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Abstract. We introduce the notion of porous invariants for multipath
(or branching/nondeterministic) affine loops over the integers; these in-
variants are not necessarily convex, and can in fact contain infinitely
many ‘holes’. Nevertheless, we show that in many cases such invariants
can be automatically synthesised, and moreover can be used to settle
(non-)reachability questions for various interesting classes of affine loops
and target sets.
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1 Introduction

We consider the reachability problem for multipath (or branching) affine loops
over the integers, or equivalently for nondeterministic integer linear dynamical
systems. A (deterministic) integer linear dynamical system consists of an update
matrix M ∈ Zd×d together with an initial point x(0) ∈ Zd. We associate to such
a system its infinite orbit (x(i)) consisting of the sequence of reachable points
defined by the rule x(i+1) = Mx(i). The reachability question then asks, given
a target set Y , whether the orbit ever meets Y , i.e., whether there exists some
time i such that x(i) ∈ Y . The nondeterministic reachability question allows the
linear update map to be chosen at each step from a fixed finite collection of
matrices.

When the orbit does eventually hit the target, one can easily substantiate this
by exhibiting the relevant finite prefix. However, establishing non-reachability is
intrinsically more difficult, since the orbit consists of an infinite sequence of
points. One requires some sort of finitary certificate, which must be a relatively
simple object that can be inspected and which provides a proof that the set
Y is indeed unreachable. Typically, such a certificate will consist of an over-
approximation I of the set R of reachable points, in such a manner that one can
check both that Y ∩ I = ∅ and R ⊆ I; such a set I is called an invariant.

Formally we study the following problem for inductive invariants:

⋆ The full version of this paper is available at http://arxiv.org/abs/2106.00662.
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Meta Problem 1. Consider a system with update functions f1, . . . , fn. A set I
is an inductive invariant if fi(I) ⊆ I for all i. Given a reachability query (x, Y )
we search for a separating inductive invariant I such that x ∈ I and Y ∩ I = ∅.

Meta Problem 1 is parametrised by the type of invariants and targets that
are considered; that is, what are the classes of allowable invariant sets I and
target sets Y , or equivalently how are such sets allowed to be expressed.

Fixing a particular invariant and target domain, a reachability query has
three possible scenarios: (1) the instance is reachable, (2) the instance is un-
reachable and a separating invariant from the domain exists, or (3) the instance
is unreachable but no separating invariant exists. Ideally, one would wish to
provide a sufficiently expressive invariant domain so that the latter case does
not occur, whilst keeping the resulting invariants as simple as possible and com-
putable. For some classes of systems, it is known that distinguishing reachability
(1) from unreachability (2,3) is undecidable; it can also happen that determin-
ing whether a separating invariant exists (i.e., distinguishing (2) from (3)) is
undecidable.

We note that the existence of strongest inductive invariants3 is a desirable
property for an invariant domain—when strongest invariants exist (and can be
computed), separating (2) from (1,3) is easy: compute the strongest invariant,
and check whether it excludes the target state or not; if so, then you are done,
and if not, no other invariant (from that class) can possibly do the trick either.
However, unless (3) is excluded, computing the strongest invariant does not nec-
essarily imply that reachability is decidable. Unfortunately, strongest invariants
are not always guaranteed to exist for a particular invariant domain, although
some separating inductive invariant may still exist for every target (or indeed
may not).

In prior work from the literature, typical classes of invariants are usually
convex, or finite unions of convex sets. In this paper we consider certain classes of
invariants that can have infinitely many ‘holes’ (albeit in a structured and regular
way); we call such sets porous invariants. These invariants can be represented via
Presburger arithmetic4. We shall work instead with the equivalent formulation
of semi-linear sets, generalising ultimately periodic sets to higher dimensions,
as finite unions of linear sets of the form {b+ p1N+ · · ·+ pmN} (by which we
mean {b+ a1p1 + · · ·+ ampm | a1, . . . , am ∈ N}, see Definition 2).

Let us first consider a motivating example:

Example 1 (Hofstadter’s MU Puzzle [7]). Consider the following term-rewriting
puzzle over alphabet {M,U, I}. Start with the word MI, and by applying the
following grammar rules (where y and z stand for arbitrary words over our
alphabet), we ask whether the word MU can ever be reached.

yI → yIU | My →Myy | yIIIz → yUz | yUUz → yz

3 Given two invariants I and I ′, we say that I is stronger than I ′ iff I ⊆ I ′; thus
strongest invariants correspond to smallest invariant sets.

4 Presburger arithmetic is a decidable theory over the natural numbers, comprising
Boolean operations, first-order quantification, and addition (but not multiplication).
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The answer is no. One way to establish this is to keep track of the number
of occurrences of the letter ‘I’ in the words that can be produced, and observe
that this number (call it x) will always be congruent to either 1 or 2 modulo 3.
In other words, it is not possible to reach the set {x | x ≡ 0 mod 3}. Indeed,
Rules 2 and 3 are the only rules that affect the number of I’s, and can be
described by the system dynamics x 7→ 2x and x 7→ x−3. Hence the MU Puzzle
can be viewed as a one-dimensional system with two affine updates,5 or a two-
dimensional system with two linear updates.6 The set {1 + 3Z} ∪ {2 + 3Z} is
an inductive invariant, and we wish to synthesise this. (The stability of this set
under our two affine functions is easily checked: both components are invariant
under x 7→ x − 3, and {1 + 3Z} 7→ {2 + 6Z} ⊆ {2 + 3Z} under x 7→ 2x, and
similarly {2 + 3Z} 7→ {4 + 6Z} ⊆ {1 + 3Z}.)

The problem can be rephrased as a safety property of the following multipath
loop, verifying that the ‘bad’ state x = 0 is never reached, or equivalently that
the above loop can never halt, regardless of the nondeterministic choices made.
x = 1
while x ̸= 0

x = 2 x || x = x−3 (where || represents nondeterministic branching)

The MU Puzzle was presented as a challenge for algorithmic verification in [4];
the tools considered in that paper (and elsewhere, to the best of our knowledge)
rely upon the manual provision of an abstract invariant template. Our approach
is to find the invariant fully automatically (although one must still abstract from
the MU Puzzle the correct formulation as the program x 7→ 2x || x 7→ x− 3).

Main Contributions. Our focus is on the automatic generation of porous
invariants for multipath affine loops over the integers, or equivalently nondeter-
ministic integer linear dynamical systems.

– We first consider targets consisting of a single vector (or ‘point targets’), and
present the classes of invariants and systems for which invariants can and
cannot be automatically computed for the reachability question. A summary
of the results for linear and semi-linear invariants for these targets is given in
Table 1. For completeness we also consider R,R+-(semi)-linear sets, where
we complete the picture from prior work by showing that strongest R-semi-
linear invariants are computable.

• We establish the existence of strongest Z-linear invariants, and show that
they can be found algorithmically (Theorem 2). These invariants may or
may not separate the target under consideration.

• If a Z-linear invariant is not separating, we may instead look for an N-
semi-linear invariant (which generalises both Z-semi-linear and N-linear

5 One-dimensional affine updates are functions of the form f(x) = ax+ b.
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Dom D/N Linear Semi-linear (SL)

Z det Strongest computable (Thm. 2) No strongest (Sec. 4.1); subsumed by N-SL
Z non Strongest computable (Thm. 2) No strongest (Sec. 4.1)

N det No strongest (Sec. 4.1); subsumed by N-SL No strongest (Sec. 4.1), but sufficient computable (Thm. 4)

N non No strongest (Sec. 4.1) 1d-affine decidable (Thm. 6); undec. in general (Thm. 5)

R det Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Thm. 1)

R non Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Thm. 1)

R+ det No strongest (Sec. 4.1); subsumed by R+-SL No strongest, but sufficient computable [8]

R+ non No strongest (Sec. 4.1) Undecidable [8]

Table 1. Results for integer linear dynamical systems for a point target. Det/Non refers
to deterministic or nondeterministic LDS. “Subsumed by . . . ” means that sufficient
invariants can be generated, but of a more general type.

invariants), and we show that such an invariant can always be found for
any unreachable point target when dealing with deterministic integer
linear dynamical systems (Theorem 4).

• However, for nondeterministic integer linear dynamical systems, comput-
ing an N-semi-linear invariants is an undecidable problem in arbitrary
dimension (Theorem 5). Nevertheless we show how such invariants can
be constructed in a low-dimensional setting, in particular for affine up-
dates in one dimension (Theorem 6). As an immediate consequence, this
establishes that the multipath loop associated with the MU Puzzle be-
longs to a class of programs for which we can automatically synthesise
N-semi-linear invariants.

– For full-dimensional7 Z-linear targets we show that reachability is decid-
able, and, in the case of unreachability that a Z-semi-linear invariant can
always be exhibited as a certificate (Theorem 3). If the target is not full-
dimensional then the reachability problem is Skolem-hard and undecidable
for deterministic and nondeterministic systems respectively.

– In Section 6 we present our tool porous which handles one-dimensional
affine systems for both point and Z-linear targets, solving both the reacha-
bility problem and producing invariants. Inter alia, this allows one to handle
the multipath loop derived from the MU Puzzle in fully automated manner.

1.1 Related Work

The reachability problem (in arbitrary dimension) for loops with a single affine
update, or equivalently for deterministic linear dynamical systems, is decidable
in polynomial time for point targets (that is Y = {y}), as shown by Kannan and
Lipton [16]. However for nondeterministic systems (where the update matrix is
chosen nondeterministically from a finite set at each time step), reachability is
undecidable, by reduction from the matrix semigroup membership problem [22].

In particular this entails that for unreachable nondeterministic instances we
cannot hope always to be able to compute a separating invariant. In some cases

7 The affine span covers the entire space.
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we may compute the strongest invariant (which may suffice if this invariant
happens to be separating for the given reachability query), or we may compute
an invariant in sub-cases for which reachability is decidable (for example in low
dimensions). For some classes of invariants, it is also undecidable whether an
invariant exists (e.g., polyhedral invariants [8]).

Various types of invariants have been studied for linear dynamical systems,
including polyhedra [23,8], algebraic [15], and o-minimal [1] invariants. For cer-
tain classes of invariants (e.g., algebraic [15]), it is decidable whether a separating
invariant exists, notwithstanding the reachability problem being undecidable.
Other works (e.g., [5]) use heuristic approaches to generate invariants, without
aiming for any sort of completeness.

Kincaid, Breck, Cyphert and Reps [18] study loops with linear updates,
studying the closed forms for the variables to prove safety and termination prop-
erties. Such closed forms, when expressible in certain arithmetic theories, can be
interpreted as another type of invariant and can be used to over-approximate the
reachable sets. The work is restricted to a single update function (deterministic
loops) and places additional constraints on the updates to bring the closed forms
into appropriate theories.

Bozga, Iosif and Konecný’s FLATA tool [2] considers affine functions in arbi-
trary dimension. However, it is restricted to affine functions with finite monoids;
in our one-dimensional case this would correspond to limiting oneself to counter-
like functions of the form f(x) = x+ b.

Finkel, Göller and Haase [9], extending Fremont [10], show that reachability
in a single dimension is PSPACE-complete for polynomial update functions
(and allowing states can be used to control the sequences of updates which can
be applied). The affine functions (and single-state restriction) we consider are a
special case, but we focus on producing invariants to disprove reachability.

Other tools, e.g., AProVE [11] and Büchi Automizer [14] may (dis-)prove
termination/reachability on all branches, but may not be able to prove termi-
nation/reachability on some branch.

Inductive invariants specified in Presburger arithmetic have been used to
disprove reachability in vector addition systems [20]. A generalisation, ‘almost
semi-linear sets’ [21] are also non-convex and can capture exactly the reachable
points of vector addition systems. Our nondeterministic linear dynamical sys-
tems can be seen as vector addition systems over Z extended with affine updates
(rather than only additive updates).

2 Preliminaries

We denote by Z the integers and N the non-negative integers. We say that
x, y ∈ Z are congruent modulo d ∈ N, denoted x ≡ y mod d, if d divides
x− y. Given an integer x and natural d we write (x mod d) for the number in
{0, . . . , d− 1} such that (x mod d) ≡ x mod d.
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Definition 1 (Integer Linear Dynamical Systems). A d-dimensional inte-
ger linear dynamical system (LDS) (x(0), {M1, . . . ,Mk}) is defined by an initial
point x(0) ∈ Zd and a set of integer matrices M1, . . . ,Mk ⊆ Zd×d. An LDS is
deterministic if it comprises a single matrix (k = 1) and is otherwise nondeter-
ministic.

A point y is reachable if there exists m ∈ N and B1, . . . , Bm such that
B1 · · ·Bmx(0) = y and Bi ∈ {M1, . . . ,Mk} for all 1 ≤ i ≤ m.

The reachability set O ⊆ Zd of an LDS is the set of reachable points.

Definition 2 (K-(semi)-linear sets). A linear set L is defined by a base
vector b ∈ Zd and period vectors p1, . . . , pd ∈ Zd such that

L = {b+ a1p1 + · · ·+ adpd | a1, . . . , ad ∈ K} .

For convenience we often write {b+ p1K+ · · ·+ pdK} for L. A set is semi-linear
if it is the finite union of linear sets.

N-semi-linear sets are precisely those definable in Presburger arithmetic
(FO(Z,+,≤)) [12]. However, we can also consider Z-semi-linear sets (correspond-
ing to FO(Z,+) without order), and the real counterparts (R and R+). Note that
even if K = N we still allow pi ∈ Zd.

Definition 3. Given an integer linear dynamical system (x(0), {M1, . . . ,Mk}),
a set I is an inductive invariant if

– x(0) ∈ I, and
– {Mix | x ∈ I} ⊆ I for all i ∈ {1, . . . , k}.

Note in particular that every inductive invariant contains the reachability set
(O ⊆ I). We are interested in the following problem:

Definition 4 (Invariant Synthesis Problem). Given an invariant domain
D, an integer linear dynamical system (x(0), {M1, . . . ,Mk}), and a target Y , does
there exist an inductive invariant I in D disjoint from Y ?

In our setting, we are interested in classes D of invariants that are linear, or
semi-linear. When a separating inductive invariant I exists, we also wish to
compute it. Since (semi)-linear invariants are enumerable, the decision problem
is, in theory, sufficient—although all of our proofs are constructive.

3 R Invariants: R-linear and R-semi-linear

Before delving into porous invariants, let us consider invariants over the real
numbers, i.e., described as R-(semi)-linear sets.

Strongest R-linear invariants are given precisely by the affine hull of the
reachability set, and can be computed using Karr’s algorithm [17]. Moreover, we
will show that strongest R-semi-linear invariants also exist and can be computed
by combining techniques for algebraic invariants [15] and R-linear invariants.



Porous Invariants 7

R-linear. Recall that a set L is R-linear if L = {v0 + v1R+ · · ·+ vtR} for some
v0, . . . , vt ∈ Zd that can be assumed to be linearly-independent8 without loss of
generality (and thus t ≤ d). Given two distinct points of L, every point on the
infinite line connecting them must also be in L. Generalising this idea to higher
dimensions, given a set S ⊆ Rd, let the affine hull be

S
a
=

{
k∑

i=1

λixi | k ∈ N, xi ∈ S, λi ∈ R,
k∑

i=1

λi = 1

}
.

Fix an LDS (x(0), {M1, . . . ,Mk}) and consider its reachability set O ={
Mim · · ·Mi1x

(0) | m ∈ N, i1, . . . , im ∈ {1, . . . , k}
}
. Then Oa

is precisely the
strongest R-linear invariant. Karr’s algorithm [17,26] can be used to compute
this strongest invariant in polynomial time. The next lemma follows from The-
orem 3.1 of [26].

Lemma 1. Given an LDS (x(0), {M1, . . . ,Mk}) of dimension d, we can compute
in time polynomial in d, k, and logµ (where µ > 0 is an upper bound on the
absolute values of the integers appearing in x(0) and M1, . . . ,Mk), a Q-affinely
independent set of integer vectors R0 ⊆ O such that:

1. x(0) ∈ R0,
2. the affine span of R0 and the affine span of O are the same (R0

a
= Oa

),
3. the entries of the vectors in R0 have absolute value at most µ0 := (dµ)d.

Let R0 =
{
x(0), r1, . . . , rd′

}
be obtained as per Lemma 1, with d′ ≤ d. The

R-linear invariant of the LDS is the affine span R0
a
, which can be written as the

R-linear set L0 =
{
x(0) + (r1 − x(0))R+ · · ·+ (rd′ − x(0))R

}
.

R-semi-linear. Let us now generalise this approach to R-semi-linear sets. The
collection of R-semi-linear sets, {

⋃m
i=1 Li | m ∈ N, L1, . . . , Lm are R-linear sets},

is closed under finite unions and arbitrary intersections9. Thus for any given set
X, the smallest R-semi-linear set containing X is simply the intersection of all

R-semi-linear sets containing X. Let us denote by X
R
this smallest R-semi-linear

set. We are interested in OR
.

Theorem 1. The strongest R-semi-linear invariant OR
of O is computable.

Algebraic sets are those that are definable by finite unions and intersections
of zeros of polynomials. For example, {(x, y) | xy = 0} describes the lines x = 0
and y = 0. The (real) Zariski closure X

z
of a set X is the smallest algebraic

subset of Rd containing the set X. The Zariski closure of the set of reachable
points, Oz

, can be computed algorithmically [15].

8 v0, . . . , vm are linearly independent if there does not exist a0, . . . , am ∈ R, not all 0,
such that a0v0 + · · ·+ amvm = 0.

9 When intersecting a linear set with a semi-linear set, either the latter does not
change, or one obtains a finite union of elements of smaller dimension. Thus, in an
infinite intersection, only a finite number of intersections affects the original set.
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An algebraic set A is irreducible if whenever A ⊆ B ∪ C, where B and C
are algebraic sets, then we have A ⊆ B or A ⊆ C. Any algebraic set (and
in particular a Zariski closure) can be written effectively as a finite union of
irreducible sets [3].

Proposition 1. Let X
z
= A1 ∪ · · · ∪ Ak, with Ai’s irreducible. Then X

R
=

X
zR

= A1
R ∪ · · · ∪Ak

R
= A1

a ∪ · · · ∪Ak
a
.

Proof. Since Ai ⊆ X
R
= ∪jLj , and Ai is irreducible, we have Ai ⊆ Lj for some

j (as the Lj ’s are algebraic sets). Since Lj is R-linear, and Ai
a
is the smallest

R-linear set covering Ai, we have Ai
a ⊆ Lj . Taking X

R
= A1

a∪· · ·∪Ak
a
is thus

optimal. ⊓⊔

Thus OR
can be obtained by computing Ai

a
for each irreducible Ai, where

Oz
= A1 ∪ · · · ∪ Ak. To complete the proof of Theorem 1 it remains to confirm

that affine hulls of algebraic sets can be computed algorithmically. Let us fix
an algebraic set A, and let W denote a set variable. Proceed as follows. Start
with W ← {x} for some point x ∈ A, and repeatedly let W ←W ∪ {y}

a
, where

y ∈ A \W . Such a point y can always be found using quantifier elimination in
the theory of the reals. Each step necessarily increases the dimension, which can
occur at most d times, ensuring termination, at which point one has A

a
= W .

4 Strongest Z-linear Invariants

Recall that a Z-linear set {q + p1Z+ · · ·+ pnZ} is defined by a base vector
q ∈ Zd and period vectors p1, . . . , pn ∈ Zd. Equivalently, a Z-linear set describes
a lattice, i.e., {p1Z+ · · ·+ pnZ}, in d-dimensional space, translated to start from
q rather than 0⃗.

Theorem 2. Given a d-dimensional dynamical system (x(0), {M1, . . . ,Mk}),
the strongest Z-linear inductive invariant containing the reachability set O exists
and can be computed algorithmically.

The image of a Z-linear set L = {q + p1Z+ · · ·+ pnZ} by a matrix M is the
Z-linear set: M(L) = {Mq + (Mp1)Z+ · · ·+ (Mpn)Z}. The following lemma
asserts that when two points are in a Z-linear set, the direction between these
two points can be applied from any reachable point, and hence this direction
can be included as a period without altering the set.

Proposition 2. Let L = {q + a1p1 + · · ·+ anpn | a1, . . . , an ∈ Z} be a Z-linear
set. If x, y ∈ L then for all z ∈ L and all a′ ∈ Z we have z + (y − x)a′ ∈ L. In
particular, we have L = {q + a1p1 + · · ·+ anpn + a′(y − x) | a1, . . . , an, a′ ∈ Z}.

Proof. If x = q + a1p1 + · · ·+ anpn and y = q + b1p1 + · · ·+ bnpn then y − x =
q+ b1p1 + · · ·+ bnpn− (q+ a1p1 + · · ·+ anpn) = (b1− a1)p1 + · · ·+ (bn− an)pn.

Then for any z = q + c1p1 + · · ·+ cnpn, we have z + a′(y − x) = q + c1p1 +
· · ·+ cnpn + a′((b1− a1)p1 + · · ·+ (bn− an)pn) = q+ (c1 + a′(b1− a1))p1 + · · ·+
(cn + a′(bn − an))pn) where (ci + a′(bi − ai)) ∈ Z, so z + a′(y − x) ∈ L. ⊓⊔
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Proposition 3. Given two Z-linear sets L1 = {q + p1Z+ · · ·+ pnZ} and L2 =
{s+ t1Z+ · · ·+ tmZ}, there exists a smallest Z-linear set L containing L1∪L2:
the set L = {q + (s− q)Z+ p1Z+ · · ·+ pnZ+ t1Z+ · · ·+ tmZ}.

Proof. First we show L1 ∪ L2 ⊆ L:

– If x = q+a1p1+ · · ·+anpn ∈ L1, then x = q+(s− q)0+a1p1+ · · ·+anpn+
0t1 + · · ·+ 0tm ∈ L.

– If x = s+ b1t1 + · · ·+ bmtm ∈ L2, then x = q + (s− q)1 + 0p1 + · · ·+ 0pn +
b1t1 + · · ·+ bmtm ∈ L.

Next we show minimality as a straightforward consequence of Proposition 2.
Clearly the vectors p1, . . . , pn can be added by Proposition 2 because any

two points of L1 differing by pi guarantees that adding pi does not alter the
resulting set. Similarly, t1, . . . , tm can also be included. Finally, by Proposition 2,
the vector s− q can be included because q and s both belong to L1 ∪ L2. ⊓⊔

A d-dimensional lattice can always be defined by at most d vectors; and thus
if d is the dimension of the matrices, no more than d period vectors are needed in
total. However, Proposition 3 induces a representation which may over-specify
the lattice by producing more than d vectors to define the lattice.

Example 2. Consider the lattice {(2, 2)Z+ (0, 6)Z+ (2, 6)Z}, specified with three
vectors, which is equivalent to the lattice {(2, 0)Z+ (0, 2)Z}. Note that one may
not simply pick an independent subset of the periods, as none of the following
sets are equal: {(2, 2)Z+ (0, 6)Z}, {(2, 2)Z+ (2, 6)Z}, {(0, 6)Z+ (2, 6)Z}, and
{(2, 2)Z+ (0, 6)Z+ (2, 6)Z}.

The Hermite normal form can be used to obtain a basis of the vectors that
define the lattice. Consider a lattice Li = {p1Z+ · · ·+ pdZ}. The lattice remains
the same if pi is swapped with pj , if pi is replaced by −pi, or if pi is replaced by
pi + αpj where α is any fixed integer10.

These are the unimodular operations. The Hermite normal form of a matrix
M is a matrix H such that M = UH, where U is a unimodular matrix (formed
by unimodular column operations) and H is lower triangular, non-negative and
each row has a unique maximum entry which is on the main diagonal. Such
a form always exists, and the columns of H form a basis of the same lattice
as the columns of M , because they differ up to unimodular (lattice-preserving)
operations. There are many texts on the subject; we refer the reader to the
lecture notes of Shmonin [25] for more detailed explanations.

The columns of a matrix in Hermite normal form constitute a unique basis for
the lattice (up to additional redundant zero columns). Hence a basis of minimal
dimension can be obtained by computing the Hermite normal form of the matrix
formed by placing the period vectors into columns.

We now prove the main theorem:

10 The last replacement is valid, since if x = y+βpi ∈ L then x = y+β(pi+αpj)−βαpj
is in the new lattice.
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Proof (Proof of Theorem 2). We claim that Algorithm 1 returns the strongest
Z-linear invariant I.

Algorithm 1 proceeds in two phases:

– First find a necessary subset L0 ⊆ I of the invariant having already the same
dimension as I.

– Then compute a growing sequence L0 ⊊ L1 ⊊ · · · ⊊ Lm−1 = Lm = I, where
at each step the algorithm merely increases the density of the attendant sets
in order to ‘fill in’ missing points of the invariant.

Recall the set R0 =
{
x(0), r1, . . . , rd′

}
⊆ O, with d′ ≤ d, from Lemma 1. The

resulting Z-linear set L0 =
{
x(0) + (r1 − x(0))Z+ · · ·+ (rd′ − x(0))Z

}
is then a

d′-dimensional porous subset of the d′-dimensional affine hull of the orbit (L0 ⊆
Oa

). Applying M1, . . . ,Mk can only increase the density, but not the dimension.
As each ri and x(0) are in O, by Proposition 2 we can assume that each of the
directions (ri − x(0)) must be represented in any Z-linear set containing O, and
we therefore have that L0 ⊆ I.

In the second phase, we ‘fill in’ the lattice as required to cover the whole of
O. To do this we repeatedly apply the covering procedure of Proposition 3. That
is, Li+1 is the smallest Z-linear set covering Li ∪M1(Li)∪ · · · ∪Mk(Li). To keep
the number of vectors small, we keep the period vectors of the Z-linear set in
Hermite normal form.

The vectors p1 = (r1 − x(0)), . . . , pd′ = (rd′ − x(0)) form a parallelepiped
(hyper-parallelogram) that repeats regularly. There are a finite number of inte-
gral points inside this parallelepiped. If new points are added in some step, they
are added to every parallelepiped. Thus we can add new points finitely many
times before saturating or becoming fixed. The volume of the parallelepiped is
bounded above by |p1| · · · |pd′ |.

At each step, the volume of the parallelepiped must at least halve, thus the
volume at step t is volt ≤ |p1| · · · |pd′ |/2t. The procedure must saturate at or
before the volume becomes 1, which occurs after at most log(|p1| · · · |pd′ |) =∑

i log(|pi|) steps. At each step, for efficiency considerations, we convert the
Z-linear set into Hermite normal form to retain exactly d′ period vectors.

Claim (I is the strongest invariant). For every invariant J , we have I ⊆ J .

By induction, let us prove that every invariant J must contain Li. Clearly this
is the case for L0 because all points of R0 ⊆ O must be in J and every period
vectors in L0 can be present, without loss of generality, thanks to Proposition 2.
Assume Li ⊆ J . Then it must be the case that J contains every Mj(Li), as
otherwise it would not be an invariant. It therefore follows that J must contain
Li+1, since the latter is the minimal Z-linear set containing Li and Mj(Li) for
all j ≤ k. Finally, since I is itself one of the Li’s, we have I ⊆ J as required. ⊓⊔

Remark 1. Note that a Z-linear set is not sufficient for the MU puzzle: both 1
and 2 are in the reachability set, thus {1 + 1Z} = Z is the strongest Z-linear
invariant.
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Algorithm 1: Strongest Z-linear invariant for LDS (x(0),M1, . . . ,Mk)

Input: x(0),M1, . . . ,Mk

Compute R0 =
{
x(0), r1, . . . , rd′

}
⊆ O

Compute pi = ri − x(0) for i ∈ {1, . . . , d′}
L0 =

{
x(0) + p1Z+ · · ·+ pd′Z

}
while True do

Li = Covering(Li−1 ∪M1(Li−1) ∪ · · · ∪Mk(Li−1))
Hi = HermiteNormalForm(Li)

Li =
{
x(0) + h1Z+ · · ·+ hd′Z | hj column of Hi

}
if Li = Li−1 then

return Li

end

end

4.1 Extensions of Z-linear sets without strongest invariants

In this section we show that several generalisations of Z-linear domains fail to
admit strongest invariants.

Z-semi-linear sets are unions of Z-linear sets, and therefore can include sin-
gletons. Consider the deterministic dynamical system starting from point 1 and
doubling at each step M = (1, (x 7→ 2x)). This system has reachability set
O =

{
2k | k ∈ N

}
, which is not even N-semi-linear (our most general class). For

this LDS we can construct the invariant
{
2, 4, 8, ..., 2k

}
∪
{
2k+1p1 | p1 ∈ Z

}
for

each k. For any proposed strongest Z-semi-linear invariant, one can find a k for
which the corresponding invariant is an improvement.

N-linear sets generalise Z-linear sets (observe that Z-linear sets are a proper
subclass, since {x+ piZ} can be expressed as {x+ (−pi)N+ piN}, but {x+ piN}
is clearly not Z-linear). Consider the LDS ((x1, x2), ( 0 1

1 0 )), with a reachability
set consisting of just two points x = (x1, x2) and y = (x2, x1). There are two
incomparable candidates for the minimal N-linear invariant: {x+ (y − x)N} and
{y + (x− y)N}. Similarly for R+-linear invariants, the sets {y + (x− y)R+} and
{x+ (y − x)R+} are incomparable half-lines.

4.2 Z-linear targets

We have so far only considered invariants for point targets. We now turn to
lattice-like targets, in particular targets specified as full-dimensional Z-linear
sets.

Theorem 3. It is decidable whether a given LDS (x(0), {M1, . . . ,Mk}) reaches
a full-dimensional Z-linear target Y = {x+ p1Z+ · · ·+ pdZ}, with x, pi ∈ Zd.

Furthermore, for unreachable instances, a Z-semi-linear inductive invariant
can be provided.
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Theorem 3 requires the targets to be full-dimensional. For nondeterministic
systems reachability is undecidable for non-full-dimensional targets (in particu-
lar point targets) [22]. However, even for deterministic systems, when Z-linear
targets fail to be full-dimensional the reachability problem becomes as hard as
the Skolem problem (see, e.g. [24]), for example by choosing as target the set

{(0, x2, . . . , xd) | x2, . . . , xd ∈ Z} =
{
0⃗ + e2Z+ · · ·+ edZ

}
, where ei ∈ {0, 1}d is

the standard basis vector, with (ei)i = 1 and (ei)j = 0 for i ̸= j.
Towards proving Theorem 3, we first show that full-dimensional linear sets

can be expressed as ‘square’ hybrid-linear sets. Hybrid-linear sets are semi-linear
sets in which all the components share the same period vectors, and thus differ
only in starting position (whereas semi-linear sets allow each component to have
distinct period vectors). By square, we mean that all period vectors are the same
multiple of standard basis vectors.

Lemma 2. Let Y = {x+ p1Z+ · · ·+ pdZ} be a full-dimensional Z-linear set.
Then there exists m ∈ N and a finite set B ⊆ [0,m − 1]d such that Y =⋃

b∈B {b+me1Z+ · · ·+medZ}.

Proof. Suppose p1, . . . , pd span a d-dimensional vector space. Let P =

( p1

...
pd

)
be the matrix with rows p1, . . . , pd. Since P is full row rank it is invertible,
hence there exists a rational matrix P−1 such that ei = P−1

i,1 p1 + · · · + P−1
i,d pd.

In particular let mi be such that P−1
i,j mi is integral for all j. Then there is an

integral combination of p1, . . . , pd such that miei is an admissible direction in
Y .

Let m = lcm {m1, . . . ,md}. Then mei is an admissible direction in Y . Hence
by Proposition 2, Y is equivalent to {x+ p1Z+ · · ·+ pdZ+me1Z+ · · ·+medZ}.
By the presence of me1Z + · · · +medZ we have that x ∈ Y if and only x′ ∈ Y
where x′

i = (xi mod m).
And therefore Y can be written as

⋃
b∈B {b+me1Z+ · · ·+medZ}, where

B = [0,m− 1]d ∩ Y . ⊓⊔

We now prove Theorem 3.

Proof (Proof of Theorem 3). Choose m and B as in Lemma 2, so that Y is of
the form

⋃
b∈B {b+me1Z+ · · ·+medZ}. We build an invariant I of the form⋃

b∈B′ {b+me1Z+ · · ·+medZ} for some B′ ⊆ [0,m− 1]d.

We initialise the set I0 = {x+me1Z+ · · ·+medZ}, where x ∈ [0,m − 1]d

such that xj = (x
(0)
j mod m). We then build the set I1 by adding to I0 the sets

{y +me1Z+ · · ·+medZ} where for each choice of Mi, y ∈ [0,m− 1]d is formed
by yj = ((Mix)j mod m) for some x ∈ I0. We iterate this construction until it
stabilises in an inductive invariant I. Termination follows from the finiteness of
[0,m−1]d (noting in particular that if termination occurs with B′ = [0,m−1]d,
then I = Zd which is indeed an inductive invariant).

If there exists y ∈ B ∩ I then return Reachable. This is because the same
sequence of matrices applied to x(0) to produce y ∈ I would, thanks to the
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modulo step, wind up inside the set {y +me1Z+ · · ·+medZ}, which is a part
of the target.

Otherwise, return Unreachable and I as invariant. By construction, I is
indeed an inductive invariant disjoint from the target set. ⊓⊔

Remark 2. By the same argument, Theorem 3 extends to a restricted class of
Z-semi-linear targets: the finite union of full-dimensional Z-linear sets.

5 N-semi-linear Invariants

We now consider N-semi-linear invariants, our most general class. N-semi-linear
invariants gain expressivity thanks to the ‘directions’ provided by the period
vectors. For example, the only possible Z-semi-linear invariant for the LDS
(0, (x 7→ x + 1)) is Z, yet the reachability set, N, is captured exactly by an
N-linear invariant. We show that a separating N-semi-linear invariant can al-
ways be found for unreachable instances of deterministic integer LDS, although
the computed invariant will depend on the target. However, finding invariants is
undecidable for nondeterministic systems, at least in high dimension. Neverthe-
less, we show decidability for the low-dimensional setting of the MU Puzzle—one
dimension with affine updates.

5.1 Existence of sufficient (but non-minimal) N-semi-linear
invariants for point reachability in deterministic LDS

Kannan and Lipton showed decidability of reachability of a point target for
deterministic LDS [16]. In this subsection, we establish the following result to
provide a separating invariant in unreachability instances.

Theorem 4. Given a deterministic LDS (x(0),M) together with a point target
y, if the target is unreachable then a separating N-semi-linear inductive invariant
can be provided.

To do so, we will invoke the results from [8] to compute an R+-semi-linear in-
ductive invariant, and then extract from it an N-semi-linear inductive invariant.
More precisely, the authors of [8] show how to build polytopic inductive invari-
ants for certain deterministic LDS. Such polytopes are either bounded or are
R+-semi-linear sets. In the first case, the polytope contains only finitely many
integral points, which can directly be represented via an N-semi-linear set. In the
second case, we build an N-semi-linear set containing exactly the set of integral
points included in the R+-semi-linear invariant, thanks to the following lemma.

Lemma 3. Given an R+-linear set S = {x+
∑

i piR+}, where the vectors pi
have rational coefficients and x is an integer vector, one can build an N-semi-
linear set N comprising precisely all of the integral points of S.
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Proof (Proof of Theorem 4). We note that every invariant produced in [8] has
rational period vectors, as the vectors are given by the difference of successive
point in the orbit of the system, and thus Lemma 3 can be applied. The au-
thors of [8] build an inductive invariant in all cases except those for which every
eigenvalue of the matrix governing the evolution of the LDS is either 0 or of
modulus 1 and at least one of the latter is not a root of unity. This situation
however cannot occur in our setting. Indeed, the eigenvalues of an integer matrix
are algebraic integers, and an old result of Kronecker [19] asserts that unless all
of the eigenvalues are roots of unity, one of them must have modulus strictly
greater than 1 (the case in which all eigenvalues are 0 being of course trivial).

This concludes the proof of Theorem 4. ⊓⊔

5.2 Undecidability of N-semi-linear invariants for nondeterministic
LDS

If the enhanced expressivity of N-semi-linear sets allows us always to find an
invariant for deterministic LDS, it contributes in turn to making the invariant-
synthesis problem undecidable when the LDS is not deterministic. We establish
this through a reduction from the infinite Post correspondence problem (ω-PCP)
that can be defined in the following way: given m pairs of non-empty words
{(u1, v1), . . . , (um, vm)} over alphabet {0, 2}, does there exist an infinite word
w = w1w2 . . . over alphabet {1, . . . ,m} such that uw1uw2 . . . = vw1vw2 . . .. This
problem is known to be undecidable when m is at least 8 [13,6].

Theorem 5. The invariant synthesis problem for N-semi-linear sets and linear
dynamical systems with at least two matrices of size 91 is undecidable.

Proof (Sketch). We first establish the result in the case of several matrices in
low dimension; this can then be transformed in a standard way to two larger
matrices (of size 91).

The proof is by reduction from the infinite Post correspondence problem.
Given an instance of this problem the pair of words corresponding to each se-
quence of tiles has an integer representation, using base-4 encoding. An impor-
tant property of our encoding is that the operation of appending a new tile to
an existing pair of words can be encoded by matrix multiplication.

Recall that if the instance of ω-PCP is negative, then every generated pair
of words will differ at some point. Our encoding is such that this difference of
letters creates a difference in their numerical encodings that can be identified
with an N-semi-linear invariant. On the other hand, when there is a positive
answer to the ω-PCP instance, there can be no N-semi-linear invariant. ⊓⊔

5.3 Nondeterministic one-dimensional affine updates

The previous section shows that point reachability for nondeterministic LDS is
undecidable once there sufficiently many dimensions, motivating an analysis at
lower dimensions. The MU Puzzle requires a single dimension with affine updates
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(or equivalently two dimensions in matrix representation, with the coordinate
along the second dimension kept constant). We consider this one-dimensional
affine-update case, and therefore, rather than taking matrices as input, we di-
rectly work with affine functions of the form fi(x) = aix+ bi.

Theorem 6. Given x(0), y ∈ Z, along with a finite set of functions {f1, . . . , fk}
where fi(x) = aix + bi, ai, bi ∈ Z for 1 ≤ i ≤ k, it is decidable whether y is
reachable from x(0).

Moreover, when y is unreachable, an N-semi-linear separating inductive in-
variant can be algorithmically computed.

We note that decidability of reachability is already known [9,10]. We refine
this result by exhibiting an invariant which can be used to disprove reachability.
In fact our procedure will produce an N-semi-linear set which can be used to
decide reachability, and which, in instances of non-reachability, will be a sep-
arating inductive invariant. We have implemented this algorithm into our tool
porous, enabling us to efficiently tackle the MU Puzzle as well as its generali-
sation to arbitrary collections of one-dimensional affine functions. We report on
our experiments in Section 6.

We build a case distinction depending on the type of functions that appear:

Definition 5. A function f(x) = ax+ b...

– ... is redundant if f(x) = b, (including possibly b = 0), or if f(x) = x.
– ... is counter-like if f(x) = x+ b, b ̸= 0. Two counter-like functions, f(x) =

x+ b and g(x) = x+ c are opposing if b > 0 and c < 0 (or vice-versa).
– ... is growing if f(x) = ax + b and |a| ≥ 2. We say a growing function is

inverting if a ≤ −2.
– ... is pure inverting if f(x) = −x+ b.

Simplifying assumptions

Lemma 4. Without loss of generality, redundant functions are redundant; more
precisely, we can reduce the computation of an invariant for a system having
redundant functions to finitely many invariant computations for systems devoid
of such functions.

Proof. Clearly the identity function has no impact on the reachability set, and
so can be removed outright. For any other redundant function, its impact on
the reachability set does not depend on when the function is used, and we may
therefore assume that it was used in the first step, or equivalently, using an alter-
native starting point. Hence the invariant-computation problem can be reduced
to finitely many instances of the problem over different starting points, with re-
dundant functions removed. Finally, taking the union of the resulting invariants
yields an invariant for the original system. ⊓⊔

Lemma 5. Without loss of generality, x(0) ≥ 0.
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Proof. We construct a new system, where each transition f(x) = ax + b is
replaced by f(x) = ax− b. Then x(0) reaches y in the original system if and only
if −x(0) reaches −y in the new system. To see this, observe that if f(x) = ax+b,
then f(−x) = −ax− b = −f(x). ⊓⊔

Lemma 6. Suppose there are at least two distinct pure inverting functions (and
possibly other types of functions). Then without loss of generality there are two
opposing counters.

Proof. Consider f(x) = −x + b, and g(x) = −x + c. Then f(g(x)) = −(−x +
c)+ b = x+ b− c and g(f(x)) = −(−x+ b)+ c = x+ c− b. Since b− c = −(c− b)
and b ̸= c (as f ̸= g) these two functions are opposing. ⊓⊔

Two opposing counters. Let us first observe that when there are two opposing
counters, we essentially move in either direction by some fixed amount. This will
entail that only Z-(semi)-linear invariants can be produced, rather than proper
N-(semi)-linear invariants.

Lemma 7. Suppose there are two opposing counters, f(x) = x+ b, and g(x) =
x− c. Then for any reachable x we have {x+ dZ} ⊆ I for d = gcd(b, c).

Therefore, starting with
{
x(0) + dZ

}
∈ I we can ‘saturate’ the invariant

under construction using the following lemma:

Lemma 8. Let h(x) = x + d be chosen as a reference counter amongst the
counters. If {x+ dZ} ∈ I, then {f(x) + dZ} ∈ I for every function f .

Proof (Proof of Lemma 8). Consider the function f(x) = ax+b. If x = y+dk ∈
I, then f(x) = ax+ b = ay + adk + b = f(y) + adk ∈ I.

Now thanks to the presence of counter h(x) = x+ d, by choosing the initial
k ∈ Z appropriately and applying h(x) sufficiently many times (say m ∈ N
times), one can reach f(x) + adk + dm = f(x) + dn for any desired n ∈ Z. ⊓⊔

Without loss of generality if {x+ dZ} is in the invariant, then 0 ≤ x < d.
We then repeatedly use Lemma 8 to find the required elements of the invariant.
Since there are only finitely many residue classes (modulo d), every reachable
residue class {c1, . . . , cn} can be found by saturation (in at most d steps), yielding
invariant {c1 + dZ} ∪ · · · ∪ {cn + dZ}.

Thanks to Lemma 6, in all remaining cases there is without loss of generality
at most one pure inverter.

Only pure inverters. If there is exactly one pure inverter f(x) = −x+ b (and
no other types of functions), then f(x(0)) = −x(0)+b and f(−x(0)+b) = x(0)−b+
b = x(0), thus the reachability set is finite, with exact invariant

{
x(0),−x(0) + b

}
.
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No Counters. If we are not in the preceding case and there are no counters,
then there must be growing functions and by Lemma 6, without loss of generality
at most one pure inverter. We show that all growing functions increase the
modulus outside of some bounded region.

Lemma 9. For every M ≥ 0 and every growing function f(x) = ax+b, |a| ≥ 2,
there exists CM

f ≥ 0 such that if |x| ≥ CM
f then |f(x)| ≥ |x|+M .

Proof. By the triangle inequality we have: |f(x)| = |ax+ b| ≥ |a||x| − |b|. Thus
|x| ≥ |b|+|M |

|a|−1 =⇒ |a||x| − |b| ≥ |x|+ |M | =⇒ |f(x)| ≥ |x|+M . ⊓⊔

This is the only situation in which the invariant is not exactly the reachability
set, and requires us to take an overapproximation.

Let C = max
{
C0

f1
, . . . , C0

fk
, |y|+ 1

}
, for f1, . . . , fk growing functions. If

there are no pure inverters then {−C − N} ∪ {C + N} is invariant (although
may not yet contain the whole of O). However, we can return the inductive
invariant {−C − N} ∪ {C + N} ∪ (O ∩ (−C,C)). The set O ∩ (−C,C) is finite
and can elicited by exhaustive search, noting that once an element of the orbit
reaches absolute value at least C, the remainder of the corresponding trajectory
remains forever outside of (−C,C).

If there is one pure inverter g(x) = −x+ d then observe that −C is mapped
to C + d and C + d is mapped to −C. Thus intuitively we want to use the
interval (−C,C + d). However two problems may occur: (a) since d could be
less than 0 then C + d may no longer be growing (under the application of the
growing functions), and (b) an inverting growing function only ensures that−C is
mapped to a value greater than or equal to C, rather than C+d. Hence, we choose
C ′ to ensure that C ′ ± d is still growing by at least |d| (under the application

of our growing functions). Let C ′ = max
{
C

|d|
f1

, . . . , C
|d|
fk

, |y|+ 1
}
+ |d|. Then the

invariant is {−C ′ − N} ∪ {C ′ + d+ N} ∪ (O ∩ (−C ′, C ′ + d)).

Non-opposing counters. The only remaining possibility (if there do not exist
two opposing counters, and not all functions are growing or pure inverters),
is that there are counter-like functions, but they are all counting in the same
direction. There may also be a single pure inverter, and possibly some growing
functions.

Pick a counter h(x) = x+d to be the reference counter; the choice is arbitrary,
but it is convenient to pick a counter with minimal |d|. As a starting point, we
have

{
x(0) + dN

}
⊆ I.

Lemma 10. If there is an inverter g(x) = −ax + b, with a > 0, b ∈ Z, and we
have {x+ dN} ⊆ I then {g(x) + dZ} ⊆ I.

The crucial difference with Lemma 8 is the observation that now an N-linear set
has induced a Z-linear set.
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Proof. Let r = g(x) + dm for m ∈ Z. We show r ∈ I. Consider x + dn for
n ∈ N, then g(x+ dn) = −a(x+ dn) + b = −ax+ b− adn = g(x)− adn. Hence
g(x) − adn + dk, n, k ∈ N, is reachable by applying k times the function h(x).
Hence for any m ∈ Z there exists k, n ∈ N such that k − na = m, so that r is
indeed reachable. ⊓⊔

Similarly to the situation with two opposing counters, whenever the invariant
contains some Z-linear set, Lemma 8 allows us to saturate amongst the finitely
many reachable residue classes.

However, the invariant may contain subsets that are not Z-linear. Consider
{x+ dN} ⊆ I, which is not yet invariant. We repeatedly apply non-inverting
functions to {x+ dN} to obtain new N-linear sets (not Z-linear sets). When
the function applied ‘moves’ in the direction of the counters this will ultimately
saturate (in particular when applying other counter functions). However, in the
opposite direction, we may generate infinitely many such classes.

Example 3. Consider the reference counter h(x) = x+4, with initial point 5. This
yields an initial set {5 + 4N} ⊆ O, where 5 is the initial point and 4N is derived
from the counter increment. Now when applying x 7→ 2x + 6 to {5 + 4N} we
obtain {10 + 6 + 8N+ 4N} = {16 + 4N}, then {38 + 4N}, and then {82 + 4N}.
However {82 + 4N} ⊆ {38 + 4N} and we can therefore stop with the invariant
{5 + 4N} ∪ {16 + 4N} ∪ {38 + 4N}.

However, if the initial sequence is not moving in the direction of the reference
counter, this saturation does not occur. Consider {5 + 4N} with the function
x 7→ 2x − 6. Then {5 + 4N} maps to {10− 6 + 8N+ 4N} = {4 + 4N}, which
maps to {2 + 4N}, {−2 + 4N}, {−10 + 4N}, {−26 + 4N}, and so on. However
−2 and −10 are both 2 modulo 4 (and so is −26 as well). This means in the
negative direction we can obtain arbitrarily large negative values congruent to
2 modulo 4 and then use the reference counter h(x) = x+4 to obtain any value
of {2 + 4Z}. ⊓⊔

Clearly we can examine all reachable residue classes defined by our reference
counter. Any residue class reachable after an inverting function induces a Z-linear
set. So it remains to consider those N-linear sets reachable without inverting
functions. The remaining case to handle occurs when we repeatedly induce N-
linear sets until they repeat a residue class in the direction opposite to that of
the reference counter.

We consider the case for h(x) = x+d with d ≥ 0. The case with h(x) = x−d
is symmetric. It remains to detect when a set {x+ dN} leads to {y + dN} by
a sequence of non-inverting functions with x ≡ y mod d. Then by repeated
application of these functions one can reach sets {z + dN} with z arbitrarily
small, hence we can replace {x+ dN} by {x+ dZ}. We give further details in
the full version.

Reachability. The above procedure is sufficient to decide reachability. In all
cases apart from that in which there are no counters, the invariants produced co-



Porous Invariants 19

incide precisely with the reachability sets. A reachability query therefore reduces
to asking whether the target belongs to the invariant.

In the remaining case, the invariant obtained is parametrised by the target via
the bound C ′. The target lies within the region (−C ′, C ′+d), within which we can
compute all reachable points. Thus once again, the target is reachable precisely
if it belongs to the invariant. However, for a new target of larger modulus, a
different invariant would need to be built.

Complexity.

Lemma 11. Assume that all functions, starting point, and target point are given
in unary. Then the invariant can be computed in polynomial time.

Without the unary assumption, the invariant could have exponential size,
and hence require at least exponential time to compute. That is because the
invariant we construct could include every value in an interval, for example,
(−C,C), where C is of size polynomial in the largest value.

As shown in [10], the reachability problem is at least NP-hard in binary,
because one can encode the integer Knapsack problem (which allows an object to
be picked multiple times rather at most once). Moreover the Knapsack problem
is efficiently solvable in pseudo-polynomial time via dynamic programming; that
is, polynomial time assuming the input is in unary, matching the complexity of
our procedure.

6 The POROUS Tool

Our invariant-synthesis tool porous11 computes N-semi-linear invariants for
point and Z-linear targets on systems defined by one-dimensional affine func-
tions. porous includes implementations of the procedures of Theorem 3 (re-
stricted to one-dimensional affine systems) and Theorem 6. porous is built in
Python and can be used by command-line file input, a web interface, or by
directly invoking the Python packages.

porous takes as input an instance (a start point, a target, and a collection of
functions) and returns the generated invariant. Additionally it provides a proof
that this set is indeed an inductive invariant: the invariant is a union of N-linear
sets, so for each linear set and each function, porous illustrates the application
of that function to the linear set and shows for which other linear set in the
invariant this is a subset. Using this invariant, porous can decide reachability; if
the specific target is reachable the invariant is not in itself a proof of reachability
(since the invariant will often be an overapproximation of the global reachability
set). Rather, equipped with the guarantee of reachability, porous searches for
a direct proof of reachability: a sequence of functions from start to target (a
process which would not otherwise be guaranteed to terminate).

11 Tool: invariants.davidpurser.net Code: github.com/davidjpurser/porous-tool

http://invariants.davidpurser.net
https://github.com/davidjpurser/porous-tool
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Size Invariant
Build Time

Unreachable
Instances

Invariant
Proof Time

Reachable
Instances

Reachable
with proofs

Reachability
Proof time

avg max avg max within ≈30s avg

8 0.001 0.009 100 (9.84%) 0.005 0.261 916 (90.2%) 911 (99.5%) 0.033
16 0.001 0.020 122 (12.0%) 0.010 0.788 894 (88.0%) 885 (99.0%) 0.053
32 0.003 0.068 134 (13.2%) 0.020 0.911 882 (86.8%) 843 (95.6%) 0.203
64 0.008 0.261 150 (14.8%) 0.052 2.969 866 (85.2%) 766 (88.5%) 0.294
128 0.021 0.557 153 (15.1%) 0.096 2.426 863 (84.9%) 719 (83.3%) 0.464
256 0.088 2.838 166 (16.3%) 0.316 43.587 850 (83.7%) 620 (72.9%) 0.998
512 0.428 9.312 162 (15.9%) 0.899 21.127 854 (84.1%) 570 (66.7%) 1.120
10241.121 20.252 173 (17.0%) 3.275 65.397 843 (83.0%) 514 (61.0%) 1.646

all 0.209 20.252 1160 (14.3%) 0.584 65.397 6968 (85.7%) 5828 (83.6%) 0.499

Table 2. Results varying by size parameter (last row includes all instances tested).
Times are given in seconds, with the average and maximum shown (except reachability
proof time, which are all approximately 30s due to instances that terminate just before
the timeout).

Experimentation. porous was tested on all 27 − 1 possible combinations of
the following function types, with a ≥ 2, b ≥ 1: positive counters (x 7→ x + b),
negative counters (x 7→ x − b), growing (x 7→ ax ± b), inverting and growing
(x 7→ −ax ± b), inverters with positive counters (x 7→ −x + b), inverters with
negative counters (x 7→ −x− b) and the pure inverter (x 7→ −x). For each such
combination a random instance was generated, with a size parameter to control
the maximum modulus of a and b, ranging between 8 and 1024. The starting
point was between 1 and the size parameter and the target was between 1 and 4
times the size parameter. Ten instances were tested for each size parameter and
each of the 27 − 1 combinations, with between 1 and 9 functions of each type
(with a bias for one of each function type).

Our analysis, summarised in Table 2, illustrates the effect of the size param-
eter. The time to produce the proof of invariant is separated from the process
of building the invariant, since producing the proof of invariant can become
slower as |I| becomes larger; it requires finding Lk ∈ I such that fi(Lj) ⊆ Lk

for every linear set Lj ∈ I and every affine function fi. In every case porous
successfully built the invariant, and hence decided reachability very quickly (on
average well below 1 second) and also produced the proof of invariance in around
half a second on average. To demonstrate correctness in instances for which the
target is reachable porous also attempts to produce a proof of reachability (a
sequence of functions from start to target). Since our paper is focused on invari-
ants as certificates of non-reachability, our proof-of-reachability procedure was
implemented crudely as a simple breadth-first search without any heuristics, and
hence a timeout of 30 seconds was used for this part of the experiment only.

Our experimental methodology was partially limited due to the high preva-
lence of reachable instances. A random instance will likely exhibit a large (often
universal) reachability set. When two random counters are included, the chance
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that gcd(b1, b2) = 1 (whence the whole space is covered) is around 60.8% and
higher if more counters are chosen.

Overall around 86% of instances were reachable (of which 84% produced a
proof within 30 seconds). Of the 14% of unreachable instances, all produced a
proof, with the invariant taking around 0.2 seconds to build and 0.6 seconds
to produce the proof. The 30-second timeout when demonstrating reachability
directly is several orders of magnitudes longer than answering the reachability
query via our invariant-building method.

A typical academic/consumer laptop was used to conduct the timing and
analysis (a four-year-old, four-core MacBook Pro).

7 Conclusions and Open Directions

We introduced the notion of porous invariants, which are not necessarily convex
and can in fact exhibit infinitely many ‘holes’, and studied these in the context
of multipath (or branching/nondeterministic) affine loops over the integers, or
equivalently nondeterministic integer linear dynamical systems. We have in par-
ticular focused on reachability questions. Clearly, the potential applicability of
porous invariants to larger classes of systems (such as programs involving nested
loops) or more complex specifications remains largely unexplored.

Our focus is on the boundary between decidability and undecidability, leav-
ing precise complexity questions open. Indeed, the complexity of synthesising
invariants could conceivably be quite high, except where we have highlighted
polynomial-time results. On the other hand, the invariants produced should be
easy to understand and manipulate, from both a human and machine perspec-
tive.

On a more technical level, in our setting the most general class of invariants
that we consider are N-semi-linear. There remains at present a large gap between
decidability for one-dimensional affine functions, and undecidability for linear
updates in dimension 91 and above. It would be interesting to investigate whether
decidability can be extended further, for example to dimensions 2 and 3.
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