 3.4.1.

Proposition 3.4.3. The compression scheme on intervals is consistent.

Proof. By Proposition 3.4.1.

In this section we make use of the topology on Stone spaces. We give a

topological characterization of the existence of a consistent compression scheme.

Definition For any formula δ(x, y), and any set A, an open set U in Sδ(x,y)(A)

is said to be ≤ n-open if U = Uθ(x) = {p ∈ Sδ(x,y)(A) : θ(x) ∈ p}, where θ is a

quantifier free boolean combination of δ-formulas of length at most n.

Proposition 3.4.4. Fix ϕ(x; y), A, and Sϕ∗(A), and, for any n ∈ ω, let τ≤n =

{U ⊆ Sϕ∗(A) :U is ≤ n-open}. Then ϕ(x; y) has a consistent n-compression on

A if and only if there is a function f : τ≤n → Sϕ∗(A), such that

1. For all U ∈dom(f), f(U) ∈ U , and

2. ran(f) is dense in Sϕ∗(A).

Proof. Suppose there is such a function f . Let B ⊆ A finite, p ∈ Sϕ∗(A). Let

Jp¹B = {q ∈ Sϕ∗(A) : p ¹ B ⊆ q}. Then Jp¹B is an open set. Since the range

of f is dense, there is some ≤ n-open set U = Ur0 , r0 a ϕ∗-type of size at most

n, such that f(U) ∈ Jp¹B. That is, f(U) extends p ¹ B, which implies (by 1) r0

= p ¹ B0 for some appropriate B0 ⊆n+1 B. If we take, for any size ≤ n type s,

ext(s) = f(Us), then this shows that ext is as in Proposition 3.1.1. Thus this

yields a consistent compression scheme of size n.

Now suppose ϕ has a consistent compression scheme of size n. For any ϕ∗-

type s0 (over A) of size at most n, take f(Us0) = ext(s0). Then since ext(s0) is
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a consistent type extending s0, f(Us0) ∈ Us0 . We now show ran(f) is dense. Let

U an open set. Then U = {q ∈ Sϕ∗(A) : q ⊇ p ¹ B} for some finite B ⊆ A, and

p ∈ Sϕ∗(A). Take p0 = comp(p ¹ B), and r = f(Up0) = ext◦comp(p ¹ B). By the

definition of a compression scheme, r ⊇ p ¹ B, and so f(Up0) ∈ U . Thus ran(f)

is dense.

Thus a formula consistently n-compresses just if there is a choice function on

≤ n-open subsets of the Stone space with a dense image.

3.5 Compressions Over Boolean Combinations

One of the interesting characteristics of a compression scheme, say of size e, on

a certain family, is that it bounds the VC dimension of that family above by 5e

[14]. Since we are concerned elsewhere with the question of how VC dimension

changes over boolean combinations of families, it is worthwhile to ask an analo-

gous question for compression schemes. We would like to know, if ϕ(x; y) has a

compression of finite size, whether there is some K ∈ ω such that
∨m
i=1 ϕ(x; yi)

has a compression scheme of size at most Km, for all m ∈ ω.

In general the answer to this question must be no, because

Proposition 3.5.1. There is a stable formula ϕ(x; y) such that for all k ∈ ω

there exists some m ∈ ω such that
∨m
i=1 ϕ(x; yi) has no compression of size mk.

Proof. Suppose not. Let ϕ(x; y) be a stable formula such that for all l ∈ ω there

is some m ∈ ω such that V C(
∨m
i=1 ϕ(x; yi)) > lm. (Such a formula exists by the

argument in section 2.6.) Let k ∈ ω be such that for all m ∈ ω,
∨m
i=1 ϕ(x; yi) has a

compression of size at most mk. Then for all m ∈ ω, we get V C(
∨m
i=1 ϕ(x; yi)) ≤

5mk, a contradiction.
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3.6 Remaining questions

A well-known conjecture of Manfred Warmuth asserts that every formula ϕ(x; y)

with VC dimension d has a compression of order d [14]. Since a compression

scheme of finite size implies finite VC dimension, a slight weakening of this con-

jecture poses a model theoretically interesting question: Is it the case that de-

pendent theories, i.e. theories in which every formula has finite VC dimension,

are characterized by the existence of finite compression schemes for all formulas?

Similar questions present themselves for other nice classes of model theoretic

structure. For example, one might ask whether all formulas in an o-minimal

structure are finitely compressible. Note that in dimension one this is clearly the

case. Is one variable sufficient?

Another interesting question involves a special type of “label-free” compres-

sion [22]. A compression is label-free if the range of the comp function (and the

domain of ext) is not a collection of types, but a collection of tuples. That is,

the compression forgets the truth value of δ(x, y) on the compression sets. There

are currently no known counter-examples to the existence of label-free compres-

sions of order d for all VC-classes of dimension d. However, in the algorithm

for compressing stable families, knowing the truth value of the formula on the

saved parameter sets is highly essential. Thus one may ask whether, in particular,

stable families have label-free compression schemes.
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Chapter 4

Definability and D-maximal classes

4.1 Introduction

In this chapter, we describe the relationship between S-maximality andD-maximality,

relating the two in Proposition 4.2.2. We show that if a definable family is

D-maximal in a structure M, then M has unusually strong saturation proper-

ties. This implies that many natural definable families are not D-maximal in any

structure. On the other hand, we see that there are definable families which are

D-maximal with respect to some models, but not to others (Theorem 4.2.6). In

other words, D-maximality is not first-order.

We emphasize that S-maximality is first-order.

Proposition 4.1.1. Let T a complete theory, ϕ(x̄, ỹ) a formula of VC dimension

d ∈ ω, and M,N |= T . Then Cϕ(M) is S-maximal of dimension d iff Cϕ(N ) is

S-maximal of dimension d.

Proof. As in Chapter 1, we use the abbreviation Φd(n) :=
∑d

i=0

(
n
i

)
. For n ∈ ω,

let θn be a sentence stating that for any distinct x̄1, . . . , x̄n, there exist ỹ1, . . . , ỹΦd(n),

such that if i 6= j, then there exists some k such that 2 ϕ(x̄k, ỹi) ⇐⇒ ϕ(x̄k, ỹj).

Then since N and M agree on every θn, the statement holds.

81



Recall the following definition from Chapter 1.

Definition Let X a set, and C ⊆ P(X), of VC dimension d ∈ ω. We say that

C is Dudley maximal, or D-maximal, if for any set A ⊆ X, A ∈ P(X) \ C =⇒
VC(C ∪ {A}) > d.

Thus a definable family is D-maximal just in case it is impossible to add

any new sets to the family without increasing the VC dimension. A simple

Zorn’s lemma argument shows that every definable family has a (not necessarily

definable) D-maximal extension.

Proposition 4.1.2 (Dudley). Let X a set and C ⊆ P(X), with VC dimension

d. Then there exists a D-maximal C′ ⊆ P(X) with C ⊆ C′ such that VC(C) =

VC(C′).

Proof. Let {Cα}α∈δ, for some ordinal δ, be a collection of of concept classes on

X, totally ordered by inclusion, and such that

1. VC(Cα) = d for all α ∈ δ, and

2. C0 = C.

By Zorn’s lemma1 it suffices to show that if Cδ :=
⋃
α<δ Cα, then VC(Cδ) = d. By

way of contradiction suppose that Cδ shatters A ⊆ X, |A| = d + 1. Then there

exist c1, . . . , c2d+1 in Cδ which realize the shattering. There must then be ordinals

ι1, . . . , ι2d+1 , all less than δ, such that for all i = 1, . . . , 2d+1, ci ∈ Cιi . Thus A

is shattered by Cµ, where µ = sup{ιi : i = 1, . . . , 2d+1}. By point (1), this is a

contradiction.

1Zorn’s lemma states that any partial order in which every chain has an upper bound has

at least one maximal element.
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4.2 Infinite D-maximal and S-maximal classes

It is clear that every finite S-maximal class is also D-maximal. However it is

easy to have an infinite system which is S-maximal and not D-maximal. The

first example below was discovered by Welzl and Woeginger [14].

Example 4.2.0.1. Let X be an infinite set, and take C = {c ⊆ X : 0 < |c| <
d+ 1}.

The above C is S-maximal of VC dimension d, because for any finite set

X0 ⊆ X, C ¹X0= [X0]
≤d, the set of all subsets of X0 of size at most d. The

latter class clearly has the maximum cardinality allowable by Sauer’s lemma.

Nevertheless, VC(C) = VC(C ∪ {∅}), and so C is not D-maximal.

Example 4.2.0.2. Let X = Rd and let C be the set of all positive half spaces in

Rd.

This is a S-maximal family (of the same VC dimension) when restricted to a

certain dense X ′ ⊆ X [13]. However, V C(C ¹X′) = V C(C) = V C(C∪{X}∪{∅}).
Thus C ¹X′ is not D-maximal.

To see why V C(C) = V C(C ∪ {X} ∪ {∅}), we must invoke the Tychonov

closure proposition from page 49. By Proposition 2.5, it suffices to show that

cl(C) ⊇ (C ∪ {X} ∪ {∅}). We show first that X ∈ cl(C). We must show that any

open set (in the Tychonov space) containing X (thought of as a characteristic

function fX : Rd → 2) intersects C, the class of all positive half spaces in Rd. Fix

a finite set A ⊆ Rd. This gives a corresponding open set:

U fX
A = {g ∈ Rd2 : g ¹ A = fX ¹ A}
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To show that this intersects C we must find a positive half space in C which

contains A. But it is clear that such a half space exists. Therefore X ∈ cl(C).

We leave the fact that ∅ ∈ cl(C), and the following example, to the reader.

Other examples of this type can be given by classes resulting from inequalities

of polynomials.

Example 4.2.0.3. Let X = Rd and let C be the set of all balls in X.

Then C is a S-maximal class [13] when restricted to a denseX ′ ⊆ X. However,

if C′ is the set of all half spaces in Rd, then VC(C) = VC(C ∪ C′). Thus C ¹X′ is

not D-maximal.

The following was discovered by Dudley.

Lemma 4.2.1. Let M |= DLO, and C = {A ⊆ M : A is convex}. Then C is

D-maximal.

Proof. First note that VC(C) = 2. Let B ⊆ M, not convex. Then there are

points a0, a1, a2 ∈ M such that a1 < a2 < a3, and a0, a2 ∈ B, a1 /∈ B. Then

C ∪ {B} shatters {a0, a1, a2}.

The next proposition illustrates a general technique; we find a D-maximal

class by taking the Tychonov closure of an S-maximal class.

Proposition 4.2.2. The Tychonov closure of an S-maximal class is D-maximal.

Proof. Suppose not. Let C be S-maximal of VC dimension d, C̄ its Tychonov

closure, and suppose there is A ∈ P(X) \ C̄, such that C̄∪ {A} has the same VC

dimension as C̄. Define fA to be the characteristic function of A. That is, for all

x ∈ X,

fA(x) :=





1 if x ∈ A;

0 if x /∈ A.
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Since fA /∈ [C̄], there must be an open set in X2 which contains fA, but does not

intersect C. Let this open set be, for some g ∈ X2, and some B ⊆ X, finite,

Ug,B = {h ∈ X2 : h ¹B= g ¹B}.

Without loss, |B| ≥ d. Then fA ¹B= g ¹B, and there is no element c ∈ C such that

c ∩ B = A ∩ B. Since C is S-maximal, |C ¹B | is the maximum possible to allow

VC(C ¹B) = d. Yet VC({A∩B}∪C ¹B) = VC(C ¹B). This is a contradiction.

A number of authors have remarked [13, 14, 4] that there are no ‘natural’

examples of classes which are D-maximal but not S-maximal. For instance, the

class of all convex subsets in R is D-maximal, but also S-maximal.

We submit that the scarcity of D-maximal not S-maximal classes is partly

caused by the difficulty of finding ‘natural’ (i.e. definable) families which can

be D-maximal. These are rare for an important theoretical reason, namely that

D-maximality requires a strong saturation2 condition on the model in which

a definable family appears. Sometimes, depending on the relation giving the

definable family, the condition will not be satisfied in any model (of the theory).

The main lemma, which follows, was also observed in [36].

Lemma 4.2.3. Let ϕ(x̄, ỹ) a formula. Then, for any model M of T , CMϕ (M) =

cl(CMϕ (M)) iff M realizes every type in Sϕ∗(M).

Proof. Suppose CMϕ (M) = cl(CMϕ (M)), and let p(ỹ) ∈ Sϕ∗(M). Pick3 fp ∈ [Sϕ∗(M)]

such that

fp(ā) = 1 ⇐⇒ ϕ∗(ỹ, ā) ∈ p(ỹ).
2The word saturation in model theory refers to various situations in which a model realizes

all types over (some subset of) its parameters.

3The existence of such an indicator function is just the definition of [Sϕ∗(M)], given in

Chapter 1.
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We claim that fp ∈ [CMϕ (M)]. Since CMϕ (M) is Tychonov closed, it suffices

to show that for any finite A ⊆M|x̄|, fp ¹A∈ [CMϕ (A)].

Fix such a finite A = {ā1, . . . , ān}. Since p is consistent,

M |= ∃ỹ
n∧
i=1

ϕ∗(ỹ, āi).

Let b̃ ∈ M be a witness to the existential quantifier. Let fb̃ : M→ 2 be defined

as

fb̃(ā) = 1 ⇐⇒ M |= ϕ∗(b̃, ā).

Then fp ¹A= fb̃ ¹A, and so fp ¹A∈ [CMϕ (A)]. Therefore fp ∈ [CMϕ (M)]. Since

this is true, there must be some b̃∗ ∈M such that fp = fb̃∗ . But then b̃∗ realizes

p.

Conversely, suppose M realizes every type in Sϕ∗(M). Let f ∈ M|x|
2 be in

cl(CMϕ (M)). We must show that f ∈ CMϕ (M). Let pf (ỹ) be a set of ϕ∗ formulas

over M, defined by

ϕ∗(ỹ, ā) ∈ pf (ỹ) ⇐⇒ f(ā) = 1,

and

¬ϕ∗(ỹ, ā) ∈ pf (ỹ) ⇐⇒ f(ā) = 0.

We must show that pf (ỹ) is (finitely) consistent. Let A ⊆ M|x̄|, A =

{ā1, . . . , ān}. Let η : [n] → 2 be defined by

η(i) = 1 ⇐⇒ ϕ∗(ỹ, āi) ∈ pf .

We must show

M |= ∃ỹ
n∧
i=1

ϕ∗(ỹ, āi)η(i).
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By the choice of f , there is some g ∈ [CMϕ (M)] such that g ¹A= f ¹A. Let

c ∈ CMϕ (M) be such that c = g−1(1), and b̃ such that c = ϕ(M, b̃). Then

M |=
n∧
i=1

ϕ∗(b̃, āi)η(i).

Therefore pf is consistent, and so, by assumption, there is a realizer of pf , b̃
∗ ∈M.

Then f = fb̃∗ , and so f ∈ CMϕ (M). This shows CMϕ (M) is closed, and completes

the argument.

Above, we make reference to the Tychonov closure of CMϕ (M). It is important

to distinguish this from the closure of Cϕ(M). For example, let M a model of T ,

and N a |M|+-saturated4 elementary extension of M. Then CNϕ (M) is closed

in the Tychonov topology on M|x̄|
2, but CMϕ (M) may or may not be closed. By

choice of the monster, Cϕ(M) is always closed.

Proposition 2.5 shows that any D-maximal class is closed with respect to the

Tychonov topology. Thus if a definable family in a model is not closed, it is not

D-maximal. There are many natural relations, however, which can never satisfy

the saturation condition in Lemma 4.2.3.

Proposition 4.2.4. Let E(x, y) a binary relation symbol, and let T a theory

which says that E is an equivalence relation with infinitely many equivalence

classes. Then for any M |= T , CME(x,y)(M) is not D-maximal.

Proof. It suffices to show that CME(x,y)(M) is not closed with respect to the Ty-

chonov topology, or, by Lemma 4.2.3, that M does not realize every type in

4This means that N realizes every type in Sϕ(A) for every A ⊆|M|+ N , for every formula

ϕ(x̄, ỹ). Thus in particular, N realizes every type in Sϕ(M).
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Sϕ∗(M). Let

p(y) = {¬E∗(y, a) : a ∈M}.

This is a complete E∗ type overM, consistent because T has∞-many equivalence

classes. But clearly it is not realized by any element of M. Therefore CME(x,y)(M)

is not closed in M2, and so is not D-maximal.

Proposition 4.2.5. Let T = DLO, the theory of dense linear orders, in the

language L = {<}. Let ϕ(x, y) = y < x. Then for any model M |= T , CMϕ (M)

is not D-maximal.

Proof. Fix some element a∗ ∈M. Let p be the type defined by

p(y) = {y < a : a ≥ a∗} ∪ {¬(y < a) : a < a∗}.

Then p(y) is consistent but not realized in M, and so CMϕ (M) is not D-maximal.

We can ask whether a partitioned formula (with respect to some complete

theory) being D-maximal is a property of the theory, or the model. That is, if

a partitioned formula is D-maximal with respect to some model of a complete

theory T , is it necessarily D-maximal with respect to every model of T? The

answer turns out to be negative.

Theorem 4.2.6. There is a complete theory T , models N , M of T , and a par-

titioned formula ϕ(x̄, ỹ) such that CMϕ (M) is D-maximal, but CNϕ (N ) is not.

Proof. Let CONV (Q) denote all convex subsets of the rationals. Define a lan-

guage L = {X,Y,R(x, y)}, where X and Y are unary predicates, and R is

a binary relation. Let T be the complete L-theory of the 2-sorted structure
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Q = (Q, CONV (Q), R(x, y)), where x is of the first sort, y of the second, and for

any x, y,

Q |= R(x, y) ⇐⇒ x ∈ y.

Then T has one model where R(x, y) is D-maximal, namely Q. On the other

hand, by Löwenheim-Skolem, there must be some countable model M of T . We

claim that CMR (M) is not D-maximal.

Note that R is unstable, because it has the descending chain condition. There-

fore, |SR∗(M)| > |M|, and so M can not realize every type in SR∗(M). By

Lemma 4.2.3, the theorem is proved.

4.2.1 Remaining questions

It would be interesting to characterize the relations which are “unclosable” in

the sense of Lemma 4.2.3. The examples show that such families can be stable

(as in Proposition 4.2.4) or unstable (Proposition 4.2.5). Any parameterized p.p

formula in a pure injective R-module5 has a type space in which all types are

realized [30]. This therefore provides an example of a non-trivial family which

can be closed. Pure injective R-modules seem to be a promising hunting ground

for natural examples of D-maximal but not S-maximal classes.

5Any direct sum of finite cyclic groups (considered as a Z-module) is an example of a pure

injective module, as is any injective module.

89



Chapter 5

Conclusion

Here we will briefly summarize the results of the previous chapters, and give some

open problems.

In Chapter 2, the notion of VC linearity is defined, and a series of families are

shown to be VC linear, including all families definable in an R-module. We note

that linearity holds in dimension 1 of o-minimal and strongly minimal structures,

as well as on sets of indiscernibles, and show that there is no 1-dimensional

definable cell which connects all members of a super-linear concept domain in

an o-minimal structure. We show that the Veronese embedding of geometric set

systems preserves linearity. Tychonov closures are introduced, and used to prove a

sufficient condition for VC linearity of euclidean half spaces. A new proof is given

for linearity of half planes, and a stable family is exhibited which is super-linear in

VC dimension. Finally, this chapter shows that while VC dimension may increase

superlinearly as the number of parameters is increased, independence dimension

does not.

Chapter 3 translates the idea of compression schemes into the language of

types, and shows that all set systems which are stable (in the model theoretic

sense) have compression schemes of finite size. A slightly more informative ar-
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gument is given in the case that the theory is NFCP. We characterize consistent

compression schemes in topological terms, and discuss compressions of boolean

combinations of formulas.

Chapter 4 discusses the relationship between S-maximal and D-maximal

definable families. We show that while S-maximality is naturally first-order,

D-maximality is not.

5.1 Open Problems

It remains to be shown whether superlinear growth in VC dimension is possible

in a dependent theory. In particular, it is unknown whether superlinear growth

in VC dimension is possible in DLO. The question of VC linearity in intersections

of half spaces remains unsolved as well.

We also leave open the “weak Warmuth conjecture,” which states that every

set system of finite VC dimension has a compression scheme of finite size. If true,

this would give a new characterization of dependent theories somewhat similar

to the “definable types” characterization of stable theories. Less generally, we

wonder whether any family in an o-minimal structure has a compression of finite

size.
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Appendix A

Appendix: Some Geometric Compression Schemes

In this appendix, we give several geometric examples of compression schemes.

The material is taken from [13, 14].

Let X any set, and C ⊆ P(X). We think elements of C as indicator (or

characteristic) functions.

That is, for c ∈ C and x ∈ X, c(x) =





1 if x ∈ c,

0 if x /∈ c.
Define C<∞ = {c ¹A: A ⊆ X, finite, and c ∈ C}, and C≤d = {c ¹A0 : A0 ⊆

X, |A0| ≤ d and c ∈ C}.

Definition A family C ⊆ P(X), is said to have a compression scheme of size d

if there are are two functions

comp : C<∞ → C≤d

and

exp : C≤d → P(X)

such that for every finite A ⊆ X, and every c ∈ C, there exists B ⊆ A such that

comp(c ¹A) = c ¹B, and exp ◦ comp(c ¹A) is consistent with c ¹A.
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A.0.1 Axis Parallel Rectangles

A simple example of a compression scheme is found on the class of all axis parallel

rectangles, illustrated in Figure A.1. For any finite set of points in R2, labeled

consistently with some rectangle, the smallest rectangle containing the positively

labeled points has the same trace on the finite set as the original rectangle. This

allows for the following compression scheme:

1. The compression function saves the (at most) four points representing the

topmost, leftmost, rightmost, and bottommost points enclosed in the orig-

inal rectangle.

2. The expansion function returns the smallest rectangle containing the saved

points.

It is then easy to see that the expansion rectangle is consistent with the

original rectangle on the given finite set.

Figure A.1: Select the leftmost, rightmost, lowest and highest points included in

the rectangle.
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A.0.2 Intervals

There is a compression scheme of size 2 definable on the class of all intervals on

a dense linear order. We may assume that the particular model in question is,

say (R, <), and that

CInt = {(a, b) : a, b ∈ R}.

Now consider an element (a, b) ∈ CInt on a finite A ⊆ R. For a compression,

save the rightmost point (if one exists) in (a, b) ∩ A, and the rightmost point

(if one exists) in {c ∈ A : c ≤ a}, both labeled accordingly.1 Non-degenerate

compression sets are then of the form {(c, 0), (d, 1)} (see figure A.2), and can be

expanded as (c, d]. Note that though the expansion concept is not in CInt, it is

in the Tychonov closure, cl(CInt). The degenerate compressions expand in the

obvious way. For example, {(d, 1)} expands to (−∞, d].

Figure A.2: Select the rightmost negative and rightmost positive examples.

Interestingly, this same scheme generalizes to a union of intervals. Let

tmi=1CInt = {(a1, b1) ∪ · · · ∪ (am, bm) : ak, bk ∈ R}.

Figure A.3 illustrates a compression scheme for this class. An expansion can

be given by ordering the compression set, and using half open intervals in a way

similar to the first example. This expansion also happens to be in the Tychonov

closure of the original class.

1That is, the expansion function knows whether each saved point was inside or outside (a, b).
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Figure A.3: Select the rightmost negative and rightmost positive examples, where

they exist, for each interval.

In her thesis, Sally Floyd gives a large number of compression algorithms,

and shows many concept classes to be compressible. Warmuth and Floyd demon-

strate, among other things, that any S-maximal class C has a compression scheme

of size at most VC(C).
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