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Abstract—This paper examines the use of Poisson multi-
Bernoulli mixture (PMBM) filters with realistic signal propaga-
tion models for tracking of targets with active sonar systems. In
particular, the paper considers application of BELLHOP simu-
lation to model the spatial dependence of the target probability
of detection. The intention is to develop practical approaches to
the problem of accurately representing sonar propagation within
an advanced tracking filter.

Index Terms—Poisson multi-Bernoulli mixture filter, sonar
tracking, BELLHOP modelling.

I. INTRODUCTION

Mutli-target tracking is the problem of recursively esti-
mating the state of a multi-target system from a stream of
noisy measurements in presence of detection failures and
false alarms. For a long time, the Multi-Hypothesis Tracker
(MHT) [1] has been the industrial standard for multi-target
tracking. More recently, new optimal solutions have been
developed, with the Poisson multi-Bernoulli Mixture (PMBM)
filter [2], [3] offering a Bayesian interpretation of the MHT
algorithm, and the relevant connections between algorithms
established in [4]. Such algorithms hold a promise of handling
data from any sensor should the model of its performance be
available to the filter.

This paper is dedicated to target tracking for measurements
collected by an active sonar. Such a sensor interrogates its
environment by transmitting acoustic waves and extracts in-
formation on the targets populating the environment from
reflections received by an array of hydrophones (receivers) [5].
From a tracking perspective, modelling of sonar performance
amounts to constructing a probabilistic model that describes
how the sonar receivers generate target measurements, along
with characterising detection failures and possible false alarms.

In particular, we shall be focused on modelling sonar
detection performance which varies significantly across the
surveillance area. The probability of target detection will be
determined by the strength of the reflected signal received at
the hydrophone array. Commonly signal-to-noise ratio (SNR)
in sonar is modelled for straight line wave propagation, thus
making it possible to express it analytically as a simple
function of range [6], [7], [8]. In general, however, sonar
waves do not propagate in straight lines [9], which turns the
probability of detection into a function of the path taken by
the propagating wave or waves. Multiple propagation paths are
very common in underwater acoustics and this gives rise to

significant echoes and interference at the receivers; a problem
that is exacerbated for active sonar because propagation paths
to and from the target need to be included in the analysis. This
makes it difficult to characterise active sonar measurements
and leads to problems when characterising these measurements
for modern Bayesian tracking methods.

In this work we are interested in the effect of a sonar
detection model on the performance of a multi-target tracking
algorithm. The approach taken in this paper is to simulate
wave propagation and the strength of received signal using the
widely used BELLHOP ray tracing model [10], and making
its output available to the multi-target filtering algorithm. We
consider sonar surveillance with a receiver array in shallow
water that provides target range and azimuth information, see
e.g., [11], [12].

In a tracking algorithm, the probability of target detection
may need to be evaluated for a significant number of possible
target locations. For a BELLHOP model, this could render
the tracking function prohibitively expensive in terms of com-
putational costs. To alleviate this issue, we employ a particular
implementation of the PMBM filter [13] that requires a small
and fixed number of characteristic locations (per target update)
at which the probability of detection needs to be evaluated.

The contribution of this paper is the integration of the
BELLHOP ray tracing model for sonar detection performance
with a PMBM filter. It compares the resulting tracking perfor-
mance to that obtained using uniform probability of detection
in the filter, as commonly assumed in multi-target tracking
with sonar, see e.g., [7], [14], [15].

The paper is organised as follows. In Section II, a Gaussian
implementation of the PMBM filter is reviewed. Section III
describes a probabilistic model of sonar surveillance, including
the dependency of detection performance on the signal-to-
noise conditions. Section IV explains the basics of BELLHOP
and its application to modelling the propagation of active sonar
signals via ray tracing. Section V presents the experimental re-
sults and performance assessment of the developed approach.
Section VI concludes the paper.

II. BACKGROUND

This section presents the background material. We aim to
integrate a model of sonar detection performance within the
framework of Section II-A to represent state-dependent prob-
ability of detection pD(·). Section II-B reviews the PMBM
filter.



A. Filtering assumptions

We consider a probabilistic model using the standard multi-
target assumptions [16]. Given the set Xk of targets at time
step k, each target x ∈ Xk survives with a probability pS(x)
and its kinematic state evolves according to transition density
g(·|x), or dies with probability 1 − pS(x). This formalism is
equally appropriate for describing moving as well as stationary
targets. New targets are born according to a Poisson point
process (PPP) with intensity λB(·).

At time step k, each x ∈ Xk is detected with a probability
pD(x) and generates a measurement with density l(·|x), or
is misdetected with probability 1 − pD(x). In other words,
it is assumed that each target produces at most a single
measurement, and that no measurement is generated by more
than a single target, i.e., there are no unresolved targets.
Furthermore, detectability of a target is unaffected by the
presence of other targets, e.g., there are no occlusions induced
by other targets. That is, the model assumes that targets are
small compared to the sensor resolution. False alarms are
modelled as a PPP with intensity λFA(·).

B. Poisson Multi-Bernoulli Mixture Filter

The posterior of Xk is calculated via the PMBM filter [3],
[17]. This filter maintains information on the multi-target
situation in a form of the Poisson multi-Bernoulli Mixture
(PMBM) density fk′|k(·). This density describes the set of
targets at time step k′ given the history of measurements
up to time step k, and is a combination of two independent
point processes: a Poisson point process with density fp

k′|k(·),
and a multi-Bernoulli mixture (MBM) process with density
fmbm
k′|k (·), where k′ ∈ {k, k + 1} correspond to the updated

and predicted processes in the filter. The union of these two
processes, i.e., a Poisson and an MBM processes, has been
proven to be a conjugate prior with respect to the standard
point target measurement model [3], [17].

The PMBM density is expressed over the union of the
undetected targets set Y , and the detected target set W :

fk′|k
(
Xk′|k

)
=

∑
Y ⊎W=X

fp
k′|k(Y )fmbm

k′|k (W ), (1)

where the sum goes over all mutually disjoint sets Y and W ,
which have the property that their union is X .

The PPP density represents the undetected targets, i.e.,
targets that exist at the current time instant k′, but have not
yet been detected. This density is defined via

fp
k′|k(X) = e−

∫
Dk′|k(x)dx

∏
x∈X

Dk′|k(x), (2)

where Dk′|k(·) is the intensity of a PPP. In a PPP, the
number of targets is Poisson distributed and target states are
independent, and identically distributed. The MBM component
represents the potentially detected targets, and it can be
described as [17]:

fmbm
k′|k (X) =

∑
a∈Ak′|k

wa
k′|k

∑
⊎

n
k′|k

j=1 Xj=X

nk′|k∏
i=1

f i,ai

k′|k
(
Xi

)
, (3)

where i is the index over the Bernoulli components, a ={
a1, . . . , ank′|k

}
∈ Ak′|k represents a specific data association

hypothesis, ai ∈
{
1, . . . , hi

k′|k

}
is an index over the hi

k′|k
single target hypotheses for the i-th potential target/Bernoulli
component, and nk′|k is the number of potentially detected
targets. Each set of single target hypothesis a ∈ Ak′|k is also
called a global hypothesis, and it is associated to a weight
wa

k′|k satisfying
∑

a∈Ak′|k
wa

k′|k = 1. The same single target
hypotheses can appear in several global hypotheses.

The Bernoulli density corresponding to the i-th potential
target and the ai single target hypothesis f i,ai

k′|k(X) can describe
a newly detected target, or it can represent a previously de-
tected target or false alarm; this makes it possible to efficiently
model both the uncertainty regarding target existence and state.
Mathematically, it can be expressed as

f i,ai

k′|k(X) =


1− ri,a

i

k′|k, X = ∅,
ri,a

i

k′|kp
i,ai

k′|k(x), X = {x},
0, otherwise.

, (4)

where ri,a
i

k′|k ∈ [0, 1] is the probability of target existence and

pi,a
i

k′|k(·) is the state density provided that it exists.
In this work, we consider the Gaussian PMBM represen-

tation proposed in [3], where pi,a
i

k′|k(·) = N
(
·; x̄i,ai

k′|k, P
i,ai

k′|k

)
,

with mean x̄i,ai

k′|k and variance P i,ai

k′|k . In this context, the MBM
density is entirely defined by the following parameters{(

wa
k′|k, r

i,ai

k′|k, x̄
i,ai

k′|k, P
i,ai

k′|k

)}
i∈{1,...,nk′|k}

,

where a ∈ Ak′|k is defined in [17]. All details on the
PMBM filtering recursion can be found in [3], [17]. The
implementation we use in this paper requires the nonlinear
filtering techniques in [13], also discussed in Section III-B.

III. SONAR SURVEILLANCE MODEL

From the perspective of the filtering algorithm, the detection
process is modelled as a combination of true detection and
false alarms. The probability of detection will be a function
of the target state, which may include the target orientation
for non-isotropic reflectors.

This section provides a probabilistic model of sonar surveil-
lance process, including its detection part. We consider a
sensor capable of providing noisy measurements of azimuth
and range, and whose ability to detect targets is limited by the
signal-to-noise (SNR) conditions in the area of surveillance
and further complicated by the presence of false alarms. This
model can be readily used to simulate sonar measurements for
any given multi-target configuration, but it requires additional
approximations [13] detailed further in order to fit into the
Gaussian tracking algorithm of Section II.

A. Measurement model

The single-target state is represented as a vector x =
[px, vx, py, vy]

T
, where [px, py]

T is the position vector and
[vx, vy]

T is the velocity vector. The sonar state is described
by s =

[
psx, v

s
x, p

s
y, v

s
y

]T
.



1) Range-bearing measurements: The sonar in s measures
azimuth, represented as a two-dimensional vector z1 of length
1, and range z2, such that z = [z1; z2]. The azimuth measure-
ment z1 is modelled as a von-Mises Fisher (VMF) distribution
[18]

l (z1|x) = V (z1;h(x), κ) , (5)

h(x) =

[
cosφ(x)
sinφ(x)

]
, (6)

φ(x) = atan2(py − psy, px − psx), (7)

where V(·;µ, κ) is the VMF density embedded in R2, w.r.t. the
uniform distribution, with mean direction µ and concentration
parameter κ ≥ 0, and atan2(·, ·) is the four-quadrant inverse
tangent,. This density is

V (z1;µ, κ) =
exp

(
κµT z1

)
I0(κ)

χ∥z1∥=1 (z1) (8)

where Ia(·) represents the modified Bessel function of the
first kind and order a,Γ(·) represents the gamma function and
χA(·) is the indicator function on set A. The VMF distribution
is unimodal for κ > 0 and uniform for κ = 0.

We consider Gaussian distribution for the range, so that the
density of z2 given x is

l (z2|x) = N
(
z2; r(x), σ

2
r

)
, (9)

r(x) =
∥∥[px − psx, py − psy

]∥∥ . (10)

Given the state, the range and direction-of-arrival measure-
ments are independent so

l(z|x) = l (z1|x) l (z2|x)

where l (z1|x) and l (z2|x) are given, respectively, by (5)
and (9).

2) Detection uncertainty: Considering an amplitude re-
ceiver, the target signal is passed through a matched filter and
an envelope detector, and target detection [19], i.e., a particular
range-azimuth measurement, is declared if the received signal
exceeds a certain threshold. Under assumption that the noise
in the matched filter is narrowband Gaussian, the output to
be thresholded is then Rayleigh distributed (Swerling I). The
probability that target is detected in the received signal is then
given by a well know expression

pD(x) = p
1

1+SNR(x;s)

FA , (11)

where pFA is a desirable probability of a false alarm, and
SNR(x; s) is the value of signal-to-noise ratio available to the
receiver located in s when target is in x, and the probability
of not detecting a target is then 1− pD(x).

3) False alarms: In addition to detection uncertainty, the
sensor is prone to false range-bearing measurements, modelled
by a PPP. The surveillance area covers the range interval
[rmin, rmax] and the interval of possible direction of arrivals
[φmin, φmax]. The intensity function of false measurements
λFA(·) is uniform such that

λFA
([

zT1 , z2
]T)

= λ
FA · c

([
zT1 , z2

]T)
, (12)

where λ
FA

is the mean number of false measurements per scan,
and c(·) is a density

c
([

zT1 , z2
]T)

= V
(
z1; [1, 0]

T , 0
)
U[rmin,rmax] (z2) , (13)

where U[rmin,rmax] (·) is a uniform density in the interval
[rmin, rmax]. If a measurement z belongs to the surveillance
area, we have λFA(z) = λ

FA
(rmax − rmin)

−1.

B. Approximations in the filtering update step

Target tracking with the above model of surveillance im-
plies tracking with non-linear non-Gaussian measurements and
state-dependent probability of detection. This can be accom-
plished using either particle filtering techniques or Gaussian
approximations. In this work we adopt a particular version
of [3] that is based on Gaussian approximations reported
in [13]. This approach uses the iterated posterior linearisation
filter (IPLF) based on conditional moments to perform the
single-target updates [20], [21], which requires the use of
sigma-point integration methods [22]. A particular advantage
of this algorithm in comparison to particle filtering is its lower
computational complexity.

Specifically, these approximations are aimed at obtaining
Gaussian densities describing the states of individual targets,
and representing multi-target posteriors with sufficient pre-
cision. To approximate the single-target posterior and the
normalising constant in the multi-target posterior, we need
l(z|x) and its conditional moments. The normalising constant
with state-dependent probability of detection can be approxi-
mated by drawing sigma-points with respect to the posterior
approximation. The exact details of this method can be found
in [13].

IV. SIMULATION OF ACTIVE SONAR WITH BELLHOP

This section develops an approach to describing the signal-
to-noise conditions in the sonar surveillance area, as this is
required for the state-dependent probability of target detection
model in Section III-A2. The variations in SNR level will be
primarily determined by the transmission loss accumulated by
a sonar signal insonifying the surveillance area, as it is done
to simulate sonar detections, e.g., in [7].

A. Simulating transmission loss in active sonar

This section describes the main characteristics of the BELL-
HOP software that models propagation of acoustic waves in
underwater environment. For the purpose of this paper, we
shall be interested in constructing the transmission loss values
for an active sonar using the software’s output.

1) The BELLHOP ray tracing model: The underwater en-
vironment is considered to be one of the most complex medi-
ums for the transmission of signals. Due to this complexity,
acoustic simulations are time consuming and computationally
expensive, and it is desirable to have a model of signal
propagation that is efficient and flexible at the same time.
A useful description of how sound propagates through the
underwater medium is provided by ray tracing models. To



determine the ray coordinates, i.e., to calculate the eigenrays,
a solution of the ray equations is required.

BELLHOP is an industry standard ray tracing model for
predicting acoustic pressure fields in ocean environments [10],
[23]. BELLHOP offers the ability to simulate propagation
of a sonar signal from its source to a receiver, which are
both described by their locations in Cartesian coordinates, in
a customisable underwater environment. BELLHOP is open
source and written in FORTRAN, with a file based interface,
where the scenario and the environmental conditions are
contained in text files that BELLHOP uses as the source for the
acoustic calculations. Typically, for sonar frequencies above
1kHz, the BELLHOP modelling is considered to be relatively
representative of real sonar behaviour. It can be used to predict
system performance and to generate complex waveforms [24].
BELLHOP can produce a variety of useful outputs, that
are different (text) files depending on the options selected
within the environmental file, and include transmission loss,
eigenrays, arrival times, and receiver time series.

In this paper, we use the 3D version of BELLHOP (BELL-
HOP3D) to provide estimates for the attenuation of the sonar
signals along the propagation paths, and to provide the resul-
tant transmission loss for the active sonar signal propagating
from the transmitter to the target and back from the target to
the receiver array. For this project, an interface was developed
to allow BELLHOP to be called by MATLAB, where the
MATLAB automatically generated the BELLHOP data files
for the scenario and the environment, and then extracted the
relevant parameters from the BELLHOP output files.

TABLE I
PARAMETERS AND INFORMATION IN BELLHOP

Parameter
Source (S) position in 3D
Receiver (R) position in 3D
Declination angles (for R and S)
Azimuth angles (for R and S)
Number of top and bottom bounces
Amplitude
Transmission loss (in dB)
Delay (in sec)

2) Simulating transmission loss in active sonar: The
BELLHOP model has been developed to describe acoustic ray
propagation from a signal source to a hydrophone array that
is spatially separated from the source. Such settings naturally
represent the case of passive sonar, where the source represents
a target; however, they require additional modification to
model the operation of an active sonar. Specifically, modelling
target insonification with a sonar signal can be done in two
parts:

• simulating the transmission path from the source to the
target and

• simulating the transmission path from the target to the
receiver.

In the first part, a request to BELLHOP is sent where the
position of the sonar platform is the source and the position
of the target is the receiver. The direction of the beam and its
width are defined by the properties of the actual sonar system

considered. This BELLHOP request returns the propagation
loss from source to target TLS-T, as well as other data as
found in Table I. For the second request, the source and
receiver are redefined such that the target’s position is now
the source and the sonar platform is the receiver (or, more
generally, the receiver array, which could be an extended
structure with hydrophones placed at multiple locations and
is not necessarily co-located with the transmitter). In this
case the target is assumed to be an omnidirectional source
with a defined target strength to reflect the interaction of the
incident acoustic waves with the target structure. Here the
BELLHOP response provides us with the transmission loss
from target to receiver that is TLT-R. Ultimately, the resulting
transmission loss for a given pair of sonar and target states is
the product of TLS-T and TLT-R, or more typically, the sum
of the transmission losses described in decibels.

B. Active sonar equation

The value of SNR available to the receiver is a function
of a number of factors that are collected in form of a sonar
equation, which is written (in dB) as

SNR(x; s) = SIGNAL(x; s)− NOISE, (14)

where SIGNAL and NOISE represent the power of the received
signal and noise, respectively. For an active sonar, these
components are

SIGNAL(x; s) = SL − (TL(x; s)− TS), (15)
NOISE = NL − AG, (16)

and where SL is the Source Level for the transducer, TS
is the target strength, NL is the ambient noise level, AG
is the array gain (related to the directionality of the array),
and TL(x; s) = TLS-T(x; s) + TLT-R(x; s) can be evaluated
through BELLHOP ray tracing model for particular propaga-
tion conditions as specified by the environmental file, and with
specific values measured in decibels relative to the standard
reference intensity of a 1µPa plane waves. Overall, equation
(14) can be read as the sound history of an active sonar:
a wave is first transmitted by the transducer with a certain
energy SL, the emitted wave propagates into the medium,
its energy decreases along the propagation TLS-T. The sound
wave interacts with a target and a part of the energy is
reflected back toward the sonar TS. And finally the target
echo propagates back to the receiver losing energy along the
path TLT-R.

V. EXPERIMENTAL RESULTS

We proceed to assess the developed sonar tracking al-
gorithm. The approach taken in this paper is to contrast
performance attained using the true probability model against
that obtained with uniform probability of detection, which
recreates the situation when true model is not available to the
filter.



TABLE II
INITIAL TARGET STATES AND TRACK INFORMATION.

Init.loc. (m) Init.vel. (ms−1) Time of birth/death (s)

[−126.30, 1585.60]T [0.86, 3.76]T 6/40

[890.86, 1797.07]T [−0.13, 0.47]T 15/40

[−72.74, 1984.99]T [−1.88,−3.79]T 24/40

[222.30, 1386.92]T [−2.24,−2.20]T 33/40

A. Simulation details

Experimental results produced in this work are based on the
following models of target dynamics and sonar measurements.
A set of parameters used to configure the PMBM filtering
algorithm is also provided.

a) Multi-target dynamics: Targets move with probability
of survival pS = 0.99 and a nearly constant velocity model
with transition density

g(·|x) = N (·;Fx,Q), (17)

F = I2 ⊗
(

1 τ
0 1

)
, Q = qI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
(18)

where ⊗ is the Kronecker product, τ = 10s is the sampling
period and q = 0.001m2s−3 is the variance of velocity
increments.

The intensity of the PPP birth process is Gaussian with
mean x̄b

k = [0, 0, 2000, 0]T and covariance matrix P b
k =

diag([4002, 22, 4002, 22]), and rate wb = 0.05.
b) Sonar measurements: A stationary sonar is lo-

cated at the origin, and the surveillance area is limited to
[rmin, rmax] = [1000m, 3000m], and [φmin, φmax] = [π3 ,

2π
3 ].

The VMF distributed azimuth noise is characterised by a
concentration parameter κ, that is selected to correspond to
a Gaussian distribution with standard deviation σφ = π

180
via κ = σ−2

φ . The range noise is zero-mean Gaussian with
standard deviation σr = 20m.

The sonar’s probability of detection for a target in a
given state is evaluated using (11) with the SNR computed
as (14), where transmission losses are evaluated based on the
BELLHOP simulation. Simulating the sonar operating at 1kHz
at depth 80m and the depth of bottom 150m, the resulting
probability of detection is as in Figure 1. The probability
of detection outside the surveillance area is set to 0 in the
computations, as in [6]. The false alarm model is Poisson,
uniformly distributed in the surveillance area, with a mean
number of false measurements per scan equal to λ = 10.

c) Filtering implementation: We consider the PMBM
filtering algorithm in Section II with Gaussian approximations
in Section III. In the considered implementation the maximum
number of global hypotheses is set to Nh = 500, threshold
for pruning the Poisson components Γp = 10−5, threshold
for pruning global hypotheses Γmbm = 10−6, and threshold
for pruning Bernoulli components Γb = 10−6. The ellipsoidal
gating is performed with a threshold equal to 200, while the
state extraction is performed by selecting the global hypothesis
that has the highest weight and then reporting the means of
Bernoulli components whose existence probability is above
0.4 [3, Sec. VI.A]. Finally, in these experiments we use the

Fig. 1. Probability of target detection with an active sonar as evaluated
using the BELLHOP simulation over a limited surveillance region. The sonar
location is at the origin (not depicted). It may appear counter-intuitive that
probability of detection does not strictly decrease with distance, as e.g., in
[6], for the considered depth, but this pattern emerges due to non-straight line
propagation of sonar signals, which may travel across various depths while
accumulating propagation loss before arriving at the considered depth. This
figure also features true target trajectories that are used in the experiments.

Fig. 2. The actual values of probability of detection along the targets’
trajectories that are used for generating the sonar measurements (or detection
failures) in the experiments.

measurement driven initial linearization and the number of
iterations of the IPLF is set to 1.

This implementation, when compared to [13], employs
a higher number of global hypotheses and lower pruning
thresholds, which preserves richer information on the multi-
target configuration within the filter. Specifically, this makes
it possible for the filter to track a target through the areas
of low probability of detection, where target is only detected
sporadically—possibly, with several time steps separating suc-



Fig. 3. RMS GOSPA error against time and its decompositions for the stan-
dard and optimal implementation of the PMBM filter. Results are generated
for false alarm rate λFA = 10 and averaged over 100 Monte Carlo runs.

cessive detections,—and otherwise may be at risk of having
its associated Bernoulli components pruned prematurely.

B. Performance comparison

We assess performance of a PMBM filter that is informed
about the sonar’s probability of detection model pD(·), re-
ferred to as the optimal algorithm next, and compare it
to the standard algorithm, which (incorrectly) assumes the
probability of detection to be uniform over surveillance area.
In both standard and optimal algorithm just a low number of
points are queried in the update step to access the probability
of detection. In this implementation of the PMBM filter the
probability of detection is evaluated in 7 characteristic points
for each Bernoulli-Gaussian in the predicted MBM describing
the surviving targets, as well as for a single Gaussian that
characterises the spatial distribution of a Poisson process
describing the undetected targets [21].

In the standard algorithm, the value of probability of detec-
tion is set to pD = 0.66, and is obtained from the BELLHOP
model as the average probability value across all ranges within
[rmin, rmax]. For the optimal algorithm, we precompute the
probability of detection in a grid of ranges, i.e., employ a
lookup table, to further alleviate the computational burden
associated with that BELLHOP is not an optimised ray tracing
code. Then, the tracker accesses probability in a nearest point
on the grid in place of evaluating each point in BELLHOP
— the grid spacing is sufficiently fine that interpolation is not
necessary in the cases considered.

The considered scenario lasts for 40 time steps, and consists
of total 4 targets that are generated from the birth model
described in Section V-A. The resulting initial target states are
given in Table II, and targets follow trajectories as depicted
on Figure 1. In this scenario, the probability of detecting a
target varies along its respective trajectory (see Figure 2), and
typically deviates from the value pD = 0.66 that is assumed
by the standard algorithm.

Fig. 4. RMS localisation and missed target cost against time for each of the 4
ground truth trajectories. Results are generated for false alarm rate λFA = 10
and averaged over 100 Monte Carlo runs.

These two PMBM algorithms, i.e., the optimal and standard
ones, have been applied to sonar data generated using the sonar
model in Section V-A. In order to evaluate their tracking per-
formance, the Generalized Optimal Sub-Pattern Assignment
(GOSPA) metric [25] per time step is used with the Euclidean
distance (i.e. p = 2) and the cutoff c = 300m, the parameter
is set to α = 2, which allows to decompose the total error
into three components: localization error, missed target error
and false target error. The RMS GOSPA metric errors against
time are shown in Figure 3.

The best performing algorithm is the optimal algorithm, its
RMS GOSPA error is predominantly the same or lower than
that of the standard algorithm. This confirms an intuition that
communicating the true probability of detection model to the
filter is an important factor to improve tracking performance.
A closer inspection of the GOSPA components reveals that
optimal algorithm is superior in situations when there are
targets operating in the areas of low probability of detection,
and there is a possibility of missing a target because of that.
This is specifically pronounced in terms of missed target
error, starting from time step 24. However, the resulting
estimates (when reported) may not be very accurate, as seen
through localisation error. Finally, both algorithms behave in
the same manner with respect to false alarms. The false alarm
contribution to the total error is considerably lower than the
missed target error, indicating that filters tend to miss more
targets than to report false targets.

In order to comment on what types of trajectories are most
likely to benefit from the use of the BELLHOP model, for each
target we consider the values of a cost function (see Figure 4),
which can quantify both failures to report a target’s existence
as well as localisation errors for a reported target. The resulting
cost values confirm that performance improvement is gained
by the optimal algorithm in the areas with low probability of
detection; notably, after time step 21 for target 1 and after time
step 30 for target 2. It also reveals that for target 4 that operates



in the area of high probability of detection, not having access
to the BELLHOP model leads to performance degradation due
to delayed track confirmation in presence of false alarms.

This cost function that is considered above for individual
targets is computed similarly to the GOSPA metric [25], and
uses the same set of configuration parameters. Specifically, at
each time step, an optimal assignment is established between
the set of ground truth target states and the set of target
estimates. For each true target, if the assigned estimate is
within the cut-off distance c, the cost function simply evaluates
to Euclidean distance. Otherwise, if no estimate is associated
to this target (or if the distance between the true target and
its estimate is bigger than c), the cost function evaluates
to c/α1/p.

VI. CONCLUSION

In this paper we have presented an efficient approach to
multi-target filtering with an active sonar. Its novelty in that
it takes into account sonar’s state-dependent probability of
target detection, which is generally not uniform across the
surveillance area and cannot be expressed through a simple
analytical expression. The approach is enabled by a particular
implementation of the PMBM filter, which requires only a
limited number of location points to evaluate the probability
of detection, and the model of probability of detection that
is based on sonar simulations performed with the BELLHOP
model.

Previous work has commonly assumed that the probability
of detection model is uniform across the surveillance area.
As expected, using a realistic sonar model within the filter
improves tracking performance.

Further work to extend this work will include taking the
peculiarities of the underwater environment into account to
calculate range measurements using the BELLHOP sim-
ulation and an analysis of the types of environment and
trajectories for which the use of realistic sonar models is
important for tracking performance.
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