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Abstract. Glaucoma is a chronic eye disease that permanently im-
pairs vision. Vertical cup to disc ratio (vCDR) is essential for glau-
coma screening. Thus, accurately segmenting the optic disc (OD) and
optic cup (OC ) from colour fundus images is essential. Previous fully-
supervised methods achieved accurate segmentation results; then, they
calculated the vCDR with offline post-processing step. However, a large
set of labeled segmentation images are required for the training, which
is costly and time-consuming. To solve this, we propose a weakly/semi-
supervised framework with the benefits of geometric associations and
specific domain knowledge between pixel-wise segmentation probability
map (PM ), geometry-aware modified signed distance function represen-
tations (mSDF ), and local boundary region of interest characteristics
(B-ROI ). Firstly, we propose a dual consistency regularisation based
semi-supervised paradigm, where the regional and marginal consistency
benefits the proposed model from the objects’ inherent region and bound-
ary coherence of a large amount of unlabeled data. Secondly, for the
first time, we exploit the domain-specific knowledge between the bound-
ary and region in terms of the perimeter and area of an oval shape
of OD & OC, where a differentiable vCDR estimating module is pro-
posed for the end-to-end training. Thus, our model does not need any
offline post-process to generate vCDR. Furthermore, without requiring
any additional laborious annotations, the supervision on vCDR can serve
as a weakly-supervision for OD & OC region and boundary segmen-
tation. Experiments on six large-scale datasets demonstrate that our
method outperforms state-of-the-art semi-supervised approaches for seg-
mentation of the optic disc and optic cup, and estimation of vCDR
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for glaucoma assessment in colour fundus images, respectively. The im-
plementation code is made available https://github.com/smallmax00/

Shape-Aware-Weakly-Semi-Supervised-Optic-Disc-and-Cup-Segmentation.

Keywords: Optic Disc and Cup Segmentation · Weakly/Semi-supervised Learn-
ing.

1 Introduction

The relative size of the OD and the OC in fundus images can be used to as-
sess glaucomatous damage to the optic nerve head [3]. As a general rule, a
greater vCDR indicates a higher risk of developing glaucoma and vice versa
[23]. Thus, accurate OD & OC segmentation is critical for glaucoma assess-
ment via vCDR measurement. Recently, numerous deep learning-based segmen-
tation models [3,26,23,17,18,21,19] have been proposed, significantly improving
the OD & OC segmentation accuracy. However, they still use a fully supervised
paradigm, which requires large annotations which is time-consuming, labori-
ous and costly. Semi-supervised learning frameworks [15,16,10] can obtain high-
quality segmentation results by directly learning from a small set of labeled data
and a large set of unlabeled data. Numerous of them have been developed to in-
vestigate unsupervised consistency regularisation. For instance, they introduced
noises at the data-level [25,28] into unlabeled samples and required consistency
between model predictions on the original and perturbed data. Furthermore,
the feature-level of perturbations are incorporated into multiple output branches
[16,10], to ensure the consistency of model predictions across output branches.
On the contrary, the consistency regularisation at task-level in semi-supervised
learning has received little attention until recently in a variety of computer vision
tasks, including crowd counting [20], 3D object detection [13], and 3D medical
image segmentation [15]. For example, if we can map the predictions of different
tasks into the same predefined space and then evaluate them using the same cri-
terion, the results will undoubtedly be less than optimal, as there are prediction
perturbations between tasks. To this end, we learned a dual-task level of geo-
metric consistency via PM segmentation and mSDF regress. Additionally, we
investigated the boundary quality of consistency regularisation at the task-level
as the second consistency learning. Specifically, we derived the B-ROI masks
from the PM segmentation and mSDF regress branches, respectively. Then the
supervised and unsupervised losses are applied to learn more accurate boundary
segmentation results with the help of labeled and unlabeled data. Note that a
high-quality object boundary is more critical than that of the regional pixel-wise
coverage in medical image segmentation tasks [21]. On the other hand, previous
weakly supervised learning methods [8,9,11] segmented images using bounding
boxes [9], scribbles [11], or image-level tags [8] rather than pixel-by-pixel anno-
tation, which alleviates the burden of annotations. Differently, in this work, we
investigated the task-specific domain knowledge of oval shape for the OD & OC
segmentation task. Along with the estimated region and boundary predictions

https://github.com/smallmax00/Shape-Aware-Weakly-Semi-Supervised-Optic-Disc-and-Cup-Segmentation
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Fig. 1: Overview of the proposed weakly/semi-supervised learning pipeline. PM
and mSDF both have two channels to represent the output of OC and OD. We
overlapped them for better visualisation.

of OD & OC, we proposed a novel differentiable vCDR estimation layer. As a
result, our model is capable of estimating the vCDR end-to-end on the basis
of OD & OC segmentation. Simultaneously, the information gain from vCDR
ground truth can weakly-supervise the segmentation process for both region and
boundary of OD & OC.

Despite human graders’ instinctive use of both domains, previous methods
approach to segment biomedical images frequently overlooked the underlying re-
lationships between the region and boundary characteristics. This article demon-
strates how to rationally leverage geometric associations between OD & OC in
terms of region and boundary on semi-supervised consistency learning and dif-
ferentiable weakly-supervised vCDR estimation.

2 Methods

Fig. 1 depicts an overview of the proposed learning pipeline, which consists of
two tasks of PM segmentation and mSDF regression. The geometric associa-
tions of two tasks in terms of the region and boundary are exploited in the
proposed weakly/semi-supervised learning manner, respectively. The details are
elaborated as follows.

2.1 Modified Signed Distance Function (mSDF)

Previous works [15,27] adopted SDF to represent the target mask in segmenta-
tion tasks because it enables the network to learn a distance-aware representation
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w.r.t the object boundary, emphasising the spatial perception of the input im-
ages. Inspired by [6], we propose a modified Signed Distance Function (mSDF ),
which is defined as:

mSDF (x) =


1, x ∈ Bin
0, x ∈ ∆B

−inf
y∈∆B

||x− y||2, x ∈ Bout
(1)

where ||x− y||2 is the Euclidean distance between pixel x and y. Besides, Bout,
Bin and ∆B, denote the outside, inside and boundary of the object, respectively.
According to the above definition, outside each object, mSDF takes negative
values, proportional to the distance from the boundary, while it is simply 1
inside of the object and 0 on the boundary. In this way, dual tasks can acquire
the coherent semantic features, meanwhile the mSDF regression task benefits
from the distance-aware spatial information supervision.

2.2 Dual Consistency Regularisation of Semi-Supervision

Under semi-supervised conditions, the dual consistency regularisation imposes
regional and marginal consistency at the task level. As for region-wise consis-
tency, similar to [15,20,27], we propose a transformation layer to convert the
mSDF to PM in a differentiable way. To be precise, the region-wise transfor-
mation layer ξr is defined as:

ξr(z) = 2 ∗ Sigmoid(K ·ReLu(z))− 1, (2)

where z denotes the mSDF value at pixel x ; K is a very large value; Sigmoid
and ReLu are the non-linear activation functions. The larger K value indicates
a closer approximation, and it is adopted as 5000 in this work. With Eq. 2,
we can obtain the transformed segmentation maps PM t, for example, PM t =
ξr(mSDF ). For all of the unlabeled input, we apply a Dice loss (LRu) between
PM and PM t to enforce the unsupervised regional consistency regularisation.

Concerning the boundary-wise consistency, we derive the spatial gradient of
PM and mSDF , as the respectively estimated contours. Previous studies [21,2]
have proven that such narrow contours with a width of one pixel are challeng-
ing to optimise due to the extremely unbalanced foreground and background,
resulting in weakened consistency regularisations. Rather than focusing exclu-
sively on the thin contour locations, we consider the ROI within a certain dis-
tance (boundary width) of the corresponding estimated contours. A simple yet
efficient B-ROI detection layer (ψ) is proposed for PM and mSDF. For example,
ψPM and ψmSDF are defined as :

ψPM = PM +Maxpooling2D(−PM), (3)

ψmSDF = ξr(mSDF ) +Maxpooling2D
(
− ξr(mSDF )

)
, (4)
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It is worth noting that the output width of ψ can be determined by varying
the kernel size, stride, and padding value of the Maxpooling2D operation. We
empirically set the output boundary width of ψPM and ψmSDF to 4 pixels in this
work. After ψPM and ψmSDF , we refer to such B-ROI of PM and mSDF as
Bpm and BmSDF , respectively. Ideally, BPM and BmSDF should be close enough
to one another. Thus, a Dice loss (LBu) between BPM and BmSDD is applied to
enforce the unsupervised marginal consistency regularisation of unlabeled data.
Meanwhile, we apply a Dice loss (LB) on both BPM and BmSDF to supervise
the dual boundary predictions of labeled data.

2.3 Differentiable vCDR estimation of Weakly Supervision

Because the shape of OD & OC are oval-like [23], previous methods adopt to
offline post-process the segmentation predictions with ellipse fitting to improve
the segmentation accuracy [3], or to calculate the vCDR using the approximated
diameters of the OD & OC in long axis [18,17,21]. However, they overlooked the
underlying supervision value of it in OD & OC segmentation task. To address
this issue, we take advantage of the specific domain knowledge between the
boundary and region in terms of the perimeter and area of an oval-like shape
to approximate the vCDR in a differentiable way. To be precise, the vCDR is
defined as the ratio of dividing the measured diameters of the cup by disc in the
long axis. While, such ratio can also be estimated given the size of perimeter and
the area of OD and OC. According to the Euler’s Method [12], the area (Ao)
and perimeter (Po) of the oval shape are defined as:

Ao = π · a · b, (5)

Po = π ·
√

2(a2 + b2). (6)

where a and b denote the semi-axis of the long and short axis of oval shape,
respectively. We approximate Ao with the summed pixel value of PM , which
can be regarded as the area of oval shape in pixel level. Furthermore, we derive
the spatial gradient of PM via the B-ROI detection layer (ψPM ), to detect
the boundary (bpm) with width = 1. Then the summed pixel values of bpm is
approximately regarded as Po. With Eq. 5 and Eq. 6, we can approximate a with
Ao and Po, such as:

a =

√
(Po)2 +

√
(4πAo + (Po)2) · |(4πAo − (Po)2))|

4π2
), (7)

where |·| is used to prevent sqrt from returning a negative value during the initial
learning period. Given Eq. 7, we can calculate the OD long semi-axis (aOD) and
the OC long semi-axis (aOC) with the respective Po and Ao. Then, the vCDR
estimation layer θ can be defined as:

θ(vCDR) =
aOC + e−6

aOD + e−6
, (8)
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where, e−6 is added to avoid dividing by zero errors. Given the prediction of
vCDR, we apply a MSE loss (LvCDR) between the prediction and ground truth
to fully-supervise the vCDR estimation and weakly-supervise the OD & OC
segmentation.

3 Experiments

3.1 Datasets and Implementation Details

SEG dataset: following the previous methods [21,19], we pooled 2,068 images
from five public available datasets (Refuge [23], Drishti-GS [24], ORIGA [29],
RIGA [1], RIM-ONE [4]). These five datasets provide the fundus images and
the ground truth masks, then we generate the corresponding ground truth of
mSDF, BPM , BmSDF and vCDR with Eq. 1, 3, 4 and 8. Following the previous
methods [21,19], 613 fundus images were randomly selected as the test dataset,
leaving the other 1,315 images for training and 140 images for validation.

UKBB dataset: The UK Biobank 1 is a large-scale biomedical database and
research resource, that contains detailed health information on half a million
participants from the United Kingdom. Participants were scanned using the
TOPCON 3D OCT 1000 Mk2 camera (Topcon Inc, Japan). There are 117,832
fundus images with vCDR scalars are available, of which 38,421 are randomly
selected as the weakly/semi-supervised training dataset, and the rest 79,411 are
used as test datasets.

Implementation: We cropped the image of 256 × 256 pixels with the same
way of [17,21,19], then randomly rotated and flipped the training dataset with
a probability of 0.5. The rotation ranges from −20 to 20 degree. The stochastic
gradient descent with a momentum of 0.9 is used to optimise the overall param-
eters. We trained the model around 10,000 iterations for all the experiments,
with a learning rate of 1e-2 and a step decay rate of 0.999 every 100 iterations.
The batch size was set as 56, consisting of 28 labeled and 28 unlabeled images.
A backbone network [5] is used for ours and all the compared methods. All
the training processes were performed on a server with four GEFORCE RTX
3090 24GiB GPUs, and all the test experiments were conducted on a worksta-
tion with Intel(R) Xeon(R) W-2104 CPU and Geforce RTX 2080Ti GPU with
11GB memory. We use the output of the PM as the segmentation result, and
a fixed threshold 0.5 is employed to get a binary mask. For a fair comparison,
we do not use any post-processing or ensemble methods. Given the previously
discussed loss function terms, we defined the overall loss function as:

Loverall = LPM + LmSDF + LB + λ ∗ (LRu + LBu + LvCDR) (9)

where LPM is Dice loss for supervised segmentation, LmSDF is MSE loss for
supervised regression. λ is adopted from [7] as the time-dependent Gaussian

1 https://www.ukbiobank.ac.uk/
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Input            GT            MT       UAMT      UDCNet      DTC           Ours

Fig. 2: Qualitative results of OD & OC segmentation in SEG test dataset. We
compare our model with MT [25], UAMT [28], UDCNet [10] and DTC [15].

Methods
SEG (OC) SEG (OD) SEG (vCDR) UKBB (vCDR)

Dice (%)↑ BIoU(%)↑ Dice (%)↑ BIoU(%)↑ MAE ↓ Corr↑ MAE ↓ Corr↑

MT [25]
84.1

(81.8, 85.7)
78.2

(77.0, 79.6)
94.3

(94.0, 94.7)
86.5

(85.0, 87.3)
0.091

(0.080, 0.099)
0.683

(0.641, 0.701)
0.145

(0.139, 0.150)
0.307

(0.276, 0.340)

UAMT [28]
85.3

(82.8, 86.9)
80.2

(79.0, 81.7)
95.2

(94.7, 95.6)
86.4

(85.1, 87.7)
0.075

(0.063, 0.081)
0.692

(0.642, 0.723)
0.134

(0.127, 0.139)
0.339

(0.301, 0.361)

URPC [16]
86.1

(83.1, 87.2)
81.2

(79.6, 82.0)
96.0

(95.4, 96.3)
87.3

(85.0, 87.9)
0.067

(0.059, 0.073)
0.701

(0.659, 0.742)
0.126

(0.121, 0.135)
0.361

(0.337, 0.382)

DTC [15]
86.1

(83.0, 87.4)
81.1

(79.5, 82.8)
96.1

(95.3, 96.4)
87.0

(85.2, 87.8)
0.065

(0.060, 0.072)
0.703

(0.661, 0.739)
0.126

(0.120, 0.137)
0.364

(0.339, 0.389)

UDCNet [10]
86.2

(83.3, 87.1)
81.4

(79.6, 83.0)
96.2

(95.7, 96.5)
87.1

(85.6, 87.9)
0.067

(0.059, 0.071)
0.714

(0.663, 0.742)
0.127

(0.119, 0.135)
0.389

(0.365, 0.412)

Ours (Semi)
87.1

(86.4, 87.8)
83.4

(81.0, 85.5)
97.2

(97.1, 97.3)
89.3

(88.2, 89.9)
0.052

(0.049, 0.056)
0.817

(0.777, 0.852)
0.102

(0.099, 0.104)
0.453

(0.439, 0.477)

Table 1: Quantitative segmentation results of OD & OC and glaucoma assess-
ment on SEG and UKBB test datasets. The performance is reported as Dice (%),
BIoU (%), Corr and MAE. 95% confidence intervals are presented in the brack-
ets, respectively. The implementation of the compared semi-supervised state-of-
the-art works is mainly based on an open-source codebase [14].

ramp-up weighting coefficient to account for the trade-off between the super-
vised, unsupervised, and weakly-supervised losses. This avoids the network get-
ting stuck in a degenerate solution during the initial training period. Because no
meaningful prediction of the unlabeled data, as well as vCDR, are obtained.

4 Results

In this section, we show qualitative (Fig. 2) and quantitative results (Tab. 1) of
the OD & OC segmentation and glaucoma assessment tasks. More qualitative
results are shown in the Supplementary. Dice similarity score (Dice) and bound-
ary intersection-over-union (BIoU ) [2] are used as the segmentation accuracy
metrics; Mean Absolute Error (MAE ) and Pearson’s correlation coefficients [22]
(Corr) are used as the vCDR estimation metrics. The best result in each cat-
egory is highlighted in bold. 95% confidence intervals were generated by using
2000 sample bootstrapping.
Optic Disc & Cup Segmentation In Tab. 1, we present the results that are
trained with 5 % of SEG training dataset and all of UKBB training dataset.
Ours (Semi) obtains an average 87.1 % and 97.2 % Dice on OC and OD seg-
mentation, respectively, outperforms data-level consistency regularisation based
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Methods
SEG (OC) SEG (OD) UKBB (vCDR)

Dice (%)↑ BIoU(%)↑ Dice(%)↑ BIoU(%)↑ MAE ↓ Corr ↑
w/o LRu 85.7 80.6 95.9 86.6 0.151 0.319
w/o LBu 86.1 81.1 96.1 87.0 0.133 0.338
w/ Both 86.5 82.1 96.5 88.0 0.127 0.341

w/ LvCDR 86.7 82.6 96.7 88.5 0.112 0.410
w/ LBu+LvCDR 86.9 82.9 96.7 88.6 0.109 0.427
w/ LRu+LvCDR 86.9 82.8 96.6 88.7 0.105 0.439

Ours (Label-only) 80.3 70.5 91.2 75.5 0.631 0.112
Ours (Semi) 87.1 83.4 97.2 89.3 0.102 0.453

Table 2: Ablation study on weakly/semi-supervision components. The perfor-
mance is reported as Dice (%), BIoU (%), MAE, and Corr.

methods MT [25], UAMT [28] by 3.3 % and 2.1 %, outperforms feature-level
regularisation based methods URPC [16],UDCNet [10] by 1.2 % and 1.0 %.

Clinical Evaluation Along with assessing computer vision evaluation metrics,
we evaluated our method’s performance via vCDR in glaucoma assessment. Tab.
1 illustrates the vCDR evaluation results on SEG and UKBB test dataset respec-
tively. The UKBB (vCDR) has 79,411 test images, which is significantly larger
than the SEG (vCDR) (619 images). Therefore, the performance on UKBB
(vCDR) may more accurately reflect the situation in real-world. Specifically,
Ours (semi) achieved the best performance of 0.102 MAE, which outperforms
UDCNet [10] by 19.7 %. Please note that, the segmentation-unlabeled 38,421
images of UKBB training dataset also serve as the fully supervision for vCDR
estimation.

Ablation Study. We conducted extensive ablation studies, and all the re-
sults demonstrate our model’s effectiveness. To illustrate, the ablation results
for weakly/semi-supervision components are shown in Tab. 2. More ablation
experiment results (e.g., Data Utilisation Efficiency) are given in the Supple-
mentary. Specifically, we conduct experiments to evaluate the effectiveness of
the proposed dual consistency regularisation in a semi-supervised manner and
the propose differentiable vCDR estimation module in a weakly-supervised man-
ner. We represent our model that is trained with only 5 % SEG training data
as Ours (Label-only). Firstly, we retain the same model structure and eliminate
the vCDR estimation loss to focus on the dual consistency regularisation losses
(w/ Both). Following that, we remove the region-wise unsupervised loss (w/o
LRu), boundary-wise unsupervised loss (w/o LBu) respectively. Secondly, we re-
move both of the consistency losses and only apply the weakly-supervised vCDR
estimation loss (w/ LvCDR). Then we add the other two unsupervised consis-
tency losses individually (w/ LBu+LvCDR and w/ LRu+LvCDR) to see if the
performance are boosted. Tab. 2 demonstrates that the proposed unsupervised
dual consistency losses and weakly supervised loss can improve the model by
6.7 % and 6.9 % Dice respectively for OD & OC segmentation. Particularly,
the boundary-wide unsupervised loss can increase the model by 15.1 % BIoU,
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which leads to a better boundary segmentation quality. The weakly supervised
loss can bring a large improvement of 82.2 % MAE of vCDR estimation, which
is the ultimate goal for OD & OC segmentation task w.r.t clinic application.

5 Conclusion

We propose a novel weakly/semi-supervised segmentation framework. The geo-
metric associations and specific domain knowledge between the modified signed
distance function representations, object boundary characteristics, and pixel-
wise probability map features are exploited in the proposed semi-supervised
consistency regularisations, and weakly-supervised guidance. Our experiments
have demonstrated that the proposed model can effectively leverage semantic
region features and spatial boundary features for segmentation of optic disc &
optic cup and vCDR estimation of glaucoma assessment from retinal images.
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