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Abstract—This article is focused on estimating a quantity of
interest in the context of military impact assessment that we
shall call adversarial risk. We formulate adversarial risk as a
function of the multi-object state describing a group of weapons,
and propose two approaches to estimating it using multi-object
filters. The first, optimal, approach is tailored to filters for point
processes, and produces the mean estimate of adversarial risk
and its variance. The second, naı̈ve, approach is applicable to any
filter producing point estimates of the multi-object state, yet it is
not capable of equipping a risk estimate with an indicator of its
quality. We develop an implementation of the optimal approach
for a particular multi-object filter and compare it to the naı̈ve
approach.

Index Terms—Impact assessment, multi-object filtering, adver-
sarial risk

I. INTRODUCTION

Impact assessment is an important part of military command
and control. It concerns evaluation of the potential outcomes
resulting from both one’s own and an adversary’s actions [1,
p. 55]. The ability to predict impacts is useful in planning
one’s own actions to promote the survivability of assets [2]
or to reduce the expected damage or associated costs [3]. A
few available models of expected damage, such as averted
harm [4, p. 58], [5, p. 7], operational risk [6, p. 52] and
surviving value [7, p. 49], are useful for off-line analysis.
These models address situations when actions take place on
both sides, what requires modelling of complex interaction
of own weapons with adversaries of varying kind, as well as
solving the problem of weapon-to-target assignment [7].

The first contribution of this paper is to propose a notion of
adversarial risk to introduce elements of impact assessment
into online analysis and to describe incoming threats using
streamed sensor data. Such threats could include, for example,
a co-ordinated missile strike with multiple missiles [8]. Ad-
versarial risk focuses on the actions of adversaries exclusively,
and is defined as the expected damage to a valuable asset from
a group of weapons capable of intentional malign activity.
In principle, our notion of adversarial risk generalises some
models of vulnerability [9], [10], [6], by permitting that only a
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part of the asset’s value is removed by a resultative hit, without
its ultimate destruction. The risk value could be subsequently
used for making decisions about one’s own actions, e.g., how
to configure countermeasures, but this is beyond the scope of
this paper.

The second contribution of the paper is to introduce a notion
of stochastic adversarial risk, in order to characterize the
adversarial risk when the arriving sensor data are handled
by a multi-object tracking filter. It is developed within the
framework of point processes theory, and is compatible with
any filter that is constructed within this methodology, e.g. [11],
[12], [13], [14], and possibly extends to specific interpretations
of classic algorithms, e.g., joint probabilistic data-association
filter (JPDA) and multiple hypotheses tracking (MHT) [15],
[16], [17].

The third contribution of the paper is to develop an optimal
estimation of the adversarial risk in the multi-object context.
It provides the mean estimate of adversarial risk, which is
optimal in minimum mean squared error (MMSE) sense, as
well as its variance. The variance can serve as an indicator
of the output’s reliability, as desired by military decision
makers [18], or of confidence, as expected for data fusion
systems [1, Ch. 3]. Furthermore, its expressions are useful
in formulation of Bayes-optimal sensor management, where
the expected variance value is minimized [19], [20] or kept
within constraints [21], [22], [23]. This approach is illustrated
via an application to a point process intensity, or probability
hypothesis density (PHD), filter [11], [12].

Section II introduces the model of adversarial risk. In
Section III, we provide a description of point processes and the
associated statistical tools relevant to the context of this paper.
Section IV introduces stochastic adversarial risk, when the
population of weapons is uncertain and described by a point
process, and proposes an optimal approach to its estimation.
Section V illustrates the optimal approach in the context of
multi-object tracking, where the population of weapons is
estimated through a Bayesian filter. Section VI demonstrates
the algorithms.

II. ADVERSARIAL RISK

This section develops a model of adversarial risk to charac-
terize a multi-object population. It requires that a valuable as-
set is introduced to the scenario, and the population represents
a group of weapons. Section II-A models the probability that
an individual weapon hits the asset, Section II-B aggregates
individual probabilities into the multi-object adversarial risk,
Section II-C offers an illustrative example, and Section II-D
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TABLE I
SCENARIO DETAILS

Weapon Loc. (m) Range (m) Hit prob. Dam.cap.
x1 [10, 40]T 42.72 0.36 500
x2 [20, 30]T 30.41 0.60 500
x3 [40, 40]T 18.02 0.83 500
x4 [80, 10]T 33.54 0.54 1000
x5 [85, 30]T 53.36 0.50 1000

develops special cases of adversarial risk that will be the main
focus of the paper.

A. Single-object hit
Consider a fallible weapon, whose state is described by

some state space X , to be detailed later, deemed as a possible
threat for some asset A. The probability that a weapon with
state x ∈ X hits the asset is described by the Bernoulli
random variable HA(x) with parameter 0 ≤ τA(x) ≤ 1, i.e.,
the asset is hit with probability τA(x). If the hit leads to
the asset’s destruction, which is not generally the case, the
function τA(·) simply represents the weapon’s lethality [6,
p. 53]. Furthermore, τA(·) may additionally reflect various
aspects of threat, such as intent and capability [24], [25]. An
illustrative example will be given in Section II-C, and a more
developed scenario in Section VI.

B. Multi-object adversarial risk
We assume that the asset of interest has some initial value

VA > 0, diminishing upon successful hits from the weapons.1

The potential damage of a weapon with state x ∈ X is
described by the random variable

DA(x) := dA(x)HA(x), (1)

where the function dA : X → R+ assesses the damaging
capacity of the weapon, and characterizes its ability to subtract
the asset’s value.

The adversarial risk of a group of n weapons, n ∈ N,
whose states are described by the sequence x1:n ∈ Xn is their
expected damage given by

RA(x1:n) := E

min

VA,
∑

1≤i≤n

DA(xi)

 . (2)

This model captures the fact that the weapons cannot inflict
damage that is bigger than the value of the asset itself.

C. Illustrative example
We study the adversarial risk (2) with a focus on the

interaction between the damaging capacities of weapons and
the asset’s diminishing value, which are novel in this model.

1The idea of modelling the asset’s value as diminishing gradually (rather
than disappearing following a single strike) is inspired by the models of
expected damage, which are focused on a set of dispersed assets whose total
value is computed as the sum of individual values and it is permitted that
only a subset of assets survives an attack [6], [7]. The asset of diminishing
value can be seen as an evolution of that model provided that the assets are
concentrated in a single location. In practice, the value of an asset is a complex
matter to which many different aspects contribute [6, p. 54]

The state space X describes here the coordinates of a
weapon in the 2D state space (see Figure 1a). We consider
a population of five weapons with states xi, 1 ≤ i ≤ 5, as
given in Table I. In this particular case, the valuable asset is
also described by its coordinates xA = [50, 25]Tm in the 2D
plane. The hit probability is then modelled with a Gaussian
function [9], i.e.,

τA(x) := exp

(
−r(x, xA)

2

2b2r

)
, (3)

where r : X × X → R+ evaluates the distance, and br > 0
is a parameter describing the spread of the potential hit. Its
shape is presented in Figure 1a for br = 30m.

The damaging capacity of the weapon is assumed to depend
on whether the adversary is sea-based or land-based, that is,

dA(x) :=

{
1000 if x ∈ B (sea-based),
500 if x ∈ B̄ (land-based).

. (4)

The corresponding ranges as well as the resulting hit prob-
abilities and damaging capacities for the considered weapons
are in Table I. Note that the specific choice of functions (3)
and (4), and their dependencies on the scenario geometry is
only for demonstration purposes. Other functions can be used
as deemed appropriate, e.g. [26, Eq. (34)], [27, Sec. 5], [28,
Eq. (4)].

Figure 1c evaluates adversarial risk (2) over a range of
possible asset values VA ∈ [0, 8000]. When the asset value is
higher than the damaging capacity of all weapons combined
(VA ≥ 3500), i.e., the asset value is very high, the risk value
is independent of variation in VA. When the asset value is
lower than the lowest damaging capacity (VA ≤ 500), i.e.,
the damaging capacity of each weapon is very high, the risk
value is proportional to VA. These observations motivate the
developments in Section II-D.

Figure 2 offers a visualisation of risk maps for the two
critical asset values. The maps of this kind are a valuable
decision-making aid in route planning, e.g., [3], [29], [28].

D. Limiting cases of adversarial risk

We shall focus, for the rest of the paper, on two special cases
where the adversarial risk has a simpler structure than (2).
Despite obtained from idealised assumptions, those limiting
cases represent practically significant quantities.

Assumptions II.1 (Infinite asset value). The damage function
dA(·) is finite-valued, while the asset value is infinite, i.e.,

VA = +∞. (5)

The principal consequence of this assumption is that the
asset can take any number of hits and any amount of damage
without losing its total value. Thus, the risk evaluates to the
full damage expected from a group of fallible weapons with
finite damaging capacities.

Proposition II.2 (Σ-risk). Under Assumptions II.1, the adver-
sarial risk (2) simplifies as

RA,Σ(x1:n) =
∑

1≤i≤n

dA(xi)τA(xi), (6)
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for a population of weapons with states x1:n ∈ Xn.

The proof is given in Appendix A-A. It is worth noting that
the model (6) offers a physically meaningful interpretation of
‘cumulative threat’ which is a quantity defined additive across
the weapons, e.g., [30], [29], [31].

Assumptions II.3 (Infinite damaging capacity). The damaging
capacity of weapons is infinite, i.e.,

∀x ∈ X , dA(x) = +∞, (7)

while the asset value VA is finite.

This implies that the asset loses its total value following a
single strike from a weapon. As a result, the risk evaluates
to the asset value weighted by the probability of at least one
strike from a group of weapons.

Proposition II.4 (Π-risk). Under Assumptions II.3, the adver-
sarial risk (2) simplifies as

RA,Π(x1:n) = VA ·
[
1−

∏
1≤i≤n

[
1− τA(xi)

]]
, (8)

for a population of weapons with states x1:n ∈ Xn.

The proof is given in Appendix A-B. The structure of (8)
is compatible with other models of expected damage [4],
[6], [7]. For V = 1, it is equivalent to the ‘probability of
kill’ [2] or ‘vulnerability’ in [10, Eq. 18], and can be seen as
generalisation of [9] to multiple weapons.

In the rest of the paper subscripts related to the asset may be
omitted, when there is no ambiguity, for the sake of simplicity.

III. BACKGROUND ON POINT PROCESSES

This section presents background and notation used
throughout the article and does not contain novel material.
Point processes are briefly described in Section III-A, Section
III-B introduces statistical moments to describe a point pro-
cess, and Section III-C introduces the probability generating
functional.

A. Point processes

In this article, the objects of interest, i.e., the weapons,
have individual states x in some dx-dimensional state space
X ⊂ Rdx , typically consisting of position, velocity and class
variables. A point process Φ on X is a random variable on
the process space X =

⋃∞
n=0 Xn, i.e. the space of all finite

sequences of points in X , whose number of elements and
element states are unknown and (possibly) time-varying.2 A
realisation of Φ is a sequence x1:n ∈ Xn, representing a
population of n objects with states xi ∈ X , 1 ≤ i ≤ n, where
n ∈ N. In the context of multi-object filtering, this sequence
depicts a specific multi-object configuration.

As for usual real-valued random variables, a point process
is described by its probability distribution PΦ on X; the

2More formally, a point process Φ on X is a measurable mapping
Φ : (Ω,F ,P) → (X,B(X)) from some probability space (Ω,F ,P) to the
measurable space (X,B(X)), where Ω is a sample space; F is a σ-algebra
on Ω; P is a probability measure on (Ω,F); B(X) is the Borel σ-algebra on
X [32].

projection measure P
(n)
Φ describes the realisations of Φ with n

elements, n ≥ 0. The projection measures are assumed to be
symmetrical functions, so that the order of points in a realisa-
tion is irrelevant for statistical purposes and the permutations
of a realization of the point process—such as (x1, x2) and
(x2, x1)—are equally probable. In addition, a point process
is called simple if the probability distribution is such that
realisations are sequences of points that are pairwise distinct
almost surely, i.e., a realization does not contain repetitions.
For the rest of the paper, all the point processes are assumed
simple. The density of the projection measure P

(n)
Φ , n ≥ 0, is

then denoted by p
(n)
Φ .

B. Statistical moments

An alternative description of a point process Φ is through
densities of its statistical moments which only carry partial in-
formation. Specifically, we focus on the lower-order moments
that carry the most information. The statistics (µΦ, ν

(2)
Φ ) of the

process Φ are the first non-factorial moment density µΦ, also
called intensity, that coincides with the first factorial moment
density, and the second factorial moment density ν

(2)
Φ . The

statistics are defined on X as

µΦ(x) :=
∑
n≥0

∫ ( ∑
1≤i≤n

δx(xi)

)
p
(n)
Φ (x1:n)d(x1:n), (9)

ν
(2)
Φ (x, x̄) :=

∑
n≥0

∫ ( ∑̸=

1≤i,j≤n

δx(xi)δx̄(xj)

)
p
(n)
Φ (x1:n)d(x1:n),

(10)

where δ is the Dirac delta function, i.e. such that the equality∫
δy(x)f(x)dx = f(y) holds for any function f , and the

∑ ̸=
i,j

notation means that it is a double sum over indices i and j
where i ̸= j [32]. These moments will be used to evaluate
Σ-risk for an uncertain population of weapons.

C. Probability generating functional

It can be convenient to describe point processes with their
probability generating functional (p.g.fl.) [33]. For a point
process Φ, the probability generating functional is defined as
an expectation

GΦ(h) :=
∑
n≥0

∫ [ ∏
1≤i≤n

h(xi)

]
P

(n)
Φ (d(x1:n)), (11)

where h : X → [0, 1] a test function. This tool will be used
to evaluate Π-risk for an uncertain population of weapons.

IV. RISK STATISTICS FOR MULTI-OBJECT POPULATIONS

In this section we establish the adversarial risk, introduced
in Section II, in the context where the population of weapons
is uncertain and described by some point process Φ as covered
in Section III.

A. Approaches to estimation of the adversarial risk

The adversarial risk is defined in Section II for a known
population of weapons. Given the point process Φ describing
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the uncertain population of weapons, we shall consider two
approaches to produce a risk estimate:

1) Extract a meaningful point estimate of the population
from the point process, then evaluate the adversarial risk
generated by this population estimate.

2) Describe the adversarial risk with a random variable,
whose uncertainty is induced by the point process, then
extract meaningful statistics about this random variable.

The first approach, which we describe as naı̈ve, is an efficient,
flexible solution that can accommodate a wide variety of point
processes in input, as well as of risk functions to evaluate.
However, it merely produces a guess about the risk value
without providing any indication of its quality or whether this
estimate is optimal in any sense.

We shall focus, in the rest of the paper, on the second
approach. In particular, we aim to produce the mean and
variance of the adversarial risk, to be drawn from the statistics
of the weapon point process, so as to provide a risk estimate
that is optimal in the MMSE sense.

B. Stochastic adversarial risk and its statistics

The weapon point process Φ induces a random variable in
the risk space, representing the uncertainty in the adversarial
risk stemming from the uncertainty in the size and composition
of the population of weapons. More precisely, the stochastic
adversarial risk is the real-valued random variable

RΦ := R ◦ Φ, (12)

where ◦ denotes the function composition operator. The con-
struction of the random variable is illustrated on Figure 3.

The mean µR,Φ and variance σ2
R,Φ of the stochastic adver-

sarial risk can then be built upon the stochastic description of
the point process Φ, and are given by

µR,Φ := E[RΦ] (13a)

=
∑
n≥0

∫
R(x1:n)P

(n)
Φ (d(x1:n)), (13b)

σ2
R,Φ := E[R2

Φ]− E[RΦ]
2 (14a)

=
∑
n≥0

∫
R(x1:n)

2P
(n)
Φ (d(x1:n))

−

[∑
n≥0

∫
R(x1:n)P

(n)
Φ (d(x1:n))

]2
. (14b)

C. Statistics of Σ-risk and Π-risk

We develop here the statistics of stochastic adversarial risk
for the special cases introduced in Section II.

Theorem IV.1 (Statistics of stochastic Σ-risk). .
The statistics (µΣ,Φ, σ

2
Σ,Φ) of the stochastic Σ-risk are ob-

tained from the statistics (µΦ, ν
(2)
Φ ) of the weapon point

process Φ as

µΣ,Φ =

∫
d(x)τ(x)µΦ(x)dx, (15)

σ2
Σ,Φ =

∫
d(x)2τ(x)2µΦ(x)dx−

(∫
d(x)τ(x)µΦ(x)dx

)2

+

∫
d(x)τ(x)d(x̄)τ(x̄)ν

(2)
Φ (x, x̄)d(x, x̄). (16)

The proof is given in Appendix A-C. This result first
appeared in [30], and the proof is presented here for the sake
of completeness.

Note that if the damage is assumed to be unitary — i.e.,
d(x) = 1 for any x ∈ X — and the probability of hitting the
asset is assumed to be the indicator function in some region
B ⊆ X , i.e.,

τ(x) =

{
1, x ∈ B

0, x /∈ B,
(17)

then the statistics (15)–(16) reduce to the regional statistics
[34] and simply describe the number of weapons in B.
Note that ‘cookie cutter’ functions analogous to (17) are also
employed to indicate targets of interest in [35], [36].

Theorem IV.2 (Statistics of stochastic Π-risk). .
The statistics (µΠ,Φ, σ

2
Π,Φ) of the stochastic Π-risk are ob-

tained from the p.g.fl. GΦ of the weapon point process Φ as

µΠ,Φ =V ·
(
1− GΦ[1− τ]

)
, (18)

σ2
Π,Φ =V 2 ·

(
GΦ[(1− τ)2]− GΦ[1− τ]2

)
(19)

The proof is given in Appendix A-D.

V. APPLICATION TO MULTI-OBJECT FILTERING

In this section we aim to provide expressions for computing
statistics of risk using densities of lower-order statistical
moments and p.g.fl. extracted from a practical multi-object
filter. In Section V-A, we focus on the intensity filter [11],
[12] and identify the updated process from which we wish to
produce statistics. Then we develop expressions for computing
densities of the first and second order moments, and its
p.g.fl. In Section V-B, we proceed to develop expressions for
computing statistics describing adversarial risk, i.e. its mean
and variance. The derivations in this section use the model and
Bayesian updated p.g.fl. derived by Bakut and Ivanchuk [11],
and the derivation of the variance from [34].

A. Process statistics from a practical filter

We shall assume that the population of weapons is estimated
through a multi-object filter [12]. We wish here to produce
the p.g.fl. (11) and statistics (9)-(10) of the filtered process
following the k-th Bayesian iteration, from which we will then
extract the risk statistics in Section V-B. In the k-th data update
step, the predicted process Φk|k−1 is updated to Φk given a
sequence z1:m ∈ Zm of m observations, m ≥ 0, belonging
to some observation space Z ⊂ Rdz and collected from the
sensor. This step relies on the following assumptions [11]:

Assumptions V.1. .
(a) The predicted object process Φk|k−1 is Poisson with

intensity µk|k−1.
(b) The measurements originating from object detections are

generated independently from each other.
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(c) An object with state x ∈ X is detected with probability
pd,k(x); if so, it produces a measurement whose state is
distributed according to a likelihood gk(·|x).

(d) The process describing false alarms produced by the
sensor is Poisson with intensity µfa

k .

For the sake of convenience we define the missed detection
and association terms for any observation z ∈ Z as

µϕ
k(x) = (1− pd,k(x))µk|k−1(x), (20)

µz
k(x) = pd,k(x)gk(z|x)µk|k−1(x), (21)

and for an arbitrary function f : X → R+ we define

Fϕ
k [f ] :=

∫
f(x)µϕ

k(x)dx, (22)

F z
k [f ] :=

∫
f(x)µz

k(x)dx. (23)

Proposition V.2 (Extracted process moments). Under As-
sumptions V.1, the statistics

(
µk, ν

(2)
k

)
of the updated process

Φk are given by

µk(x) =µϕ
k(x) +

∑
1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)
, (24)

ν
(2)
k (x, x̄) =µϕ

k(x)µ
ϕ
k(x̄) + µϕ

k(x)
∑

1≤i≤m

µzi
k (x̄)

F zi
k [1] + µfa

k (zi)

+µϕ
k(x̄)

∑
1≤i≤m

µzi
k (x)

F z̄
k [1] + µfa

k (zi)

+
∑ ̸=

1≤i,j≤m

(
µzi
k (x)

F zi
k [1] + µfa

k (zi)

)(
µ
zj
k (x̄)

F
zj
k [1] + µfa

k (zj)

)
.

(25)

Proof. For the considered intensity filter, the general expres-
sion of updated intensity (24) is developed in [11]. The ex-
pression of the second-order factorial moment (25) is obtained
from the second-order non-factorial moment in [34, Eq. 31]
using [32, Eq. 4.3.4].

Proposition V.3 (Extracted process p.g.fl. [11]). Under As-
sumptions V.1, the p.g.fl. Gk of the updated process Φk is given
by

Gk(h) =
eF

ϕ
k [h]

eF
ϕ
k [1]

∏
1≤i≤m

F zi
k [h] + µfa

k (zi)

F zi
k [1] + µfa

k (zi)
(26)

for a test function h : X → [0, 1].

B. Risk statistics from process statistics
Assuming that a population of weapons is maintained by

a multi-object filter, and described at the k-th Bayesian step
by the p.g.fl. (26) and statistics (24)-(25) as detailed in Sec-
tion V-A, we can now produce the statistics of the stochastic
adversarial risk generated by these weapons.

Theorem V.4 (Extracted statistics of stochastic Σ-risk). Under
Assumptions V.1, the statistics (µΣ,k, σ

2
Σ,k) of the stochastic

adversarial Σ-risk (15)–(16) are given by

µΣ,k =Fϕ
k [dτ] +

∑
1≤i≤m

F z
k [dτ]

F zi
k [1] + µfa

k (zi)
, (27)

σ2
Σ,k =Fϕ

k [d
2τ2] +

∑
1≤i≤m

[
F zi
k [d2τ2]

F zi
k [1] + µfa

k (zi)

−
(

F zi
k [dτ]

F zi
k [1] + µfa

k (zi)

)2
]
. (28)

The expression analogous to (27) was first presented in [35],
and the analog of (28) was first presented by the authors in
[30]. The proof is given in Appendix A-E for the sake of
completeness.

Theorem V.5 (Extracted statistics of stochastic Π-risk). Under
Assumptions V.1, the statistics (µΠ,k, σ

2
Π,k) of the stochastic

adversarial Π-risk (18)–(19) are given by

µΠ,k =V
eF

ϕ
k [τ ]

eF
ϕ
k [1]

∏
1≤i≤m

F zi
k [τ ] + µfa

k (zi)

F zi
k [1] + µfa

k (zi)
, (29)

σ2
Π,k =V 2

[
eF

ϕ
k [τ2]

eF
ϕ
k [1]

∏
1≤i≤m

F zi
k [τ2] + µfa

k (zi)

F zi
k [1] + µfa

k (zi)

−
(
eF

ϕ
k [τ ]

eF
ϕ
k [1]

∏
1≤i≤m

F zi
k [τ ] + µfa

k (zi)

F zi
k [1] + µfa

k (zi)

)2
]
. (30)

Proof. The result follows from Theorem IV.2 using the p.g.fl.
of the updated process from Proposition V.3 and by selecting
the probability of hit function τ as test function.

In the following section, we present a simulated study
demonstrating a dynamic scenario with multiple weapons and
introduced risk models.

VI. SIMULATED EXAMPLE

In this section we analyse the performance of estimation
algorithms for a hypothetical attack scenario using synthetic
data. The optimal approach is contrasted to the naı̈ve imple-
mentation, which relies on the explicit step of state estimation.
A Sequential Monte Carlo (SMC) implementation of an inten-
sity filter [37] has been utilised.

A. Population modelling

A static range-bearing sensor located at the origin takes
measurements from four weapons that appear in the surveil-
lance area at times [10, 20, 30, 40]s during the scenario that
lasts 50 s. The sensor field of view (FoV) is the quadrant with
radius 2500m. The measurements are contaminated with zero-
mean Gaussian noise with standard deviation in range 5m, and
in bearing 1°, and immersed in Poisson false alarms with rate
λfa = 20 and uniformly distributed over the FoV.

The state space X ⊆ R4 describes the position and velocity
coordinates of a weapon, within the 2D region covered by the
sensor FoV. The weapons evolve in the sensor FoV following
a near-constant velocity motion model [38], with the variance
of velocity increments set to 0.25m2s−3 (as depicted on
Figure 4). These positions are sampled from a Gaussian spatial
distribution with mean [500, 500]Tm and covariance with non-
zero diagonal elements 50000m2, 50000m2, and velocities set
to 10m s−1 in the direction of the mean.
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The arrival of weapons in the FoV is described in the
filter with a Poisson point process with rate 0.1 and the
same spatial distribution as above in the position subspace,
while the absolute speed values are uniformly distributed
in [5, 15]m s−1. The probability of survival of an individual
weapon is set to 0.99.

Position ground truth over 50 time steps is displayed in
Figure 4.

B. Risk modelling

The valuable asset is described by its coordinates xA =
[500, 500]Tm in the 2D plane. For the Σ-risk model, the
damaging capacity is set to dA = 100 for all weapon states.
For the Π-risk model, the asset value is set to VA = 1.

Each weapon is described by its hit probability τA. In
contrast to Section II-C, we consider a more nuanced model
of hit probability

τA(x) := cA(x)iA(x), (31)

which comprises the common threat components [25], [24] of
capability cA : X → [0, 1] and intent iA : X → [0, 1]. The
capability to produce a hit is modelled similarly to (3), i.e., by
a Gaussian function [9] of range with a sensitivity parameter
br = 86.6m. The intent to produce a hit is also modelled by
a Gaussian function

iA(x) = exp

(
− θ(x, xA)

2

2b2θ

)
, (32)

where θ : X × X → [0, π] evaluates the angle-of-attack,
i.e., the absolute deviation (in radians) between the weapon’s
heading and direction to the asset, and a positive sensitivity
parameter is set to bθ = 0.5 rad. Figure 5 plots the threat-
dominating dimensions of range and angle-of-attack, as well
as the hit probability against time.

Note that the specific choice of function (32) is only for
demonstration purposes, and other functions can be used, e.g.,
as in [39, Eq. (16)]. Finally, more involved models than (31)
can be found in [24], [40], [41] and references therein.

C. Performance assessment

In Figure 6, we present the clairvoyant values (black lines)
together with their estimates. These ideal values reveal the
difference in behaviour of the risk models and highlight their
sensitivity to the geometry formed between the adversaries
and the asset. The clairvoyant risk value is computed by
evaluating the definition of adversarial risk in the true multi-
object state describing a group of weapons. The naı̈ve estimate
is computed similarly, but the true state is replaced by a multi-
object state estimate, determined from the output of the filter.

Specifically, in the settings of Σ-risk, the risk value is
obtained as a probability-weighted sum of individual dam-
aging capacities. As a result, it clearly reflects the possible
added impact of each weapon provided that the associated
hit probability is high. In the settings of Π-risk, the risk
value is proportional to the asset value and is obtained as
the asset value weighted by the probability of at least one hit.
Accordingly, once there is at least one weapon associated with

a high probability of a hit, the possible added impacts of other
weapons are not clearly seen.

The optimal approach obtains the risk estimation results
using expressions developed in Section V-B, and those result
are contrasted to the naı̈ve approach outlined in Section IV-A.
The variance in the estimated parameter, as produced by the
optimal approach, is used to quantify the level of uncertainty in
the mean parameter value. Specifically, we present confidence
intervals as the square root of the risk variance which in turn
admits a standard deviation interpretation. It is worth noting
that this information is not available in the naı̈ve approach,
despite being a desirable feature indicating reliability of an
estimate.

We evaluate the produced estimates by comparing them to
their ideal values in order to establish whether the proposed
approach offers improvements in terms of mean squared error
(MSE). Figure 7 presents the MSE values for both approaches.
In both approaches, the observed results are consistent with
the fact that lower probability of detection results into higher
uncertainty in the population, and thus leads to the higher
values of resulting MSE.

Overall, the optimal approach appears to outperform the
naı̈ve implementation, since the MSE is smaller during the
most of scenario. However, the naı̈ve algorithm may offer
superior performance when the value of risk falls into the
extreme values, e.g., in the absence of objects or when Π-risk
gets saturated. This behaviour in the naı̈ve algorithm is due
to the fact that it relies on the hard decision of extracting the
system state to estimate risk, and so is likely to point precisely
at the extreme situation, e.g. the absence of weapons.

Figure 8 demonstrates the values of MSE averaged over
the whole length of scenario. The proposed optimal approach
offers a 15-30 percent performance improvement with respect
to the naı̈ve approach. Furthermore, this improvement appears
to gradually increase as the sensor’s probability of detection
decreases.

VII. CONCLUSION

We introduce in this paper the concept of adversarial risk
emanating from a group of weapons. In practice, it is often
not possible to establish the number and states of such
weapons with certainty. This article proposed an algorithm that
takes into account the uncertainty in the weapon population,
represented as a point process, and produces the estimates of
the risk value. We offered an implementation for a particular
multi-object filter. The algorithm is verified using synthetic
data for a hypothetical attack scenario. Its performance is
compared to that of a naı̈ve approach, which relies on an
explicit step of multi-object state extraction prior to evaluating
the risk value.

APPENDIX A
PROOFS

A. Proof of Proposition II.2
Proof. Under Assumptions II.1, the risk in (2) is given by

R(x1:n) = E

[ ∑
1≤i≤n

DA(xi)

]
(33a)
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=
∑

1≤i≤n

E[DA(xi)] (33b)

=
∑

1≤i≤n

E[dA(xi)HA(xi)] (33c)

=
∑

1≤i≤n

(dA(xi) · τA(xi) + 0 · [1− τA(xi)]) (33d)

=
∑

1≤i≤n

dA(xi)τA(xi). (33e)

B. Proof of Proposition II.4

Proof. Under Assumptions II.3, the risk in (2) is given by

R(x1:n) = VA · p1 + 0 · p0 (34a)
= VA · (1− p0), (34b)

where p1 is the probability of at least one resultative hit, and
p0 = 1− p1 is the probability of no hits given by

p0 =
∏

1≤i≤n

[1− τA(xi)] . (35)

Substituting (35) into (34b) yields the desired result.

C. Proof of Theorem IV.1

Proof. Let us obtain the statistics (µΣ,Φ, σ
2
Σ,Φ) of the stochas-

tic Σ-risk. From (13b) and (6) we can write the expected value
as

µΣ,Φ =
∑
n≥0

∫ ( ∑
1≤i≤n

d(xi)τ(xi)

)
P

(n)
Φ (d(x1:n)), (36a)

and using Campbell’s theorem [32, p. 103] then yields

µΣ,Φ =

∫
d(x)τ(x)µΦ(x)dx. (36b)

Next we focus on the variance defined in (14a). The expected
value E[R2

Φ] is obtained from (13b) and (6) and written as

E[R2
Φ] =

∑
n≥0

∫ ( ∑
1≤i≤n

d(xi)τ(xi)

)2

P
(n)
Φ (d(x1:n)) (37a)

=
∑
n≥0

∫ ( ∑
1≤i≤n

d(xi)
2τ(xi)

2

)
P

(n)
Φ (d(x1:n))

+
∑
n≥0

∫ ( ∑ ̸=

1≤i,j≤n

d(xi)τ(xi)d(xj)τ(xj)

)
P

(n)
Φ (d(x1:n))

(37b)

=

∫
d(xi)

2τ(x)2µΦ(x)dx

+

∫
d(x)τ(x)d(x̄)τ(x̄)ν

(2)
Φ (x, x̄)d(x, x̄), (37c)

where ν
(2)
Φ (·, ·) is defined in (10). Substituting (37c) and (36b)

into (14a) yields the variance of the stochastic Σ-risk.

D. Proof of Theorem IV.2

Proof. Let us obtain the statistics (µΠ,Φ, σ
2
Π,Φ) of the stochas-

tic Π-risk. From (13b) and (8) we can write the expected value

µΠ,Φ =
∑
n≥0

∫
V

[
1−

∏
1≤i≤n

[
1− τ(xi)

]]
P

(n)
Φ (d(x1:n)) (38a)

=V

[
1−

∑
n≥0

∫ [ ∏
1≤i≤n

[
1− τ(xi)

]]
P

(n)
Φ (d(x1:n))

]
,

(38b)

then using the definition of p.g.fl. in (11) yields

µΠ,Φ =V ·
(
1− GΦ[1− τ]

)
. (38c)

Next we focus on the variance defined in (14a). The expected
value E[R2

Φ] is obtained from (13b) and (8) and written as

E[R2
Φ] =

∑
n≥0

∫ [
V ·
[
1−

∏
1≤i≤n

[
1− τ(xi)

]]]2
P

(n)
Φ (d(x1:n))

(39a)

= V 2 ·
(
1− 2GΦ[1− τ] + GΦ[(1− τ)2]

)
. (39b)

Substituting (39b) and (38c) into (14a) yields the variance
of the stochastic Π-risk.

E. Proof of Theorem V.4

Proof. Let us obtain the statistics (µΣ,k, σ
2
Σ,k) of the stochas-

tic Σ-risk associated to the updated weapon process Φk.
This is done by inserting the expression of the extracted
process statistics (µk, ν

(2)
k ), exposed in Proposition V.2, into

the statistics given in Theorem IV.1.
We focus first on the mean value. By inserting (24) into

(15) we can write

µΣ,k =

∫
d(x)τ(x)µϕ

k(x)dx

+

∫
d(x)τ(x)

∑
1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)
dx. (40)

Bringing the sum outside of the integral then yields the desired
result.

We focus next on the variance. Next, inserting (24) and (25)
into (16) yields

σ2
Σ,k = S1 − S2 + S3, (41)

where

S1 =

∫
d(x)2τ(x)2µϕ

k(x)dx

+

∫
d(x)2τ(x)2

∑
1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)
dx,

S2 =

∫
d(x)τ(x)d(x̄)τ(x̄)µϕ

k(x)µ
ϕ
k(x̄)d(x, x̄)

+

∫
d(x)τ(x)d(x̄)τ(x̄)µϕ

k(x)
∑

1≤i≤m

µzi
k (x̄)

F zi
k [1] + µfa

k (zi)
d(x, x̄)

+

∫
d(x)τ(x)d(x̄)τ(x̄)
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×
∑

1≤i,j≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)

µ
zj
k (x)

F
zj
k [1] + µfa

k (zj)
d(x, x̄),

S3 =

∫
d(x)τ(x)d(x̄)τ(x̄)µϕ

k(x)µ
ϕ
k(x̄)d(x, x̄)

+ 2

∫
d(x)τ(x)d(x̄)τ(x̄)µϕ

k(x)
∑

1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)
d(x, x̄)

+

∫
d(x)τ(x)d(x̄)τ(x̄)

×
∑ ̸=

1≤i,j≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)

µ
zj
k (x)

F
zj
k [1] + µfa

k (zj)
d(x, x̄).

This simplifies to

σ2
Σ,k =

∫
d(x)2τ(x)2µϕ

k(x)dx

+

∫
d(x)2τ(x)2

∑
1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)
dx

−
∫

d(x)τ(x)d(x̄)τ(x̄)

×
∑

1≤i≤m

µzi
k (x)

F zi
k [1] + µfa

k (zi)

µzi
k (x)

F zi
k [1] + µfa

k (zi)
d(x, x̄).

(42)

Substituting (22) and (23) into (42) yields the desired result.
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Fig. 1. Evaluation of adversarial risk: (a) 2D representation of the scenario,
where a single asset is juxtaposed with three land-based and two sea-based
adversaries; (b) the model of hit probability as a function of range between
the asset and an adversary; (c) adversarial risk as a function of the asset value.
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Fig. 2. Risk maps produced by freely moving the asset location in the
2D plane. The asset value is set to: (a) VA = 500; (b) VA = 3500. The
difference in shape of the riskier areas is due to the interaction between the
asset value and the weapon damaging capacities. Note that the absolute values
of adversarial risk are presented using different scales.
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Fig. 3. Spatial point process and adversarial risk. The point process Φ maps
an element ω in the sample space Ω into a sequence of points φ in the state
space X . R evaluates the adversarial risk for any given sequence φ. Allowing
the sequence of points to vary with the realisation of the point process Φ leads
to the construction of a stochastic adversarial risk, described by the real-valued
random variable RΦ.
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Fig. 4. Ground truth: position plots of 4 weapon tracks superimposed over
50 time steps. The asset is located in [500, 500]Tm, and the sensor is located
at the origin.
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Fig. 5. Ground truth: plots of relative range, angles and corresponding hit
probabilities for the 4 true weapon tracks against time, showing the different
start times.
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Fig. 6. Application of the SMC-PHD intensity filter for estimation of
adversarial risk: (a) Σ-risk with uniform dA = 100, and (b) Π-risk with
VA = 1; from data synthesized using a sensor with pd = 0.95. Clairvoyant
risk values (solid black line) are computed using the ground truth and
presented next to their estimated values. In contrast to naı̈ve estimates (solid
blue line), the optimal estimates (solid red line) are additionally equipped with
indicators of their quality (depicted as an interval of ±1 standard deviation,
i.e. square root of variance). The results are averaged over 500 Monte Carlo
runs.
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Fig. 7. Mean squared error describing the performance of algorithms
estimating: (a) Σ-risk with uniform d = 100, and (b) Π-risk with VA = 1;
under varying probabilities of detection pd. The MSE values are demonstrated
for the naı̈ve (dotted lines) and optimal (solid lines) algorithms. The results
are averaged over 500 Monte Carlo runs.
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Fig. 8. Average MSE performance (over the total length of scenario) for
the naı̈ve (dotted line) and optimal (solid line) approaches. The results are
presented using two different scales: the left scale (in blue) for Σ-risk, and
the right scale (in red) for Π-risk.


