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A B S T R A C T   

A review of studies published in Industrial Marketing Management over the past two decades and more shows that 
these studies not only used partial least squares structural equation modeling (PLS-SEM) widely to estimate and 
empirically substantiate theoretically established models with constructs, but did so increasingly. In line with 
their study goals, researchers provided reasons for using PLS-SEM (e.g., model complexity, limited sample size, 
and prediction). These reasons are frequently not fully convincing, requiring further clarification. Additionally, 
our review reveals that researchers' assessment and reporting of their measurement and structural models are 
insufficient. Certain tests and thresholds that they use are also inappropriate. Finally, researchers seldom apply 
more advanced PLS-SEM analytic techniques, although these can support the results' robustness and may create 
new insights. This paper addresses the issues by reviewing business marketing studies to clarify PLS-SEM's 
appropriate use. Furthermore, the paper provides researchers and practitioners in the business marketing field 
with a best practice orientation and describes new opportunities for using PLS-SEM. To this end, the paper offers 
guidelines and checklists to support future PLS-SEM applications.   

1. Introduction 

Structural equation modeling (SEM) is firmly established in mar
keting research as a method to estimate (complex) models with re
lationships and chains of effects between theoretical constructs, which 
cannot be directly observed (Hair, Hult, Ringle, Sarstedt, & Thiele, 2017; 
Martínez-López, Gázquez-Abad, & Sousa, 2013). The composite-based1 

partial least squares structural equation modeling (PLS-SEM) method 
has become increasingly popular over the past two decades and more to 
analyze such models in marketing (e.g., Hair, Hult, et al., 2017; Sarstedt 
et al., 2022). This also applies to various other business disciplines such 
as accounting (e.g., Nitzl, 2016; Nitzl & Chin, 2017), family business 
research (e.g., Hair et al., 2021; Sarstedt, Ringle, Smith, Reams, & Hair, 
2014), hospitality and tourism (e.g., Ali, Rasoolimanesh, Sarstedt, 
Ringle, & Ryu, 2018; Usakli & Kucukergin, 2018), human resource 
management (e.g., Legate, Hair, Chretien, & Risher, 2022; Ringle, Sar
stedt, Mitchell, & Gudergan, 2020), information systems (e.g., Benitez, 

Henseler, Castillo, & Schuberth, 2020; Hair, Hollingsworth, Randolph, 
& Chong, 2017), operations management (e.g., Bayonne, Marin-Garcia, 
& Alfalla-Luque, 2020; Peng & Lai, 2012), and management with 
various specializations (e.g., Cepeda-Carrión, Cegarra-Navarro, & Cillo, 
2019; Hair et al., 2021; Kaufmann & Gaeckler, 2015; Magno, Cassia, & 
Ringle, 2022; Richter, Sinkovics, Ringle, & Schlägel, 2016). These 
research fields often use the method to analyze the sources of compet
itive advantage and success factors regarding relevant target constructs 
(also see Albers, 2010). Business marketing researchers specifically 
emphasize certain method attributes, such as PLS-SEM helping re
searchers to estimate relatively complex models with minimal sample 
requirements (e.g., Siahtiri, Heirati, & O'Cass, 2020; Statsenko & Corral 
de Zubielqui, 2020; Yeniaras, Kaya, & Dayan, 2020). The latter can be 
advantageous given that recruiting a large number of respondents is 
often challenging in business marketing research due to small pop
ulations and limited time of potential respondents (e.g., employees and 
managers). 
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While business marketing researchers increasingly use PLS-SEM (see 
the review results with regard to publications in Industrial Marketing 
Management in Fig. 1), they face several challenges in terms of using the 
method correctly, including in appropriate contexts. First, PLS-SEM is 
not the only available SEM method, as covariance-based SEM is an 
alternative (Davvetas, Diamantopoulos, Zaefarian, & Sichtmann, 2020). 
Comprehensive formal explanations of the PLS-SEM method (Chin, 
1998; Henseler, Ringle Christian, & Sarstedt, 2012; Lohmöller, 1989, 
Chapters 2 and 3; Tenenhaus, Vinzi, Chatelin, & Lauro, 2005; Wold, 
1982) have helped business marketing researchers understand the 
technical distinctions between the SEM methods (also see, for instance, 
Rigdon, 2012; Rigdon, Sarstedt, & Ringle, 2017): The primary statistical 
objective of PLS-SEM is prediction in that it minimizes the amount of 
unexplained variance in the structural model's dependent constructs and 
in the measurement model's indicators (Sarstedt, Ringle, & Hair, 2022; 
Wold, 1982); in contrast, while prediction is possible, the primary sta
tistical objective of covariance-based SEM is confirming theory by esti
mating a new (i.e., model-implied) covariance matrix with minimum 
difference to the original observed covariance matrix (Hair, Black, 
Babin, & Anderson, 2018, Chapter 13). In the sense of Gregor’s (2006) 
taxonomy, covariance-based SEM emphasizes explanation, whereas 
PLS-SEM focuses on prediction, but also facilitates explanation (Hair, 
2021a; Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Seminal work 
has referred to this dual emphasis as PLS-SEM's dual purpose or causal- 
predictive nature (Jöreskog & Wold, 1982; Wold, 1982). While these 
technical distinctions offer important guidance, additional aspects also 
warrant attention when choosing the adequate SEM method for a spe
cific research problem. However, researchers in the field of applied 
business marketing often seem unaware of these aspects. Similarly, in 
comparison to consumer marketing research, there are no flagship PLS- 
SEM applications in business marketing research that researchers could 
reference. Consumer marketing researchers (e.g., Guenther & Guenther, 
2021), for instance, can use the American Customer Satisfaction Index 
(ACSI) model as an example of a well-known application to determine 
the relevance of the drivers of consumers' satisfaction and loyalty 
(Fornell, Johnson, Anderson, Cha, & Bryant, 1996; Fornell, Morgeson, 
Hult, & VanAmburg, 2020, Chapter 5). 

Second, staying abreast of PLS-SEM method developments is a 
challenge for applied business marketing researchers. They often lack 
the time resources to review the latest methodological developments, as 
these compete with the time required to identify compelling research 
questions, theory, and frameworks, in addition to a usually very time- 
consuming recruitment of respondents and data collection. However, 
PLS-SEM's methodological advances and usage recommendations evolve 
rapidly, requiring regular reflection and review (Hair, 2021b; Sarstedt, 
Hair, & Ringle, 2022). An additional challenge is that relevant meth
odology articles are scattered across far more journals than those that 
business marketing researchers read regularly. Such journals include, 
for instance, the Information Systems Journal, the Journal of Family 
Business Strategy, MIS Quarterly, British Journal of Mathematical and 
Statistical Psychology, and Computations Statistics and Data Analysis. 

Against this backdrop, the purpose of this paper is to provide applied 
business marketing researchers with tailored, up-to-date guidance on 
when a PLS-SEM approach is appropriate, how to avoid the common 
errors in previous business marketing applications, and which advanced 
analytical techniques they should consider to validate their results and 
create deeper insights, thereby improving their projects' contribution 
level. Table 1 summarizes the paper's purpose, combining descriptive 
and prescriptive objectives to create value for business marketing 
researchers. 

We base our discussion on an extensive review of all PLS-SEM ap
plications in business marketing studies published in Industrial Marketing 
Management (IMM) between 1998 and 2020 to ensure that we provide 

tailored guidance.2 This review of actual applications is advantageous 
compared to a generic method review, as it allows us to focus on issues 
that mainly matter and are worth discussing in the business marketing 
research context. Consequently, we only briefly discuss aspects with 
which business marketing researchers are very familiar. We contrast the 
current state of PLS-SEM applications with up-to-date methodological 
PLS-SEM developments to identify issues such as common mis
conceptions, inappropriate analyses, and missed analytical opportu
nities. We specifically focused on IMM as the leading business marketing 
journal, as its content provides a good snapshot of PLS-SEM applications 
in quality studies investigating various business marketing research 
topics. Our review is based on 140 relevant research articles. 

In the next sections, we present our review and the discussion by 
chronologically viewing each PLS-SEM research project, examining the 
relevant issues in three decision areas: (1) when to use PLS-SEM, (2) 
which common analyses, thresholds, and tests to report, and (3) which 
advanced analyses to consider (Web Appendix A). To summarize our key 
points, we provide guidelines and checklists that researchers can use in 
future PLS-SEM projects. The Web Appendix also illustrates underutil
ized common PLS-SEM procedures using an example business marketing 
dataset (Web Appendix B). We conclude with a general discussion and 
recommendations for further PLS-SEM-related research. 

2. When to use a PLS-SEM approach 

Since there are different SEM approaches—most prominently PLS- 
SEM and covariance-based SEM (Hair, Hult, et al., 2017; Hoogland & 
Boomsma, 1998)—business marketing researchers need to determine 
which approach to use.3 Although both approaches allow researchers to 
estimate models with constructs that represent theoretical concepts in 
statistical models, either through common factors or composites, they 
differ fundamentally in the way they do so (e.g., Rigdon et al., 2017). A 
study's objectives and assumptions regarding the underlying theoretical 
constructs, as well as the data characteristics, determine the most 
appropriate approach (Jöreskog & Wold, 1982; Sarstedt et al., 2016). 
Acknowledging that this discussion in the literature is ongoing (e.g., 
Petter, 2018; Rönkkö, McIntosh, Antonakis, & Edwards, 2016; Sarstedt 
et al., 2016), we offer two preliminary guiding questions as well as two 
empirical considerations to help researchers substantiate their concep
tual and empirical reasons for choosing PLS-SEM. 

Researchers mainly use an SEM approach to theoretically establish a 
model with constructs. They subsequently aim to estimate and assess the 
hypothesized relationships between the structural model's constructs. 
Because constructs are not directly observable, they are assumed to be 
determined and estimated by an observable set of indicators through the 

2 To identify relevant papers for our review, we used IMM's own journal 
search function and the search functions of the three major research data
bases–EBSCO Business Source Complete, Thomson Reuters Web of Science, and 
ProQuest ABI/INFORM Global–to identify studies in which the authors used PLS- 
SEM for the empirical analysis. Two independent coders with expert knowledge 
of the PLS-SEM technique read each article (Cohen's κ = 0.83) to assess how the 
study applied PLS-SEM.  

3 This article focuses on the composite-based PLS-SEM method. However, 
researchers have presented various alternatives to PLS-SEM. For instance, 
consistent PLS-SEM (PLSc-SEM; Dijkstra, 2010, 2014; see also Dijkstra & 
Henseler, 2015b; Dijkstra & Schermelleh-Engel, 2014), its PLSe1/PLS2e ex
tensions (Bentler & Huang, 2014; Huang, 2013), or Yuan, Wen, and Tang’s 
(2020) approach based on Cronbach's α, adjust the parameter estimates to 
accommodate common factor models. Moreover, the generalized structured 
component analysis (GSCA; Hwang & Takane, 2004; Hwang & Takane, 2014) 
represents a component-based SEM alternative (also see, for example, Cho 
et al., 2020; Cho et al., 2022b; Cho, Lee, Hwang, Sarstedt and Ringle, 2022a; 
Hwang, Ringle, & Sarstedt, 2021), which also allows to mimic common factor 
model results via the integrated GSCA approach (IGSCA; Cho et al., 2022c; 
Hwang et al., 2021, Hwang, Sarstedt, Cho, Choo, & Ringle, 2023). 
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measurement model (Davvetas et al., 2020; Hair, Sarstedt, Ringle, & 
Mena, 2012). Measurement theory determines the choice of indicators 
and the directionality between the indicators and the constructs in the 
measurement model from a conceptual perspective (Sarstedt et al., 
2016). When estimating the model, regardless of the SEM technique 
used (e.g., PLS or covariance-based), this generates proxies of the con
structs based on the available data of observed indicators in the mea
surement model and the method-specific mathematical operations 
(Rigdon, 2012). The proxies resemble, but do not perfectly represent and 
measure, the unobservable theoretical constructs, which means that a 
construct proxy cannot be equated with the underlying theoretical 
construct, as there is a validity gap between them (Rhemtulla et al., 
2020; Rigdon, 2016). 

In line with the above considerations, we follow the perspective 
suggested by Sarstedt et al. (2016), who broadly distinguish between the 
theoretical layer and the layer of statistical computations. On the 
theoretical layer, researchers determine the constructs, which then 
become part of their theory and model. They use measurement theory to 
identify a relevant set of observable indicators to determine the con
structs and nature of the relationships between indicators and constructs 
(e.g., reflective or formative). On the statistical estimations layer, the 
available data and a method's mathematical operations provide proxies 
for the constructs. Consequently, we do not attribute terms such as 
reflective and formative to a specific method and its mathematical op
erations (e.g., common factor generation when using covariance-based 
SEM, and composite generation when using PLS-SEM), but to the layer 
of measurement-theoretical considerations. The layers are intertwined 
in that SEM methods rely on different entities (i.e., common factors or 
composites) to statistically approximate the constructs, as specified by 
the researchers. However, as the underlying data generation process is 
unknown, there is necessarily a validity gap between these two layers. 
For example, researchers may operationalize a construct reflectively, 
but the underlying data generation process, unknown to the researcher, 
could be well represented by a composite whose indicators covary 
strongly. Researchers can therefore use different methods (e.g., 
covariance-based SEM and PLS-SEM) to obtain proxies of theoretically 
established constructs, for example with a reflective or a formative 
measurement model. 

PLS-SEM and covariance-based SEM applications usually differ 
regarding how they use the observed indicators to create construct 
proxies (Cho, Sarstedt, & Hwang, 2022a; Rigdon et al., 2017; Sarstedt 
et al., 2016). Normally, PLS-SEM applications specify a construct's proxy 
as a composite, that is a weighted linear combination of its indicators. In 
contrast, covariance-based SEM normally splits the indicators' variance 
into variance that a proxy's indicators share and residual variance. The 
former is used to form the construct proxy via a common factor, while 
the latter is excluded from the model as measurement error (Sarstedt, 

Fig. 1. Number of articles with PLS-SEM applications in Industrial Marketing Management (1998–2020).  

Table 1 
Research objectives.  

Objective Description 

1. Critically review the current state of 
PLS-SEM applications 

We take stock of the current state of PLS- 
SEM applications in business marketing 
research by reviewing Industrial 
Marketing Management articles in which 
PLS-SEM was applied over the past two 
decades and more. Our review reveals 
certain misconceptions, the use of 
inappropriate tests, even in very recent 
studies, and a lack of testing, which is 
required to fully demonstrate results' 
validity. 

2. Guide contemporary research by 
presenting the reasons and motives 
for using PLS-SEM 

This research guides current projects by 
synthesizing the recent literature on 
researchers' motivation for using the PLS- 
SEM approach. The choice of PLS-SEM 
should be based on conceptual 
considerations regarding the nature of 
the constructs under investigation and be 
related to the available data's 
characteristics (Rhemtulla, van Bork, & 
Borsboom, 2020; Rigdon, 2016; Sarstedt 
et al., 2016). Given alternative SEM 
approaches, such as covariance-based 
SEM (e.g., Davvetas et al., 2020), sound 
motivation is important. We offer this 
guide as a preliminary orientation, 
recognizing that discussions of these 
points are still at an early stage. 

3. Guide contemporary research on 
common PLS-SEM procedures 

We review prior applications in Industrial 
Marketing Management critically in terms 
of their implementation of common PLS- 
SEM estimation and evaluation 
procedures. We discuss relevant remedies 
(e.g., tests or appropriate thresholds) for 
the issues we identified. We also provide 
up-to-date checklists detailing 
recommended, optional, and non- 
recommended tests and measures, in 
addition to relevant cut-off values and 
thresholds. 

4. Guide contemporary research on 
advanced PLS-SEM procedures 

Many studies do not use advanced criteria 
and analytic methods. Consequently, 
many researchers miss the substantive 
opportunity to expand their analyses' 
quality and scope. We address the 
advanced methods' underutilization in 
business marketing research by offering 
our Web Appendix A, which provides 
extensive guidance: For each advanced 
method, it explains the method's purpose 
and procedure, as well as key application 
considerations.  

P. Guenther et al.                                                                                                                                                                                                                               



Industrial Marketing Management 111 (2023) 127–142

130

Ringle, & Hair, 2022). Because a composite specification does not 
remove indicators' residual variance, some covariance-based SEM pro
ponents who, for instance, assume common factor models to obtain re
sults, criticized the PLS-SEM approach for being imprecise and biased. 
This criticism even led to simulation studies and journal editorials 
rejecting the approach (e.g., Rönkkö et al., 2016; Rönkkö & Evermann, 
2013). Nevertheless, several publications strongly countered this 
perspective and similar PLS-SEM-related criticism (e.g., Henseler et al., 
2014; Petter, 2018; Petter & Hadavi, 2021; Russo & Stol, 2022; Sarstedt 
et al., 2016; Sharma, Liengaard, Sarstedt, Hair, & Ringle, 2022). In 
essence, critics assume that reflectively-specified constructs can only be 
represented by common factors, without acknowledging that the un
derlying data generation process could better be represented by a 
composite model (Sarstedt et al., 2016). 

In marketing and business applications, data might not strictly follow 
the common factor model logic on which covariance-based SEM is 
usually based (Rhemtulla et al., 2020; Rigdon, 2016; Sarstedt et al., 
2016). For instance, if an indicator's residual variance has a certain 
meaning for the theoretical construct and is therefore not actually a 
measurement error, estimates based on a common factor model can be 
biased, while a composite model would provide more accurate results, 
even when the construct is specified reflectively (Rhemtulla et al., 2020; 
Sarstedt et al., 2016). Indicators' residual variance may have meaning if 
the theoretical construct is not strictly unidimensional, such as when an 
indicator captures an aspect of a construct (e.g., satisfaction with a 
provider's services as part of the satisfaction with the provider). Since 
the wording of survey items measuring the same construct inevitably 
varies, researchers can never completely rule out small violations of 
strict unidimensionality. Indicators' residual variance may also have 
meaning when indicators interact somewhat when forming the 
construct (e.g., satisfaction might be particularly high if satisfaction 
with the services as well as the staff is high). There are other scenarios 
that also lend meaning to indicators' residual variance (Rhemtulla et al., 
2020). If this is the case, a composite model should provide more 
appropriate results because it fully accounts for the variance in in
dicators, meaning that the composite construct proxies, and therefore 
the broader model, capture the meaning of the indicators' residual 
variance. Keep in mind that the proxy is only an approximation, 
considering that a range of different proxy scores can be generated that 
are all consistent with the model (Hair & Sarstedt, 2019; Rigdon, Becker, 
& Sarstedt, 2019). This creates uncertainty regarding whether the 
construct proxy is equivalent to the theoretical construct (see Rigdon 
et al., 2019 and Rigdon, Sarstedt, & Moisescu, 2023 on this uncertainty 
concept derived from metrology research). 

Simulation studies (e.g., Cho, Sarstedt, & Hwang, 2022b; Rhemtulla 
et al., 2020; Sarstedt et al., 2016) comparing the common factor model 
(typically used in covariance-based SEM) with the composite model 
(typically used in PLS-SEM) in respect of different data scenarios show 
that previous studies that dismissed PLS-SEM (e.g., Goodhue, Lewis, & 
Thompson, 2012; see also Marcoulides, Chin, & Saunders, 2012) 
underestimated the method's potential strengths. First, prior simulation 
studies (e.g., Hwang, Malhotra, Kim, Tomiuk, & Hong, 2010; Reinartz, 
Haenlein, & Henseler, 2009) usually used a population model in line 
with the common factor specifications to compare the common factor 
model estimations (that covariance-based SEM provided) with the 
composite model estimations (that PLS-SEM provided). Due to this study 
design, covariance-based SEM appeared comparatively advantageous, 
while the PLS-SEM estimation results showed a discrepancy that some 
researchers call a PLS-SEM bias (e.g., Goodhue et al., 2012). This 
discrepancy is however only an outcome of comparing apples with or
anges (Marcoulides et al., 2012). Specifically, Cho, Sarstedt, and Hwang 
(2022b) and Sarstedt et al. (2016) demonstrated that common factor 
model estimations (e.g., by using covariance-based SEM) have advan
tages when used with common factor data in simulation studies, while 
composite model estimations (e.g., by using PLS-SEM) have advantages 
when used with simulated composite data. Second, covariance-based 

SEM estimates are relatively sensitive to changes in the data charac
teristics, while PLS-SEM estimates obtained by using data that deviates 
from composite requirements are comparably less variable and sensi
tive. Given these results, and because the true underlying data structure 
is only known in simulation studies and unknown in research applica
tions, recent simulation studies indicate that a PLS-SEM-obtained com
posite model estimation is a sound choice to ensure the validity of 
applied researchers' results (Cho, Sarstedt, & Hwang, 2022b; Sarstedt 
et al., 2016). 

Against this background, researchers can motivate a composite 
model estimation by using PLS-SEM to obtain proxies for the theoreti
cally established constructs by considering the following two questions 
(also see Rigdon et al., 2017):  

• Could the indicator residual variances have meaning for the focal 
construct or the additional constructs in the model? 

If it cannot be ruled out that the residual variances might have a 
specific meaning, this could justify using a PLS-SEM approach with a 
standard composite model implementation, or using covariance- 
based SEM with composite variables (Grace & Bollen, 2008), since 
common factor results are highly sensitive to residual variance that is 
not a measurement error (Rhemtulla et al., 2020; Sarstedt et al., 
2016). In the light of the above discussion, meaningful residual 
variance may be present if the proxied construct is not strictly uni
dimensional, and if the indicators interact partially when forming the 
construct. Similarly, from an empirical perspective, researchers can 
motivate their use of PLS-SEM with a composite model based on 
moderate observed factor loadings. For instance, a 0.50 factor 
loading means that a common factor model would use only 25% of 
an indicator's variance to form the construct proxy. This raises the 
question whether there is sufficient certainty to assume that 75% of 
the indicator variance is a measurement error with no further 
meaning.  

• Is the measurement error unlikely to be large? 
In PLS-SEM estimates based on a composite model, bias is a 

function of the measurement error size, which might not be very 
large when researchers use established and refined construct mea
sures (Sarstedt et al., 2016). In addition, PLS-SEM's weighting pro
cedure, which is based on correlations, to some extent reduces the 
measurement error's impact. This is because by definition, an in
dicator's (orthogonal) measurement error limits the amount of cor
relation that this indicator can achieve with the other indicators. The 
resulting smaller weight of indicators with a larger measurement 
error attenuates the measurement error's impact on the construct 
proxy (Rigdon, 2016). Additionally, even without attenuation via 
weighting, the impact of indicators' measurement error on the 
construct proxy is mitigated from a statistical perspective. This is 
because the proxy's variance is the sum of its indicators' variances 
(which comprise measurement error), plus twice the indicators' co
variances (which do not contain measurement error), all of which 
give substantially greater weight to that part of the indicators' vari
ance that is free from measurement error (Rigdon, 2016). 

In addition to these deliberations and according to the results of, for 
instance, Cho, Sarstedt, and Hwang (2022b) and Sarstedt et al. (2016), 
researchers can consider comparing the common factor model estima
tion results (e.g., by using covariance-based SEM) and composite model 
estimation results (e.g., by using PLS-SEM). While PLS-SEM estimates 
common factor models with data that stem from a common factor data 
population relatively precisely (e.g., Reinartz et al., 2009), covariance- 
based SEM tends to cause a large bias when estimating composite 
models with data that stem from a composite data population. Sarstedt 
et al. (2016) demonstrated that model estimation by means of PLS-SEM 
erroneously fitted to data following a common factor structure, causes a 
bias only one eleventh of that which a model estimation by means of 
covariance-based SEM erroneously fitted to data following a composite 
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structure causes.4 Furthermore, the covariance-based SEM approach's 
non-convergence might indicate that a covariance-based SEM with a 
common factor model is fitted to data that follows a composite structure. 
Specifically, in respect of a standard model estimation by means of 
covariance-based SEM, Sarstedt et al. (2016) reported a 50% or higher 
chance of non-convergence in 32 of the 40 assessed composite data 
scenarios (see their Table 3). 

Business marketing researchers should use the discussed guidance 
for their next PLS-SEM application, but should also pay attention to 
recent developments in this area. Specifically, the discussion of and 
research on how to obtain proxies (i.e., common factor versus composite 
model estimations) for the theoretical constructs under consideration (e. 
g., reflective or formative variables) and for a given dataset is an 
important subject of future research. This research will need to deter
mine how to minimize the validity gap between the statistically ob
tained proxies and the theoretical constructs. 

3. Author-provided rationales for using PLS-SEM and common 
modeling issues 

Our review of PLS-SEM applications in IMM reveals that no study 
took the considerations discussed above into account when motivating 
their use of PLS-SEM or, more specifically, their composite model.5 

Future PLS-SEM applications may take these considerations into ac
count. Instead, authors provided the rationales that Table 2 lists as 
secondary motivators. 

The author-provided rationales for using PLS-SEM generally 
demonstrate the aspects that are particularly relevant for business 
marketing researchers (e.g., estimation with restricted samples) and are 
related to common modeling issues, such as determining the required 
minimum sample size, handling a non-normal data distribution, 
assessing formative and reflective measurement, and demonstrating 
predictive power. These modeling issues are linked to PLS-SEM analyses, 
thresholds, and tests, which are not always provided or are used 
improperly. The following sections discuss these modeling issues and 
summarize in comprehensive checklists the best-practice recommenda
tions for each rationale as provided in recent key PLS-SEM literature. We 
discuss the author-provided rationales and related modeling issues in 
the order shown in Table 2 and also use recent literature to highlight 
certain shortcomings and limitations.6 In respect of the discussions, we 
generally refer to the results of the entire sample of reviewed PLS-SEM 
applications. However, we split the overall sample into three distinct 
time periods in the overview tables, which reveals the trends over time 
(nbefore 2012 = 37, n2012–2016 = 41, and n2017–2020 = 62). 

3.1. The required sample size and treatment of missing values 

Almost two-thirds of the reviewed studies motivate their use of PLS- 
SEM by arguing that the technique can handle relatively small sample 
sizes. This argument is popular in business marketing research contexts, 

because the underlying study populations used to research interesting 
phenomena, such as firms' new technology use, might be naturally 
limited, as only a few firms use the relevant technology. Similarly, 
compared to consumers, employee and manager informants are more 
difficult to recruit, as they are less numerous and have limited time 
available, while confidentiality and anonymity concerns as well as 
company rules and policies may constrain them (Greer, Chuchinpra
karn, & Seshadri, 2000). Although PLS-SEM's limited information esti
mator allows it to produce estimates for small samples for which 
covariance-based SEM fails to converge (Chin & Newsted, 1999), the 
argument needs to be treated carefully. If a model is simply estimable, 
this does not mean that it produces good estimates. In PLS-SEM, the 
parameter estimates' precision is inversely related to the number of 
observations used for an estimation (Marcoulides & Saunders, 2006). 
Consequently, a smaller sample tends to result in larger estimation er
rors and less statistical power to detect existing effects in the population 
(type II error). Our review of IMM studies reveals that sample sizes can 
be as small as 24 observations, which is problematic. Previous research 
showed that path coefficients with a strength of 0.20 require samples of 
150–200 observations to be more or less precisely determined (Chin & 
Newsted, 1999). Reinartz et al. (2009), however, demonstrated that 
PLS-SEM can achieve sufficient statistical power with only 100 
observations. 

Nevertheless, each individual research project should assess the 
number of observations required to avoid type II errors, as the eventu
ally achieved statistical power depends on various factors. In this regard, 
a common rule of thumb suggests that the minimum required sample 
size should be ten times the maximum number of paths aiming at any 
one construct in the measurement and structural model (Barclay, Hig
gins, & Thompson, 1995). However, estimates based on this rule are 
likely to be inaccurate, because researchers should consider additional 
aspects, such as the anticipated effect sizes, as well as the number of 
indicators and reliabilities (Aguirre-Urreta & Rönkkö, 2015; Goodhue 
et al., 2012). To this end, more suitable approaches were developed to 
determine sample size, including the Monte Carlo-based power analysis 
for PLS-SEM, the inverse square root method, and the gamma- 
exponential method (Aguirre-Urreta & Rönkkö, 2015; Kock & Hadaya, 
2018). Our review reveals that business marketing research has been 
slow to adopt these suggestions, even in the most recent reviewed 

Table 2 
Author-provided PLS-SEM application rationales.   

Total 
sample (n 
= 140) 

Before 
2012 (n 
= 37) 

2012 – 
2016 (n 
= 41) 

2017 −
2020 (n 
= 62) 

Should be used as primary motivator: 
(P1) Given the constructs' 

nature, whether indicators' 
residual variance has 
meaning, and whether a 
measurement error is 
unlikely to be large 

0.0% 0.0% 0.0% 0.0%  

Should be used carefully and only as secondary motivator: 
(S1) A restricted sample size 60.7% 51.4% 68.3% 61.3% 
(S2) Distribution issues (non- 

normality) 37.1% 45.9% 39.0% 30.6% 
(S3) Exploratory research 31.4% 29.7% 31.7% 32.3% 
(S4) A complex structural 

model 30.0% 10.8% 29.3% 41.9% 
(S5) Formatively and 

reflectively measured 
constructs 25.7% 35.1% 19.5% 24.2% 

(S6) The model's predictive 
power 22.9% 18.9% 24.4% 24.2% 

(S7) Follow-up analyses 
requiring variable scores 1.4% 0.0% 0.0% 3.2%  

4 Note that the distinction between common factor and composite model is 
not equivalent to reflective and formative measurement – as sometimes sug
gested by PLS-SEM critics.  

5 To improve readability, we use ‘PLS-SEM’ in the following discussion 
instead of ‘PLS-SEM based on a composite model,’ as using this model together 
with the PLS-SEM algorithm is the dominant setup. However, readers should 
remember that PLS-SEM's composite model estimation results can also be 
combined with a common factor model (Dijkstra & Henseler, 2015b).  

6 The only exception is the argument that follow-up analyses require variable 
scores, which we do not address in more detail. In PLS-SEM, theoretical 
construct proxies' estimates are readily available, and can, for instance, be used 
in advanced follow-up analyses (Hair, Risher, et al., 2019). However, our re
views show that such follow-up analyses are rare. As these analyses could create 
incremental insights and are important ways of establishing results' validity, we 
revisit this issue in a dedicated section on advanced PLS-SEM issues. 
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studies. Additionally, and more fundamentally, only a few studies (<
13.9%) have determined the required sample size. In our application 
illustrations section in Web Appendix B, we address this significant gap 
by illustratively showing a recent approach, the inverse square root 
method, which is accurate and simple to use (Kock & Hadaya, 2018). 
Moreover, for samples that are small but sufficiently large to estimate 
the PLS-SEM path model adequately, researchers could use a weighting 
variable to ensure the sample's representativeness based on relevant 
characteristics. In this scenario, the weighted PLS-SEM algorithm 
(Becker & Ismail, 2016; Cheah, Nitzl, Roldán, Cepeda-Carrion, & 
Gudergan, 2021) provides model estimation results that align the sam
ple and population by means of the sample's weighting vector. However, 
our review of studies shows that business marketing researchers seem to 
be largely unaware of this possibility and therefore currently miss out on 
an appropriate approach to deal with small samples. 

As small sample sizes are a common problem, knowing how to treat 
missing values is both a critical issue and an opportunity. The papers we 
read (Table 3) frequently used listwise deletion (i.e., completely dis
carding a response with missing values). However, the broader SEM 
literature has noted increased standard errors and type II errors as 
possible problems associated with this approach due to a reduced 
number of observations (Allison, 2003). Similar issues arise regarding 
pairwise deletion, which carries the added risk of distorting parameters 
and standard errors (Allison, 2003; Kock, 2018). Nevertheless, there is 
as yet no research that specifically examines pairwise deletion's impact 
on PLS-SEM estimates. Further and importantly, our review reveals that 
imputation techniques, which could help preserve sample size, are 
underutilized (Cordeiro, Machás, & Neves, 2010; Kock, 2018; Roth, 

1994). A recent simulation study shows that imputation through mul
tiple regression or mean replacement produces the least biased path 
coefficient estimates, while mean replacement and hierarchical regres
sion imputation methods generate the least biased loading estimates 
(Kock, 2018). Although more work is needed that takes additional 
imputation techniques (e.g., median replacement and expectation- 
maximum algorithm) into account, preliminary findings suggest that 
research mainly concerned with the structural model outcomes (e.g., 
path coefficients' hypothesis tests) should use multiple regression 
imputation. In contrast, research mainly focused on the measurement 
model or on both the measurement and structural models should use 
mean replacement, while deletion approaches should be least preferred. 

3.2. Non-normal data distribution 

The second most frequent rationale researchers mention for using a 
PLS-SEM approach is the non-normality of the data and, specifically, 
that the approach does not impose strong distributional assumptions on 
the data (Hair, Risher, Sarstedt, & Ringle, 2019). For example, in the 
ACSI model (Fornell et al., 1996; Fornell et al., 2020, Chapter 5), self- 
reports of customer satisfaction are an indicator that usually has a 
negatively skewed distribution (Peterson & Wilson, 1992). In business 
marketing research, commonly used variables (e.g., performance out
comes) might not follow a normal distribution, but can instead include 
many extreme values which result in fat tails (i.e., large skewness or 
kurtosis). Many industries, for instance, include a substantial number of 
firms that perform at the extreme ends compared to their peers (i.e., they 
overperform or underperform), exceeding the numbers expected in 
normally distributed data (Bottazzi & Secchi, 2006). However, certain 
limits concerning the maximum amount of non-normality apply, which 
we discuss below. 

Simulation studies generally confirm PLS-SEM's ability to suitably 
estimate models with non-normal data (Cassel, Hackl, & Westlund, 
1999; Sarstedt et al., 2016). Nevertheless, it is important to analyze non- 
normality, including the data's skewness and kurtosis (< 2% of the 
reviewed studies did this). In extreme cases, estimation results might be 
affected if the bootstrapping distributions are highly peaked or skewed. 
A bias-corrected and accelerated (BCa) bootstrapping routine could 
offer some improvement, although it is not a remedy (Efron, 1987). In 
general, percentile-based bootstrapping is preferred to bias-corrected 
bootstrapping, because the latter results in too narrow confidence in
tervals and overly liberal significance results, while the former tends to 
be overly conservative (Aguirre-Urreta & Rönkkö, 2018). Outliers could 
be one reason for non-normality in the data; consequently, researchers 
should discuss their presence and treatment. In the reviewed studies, 
outliers were predominantly treated by deleting observations (Table 4), 
although this could introduce other problems (e.g., increased type II 
errors). Replacement (e.g., winsorizing) is a viable option (Beaumont & 
Rivest, 2009), especially with a small sample size. Alternatively, re
searchers could consider using PLS-SEM's robust extension (e.g., 
Schamberger, Schuberth, Henseler, & Dijkstra, 2020). 

3.3. Exploratory research and complex models 

Despite being the third most popular rationale regarding motivating 
the PLS-SEM approach, recent work suggests that it has a logic flaw 
(Rigdon, 2016). Earlier, we discussed the importance of motivating the 
use of a PLS-SEM approach on the basis of data characteristics. In a fully 
exploratory context, researchers would not know whether the assumed 
theoretical constructs exist and whether they could validly proxy them 
via observed indicators, which raise questions about the validity of using 
a PLS-SEM approach, or any other SEM approach for that matter (Rig
don, 2016). Recent work suggests a refined rationale: exploring estab
lished theories' complex theoretical extensions (Hair, Risher, et al., 
2019). 

PLS-SEM uses partial least squares estimation, which only estimates 

Table 3 
Review and checklist: sample size and missing values.  

Issue: determine 
minimum sample 
size and deal 
with missing 
values 

Recommendations Total 
sample 
(n =
140) 

Before 
2012 
(n =
37) 

2012 
−

2016 
(n =
41) 

2017 – 
2020 
(n =
62) 

Determine 
minimum 
sample size 

☑ 11.4% 8.1% 12.2% 13.9% 

Use the inverse 
square root 
method, the 
gamma- 
exponential 
method, or 
Monte Carlo- 
based power 
analysis 

☑ 0.0% 0.0% 0.0% 0.0% 

Use the 10- 
times rule of 
thumb 

☒ 6.4% 5.4% 7.3% 6.5% 

Report approach 
to missing 
values 

☑ 30.7% 21.6% 31.7% 35.5% 

Use listwise 
deletion 

✓ 27.9% 17.6% 29.3% 33.1% 

Use pairwise 
deletion 

☒ 0.0% 0.0% 0.0% 0.0% 

Use imputation ☑ 2.1% 4.1% 2.4% 0.8% 
Options      
mean 

replacement 
☑ 1.8% 2.7% 2.4% 0.8% 

median 
replacement 

✓ 0.0% 0.0% 0.0% 0.0% 

expectation- 
maximum 
algorithm 

✓ 0.4% 1.4% 0.0% 0.0% 

multiple 
regression 
imputations 

☑ 0.0% 0.0% 0.0% 0.0% 

Notes: ☑ recommended; ✓ optional; ☒ not recommended. 
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a subset of model parameters at a time. PLS-SEM can therefore handle 
much larger and complex models with many constructs and indicators 
(Chin, 1998). Using PLS-SEM to estimate complex models is therefore a 
perfectly reasonable justification, which Wold (1982) already pointed 
out when developing the PLS-SEM method. Nevertheless, as a (second
ary) rationale for using PLS-SEM, a complex structural model is rela
tively underutilized, despite its merit for business marketing contexts 
that require complex models for in-depth studies. Specifically, research 
in this field often shows increased model complexity due to researchers' 
interest in the interactions between multiple organizations or functional 
units comprising several groups or individuals with diverse goals, mo
tives, and behaviors (Möller, 2013). Our illustration of sample size re
quirements (Web Appendix B) and our discussion of advanced modeling 
issues (Web Appendix A) are particularly relevant in respect of complex 
models. 

3.4. Estimation of constructs with formative and reflective measurement 
models 

Theoretically established models can include reflectively and 
formatively measured constructs (e.g., Sarstedt et al., 2016). In respect 
of reflectively measured constructs, researchers assume a relationship 
from the theoretical construct to the indicators in its measurement 
model (e.g., the indicators reflect their construct). In contrast, in respect 
of formatively measured constructs, researchers assume that the in
dicators in the measurement model have a relationship to their construct 
(e.g., the indicators form the construct). Researchers' decision regarding 
how to establish constructs and which items to use should be based on 
measurement-theoretical considerations. However, data and statistical 
methods only provide proxies of such theoretically assumed constructs. 
There is a validity gap between the theoretically established constructs 
and their estimated proxies. The validity gap results from estimating 
construct proxies using a specific dataset that is never perfect and a 
statistical method that is also never perfect due to its requirements and 
limitations (also see Rigdon, 2012, 2014; Sarstedt et al., 2016; Sarstedt, 
Ringle, Henseler, & Hair, 2014). In addition to theoretically conceptu
alizing and justifying a construct's measurement, researchers should 
decide how to estimate the construct proxies by means of the method 
and data used. 

Covariance-based SEM can accommodate constructs with formative 

measurement models by using causal-formative indicators (Bollen & 
Diamantopoulos, 2017), although this requires setting specific model 
constraints for identification purposes (Bollen & Davis, 2009; Dia
mantopoulos & Riefler, 2011). Since PLS-SEM does not have comparable 
modeling requirements due to the use of composite indicators, the in
clusion of constructs with a formative measurement in models might be 
a valid (secondary) reason for using the method. To statically obtain 
proxies of reflectively measured constructs, covariance-based SEM uses 
common factor model estimations while PLS-SEM employs composite 
model estimations. More specifically, in PLS-SEM, researchers usually 
use correlation weights (Mode A) to obtain proxies for reflectively 
measured constructs, and regression weights (Mode B) for formatively 
measured constructs (e.g., Chin, 1998; Tenenhaus et al., 2005). They 
could, however, also use correlation weights (Mode A) for formatively 
measured constructs (e.g., when the goal is to relax collinearity issues; 
Hair, Hult, Ringle, & Sarstedt, 2022, Chapter 5) and regression weights 
(Mode B) for reflectively measured constructs (e.g., when predictive 
power is the goal; Becker, Rai, & Rigdon, 2013).7 Several tests are 
required to demonstrate the measurement validity of formatively and 
reflectively measured constructs. 

First, for formatively measured constructs, the literature recom
mends assessing convergent validity as well as indicator collinearity, 
relevance, and significance (Diamantopoulos & Winklhofer, 2001; Hair, 
Risher, et al., 2019). Researchers establish the convergent validity by 
undertaking a redundancy analysis (i.e., by assessing how the construct's 
formative measurement correlates with an alternative measurement) for 
which they can use a single-item measure that captures the construct's 
essence, and which researchers must add proactively to their question
naires (Cheah, Sarstedt, Ringle, Ramayah, & Ting, 2018). To establish 
convergent validity, the correlation between the two constructs should 
have a value of at least 0.708 (Hair et al., 2022, Chapter 5). However, 
none of the reviewed studies assessed convergent validity, which illus
trates a major omission in applied PLS-SEM work (Table 5). To assess 
collinearity, researchers should assess each indicator's variance inflation 
factor (VIF). Many of the studies we reviewed also lacked this test 
(Table 5). Collinearity is problematic, as it inflates standard errors, 
which inversely affects the significance levels, and it can reverse 
weights' directionality (sign) (Hair et al., 2022, Chapter 5). While a 
value of 5 is normally regarded as a critical cut-off value, multi
collinearity issues might already be present in VIF values above 3 
(Becker, Ringle, Sarstedt, & Völckner, 2015). If there are collinearity 
problems in PLS-SEM, researchers should follow the guidance that Hair 
et al. (2022; Chapter 5) offer, and, for example, group problematic items 
together under a new item. To demonstrate indicator relevance, re
searchers should report the indictors' weights, which need to be suffi
ciently different from zero. Moreover, they need to establish the 
indicator weights' statistical significance by using the bootstrapping 
procedure (Aguirre-Urreta & Rönkkö, 2018; Chin, 1998). In order to 
improve the measurement model, researchers should consider deleting 
indicators with non-significant weights if the indicator loading is non- 
significant or small (e.g., below 0.50), unless the indicator's inclusion 
is essential from a measurement theory perspective (Hair et al., 2022, 
Chapter 5; Hair, Risher, et al., 2019). 

Second, in respect of reflectively measured constructs, the literature 
recommends assessing the indicator loadings, internal consistency reli
ability, as well as the convergent and discriminant validity (Hair, Risher, 

Table 4 
Review and checklist: non-normal data.  

Issue: deal 
with non- 
normal data 
and outliers 

Recommendations Total 
sample 
(n =
140) 

Before 
2012 (n 
= 37) 

2012 
– 2016 
(n =
41) 

2017 
– 2020 
(n =
62) 

Analyze non- 
normality in 
the data 

☑ 1.4% 2.7% 2.4% 0.0% 

Report 
skewness 

☑ 1.4% 2.7% 2.4% 0.0% 

Report 
kurtosis 

☑ 0.7% 2.7% 0.0% 0.0% 

Discuss 
treatment of 
outliers 

☑ 7.1% 5.4% 7.3% 8.1% 

Delete 
observation 
(s) 

✓ 5.0% n/aa 7.3% 6.5% 

Use 
replacement 

☑ 0.7% n/aa 0.0% 1.6% 

Robust PLS- 
SEM model 
estimation 

✓ 0.0% 0.0% 0.0% 0.0% 

Notes: ☑ recommended; ✓ optional; ☒ not recommended. 
a During this period, no study detected outliers in the data; consequently, no 

treatment was required. 

7 Note again that this discussion follows Sarstedt et al. (2016) in that 
reflective measurement models can adequately be approximated by composites. 
However, if one assumes equivalence between reflective measurement models 
and common factors, consistent PLS-SEM (PLSc-SEM; Dijkstra, 2010, 2014; see 
also Dijkstra & Henseler, 2015b; Dijkstra & Schermelleh-Engel, 2014), its 
PLSe1/PLS2e extensions (Bentler & Huang, 2014; Huang, 2013), or Yuan et al. 
(2020) approach based on Cronbach's α, adjust the parameter estimates to 
accommodate common factor models. 
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et al., 2019). Regarding indicator loadings, each item (indicator) should 
have a loading of 0.708 or above to ensure that the construct proxy 
explains at least half of each item's variance (Hair, Sarstedt, Pieper, & 
Ringle, 2012). To assess internal consistency reliability (i.e., the extent 
to which the set of indicators consistently reflect the underlying 
construct), researchers should report composite reliability ρA. Addi
tional optional criteria are Cronbach's α and the composite reliability ρC. 
Because Cronbach's α can be overly conservative and composite reli
ability ρC too liberal (i.e., upward biased), researchers should perceive 
these criteria's results as the lower and upper bound of the actual 
composite reliability (Hair et al., 2022, Chapter 6). In contrast, the 
composite reliability ρA represents an approximation of the true reli
ability (Dijkstra & Henseler, 2015b), which is higher than Cronbach's α 
and lower than the composite reliability ρC. These criteria for deter
mining the internal consistency reliability should at least have a value of 
0.7 to be considered satisfactory (Hair & Sarstedt, 2019). However, 
outcomes larger than 0.95 indicate item redundancy and possible biased 
response patterns in the data, such as straight-line responses that deliver 
high inter-item correlations. In such cases, it is better to refine the items 
and/or sample. In terms of the validity checks, researchers should assess 
the convergent validity on the basis of the AVE (average variance 
extracted), and the discriminant validity on the basis of the heterotrait- 
monotrait (HTMT) ratio of correlations. The recommended threshold for 
the AVE is a minimum value of 0.50, meaning that a construct explains 
at least half of its items' variance. However, researchers should be aware 
that AVE is not useful when the number of a construct's indicators is as 
small as two, in which case AVEs larger than 0.50 would always be 
obtained in PLS-SEM. Importantly, although the literature recommends 
using the HTMT ratio instead of the Fornell-Larcker criterion to assess 
discriminant validity, most of the studies we reviewed only used the 
latter, despite its known weaknesses. According to Henseler, Ringle, and 
Sarstedt (2015), who established the HTMT ratio, the result needs to be 
smaller than the more conservative threshold of 0.85 or the more liberal 
one of 0.90. These thresholds indicate that the average indicator cor
relation across different constructs (the numerator) is substantially 
smaller than the average indicator correlation within the constructs (the 
denominator). As using static cut-off values for the HTMT ratio could 

deliver false positive results, researchers should use percentile-based 
bootstrap confidence intervals (i.e., inferential statistics) to assess the 
HTMT ratio (Franke & Sarstedt, 2019). To ensure that the HTMT ratio is 
significantly below 0.85 (or 0.90), the upper bound of the (one-sided) 
percentile-based bootstrap confidence interval using 10,000 bootstrap 
samples must be smaller than 0.85 (or 0.90). This allows researchers to 
establish reflectively measured constructs' discriminant validity.8 

Roemer, Schuberth, and Henseler (2021) proposed a different version of 
the HTMT metric (i.e., HTMT2), which yields almost the same values as 
the original metric, except for extreme model constellations (i.e., with 
very heterogenous loadings patterns and very high construct correla
tions), for which the metrics are unlikely to be significantly different 
even in this case (see also Sarstedt, Hair, Pick, et al., 2022). However, 
the HTMT metrics' limitations in face of negative indicator correlation 
patterns, for which the metrics produce extreme values or are sometimes 
not even defined, can be handled by using the adjusted HTMT+ (and 
HTMT2+) versions, which employ absolute indicator correlations 
(Ringle, Sarstedt, Sinkovics, & Sinkovics, 2023). 

3.5. Structural model assessment 

Covariance-based SEM methods estimate the model so that its co
variances are as similar as possible to the observed covariances in the 
data, which prioritizes explanation over prediction (Hair, Sarstedt, 
Ringle, & Mena, 2012). In contrast, when estimating the relationships in 
a theoretically established model, the PLS-SEM algorithm minimizes the 
unexplained variance of both the indicators and the dependent con
structs (e.g., Lohmöller, 1989, Chapter 2). As such, PLS-SEM is a causal- 
predictive method (Sarstedt, Ringle, & Hair, 2022; Wold, 1982) that 
prioritizes prediction over explanation of theoretically established 
models (also see, for example, Gregor, 2006; Hofman, Sharma, & Watts, 
2017; Sarstedt & Danks, 2022; Shmueli, 2010 on explanation and pre
diction). Even though PLS-SEM seeks to maximize the model's in-sample 

Table 5 
Review and checklist: measurement model assessment.  

Issue: assessment of formatively and reflectively measured 
constructs 

Recommendations Total sample (n =
140) 

Before 2012 (n =
37) 

2012 – 2016 (n =
41) 

2017 – 2020 (n =
62) 

Assessment of formatively measured constructs  
a) Assess convergent validity (redundancy analysis) ☑ 0.0% 0.0% 0.0% 0.0%  
b) Assess indicator multicollinearity: Report VIFs ☑ 49.0% 37.5% 50.0% 57.9% 

Recommended cut-off value of VIFs 3 30.6% 18.8% 28.6% 42.1% 
Maximum cut-off value of VIFs 5 18.4% 18.8% 21.4% 15.8%  

c) Indicator relevance: Report weights ☑ 67.3% 62.5% 71.4% 68.4%  
d) Indicator significance: Report weights' significance ☑ 58.2% 37.5% 67.9% 68.4%  

Assessment of reflectively measured constructs  
a) Indicator loadings: Report standardized loadings ☑ 100.0% 100.0% 100.0% 100.0% 

Minimum indicator loading 0.708 52.8% 52.9% 33.3% 64.9%  
b) Internal consistency reliability:      

Report composite reliability ρA ☑ 0.7% 0.0% 0.0% 1.6% 
Report Cronbach's α ✓ 61.6% 63.9% 55.0% 64.5% 
Report composite reliability ρC ✓ 83.3% 63.9% 95.0% 87.1% 
General minimum 0.708 71.0% 44.4% 82.5% 79.0% 
General maximum 0.95 46.4% 30.6% 70.0% 40.3%  

c) Convergent validity:      
Report AVE of all constructs ☑ 96.7% 93.1% 100.0% 96.8% 
Minimum AVE 0.50 91.3% 83.3% 95.0% 93.5%  

d) Discriminant validity:      
Report HTMT ratio ☑ 11.6% 0.0% 0.0% 25.8% 
Assess using percentile-based bootstrap confidence intervals instead of 
cut-off values 

☑ 3.6% 0.0% 0.0% 8.1% 

Upper bound 0.85 or 0.90     
Report Fornell-Larcker criterion ✓ 87.7% 80.6% 92.5% 88.7% 

Notes: ☑ recommended; ✓ optional; ☒ not recommended; percentages show the share of studies that reported and met the respective thresholds/cut-off values. 

8 We address the low use of inference-based HTMT ratio analyses (Table 5) by 
illustrating the process in Web Appendix B. 
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prediction, the model assessment should also consider the model's out- 
of-sample predictive capabilities (Shmueli & Koppius, 2011; Shmueli, 
Ray, Velasquez Estrada, & Chatla, 2016). This is particularly important, 
because most managerial recommendations based on PLS-SEM results 
are predictive by nature (Hair, 2021a; Hair & Sarstedt, 2021; Sarstedt 
and Danks, 2022). In this regard, researchers focus increasingly on 
impact and the relevance for practitioners; prediction is therefore likely 
to gain in importance (Hair, 2021a). For instance, managers and 
stakeholders seek research insights that enable them to optimize their 
activities' outcomes. The business marketing field is no exception and, 
consequently, various studies have used PLS-SEM to predict critical 
outcome variables, such as firm performance (e.g., Nguyen, Ngo, Bucic, 
& Phong, 2018), transaction costs (e.g., Shahzad, Ali, Takala, Helo, & 
Zaefarian, 2018), and customer monetary value (e.g., Streukens, van 
Hoesel, & de Ruyter, 2011). Beside other important assessment criteria, 
we therefore revisit appropriate measures to assess a model's prediction 
and discuss the importance of establishing both the in-sample prediction 
and the out-of-sample prediction using relevant indicators (Hair, Risher, 
et al., 2019). 

3.5.1. In-sample prediction 
Our review of PLS-SEM applications in business marketing studies 

shows that R2 is a key criterion for assessing the structural model results 
(Table 6; e.g., Chin, 2010; Haenlein & Kaplan, 2004; Roldán & Sánchez- 
Franco, 2012). R2 reveals the model's in-sample prediction capabilities 
and, from an econometric perspective, is an important indicator of 
model overfit that researchers should report. In this regard, focusing on 
the R2 values when creating increasingly complex models may promote 
overfitting, as R2 improves when more constructs explain a dependent 
construct in the structural model (Sharma, Sarstedt, Shmueli, Kim, & 
Thiele, 2019). Although researchers can adjust the R2 values to account 
for a model's complexity (i.e., by means of the adjusted R2), the 
adjustment is not sufficient to satisfactorily address the measure's ten
dency to overfit. However, researchers should primarily use the adjusted 
R2 value to compare model alternatives for a dependent construct when 
different numbers of explanators are used to explain it. 

3.5.2. Out-of-sample prediction 
To assess a model's predictive capabilities, PLS-SEM literature rela

tively early on suggested using Stone-Geisser's Q2 criterion, which is 
based on the blindfolding procedure (Chin, 1998; Tenenhaus et al., 
2005). The blindfolding procedure has the advantage that it does not 
require a holdout sample. However, this also means that it does not 
represent an out-of-sample predictive capabilities assessment proced
ure, which PLS-SEM requires (e.g., Cepeda Carrión, Henseler, Ringle, & 
Roldán, 2016). 

To address this issue effectively, Shmueli et al. (2016) and Shmueli 
et al. (2019) presented the PLSpredict procedure, which supports an out- 
of-sample predictive capabilities assessment, although it consequently 
requires a moderately larger minimum sample size. According to this 
procedure, a k-fold cross-validation randomly divides the original 
sample into k equally sized folds (e.g., 10) and predicts the values of 
each fold (holdout sample) by using model estimates based on the 
remaining folds (training sample). When PLSpredict uses a 10-fold cross- 
validation, nine folds become the training sample used to estimate the 
model, while the remaining fold serves as a holdout sample, for which 
PLSpredict computes the model's prediction errors. Researchers should 
note that the minimum sample size requirements apply to the total 
number of training sample observations in the nine folds used for the 
model estimation. In PLSpredict, each of the ten folds becomes the holdout 
sample in turn. Consequently, each observation in the dataset is ulti
mately predicted. To ensure that a solution is not based on an extreme 
random assignment of the observations to the ten folds, PLSpredict re
starts several times (e.g., 10) and computes the average prediction error 
across all the solutions (Shmueli et al., 2019). 

Finally, PLSpredict's prediction errors need to be compared to a 
benchmark of naïve prediction alternatives. One of the most naïve 
benchmarks is a prediction using the average value of the training 
sample's variables to predict the holdout sample outcomes. If PLS-SEM 
has a smaller prediction error, in other words a Q2

predict value larger 
than zero, it has superior predictive capabilities than the naïve mean 
value prediction benchmark (Shmueli et al., 2019). A more demanding 
linear model (LM) benchmark regresses each of the dependent 

Table 6 
Review and checklist: structural model assessment.  

Issue: structural model assessment and predictive power Recommendations Total sample (n =
140) 

Before 2012 (n =
37) 

2012 – 2016 (n =
41) 

2017 – 2020 (n =
62) 

Model  
a) In-sample prediction      
Report R2 ☑ 87.9% 86.5% 92.7% 85.5% 
Report blindfolding-based Q2 criterion ☒ 27.3% 24.3% 26.8% 27.8%  
b) Out-of-sample prediction      
Report PLSpredict results* ☑ 0.0% 0.0% 0.0% 0.0% 
Report CVPAT results of a predictive model assessment* ✓ 0.0% 0.0% 0.0% 0.0%  
c) Mode fit      
Report GoF index to assess the model fit ☒ 17.1% 8.1% 29.3% 14.5% 
Report SRMR and/or other criteria (e.g., GFI and NFI) to determine 

the model fit 
☑ 11.4% 0.0% 4.9% 22.6% 

Report the bootstrap-based test for model fit ✓ 0.0% 0.0% 0.0% 0.0%  

Predictors 
Report the path coefficients incl. Their significance ☑ 100.0% 100.0% 100.0% 100.0% 

Use bootstrapping as a re-sampling method ☑ 98.1% 96.3% 97.1% 100.0% 
Minimum number of bootstrap samples 10,000 2039a 810a 1779a 3386a 

Use jackknifing ☒ 2.2% 3.7% 2.9% 0.0% 
Report and interpret effect size (f2) based on the cut-off values ☑ 9.6% 8.1% 13.4% 8.1%  

Model comparison 
Report BIC or GM and compare this to an alternative plausible 

model* 
✓ 0.0% 0.0% 0.0% 0.0% 

Report CVPAT for a predictive model comparison* ✓ 0.0% 0.0% 0.0% 0.0% 

Notes: ☑ recommended; ✓ optional; ☒ not recommended. 
a average number of bootstrap samples 
* not used in the reviewed studies, as the criterion/use recommendation is relatively new. 
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constructs' indicators on all of the exogenous constructs' indicators 
(Danks & Ray, 2018; Shmueli et al., 2016). PLS-SEM must once again 
show a lower prediction error than the LM benchmark to verify its 
higher predictive power. Shmueli et al. (2019) suggested that in order to 
assess the PLSpredict results, the Q2

predict value should be positive. Sub
sequently, researchers should compare, per construct indicator, the PLS- 
SEM and the LM benchmark results' root mean square error (RMSE) or 
mean absolute error (MAE). If the PLS-SEM results show a lower RMSE 
(or MAE) for all, the majority, the minority, or none of the construct 
indicators, the model has high, moderate, weak, or no predictive capa
bilities in respect of the specific construct (Shmueli et al., 2019). Re
searchers should carry out this predictive assessment for each of the key 
target constructs in the model (e.g., customer satisfaction and customer 
loyalty in the ACSI model; Fornell et al., 2020, Chapter 5). However, the 
PLSpredict assessment is not a statistical test, but allows an assessment of 
high, moderate, weak, and lack of the model's predictive capabilities in 
respect of a certain target construct and the number of its indicators that 
favor the PLS-SEM solution. 

As an improvement of the out-of-sample prediction assessment in 
PLS-SEM, Liengaard et al. (2021) presented the cross-validated predic
tive ability test (CVPAT) for predictive model comparison, which 
Sharma, Liengaard, Hair, Sarstedt, and Ringle (2022) further advanced 
to test a model's predictive capabilities. This approach allows re
searchers to statistically compare a model with a naïve mean value 
benchmark and a more demanding linear model benchmark. Re
searchers can use the test to assess one specific target construct in 
isolation or multiple relevant target constructs simultaneously. The 
approach then confirms whether the analyzed model has significantly 
better predictive capabilities than the prediction benchmarks. Since this 
test has advantages over PLSpredict, we believe that researchers will use 
the CVPAT to confirm the predictive power of a model in future mar
keting applications. The demonstration of predictive capability is crit
ical to support management recommendations and conclusions based on 
the results of a PLS-SEM study. However, because the CVPAT is rela
tively new, we have for now included it as an optional assessment of the 
structural model in Table 6. 

3.5.3. Model fit 
The goodness-of-fit (GoF), which considers the average explained 

variance amount of indicators in reflective measurement models and of 
dependent constructs in the structural model, was an early criterion 
(Tenenhaus et al., 2005). However, Henseler and Sarstedt (2013) 
demonstrated that this criterion does not live up to its name's promise, 
because it fails to reliably distinguish between valid and invalid models. 
Nonetheless, a relatively large percentage of business marketing studies 
reported the GoF (Table 6). 

Model fit criteria commonly compare the distance between the 
sample covariance matrix and a model's implied covariance matrix. The 
smaller the distance, the better the model's fit with the data (Henseler, 
Hubona, & Ray, 2016). In this regard, researchers should consider model 
fit criteria such as the standardized root mean square residual (SRMR), 
which should be below 0.08 (e.g., Hair et al., 2022, Chapter 6). How
ever, future research may establish PLS-SEM-specific cut-off values for 
the SRMR and other fit criteria – similarly to other SEM methods (e.g., 
Cho, Hwang, Sarstedt, & Ringle, 2020; Sharma, Mukherjee, Kumar, & 
Dillon, 2005). Researchers could alternatively use a bootstrap-based test 
for the exact overall model fit in PLS-SEM (Dijkstra & Henseler, 2015a; 
Schuberth, Rademaker, & Henseler, 2022). 

Nevertheless, the question remains which fit criterion researchers 
should use, if they provide conflicting outcomes (e.g., the SRMR shows a 
relatively low value below 0.08, which indicates a model fit, while the 
bootstrap-based test for the exact overall model fit reveals that the 
model is wrong) and/or what they should do if a model fit has not been 
established in respect of a selected criterion. Moreover, in contrast to 
other SEM approaches, the variance-based PLS-SEM algorithm does not 
aim to minimize the covariance-related discrepancy and therefore the 

model fit (recall that its objective is to maximize the amount of 
explained variance in the measurement models and the structural 
model; also see Legate et al., 2022). Consequently, some researchers 
have questioned the usefulness of the model fit assessment in PLS-SEM 
(Hair, Sarstedt, & Ringle, 2019) and show that the underlying assump
tions (e.g., on the residual covariances of common factor models) are not 
considered in PLS-SEM, which can limit their appropriateness for fit 
assessment in PLS-SEM and hamper the comparison with covariance- 
based SEM fit results (Lohmöller, 1989, Chapter 2). In contrast, Schu
berth et al. (2022) stress the relevance of model fit for results assessment 
and show the metrics' efficacy using (variations of) a simple composite 
model. 

Against this background and two streams of recommendations, 
business marketing researchers should consider the causal-predictive 
nature of the PLS-SEM method (Wold, 1982; also see Chin et al., 
2020) and report both the predictive capability (e.g., by using PLSpredict) 
and the model fit (e.g., by using the SRMR criterion). Ideally, when using 
PLS-SEM, researchers show that the model fits the data and has pre
dictive capabilities. In the reviewed business marketing applications, 
only a few studies reported the SRMR, while no study reported the 
bootstrap-based test for model fit (Table 6). 

However, since a well-fitting model is not necessarily a good pre
dictive model and vice versa (e.g., Sarstedt & Danks, 2022; Shmueli, 
2010), researchers must decide what to do when the model assessment 
only supports either model fit or the predictive capabilities. In that case 
they may aim primarily to support the explanation of their theoretically 
established model, consider additional model fit assessments (e.g., the 
bootstrap-based test for the exact overall model fit), and apply model 
estimation approaches that maximize model fit (e.g., covariance-based 
SEM). However, researchers should keep in mind that other methods 
such as covariance-based SEM can achieve a somewhat more accurate 
representation of the underlying theory by focusing on maximizing 
model fit, but at the expense of lower predictive power (Evermann & 
Tate, 2016; Hair, Sarstedt, & Ringle, 2019). Alternatively, researchers 
may focus primarily on prediction and consider additional assessments 
of the model's predictive capabilities (e.g., by using CVPAT in addition 
to PLSpredict). The latter is particularly important for managerial rec
ommendations based on the PLS-SEM results (e.g., Hair & Sarstedt, 
2021; Sarstedt & Danks, 2022). Since such recommendations are pre
dictive in nature (e.g., Becker, Cheah, Gholamzade, Ringle, & Sarstedt, 
2023; Magno et al., 2022), researchers should assess and not sacrifice 
predictive power to ensure that the model produces generalizable 
findings (e.g., Hair et al., 2022, Chapter 6; Shmueli, 2010). In addition, 
researchers may perform various robustness checks to provide addi
tional assurance of the validity of the results. For instance, Hair, Sar
stedt, Ringle, and Gudergan (2018), Sarstedt, Hair, Pick, et al. (2022), 
and Sarstedt et al. (2020) give examples of such analyses to ensure the 
robustness of results and their appropriate reporting. 

3.5.4. Predictor assessment 
At the predictor level, researchers should report path coefficients and 

the corresponding significance levels to demonstrate individual con
structs' predictive ability. The resampling method for significance 
testing should be bootstrapping (and not jackknifing, see Hair, Sarstedt, 
Pieper, & Ringle, 2012). The significance testing should be based on the 
percentile approach (Aguirre-Urreta & Rönkkö, 2018) – or, in case of 
skewed distributions, the bias-corrected and accelerated (BCa) 
approach, which is based on the percentile approach (Hair et al., 2022, 
Chapters 5 and 6) – with a recommended minimum of 10,000 bootstrap 
samples (Streukens & Leroi-Werelds, 2016). Based on the bootstrapping 
results, researchers should assess and report the (bias-corrected) confi
dence intervals of the coefficients for significance testing. 

The size of the standardized coefficients allows researcher to assess 
and rank their relevance. They could also report the effect size f2 (Cohen, 
1988) to capture a predictor's R2 impact (i.e., the incremental variance 
explained), since f2 is useful to rank predictors in the order of their 
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explanatory importance. We regard this measure as suitable, although it 
often results in a rank order similar to the ranking based on the pre
dictors' standardized coefficients (Hair, Risher, et al., 2019). Neverthe
less, reporting f2 can be useful to explain partial or full mediation, which 
different ranking orders indicate (Nitzl, Roldan, & Cepeda Carrión, 
2016). The recommended cut-off values for f2 are 0.02, 0.15, and 0.35 
for small, medium, and large effect sizes respectively. 

3.5.5. Model comparison 
PLS-SEM method development has introduced predictive model 

comparison approaches to assist researchers in choosing between 
theoretically established model alternatives. The Bayesian information 
criterion (BIC) and the Geweke-Meese criterion (GM), for instance, help 
researchers choose the most appropriate model (Danks, Sharma, & 
Sarstedt, 2020; Sharma et al., 2019; Sharma, Shmueli, Sarstedt, Danks, 
& Ray, 2021). Business marketing researchers can use the measures to 
demonstrate that an analyzed model has a smaller BIC or GM value and 
therefore a higher predictive power than an alternative theoretically 
plausible model (or the saturated model). We illustrate the BIC appli
cation in Web Appendix B. The BIC and GM criteria compare the results 
of alternative models. However, this approach does not indicate whether 
the most advantageous model with a lowest outcome for these criteria is 
significantly superior to alternative models. In this regard, the CVPAT 
approach to a predictive model comparison is an improvement (Lien
gaard et al., 2021), as it allows researchers to test a theoretically 
established alternative model against the theoretically established 
original model. The results then show whether the alternative model has 
significantly higher predictive power than the original model. As the 
predictive model comparison is relatively new to PLS-SEM, the ap
proaches have not as yet been used in business marketing studies 
(Table 6). Researchers can also use the model fit criteria discussed above 
for model comparison. However, PLS-SEM research has not established 
model selection procedures based on model fit criteria that focus on the 
differences between the sample and model-implied covariance matrices. 

4. Advanced modeling issues 

A number of advanced modeling approaches are available for PLS- 
SEM, which give researchers as well as practitioners deeper insights 
into relationships in the data (e.g., necessary condition analysis, medi
ation, and nonlinear effects). Considering special types of relationships 
by means of more advanced modeling approaches could help re
searchers develop more comprehensive theoretical models and help 
practitioners make more informed predictions about how to achieve a 
desired outcome. In addition, advanced approaches such as addressing 
endogeneity help researchers establish that hypothesized relationships 
do exist in the underlying population, therefore ruling out that such 
relationships are simply spurious artifacts of unmeasured confounding 
effects. Advanced PLS-SEM approaches also deal with analyzing 
observed heterogeneity (e.g., by means of moderation and multigroup 
analyses) and uncovering unobserved heterogeneity (e.g., by means of 
finite mixture partial least squares and prediction-oriented segmenta
tion) to ensure the results' validity. In sum, most of these approaches 
serve as PLS-SEM robustness checks to safeguard the results' quality 
(Sarstedt, Ringle, et al., 2020). 

In Web Appendix A, we briefly explain the following advanced ap
proaches with particular relevance for PLS-SEM by outlining their pur
pose, procedure, and relevant considerations (Hair et al., 2022, Chapter 
8; Hair, Sarstedt, et al., 2018; Sarstedt, Ringle, et al., 2020):  

• Higher-order constructs (e.g., Becker et al., 2023; Lohmöller, 1989, 
Chapter 3; Sarstedt, Hair, Cheah, Becker, & Ringle, 2019),  

• mediation (e.g., Cheah, Roldán, Ciavolino, Ting, & Ramayah, 2021; 
Nitzl et al., 2016; Sarstedt, Hair, Nitzl, Ringle, & Howard, 2020),  

• moderation (e.g., Becker, Ringle, & Sarstedt, 2018; Fassott, Henseler, 
& Coelho, 2016; Memon et al., 2019),  

• multigroup analysis (MGA; e.g., Chin & Dibbern, 2010; Klesel, 
Schuberth, Henseler, & Niehaves, 2019; Matthews, 2017),  

• unobserved heterogeneity (e.g., Becker, Rai, Ringle, & Völckner, 
2013; Hahn, Johnson, Herrmann, & Huber, 2002; Sarstedt, Radomir, 
Moisescu, & Ringle, 2022),  

• nonlinear effects (e.g., Basco, Hair, Ringle, & Sarstedt, 2021; Dijkstra 
& Schermelleh-Engel, 2014; Hair, Sarstedt, et al., 2018, Chapter 2),  

• endogeneity (e.g., Becker, Proksch, & Ringle, 2022; Hult et al., 2018; 
Park & Gupta, 2012), and  

• necessary condition analysis (NCA; e.g., Dul, 2016, 2020; Richter, 
Schubring, Hauff, Ringle, & Sarstedt, 2020; Richter et al., 2023). 

Our review of PLS-SEM applications shows that even among the 
more recent studies, very few analyses employ more advanced ap
proaches (Table 7). This could indicate a low awareness of the available 
techniques and their specific purposes. However, the few studies that do 
use advanced approaches often do not use suitable procedures. These 
findings suggest the significant value of giving applied business mar
keting researchers a concise overview of advanced approaches (Web 
Appendix A). 

5. Conclusion and directions for further research 

The number of PLS-SEM applications in IMM studies has increased 
rapidly since 2005. This upturn is not surprising, since business mar
keting research's characteristics (e.g., dealing with complex phenom
ena) and challenges (e.g., requiring respondents who are difficult to 
recruit) make the method particularly relevant and attractive to the 
relevant researchers. Nonetheless, our review of >100 PLS-SEM appli
cations in IMM over the past two decades and more has revealed issues 
with the appropriate and full use of common application routines, 
namely tests, reporting, cut-off values, and thresholds, as well as with 

Table 7 
Review: advanced modeling approaches.  

Issue: advanced modeling 
approaches 

Total 
sample (n 
= 140) 

Before 
2012 (n 
= 37) 

2012 – 
2016 (n 
= 41) 

2017 −
2020 (n 
= 62) 

Assess higher-order 
constructs 29.3% 24.3% 31.7% 30.6% 
Use a suitable procedure 
(incl. measurement 
assessment of lower- and 
higher-order constructs) 0.0% 0.0% 0.0% 0.0% 

Assess mediation 25.7% 8.1% 22.0% 38.7% 
Use a suitable procedure 
(incl. bootstrapping) 5.0% 8.1% 2.4% 4.8% 

Assess moderation 42.9% 32.4% 46.3% 46.8% 
Use a suitable procedure 
(incl. two-stage approach) 5.0% 8.1% 2.4% 4.8% 

Perform multigroup analysis 10.7% 8.1% 2.4% 17.7% 
Use a suitable procedure 
(incl. MICOM) 1.4% 0.0% 0.0% 3.2% 

Assess unobserved 
heterogeneity 2.9% 0.0% 7.3% 1.6% 
Use a suitable procedure 
(incl. FIMIX-PLS and PLS- 
POS) 0.0% 0.0% 0.0% 0.0% 

Assess nonlinear effects 2.9% 0.0% 0.0% 6.5% 
Use a suitable procedure 
(incl. two-stage approach) 1.4% 0.0% 0.0% 3.2% 

Assess endogeneity 3.6% 0.0% 0.0% 8.1% 
Use a suitable procedure 
(incl. a copula or IV 
approach) 2.1% 0.0% 0.0% 4.8% 

Perform a necessary 
condition analysis (NCA) 0.7% 0.0% 0.0% 1.6% 
Use a suitable procedure 
(incl. outlier assessment) 0.0% 0.0% 0.0% 0.0%  

P. Guenther et al.                                                                                                                                                                                                                               



Industrial Marketing Management 111 (2023) 127–142

138

understanding them. The review has also shown the underuse of 
advanced modeling techniques despite their potential to generate more 
robust findings, a deeper understanding, and novel insights. 

We have found that many issues are relatively persistent over time, 
as they are equally present in older and more recent PLS-SEM applica
tions, which underlines the need for concise guidance. We have there
fore used our review to identify the most critical issues and to develop 
detailed checklists (Tables 3–6) and application examples (Web Ap
pendix B) to stimulate further purposive and adequate business mar
keting research using the PLS-SEM method. In addition, we provide 
researchers with a shortcut for their next PLS-SEM project by offering 
them a concise checklist (see Table 8) that captures the most important 
aspects, including the key conceptual considerations to motivate the 
PLS-SEM approach's use, common application routines, including the 
appropriate tests and cut-off values, and advanced application routines. 

In conclusion, given the increasing focus on research results' prac
tical impact, we anticipate that researchers will continue to increasingly 
use composite based modeling and PLS-SEM's causal-predictive capa
bilities. This should close the gap between purely explanatory modeling, 
which prevails in the social sciences, and predictive modeling, which the 
natural sciences use predominantly (Shmueli & Koppius, 2011). Against 
this backdrop, assessing a model's predictive capability properly is likely 
to become increasingly important in marketing and the social sciences 
disciplines (Hofman et al., 2017). In this paper, we explain the PLSpredict 
and CVPAT procedures to assess a PLS path model's out-of-sample pre
diction (Web Appendix B). In addition, we encourage business market
ing researchers to keep up to date, particularly with predictive 
capability assessment due to its importance for evaluating research 
findings' practical impact. The increasing focus on practical impact is 
likely to promote further improvement of out-of-sample prediction tests, 
such as Sharma et al.’s (2019) approach to use information criteria to 
compare models' predictive capabilities and Sharma, Liengaard, Hair, 
et al.’s (2022) predictive model assessment via an improved version of 
the CVPAT, which was originally developed by Liengaard et al. (2021) 
for the comparison of theoretically established model alternatives in 
PLS-SEM. 

Our review has revealed several areas for further PLS-SEM method
ological research. First, research is needed on how to minimize the 
validity gap between the statistically obtained construct proxies and the 
theoretical constructs. Such research should consider the nature of the 
theoretical constructs (e.g., whether reflective or formative) and the 
data characteristics. Second, with regard to small-sample contexts, such 
as business marketing research, it is important to fully assess the 
imputation techniques (e.g., including median replacement, the 
expectation-maximum algorithm, and the winsorization of outliers) in 
order to optimally handle missing data or outliers. Third, researchers 
should develop concrete cut-off values for fit indices such as the SRMR. 
Fourth, additional research is needed to fully evaluate the Gaussian 
copula approach's appropriateness in order to detect and address 
endogeneity in PLS-SEM contexts. A recent study cautions that using the 
Gaussian copula approach in regression models that include an intercept 
could deliver biased results and low statistical power in small samples 
(Becker et al., 2022). While PLS-SEM does not include an intercept for 
data standardization reasons, standardization does not generally alle
viate concerns regarding the copula approach's appropriateness (Becker 
et al., 2022). Further research should specifically evaluate the Gaussian 
copula approach in the PLS-SEM context and take recent findings into 
consideration. Fifth, researchers introduced the necessary condition 
analysis (Dul, 2016; Dul, 2020) to PLS-SEM (e.g., Richter et al., 2020; 
Sukhov, Olsson, & Friman, 2022). Future research should consider 
recent developments in the method, including in the PLS-SEM context, 
and clarify additional technical issues (e.g., the use of theoretical or 
empirical scales or the use of standardized or unstandardized data). 

Furthermore, regarding SEM in general and PLS-SEM specifically, 
there is sometimes a mismatch between researchers' articulated research 
goals and that what the methods can actually accomplish in terms of 

Table 8 
Shortcut: motivation, common application routines, and advanced application 
routines.  

Panel A: motivating PLS-SEM use (based on its standard composite model)  

☑ Is there a possibility that the indicator residual variances are not fully 
measurement errors, but that they have a meaning for the focal construct or the 
additional constructs in the model?  

☑ Is the measurement error unlikely to be large?  

Panel B: Important common application routines 
Sample size  
☑ Determine the minimum sample size by using the inverse square root method, the 

gamma-exponential method, or Monte Carlo-based power analysis.  
☑ Address missing values by using imputation (mean or multiple regression). 
Non-normality  
☑ Assess non-normality based on skewness and kurtosis.  
☑ Address outliers by using replacement or robust PLS-SEM model estimation. 
Measurement of constructs  
☑ Assess formative measurement: redundancy analysis, VIFs (<3), weights' 

significance and relative relevance.  
☑ Assess reflective measurement: loadings (>0.708), internal consistency reliability 

(ρA > 0.70), AVE (>0.50), 95% (one-sided) percentile bootstrap confidence 
interval of the HTMT ratio (upper bound <0.85 or 0.90). 

Model  
☑ Assess in-sample prediction: R2.  
☑ Assess out-of-sample prediction: PLSpredict (and CVPAT).  
☑ Assess model fit: SRMR (and bootstrap-based test for model fit).  
☑ Assess predictors: path coefficients significance and effect size f2.  
☑ Compare models (optional): BIC or GM of the main model versus an alternative 

plausible model, CVPAT for a predictive model comparison.  

Panel C: Advanced application routines (Web Appendix A) 
Higher-order constructs  
☑ Conceptually justify the measurements of the lower- and higher-order constructs.  
☑ Use the repeated indicator approach or two-stage approach.  
☑ Assess the reliability and validity of the lower-order and the higher-order 

constructs.  
☑ Confirm that the model's predictive power is higher with than without modeling 

the higher-order construct by using the disjoint two-stage approach and BIC or 
CVPAT. 

Mediation  
☑ Assess the mediating effects' significance via bootstrapping.  
☑ In small samples, use the bias-corrected confidence intervals.  
☑ Determine the mediation type (partial or full mediation), including by comparing 

the indirect effects' and total effects' variance accounted (VAF). 
Moderation  
☑ Use the two-stage approach.  
☑ Assess significance via bootstrapping. 
Multigroup analysis  
☑ Assess measurement invariance between groups by using the MICOM procedure.  
☑ Test the significance of effect differences across groups.  
☑ If more than two groups are compared, correct the test statistic to keep the family- 

wise error rate constant (e.g., by using a Bonferroni adjustment) 
Unobserved heterogeneity  
☑ Identify and assess latent segments: finite mixture modeling, retention criteria 

(AIC4, BIC), segment size (>min. required size), EN (>0.5).  
☑ Identify explanatory variables.  
☑ Conduct a multigroup analysis. 
Nonlinear effects  
☑ Use the two-stage approach.  
☑ Assess significance of nonlinear effects via bootstrapping. 
Endogeneity  
☑ Use the Anderson-Darling test or the Cramér-von Mises test to confirm that the 

suspected endogenous construct is sufficiently non-normally distributed.  
☑ If it is, assess whether endogeneity is present, using the Gaussian copula; if present, 

address the endogeneity by adding the significant Gaussian copula term to the 
model.  

☑ If it is not and a theoretically meaningful IV is available, use the IV approach to 
asses and address the potential endogeneity.  

☑ If no IV is available, acknowledge the potential endogeneity as a limitation. 
Necessary condition analysis (NCA)  
☑ Assess and address outliers.  
☑ Perform NCA per construct pair (exogenous construct – outcome construct).  
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support for these goals. Future research should clearly map out the 
research goals that the methods do support, under which conditions they 
do so, and what their constraints are. In addition, developing specific 
examples to showcase the suitability of using common factors versus 
composites to estimate construct models would be desirable. Our study 
has emphasized that both statistical estimation techniques provide ap
proximations of theoretically based constructs. By developing illustrative 
examples, future research could help further illustrate whether one or 
the other approach provides a better approximation. Future research 
may also consider advancements of confirmatory tetrad analysis (Bollen 
& Ting, 1993; Gudergan, Ringle, Wende, & Will, 2008) to guide re
searchers in their choice between a common factor or composite model. 

Moreover, there are opportunities available to extend the modeling 
capabilities, such as accommodating the relationships that multiple 
constructs have with a certain indicator, setting model constraints, and 
implementing circular and bidirectional relationships (i.e., not via a 
two-stage approach but a simultaneous model estimation). Additional 
improvements could focus on assessing the results and, especially, on 
extending the set of model evaluation criteria. The latter could include, 
for example, the further advances on bridging prediction and explana
tion via the joint application of related assessment criteria (e.g., 
PLSpredict and the CVPAT as well as SRMR and the bootstrap-based test of 
exact overall model fit), and an evaluation of the impact that violating 
the PLS-SEM method's statistical assumptions (e.g., cross-loadings) has 
on the parameter bias and the predictive performance. Finally, multi
level modeling and longitudinal analysis are interesting candidates for 
methodologically extending PLS-SEM, as they are highly relevant for 
empirical research on marketing and management. 
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