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1 Introduction
Origami structures possess a range of remarkable properties such

as tunable stiffness [1], high strength [2], programmable curvature
[3], multistability [4,5], energy absorption [6,7], efficient reconfi-
gurability [8], and negative Poisson’s ratio [9–11]. Owing to these
desirable characteristics, origami structures have been exploited in
a diverse range of applications [12] including deployable structures
[13–15], energy absorption structures [16,17], biomedical devices
[18], robotics [19,20], and programmable metamaterials [21–23].
As a result, it is crucial for the scientific community to establish
effective form-finding theorems that enable designers to find the
initial spatial configurations of origami structures for further kine-
matic and structural analyses.

In recent decades, various studies have been conducted on the
methodical design of novel origami patterns [24–27]. To analyze
the geometric, kinematic, and mechanical properties of origami
structures, Chen et al. [28] introduced graph theory and utilized
undirected and directed graph products to represent origami pat-
terns. Moreover, based on the classical theorems and geometric
conditions of origami, the graphical method and particle swarm
optimization were exploited to develop flat-foldable origami pat-
terns [29,30]. Subsequently, the problem of mountain and valley
assignment was solved by mixed-integer linear programming
[31,32].
Though various studies [33–36] have focused on origami design,

the investigation of kinematic or structural analyses of origami
structures has been rather limited. This is because kinematic singu-
larity and motion bifurcation [13] are generally unavoidable in
folding problems. Hence, the finite element method has no access
to tracking the entire folding of flat-foldable origami from a
completely planar state. To facilitate further applications, it is essen-
tial to effectively transform planar configurations into spatial ones
based on efficient form-finding approaches. Recent studies have
demonstrated various approaches to the computational modeling
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Algorithmic Spatial Form-Finding 
of Four-Fold Origami Structures 
Based on Mountain-Valley 
Assignments
Origami has attracted tremendous attention in recent years owing to its capability of 
inspiring and enabling the design and development of reconfigurable structures and 
mechanisms for applications in various fields such as robotics and biomedical engineer-
ing. The vast majority of origami structures are folded starting from an initial two-dimen-
sional crease pattern. However, in general, the planar configuration of such a crease 
pattern is in a singular state when the origami starts to fold. Such a singular state 
results in different motion possibilities of rigid or non-rigid folding. Thus, planar 
origami patterns cannot act as reliable initial configurations for further kinematic or 
structural analyses. To avoid the singularities of planar states and achieve reliable struc-
tural configurations during folding, we introduce a nonlinear prediction–correction 
method and present a spatial form-finding algorithm for four-fold origami. In this 
approach, first, initial nodal displacements are predicted based on the mountain-valley 
assignments of the given origami pattern, which are applied to vertices to form an 
initial spatial and defective origami model. Subsequently, corrections of nodal displace-
ments are iteratively performed on the defective model until a satisfactory nonplanar con-
figuration is obtained. Numerical experiments demonstrate the performance of the 
proposed algorithm in the form-finding of both trivial and non-trivial four-fold origami 
tessellations. The obtained configurations can be effectively utilized for further kinematic 
and structural analyses. Additionally, it has been verified that corrected and nonplanar 
configurations are superior to initial configurations in terms of matrix distribution and
structural stiffness.
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2.1 Imposition of Initial Displacements. To track the folding
process and obtain initial configurations, it is essential to ensure
four-fold origami remains SDOF when it is folded based on hypo-
thetical mountain-valley assignments. To take mountain-valley
assignments and expected folding configurations into consideration,
appropriate initial displacements should be imposed on each vertex.
It ensures each in-plane vertex moves toward the expected direction
rather than falling into a singularity. Subsequently, a correction
should be applied to the model with initial displacements. Defective
models will be corrected to rigid four-fold origami, which is satis-
fied with the geometrical compatibility conditions via the compati-
bility matrix. In other words, here, we establish the geometrical
incompatibility models of the origami tessellation according to
mountain-valley assignments. The edges and creases are defined as

xj =
if edge or crease1 j is a mountain fold

−1 if edge or crease j is a valley fold
0 if edge or crease j is a boundary edge

⎧⎨
⎩ (1)

where xj denotes the initial displacement applied to vertex i by
crease j. Equation (1) demonstrates that mountain creases, valley
creases, and boundary edges impose +1, −1, and 0 displacements
on the given vertex, respectively. Especially, symbols+ and—
denote the positive and negative directions of the z-axis in Fig. 1,
respectively. Then, the initial displacement imposed on vertex i
can be expressed by

u0(i) = −ηj
∑
j∈E(i)

xj, i ∈ V (2)

where E(i)⊆ E, i∈V indicates the aggregation of creases connected
to vertex i in edges E; E and V respectively denote the assembly of
edges and vertices in the crease pattern; and ηj represents the weight
coefficient. The aim of adding ηj is to linearly modify the initial dis-
placements of each vertex based on the scales of different origami
tessellations.
Figure 1 depicts two different four-fold unit fragments (UFs),

adapted from Refs. [24,50,51], as follows: (a) a trivial unit fragment
(TUF), and (b) a non-trivial unit fragment (NUF). As can be seen
from this figure, TUF contains a trivial flat-foldable vertex MT,
whereas NUF contains a no-trivial flat-foldable vertex MNT. The
lower part of Fig. 1 illustrates the origami structures with
imposed nodal displacements.
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of different types of origami structures such as scalable [37] and 
thick rigid-foldable [38] mechanisms.

  In the past few decades, some researchers have investigated the 
rigid folding of single-vertex origami based on spherical trigonom-
etry. For instance, Huffman [39] and Hull [40] developed relation-
ships among the folding angles of crease lines in a single-vertex 
four-fold origami and established formulas to describe adjacent 
folding angles of single-vertex origami. Liu et al. [41] proposed a
general kinematic model based on four-fold origami. Zimmermann 
et al. [42] proposed the principle of three units to effectively model 
the kinematics of degree-n origami vertices. Such findings and 
methods have also led to the development of theories on multi-
vertex origami. Cai et al. [43] investigated the foldability of multi-
vertex origami and proved that the Kresling cylinder cannot be 
rigid-foldable. Wu and You [44] proposed an analytical method 
to track the entire folding process of multi-vertex origami.

  Drawing on the abovementioned studies, various analytical 
methods have been established to determine the nonplanar configu-
rations of origami structures during folding. For instance, an inte-
gral mechanism mode was adopted to accurately follow the 
motion path of scissor-hinge structures [45]. Moreover, an
improved symmetry method for the mobility of kinematically inde-
terminate pin-jointed structures was proposed by combining graph 
theory and group theory [46]. Kang et al. [47] introduced a mecha-
nism to accomplish the robust folding of crease patterns via differ-
ent thermally responsive hydrogels. Based on a bar-and-hinge 
model, Liu and Paulino [48] proposed an approach for the static
and quasi-static analysis of non-rigid origami structures. Jalali 
et al. [49] introduced the selective hinge removal strategy for the 
smooth deployment of pin-joint structures with polygonal elements.
Chen and Feng [14] proposed a nonlinear prediction–correction 
algorithm for following the folding behavior of deployable 
origami structures. However, the algorithm was not able to robustly
predict and prevent singular structural configurations in the folding
process of the structures.

  To overcome the singularity of planar origami, an initial nonpla-
nar configuration is necessary for further kinematic and structural 
analyses. However, the initial configuration is generally assumed 
to be known in advance or captured from appropriate geometric/
physical models. Hence, in this paper, a nonplanar form-finding 
algorithm is proposed to accurately obtain the spatial configurations 
of four-fold origami structures. Section 2 examines the imposition
of initial displacements on planar configurations. Subsequently, in 
terms of geometric and kinematic constraints during folding, non-
linear corrections will be iteratively performed till an allowable 
accuracy is achieved. Furthermore, to perform robust folding 
without kinematic singularity, the equivalent pin-jointed model 
with out-of-plane virtual nodes will be introduced and verified to 
be superior to the 2D models with crossing virtual members.
Numerical examples of four-fold origami structures are presented 
in Sec. 3 to verify the feasibility, accuracy, and efficiency of the pro-
posed algorithm.

2 Spatial Form-Finding Algorithm
  In general, a four-fold origami vertex is considered a single 

degree-of-freedom (SDOF) system. However, such a vertex is 
in a singular state when folded from a planar configuration. In 
other words, each crease might exhibit three different motion 
states: (i) folded along the expected direction, (ii) folded along 
the opposite direction, or (iii) remained invariant (no folding).
Thus, such a singular state can lead to different rigid or non-
rigid motions; therefore, it cannot be utilized as an initial config-
uration for kinematic or structural analyses. Consequently, it is 
crucial to carefully track the nonlinear folding of origami struc-
tures to obtain reliable spatial configurations. In this section, a 
nonplanar form-finding approach is proposed to calculate
spatial configurations based on a nonlinear prediction–correction
algorithm.

2

  2.2 Nonlinear Prediction–Correction Process. Defective 
models will be produced when each vertex is assigned an initial dis-
placement based on Eqs. (1) and (2). However, it is apparent that
deliberately deformed models cannot satisfy the rigid-foldability 
condition which requires that the lengths of all edges and creases 
remain unchanged during folding. Therefore, a nonlinear predic-
tion–correction method will be utilized to correct defective
models with geometrical incompatibility into rigid origami.

  Generally speaking, the displacement compatibility equations of 
pin-jointed structures are useful for understanding the behavior of 
origami structures [52,53]. Hence, an equivalent planar pin-jointed
model with virtual members will be preferentially adopted to simu-
late four-fold origami structures. In such a model, crossing virtual 
members are utilized to replace origami facets to constraint 
in-plane deformations. Figure 2(a) depicts a typical four-fold
origami pattern with four quadrilateral units. Each quadrilateral is 
defined by four vertices and six members, which include two cross-
ing virtual members. Four quadrilateral units with nine vertices and 
20 members form the pin-jointed model for the four-fold origami 
structure. Specifically, for the modeling of geometrical incompati-
bility, the deformations of creases and quadrilateral facets can be 
controlled by predicting and correcting the lengths of members.

  The complete displacement compatibility equation of origami 
structures can be established according to the deformations of 
members and displacements of nodes during folding. The equation



is given by

Jd = e (3)

where J is an m0 × n0 compatibility matrix, in which m0 is the
number of independent constraints in the pin-jointed origami
model and n0 is the degree-of-freedom (DOF) of nodes. For
instance, the Nm×Nn pin-jointed model of four-fold origami con-
sists of Nm and Nn basic units in the horizontal and vertical direc-
tions, respectively. This model has (2Nm+ 1) × (2Nn+ 1) nodes,
2Nm× (2Nn+ 1)+ 2Nn× (2Nm+ 1) creases, and 8NmNn crossing
virtual members. When the rigid body constraints are excluded,
the number of independent constraints in the pin-jointed model is
m0= 2Nm× (2Nn+ 1)+ 2Nn× (2Nm+ 1)+ 8NmNn, and the nodal
DOF is n0= 3 × (2Nn+ 1) × (2Nm+ 1). In addition, d denotes a 1 ×
n0 nodal displacement vector, while e represents an 1 ×m0

member deformation vector describing the variation of member
length in the equivalent pin-jointed structure. The variation can
be expressed as

e = l − l0 (4)

When the initial displacement u0 is imposed on the vertices of the
planar four-fold origami model, nodal displacement will be

d = u0 (5)

The displacement of each node consists of two different parts: the
real displacement during folding (i.e., d0) and the pseudo-
displacement Δd which needs to be corrected. Typically, origami
structures will be folded rigidly when the real displacement d0 is
imposed and the generalized structural deformation e is zero, i.e.,

Jd0 = 0 (6)

On the other hand, the imposition of pseudo-displacement Δd
will generate incompatible deformation Δe, i.e.,

JΔd = Δe (7)

Fig. 1 Two different four-fold unit fragments: (a) a trivial unit fragment (TUF) and (b) a non-
trivial unit fragment (NUF). For each subfigure, the upper part depicts the 2D crease pattern
whereas the lower part shows the origami structure with imposed nodal displacements.
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where Δe is a 1 × m0 column vector which represents the deforma-
tions of members in the equivalent pin-jointed model. Importantly,
incompatible deformations of pin-jointed models will occur due to 
the existence of Δd when u0 is imposed; it is necessary to correct 
deformation d given by Eq. (5) to obtain the geometric compatible 
pin-jointed models of rigid origami structures. Then, the corrected

Fig. 2 (a) Equivalent planar pin-jointed structure with crossing 
virtual members for origami facet. (b) Flowchart of the 
form-finding algorithm for four-fold origami based on mountain-
valley assignments.

                                                     3



nodal displacement vector Δd′ will be given by

Δd′ = −J+ · Δe (8)

where J+ is an n0 ×m0 matrix which represents the generalized
inverse of the compatibility matrix for equivalent pin-jointed struc-
tures. The evaluated displacement vector Δd′ should be imposed on
each node of the pin-jointed structures to correct nodal displace-
ments. As a result, the corrected nodal displacement d′ can be
expressed as

d′ = d + Δd′ (9)

If the origami structure still contains incompatible deformations
after the displacement correction, the displacement prediction–cor-
rection process based on Eqs. (7)–(9) should be repeated until the
generalized deformations of members Δe meet the allowable accu-
racy; that is

‖Δe‖2 < ε1 (10)

where ‖A‖2 denotes the two-norm of matrix A, and the allowable
accuracy is taken as ε1 = 10−10 in this study. Then, compatibility
matrix J and incompatible deformation Δei can be obtained, and
subsequently, the configurations of the origami structure during
folding are iteratively updated. Figure 2(b) presents the flowchart
of this computational procedure, which has been implemented in
MATLAB in this study.

2.3 Structural Equivalents of Quadrilateral Facets. Differ-
ent structural equivalents of the TUF- and NUF-based origami tes-
sellations are, respectively, depicted in Figs. 3(a) and 3(b), adapted
from Ref. [24]. In Figs. 3(a,I) and 3(b,I), the mountain and valley
creases of the origami tessellations are represented by solid and
dashed lines, respectively. Based on Eqs. (1) and (2), the initial
motion direction of each vertex is designated in Figs. 3(a,II) and
3(b,II). Due to the periodicity of the patterns, all the vertices can
be classified according to the magnitudes and directions of initial
displacements. The vertices marked by ⊕ and ⊖ indicate that the
corresponding initial displacements should be imposed along the

positive and negative z-directions, respectively. In Figs. 3(a,III)
and 3(b,III) based on the equivalent planar pin-jointed model pre-
sented in Fig. 2(a), the origami facets are replaced by crossing
virtual members to constrain in-plane deformations.
Based on the mountain-valley assignments, initial displacements

are introduced to the vertices when ηj= 0.05Lmin as illustrated in
Figs. 3(a,II) and 3(b,II), where Lmin denotes the minimum length
of members. Subsequently, spatial models with incompatible
defects will be obtained as depicted in Figs. 4(a,I) and 4(a,II). To
handle these defective models, compatibility matrices will be uti-
lized to correct nodal displacements based on the nonlinear predic-
tion–correction process [13,54,55].
It should be noted that the obtained configurations, shown in

Figs. 4(b,I) and 4(b,II), are in approximately planar states. More
specifically, the heights of both structures are no more than
0.05Lmin. Furthermore, the maximum folding angles between adja-
cent facets (ρmax) during folding are 0.1274 deg and 0.0686 deg,
respectively. In other words, by considering the results given in
Fig. 4(b) as the initial configurations for subsequent kinematic anal-
yses, we cannot avoid kinematic singularities. More importantly,
numerical results demonstrate that these configurations cannot
satisfy the allowable accuracy using prediction–correction when
ηj > 0.2Lmin. Moreover, when ηj= 0.2Lmin, the maximum folding
angles are no more than 1 deg.
In conclusion, the obtained configurations based on equivalent

planar pin-jointed models neither possess spatial properties nor
satisfy the allowable accuracy; therefore, it is crucial to develop a
more effective and accurate model for the kinematic analysis of
such structures.
To enhance the spatial properties of initial configurations and

avoid kinematic singularities and ill-conditioned matrices during
kinematic analyses, Zhang et al. [52] added virtual nodes above
the planes of origami facets. As shown in Fig. 4(c,I), an equivalent
spatial pin-jointed model is established based on several
out-of-plane virtual nodes and crossing members. Four in-plane
nodes and one out-of-plane virtual node are connected by nine
rigid members, resulting in a pyramid-shaped three-dimensional
structure. Subsequently, the rigid motion is employed to simulate
the folding of the origami facet. Concurrently, virtual members
are added to origami facets to constrain their deformation. Previous
studies [52,56] also illustrate the kinematic simulation of origami
with the spatial pin-jointed system in Fig. 4(c,II) is superior to
that of planar pin-jointed models in Fig. 2(a). Furthermore, it pre-
vents generating ill-conditioned matrices which frequently result
in incorrect internal mechanism modes and motion paths. There-
fore, this study will adopt the equivalent spatial pin-jointed model
to carry out numerical experiments.

3 Numerical Experiments
In this section, we present and analyze the spatial form-finding

processes of several four-fold origami structures. To obtain accurate
spatial configurations, the weight coefficient ηj is set as 0.05Lmin,
and the allowable accuracy for incompatible deformations is set
as ε1 = 10−10.

3.1 Form-Finding of a Single Unit Fragment. Equations
(11) and (12) represent nodal coordinates vectors NodeCoord1
and NodeCoord2 for TUF and NUF, respectively; these fold
patterns, which contain vertices I, II, III,…, IX, are shown in
Figs. 5(a,i) and 5(b,i), respectively

NodeCoord1

=
2.5 0 2.5 6 10.6401 8.1401 10.6401 6 5.3176
5 2 0 0.7 0.7128 2.7182 5.7182 5.7 2.3134

[ ]T

(11)

Fig. 3 Different structural representations of (a) TUF- and
(b) NUF-based origami tessellations (adapted from Refs. [24,50]).
(I ) Mountain-valley assignments of origami crease patterns.
(II) Directions of imposed initial displacements. (III) Equivalent
planar pin-jointed models.
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NodeCoord2

=
2.5 0 2.5 6 10.6401 8.1401 10.6401 6 3.5
5 2 0 0.7 0.7128 2.7182 5.7182 5.7 2.7

[ ]T

(12)

As illustrated in Figs. 5(a,i) and 5(b,i), the vertices I, II, III, V, VI,
and VII have three mountain and one valley creases, marked by (−).
On the other hand, the vertices IV, VIII, and IX have three valley
and one mountain crease, marked by (+). The directions of initial
displacements are according to Figs. 3(a,II) and 3(b,II). The corre-
sponding spatial pin-jointed models of the patterns presented in
Figs. 5(a,i) and 5(b,i) are depicted in Figs. 5(a,ii) and 5(b,ii),
respectively.
Recall that Fig. 1(a) presented earlier provides a comparison

between the initial planar state and the deformed state. It is impor-
tant to mention that, with the prediction of initial displacements, the
initial configurations shown by dashed lines gradually transform
into the configurations shown by solid lines.
Note that in the defective models, the lengths of members cannot

satisfy the constraint conditions. Thus, they are not able to simulate
the folding process realistically. Therefore, based on geometric

conditions, nonlinear corrections will be repeatedly made to avoid
kinematic singularities. To satisfy the allowable accuracy, corrected
nodal displacements should ensure that the generalized deforma-
tions of the members are appropriately considered.
The nonlinear prediction–correction process starts with the

imposition of initial displacements. Subsequently, a compatibility
matrix is applied to correct nodal displacements. In this manner,
the initially incompatible structure can be gradually transformed
into a rigid-foldable origami structure. Figures 6(a)–6(d ), respec-
tively, represent the first, second, third, and fourth corrections for
the given TUF. The maximum folding angle between adjacent
origami facets during folding ranges from 7.3921 deg to
6.9983 deg with iterations going on. Figure 6(d ) also provides
a visual comparison between the initial (planar) configuration
and the final correction of the origami structure. It illustrates
that all the vertices can be divided into two groups: (1) a group
of vertices moving along the positive direction of the z-axis,
and (2) the other vertices moving along the negative direction
of the z-axis. In comparison with the initial configuration, the
final corrected configuration possesses a spatial geometry; there-
fore, it will not suffer from kinematic singularity problems in
further analyses.

Fig. 4 (a) Defective models obtained from initial displacements based on equivalent planar pin-jointed structures for a (a,I) TUF
and a (a,II) NUF. (b) Obtained configurations based on equivalent planar pin-jointed models for the (b,I) TUF- and (b,II) NUF-based
origami tessellations. (c) Equivalent spatial pin-jointed models with out-of-plane virtual nodes: (c,I) a single quadrilateral facet;
(c,II) a 2 ×2 four-fold origami pattern.
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Similarly, with the imposition of initial displacements on the
equivalent model for the given NUF, the prediction–correction
process involves four iterations. These iterations are shown in
Figs. 6(e)–6(h), which demonstrate that the corrected configurations
are spatial structures. Furthermore, the maximum folding angle

between adjacent facets during folding varies from 7.2789 deg to
6.6643 deg. Figure 6(h) also shows a comparison between the
initial (planar) configuration and the final correction. Again, the pro-
posed method avoids kinematic singularities. Moreover, the compu-
tation time is less than one second. Therefore, as far as feasibility

Fig. 5 (a,i) and (b,i) show crease patterns and predictions of initial nodal displacements for
TUF and NUF, respectively. (a,ii) and (b,ii) depict equivalent spatial pin-jointed models with
out-of-plane virtual nodes for TUF and NUF, respectively.

Fig. 6 Top: nonlinear prediction–correction process of a given TUF: (a) first correction, (b) second correction, (c) third correc-
tion, (d ) comparison between the fourth (final) correction and the initial configuration. Bottom: nonlinear prediction–correction
process of a given NUF: (e) first correction, (f ) second correction, (g) third correction, (h) comparison between the fourth (final)
correction and the initial configuration.
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and computational efficiency are concerned, the form-finding
process is applicable to such planar configurations.

3.2 Form-Finding and Error Analysis of Tessellations
Composed of 4 × 4 UFs. To further examine the feasibility of the
proposed form-finding method, some other examples with four-fold
origami units are studied in this section. The nodal coordinates
vectors for TUF and NUF are presented in Eqs. (13) and (14),
respectively. By repeating each unit fragment (UF) four times
along the two directions, two 4 × 4 origami tessellations are
obtained as shown in Figs. 7(a,I) and 7(b,I).

According to the proposed form-finding process, the equivalent
spatial pin-jointed models with out-of-plane virtual nodes are estab-
lished and illustrated in Figs. 7(a,II) and 7(b,II). By introducing the
initial displacement vector, it takes four iterations to acquire the
final configuration, as shown in Fig. 8. In particular, Figs. 8(d )
and 8(h) present comparisons between their corresponding initial
(planar) and final corrected configurations. Compared with initial
configurations, the final ones show spatial rigid-foldability,
similar to a single UF studied earlier. Moreover, the maximum
folding angles between adjacent facets during folding are, respec-
tively, 8.5475 deg and 6.1916 deg. Consequently, the configura-
tions computed by the form-finding process are appropriate as

Fig. 7 Top: crease patterns and imposed initial displacements for four-fold tessellations
based on (a,I) TUF and (b,I) NUF. Bottom: equivalent spatial models with out-of-plane virtual
nodes based on (a,II) TUF and (b,II) NUF.

Fig. 8 Top: nonlinear prediction–correction process of a 4×4 TUF-based origami tessellation: (a) first correction, (b) second
correction, (c) third correction, (d ) comparison between the fourth (final) correction and the initial configuration. Bottom: non-
linear prediction–correction process of a 4×4 NUF-based origami tessellation: (e) first correction, (f ) second correction, (g) third
correction, (h) comparison between the fourth (final) correction and the initial configuration.
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nonplanar configurations for further kinematic analyses, without
being affected by kinematic singularities.
Here, error analysis has been conducted on the configurations

obtained from the proposed method. As can be seen from
Table 1, the coplanar nodal errors of the individual facets of the
final configurations are small enough to be neglected. Furthermore,
the obtained origami structure has been verified to be rigidly fold-
able. Note that the actual folding angles are equal to the theoretical
values. Hence, through the geometric compatibility matrix, incom-
patible configurations can be corrected into ideal nonplanar config-
urations with comparatively small folding angles.
To investigate the variations of structural stiffness during correc-

tions, comparative studies between planar and corrected configura-
tions are performed. As can be seen from the upper part of Fig. 9,
the number of non-zero items of the corrected stiffness matrix is
greater than that of the initial stiffness matrix; this implies that the
stiffness of the origami structure has been improved by nonlinear
corrections. Moreover, we have made a comparison between the
initial planar configurations and corrected spatial configurations in

terms of the eigenvalue of stiffness matrices. As shown in the
lower part of Fig. 9, by comparing the results for corrected spatial
configurations with those of initial planar configurations, it can be
seen that the minimum eigenvalues of stiffness matrices increase
through the prediction–correction process. In other words, the pro-
posed form-finding algorithm is capable of transforming the initial
planar configurations into feasible spatial configurations, which can
be utilized in further structural analyses without generating ill-
conditioned matrices.

3.3 Form-Finding of Origami Structures With Many
Vertices and Members. Here, more general examples are pre-
sented to further demonstrate the capability of the proposed
form-finding approach. According to Secs. 3.1 and 3.2, origami tes-
sellations with much more vertices and members can be obtained by
arraying a single UF along both x- and y- directions. The nodal coor-
dinates vectors of the UFs for the two examined structures are given
in Eqs. (13) and (14), respectively.

NodeCoord1

=
2.5 0 2.5 6 9.9262 7.4262 9.9262 6.0000 3.4998
5 2 0 0.7 0.7154 2.7154 5.7154 5.7000 2.7000

[ ]T

(13)

NodeCoord2

=
5 0 5 13 23.2798 18.2798 23.2798 13 5.1172
13 5 0 0.5 2.2052 7.2052 15.2052 13.5 5.5048

[ ]T

(14)

Table 1 Errors of the form-finding process for four-fold origami
structures

Origami
structure Iterations

Computation
time (s)

Coplanar error of
origami facet

Error of
folding angles

Figures
8(a)–(d)

4 1.3615 <10−6 <10−5

Figures
8(e)–(h)

4 0.6706 <10−6 <10−5

Fig. 9 Top: sparsity pattern of stiffness matrices for the TUF-based origami tessellation:
(a) initial stiffness matrix, (b) corrected stiffness matrix. Bottom: comparison between initial
planar configurations and corrected spatial configurations in terms of the minimum eigen-
value of stiffnessmatrices for the 4× 4 (c) TUF-based and (d ) NUF-based origami tessellations.
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Figure 10 shows spatial pin-jointed models for the 6 × 6 and 8 × 8
origami tessellations, which are respectively based on the vectors in
Eqs. (13) and (14). Figure 10(a,I) consists of 36 TUFs, while
Fig. 10(a,II) is composed of 64 NUFs. Similarly, initial displace-
ments will be imposed on each vertex in specific directions. Subse-
quently, the compatibility matrices will be established to predict and
correct structural configurations. Different configurations in
Figs. 10(b) and 10(c) are presented to graphically describe kine-
matic transformations of complex origami during the nonlinear pre-
diction–correction process.

The TUF-based origami tessellation finishes its form-finding
process within 7.1343 s and through four iterations. As illustrated
in Fig. 10(b), the maximum folding angle between adjacent facets
during folding varies between 15.8731 deg and 10.5723 deg. In
comparison with the initial planar configuration, the final configura-
tion, shown in Fig. 10(b,IV), manifests spatial rigid foldability. In
other words, it can be used as an accurate nonplanar configuration
for further analysis, without any kinematic singularities.
The NUF-based origami tessellation goes through five iterations

in 58.7245 s. Although the computational cost increases, the

Fig. 10 (a) Equivalent spatial models of TUF-based tessellations with out-of-plane virtual nodes: (I ) a 6 ×6 module; (II) an 8× 8
module. (b) Nonlinear prediction–correction process of a 6× 6 TUF-based tessellation: (I ) first correction; (II) second correc-
tion; (III) third correction; (IV) comparison between the fourth (final) correction and the initial configuration. (c) Nonlinear pre-
diction–correction process of an 8×8 NUF-based tessellation: (I ) first correction; (II) second correction; (III) third correction;
(IV) fourth correction; (V ) comparison between the fourth (final) correction and the initial configuration.
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terminal configuration satisfies allowable accuracy and exhibits
spatial characteristics. Note that this generalized four-fold crease
pattern retains the lowest order of 2D symmetry [24,57]. The
initial displacement will comparatively cause significant deforma-
tion. The maximum folding angle between adjacent facets during
folding gradually decreases to 6.0205 deg. In summary, it demon-
strates that the proposed form-finding algorithm is applicable to
both TUF- and NUF-based origami tessellations.
With the correction process going on, it is necessary to study the

transformation of stiffness matrices for planar and spatial configura-
tions. As can be seen from Figs. 11(a) and 11(b), the corrected stiff-
ness matrix has more non-zero items than the initial stiffness matrix.
In other words, there is an improvement in the original ill-
conditioned stiffness matrices. Figures 11(c) and 11(d ) demonstrate
the minimum eigenvalues of the stiffness matrices; improvements
can be seen in both 6 × 6 TUF- and 8 × 8 NUF-based origami tessel-
lations in terms of the lower modes of eigenvalues. Given spatial
characteristics and improvements in stiffness matrices, such nonpla-
nar configurations are suitable to be utilized as initial configurations
for further analyses.

4 Conclusions
In this study, we developed a nonplanar form-finding algorithm

for four-fold origami which enables us to accurately calculate
spatial configurations from a completely planar state. The obtained
configurations are of particular importance for overcoming kine-
matic singularities or ill-conditioned matrices in structural and kine-
matic analyses. Initial displacements have been predicted and
imposed on each vertex to generate a defective origami model

according to mountain and valley assignments. Subsequently,
virtual nodes were introduced to generate equivalent spatial
models. Finally, nodal displacements are corrected iteratively as
long as the accuracy is allowable.
With the presentation and discussion of numerical experiments,

the proposed approach has been verified to be effective in obtaining
compatible configurations, as well as origami structures with many
vertices and considerable irregularity. Notably, in comparison with
the defective planar model, the defective spatial model is a better
approach to obtaining nonplanar configurations because it needs
much fewer iterations and has higher accuracy. Error analyses illus-
trated that the corrected configurations satisfied the requirements of
flat foldability. Moreover, it was shown that stiffness is improved
during nonlinear corrections. Future studies will focus on the appli-
cation of this algorithm to complex origami patterns with arbitrary
mountain-valley assignments.
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Nomenclature
i = A typical vertex of the basic unit in the origami model
d = Nodal displacement vector
e = Member deformation vector
E = Assembly of edges in the crease pattern
V = Assembly of vertices in the crease pattern
J = Compatibility matrix
l = Initial length of members

m0 = Number of independent constraints in the pin-jointed
origami model

n0 = degree-of-freedom of nodes
xj = Initial displacement applied to vertex i by crease j
d0 = Real displacement during folding

Lmin = Minimum length of members
l0 = Length of members after deformation
d′ = Corrected nodal displacement
J+ = generalized inverse of compatibility matrix

u0(i) = initial displacement imposed on vertex i
Δd = pseudo-displacement
Δd′ = evaluated displacement vector
Δe = incompatible deformation
ηj = weight coefficient of initial displacement

‖∗‖2 = 2-norm of a matrix *
DOF = degree-of-freedom
NUF = non-trivial unit fragment

SDOF = single degree-of-freedom
TUF = trivial unit fragment
UF = unit fragment
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