
  

 
 

ABSTRACT 
 
 

Title of dissertation: METHODOLOGY FOR EVALUATING RELIABILITY 
GROWTH PROGRAMS OF DISCRETE SYSTEMS.   

  
 J. Brian Hall, Ph.D., 2008 
  
Dissertation directed by: Professor Ali Mosleh, Ph.D., Department of Mechanical 

Engineering 
 
 

The term Reliability Growth (RG) refers to the elimination of design 
weaknesses inherent to intermediate prototypes of complex systems via failure mode 
discovery, analysis, and effective correction.  A wealth of models have been 
developed over the years to plan, track, and project reliability improvements of 
developmental items whose test durations are continuous, as well as discrete.  This 
research reveals capability gaps, and contributes new methods to the area of discrete 
RG projection.  The purpose of this area of research is to quantify the reliability that 
could be achieved if failure modes observed during testing are corrected via a 
specified level of fix effectiveness.  Fix effectiveness factors reduce initial 
probabilities (or rates) of occurrence of individual failure modes by a fractional 
amount, thereby increasing system reliability. 

The contributions of this research are as follows.  New RG management 
metrics are prescribed for one-shot systems under two corrective action strategies.  
The first is when corrective actions are delayed until the end of the current test phase.  
The second is when they are applied to prototypes after associated failure modes are 
first discovered.  These management metrics estimate: initial system reliability, 
projected reliability (i.e., reliability after failure mode mitigation), RG potential, the 
expected number of failure modes observed during test, the probability of discovering 
new failure modes, and the portion of system unreliability associated with repeat 
failure modes.  These management metrics give practitioners the means to address 
model goodness-of-fit concerns, quantify programmatic risk, assess reliability 
maturity, and estimate the initial, projected, and upper achievable reliability of 
discrete systems throughout their development programs. 

Statistical procedures (i.e., classical and Bayesian) for point-estimation, 
confidence interval construction, and model goodness-of-fit testing are also 
developed.  In particular, a new likelihood function and maximum likelihood 
procedure are derived to estimate model parameters.  Limiting approximations of 
these parameters, as well as the management metrics, are also derived.  The features 
of these new methods are illustrated by simple numerical example.  Monte Carlo 
simulation is utilized to characterize model accuracy.  This research is useful to 
program managers and practitioners working to assess the RG program and 
development effort of discrete systems.  
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1. SUMMARY & CONCLUSIONS 

 

1.1. Background 

 

Per Military Handbook 189 [49], reliability growth is defined as the positive 

improvement in a reliability parameter over a period of time due to changes in 

product design or manufacturing processes.  There are three major areas in the field 

of reliability growth including: planning, tracking, and projection.  Reliability growth 

planning focuses on the construction of a reliability growth planning curve, which 

identifies the planned reliability achievement as a function of test duration, in 

addition to other program resources.  Reliability growth tracking focuses on the 

analysis of a system’s current demonstrated reliability.  Reliability growth projection 

focuses on estimating system reliability following implementation of corrective 

actions to known failure modes.  Each of these areas of reliability growth apply to 

complex systems whose test durations are continuous, as well as to complex systems 

whose test durations are discrete1.  A great deal of research has been done over the 

past several decades in each of these areas.  This research is summarized by literature 

review in Chapter 3, and reveals capability gaps in the area of discrete reliability 

growth projection.  This area of research (i.e., discrete reliability growth projection) is 

the topic of this dissertation.  The contributions of the dissertation are as follows. 

 

1.2. Overview of Dissertation and Its Contributions 

                                                 
1 For simplicity, complex systems whose test durations are discrete will be referred to as one-shot systems.  One-shot systems 

represent (but are not limited to) items such as guns, rockets, missile systems, and torpedoes. 
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1.2.1. Chapter 12 

 

The intention of Chapter 1 is to provide a very high-level introduction of the 

research topic (i.e., discrete reliability growth projection), outline the organization of 

this document, and present a very abbreviated review of the contributions given 

herein.  The contributions are summarized by chapter below.  Chapters 2-3 give 

background material, and discuss prior work done in the field of reliability growth.  

Chapters 4-7 are (self-contained) papers on this research topic that have either been 

published, accepted for publication, or submitted to journals for potential publication.  

Chapter 8 gives Bayesian estimation procedures for the beta shape parameters3, as 

well as a Monte Carlo simulation approach to construct epistemic uncertainty 

distributions on the management metrics derived in Chapters 5 and 6.   

 

1.2.2. Chapter 24 

 

Chapter 2 provides background material on the fundamentals of reliability 

growth management, and areas of reliability growth obtained from the literature 

review given in Chapter 3.  The scope of the literature review goes significantly 

beyond the specific research topic of discrete reliability growth projection, but was 

required to formulate a holistic view of the state-of-the-art in the field.  Naturally, 

reliability growth projection models are presented in greater detail.  

                                                 
2 References in Chapter 1 are given at the end of the document. 
3 The shape parameters n (pseudo trials) and x (pseudo failures) of the beta distribution. 
4 References in Chapter 2 are given at the end of the document. 
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1.2.3. Chapter 35 

 

Chapter 3 presents a detailed literature review of most (not all) of the work 

that has been done in reliability growth for complex systems.  A synopses of nearly 

80 papers are given, which covers 7 planning models, 25 tracking models, 6 

projection models, 4 reliability growth surveys or handbooks, and 36 other papers 

covering theoretical results, simulation studies, real-world applications, personal-

perspectives, international standards, or related statistical procedures 

The literature review has answered many questions of basic interest about the 

field of reliability growth.  For example, there are three main areas: planning, 

tracking, and projection.  A wide array of statistical procedures (e.g., classical and 

Bayesian) for point-estimation, confidence interval construction, and goodness-of-fit 

testing are available for most of the models (not all).  Models have been developed 

for complex systems whose test duration is continuous, as well as for complex 

systems whose test duration is discrete.  There are at least three organizations that 

currently have tailored software products for reliability growth analysis. 

The literature review has also revealed capability gaps mainly for one-shot 

systems in the areas of planning and projection, as indicated by Mortin and Ellner in 

[161].  With respect to the area of discrete projection, there are two types of models 

that depend on the type of corrective action strategy used by program management.  

The first type addresses the case were all corrective actions are delayed until the end 

of the current test phase.  The second type address the more complicated case where 
                                                 

5 References in Chapter 3 are given at the end of the document. 
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corrective actions can be applied to system prototypes after they are first discovered.  

The main difference between the two types of projection models are their functional 

forms, the data they require, and the statistical procedures involved for parameter 

estimation. 

The genesis of discrete reliability growth projection is marked by a paper 

written by Corcoran, Weingarten, and Zehna in 1964 [8], which addresses the delayed 

case.  Since then, a number of other methods have been developed.  Among them 

include the delayed models given by Crow [54], and Ellner & Hall [162], and the 

non-delayed models given by Ellner [121], and Crow [157] - all of which are models 

for systems whose usage is measured in the continuous time domain.  Hence, the need 

for reliability growth projection capabilities for one-shot systems.  Chapters 4-8 

prescribe reliability growth management metrics and associated statistical procedures 

that fill these capability gaps under both corrective action strategies. 

 

1.2.4. Chapter 46,7 

 

Chapter 4 gives a model for estimating the true reliability growth of a 

complex one-shot system (as opposed to expected reliability).  The model offers an 

alternative to the popular competing risks approach first considered by Corcoran et al. 

[8], and is suitable for application when one or more failure modes can be discovered 

in a single trial, and when catastrophic failures modes have been previously 

discovered and corrected.  A logically derived exact expression with theoretical (i.e., 
                                                 

6 Chapter 4 was submitted to IEEE Transactions on Reliability on 18 September 2006, revised on 20 January 2007, and 
accepted for publication on 24 July 2007.  The paper appears in the March 2008 issue of that journal (i.e., vol. 57, no. 1, pp. 174-
181).   

7 References in Chapter 4 are given at the end of Chapter 4. 
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based on a theoretical shrinkage factor estimator), and practical estimates (i.e., based 

on maximum likelihood and method of moments) of reliability are developed. 

 A new method is given for approximating the vector of failure probabilities 

inherent to a complex one-shot system.  This new method is based on a shrinkage 

factor derived herein.  The benefit of this procedure is that it not only reduces error, 

but reduces the number of unknowns requiring estimation from 1k +  to only three, 

where k  is the total potential number of failure modes in the system.  Also, estimates 

of failure mode probabilities of occurrence, whether observed or unobserved during 

testing, are finite and positive.  This in an improvement over the well-known, widely-

used maximum likelihood estimate for a failure probability, which yields an estimate 

of zero for unobserved failure modes. 

 Unique limiting approximations of model equations are derived, which yield 

interesting simplifications.  In particular, a mathematically-convenient functional 

form for the expected initial reliability of a one-shot system is derived.  This quantity 

serves as an estimate of the current demonstrated reliability of a one-shot system, and 

offers an alternative to the typical reliability point estimate calculated as the ratio of 

the number of successful trials to the total number of trials. 

 Monte Carlo simulation is used to highlight model accuracy with respect to 

projection error.  While all error terms are within 2.5%±  of the true reliability, 

approximated normal distributions indicate that projection error is within 0.9%± , 

90% of the time.  While model accuracy is generally found to be good, tailored 

Monte Carlo simulation studies are recommended to highlight model accuracy for 

specific systems of interest. 
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Important assumptions and limitations of this methodology is as follows: 

1. The distribution of the number of failures in T  trials for each failure mode 

1, ,i k= …  is assumed to follow a binomial random variable with probability 

of occurrence 1, , kp p… , respectively.  There are two important limitations 

imposed by this assumption.  First, the failure probabilities for each failure 

mode 1, , kp p…  must remain fixed over the entire test phase of T  trials.  

Thus, if wearout or reliability growth is encountered to a significant extent 

during test, this assumption will be violated and the methodology may not be 

suitably applied.  For this reason, corrective actions are assumed to be delayed 

until the end of the current test phase.  Second, all failure data for each failure 

mode 1, ,i k= …  is assumed to be generated in (and only in) the T  trials.  

Thus, lower-level subsystem test data and other data captured outside of the T  

trials cannot be incorporated in the assessment. 

2. Initial failure probabilities 1, , kp p…  inherent to the system are assumed to 

constitute a realization of a random sample from an iid beta random variable.  

The major limitation of this assumption is that the methodology may not be 

suitably applied if a given failure mode in the system fails as a consequence of 

failure of a different mode. 

3. Because of (1) and (2) above, the system must be at a stage in development 

where catastrophic failure modes have been previously discovered and 

corrected, and are therefore not preventing the occurrence of other failure 

modes. 
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4. There must be at least one repeat failure mode.  If there is not at least one 

repeat failure mode, the moment estimators, and the likelihood estimators of 

the beta shape parameters do not exist. 

 

1.2.5. Chapter 58,9 

 

Chapter 5 introduces a new reliability growth management metrics for one-

shot systems that are applicable to the case where all corrective actions are 

implemented at the end of the current test phase.  Associated statistical procedures for 

parameter estimation follow from those given in Chapter 4.  The methodology 

consists of four primary model equations for assessing: expected reliability (i.e., 

initial, projected, and upper achievable limit), the expected number of failure modes 

observed in testing, the expected probability of discovering new failure modes, and 

the expected probability of observing a repeat failure mode.  These metrics provide an 

analytical framework from which reliability practitioners can estimate reliability 

improvement, address goodness-of-fit concerns, quantify programmatic risk, and 

assess reliability maturity of one-shot systems.  A numerical example is given to 

illustrate the value and utility of the approach.  The methodology is useful to program 

managers and reliability practitioners developing one-shot systems under a delayed 

corrective action strategy.  Limitations of this methodology are identical to those 

listed in the previous subsection (since this approach also addresses a delayed 

corrective action strategy). 

                                                 
8 Chapter 5 was submitted to Reliability Engineering & System Safety on 26 August 2007, revised on 5 November 2007, and 

accepted for publication on 12 November 2007.  Citation information has not yet been assigned.   
9 References in Chapter 5 are given at the end of Chapter 5. 
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1.2.6. Chapter 610,11 

 

Chapter 6 builds on the management metrics introduced in Chapter 5.  It 

builds on these management metrics in the sense that marginal expressions are 

derived from the earlier model equations.  These marginal expressions are in terms of 

the two beta shape parameters, rather than the initial failure probabilities inherent to 

the system (e.g., the failure probabilities 1, , kp p…  are integrated out of the 

equations).  The new expressions are used for analyzing reliability growth under an 

arbitrary corrective action strategy (i.e., fixes can be applied to system prototypes 

after associated failure modes are first discovered).  Thus, the system configuration 

need not be constant.  The methodology consists of the same management metrics for 

identical purposes as those discussed in Chapter 5. 

In addition to the management metrics, a new likelihood function and 

statistical estimation procedure are derived that can be used under an arbitrary 

corrective action strategy.  The likelihood function uses the marginal beta-geometric 

distribution and gives consideration to Type I (i.e., time) censored data.  Limiting 

approximations of model parameters and the management metrics are derived, 

yielding a number of interesting simplifications.  In fact, all the model equations 

reduce to simple mathematically-convenient expressions in terms of only the beta 

shape parameter representing pseudo trials, and the initial reliability of the system.  A 

numerical example is given to illustrate the new statistical procedures and utility of 

                                                 
10 Chapter 6 was submitted to Technometrics on 24 March 2008 for consideration of publication. 
11 References in Chapter 6 are given at the end of Chapter 6. 
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the management metrics.  This methodology is useful to program managers and 

reliability practitioners developing discrete systems under an arbitrary corrective 

action strategy.   

Limitations (2) and (3) from Section 1.2.4 also apply to this approach.  In 

addition, the distribution of the number of trials 1, , kt t…  until the first occurrence of 

each failure mode is assumed to constitute a realization of a random sample 1, , kT T…  

such that ( )~i iT Geometric p  for each failure mode 1, ,i k= … .  Thus, the failure 

probabilities 1, , kp p…  are implicitly assumed to remain constant until they are first 

discovered on trials 1, , kt t… .  Note that following trials 1, , kt t… , the failure 

probabilities can be reduced by fractional amounts proportional to their corresponding 

FEF as a result of failure mode mitigation. 

 

1.2.7. Chapter 712 

 

Chapter 7 develops approximate statistical procedures for goodness-of-fit 

testing and confidence interval construction for the expected reliability under a 

delayed or non-delayed corrective action strategy (given in Chapter 6).  Without loss 

of generality, the same procedures can be applied in the delayed case by using the 

statistical procedures presented in Chapter 4.  Two goodness-of-fit techniques are 

discussed.  The first technique is a graphical approach that highlights the correlation 

between the actual cumulative number of observed failure modes versus trials, against 

the expected number of observed failure modes versus trials.  The second technique is 

                                                 
12 References in Chapter 7 are given at the end of Chapter 7. 
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a statistical test procedure based on a chi-squared random variable.  Both techniques 

are based on a logically derived exact expression for the expected number of 

observed failure modes, also developed in Chapter 7.  An important assumption 

associated with the proposed GOF test procedure is that the test statistic follows a chi-

squared distribution with 2c −  degrees of freedom.  This assumption is investigated 

via Monte Carlo simulation.  Provided that the expected frequencies in each class 

interval of the required GOF table are greater than or equal to 4, the test statistic is 

found to approximate well to a chi-squared distribution with 2c −  degrees of 

freedom. 

Using a Fisher matrix normal approximation approach, a confidence interval 

is constructed for the expected reliability of a one-shot system.  This identical 

procedure can be applied to obtain an interval estimate on the other management 

metrics.  Monte Carlo simulation is utilized to estimate the coverage probability 

associated with the approximation routine.  In the context of this research, the 

coverage probability is the number of times in simulation that the confidence interval 

contains the true reliability out of the total number of replications.  The coverage 

probability is found to be close to the nominal confidence level when censoring is 

moderate.  Numerical examples are given to illustrate the proposed confidence 

interval and goodness-of-fit procedures.  This methodology is useful to reliability 

practitioners who wish to address model goodness-of-fit concerns, and/or obtain a 

confidence interval estimate on the expected reliability of a one-shot system 

undergoing development. 
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An important assumption with this methodology is that the log-odds transform 

of the expected reliability is approximately normal.  This assumption is investigated 

by Monte Carlo simulation.  It was found that the aforementioned statistic was 

approximately normal, but not perfectly symmetric.  Thus, the coverage of this 

approximate confidence interval routine can vary.  This means that it may yield 

confidence intervals whose coverage is lower (e.g., 70%) than the associated nominal 

confidence level used (e.g., 80%).  The effect that this has on the interval is that it 

will tend to be tighter and yield less confidence than advertised by the nominal 

confidence level.  The volume of data censoring also has this effect on the coverage 

of approximate confidence interval procedures, and is researched extensively in 

statistical literature. 

 

1.2.8. Chapter 8 

 

Chapter 8 develops Bayesian estimation procedures for both corrective action 

strategies (i.e., delayed and arbitrary) that can be utilized as alternatives to the 

classical estimation methods developed in Chapters 4 and 6.  One of the advantages 

of these Bayesian procedures is that they directly quantify the epistemic uncertainties 

in model parameters (i.e., the shape parameters of the beta distribution), as well as the 

management metrics.  Another advantage is that all a priori engineering knowledge 

can be utilized in the assessment procedure.  Analytical results (i.e., joint posterior 

distributions) are presented to obtain Bayes’ estimates of the beta shape parameters 

for both corrective action strategies.  A Monte Carlo approach is outlined for 
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constructing uncertainty distributions on the management metrics.  For inference on 

interval estimation, Bayesian probability limits are obtained in the usual manner (i.e., 

via desired percentiles of the uncertainty distributions).  Numerical examples are 

given to illustrate these Bayesian procedures.  In particular, Bayes’ estimates of the 

beta shape parameters are obtained for a given sample of data.  Also, Bayesian 

epistemic uncertainty distributions for all reliability growth management metrics are 

constructed via the proposed Monte Carlo approach.  The limitations associated with 

these procedures follow directly from Section 1.2.4 under the delayed case, and 

Section 1.2.6 for an arbitrary correction strategy. 

 

1.2.9. Future Work 

 

Future work that could be done in the area of discrete reliability growth 

projection to advance the state-of-the-art further would be to develop a projection 

model under an arbitrary corrective action strategy that uses individual fix 

effectiveness factors.  Individual fix effectiveness factors represent the fraction 

reduction for individual failure mode probabilities (or rates) of occurrence due to 

implementation of a corrective action.  Individual fix effectiveness factors are used in 

this research for the delayed corrective action strategy.  An average fix effectiveness 

factor is used for an arbitrary corrective action strategy. 

A second area for future work would be to revisit the problem originally 

considered by Corcoran et al. in 1964 [8].  They developed the first projection model 

under the popular competing risks framework where at most one failure mode can be 
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triggered on any single trial.  Their reliability projection is suitable in cases where 

corrective actions are installed at the conclusion of a single test phase, and where the 

number of trial outcomes of interest is a multinomial distributed random variable.  

One may be able to develop an extension of this model allowing it to be applied under 

an arbitrary correction strategy.  In addition, one may be able to develop a complete 

set of management metrics to address this case (i.e., competing risks), similar to those 

given herein.  Statistical procedures, both classical and Bayesian, for point and 

interval estimation could also be explored. 
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2. INTRODUCTION 

 

2.1. Reliability Growth Management 

 

Early prototypes of complex systems will nearly always possess design and 

manufacturing deficiencies.  In order to improve reliability and performance 

characteristics of developmental items, these initial weaknesses must be found, 

investigated, and eventually corrected.  As a result, system prototypes are 

manufactured and subjected to a series of different tests, thereby exposing them to the 

envelop of stresses (e.g., mechanical, thermal, electrical, environmental) that the 

customer is likely to encounter in the operational environment.  Developmental and 

operational testing of military equipment, for instance, reveals a wide array of 

problems, such as inherently incapable system designs with respect to required 

operational profiles; unacceptably premature component overstress and/or wear-out; 

quality control (e.g., variation) issues in the manufacturing process; subsystem 

interface problems; software failures; the presence of sneak circuits and other 

electronic reliability problems; and factors concerning human and operator error.  

Upon the discovery of each problem encountered during prototype testing, detailed 

reports are typically generated to document exactly what occurred, when it occurred, 

and what happened as a result.  Test incidents are investigated to determine their root-

cause, or failure mode13.  In some cases, the root-cause of a given test incident may 

not be well-understood, or ever determined.  In general, however, the root-causes of 

most test incidents are eventually identified.  Once identified, engineers develop 
                                                 

13 Failure Mode – the root-cause associated with the loss of a required function or component. 
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proposed corrective actions that, once applied to system prototypes, mitigate (or 

sometimes eliminate) the occurrence of the failure mode.  Corrective actions can 

consist of, but are not limited to, engineering design modifications, alterations in 

manufacturing processes, or even changes in equipment operating procedures. 

This process of eliminating initial design (or manufacturing) weaknesses in a 

system via failure mode discovery, analysis, and effective correction is generally 

what is meant by the term reliability growth.  Mathematical models that are used to 

quantify improvements in reliability throughout development are generally referred to 

as reliability growth models.  Since the 1950s (e.g., with one of the first reliability 

growth models given by Weiss in [1]), the genesis of three main areas of the field 

have emerged, where a wealth of methods have been developed to plan, track, and 

project the reliability of developmental items.  Each of these three areas apply to 

complex systems whose test durations are measured in the continuous time domain, 

as well as via discrete trials (e.g., one-shot systems, such as, guns rockets, missile 

systems, and torpedoes).  Reliability Growth Management (RGM)14 procedures, such 

as those prescribed in Military Handbook 189 [49], the AMSAA Reliability Growth 

Guide [144], and Appendix C of the DoD’s Guide for Achieving RAM [164], consist 

of the application of planning, tracking, and projection models with consideration to 

leveraging the allocation and reallocation of programmatic resources (e.g., schedule, 

budget, test needs) as appropriate. 

There are several reasons why such management procedures are helpful.  In 

general, these tools give program managers the means from which to make informed 

                                                 
14 Reliability Growth Management (RGM) is “the systematic planning for reliability achievement as a function of time and 

other resources, and controlling the ongoing rate of achievement by reallocation of resources based on comparisons between 
planned and assessed reliability values” [49].   
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decisions based on quantitative assessments of various aspects of the development 

program.  Ideally, the RGM process should begin at program initiation with the 

construction of a reliability growth program planning curve.  Planning curves are 

invaluable in that they force management to specify goals for reliability achievement 

as a function of test time as well as other program resources.  Once prototype testing 

begins, reliability growth tracking models give management the means to gauge the 

progress of the development effort.  Progress is gauged by comparing quantitative 

assessments of system reliability against the program planning curve.  A close 

agreement between the planned and demonstrated reliability is indicative of a 

successful reliability growth program (i.e., one that is progressing according to 

schedule).  Reliability growth projection models are then used to quantify the 

hypothetical reliability of the next configuration of the system (i.e., the reliability that 

could be achieved if the system developer mitigates known failure modes with a 

specified level of fix effectiveness).  Reliability growth projection models also give 

measures to quantify programmatic risk, and system maturity.  The capabilities in 

each of these three areas of reliability growth are discussed in more detail in the 

following sections.   

Other benefits of adopting prescribed RGM principles include the reduction of 

lifecycle O&S costs and programmatic risk associated with acquiring a system that 

does not meet its intended operational and performance requirements.  Many cost 

studies over the years suggest that O&S costs for complex military systems can 

account for up to 60-84% of the total ownership cost of a weapon system.  Even more 

interesting, the largest portion (i.e., 34%) of the DoD’s budget in FY 2000 was 
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associated with “Operations and Maintenance” costs for aging military equipment 

[168].  These costs were followed by “Military Personnel” (26%), “Procurement” 

(19%), “RDT&E” (14%), “Military Construction” (2%) and “Other” (2%).  In 

summary, successful RGM includes the application of planning, tracking, and 

projection models to plan and continuously assess the progress of the development 

effort while reallocating programmatic resources as necessary.  The ultimate goal of a 

reliability growth program is to develop a system whose final reliability demonstrates 

that which is required.  Of course, a major success criterion of any reliability growth 

program is maturing the system (i.e., with respect to reliability achievement) within a 

given fixed schedule and budget. 

 

2.2. Elements of Reliability Growth 

 

 In the previous section, general concepts were discussed in relation to the field 

of reliability growth, its areas, and associated management practices.  What 

specifically, however, does one mean by the term reliability growth?  Per Military 

Handbook 189 [49], reliability growth is defined as “the positive improvement of a 

reliability parameter over a period of time due to changes in product design or 

manufacturing process.”  While this definition has been widely adopted since 1981, 

one could argue that a reliability parameter, such as MTBF, and estimates thereof are 

merely artifacts of achieved reliability.  In other words, positive improvements in 

reliability parameters are secondary effects of the actual concept of interest.  In this 

research, reliability growth is considered to be the increase in the true (but unknown) 
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reliability of a system as a result of failure mode discovery, analysis, and effective 

correction.  Thus, as the true reliability of a system is increased, its reliability 

estimates (if accurate) also increase, thereby quantifying reliability growth.  

Naturally, reliability improvements gained during the development effort are heavily 

dependent upon the effectiveness of corrective actions applied to system prototypes.  

A corrective action is an improvement to either the hardware, software, or human 

factors aspects of a system.  Some examples include: 

1. Hardware reliability.  Engineering design modifications of a system, changes 

to subsystem interfaces or circuit board designs, adjustments to material 

properties of components, and recapitalizing the facilities and equipment 

associated with manufacturing processes (especially packaging processes for 

electronic components). 

2. Software reliability.  Corrective actions addressing bug modes, logic errors, 

data quality issues, sneak logic-circuits, software design, hardware/software 

interfaces, and code syntax problems can be examples of software reliability 

improvements.   

3. Human reliability.  Reliability growth associated with human/operator factors 

could range from implementing more effective operator/maintainer training 

programs, modifying vehicle or equipment operating procedures, 

reconfiguring inspection routines/checklists, increasing the frequency of 

safety assessments and perhaps addressing worker supervision and 

motivational factors. 
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Regardless of the type of corrective action and area for which they are associated 

(i.e., hardware, software or human), a major performance indicator of the growth 

process entails the rate at which reliability is improved.  The rate of reliability 

improvement15 is dependent upon several factors including (but not limited to): 

1. The rate at which failure modes are discovered during testing. 

2. The turnaround time associated with performing root cause failure analysis. 

3. The turnaround time associated with the official scoring of failure data via the 

system’s FD/SC (which defines the customer’s notion of system failure). 

4. The turnaround time associated with the development of corrective actions. 

5. The turnaround time associated with the corrective action review and approval 

process.  This is typically done by a FPRB, who assigns failure mode FEF16 

based on expert engineering judgment. 

6. The turnaround time associated with the implementation of approved fixes.  

Fixes are typically installed on system prototypes during a planned CAP but 

can also be applied to prototypes in a staggered, random fashion. 

7. Management strategy17. 

8. The effectiveness of corrective actions and the overall extent to which the 

associated failure modes contribute to the system’s failure intensity, or 

probability of failure. 
                                                 

15 The rate of reliability improvement should not be confused with the growth rate parameter, α, associated with the Duane 
model [7].  The rate of reliability improvement is the actual reliability improvement achieved via the TAFT process.  The growth 
rate, α, is a parameter of the Duane model that represents the slope of a linear approximation to the cumulative failure rate versus 
cumulative test time plotted on a log-log scale. 

16 A Fix Effectiveness Factor (FEF) is the fraction reduction in an initial mode failure rate (or failure probability) of 
occurrence due to implementation of corrective action.  FEFs are commonly assigned via expert engineering judgment.  
Estimating demonstrated fix effectiveness is also possible.  An average FEF of 0.80 is a common and decent level of fix 
effectiveness used in reliability growth projection analyses but, of course, such a quantity is highly dependent upon a given 
corrective action. 

17  Management Strategy (MS) is a reliability growth planning parameter that represents the portion of a system’s failure 
intensity (or probability of failure) associated with failure modes that program management is expected to address via corrective 
action.  A MS of 0.90 is commonly used in reliability growth planning but, again, it is a quantity that depends on programmatic 
factors (schedule, budget, management philosophy etc). 



- CHAPTER 2 - 

 - Page 21 - 
 

Clearly, all of the above are highly dependent on timely management commitment to 

provide necessary allocation and reallocation of programmatic resources, such as 

schedule and budget.  For example, early planning in terms of schedule and budget is 

required to successfully plan and fund required testing, failure analysis, as well as the 

development and implementation of the corrective action effort. 

 

2.3. Areas of Reliability Growth 

 

2.3.1. Reliability Growth Planning 

 

 Reliability growth planning is an area of reliability growth that addresses 

program schedules, amount of testing, resources available and the realism of the test 

program in achieving its requirements [144].  Reliability growth planning is 

quantified and reflected through a reliability growth program planning curve18.  

Planning curves are typically in terms of MTBF expressed as a function of 

cumulative test duration.  Reliability growth planning curves establish interim 

reliability goals throughout the development process and identify many important 

factors, such as, the number and schedule of CAP, planned MS, planned average FEF, 

initial MTBF, goal MTBF (i.e., system or subsystem reliability requirement).  

Overall, planning curves illustrate program management’s planned reliability 

achievement as a function of test time, in addition to other resources.  A logically 

constructed reliability growth plan is a powerful management tool for identifying 

                                                 
18 A reliability growth planning curve displays the anticipated reliability growth of a system or subsystem over the course of 

the development program [49].   
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early-on the programmatic resources that will be necessary for reliability 

achievement.  Several reliability growth planning models have been developed over 

the past several decades.  Examples of some planning curves are presented in Chapter 

3. 

 

2.3.2. Reliability Growth Tracking 

 

 Reliability growth tracking [49] is an area of reliability growth that provides 

management the opportunity to gauge the progress of the reliability improvement 

effort for a system by obtaining a demonstrated numerical measure of system 

reliability throughout development.  These reliability assessments (i.e., point and CI 

estimates) are compared to the system’s reliability growth planning curve to 

determine if the actual reliability achievement is progressing according to that which 

was planned.  Tracking models are available for both one-shot systems and systems 

whose test durations are continuous (e.g., measured in time or distance).  Reliability 

growth tracking is the most well-developed area of reliability growth.  Practitioners 

have a wealth of models from which to choose.  Several tracking models are 

discussed in Chapter 3. 

 

2.3.3. Reliability Growth Projection 

 

 Reliability growth projection is an area of reliability growth that provides an 

estimate of system reliability based on assessments of the effectiveness of corrective 
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actions and failure data generated from the current and/or previous system 

configurations [144].  The main focus of reliability growth projection is to estimate 

the reliability of a future configuration of a system that would result if known failure 

modes are corrected via a specified fix-effectiveness.  Fix-effectiveness is quantified 

through FEF (some historical FEF are discussed by Trapnell in his reliability growth 

data studies [60] and [61]).  By using the FEF, the initial failure rates of occurrence 

associated with corrected failure modes are reduced by a fractional amount (specified 

by the FEF).  This reduction in the initial failure rates of occurrence for corrected 

modes is the primary idea behind reliability growth projection models. 

There are two types of projection models depending on the corrective action 

strategy utilized by program management.  The first type address the case were all 

corrective actions are implemented at the end of the current test phase.  In this case, 

all fixes are delayed, and the configuration of the system with respect to reliability 

remains constant.  The second type of projection models address the case where fixes 

can be delayed or non-delayed (e.g., an arbitrary corrective action strategy).  In this 

case, some fixes are applied during the current test phase, and some are applied at the 

end of testing.  Therefore, from a reliability standpoint, the system configuration is (in 

general) dynamic (i.e., improving throughout testing as a result of design changes). 

Figure 1 below displays the fundamental concepts behind reliability growth 

projection.  The pie chart on the left represents system unreliability before correction.  

The pie chart on the right represents system reliability after correction.  Notice that a 

portion of system unreliability is associated with A-modes19 and a portion is 

                                                 
19 An A-mode is a failure mode that will not be addressed via corrective action. 
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associated with B-modes20 (this failure mode classification scheme was originally 

proposed by Crow in [54]).  Failure mode mitigation is mathematically modeled as 

the reduction of initial failure rates (or probabilities) of occurrence associated with 

corrected modes by a fractional amount ( )1 id− .  The term ( )0,1id ∈  is the FEF for 

failure mode i.  For example, the initial failure rate iλ , after correction, is reduced to 

( )1 i id λ− ⋅ .  Notice in Figure 1 that the portion of system unreliability comprised of 

A-modes does not change.  This is because these failure modes are not addressed by 

corrective action.  Also notice there is a portion of system unreliability comprised of 

B-modes that are observed during testing, and B-modes that are not observed during 

testing.  The B-modes that are not observed also do not get corrected.  Therefore, the 

corresponding portion of system unreliability remains unchanged.  The portion of 

system unreliability that does get reduced, however, is the portion comprised of 

observed B-modes.  The gray piece of the pie chart on the right in Figure 1 illustrates 

the portion of system unreliability eliminated by corrective action.   

 
Figure 1.  Reliability Growth Projection Concepts. 

 

                                                 
20 A B-mode is a failure mode that program management will address via corrective action, if observed during testing. 
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3. LITERATURE REVIEW 

 

3.1. Overview 

 

Many reliability growth models have been developed over the past several 

decades.  The purpose of these models is to help program managers and reliability 

practitioners address the formidable tasks of planning, tracking, and projecting the 

reliability improvement of a system throughout the development process.  In order to 

summarize the current capabilities that exist, notes from the following literature 

review are given.  This literature review briefly covers the majority of the work (not 

all) done in the field.  Planning models, tracking models, and projection models are 

given in the following three sections, respectively.  More comprehensive works, such 

as, handbooks, surveys, and guides are given in Section 3.5.  A synopsis of associated 

theoretical results, simulation studies, real-world applications, personal-perspectives, 

and related statistical procedures (i.e., point-estimation, confidence interval 

construction, and goodness-of-fit testing) is given in Section 3.6. 

 

3.2. Reliability Growth Planning 

 

3.2.1. Duane’s Model (1964) 

 

 In 1964 J.T. Duane [7], who at the time was an aerospace engineer with 

General Electric Company in Erie, PA, discovered that if changes to improve 
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reliability are incorporated into the design of a system, then the cumulative failure 

rate versus cumulative test time plotted on a log-log scale exhibits a linear 

relationship.  This relationship is sometimes referred to as the Duane Postulate.  

Duane discovered this by developing cumulative failure rate plots for a broad range 

of aircraft equipment, including complex hydro-mechanical devices, aircraft 

generators, and jet engines.  Figure 2 below shows an example of a typical Duane 

Plot, where the parameter α represents the overall rate of reliability improvement 

throughout the course of the development program (for this model).  The parameter α 

is commonly referred to as the growth rate and represents the negative of the slope of 

the logarithm of the cumulative failure rate. 

 

Example of Duane Log-Log Data Plot
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Figure 2.  Duane Reliability Growth Plot. 

 

Duane’s original intent for the methodology was to monitor or track the reliability 

improvement21 in a major subsystems for various aircrafts.  This was done via the 

above assumed linear relationship, which approximately accounts for the overall 

change in the sequence of MTBF steps associated with successively redesigned 
                                                 

21 Duane’s original intent was to monitor reliability of a complex system undergoing design improvements, so his approach is 
mostly associated with reliability growth tracking.  It is presented as a planning model since it can also be used as a planning 
tool.  Moreover, the Duane postulate is used as a fundamental assumption in several other growth models.  Thus, the method 
marks a natural starting-point from which to begin this literature review. 
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configurations of a system throughout the TAFT process.  While Duane’s original 

intent was to monitor reliability improvement, the model has had tantamount 

ramifications throughout the field of reliability growth.  According to Ebeling [160] 

the Duane growth model is “the earliest developed and most frequently used 

reliability growth model.”  In fact, the Duane Postulate is utilized as a fundamental 

assumption in many other reliability growth models that will be discussed below.  An 

early and detailed application of the Duane model is presented by Selby and Miller 

[20]. 

 

3.2.2. Selby-Miller RPM Model (1970) 

 

Selby and Miller [20] present an approach to reliability planning and 

management of complex weapon systems, which they refer to as "Reliability 

Planning Management (RPM)."  The basic concept behind the RPM model includes 

its proposed “patterned reliability growth” approach to planning.  This “patterned 

reliability growth” methodology follows directly from Duane's postulate that the 

cumulative failure rate versus cumulative test duration on a log-log scale is 

approximately linear with slope, or growth rate, α .  While this concept is not new, 

the RPM model appears to be the first application of the Duane postulate for 

reliability growth planning (as opposed to its original intent of reliability growth 

monitoring). 

 

3.2.3. MIL-HDBK-189 Planning Model (1982) 
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 The purpose of the MIL-HDBK-189 model [49] is to construct a reliability 

growth planning curve over the developmental test program useful to program 

management.  The planning curve serves as a baseline against which reliability 

assessments can be compared, and it can highlight the need to management when 

reallocation of resources is necessary.  The model is based on the Duane Postulate 

and consists of an idealized system reliability growth curve22, that portrays the profile 

for reliability growth throughout the developmental test period and has a constant 

MTBF during the initial test phase.  The planning parameters that define the idealized 

growth curve include: (1) the initial MTBF, (2) length of the initial test phase (i.e., 

reliability demonstration test for the initial MTBF), (3) the final MTBF (e.g., 

reliability requirement, or goal), (4) the growth rate and (5) the duration of the entire 

growth program.  Some historical data on growth rates for Army systems is discussed 

by Ellner and Trapnell in [89].  The model also gives a set of expected MTBF steps 

during each test phase in the growth program.  Corrective action periods are 

scheduled between each of the test phases where fixes are applied to previously 

observed failure modes.  These improvements increase system reliability iteratively 

and result in an increasing sequence of MTBF steps, as displayed in Figure 3. 

 

                                                 
22 A reliability growth idealized curve is a planning curve that consists of a single smooth curve based on initial conditions, 

assumed growth rate and management strategy [144]. 
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Figure 3.  MIL-HDBK-189 Planning Curve. 

 

Ellner and Ziad [76] later studied the statistical precision and robustness23 of the 

MIL-HDBK-189 model’s biased and unbiased estimators of MTBF.  They conclude 

that the precision of the estimators strongly depend on the expected number of 

failures.  Also robustness between the biased and unbiased estimators is 

approximately equivalent.   

 

3.2.4. AMSAA System-Level Planning Model (1992) 

 

 The SPLAN discussed by Ellner et al. [144] is another variant of the MIL-

HDBK-189 model that can be used to construct system reliability growth test plans 

and associated idealized system reliability growth curves.  The model can also 

prescribe the required test duration to achieve a system reliability requirement as a 

point estimate.  This model gives several new options for determining various 
                                                 

23 Robustness refers to the effect on estimator statistical precision due to discrete configuration changes in system reliability. 
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planning parameters, which is convenient for conducting sensitivity analyses.  For 

example, given any four of the five planning parameters mentioned above, SPLAN 

determines the value of the remaining parameter.  Most often, the initial MTBF, final 

MTBF, growth rate, and length of the initial test phase are provided to determine the 

test duration required in a given development program.  Figure 4 shows an example 

growth curve generated by SPLAN. 

 
      Figure 4.  SPLAN Planning Curve. 

 

3.2.5. Ellner’s Subsystem Planning Model (1992) 

 

 The SSPLAN model was developed by Ellner et al. [102] and [117] to 

develop system or subsystem reliability growth test plans that achieve a given system-

level MTBF objective with a specified level of confidence.  That is, SSPLAN 

determines the subsystem test times and subsystem reliabilities required to 

demonstrate a system MTBF objective at a given level of statistical confidence.  



- CHAPTER 3 - 

 - Page 31 - 
 

Other work on SSPLAN includes Ellner and Mioduski’s [100] operating 

characteristic analysis for the model.  Consumer and producer’s risks are expressed in 

terms of the model parameters.  For a given confidence level, they show that these 

risks only depend on the expected number of failures during testing, and the ratio of 

the of demonstrated MTBF with confidence over the MTBF requirement.  Formulas 

are developed for computing these risks as a function of the test duration and growth 

curve planning parameters.  

 

3.2.6. Mioduski’s Threshold Program (1992) 

 

 The Threshold Program was developed by Mioduski at AMSAA but no 

publication on the model is known to exist.  However, the model is discussed by 

Broemm in [163] and is offered in AMSAA’s Visual Growth Suite (VGS) [168].  The 

program determines at selected program milestones (e.g., thresholds), if the 

demonstrated reliability of a system is failing to improve as prescribed by the MIL-

HDBK-189 idealized curve.  It consists of a hypothesis test that compares a reliability 

point estimate for a system (based on actual failure data) against the theoretical 

threshold value consistent with the planning curve.  Associated threshold values are 

established early in the acquisition process for program milestones or major decision-

points.  The test statistic in the procedure is the reliability point estimate (i.e., MTBF) 

computed from test data for individual system configurations.  If the test statistic is 

inside the rejection region for the test, the program gives statistical evidence at a 
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specified significance level that the system’s reliability is not in conformance with the 

approved reliability growth program plan. 

 

3.2.7. Ellner-Hall PM2 Model (2006) 

 

 The purpose of PM2, discussed by Ellner and Hall in [166], is to construct a 

reliability growth program planning curve for systems under development.  Exact 

expressions are presented for the expected number of surfaced failure modes and 

system failure intensity as functions of test time.  These exact expressions depend on 

a large number of parameters, but functional forms are derived to approximate these 

quantities that only depend on a small number of parameters (giving a parsimonious 

approximation).  Simulation results are presented which show that the functional form 

of the derived parsimonious approximations can adequately represent the expected 

reliability growth associated with a variety of parent distributions for the initial failure 

rates inherent to the system.  The main difference of this model in comparison to the 

other planning models is that it is independent of the NHPP assumption and utilizes 

parameters directly influenced by program management, such as: 1) initial MTBF; 2) 

MS; 3) goal MTBF; 4) average lag-time associated with fix implementation; 5) total 

test time; 6) average FEF; 7) the number and placement of CAP and 8) the planned 

monthly RAM test hours.  Another benefit of PM2 is that it is the first planning 

model to take into consideration the lag-time due to implementation of corrective 

actions.  An example of the type of detailed reliability growth plan that can be 

constructed using PM2 is shown in Figure 5 below.  The vertical lines displayed in 
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the figure correspond to four months prior to the corrective action periods (or 

refurbishment periods) where fixes are installed to known failure modes.  The 

significance of this is that only failure modes discovered before the four-month lag-

time are addressed in the corresponding corrective action periods.  The lag-time can 

be due to many factors but is mainly due to the turnaround time associated with root-

cause analysis and the corrective action review, approval, and implementation 

process. 
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Figure 5.  PM2 Planning Curve. 

 

3.3. Reliability Growth Tracking 

 

3.3.1. Weiss’ Model (1956) 

 

 Weiss [1] developed methods for monitoring and extrapolating reliability 

growth of guided missile systems with Poisson-type failures.  This paper was the 
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earliest found on the subject.  In this approach, the MTTF is believed to change over a 

sequence of successive trials as a result of finding and fixing failure modes in a 

system.  MLE procedures are utilized to determine if reliability is increasing or 

decreasing, as well as to identify the uncertainty of the reliability estimate.  The 

model is shown to lead to a logistic-type reliability growth curve.  Expressions are 

given for the estimated MTTF obtained from test data, as well as its variance. 

 

3.3.2. Aroef’s Model (1957) 

 

 Aroef [2] developed a reliability growth tracking model for continuous 

systems.  He assumes that the rate of reliability improvement of a system is directly 

proportional to the growth achieved at a given time, and inversely proportional to test 

duration squared.  The resulting differential equation takes-on the form 

( ) ( ) 2/ /df t dt f t tα= ⋅ .  The solution is found to be ( ) [ ]exp /f t tθ α= ⋅ −  where α  is 

the growth rate, and θ  is the upper-limit on reliability (i.e., MTBF) that can be 

achieved as t →∞ .  

 

3.3.3. Rosner’s IBM Model (1961) 

 

 Rosner [3] developed what has become known as the IBM model, which is an 

expression for a system’s failure intensity function (i.e., rate of occurrence of failure).  

He assumes that the rate of occurrence of failure at time t is proportional to the 

number of non-random defects remaining in the system at time t.  The resulting 
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differential equation is expressed as ( ) ( )/dN t dt b N t= − ⋅ , which has the solution 

( ) [ ]expN t a b t= ⋅ − ⋅ .  The constants a  and b  are approximated by regression.  An 

interesting feature of the model includes its ability to estimate the required test 

duration for the system to be at a given “fraction corrected” (i.e., a fraction of the 

original failures that have been corrected).  The model also estimates the number of 

non-random failures remaining at a given time. 

 

3.3.4. Lloyd-Lipow Model (1962) 

 

 Lloyd and Lipow [4] developed a growth model to estimate the reliability of a 

system comprised of a single failure mode.  The test program is assumed to be 

conducted in a series of trials.  If the system fails in a given trial, a corrective action is 

implemented, and is mathematically modeled with a finite probability of being 

successful in mitigating the occurrence of the failure mode.  The model has a simple 

exponential form given by ( )1 exp 1nR A C n⎡ ⎤= − ⋅ − ⋅ −⎣ ⎦ , where nR  is the reliability of 

the system in the n-th trial.  Model-parameters A  and C  are estimated via test data.  

They also present a second model, kR R
k
α

∞= − , for estimating the reliability of a 

system in a given stage, in this case stage k.  MLE and LS procedures are developed 

for estimating the model parameters R∞  and α .  A lower-confidence limit on kR  is 

also discussed, in addition to other potential functional forms of reliability growth 

models. 
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3.3.5. Chernoff-Woods Model (1962) 

 

 Chernoff and Woods [5] present several exponential regression reliability 

growth models.  One model of interest, due to its simplicity, estimates the probability 

that a system will successfully operate after a given number, r , failures have 

occurred and been subsequently corrected.  The model is given by the simple 

exponential form ( )1 exprP rα β⎡ ⎤= − − + ⋅⎣ ⎦ , where 0α >  and 0β >  are parameters 

estimated by a LS method.  Woods later gives a review of similar models in [46]. 

 

3.3.6. Wolman’s Model (1963) 

 

 Wolman [6] advanced the idea of AssignC failure modes (i.e., assignable 

cause failure modes that can be eliminated by redesign).  He assumes all assignable 

cause failures occur with equal probability in each trial and are completely eliminated 

upon initial observation.  Hence, reliability is improved over a sequence of trials.  

Wolman assesses the reliability at stage k  by the model ( )01 1kR q M k q= − − + − ⋅  

where 0q  denotes the probability of a non-AssignC failure mode, M  is the initial 

number of AssignC failure modes, and q  is the probability of occurrence of a single 

AssignC failure mode.  Probabilistic assessments for the model are provided via 

Markov chain approach.  MLE procedures were later developed by Bresenham [9].  

 

3.3.7. Cox-Lewis Model (1966) 
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 Cox and Lewis [11] proposed, perhaps, one of the first NHPP models, which 

is sometimes referred to as the exponential-law or the log-linear model.  It take-on the 

functional form ( ) [ ]expm t tα β= ⋅ + , where α  and β  are parameters.  The 

parameters are estimated from test data and GOF test procedures are developed.  The 

model reduces to a HPP when 0α = .  Also, reliability growth is modeled when 

0α < . 

 

3.3.8. Barlow-Scheuer Model (1966) 

 

 Barlow and Scheuer [12] also proposed a k-stage reliability growth model, 

where the outcome of each stage are utilized to improve the system in remaining 

stages.  In their trinomial framework, exactly one of three outcomes can occur in a 

given stage: success, inherent failure, or an assignable cause failure.  The reliability in 

the i-th stage is given by 01i ir q q= − − , where 0q  is the probability of an inherent 

failure, and iq  is the probability of an assignable cause failure.  MLE procedures are 

given for 0q  and iq  under the restriction that they are non-increasing.  A conservative 

LCB on the reliability of the system in its final configuration is also presented.  Other 

work on this model includes the CI procedures developed by Olsen [42].  Smith [38] 

examined the model from a Bayesian viewpoint by imposing non-informative 

uniform prior distributions on each kR  (i.e., the binomial probability of success in 

stage k ).  This formulation led to a convex combination of beta posterior 

distributions on kR  from which interval estimates are obtained.  Fard and Dietrich’s 
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simulation study [58] showed that the Barlow-Scheuer model more accurately 

estimated the true reliability of a system than any of the other non-Bayesian models 

considered.  Fard and Dietrich [73] later developed a Bayesian formulation of the 

Barlow-Scheuer model which does not utilize the AssignC failure mode 

classification. 

 

3.3.9. Virene’s Gompertz Model (1968) 

 

 Virene [16] considered the utility of the trinomial Gompertz equation for 

reliability growth modeling.  The reliability assessment is based on the model 

tcR a b= ⋅ , where ( ), 0,1b c∈ .  The parameter a  is the upper-limit on reliability as 

time t →∞ .  He provides estimation procedures for the three model parameters as 

well as numerical examples. 

 

3.3.10. Pollock’s Model (1968) 

 

 Pollock [19] developed one of the first (if not the first) Bayesian reliability 

growth models.  He modeled the parameters as random variables with appropriate 

prior distributions allowing one to project system reliability any time after initiation 

of the test with, or without, test data.  Precision statements on the projection and 

estimation routines are given. 

 
3.3.11. Crow’s Continuous Tracking Model (1974) 
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 In [26] Crow gives the first stochastic interpretation of the Duane Postulate.  

This is the first time the instantaneous failure rate for reliability growth (given by 

Duane's model) was reparameterized and recognized as being the Weibull hazard rate 

function for a repairable system.  The model is given by ( ) 1r t t βλ β −= ⋅ ⋅ , where λ  

and β  are model parameters.  This observation allowed the development of statistical 

estimation and GOF procedures for reliability growth, which were also presented for 

time-truncated data.  The same procedures were also develop by Crow [28] shortly 

thereafter for failure-truncated data.  Both failure and time-truncated estimation are 

given in [29].  CI procedures on MTBF are presented in [28].  Associated estimation 

procedures are based on ML, and GOF results are based on a Cramer-Von Mises test 

statistic.  Crow gives numerical examples illustrating these procedures and a 

discussion of Army applications for the methodology. 

These results have had a significant impact on reliability growth and 

repairable systems reliability modeling, as they have served as a methodological 

foundation for many subsequent approaches.  Crow gives more comprehensive 

treatments to all the normal statistical procedures for the Weibull process in [32], 

[40], and [52].  This includes MLE procedures, hypothesis tests, and confidence 

bounds for model parameters (time and failure-truncated testing).  Simultaneous 

confidence bounds on model parameters and a GOF test for the model is also given.  

Crow elaborates upon several applications of the methodology including: reliability 

growth, mission reliability, maintenance policies, industrial accidents, and 

applications in the medical field.   
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 Using the stochastic interpretation of the Duane Postulate, the resulting model 

became known as the RGTMC, given in [25-27] and [30].  This model is used to 

assess the improvement in the reliability of a system (within a single test phase) 

during development for which usage is measured on a continuous scale.  Applications 

to reliability analysis for complex, repairable systems is discussed by Crow in [32].  

Four “real-world” examples are given by Crow in a much later paper [87].  Figure 6 

below shows a plot of the MVF (i.e., expected number of failures) versus test time 

against the actual number of failures observed during testing of an Army system. 

 

 
Figure 6.  RGTMC Expected No. Failures. 

 

Other work on this model includes Crow’s MLE procedure [74] for the parameters of 

the RGTMC in the case where there is missing data (i.e., incomplete data).  This 

practical reliability growth estimation procedure assumes that the actual failure 

history over the problem interval is unknown.  Such a phenomenon occurs when 

failure information over a period of testing is determined to be incorrect, which leads 

( )t t βμ λ= ⋅
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to the reporting of either to many, or to few failures.  Based on these techniques the 

observed number of failures over the problem interval is adjusted to “more 

realistically reflect the actual growth pattern.”  Hence, a valid reliability growth curve 

can then be fitted to the data and used for evaluation purposes.  Two GOF procedures 

are developed (i.e., one based on the Cramer-Von Mises TS for individual failure 

time data, and the second based on a chi-squared r.v. for grouped failures).  These 

new procedures are illustrated by several numerical applications.  Years later, Crow 

[109] develops ML and CI procedures for failure data generated from multiple 

systems under test. 

 

3.3.12. Lewis-Shedler Model (1976) 

 

 Lewis and Shedler [33] offer and extension of the Cox-Lewis model by 

developing estimation procedures for the exponential polynomial model for powers of 

1, ,10n = … .  The extension addresses models of the form 

( ) 2 10
0 1 2 10expm t t t tα α α α⎡ ⎤= + ⋅ + ⋅ + + ⋅⎣ ⎦" . 

 

3.3.13. Singpurwalla’s Model (1978) 

 

 Using time-series24 methods, Singpurwalla developed a discrete reliability 

growth model to: determine if the binomial parameter ip  (i.e., the probability of 

success at stage 1, ,i k= … ) is increasing after design modifications are applied in 

                                                 
24 Time series is defined as a set of observations generated sequentially in time. 
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each stage.  The model obtains estimates of ip  at the present stage, and also forecasts 

ip  at future stages (i.e., beyond stage k ). 

 

3.3.14. Crow’s Discrete Tracking Model (1983) 

 

 The RGTMD was developed by Crow [55] for tracking the reliability of one-

shot systems during development; such as, guns, rockets, missiles, torpedoes, mortars 

etc.  Statistical point-estimation, CI and GOF procedures are given for both grouped 

data, and for data captured during a trial-by-trial basis.  The model is fundamentally 

based on the NHPP assumption derived from the Duane Postulate.  More specifically, 

the model is constructed by obtaining an equation for the probability of failure on a 

configuration basis, using the NHPP power-law function (sometimes referred to as 

the “learning curve”).  This equation and a plot of the reliability growth tracking 

curve is shown in Figure 7 below. 

 
Figure 7.  RGTMD Reliability. 
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Other related work on this model was done by Finkelstein [59], and Battacharyya, 

Fries and Johnson [84].  Finkelstein developed CAE of the model parameters for the 

case where only a single trial per configuration is tested.  He also performed a 

simulation study to investigate the behavior of the CAE.  He concludes that all 

attempts to obtain MLE of these parameters were unsuccessful and asserts the 

consistency of the CAE.  Battacharyya, Fries and Johnson [84] generalize the CAE 

given by Finkelstein in the case where there is a constant pre-specified number of test 

trials between system configuration changes.  Large-sample properties of these 

estimators to include consistency and normality are developed.  Large-sample 

standard-error formulas and CI procedures are given.  Finally, they provide a proof on 

the consistency of the CAE, which confirms the Finkelstein conjecture.  

Bhattacharyya & Ghosh [98] later showed that the MLE and CAE for the parameters 

of this model are asymptotically equivalent.  Johnson [99] generalized these findings 

in the case where the sample sizes for each system configuration were unequal.  More 

work was done by Hall and Wessels [145] who formulated an evolutionary 

programming optimization algorithm to estimate the parameters of the RGTMD [55].  

A numerical example is presented, where the standard MLE of the model parameters 

are compared against the proposed estimates from the optimization algorithm.  The 

estimates are nearly identical.  Overall, the algorithm proves to be an effective tool 

for reliability growth analysis when using the RGTMD. 

 

3.3.15. Robinson-Dietrich Model (1988) 

 



- CHAPTER 3 - 

 - Page 44 - 
 

 Robinson and Dietrich [78] and [85] develop a reliability growth model for 

monitoring the progress of the development effort at the system-level while the actual 

development occurs at the subsystem-level.  Using the moments of the subsystem 

failure rate distributions as they change during testing, they show how the moments 

of the distribution of the system-level failure rate can be estimated.  Using these 

moments, point-estimates and approximate CI for system reliability growth are 

derived.  A hypothetical example is presented to illustrate some nuances of the 

methodology.  Two additional examples are given on unspecified systems.  The first 

system is comprised of three components, and the second system consists of eleven 

subsystems in a more complex structure.   

 

3.3.16. Kaplan-Cunha-Dykes-Shaver Model (1990) 

 

 Kaplan et al. [90] develop a Bayesian method for assessing reliability during 

product development.  Their “stepwise process” is implemented for analyzing failure 

data derived from the system and subsystem levels.  Bayes’ theorem is applied 

sequentially at each level throughout a number of test stages.  The prior distribution 

and updating procedure at each level utilize engineering judgment to evaluate the 

significance of failures observed and effectiveness of corrective actions.  Overall, the 

paper includes the development and application of a Bayesian framework for 

gathering, organizing and incorporating expert knowledge into reliability growth 

assessment.  A notable feature of the approach is that assessments of reliability are 

derived with a concomitant measure for uncertainty. 
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3.3.17. Mazzuchi-Soyer Model (1991) 

 

 Mazzuchi and Soyer [92], [106], and [110] present a Bayesian approach for 

assessing reliability growth during system development.  At the end of each stage of 

testing, failures are examined so that modification can be implemented to remove 

failure modes.  They incorporate prior information into an ordered Dirichlet prior 

distribution for failure probabilities at each stage.  The resulting posterior distribution 

of all relevant quantities is expressed as a mixture of beta, or Dirichlet, distributions.  

After each stage of testing, the model gives Bayes estimates of system reliability.  

The method is illustrated by numerical example.  Overall, their approach provides a 

means for incorporating subjective information into reliability assessment, and 

provides the means for analyzing system reliability over successive stages of testing 

using sequential updating of a Bayesian prior distribution.  These results are later 

extended by Erkanli, Mazzuchi and Soyer [135] who consider both the exponential 

and Weibull time-to-failure models.  

 

3.3.18. Heimann-Clark PR-NHPP Model (1992) 

 

 Heimann and Clark [105] argue that a more accurate reliability assessments of 

a system can be obtained by explicitly modeling the effect of defects induced during 

the manufacturing process.  To model this phenomenon, they develop a process-

related NHPP by replacing the constant scale factor by a process age-dependent 
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function.  This function increases asymptotically over process age to a mature process 

scale factor value.  MLE procedures are given for model parameters.  The proposed 

PR-NHPP addresses the questions: "What will the product reliability be after a given 

age of the manufacturing process?" and "How much reliability growth time will be 

required to achieve a given product failure intensity goal?"  One parameterization of 

the NHPP is ( )
1th t

ββ
α α

−
⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  The proposed modification is to replace the 

constant scale factor α  in this equation by the function ( ) [ ]( )1 expt b tα α= ⋅ − − ⋅ , 

where t is the length of time that the production line has been operational, and b is the 

shape parameter.  Numerical examples are given to demonstrate the utility of the 

proposed PR-NHPP. 

 

3.3.19. Fries’ Discrete Learning-Curve Model (1993) 

 

 Fries [111] develops a learning-curve approach for discrete reliability growth 

analysis.  This approach is particularly appropriate for destructive tests of very 

expensive systems.  Derivations of the new model and of the RGTMD [55] are 

presented.  Approximations of model parameters are obtained by ML procedures.  

Extensions of both models are discussed, which account for the distinction between 

assignable25 and non-assignable cause failure modes.  Each model accommodates for 

the monotonic growth in reliability during system development.  The models and 

estimation procedures are illustrated by two numerical examples.  In a later paper 

[116], Fries gives corrections to the likelihood equations that properly reflect the 
                                                 

25 An assignable-cause failure mode is a failure mode whose root-cause is known and is therefore readily correctable. 
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negative binomial (geometric) behavior of the number of trials until the first observed 

failure. 

 

3.3.20. Modified-Gompertz Model (1994) 

 

 Kececioglu, Jiang, and Vassiliou [115] observe from several datasets that 

reliability growth data with an S-shaped trend could not be adequately portrayed by 

the conventional Gompertz model [16].  They point-out that the reason is due to the 

model’s fixed value of reliability at its inflection point.  As a result, only a small 

fraction of reliability growth datasets following an S-shaped pattern could be fitted.  

Their proposed solution overcomes this shortcoming by modifying the Gompertz 

model to include a fourth parameter.  This fourth parameter shifts the associated 

growth curve vertically, thus accommodating for S-shaped growth datasets.  The new 

method is claimed to be more flexible than its predecessor for fitting data with S-

shaped trends.  The original Gompertz model is given by 
TcR a b= ⋅ .  The 

modification assumes the form 
TcR a b d= ⋅ + .  Estimation procedures are presented 

and consist of solving four equations for the four unknown model parameters.  A 

detailed numerical example is given.  

 

3.3.21. Ellner’s Subsystem Tracking Model (1996) 

 

 The SSTRACK model was developed by Ellner [144] for assessing system 

level reliability from lower level subsystem testing.  The motivation for this 
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methodology was to make greater use of subsystem test data in estimating system 

reliability.  SSTRACK takes into consideration data from both growth and non-

growth subsystems.  The model uses the Lindstrom-Madden method [4] for 

combining test data from individual subsystems.  The methodology includes 

statistical CI and GOF procedures.  Figure 8 below shows an example of approximate 

LCB on system MTBF computed from subsystem data as a function of the desired 

level of statistical confidence. 

 

 
Figure 8.  SSTRACK LCB on MTBF. 

 

3.3.22. Sen’s Alternative to the NHPP (1998) 

 

 Sen [136] investigates the statistical inference of current reliability of the 

Duane model [7].  Exact and large-sample distributional results are derived for the 

ML and LS estimators of the current failure intensity.  The extent of misspecification 
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of the NHPP power-law process [25] to fit failure data of a system experiencing 

recurrent failures is explored.  Simulation results and an illustration is provided to 

supplement the theoretical findings and demonstrate the presented inference results.  

Sen concludes that the model is a suitable alternative to Crow’s NHPP power-law 

model, in the context of analyzing recurrent failure data from systems undergoing 

developmental testing.  Clarifications on the exact inference procedures are discussed 

by Sen in [140]. 

 

3.3.23. Donovan-Murphy Model (1999) 

 

 Donovan and Murphy [141], [143] and [146] present a new reliability growth 

model which is claimed to be simpler to plot and provide a better fit to data than the 

Duane model over the range of slopes normally observed (i.e., 0.5α ≤ ).  The model 

(for MTBF) is derived from variance stabilization transformation theory and takes-on 

the form ( )t tθ α β= ⋅ + .  Simulation results indicate that their model is “more 

effective” for growth rates less than 0.50 (which is generally the typical range for 

growth rates).  Numerical examples are presented from two published datasets and 

yield findings consistent with those of the simulation results.  

 

3.3.24. Pulcini’s Model (2001) 

 

 Pulcini [147] presents an exponential reliability growth model, which 

incorporates step changes in a system’s failure intensity due to engineering design 
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improvements.  He gives ML and CI procedures (exact and approximate) for 

obtaining estimates of the current failure intensity and lifetime expectancy.  GOF 

procedures based on a Cramer-Von Mises TS are also developed.  These statistical 

procedures are based on a scenario where several identical items are put on test and 

design modifications are introduced to all items at each failure occurrence.  A 

numerical example is given to illustrate the inference, prediction, and test procedures 

using actual failure-data from a single (unspecified) military tank. 

 

3.3.25. Gaver-Jacobs-Glazenbrook-Seglie Model (2003) 

 

 Gaver et al. [155] introduce probability models for sequential-stage system 

reliability growth.  These models are appropriate in cases where a system is tested in 

a series of stages, whereby if a failure occurs in a given stage, later stages are not 

entered.  System success is determined by successful operation in all test stages.  At 

most one defect is assumed to be removed per test.  Analytical procedures are 

developed to calculate the expected probability of field system mission success after 

completion of a runs-test26, the distribution of the probability of system field mission 

success after a successful runs-test, and the expected number of individual system 

tests required to achieve a successful runs-test.  Seglie’s stopping criterion27 [134] is 

studied quantitatively through a Bayesian model formulation which suggests the 

criterion provides a simple and effective test stopping-rule for a range of reasonable 

cost criterion. 

                                                 
26 A runs-test is a sequence of tests that is conducted until a specified number of consecutive successful tests is achieved. 
27 Seglie’s stopping criterion consists of stopping all testing after a successful runs-test is achieved. 
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3.4. Reliability Growth Projection 

 

3.4.1. Corcoran-Weingarten-Zehna Model (1964) 

 

  Corcoran, Weingarten and Zehna [8] developed the first model for estimating 

reliability after corrective action.  The approach was developed with consideration to 

estimating reliability in the final stage of development of an “expensive item.”  The 

reliability projection is suitable in cases where corrective actions are installed at the 

conclusion of a single test phase consisting of N independent trials and where the 

number of trial outcomes of interest is a multinomial distributed r.v. with parameters 

N (total number of trials), 0q  (unknown success probability), and ip  (unknown 

failure probability for failure mode 1,...,i k= ).  Note that since a multinomial model 

is used, the equality 0
1

1
k

i
i

q p
=

+ =∑  must be satisfied, which models the condition 

where at most one failure mode can occur per trial.  In addition to deriving an exact 

expression for system reliability under the conditions above, Corcoran, Weingarten 

and Zehna presented seven different estimators and evaluated them in light of 

criterion typically adopted for that of point estimation (i.e., bias, consistency, 

conservatism, and ML).  By studying these estimators they showed that an unbiased 

estimate of the corrected system could not be obtained.  They were the first 

researchers to advance the idea of reducing initial failure probabilities by a fractional 

amount with consideration to fix effectiveness.  By their model, the expected 

reliability (under competing risks) at the end of the current test phase is given by, 
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( ) ( ) ( )
1

| 1 1 1
k

N
i I i i i

i
R N p R d p p

=

⎡ ⎤= + − ⋅ ⋅ − −⎣ ⎦∑   (1) 

where N  is the total number of failures, ip  is the failure probability of failure mode 

i , IR  is the initial reliability, and id  is the FEF of failure mode i .  Other work on 

this model was done by Dahiya [37] who showed that six of the seven estimators 

initially considered by Corcoran et al. possess the same limiting normal distributions.  

Thus for large samples, CI and GOF procedures follow directly.  Olsen [36] showed 

how some of the estimators could be utilized under a multi-stage test program and 

developed a suitable variant of Corcoran’s model in this case. 

  

3.4.2. AMSAA-Crow Model (1982) 

 

 The ACPM was developed by Crow [54] and [56] for estimating system 

reliability at the beginning of a follow-on test phase.  The model takes into 

consideration the reliability improvement from delayed fixes only, and is suitable for 

systems whose test duration is continuous.  The primary framework for reducing the 

initial failure rates follows directly from Corcoran, Weingarten, and Zehna’s model 

[8].  Two GOF procedures have been developed for the ACPM and are discussed by 

Ellner in [144].  The first procedure is based on a Cramer von Mises TS for grouped 

data.  The second procedure, which is of the chi-squared type [69], is for individual 

failure time data.  The ACPM is one of the first models to incorporate the important 

concept of reliability growth potential28 [63].  No CI procedures have been reported.  

                                                 
28 Reliability growth potential is the upper-limit on reliability achieved by finding and correcting all failure modes in a 

system with a specified fix effectiveness.   
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As Crow discusses in [93], this model is also an international standard adopted by 

IEC and ANSI [120].  The model for expected failure intensity at the end of the test 

phase is given by, 

( ) ( ) ( )
1

| 1
m

i A i i
i

T d d h Tρ λ λ λ
=

= + − ⋅ + ⋅∑    (2) 

where Aλ  is the portion of system failure intensity associated with A-modes, m  is the 

total number of observed failure modes, iλ  is the failure rate for failure mode i , d  is 

the average FEF for observed failure modes, and ( ) 1h T T βλ β −≡ ⋅ ⋅  (i.e., the failure 

intensity function of the Weibull process) is the rate of occurrence of new failure 

modes. 

 

3.4.3. Ellner-Wald AMPM Model (1995) 

 

  AMPM was developed by Ellner and Wald [121] and is the first projection 

model to estimate reliability under an arbitrary corrective action strategy.  The benefit 

of this is that the system’s configuration with respect to design and reliability need 

not be constant.  The model provides estimates of: 1) the expected number of B-

modes observed; 2) the percent surfaced of the B-mode initial failure intensity; 3) the 

rate of occurrence of new B-modes and 4) the projected system reliability.  Figures 9-

12 below show an example of each these model equations, comprising the robust 

reliability growth methodology of AMPM.  The model also provides estimates of the 

reliability growth potential.  Estimation procedures are given for both grouped data 
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and individual failure-time data in [144].  No CI procedures have been reported.  

GOF procedures are discussed by Broemm in [163]. 

 

 
The model equations shown in Figures 9 and 10 are given by, 

( ) ( )ln 1Bt tλμ β
β

⎛ ⎞
= ⋅ + ⋅⎜ ⎟
⎝ ⎠

    (3) 

and 

( )
1

tt
t

βθ
β
⋅

=
+ ⋅

     (4) 

respectively.  In these expressions Bλ  is the portion of system failure intensity 

associated with B-modes and β  scale parameter of the gamma distribution. 

 

Figure 9.  Expected No. Modes.            Figure 10.  Percent λB Observed. 

Figure 11.  ROC of New Modes.              Figure 12.  Reliability Growth. 
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The model equations shown in Figures 11 and 12 are given by, 

( )
1

Bh t
t

λ
β

=
+ ⋅

     (5) 

(e.g., the rate of occurrence of new failure modes) and 

( ) ( ) ( ) ( )
1 1

1A B

t
d h t h t

ρ
λ λ

− =
⎡ ⎤+ − ⋅ − +⎣ ⎦

   (6) 

where Aλ  is the portion of system failure intensity associated with A-modes and d  is 

the average FEF for observed failure modes. 

 

3.4.4. Clark’s Model (1999) 

 

 Clark [139] argues that reliability is often overlooked during early system 

development and many programs experience late growth programs not long before 

production as a result.  He notes that the “popular AMSAA models” are difficult to 

apply in these cases since they prescribe high test durations even for aggressive 

growth rates.  He formulates a model as an alternative for projecting reliability 

growth late in development, which is claimed to overcome these shortcomings.  The 

proposed model consists of two main extensions of the ACPM [54].  The first 

extension includes a technical modification to allow the model to be applied in the 

case were fixes can be delayed or non-delayed (rather than all delayed).  The second 

extension includes adding a term for the inherent failure rate of the system to 

determine how close the current reliability is to the maximum that can be achieved 

and decide when further growth is no longer time or cost effective.  The method is 
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illustrated via numerical example on the Airborne Warning and Control System 

Radar System Improvement Program.  The results indicate that the model generally 

projected system reliability well, except when new failure modes introduced into the 

system by software modifications were not accounted for.  Clark’s model for the 

projected system failure intensity at time ft  computed at current test time t  is given 

by, 

( ) ( ) ( ) ( ) ( ), ,T f I F SF f VF Ut t t d t t t tλ λ λ λ λ λ= + − ⋅ − +   (7) 

where Iλ  is the inherent failure rate, ( )F tλ  is the fixable failure rate at time t , 

( ),SF ft tλ  is the fixable failure rate at test time t  scheduled to be explicitly corrected 

by future test time ft , ( )VF tλ  is the fixable failure rate verified to be explicitly or 

implicitly corrected at current test time t , ( )U tλ  is the unobserved failure rate at test 

time t , and d  is the average FEF for observed failure modes. 

 

3.4.5. Ellner-Hall AMPM-Stein Model (2004) 

 

 The AMPM-Stein model, given by Ellner and Hall [162], is used to estimate 

the system reliability following correction of known failures modes when fixes are 

delayed to the end of the test.  The benefit of this approach is increased accuracy 

obtained by using a shrinkage factor estimator (e.g., Stein [50]) designed to minimize 

the expected sum of squared error.  The unique feature about this estimation 

procedure is that all estimates of failure rates are finite and positive (whether they are 

observed in testing or not observed in testing).  Monte Carlo simulations conducted 
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by AMSAA [156] indicate that the accuracy in the reliability projection associated 

with AMPM-Stein is greater than that of the international standard adopted by IEC 

and ANSI [120], namely, the ACPM [54].  The model for system failure intensity is 

given by, 

( ) ( ) ( )1 1 1i i S
i obs

m NT d
k T

ρ λ θ
∈

⎛ ⎞ ⎛ ⎞= − ⋅ + − ⋅ − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ �   (8) 

where id  is the FEF for observed failure mode i , m  is the total number of observed 

failure modes, k  is the total potential number of failure modes in the system, and N  

is the total number of failures observed by time T .  The shrinkage factor estimate for 

individual failure mode rates of occurrence is given by, 

( )
ˆ

ˆ 1
j

j obs
i S i S k

λ
λ θ λ θ ∈≡ ⋅ + − ⋅

∑
�     (9) 

where 

( )

( )1

1
11

i
S k

i
i

i

Var T
T

Var
k T k

λ βθ
βλ

λ=

⋅
= ≈

+ ⋅⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟ ⋅ − +⎜ ⎟⋅ ⎝ ⎠⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
   (10) 

and β  is the scale parameter of the gamma distribution and obs  represents the index-

set of observed failure modes. 

 

3.4.6. Crow-Extended Model (2005) 

 

 The purpose of the Crow-Extended model [157] is to estimate reliability in the 

case were corrective actions can be either delayed or non-delayed (i.e., the same as 
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that for AMPM).  This model is a trivial extension of two existing AMSAA models, 

namely, ACPM [54] and RGTMC [30].  Once again, this model is based on the 

Duane Postulate.  Estimation procedures follow from the two existing models.  Crow 

[157] also provides 33 metrics useful for managing a reliability growth program and 

introduces the notion of a further failure mode classification scheme (e.g., BD-

modes29 and BC-modes30).  The model for system failure intensity is given by, 

( ) ( )1 |CA BD i i
i obs

d d h T BDρ λ λ λ
∈

= − + − ⋅ + ⋅∑   (11) 

where CAλ  (e.g., based on the tracking model [30]) is the achieved failure intensity 

before incorporation of BD-modes, BDλ  is the constant failure intensity associated 

with the BD-modes, id  is the FEF for failure mode i , iλ  is the failure rate of failure 

mode i , d  is the average FEF of observed failure modes, and ( ) 1|h T BD T βλ β −= ⋅ ⋅  

is the rate of occurrence of new BD-modes. 

 

3.5. Reliability Growth Surveys and Handbooks 

 

3.5.1. Crow’s Abbreviated Literature Review (1972) 

 

 Crow [23] presents an abbreviated literature review of some reliability growth 

models.  A limited number of numerical examples are also presented.  The growth 

models include: Weiss [1], Lloyd-Lipow [4], Wolman [6], Duane [7], Barlow-

                                                 
29 BD-modes are “B-Delayed modes” that will not be corrected until the end of the current test phase. 
30 BC-modes modes are “B-Corrected modes” that will be corrected during testing. 
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Scheuer [12], Virene [16], and Pollock [19], all of which are discussed herein.  A 

similar review of these early reliability growth models is discussed in [31] and [35].   

 

3.5.2. DoD’s First Military Handbook on Reliability Growth (1981) 

 

 Military Handbook 189 “Reliability Growth Management” [49] is the U.S. 

DoD’s first handbook on reliability growth.  The handbook was developed by the 

U.S. AMSAA with Crow as the principle author of the document.  It was first 

published in February 1981.  The handbook offers techniques to enable program 

managers of DoD weapon systems to plan, evaluate, and control the reliability of 

their systems during the development process.  It also provides procuring activities, 

and defense contractors with an understanding of the concepts and principles of 

reliability growth, as well as offer guidelines and procedures to be used in managing a 

reliability growth program.  In the main body of the handbook, two models are briefly 

introduced including the MIL-HDBK-189 model [49], and the RGTMC [30], both of 

which are discussed above.  In Appendix B of the handbook, eight discrete and nine 

continuous reliability growth models are summarized.  The discrete models include: 

two Lloyd-Lipow models [4], Wolman’s model [6], the Barlow-Scheuer model [12], 

Virene’s Gompertz model [16], and Singpurwalla’s model [45].  The continuous 

reliability growth models include: Duane [7], RGTMC [30], Cox-Lewis model [11], 

Lewis-Shedler model [33], Rosner’s model [3] and a variant thereof, a continuous 

Lloyd-Lipow model [4], Aroef’s model [2], and an unreferenced exponential model 

for cumulative MTBF.  In Appendix C, the RGTMC [30] and associated statistical 
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procedures are discussed in more detail.  Dr. Paul Ellner (AMSAA) is currently 

supervising the DoD’s revision of this handbook. 

 

3.5.3. Fries-Sen Survey on Discrete Reliability Growth Models (1996) 

 

 Fries and Sen [127] present a comprehensive compilation of model 

descriptions and characterizations, as well as discuss related statistical methodologies 

for parameter estimation and CI construction.  The interrelationships and assumptions 

that underlie the various models is also presented.  Their survey is extensive covering: 

single-stage models (e.g., Corcoran et. al [8]), multi-stage models (e.g., Lloyd-Lipow 

models [4] and [66, 72]), trinomial models (e.g., Wolman [6], Barlow-Scheuer [12], 

Weinrich-Gross [43], Mazzuchi-Soyer [110]), Bayes models (e.g., Pollock [19], 

Kaplan et al. [90], Jewell [65]), exponential-growth models (e.g., Lloyd-Lipow [4], 

Sriwastav [44]), exponential-regression models (e.g., NASA [10], Gross and Kamins 

[15], Virene [16], Bonis [39]), learning-curve models (e.g., Duane [7], RGTMD [55]) 

and several others.  This survey is the most comprehensive available on the subject.  

Smaller-scope reviews of discrete models (more limited in detail and covered by the 

Fries-Sen survey) are given by Jayachadran and Moore [34], Balaban [41], Dhillon 

[48], Gates [68], and Woods, Drake & Chandler [75].     

 

3.5.4. DoD’s Guide for Achieving RAM (2005) 
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 In August 2005, the OSD published a guide on achieving RAM [163] for DoD 

systems.  Appendix C of the document is devoted solely to methods for reliability 

growth analysis.  A number of associated concepts are discussed including: reliability 

maturity metrics for failure mode coverage and fix effectiveness, as well as some 

reliability growth planning, tracking, and projection models.  The growth models that 

are discussed include: RGTMC [30], RGTMD [55], Corcoran-Weingarten-Zehna 

Model [8], ACPM [54], AMPM [121], Crow-Extended [157], AMPM-Stein [162], 

and MIL-HDBK-189 model [49]. 

 

3.6. Other Literature (i.e., Theoretical Results, Perspectives and Applications) 

 

3.6.1. Corcoran-Read Simulation Study (1967) 

 

 Corcoran and Read [13] present a simulation study (first outlined by them in 

[13]) of four reliability growth models available at the time.  These models include: 

Chernoff-Woods [5], Barlow-Scheuer [12], Wolman [6] and Lloyd-Lipow [4].  They 

compare the reliability estimates of these methods with three measures of 

effectiveness: the popular average squared-error, the average squared-error after 

applying an inverse sine transformation (used to stabilize the variance of success 

probability estimates), and a logarithmic transformation applied to the failure 

probabilities (i.e., the average of the absolute deviation of logarithms of the ratio of 

error in the failure probabilities).  Based on these measures of effectiveness, they 
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conclude that their "general ranking of the preferability" of these methods are 1, 4, 2, 

and 3, respectively. 

 

3.6.2. Barr’s Paper (1970) 

 

 Barr [21] considers a class of reliability growth models that accommodate for 

variations in several important factors including: the interdependencies of assignable-

cause failure modes, the inclusion of an inherent failure mode, the repair policy and 

the distribution of initial states of the system.  His paper is an exposition of several 

prediction models appearing in the early literature of reliability growth and identifies 

their general features.  The methods considered include those of Lloyd-Lipow [4], 

Pollock [19], Weiss [1], and Wolman [6].  The overall problem Barr considered is 

that of predicting (before testing is undertaken) what the reliability of the system will 

be after a sequence of trials, and to predict the number of trials required to attain a 

given reliability.  He divides this general class of reliability growth models in three 

types: single assignable-cause mode models, multiple equally likely assignable-cause 

mode models, and multiple assignable-cause modes not necessarily equally likely. 

 

3.6.3. Read’s Remark on Barlow-Scheuer Estimation Scheme (1971) 

 

 Read [22] notes that the Barlow-Scheuer estimation procedure is incomplete.  

He notes that this is due to not addressing the case where all trials of a stage result in 
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only inherent failures.  Read proposes a policy to handle the case which allows 

estimation of the trial probability of assignable-cause failures. 

 

3.6.4. The AMSAA Reliability Growth Symposium (1972) 

 

 Crow [24] provides conference proceedings on, apparently, the first and last 

reliability growth symposium sponsored by the U.S. AMSAA.  The conference took 

place 26-27 September 1972 and originated as an outgrowth of the recommendations 

of the Panel on Accelerated Development of Reliability.  This panel was chaired by 

Jack Hope who was then serving on the White House Staff.  The purpose of the 

symposium was to enhance the state of technical and managerial knowledge on 

reliability growth methodology to benefit the Army's materiel acquisition process.  

There were over 200 attendees and six papers given.  The papers include Selby-Miller 

[20], Virene [16], Crow [24], Barlow-Proschan-Scheuer [24], Barlow [24], and 

Corcoran-Read [14]. 

 

3.6.5. Langberg-Proschan Theoretical Paper (1979) 

 

 Langberg and Proschan [47] present theoretical results on converting 

reliability growth (or decay) models involving dependent failure times into equivalent 

models involving only independent random variables.  They consider a sequence of 

such conversions occurring at successive points in time where the independent 

random variables are becoming stochastically larger (reliability growth).  Ultimately, 
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they demonstrate that the limiting distributions in the sequence of dependent models 

"correctly correspond" to the limiting distributions in the sequence of independent 

models.  No practical reliability growth model is presented, rather, associated results 

are mainly theoretical and focus on the technical aspects on the aforementioned 

conversion. 

 

3.6.6. Jewell on Learning-Curve Models (1984) 

 

 Jewell [65] constructs a general framework for learning-curve reliability 

growth models with Bayesian estimation procedures for model parameters.  He 

argues that Bayesian estimation methods must be used to incorporate engineering 

experience in prior estimates of the parameters of learning-curve models because ML 

estimators may be very inaccurate and unstable.  His main conclusion is that the 

majority of learning-curve developmental test programs will provide insufficient data 

to reach the desired precision for manufacturers to make early predictions on 

reliability when using traditional methods.  In particular, he indicates that the use of 

the Duane learning-curve ( ) 1g t k tν −= ⋅  leads to technical difficulties in reliability 

growth applications and that an exponential learning-curve ( ) ( )expg t tν= − ⋅  avoids 

such problems. 

 

3.6.7. Wong’s Letter to the Editor (1988) 
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 Wong [79] discusses the lack of organization in the vast literature on 

reliability growth and identifies some process that are not reflected in associated 

methodologies.  These process include: equipment aging effects, manufacturing 

learning-curve (i.e., improvement in production processes over time for a single 

item), industry-wide part improvement (e.g., effects of industry burn-in for electronic 

components), and methods on the test, analyze, and fix process that only use test 

duration as an independent variable (e.g., Duane’s model [7]).  He suggests that 

authors of reliability growth papers should: specify what kind of reliability growth 

process they are modeling, and which factors in their model are held constant or 

randomized to smooth-out effects. 

 

3.6.8. Wronka’s Application of the RGTMC (1988) 

 

 Wronka [77] shows the benefits that can be obtained by conducting reliability 

growth tracking early in the development process.  He gives an application of the 

RGTMC [30] for prototypes of a circuit card assembly.  Results are presented for the 

estimation procedure of grouped data and associated GOF test. 

 

3.6.9. Benton and Crow on Integrated Reliability Growth Testing (1989) 

 

 Benton and Crow [81] consider the development of reliability growth under 

integrated reliability growth testing.  By integrated testing they refer to a development 

program consisting of: functional testing, environmental testing, safety testing, 
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performance testing, mobility testing, and dedicated RAM testing.  They discuss and 

apply the concepts of the MIL-HDBK-189 model [49], RGTMC [30] and the ACPM 

[54] under the framework of these types of integrated tests.  They also presented 

results and lessons-learned on some Army programs.  Years later, Crow, Franklin and 

Robbins [118] present a successful application of integrated reliability growth testing 

in the development of a large switching system.  Their claimed benefits include: 

timely analysis of failed items, accurate problem classification, accurate laboratory 

failure rates, early identification of failure modes, management metrics for reporting, 

and reliability growth achievement using all test resources available. 

 

3.6.10. Frank’s Corollary of the Duane’s Postulate (1989) 

 

 In [82] Frank discusses his observation that various types of avionics 

equipment are found to demonstrate remarkably similar gradual declines in reliability 

during prolonged service.  He proposes a modification of Duane’s learning-curve 

approach by extending its applicability to project a reliability profile over an 

equipment’s planned service life.  Frank claims his “revised equations” (not given) 

can be used to predict changes in equipment reliability, thus providing a capability to 

more accurately estimate life-cycle support resource requirements and costs.   

  

3.6.11. Gibson-Crow Estimation Method for Fix Effectiveness (1989) 
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 Gibson and Crow [83] develop a “practical and statistically sound” 

methodology for estimating the average FEF, which is a parameter utilized in some 

reliability growth models (e.g., Ellner’s AMPM [121] and Crow’s ACPM [54]).  The 

average FEF, Dμ , is basically estimated by using the ACPM in a reverse manner.  In 

this approach, Gibson and Crow estimate the portion of the system failure intensity in 

a follow-on test by the common reliability point-estimate, /f Tλ =  (e.g., failures 

over test time).  This value is then equated to the reliability projection equation given 

by the ACPM.  The equation is then algebraically manipulated to solve for the 

average FEF. 

 

3.6.12. Woods’ Study on the Effect of Discounting Failures (1990) 

 

 Woods [88] analyzes the effect of failure discounting31 on the accuracy of two 

discrete and two continuous reliability growth models.  The discrete models include: 

the Chernoff-Woods exponential regression model [5], and Crow’s RGTMD [55].  

The continuous models include: Crow’s RGTMC [30] and a modification of the same 

model that only uses data in a given phase (i.e., not cumulative data).  Woods 

concludes that failure discounting has a greater impact on the cumulative growth 

models than on the non-cumulative (i.e., there is greater bias in the cumulative 

models, thus yielding more optimistic reliability estimates).  He also indicates that the 

non-cumulative growth models tracked growth patterns better than the cumulative. 

 

                                                 
31 Failure discounting is the practice of removing fractions of the previous failures after corrective action has been taken, 

where no failures for the same cause reoccur in subsequent testing.   
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3.6.13. Higgins-Constantinides Application (1991) 

 

 Higgins and Constantinides [91] present and interesting reliability growth 

application of the U.S. Navy’s EMATT system.  EMATT is an open-ocean one-shot 

expendable target used in simulating combat missions.  They faced the dilemma 

where no one-shot reliability growth model was suitable for their purposes.  

Additionally, application of established continuous growth models were deemed 

inappropriate32 since the number of trials in each test phase was not relatively large 

nor was the reliability high.  Since none of the classical growth models available at 

the time could provide suitable approximations, the reliability growth approach 

adopted for EMATT consisted of fundamentals from the Duane model [7].  Thus, 

they constructed a reliability growth tracking curve by plotting the cumulative 

reliability (i.e., cumulative successes over cumulative trials) versus cumulative trials.  

The results indicate a general reliability improvement trend and they note the 

difficulty in obtaining precise numerical reliability estimates with limited trials.  In 

there final report [113] published two years later, they apply the RGTMD [55].  The 

results show that EMATT reliability grew from 0.4 to 0.8 over the several year 

development program, hence, demonstrating its reliability objective requirement of 

0.8 (as a point-estimate). 

 

3.6.14. IEC International Standards for Reliability Growth (1991) 

 

                                                 
32 Continuous growth models were deemed inappropriate since they can only be utilized as good approximations for tracking 

the reliability of one-shot systems in the case where the number of trials within each test phase is relatively large and the 
reliability was relatively high, as stated in MIL-HDBK-189 [49]. 
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 The IEC adopted two international standards for reliability growth: IEC 

Standard 1014 covering “Programs for Reliability Growth,” and draft IEC Standard 

56 (Central Office) 150 on “Reliability Growth and Estimation Methods.”  IEC 

Standard 1014 was issued in 1989 and gives guidelines for improving the reliability 

and exposing the weaknesses of hardware and software items.  This standard also 

presents basic concepts and descriptions of management, planning, testing, failure 

analysis, and corrective action techniques.  The final draft of IEC Standard 56 

(Central Office) 150 became IEC Standard 1164 [120] and was issued in 1995.  This 

standard describes Crow’s NHPP power-law reliability growth model [30] and related 

projection model, ACPM [54].  Step-by-step directions on their use is given.  All 

statistical methods for the models are discussed including: MLE, CI, and GOF 

procedures for failure and time-truncated data.  Both standards are discussed by Crow 

in [93].   

 

3.6.15. Coolas’ Application (1991) 

 

 Coolas [94] presents a dynamic reliability prediction technique for the DPS 

7000, which is a mainframe computer system.  Observed measures of field 

performance, and trends in reliability growth (due to evolving product maturity) are 

identified.  The proposed reliability predictions are based on adjustments to 

component reliability and reliability growth models following from these 

observations.  As a result of the reliability predictions and associated improvement 

program, more accurate spare parts provisioning and decrease in maintenance costs 
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are claimed to have been achieved.  While not specifically referenced, the Lloyd-

Lipow model [4] appears to be used for component level reliability growth 

assessment. 

 

3.6.16. Bieda’s Application (1991) 

 

 Bieda [95] presents an analysis addressing product / process design concerns 

and validation testing issues via reliability growth testing, monitoring, and 

assessment.  The integration of reliability growth test techniques is applied to 

evaluate the reliability of an unspecified electro-mechanical device.  Reliability 

growth tracking curves are developed using Duane's model [7] and the various 

relationships between design iterations are identified.  Product assurance analyses are 

performed to help identify design and process-related concerns.  Point-estimates and 

one-sided LCB on MTBF are given using the NHPP Weibull process [26].  Results 

consist of successful demonstration of the relationship between failure detection and 

corrective action, as well as the achievement of higher reliability through reliability 

growth testing and use of reliability growth tracking methods. 

 

3.6.17. Ellis’ Robustness Study (1992) 

 

 Ellis [104] examines the robustness of techniques applied to failure time data 

to determine if the system failure intensity is changing over time.  The techniques 

include: the Duane model [7], and the RGTMC [30].  Monte Carlo methods are 
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utilized to simulate failures.  MLE procedures based on time-truncated and grouped 

data are used to approximate model parameters and associated MTBF.  Some basic 

advantages and disadvantages of the models are discussed.  The results of the study 

indicate that the Duane model indicates reliability growth even in cases when the 

failure data are generated by an exponential distribution, and that the RGTMC is 

more suitable for detecting the presence of reliability growth or decay.  This is largely 

due to the more sophisticated statistical procedures developed for the NHPP Weibull 

process (e.g., point-estimation, CI construction, and GOF testing). 

 

3.6.18. Calabria-Guida-Pulcini Bayes Procedure for the NHPP (1992) 

 

 Calabria, Guida and Pulcini [103] develop a Bayesian estimation procedure 

for the parameters of the NHPP power-law process, originally developed by Crow in 

1974 [26].  They provide Bayes estimates of system reliability and the failure 

intensity for failure-truncated testing.  Their Monte Carlo simulation results show that 

the procedure is more accurate and efficient than that of ML, even for vague prior 

information.  Years later, they present [128] a nonparametric Bayes-decision 

framework for complex repairable systems. 

 

3.6.19. Meth’s OSD Perspective on Reliability Growth (1992) 

 

 Meth, who at the time was Director of the Weapons Support Improvement 

Group of the OSD, gives a critical review [101] of reliability growth “myths and 
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methodologies.”  He asserts that reliability prediction is not a reasonable application 

of reliability growth and that the various mathematical models may not adequately 

describe the reliability growth process.  He conjectures that understanding of the 

factors for test planning has not advanced beyond the rules-of-thumb that were 

initially proposed by Duane [7] in 1964.  Meth also challenges the reliability 

community to “reexamine the reliability growth concept” and how it is being applied.  

 

3.6.20. Demko on Non-Linear Reliability Growth (1993) 

 

 Demko [112] identifies a shortcoming to the Duane model [7], namely, that it 

is insensitive to discontinuities or sudden changes in the reliability growth trend for a 

system.  In other words, Duane's model only considers linear growth on a log-log 

scale and will not accurately portray non-linear growth (on the same scale).  Demko 

proposes to utilize non-linear, piecewise regression to overcome this shortcoming.  

Several numerical examples and plots are given to illustrate comparisons of Duane's 

approach versus that of the proposed.  The examples use datasets from programs that 

demonstrated non-linear growth patterns and show that the proposed method more 

accurately portrays the growth patterns. 

 

3.6.21. Farquhar and Mosleh on Growth Effectiveness (1995) 

 

 Farquhar and Mosleh [124] present an approach for quantifying reliability 

growth effectiveness.  In their approach, they develop a performance parameter, 
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which they present from two perspectives on whether data from reliability growth 

testing is, or is not, available.  If data is not available, a subjective assessment and 

characterization of attributes that are indicative of the corporate culture is used.  

When data is available, the parametric variable is quantified by normalizing past 

performance with reliability growth program goals.  Five case studies were utilized to 

develop the performance parameter.  It was then incorporated into an existing 

reliability growth model, known as the Tracking, Growth and Prediction model.  This 

model was developed by P. F. Verhulst in 1845 and is based on the logistic function 

characterized by an S-shaped curve.  They conclude that their modification to the 

model provides a conservative estimate of the risk involved in achieving reliability 

growth goals. 

 

3.6.22. Demko on Reliability Growth Testing (1995) 

 

 Demko [123] argues that certain types of testing are not adequate in exposing 

field-related failure modes.  Some of the types of testing mentioned includes: RDGT, 

EQT, and ESS tests.  He claims that these tests yielded a high percentage of failure 

modes that occur only in a chamber-type environments and are not representative of 

failure modes that would be encountered during field use.  Failure modes from over 2 

million hours of field data from 13 different types of "283 Avionics Units" are 

compared against failure modes identified by 5 different companies who performed 

either RDGT (21K hours), ESS tests (28K hours) and EQT (hours not given).  Several 

plots are given to compare the quantity of failure modes encountered in the field, and 
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in each type of test.  The results indicate that the majority of failure modes were 

found during field use, following ESS testing, RDGT, and EQT. 

 

3.6.23. Fries-Maillart Stopping Rules (1996) 

 

 Fries and Maillart [125] present a method of when to stop testing of a one-shot 

system when the number of systems to be produced is predetermined and the 

probabilities of identifying and successfully correcting each failure mode are less than 

one.  The stopping criterion is emphasized on maximizing the number of systems 

expected to perform successfully in the field after deployment of the lot.  Two rules 

are presented.  The first rule includes stopping the test when the estimated utility33 

(given a failure on the next trial) is less than or equal to the current utility estimate.  

Motivated by expected value, the second rule is to stop testing when the estimated 

utility after the next trial (regardless of its outcome) is less than or equal to the current 

utility estimate.  Four discrete reliability growth models are utilized to estimate 

reliability improvement via Monte Carlo simulation.  The models include: two Lloyd-

Lipow models [4], Fries' learning-curve model [111], and Virene's Gompertz model 

[16].  The results indicate that both stopping rules perform well and can be practically 

implemented.  Specific recommendations are given to implement test-stopping rules 

in light of several factors, such as, estimation methodology and lot size. 

 

3.6.24. Ebrahimi’s MLE for the NHPP (1996) 

 
                                                 

33 Utility is defined as the number of systems expected to perform successfully in the field after deployment of the lot. 
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 Ebrahimi [129] develops a general formulation for modeling reliability growth 

between design modifications.  He assumes the model is either a Poisson process or 

the NHPP power-law process, and the times of design modifications must be known.  

ML estimates and CI procedures are developed in two cases, depending on the 

presence of constraints on the system failure intensity.  His proposed MLE and CI 

procedures are illustrated via a limited Monte Carlo example.  Corrections to several 

typographical and computational errors in Ebrahimi's paper is given years later (i.e., 

2002) by Pulcini in [149]. 

 

3.6.25. Huang-McBeth-Vardeman One-Shot DT Programs (1996) 

 

 Huang, McBeth, and Vardeman [130] develop a method to efficiently conduct 

developmental testing of one-shot systems that are destroyed in testing upon first use.  

Dynamic programming is used to identify optimal test-plans that maximize the mean 

number of effective systems of the final design that can be purchased with the 

remaining budget.  Several suboptimal rules are also considered and their 

performances are compared to that of the optimal rule. 

 

3.6.26. Xie-Zhao Monitoring Approach (1996) 

 

 Xie and Zhao [131] introduce a method called the First-Model-Validation-

Then-Parameter-Estimation approach.  Their approach, which  essentially follows 

directly from Duane [7], consists of model validation and parameter estimation.  The 
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model is validated by plotting the cumulative number of failures versus test duration, 

using linear regression to derive an equation to fit the data, and calculating the 

associated correlation coefficient.  A subjective assessment of the magnitude of the 

correlation is the deciding factor on model validation.  If the model is reasonable, the 

equation can be used for prediction purposes.  The paper focuses a great deal on the 

need for more graphical models in reliability growth.   

 

3.6.27. Seglie’s OSD Perspective on Reliability Growth (1998) 

 

 Written from the perspective of the Chief Scientific Advisor to the Director of 

Operational Test and Evaluation, OSD, Seglie [134] argues that too many weapon 

system programs enter operational testing before they are ready (i.e., they have 

immature design margin with respect to reliability and ultimately fail their test 

objectives at great cost).  Seglie emphasizes the false predictions that can be reported 

from the wealth of reliability growth models available, and notes that growth models 

have demonstrated a poor history of successfully predicting field reliability.  He 

proposes that the role for reliability growth modeling should be focused on 

prescribing test duration required to reach a level of acceptable reliability before 

going into operational testing – and not on estimating system or subsystem reliability.  

He adds that this modest role of reliability growth methodology in developing test 

plans is still of great importance in determining the amount of time required for 

engineers to find dominant failure modes, analyze them, develop and implement 

corrective actions, and confirm fix-effectiveness.  In his overall view, the most 
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important attribute of reliability growth should be to provide information to help 

programs succeed during test and evaluation.  To better do this, he suggests that 

growth models need to account for the effects of different environments, be system 

specific, and be more engineering based. 

 

3.6.28. Hodge-Quigley-James-Marshal Framework (2001) 

 

 While no technical details are provided, Hodge et al. [148] discuss a modeling 

framework that aims to support reliability enhancement decision-making.  The main 

objectives of their approach are to: develop a methodology to support reliability 

enhancement throughout the design process, and develop a model, referred to as the 

Reliability Enhancement Methodology Model (REMM), that facilitates the 

assessment of reliability throughout the product lifecycle.  REMM is basically a 

tracking system to determine how reliability evolves throughout the design process / 

lifecycle by integrating statistical and engineering understanding of reliability 

performance.  The primary outputs of REMM include point and CI estimates for: 

product reliability, probability of failure per unit time, and the probability of failure 

free periods.  A list of engineering design concerns (i.e., failure modes, corrective 

actions) on a given product are also provided.  The methodology was implemented by 

TRW Aeronautical Systems (Lucas Aerospace) in 2001. 

 

3.6.29. Crow’s Methods to Reduce LCC (2003) 
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 Crow [150] develops methods for estimating the useful life of a fleet of 

repairable systems and presents a model for addressing in-service reliability growth.  

A minimum LCC model and associated MLE procedures are also developed.  The 

methodology is fundamentally based on the NHPP power-law process, originally 

developed by Crow in 1974 [26].  A numerical example is given for 11 simulated 

systems to illustrate the LCC methodology.  The in-service reliability growth 

approach follows from the ACPM [54] with a slight modification where an average 

FEF is utilized (i.e., rather than the individual FEF).  All previously reported MLE 

and GOF procedures apply.  A numerical example is given on simulated data for 

cases with and without the prevalence of wear-out.   

 

3.6.30. Gurunatha-Siegel Six-Sigma Process (2003) 

 

 Gurunatha and Siegel [151] formulate 12-step six-sigma quality process of an 

unspecified complex commercial product developed by Xerox Corporation.  As a 

result of implementing this process, they claim that the company achieved a 

reliability growth rate that exceeded that of any other program within their corporate 

history.  The 12-step process includes: (1) material selection optimized for reliability 

and cost, (2) failure mode identification and physics of failure analysis, (3) total LCC 

calculated for each component, (4) ALT performed with lifetime predictions, (5) 

accuracy measurement on product and process capability, (6) identify critical 

parameters and their percent contribution to: survival and (7) failure, (8) Monte Carlo 

simulation on critical parameter uncertainty, (9) design-of-experiments on reliability 
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characteristics, (10) subsystem design modifications to extend product life, (11) 

statistical process-control for process improvement and, (12) use of lessons-learned 

for improved reliability growth processes.  No quantitative details are provided on the 

claimed reliability growth achievement of the product. 

 

3.6.31. Yadav-Singh-Goel Approach (2003) 

 

 Yadav, Singh, and Goel [152] propose a two-stage model of system reliability 

growth that they develop with consideration to associated components, functions, and 

failure modes.  The first stage consists of development of a reliability growth plan to 

achieve program requirements.  The second stage of the framework involves a 

strategy to further improve the system reliability prediction following demonstration 

of its requirements.  The prediction is decomposed by component and a prioritization 

index is defined to provide a rank order of components based on their potential for 

improving the accuracy of the system-level reliability prediction.  A series system 

configuration is assumed, and the reliability requirement is allocated equally over all 

components.  A gamma prior distribution is utilized under a Poisson sampling 

routine, which results in the typical gamma posterior for the distribution of 

component failure rates.  Improvements in the associated system-level reliability 

prediction are improved by a variance reduction strategy on the component gamma 

posterior distributions.  Methodologies for test cost estimation, and reliability 

improvement prioritization are given.  A numerical example on a hydraulic power 
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rack-and-pinion steering system is presented to demonstrate the proposed two-stage 

model.   

 

3.6.32. Quigley-Walls CI Procedures (2003) 

 

 Quigley and Walls [153] develop inference properties for reliability growth 

analysis.  They assume a Poisson prior distribution for the ultimate number of faults 

that would be exposed in the system if testing were to continue ad infinitum.  

Although, they estimate the parameters of the system failure intensity function 

empirically.  Bias and conditions of existence of fixed-point iteration MLE 

procedures are investigated.  The intention of the approach is to support reliability 

inference in situations where failure data are sparse.  Their statistical CI procedures 

are shown to be suitable for small sample sizes and is demonstrated by numerical 

example. 

 

3.6.33. Smith on Planning (2004) 

 

 Smith [158] describes a process for planning and estimating the cost of a 

reliability growth program under a Performance Based Logistics (PBL) contract.  

Under this type of contract, a supplier is typically responsible for structuring their 

reliability and support programs around a defined field availability or reliability goal.  

This planning process was developed with the intent to minimize cost and 

performance risks in the execution of a long-term PBL support contract for a 
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complex, repairable system.  The process mainly includes a detailed assessment of 

five areas: expected volume of field usage (e.g., flight hours, mileage), a well-defined 

field reliability definition, estimates of current field reliability, the goal or future 

requirement for field reliability, and a schedule for reliability achievement.   

 

3.6.34. Krasich and Quigley on the Design Phase (2004) 

 

 Krasich and Quigley [159] discuss how there has been significantly less 

attention on reliability growth during the design phase (i.e., most of the literature is 

developed for growth during the TAFT process).  They propose two models that 

could be utilized to assess reliability growth during design.  The first model is a 

modification of Crow’s RGTMC [30], and the second is a modification to Rosner’s 

IBM model [3].  The data required for these models includes: the reliability 

requirement, a subjective assessment of the initial reliability of the system, an 

estimate of the number of design modifications, the mean number of faults in the 

initial design, and an estimate of the effectiveness in mitigating design faults.  They 

indicate that the modified RGTMC is more appropriate when the design activities and 

modifications are equally spaced and well-planned.  Otherwise, in more uncertain 

situations, the modified IBM model is deemed to be most suitable.  The modified 

RGTMC is illustrated by numerical example to an unspecified industry example. 

 

3.6.35. Mortin-Ellner Paper (2005) 
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 Mortin and Ellner [161] address some of the advancements in reliability 

growth methodology (offered by AMSAA), and also highlight remaining challenges 

and areas in the field requiring further development.  Some of the reliability growth 

planning models discussed include: SPLAN [144], PM2 [162], the Threshold 

Program [163], and SSPLAN [117].  A number of tracking models (e.g., Duane [7], 

RGTMC [30], RGTMD [55], and SSTRACK [126]) and projection models (e.g., 

AMPM [121], AMPM-Stein [162], ACPM [54]) are also discussed.  One of the 

remaining challenges in reliability growth that they mention includes that, “more 

projection and tracking methodology needs to be developed for cases where the 

events are measured on a discrete scale rather than on a continuous basis (e.g., single-

shot devices such as missiles). 

 

3.6.36. Acevedo-Jackson-Kotlowitz Application (2006) 

 

 Acevedo, Jackson and Kotlowitz [165] discuss how reliability growth 

achievement can be realized by using a well-educated ALT program.  Two product 

case studies are presented to show how Lucent Technologies performs ALT on 

critical hardware subsystems used in telecommunication systems.  The hardware 

items studied include: an RF power amplifier module, and radio unit.  ALT is used to 

identify product weaknesses leading to performance degradation over simulated 

operational lifetimes.  Weaknesses are corrected through design changes prior to 

manufacturing and field deployment.  Forecasts for the steady-state product reliability 

under expected field conditions are given.  Crow's NHPP Weibull process [26] is 
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used to estimate steady-state reliability under Type I censoring (time-truncated), 

which is consistent with the conduct of their ALT.  The importance of the paper is 

how ALT can be incorporated into a reliability growth program, as well as how 

common reliability growth models can be utilized for assessment purposes when test 

data is obtained under accelerated conditions. 

 

3.7. Conclusion 

 

This chapter has provided a synopsis of some of the most significant research 

that has been done in the field of reliability growth for complex systems.  The 

literature review has answered many questions of basic interest about the existing 

state-of-the-art, as well as the areas within the field.  Summaries of nearly 80 papers 

were given, which cover 7 planning models, 25 tracking models, 6 projection models, 

4 reliability growth surveys or handbooks, and 36 other papers covering theoretical 

results, simulation studies, real-world applications, personal-perspectives, 

international standards, or related statistical procedures.  Thus, the literature review 

has identified three main areas of reliability growth including: planning, tracking, and 

projection.  A wide array of statistical procedures (e.g., classical and Bayesian) for 

point-estimation, confidence interval construction, and goodness-of-fit testing are 

available for most of the models (not all).  Models have been developed for complex 

systems whose test duration is continuous, as well as for complex systems whose test 

duration is discrete.  The literature review has also revealed capability-gaps mainly 

for one-shot systems in the areas of planning and projection, as indicated by Mortin 
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and Ellner in [161].  No tailored discrete reliability growth planning models were 

found.  Also, only one discrete reliability growth projection model (i.e., Corcoran et 

al. [8]) is known to exist.  This model is only applicable to the popular competing 

risks framework where at most one failure mode can be discovered in any given trial.  

Thus, the model cannot be applied to systems where more than one failure mode is 

discovered during a single trial.  The U.S. Army has encountered this phenomenon, 

particularly with smart munitions.  In some cases, up to 7 failure modes have been 

discovered during a single flight test. 

With respect to the current research topic of discrete projection, there are two 

types of models that depend on the type of corrective action strategy used by program 

management.  The first type addresses the case were all corrective actions are delayed 

until the end of the current test phase.  The second type addresses the more 

complicated case where program management adopts an arbitrary corrective action 

strategy resulting in a mixture of delayed and/or non-delayed fixes.  The main 

difference between the two types of projection models are their functional forms, the 

data they require, and their statistical procedures involved for parameter estimation.  

The genesis of discrete reliability growth projection is marked by a paper written by 

Corcoran, Weingarten, and Zehna in 1964 [8], which addresses the delayed case.  

Since then, a number of other methods have been developed.  Among them include 

the delayed models given by Crow [54], and Ellner & Hall [162], and the non-delayed 

models given by Ellner [121], and Crow [157] - all of which are models for systems 

whose usage is measured in the continuous time domain.  Hence, the need for 

reliability growth projection capabilities for one-shot systems.  Chapters 4-8 prescribe 
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reliability growth management metrics and associated statistical procedures that fill 

these capability gaps under both corrective action strategies.   

Additional work that could be done in the area of discrete reliability growth 

projection includes revisiting the original problem considered by Corcoran et al. [8].  

They gave the first model for estimating reliability after corrective action.  Their 

projection is suitable in cases where: corrective actions are installed at the conclusion 

of a single test phase consisting of N s-independent trials, and where the number of 

trial outcomes of interest is a multinomial distributed r.v. with parameters N (total 

number of trials), 0p  (unknown success probability), and iq  (unknown failure 

probability for failure mode 1,...,i k= ).  Note that since a multinomial model is used, 

the equality 0
1

1
k

i
i

p q
=

+ =∑  must be satisfied, which models the condition where at 

most one failure mode can occur on any given trial.  Thus, the model was developed 

under the popular competing risks framework.  The methodology presented herein 

allows zero, one, or more failure modes to be discovered during any single trial.  The 

main difference between these two extremes is that the functional form of Corcoran’s 

model (under competing risks) is additive, whereas the models given herein are 

multiplicative.  The specific additional research that could be done includes 

developing the management metrics given in Chapters 5 and 6 under the competing 

risks framework.  This would require investigation into both corrective action 

strategies previously mentioned.  This may also require tailored statistical procedures 

(i.e., classical and Bayesian) for point estimation, interval estimation, and goodness-

of-fit testing, similar to those given in Chapters 4, 6, 7, and 8.   
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4. A RELIABILITY GROWTH PROJECTION MODEL34 

 

Abstract 

 

This paper offers several contributions to the area of discrete reliability growth 

projection.  We present a new, logically derived model for estimating the reliability 

growth of complex, one-shot systems (i.e., the reliability following implementation of 

corrective actions to known failure modes).  Multiple statistical estimation procedures 

are utilized to approximate this exact expression.  A new estimation method is 

derived to approximate the vector of failure probabilities associated with a complex, 

one-shot system.  A mathematically-convenient functional form for the s-expected 

initial reliability of a one-shot system is derived.  Monte Carlo simulation results are 

presented to highlight model accuracy with respect to resulting estimates of reliability 

growth.  This model is useful to program managers, and reliability practitioners who 

wish to assess one-shot system reliability growth. 

 

Keywords: One-shot system, projection, reliability growth. 

 

Acronyms35 

 

AEC – Army Evaluation Center 

AMSAA – Army Materiel36 Systems Analysis Activity 

                                                 
34 Chapter 4 was published in the March 2008 issue of IEEE Transaction on Reliability (i.e., vol. 57, no. 1, pp. 174-181) as 

presented herein. 
35 The singular and plural of an acronym are always spelled the same. 
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AMPM – AMSAA Maturity Projection Model 

DoD – Department of Defense 

FEF – Fix Effectiveness Factor(s) 

FOT – First Occurrence Time(s) 

GOF – Goodness-of-Fit 

MME – Method of Moments Estimation/Estimate(s) 

MLE – Maximum Likelihood Estimation/Estimate(s) 

 

Definitions 

 

1. Failure mode – a failure event whose occurrence is mitigated via a unique 

corrective action. 

2. Unobserved mode – a failure mode which exhibits zero failures during testing. 

3. Observed mode – a failure mode which exhibits at least one failure during testing. 

4. Repeat failure mode – a failure mode which exhibits at least two failures during 

testing. 

5. A-mode – a failure mode that will not be addressed via corrective action. 

6. B-mode – a failure mode that will be addressed via corrective action, if observed. 

7. FEF – fraction reduction in an initial mode failure probability due to 

implementation of a unique corrective action. 

 

Notation 

 
                                                                                                                                           

36 Materiel refers to equipment, apparatus, and supplies utilized by an organization or institution, in this case the U.S. Army. 
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k  - total number of potential failure modes. 

m  - total number of observed failure modes. 

,i jN  - number of failures for mode i in trial j – zero or unity. 

iN  - total number of failures for mode i in T trials. 

ip  - true but unknown probability of failure for mode i. 

ˆ ip  - MLE of ip . 

ip�  - theoretical shrinkage factor estimator for ip . 

θ  - true but unknown shrinkage factor. 

n  - beta parameter; pseudo number of trials. 

x  - beta parameter; pseudo number of failures. 

id  - true but unknown FEF for mode i. 

( )r T  - true but unknown system reliability after mitigation of known failure modes. 

( )r T�  - theoretical approximation of ( )r T  using ip� . 

T  - total number of trials. 

 

4.1. Introduction 

 

4.1.1. Background and Motivation 

 

There are three main areas in the field of reliability growth: planning [1], tracking [1], 

and projection [2].   Each of these areas apply to complex systems whose test 

durations are continuous, as well as to those whose test durations are discrete.  While 
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there are a number of models available in each of these areas for continuous systems, 

more tracking, and projection models are needed for one-shot systems, as suggested 

in [3].  In this paper, we present a new reliability growth projection model for one-

shot systems.  The model will not be suitable for application to all one-shot 

development programs. But it is useful in cases where one or more failure modes are, 

or can be, discovered in a single trial; and catastrophic failure modes have been 

previously discovered, and corrected.  The model is unique in the area of reliability 

growth projection, and offers an alternative to the popular competing risks approach. 

 A survey of discrete reliability growth models is presented in [4], which 

consists of a comprehensive compilation of model descriptions, characterizations, and 

insights on related statistical methodologies for parameter estimation, and confidence 

interval construction.  Of particular interest, Corcoran et al. [5] presented the first 

reliability growth projection model.  The major limitation of the approach, however, 

is that it cannot be applied to one-shot systems where more than one failure mode is 

discovered in a given trial.  This phenomenon has been encountered on a number of 

different DoD systems over the years, particularly with smart munitions.  This is our 

primary motivational factor for developing the proposed method in the case 

considered. 

 A second motivational factor is associated with statistical estimation.  In 

addition to deriving an exact expression for system reliability, Corcoran et al. [5] 

presented seven different estimators, and evaluated them in light of criterion typically 

adopted for that of point estimation including s-bias, consistency, conservatism, and 

maximum likelihood.  By studying these estimators, they showed that a s-unbiased 
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estimate of the corrected system could not be obtained.  A natural alternative to a s-

unbiased estimate is to utilize an estimation procedure based on a loss function to 

minimize error, as suggested in the concluding remarks of [5].  Years later, Stein [6] 

developed a statistical estimator based on such an optimality criterion; that is, based 

on minimizing the s-expected sum of squared error.  After deriving the required 

shrinkage factor, this estimator provided good results when utilized in the 

development of a continuous reliability growth model, known as AMPM-Stein [7].  

Simulations conducted by AMSAA [8] indicate that the accuracy in the reliability 

projections of AMPM-Stein are greater than that of the international standard 

reliability growth projection model adopted by the International Electrotechnical 

Commission [9].  To apply the Stein estimator in the proposed discrete setting, we 

derived the required shrinkage factor, which is discussed & provided below.  In many 

respects, the presented approach serves as a discrete analogue to the continuous 

reliability growth projection model AMPM-Stein [7]. 

 

4.1.2. Overview 

 

 The methodology of our approach is presented in Section II which includes: 1) 

a list of model assumptions; 2) a discussion of the data required; 3) a new method for 

approximating the vector of failure probabilities inherent to a complex, one-shot 

system; 4) our exact expression for system reliability growth; 5) development of 

multiple estimation procedures for our model equations; and 6) a graphical method 

for studying GOF.  To highlight model accuracy (e.g., s-bias, and s-variability), 
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Monte Carlo simulation results are presented in Section III.  Concluding remarks are 

given in Section IV. 

 

4.2. Methodology 

 

4.2.1. Model Assumptions 

 

1. A trial results in a dichotomous success/failure outcome such that 

( ), ~i j iN Bernoulli p  for each 1, ,i k= … , and 1, ,j T= … . 

2. The distribution of the number of failures in T trials for each failure mode is 

binomial.  That is, ( )~ ,i iN Binomial T p  for each 1, ,i k= … . 

3. Initial failure probabilities 1, , kp p…  constitute a realization of a s-random 

sample 1, , kP P…  such that ( )~ ,iP Beta n x  for each 1, ,i k= … .   

4. Corrective actions are delayed until the end of the current test phase, where a 

test phase is considered to consist of a sequence of T s-independent Bernoulli 

trials. 

5. One or more potential failure modes can occur in a given trial, where the 

occurrence of any one of which causes failure. 

6. Failures associated with different failure modes arise s-independently of one 

another on each trial.  As a result, the system must be at a stage in development 

where catastrophic failure modes have been previously discovered & corrected, 

and are therefore not preventing the occurrence of other failure modes. 

7. There is at least one repeat failure mode.  If there is not at least one repeat 
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failure mode, the moment estimators, and the likelihood estimators of the beta 

parameters do not exist. 

 

4.2.2. Data Required 

 

 There are two classes of projection models, and each require a unique type of 

data.  The first class of models address the case where all fixes are delayed, as in [5], 

[7], [10], and the approach presented herein.  The second class of projection models, 

as in [11], and [12], address the case where fixes can either be delayed, or non-

delayed.  In this case, fixes can be implemented during or following the current test 

phase; hence, the system configuration need not be constant.  The data required for 

reliability growth projection consists of either: count data (i.e., the number of failures 

for individual failure modes), FOT data (i.e., the times or trials at which failure modes 

were first discovered), or a mixture of the two.  While we have developed estimation 

procedures for both classes of projection models, we shall only present the case where 

all fixes are delayed in the scope of the current paper.  This requires T, iN , and id  for 

1, ,i m= … .  The number of trials T, and the count data iN  for observed failure modes 

are obtained directly from testing.  The id  can be estimated from test data, or 

assessed via engineering judgment.  For many DoD weapon system development 

programs, FEF are assessed via expert engineering judgment, and assigned in failure 

prevention review board meetings.  In our experience, the assessed FEF from such 

forums are those that are typically utilized in reliability growth analyses. 
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4.2.3. Estimation of Failure Probabilities 

 

 The well known, widely used MLE of a failure probability is given by 

ˆ i
i

Np
T

=      (12) 

The problem with this estimator is that, if there are no observed failures for failure 

mode j, then 0jN = .  Hence, our corresponding estimate of the failure probability is 

ˆ 0jp = , which results in an overly optimistic assessment.  Therefore, a finite & 

positive estimate for each failure mode probability of occurrence is desired, whether 

observed during testing or not observed during testing.  One way to do this is to 

utilize a shrinkage factor estimator [6] given by 

( ) 1

ˆ
ˆ 1

k

i
i

i i

p
p p

k
θ θ =≡ ⋅ + − ⋅

∑
�     (13) 

where θ (unknown) is referred to as the shrinkage factor, and k denotes the total 

potential number of failure modes inherent to the system.  The optimal value of 

( )0,1θ ∈  can be chosen to minimize the s-expected sum of squared error, but it must 

be derived consistently with the specific case considered, and r.v. in question.  The 

associated optimality criterion can be mathematically expressed as 

2

1

( ) 0
k

i i
i

d E p p
dθ =

⎡ ⎤− =⎢ ⎥
⎣ ⎦
∑ �     (14) 

To derive θ uniquely for our application, we have first expressed the mathematical 

expectation in (14) as a quadratic polynomial with respect to θ by assuming that the 
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distribution of the number of failures in T trials conditioned on a given failure mode 

is binomial, which gives  

( )

( )

2 2

2 2 1 1

1

2
2

2 1 2

1

( ) 2 1

1

k k

i ik
i i

i i
i

k

j k
j

i
i

p p
p pE p p
T T k T k T

p
p pp

k T k T k

θ θ θ

θ

= =

=

=

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎜ ⎟ ⎜ ⎟− = ⋅ − + − ⋅ −⎢ ⎥ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎣ ⎦
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟+ − ⋅ − + −
⎜ ⎟⋅ ⋅
⎜ ⎟
⎝ ⎠

∑ ∑
∑

∑
∑

�

 (15) 

where 
1

k

i
i

p p
=

≡ ∑ .  Using (15), we have derived the solution to (14), which we 

conveniently express as 

( )
( ) ( ) ( ) ( )

1 11

i

i i i
i

Var p
E p E p Var p

Var p
T k

θ =
⎛ ⎞⎡ ⎤− − ⎛ ⎞⎣ ⎦ − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (16) 

This result is significant for a number of reasons.  First, we have expressed the 

shrinkage factor in terms of quantities that can be easily estimated; namely, the s-

mean, and s-variance of the ip .  Second, we have reduced the number of unknowns 

requiring estimation from ( )1k +  to only three.  The ( )1k +  unknowns to which we 

refer include the unknown failure probabilities 1, , kp p… , and the unknown value of 

k.  Finally, estimating (or providing appropriate treatment to) these unknowns yields 

an approximation of the vector of failure probabilities associated with a complex, 

one-shot system, where each failure probability (observed or unobserved) is finite, 

and positive. 
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4.2.4. Reliability Growth Projection 

 

 Let { }: 0 for =1, ,iobs i N i k≡ > …  represent the index set of failure modes 

observed during testing, and let { }: 0 for =1, ,jobs j N j k′ ≡ = …  denote its 

compliment.  After mitigation to (all or a portion of) failure modes observed during 

testing, we define the true, but unknown system reliability growth as 

( ) ( ) ( )1 1 1i i j
i obs j obs

r T d p p
′∈ ∈

⎡ ⎤≡ − − ⋅ ⋅ −⎣ ⎦∏ ∏    (17) 

where [ ]0,1id ∈  represents the FEF of failure mode i, the true but unknown fraction 

reduction in initial mode failure probability i due to implementation of a unique 

corrective action.  In our model, ( )1 i id p− ⋅  represents the true reduction in failure 

probability i due to correction as originally developed by Corcoran et al. [5].  It will 

typically be the case that ( )0,1id ∈ , as 0id =  models the condition where a given 

failure mode is not addressed (e.g., an A-mode), and 1id =  corresponds to complete 

elimination of the failure mode’s probability of occurrence.  We would only expect to 

completely eliminate a failure mode’s probability of occurrence when the corrective 

action consists of the total removal of all components associated with the mode.  

Notice that our model does not require utilization of the A-mode/B-mode 

classification scheme proposed in [10], as A-modes need only be distinguished from 

B-modes via a zero FEF. 

 The theoretical assessment of (17) is given by 

( ) ( ) ( )1 1 1i i j
i obs j obs

r T d p p
′∈ ∈

⎡ ⎤≡ − − ⋅ ⋅ −⎣ ⎦∏ ∏� � �    (18) 
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where ip�  is expressed via (13).  Note that (18) is theoretical because k is unknown, 

the id  for 1, ,i k= …  are unknown, and the ip  for 1, ,i k= …  (upon which the 

shrinkage factor θ  is based) are unknown.  In the following section, we present 

several approximations to (18), which are derived from our estimation method for the 

vector of the ip  in combination with classical moment-based, and likelihood-based 

procedures for the beta parameters.  We also derive unique limiting approximations to 

(18). 

 

4.2.5. Estimation Procedures 

 

4.2.5.1. Parametric Approach:  Assume that the initial mode probabilities of 

failure 1, , kp p…  constitute a realization of a s-random sample 1, , kP P…  from a beta 

distribution with the parameterization 

( ) ( )
( ) ( ) ( ) 11 1 n xx

i i i

n
f p p p

x n x
− −−Γ

≡ ⋅ ⋅ −
Γ ⋅Γ −

   (19) 

for [ ]0,1ip ∈ , and 0 otherwise; where n represents pseudo trials, x represents pseudo 

failures, and ( ) 1

0

x tx t e dt
∞ − −Γ ≡ ⋅∫  is the Euler gamma function.  The above beta 

assumption not only facilitates convenient estimation of (16), but models mode-to-

mode s-variability in the initial failure probabilities of occurrence.  The source of 

such s-variability could result from many different factors including, but not limited 

to, variation in environmental conditions, manufacturing processes, operating 

procedures, maintenance philosophies, or a combination of the above.  As indicated 
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by Ellner & Wald [12], the approach of modeling s-variability in complex systems is 

not new.  One of the earlier developments of this concept was presented by Cozzolino 

[13] to illustrate the effect of population failure rate heterogeneity on the population 

hazard function.  In addition, Littlewood [14], Fakhre-Zakeri & Slud [15], and Miller 

[16] each, respectively, modeled initial bug rates of occurrence with exponential 

times to first occurrence with a gamma mixing distribution for software reliability 

models.  In [7], and [12], mode-to-mode s-variability was modeled in failure rates of 

occurrence via a gamma r.v., where the distribution of the number of failures for each 

mode is assumed Poison.  Sarhan et al. [17] modeled component failure probabilities 

as iid beta r.v. for a multi-component system in the presence of dependent masked 

system life test data. 

 Based on our beta assumption with parameterization given by (19), the 

associated s-mean, and s-variance are given respectively by 

( )i
xE P
n

= ,     (20) 

and 

( ) ( )
( )2 1i

x n x
Var P

n n
⋅ −

=
⋅ +

.    (21) 

Notice that (16) is in terms of only three unknowns; namely, the population s-mean of 

the failure probabilities, the population s-variance of the failure probabilities, and k.  

The first two unknowns are approximated by (20), and (21), respectively, which are 

in terms of the two unknown beta shape parameters.  MME, and MLE procedures are 

utilized to approximate these parameters.  The third, final unknown, k, is treated in 

two ways.  First, we assume a value of k, which can be done in applications where the 
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system is well understood.  Second, we allow k to grow without bound to study the 

limiting behavior of our model equations.  This is suitable in cases where the number 

of failure modes is unknown, and the system is complex.  Such a treatment of k was 

also utilized in the development of two other reliability growth projection models [7], 

[12].   

 

4.2.5.2. Moment-based Estimation Procedure 

 

Moment estimators for the beta shape parameters are given in [18].  These 

estimators, per the special case we consider (i.e., where all failure probabilities are 

estimated via the same number of trials), are given by 

2

2 211

u u
k

u
u u

p mn
pm p
T T

−
=

⎛ ⎞− − − ⋅⎜ ⎟
⎝ ⎠

� ,        (22) 

and 

k k ux n p= ⋅� � ,     (23) 

where 1

ˆ
k

i
i

u

p
p

k
=≡
∑

, and 

2

2 1

ˆ
k

i
i

u

p
m

k
=≡
∑

 are the unweighted first, and second sample 

moments, respectively.  Using the above MME for the beta parameters with (16), our 

approximation of θ can be expressed as 

1
11 1

k
kn

T k

θ =
⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

�
� .    (24) 
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Using (24), the moment-based shrinkage factor estimate of ip  for finite k is then 

given by 

( ), ˆ 1k i k i k
Np p

k T
θ θ ⎛ ⎞= ⋅ + − ⎜ ⎟⋅⎝ ⎠

� � �
�    (25) 

where 
1

k

i
i

N N
=

≡∑  is the total number of failures observed in T trials.  Let the total 

number of observed failure modes be denoted by m obs= , which implies that there 

are obs k m′ = −  unobserved failure modes.  Then by (18), (24), and (25), the MME-

based reliability growth projection for an assumed number of failure modes is given 

by 

( ) ( ) ( )*
,1 1 1 1

k m

k i k i k
i obs

Nr T d p
k T

θ
−

∈

⎡ ⎤⎛ ⎞⎡ ⎤= − − ⋅ ⋅ − − ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⋅⎝ ⎠⎣ ⎦
∏

� � �
� � , (26) 

where *
id  estimates id . 

 Because the total potential number of failure modes associated with a complex 

system is typically large & unknown, it is desirable to study the limiting behavior of 

(26) as k →∞ .  The reliability projection under these conditions simplifies to 

( ) ( ) ( ) ( )*
,lim 1 1 exp 1k i ik

i obs

Nr T r T d p
T

θ∞ ∞ ∞→∞
∈

⎡ ⎤⎛ ⎞⎡ ⎤≡ = − − ⋅ ⋅ − − ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∏

� � � �
� � �  (27) 

where  

, ˆi ip pθ∞ ∞= ⋅
� �
� ,     (28) 

T
n T

θ∞
∞

=
+

�
� ,     (29) 

and 



- CHAPTER 4 - 

 - Page 101 - 
 

2

1 1

2

1 1

ˆ ˆ
lim

ˆˆ

m m

i i
i i

k m mk
i

i
i i

p p
n n

pp
T

= =
∞ →∞

= =

−
≡ =

−

∑ ∑

∑ ∑
� � ,    (30) 

all of which are in terms of failure data that are readily available.  From (23), we can 

see that lim 0kk
x x∞ →∞

≡ =� � , which implies that the s-mean, and s-variance of the beta 

distribution both converge to zero as k →∞ .  Hence, the distribution becomes 

degenerate in the limit. 

 

4.2.5.3. Likelihood-based Estimation Procedure 

 

The method of marginal maximum likelihood [18] provides estimates of the 

beta parameters n, and x that maximize the beta marginal likelihood function.  For an 

assumed number of total potential failure modes, the estimates denoted by kn� , and 

kx� , respectively are obtained by solving the following two likelihood equations 

simultaneously: 

1 1

1 0 1 0

1 1 0
i iN T Nk k

i j i jk k kx j n x j

− − −

= = = =

⎛ ⎞ ⎛ ⎞
− =⎜ ⎟ ⎜ ⎟+ − +⎝ ⎠ ⎝ ⎠

∑∑ ∑ ∑� � � ,  (31) 

and 

1 1

1 0 1 0

1 1 0
iT Nk k T

i j i jk k kn x j n j

− − −

= = = =

⎛ ⎞ ⎛ ⎞
− =⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠

∑ ∑ ∑∑� � � ,  (32) 

which are defined to be zero if 0iN = .  The starting values for the associated 

numerical routine to obtain such estimates can be chosen to be the unweighted 

moment estimators given by (22), and (23).  Without loss of generality, the finite k 
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likelihood-based estimates kθ
�

, and ,k ip
�
�  are obtained analogously to that of (24), and 

(25) with appropriate substitution of the MLE in place of the MME.  This provides 

the likelihood-based estimate of system reliability growth 

( ) ( ) ( )*
,1 1 1 1

k m

k i k i k
i obs

Nr T d p
k T

θ
−

∈

⎡ ⎤⎛ ⎞⎡ ⎤= − − ⋅ ⋅ − − ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⋅⎝ ⎠⎣ ⎦
∏

� � �
� �  (33) 

 To estimate the limiting behavior of (33), we shall reparameterize (31) & (32), 

and take limits of these equations as k →∞ .  The true but unknown reliability of the 

system at the beginning of the current test phase is a realization of the product 

( )
1

1
k

i
i

P
=

−∏ , where iP  is interpreted as a s-independent beta r.v.  The mathematical 

expectation of this quantity with respect to the iP  for 1, ,i k= …  is 1
k

k
k

k

xR
n

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

��
� , 

which yields the useful parameterization ( )11 k
k k kx n R= ⋅ −

�� � , where kR
�

 denotes an 

MLE of the unconditional s-expected initial system reliability.  Notice that 0kx →�  as 

k →∞ .  This does not come to as much of a surprise because we would expect the 

likelihood-based estimate of the beta parameter x to exhibit the same behavior as that 

of the moment based estimate, which also converges to zero as k grows without 

bound.  By substituting this parameterization into (31), and taking the limit, we derive 

the following MLE-based approximation for the s-expected initial reliability of a 

complex one-shot system for k →∞ : 

1

0

exp
T

j

mR
n

n j

∞ −
∞

= ∞

⎡ ⎤
⎢ ⎥

−⎢ ⎥=
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦
∑

�
�
�

    (34) 
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where n∞
�  denotes the limit of the MLE for the beta parameter n (i.e., pseudo trials).  

This result is significant for a number of reasons.  First, we derived a new estimate for 

the s-expected initial reliability of a one-shot system, which is a basic quantity of 

interest to program managers, and reliability practitioners.  This quantity also serves 

as an estimate of the current demonstrated reliability of a one-shot system.  This 

offers an alternative to the typical reliability point estimate calculated as the ratio of 

the number of successful trials to the total number of trials.  Second, we expressed 

this quantity in terms of only one unknown, which has reduced the estimation 

procedure to solving one equation for n∞
� .  To derive this equation, we proceed in a 

similar fashion as above.  Let 
( )11 k

k k k k
k

n k R nx
k k

γ⋅ ⋅ − ⋅
= = , where ( )11 k

k kk Rγ = ⋅ − .  

Note that kγ  is finite, and positive as k →∞ .  By substituting this parameterization 

into (32), and taking the limit, the estimate n∞
�  for the beta parameter n is found such 

that 
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1 1

1
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1 1 1
1

iT Nm T

T
i j j

i

m
n j n j

n j
n i

− − −

−
= = =∞ ∞

∞
= ∞

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎜ ⎟= ⋅ −⎜ ⎟ ⎜ ⎟+ + ⎛ ⎞⎝ ⎠ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

∑ ∑ ∑
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� �
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�
. (35) 

Hence, the resulting limiting behavior of the likelihood-based estimate for one-shot 

system reliability growth is given by 

( ) ( ) ( ) ( )*
,lim 1 1 exp 1k i ik

i obs

Nr T r T d p
T

θ∞ ∞ ∞→∞
∈

⎡ ⎤⎛ ⎞⎡ ⎤≡ = − − ⋅ ⋅ − − ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∏

� � � �
� � �  (36) 

where 

, ˆi ip pθ∞ ∞= ⋅
� �
� ,    (37) 
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T
n T

θ∞
∞

=
+

�
�     (38) 

and n∞
�  is found as the solution of (35). 

 

4.2.6. Goodness-of-Fit 

 

 While we have developed formal statistical GOF procedures for this model, 

they are not presented in the scope of the current paper.  However, the GOF of the 

model can be graphically studied by plotting the cumulative number of observed 

failure modes versus trials against our estimate of the cumulative s-expected number 

of observed failure modes on trial t given by 

( ) ( )
( )

( )
( )1

0

1T

j

n t nmt
n t n

n j

μ ∞ ∞

−
∞ ∞

= ∞
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⎜ ⎟ ⎛ ⎞′ ′Γ + Γ⎜ ⎟= ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟ Γ + Γ⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑

� �
�

� �
�

  (39) 

where n∞
�  is found as the solution to (35), and ( ) ( )/x x′Γ Γ  is the digamma function.  

Our formal statistical GOF procedures for this model will be presented in a 

forthcoming paper. 

 

4.3. Monte Carlo Simulation 

 

4.3.1. Overview 
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 In previous sections, we have introduced a new model that will be helpful in 

estimating the demonstrated reliability, and reliability growth of one-shot systems.  In 

light of this new model, a natural concern in its application is the accuracy associated 

with the resulting reliability estimates.  To study model accuracy, we have developed 

a Monte Carlo simulation which consists of the following steps: 

1. Specification of simulation inputs such as the total potential number of failure 

modes, and trials.   

2. S-random generation of failure probabilities via a beta r.v. 

3. S-random generation of failure histories via a Bernoulli r.v. 

4. S-random generation of fix effectiveness factors via a beta r.v. 

5. Estimation of the model parameters, and equations presented above. 

6. Error estimation between the true, and estimated reliability growth.  

Steps 1 through 6 can be viewed as simulating data analogous to that captured during 

a single developmental test consisting of T trials for a one-shot system comprised of k 

failure modes.  These steps are replicated, which corresponds to simulating a 

sequence of developmental tests.  Simulation inputs remain constant during each 

replication of the simulation.  Failure probabilities, and fix effectiveness factors, 

however, are stochastically generated anew during each replication.  After the 

simulation is replicated, all failure data, parameter estimates, reliability projections, 

and error terms are saved, and analyzed.  In the next section, we present simulation 

results based on a given set of inputs.  Simulation output consists of summary 

statistics, and associated relative error probability densities. 

 



- CHAPTER 4 - 

 - Page 106 - 
 

4.3.2. Simulation Results 

 

4.3.2.1. Summary 

 

Via heuristics, stable simulation results are obtained at 100 replications of the 

simulation.  The presented results are based on 300 replications with 350T =  trials, 

50k =  failure modes, 32 10μ −= ⋅  for the population s-mean of the failure 

probabilities, and 2 42 10σ −= ⋅  for the population s-variance of the failure 

probabilities.  The values of these inputs greatly reduce the volume of failures, and 

failure modes observed during simulation, as a conservative scenario with respect to 

the volume of failure data available for estimation purposes is desired.  For example, 

only 4 of 50 failure modes were observed on average in the simulated developmental 

tests.  In addition, only a total of 39 failures were observed on average.  This is 

indicative of the high initial reliability of the system, as specified via the inputs 

above.  We wish to emphasize two points.  First, it is important not to confuse the 

difference between the number of replications, and the number of trials, T.  Clearly, 

as T →∞ , all failure modes will eventually be observed.  However, we are 

simulating 350 trials per replication of a highly reliable system, and therefore we only 

observe about 4 of the 50 failure modes consistently on average per replication (i.e., 

each replication simulates 350 trials).  The simulation results are stable in that a small 

volume of failure data are available for estimation purposes per replication, and there 

is not much s-variability in the reliability growth estimates after 100 replications.  

Second, a large number of trials does not imply a large volume of failure data.  For 
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example, a large number of trials is relative to the initial reliability of the system.  In 

the presented case, 350 trials did not yield a large volume of failure data, as the true 

unconditional s-expected initial system reliability was 0.9047.  The arithmetic 

average (over all replications) of our corresponding estimate given by (34) was 

0.9029.  Table 1 shows arithmetic averages of the true, and estimated reliability 

projections based on our approach. 

 
THEORETICAL ESTIMATED 

True Stein MME K MME ∞ MLE K MLE ∞ 
0.9763 0.9740 0.9738 0.9786 0.9756 0.9784 

Table 1.  Reliability Projections. 
 

The column titled True is computed via the arithmetic average of (17) over all 

replications.  Similarly, the second column titled Stein is calculated by the arithmetic 

average of (18) over all replications.  Both of these quantities are theoretical, as they 

are in terms of the true, but unknown 1, , kp p… , and k.  The remaining four columns 

in Table 1 are estimates of the true reliability growth based on the arithmetic averages 

of (26), (27), (33), and (36), respectively, over all replications.  The true value of 

50k =  was utilized in (26), and (33), which are shown in the third, and fifth columns, 

respectively.  The sensitivity of not knowing k is given by (27), and (36), which are 

shown in the fourth, and sixth columns, respectively. 

 By addressing 4 of the 50 failure modes on average (over all replications) with 

a s-mean FEF of 0.80, the system reliability was improved from 0.9047 to 0.9763.  

By inspection of Table 1, the reliability projections appear quite accurate.  There is, 

however, an element of uncertainty in studying aggregate results, as deviations in 

model accuracy do occur from one replication to the next.  In some cases, reliability 
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projections are conservative, whereas others are optimistic.  By computing the 

arithmetic averages of the projections (over all replications), a portion of the error 

associated with the conservative estimates is canceled with that of the optimistic, 

thereby muting deviations in projection error that would otherwise be encountered via 

a single application of the model in one test phase.  To address these concerns, the 

relative error terms obtained in each replication of the simulation are computed, and 

analyzed.  The error analyses associated with the moment-based, and likelihood-

based reliability growth estimates are presented in the following two sub-sub-

sections, respectively. 

 

4.3.2.2. Accuracy of Moment-based Projections 

 

Figure 13 displays relative error plots for the moment-based reliability growth 

projections using a finite, and infinite number of modes, respectively.  Using (17), 

(26) and (27), the relative error for these projections is given respectively by 

( ) ( )
( ),

k
k r

r T r T
E

r T
−

≡

�
� �

,     (40) 

and 

( ) ( )
( ), ,limr k rk

r T r T
E E

r T
∞

∞ →∞

−
≡ =

�
� � �

.   (41) 

Figure 13 displays the histograms for the relative error terms obtained from the 

simulation.  MLE is utilized to approximate the parameters of a s-normal distribution, 

which is shown to accurately portray the probability densities of the relative error.  

The error densities for both the finite, and infinite k reliability growth projections are 
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similar.  All error terms are within 2.5%±  of the true reliability.  Both projections 

possess s-bias with the finite k approach providing a slight underestimate, and the 

infinite k approach providing a slight overestimate. 

 

 
Figure. 13.  Relative Error of Moment-based Projections. 

 

Based on the estimated s-normal distribution for the finite k moment-based reliability 

growth projection { },k rPr E x<
�

 0.90=  0.0091x⇒ = .  In other words, the 

projection error in (26) is within 0.0091± , 90% of the time for the simulated 

conditions specified above.  Likewise, error in the infinite k moment-based reliability 

growth projection (27) is within 0.0085± , 90% of the time. 

 

4.3.2.3. Accuracy of Likelihood-based Projections 

 

Using (33), and (36), the relative error in the likelihood-based projections are 

obtained analogously to that shown in the previous section.  Without loss of 

generality, the error results for these projections are very similar to that of the 

moment-based projections.  The only notable difference is that the accuracy is 
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slightly greater using an MLE procedure.  Overall, the projection error in (33), and 

(36) is less than 0.0076± , and 0.0081± , respectively, 90% of the time. 

 

4.3.3. General Observations 

 

 The results shown in the previous sections highlight model accuracy for one 

set of simulation inputs.  Clearly, there are infinitely many combinations of inputs 

under which model accuracy could be studied.  Several different combinations of 

inputs in conjunction with their simulation output have been analyzed in an effort to 

generalize the conditions for which model accuracy is high (e.g., , 0.10k rE ≤
�

).  Based 

on these analyses, we observed that model accuracy is not simply a function of using 

(for estimation purposes) a large volume of failure data, or observing a proportional 

majority of failure modes in the system.  Rather, model accuracy is found to be a 

function of obtaining good estimates for the dominant failure modes of the system.  In 

the presented simulation results, only 4 of the 50 failure modes were observed on 

average, but these failure modes represented about 90% of the system unreliability.  

In addition, 10 failures were observed on average for each of the modes, which 

provided good estimates for their associated probabilities of occurrence. 

 Finally, with respect to the accuracy of the limiting behavior of the model, 

empirical evidence obtained via simulation suggests that, if k is sufficiently greater 

than m, the projections given by (27), and (36) will be insensitive to the value of k.  In 

our experience, we have found that the condition 5k m≥ ⋅  is a good rule-of-thumb for 

the convergence of these estimators for complex systems. 
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4.4. Air-to-Ground Missile Application 

Table 2 below shows failure, and fix effectiveness data obtained from an 

unspecified air-to-ground missile program37.  The second column shows the number 

of failures associated with 7m =  failure modes discovered during in 27T =  flight 

tests of the system.  In discussions with design and reliability engineers working on 

the program, it was determined that each of these failure modes operate and fail 

independently of one another.  The fix effectiveness data shown in column 3 of Table 

2 are FEF that were assigned by a Failure Prevention and Review Board after 

adopting the proposed engineering design changes (e.g., corrective actions) to 

mitigate the occurrence of the failure modes. 

 Failures 
iN  

FEF 
id  

1 1 0.95 
2 1 0.70 
3 1 0.90 
4 1 0.90 
5 4 0.95 
6 2 0.70 
7 1 0.80 

Table 2.  Failure and FEF Data. 

These failure data were used to calculate the estimates of the beta shape parameters n  

and x , which are shown in the first two rows of Table 3, respectively.  The third row 

shows the corresponding estimate of the shrinkage factor (16).  The finite k  MME 

and MLE estimates where calculated with an assumed 50k =  total potential number 

of failure modes.  The finite k  moment estimators are computed by Equations (22) 

and (23).  The limiting approximation of the moment estimator for the beta parameter 

                                                 
37 The system name and failure mode information cannot be provided due to propriety reasons. 
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n  is calculated by (30).  The finite k  ML estimates are obtained as the simultaneous 

numerical solutions to Equations (31) and (32).  The limiting ML approximation of 

the beta parameter n  is found as the solution to (35).  Recall that the limiting 

approximation of the beta parameter x  (i.e., pseudo failures) converges to zero as 

k →∞ .  

 MME K MME ∞ MLE K MLE ∞ 
n  23.310 19.430 23.960 19.310 
x  0.190 0 0.195 0 
θ  0.5417 0.5815 0.5349 0.5830 

Table 3.  Parameter Estimates. 

Using the parameter estimates given in Table 3, the projected reliabilities of the 

system were calculated.  These estimates are shown in Table 4. 

 MME K MME ∞ MLE K MLE ∞ 
PR  0.8218 0.8155 0.8201 0.8159 

Table 4.  Demonstrated and Projected Reliability. 

These estimates were calculated from Equations (26), (27), (33), and (36), 

respectively.  The initial reliability, computed by Equation (34) is 0.6654.  By 

correcting the 7 failure modes with fix effectiveness specified in Table 2, system 

reliability is projected to be improved from about 0.67 to 0.82.  Keep in mind that the 

actual reliability improvement depends upon the actual level fix effectiveness 

achieved.  Thus, if the assignment of FEF were overly optimistic, these reliability 

assessments will also be overly optimistic.  Likewise if they are overly pessimistic.  

The projected reliability based on the Crow-Extended model [157] is 0.85.  In this 

example, 4 of the 7 observed failure modes were corrected during the test phase.  

Recall that this model assumes all the corrective actions are delayed, and that the 

Crow-Extended model accounts for delayed and/or non-delayed fixes.  To the extent 
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that the Crow-Extended projection is accurate, this example highlights the effect of 

the violation of this model’s assumption regarding delayed fixes.  Thus, the violation 

of this assumption may contribute to the difference between the reliability projections 

of the two models. 

 

4.5. Concluding Remarks 

 

 In this paper, we have presented a new model for estimating the reliability 

growth of complex, one-shot systems.  Our model offers an alternative to the popular 

competing risks approach. It is suitable for application when one or more failure 

modes can be discovered in a single trial, and when catastrophic failures modes have 

been previously discovered, and corrected.  Equation (17) is our logically derived 

model.  Our theoretical estimate of (17) is given by (18).  Our practical estimates of 

(18) are given by (26), (27), (33), and (36). 

 We have developed a new method for approximating the vector of failure 

probabilities associated with a complex one-shot system, which is based on our 

derived shrinkage factor given by (16).  The benefit of this procedure is that it not 

only reduces error, but reduces the number of unknowns requiring estimation from 

1k +  to only three.  Also, estimates of mode failure probabilities, whether observed 

or unobserved during testing, will be finite, and positive.   

 We have derived unique limits of our model equations, which have yielded 

interesting simplifications.  The limiting approximations of our model equations 

include (27)-(30), and (34)-(38).  In particular, we derived a mathematically-
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convenient functional form for the s-expected initial system reliability of a one-shot 

system (34).  This quantity serves as an estimate of the current demonstrated 

reliability of a one-shot system, and offers an alternative to the typical reliability point 

estimate calculated as the ratio of the number of successful trials to the total number 

of trials. 

 Finally, we have presented Monte Carlo simulation results to highlight model 

accuracy with respect to resulting estimates of reliability growth.  While all error 

terms were within 2.5%±  of their reliability estimates, the approximated s-normal 

distributions above indicate that the projection error is within 0.9%±  (i.e., 0.0091± ), 

with a probability of 0.90.  While model accuracy is generally found to be good, we 

recommend tailored Monte Carlo simulation studies be performed to highlight model 

accuracy for specific systems of interest. 
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5. MANAGEMENT METRICS FOR DELAYED FIXES38 

 

Abstract 

 

In this paper, we introduce a new reliability growth methodology for one-shot 

systems that is applicable to the case where all corrective actions are implemented at 

the end of the current test phase.  The methodology consists of four model equations 

for assessing: expected reliability, the expected number of failure modes observed in 

testing, the expected probability of discovering new failure modes, and the expected 

probability of observing a repeat failure mode.  These model equations provide an 

analytical framework for which reliability practitioners can estimate reliability 

improvement, address goodness-of-fit concerns, quantify programmatic risk, and 

assess reliability maturity of one-shot systems.  A numerical example is given to 

illustrate the value and utility of the presented approach.  This methodology is useful 

to program managers and reliability practitioners interested in applying the techniques 

above in their reliability growth program. 

 

Keywords: Growth Potential, One-Shot Systems, Projection, Reliability Growth. 

 

Acronyms39 

 

AEC – Army Evaluation Center 

                                                 
38 Chapter 5 is accepted for publication in Reliability Engineering & System Safety.  Citation information has not yet been 

assigned. 
39 The singular and plural of an acronym are always spelled the same. 
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AMSAA – Army Materiel Systems Analysis Activity 

FEF – Fix Effectiveness Factor(s) 

GOF – Goodness-Of-Fit 

IDA – Institute for Defense Analysis 

MLE – Maximum Likelihood Estimation/Estimate(s) 

MME – Method of Moments Estimation/Estimate(s) 

TAFT – Test, Analyze, Fix and Test 

 

Definitions 

 

1. FEF – fraction reduction in an initial failure mode probability  due to 

implementation of a unique corrective action. 

2. Failure mode – the root-cause associated with the loss of a required function or 

component whose probability of occurrence is reduced by a specified FEF, if 

addressed by corrective action.  Note that it may be the case that some failure 

modes are not observed during testing, or may not be corrected if they are 

observed (e.g., some failures may not be economically justifiable to correct). 

3. Unobserved failure mode – a failure mode which exhibits zero failures during 

testing. 

4. Observed failure mode – a failure mode which exhibits at least one failure 

during testing. 

5. Repeat failure mode – a failure mode which exhibits at least two failures during 

testing. 
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Notation 

 

k  - total number of potential failure modes. 

m  - total number of observed failure modes. 

,i jN  - number of failures for failure mode i in trial j – zero or unity. 

iN  - total number of failures for failure mode i in T trials. 

T  - total number of trials. 

ip  - true but unknown probability of failure for failure mode i. 

pK  - the vector of ip  for 1, ,i k= … . 

ˆ ip  - MLE of ip . 

,k ip�  - theoretical shrinkage factor estimator for ip . 

θ  - true but unknown shrinkage factor. 

n  - beta shape parameter representing the pseudo number of trials. 

x  - beta shape parameter representing the pseudo number of failures. 

id  - true but unknown FEF for failure mode i. 

( )|kR t pK  - conditional expected reliability on trial t. 

( )|k t pμ K  - conditional expected number of observed failure modes (i.e., unique 

failure modes) through trial t. 

( )|kh t pK  - conditional expected probability of discovering a new failure mode on trial 

t. 
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( )|k t pφ K  - conditional expected probability of failure on trial t due to a repeat failure 

mode (this quantity is independent of failure mode mitigation). 

 

5.1. Introduction 

 

5.1.1. Background 

 

 Many reliability growth models have been developed over the last several 

decades to assist reliability practitioners with the formidable task of estimating and 

tracking reliability improvements of a system throughout the development process.  

Reliability growth planning, tracking and projection are the three major areas of the 

field with the AMSAA Reliability Growth Methodology Guide given by Ellner et al. 

in [1] being among the most comprehensive works on the subject.  Military 

Handbook 189 [2], although outdated, is also a good reference on reliability growth 

and is currently being updated by the U.S. Army through the AMSAA.  While 

methodologies are available for both continuous and one-shot systems (e.g., see [3] 

for a survey of discrete reliability growth models), the area of discrete reliability 

growth projection is underdeveloped, as noted in [4].  In this paper, we present a new 

methodology which serves as a framework for analyzing reliability of one-shot 

systems undergoing development.  This methodology is a discrete analogue to [5] and 

incorporates many of the concepts advanced in [6] and [7].  The methodology 

consists of four model equations designed to estimate reliability improvement of one-

shot systems, address GOF concerns, and provide measures of programmatic risk and 
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system maturity.  The overall intention of these model equations are to give reliability 

practitioners the means to gauge the progress of the development effort of one-shot 

systems through the TAFT process. 

 Multiple statistical estimation procedures are presented in our earlier paper 

[8], which are utilized to approximate the model equations developed in Section II.  

For this reason, these estimation procedures are only briefly outlined herein, and the 

reader will need to reference [8] for associated details.  Monte Carlo simulation 

results are also presented in [8] for a reliability growth model designed to estimate the 

true reliability of a one-shot system, as opposed the s-expected reliability (developed 

in Section II below).  Estimates of true reliability and s-expected reliability yield 

similar results, but are different reliabilities and their associated expressions are 

constructed much differently from one another.  Expressions for expected reliability 

are constructed by using indicator variables and mathematical s-expectations thereof, 

whereas the true reliability [8] is based on approximating an exact expression directly 

(without indicator variables and their mathematical s-expectations).  Both methods 

are useful for estimating reliability and both methods, for the case considered (i.e., 

where all fixes are assumed delayed), utilize the same estimation procedures. 

 

5.1.2. Overview 

 

 The methodology of our approach is presented in Section II, which contains a 

list of model assumptions, an abbreviated background on estimation of model 

parameters, and derivations of our four model equations.  In Section II, we restrict our 
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discussions to the technical aspects of the developed expressions.  The value, utility, 

and usefulness of the methodology are discussed in greater detail and illustrated in 

Section III via numerical example.  Concluding remarks are given in Section IV. 

 

5.2. Methodology 

 

5.2.1. Assumptions 

 

1. A trial results in a dichotomous success/failure outcome such that 

( ), ~i j iN Bernoulli p  for each failure mode 1, ,i k= …  and trial 1, ,j T= … . 

2. The distribution of the number of failures in T trials for each failure mode is 

binomial.  That is, ( )~ ,i iN Binomial T p  for each 1, ,i k= … . 

3. Initial failure mode probabilities of occurrence 1, , kp p…  constitute a 

realization of a s-random sample 1, , kP P…  such that ( )~ ,iP Beta n x  for each 

1, ,i k= … .   

4. Corrective actions are delayed until the end of the current test phase, where a 

test phase is considered to consist of a sequence of T s-independent Bernoulli 

trials. 

5. Potential failure modes occur s-independently of one another and their 

occurrence is considered to constitute a failure.  As a result, the system must 

be at a stage in development where catastrophic failure modes have been 

previously discovered and corrected.  If catastrophic failure modes have not 

been previously corrected, the occurrence of other potential failure modes 
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may be suppressed and this assumption will therefore be violated.  Hence, the 

system must reach a sufficient level of technological maturity in order to 

apply this methodology appropriately.  Complications with this assumption 

may be avoided if the methodology is applied per phase of a mission, where 

the associated class of failure modes in a given phase occur s-independently. 

6. There is at least one repeat failure mode.  If there is not at least one repeat 

failure mode, the moment estimators and the likelihood estimators of the beta 

parameters do not exist. 

 

5.2.2. Estimation 

 

 In a previous paper [8], we introduced a new method for estimating the vector 

of  failure mode initial probabilities of occurrence associated with a one-shot system.  

The basis of our method is to avoid inaccuracies that arise in application of the well-

known, widely-used, MLE of a failure probability given by 

ˆ i
i

Np
T

=      (1) 

which is zero when no failures are observed on failure mode i (i.e., ˆ 0ip =  when 

0iN = ).  Our approach in avoiding this problem is to utilize the following shrinkage 

factor estimator [9] 

( ) 1
,

ˆ
ˆ 1

k

i
i

k i i

p
p p

k
θ θ =≡ ⋅ + − ⋅

∑
�     (2) 
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where we derived the required shrinkage factor kθ θ=  for our specific case and 

random variable in question.  We have chosen this quantity such that 

2
,

1

( ) 0
k

k i i
i

d E p p
dθ =

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ �     (3) 

which minimizes the expected sum of squared-error.  The resulting solution of (3) 

yields the optimal value of ( )0,1kθ θ= ∈  that we conveniently express as 

( )
( ) ( ) ( ) ( )

1
11 1 1 11

i
k

i i i
i

Var p
nE p E p Var p

Var p T kT k

θ = ≈
⎛ ⎞ ⎛ ⎞⎛ ⎞⎡ ⎤− − ⎛ ⎞⎣ ⎦ − +⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠

 (4) 

This result is significant for a number of reasons but mainly because it is based on an 

optimality criterion to minimize error, and because (4) reduces the number of 

unknowns requiring estimation from ( )1k +  to only three.  The ( )1k +  unknowns to 

which we refer include the unknown failure probabilities 1, , kp p…  and the unknown 

value of k.  The three remaining unknowns include the mean and variance of the ip  

and k.  By assuming that the initial failure mode probabilities of occurrence 1, , kp p…  

constitute a realization of a s-random sample 1, , kP P…  from a beta distribution, we 

have estimated the mean and variance of the ip  in (4) with the mean and variance of 

the beta distribution, which are only in terms of the two beta shape parameters n, 

pseudo trials, and x, pseudo failures.  The right-hand side of (4) shows the shrinkage 

factor after substitution of these quantities.  This facilitated estimation of our first two 

unknowns via the common MME and MLE procedures for a beta r.v. given in [10].  

We treated the third unknown, k, in two ways: (1) we assumed a finite value for k 

which can be done in applications where the system is well understood, and (2) we 
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took the limit of our model equations as k →∞ , which we have found is even 

suitable in cases where the system is not complex, as illustrated by the numerical 

example below.  Overall, we provided four estimation procedures in [8] which can be 

utilized to approximate the exact expressions herein (our notation is consistent with 

that of our earlier paper).  Please refer to [8] for further details on statistical 

estimation of model parameters, as no further discussion on estimation is provided in 

this paper. 

 

5.2.3. Reliability Growth 

 

 Let ( )iI t  denote the indicator function such that 

( )
1 if failure mode  is observed on or before trial 
0 otherwisei

i t
I t

⎧
≡ ⎨
⎩

  (5) 

Using (5) our logically derived model of the true reliability on trial t (following 

failure mode mitigation) is given by 

( ) ( )
1

| 1 1 1
k

i i i
i

r t p I t d p
=

⎡ ⎤⎡ ⎤≡ − − − ⋅ ⋅⎣ ⎦⎣ ⎦∏K    (6) 

When a given failure mode has been observed prior to trial t, the indicator function in 

(6) equates to unity and the initial failure probability ip  is reduced by a fractional 

amount ( )1 id− .  Observed failure modes that are not addressed via corrective action 

are simply assigned a zero FEF (i.e., 0id = ).  When a failure mode is not observed 

prior to trial t, the indicator function equates to zero and the original value of the 

failure probability ip  is preserved.  Assuming that trials are statistically independent 
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and that the ip  for 1,...,i k=  are constant, the resulting mathematical expectation of 

(5) is 

( ) ( )1 1 t
i iE I t p⎡ ⎤ = − −⎣ ⎦     (7) 

From (6) and (7), the expected reliability of the system conditioned on the vector of 

unknown failure probabilities ( )1 2, , , kp p p p≡K …  becomes 

( ) ( ) ( )( )1

1

| | 1 1 1 1
k

t
k i i i

i

R t p E r t p p d p−

=

⎡ ⎤⎡ ⎤⎡ ⎤≡ = − − − − ⋅ ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦∏K K  (8) 

Notice the initial condition of (8) equates to the initial system reliability 

( ) ( )
1

1| 1
k

k i
i

R t p p
=

= = −∏K , as expected.  Also notice that our model is independent of 

the A-mode / B-mode40 classification scheme proposed in [11], as A-modes need only 

be distinguished from B-modes via a zero FEF (i.e., 0id =  if failure mode i  is not 

observed, or is not corrected).   

It is also desirable to study the limiting behavior of (8) as k →∞ , since the 

total potential number of failure modes associated with a complex one-shot system is 

typically large, and since k is unknown.  Let { }: 0 for =1, ,iobs i N i k≡ > …  represent 

the index set of failure modes observed during testing and 

{ }: 0 for =1, ,jobs j N j k′ ≡ = …  denote its complement.  Also let the total number of 

observed failure modes be denoted by m obs= , which implies that there are 

obs k m′ = −  unobserved failure modes.  We have found a theoretical limit of (8) by 

                                                 
40 An A-mode is a failure mode that will not be addressed via corrective action, whereas a B-mode is a 
failure mode that will be addressed via corrective action, if observed. 
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expressing it in terms of the observed and unobserved failure modes and by 

approximating ip  with an MME or MLE of ,k ip�  for 1, ,i k= …  which yields 

( ) ( )( )

( )( ) ( )

( )( ) ( )

1

, ,
1

1 1
, ,

1 1
, ,

| 1 1 1 1

ˆ
1 1 1 1 1 1

ˆ
1 1 1 1 1 1

k t

k k i i k i
i

m

i
t j

k i i k i k
i obs i obs

m

i
t j

k i i k i k
i obs

R t p p d p

p
p d p

k

p
p d p

k

θ

θ

−

=

− =

′∈ ∈

− =

∈

⎡ ⎤⎡ ⎤≡ − − − − ⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎢ ⎥= − − − − ⋅ ⋅ ⋅ − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎢= − − − − ⋅ ⋅ ⋅ − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎢
⎢
⎣ ⎦

∏

∑
∏ ∏

∑
∏

K� � �

� �

� �

k m−

⎥
⎥
⎥

 (9) 

where ,k ip� , given by (2), and kθ , given by (4), are approximated by MME and MLE 

formulas given in [8].  Note that (9) is the expected system reliability on trial t  if the 

failure modes surfaced prior to t  are mitigated with an effectiveness proportional to 

their associated FEF.  Using (9), the limiting approximation can be expressed as 

( ) ( ) ( )( )
( )

1

, ,

1

| lim | 1 1 1 1

ˆexp 1

t

k i i ik
i obs

m

i
j

R t p R t p p d p

pθ

−

∞ ∞ ∞→∞
∈

∞
=

⎡ ⎤⎡ ⎤≡ = − − − − ⋅ ⋅ ×⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
× − − ⋅⎢ ⎥

⎣ ⎦

∏

∑

K K� � � �

  (10) 

where , , ˆlimi k i ik
p p pθ∞ ∞→∞

≡ = ⋅� � , and lim kk

T
n T

θ θ∞ →∞
≡ =

+
 (see [8] for further details). 

 

5.2.4. Reliability Growth Potential 

 

 Consider the theoretical upper-limit on reliability that would be achieved by 

finding and correcting all failure modes in a system with a specified fix effectiveness.  
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This theoretical upper-limit is known as the reliability growth potential and is a 

feature of a number of reliability growth models [5], [6] and [11]-[15].  Following 

from (9) (note that m k→  as t →∞ ), the reliability growth potential given by our 

model becomes 

( ) ( ) ( ) ,
1

| lim | 1 1
k

GP k i k it
i

R t p R t p d p
→∞

=

⎡ ⎤≡ = − − ⋅⎣ ⎦∏K K� � �   (11) 

which can be utilized as a metric for comparison against exit/entry criterion or other 

threshold values at select program milestones.  For instance, even if current reliability 

growth estimates (e.g., given by (9) or (10)) are below the associated reliability 

requirement, the system could still have the potential (11) to demonstrate its 

requirement.  The extent to which higher potential reliability is achieved, however, 

depends on finding and effectively correcting additional failure modes.  On the other 

hand, a system could be identified as high risk of not being able to demonstrate its 

reliability requirement if the growth potential (11) is less then the requirement. 

 

5.2.5. Number of Observed Failure Modes 

 

 Using (5), the true number of unique failure modes observed by trial t is 

( ) ( )
1

k

i
i

m t I t
=

≡ ∑     (12) 

By using (7) and (12) we have derived the conditional expected number of unique 

failure modes observed by trial t to be 

( ) ( ) ( ) ( ) ( )
1 1 1

| 1 1 1
k k k

t t
k i i i

i i i
t p E m t E I t p k pμ

= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ = = − − = − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ ∑K  (13) 
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This expression has the following convenient interpretation: the expected number of 

failure modes observed in t trials is equal to the total potential number of failure 

modes in the system minus the expected number of failure modes that will not be 

observed in t trials.  For example, realize from (7) that ( ) ( )0 1 t
i iP I t p⎡ ⎤= = −⎣ ⎦ .  Also 

notice the initial condition of (13) suggests that the expected number of failure modes 

on trial 0t =  (i.e., before testing begins) is ( )0 | 0k t pμ = =K , as expected. 

 To derive the limiting behavior of (13) as k →∞ , we have expressed the sum 

in (13) in terms of the observed and unobserved failure modes and approximated ip  

with the MME and MLE of ,k ip� .  After some detailed calculation we find 

( ) ( ) ( ) ( ), ˆ| lim | 1 1
t

k i ik i obs i obs
t p t p m p t pμ μ θ∞ ∞ ∞→∞

∈ ∈

≡ = − − + ⋅ − ⋅∑ ∑K K� � �  (14) 

where ( )|k t pμ K�  is an MME or MLE estimate of (13) with ,ip∞�  approximating ip .  

The limiting behavior of our model suggests that the expected number of observed 

failure modes by trial t (that are unique) is equal to the expected number of known 

failure modes to be observed, in addition to the expected number of unknown failure 

modes to be observed.  Notice that the initial condition ( )0 | 0t pμ∞ = =K� , as expected.  

Finally, one may ask the question: why are we developing this model equation when 

we already know how many failure modes were observed during testing?  The answer 

is so we can construct a GOF procedure to determine if our model fits a given sample 

of one-shot data (i.e., to determine if our model can be suitably applied).  Formal 

statistical GOF procedures are not presented in the scope of the current paper, but will 

follow in a forthcoming publication. 
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5.2.6. Probability of Discovering a New Failure Mode 

 

 Using (5) and given the ip for 1, ,i k= … , we define the exact expression for 

the probability of discovering a new failure mode on trial t as 

( ) ( )
1

| 1 1 1 1
k

i i
i

h t p I t p
=

⎡ ⎤⎡ ⎤≡ − − − − ⋅⎣ ⎦⎣ ⎦∏K   (15) 

Notice from (15) that when a given failure mode has been observed prior to trial t, the 

indicator function equates to unity and its associated failure probability does not 

contribute to ( )|h t pK .  Therefore, only failure modes for which program management 

is not yet aware (or have not observed in the associated T  trials) contribute to this 

important quantity.  Using (7) the expected value of (15) becomes 

( ) ( ) ( ) 1

1

| | 1 1 1
k

t
k i i

i

h t p E h t p p p−

=

⎡ ⎤⎡ ⎤≡ = − − − ⋅⎣ ⎦ ⎣ ⎦∏K K   (16) 

which has the following initial condition 

( ) ( )
1

1| 1 1
k

k i
i

h t p p
=

= = − −∏K     (17) 

In other words, our model suggests that the expected probability of discovering a new 

failure mode on the first trial is equivalent to the initial system probability of failure, 

as expected. 

 To derive the limiting form as k →∞ , we approximate ip  with an MME and 

MLE of ,k ip�  and express (16) in terms of the observed and unobserved failure modes 

which yields 
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( ) ( ) ( ) ( )1
, ,

1

ˆ| lim | 1 1 1 exp 1
mt

k i i jk ji obs

h t p h t p p p pθ
−

∞ ∞ ∞ ∞→∞
=∈

⎡ ⎤⎡ ⎤≡ = − − − ⋅ ⋅ − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑∏K K� � � �  (18) 

where ( )|kh t pK�  is the an estimate of (16) with ,k ip�  approximating ip  for 1, ,i k= … .  

 

5.2.7. Portion of System Unreliability Observed 

 

 Another useful metric to program management is the portion of system 

unreliability associated with failure modes that have already been observed during 

testing.  Using (5) notice that the probability of observing a repeat failure mode on 

trial t  is given by 

 ( ) ( )
1

| 1 1 1
k

i i
i

t p I t pψ
=

⎡ ⎤≡ − − − ⋅⎣ ⎦∏K    (19) 

In other words, if failure mode i is observed before trial t, the resulting value of the 

indicator function is unity and the associated failure probability, ip , will contribute to 

( )|t pψ K .  If, on the other hand, the failure mode is not observed before trial t, the 

value of the indicator will be zero and the associated failure probability will not 

contribute to ( )|t pψ K .  Using (17) and (19) we express the expected probability of 

failure on trial t due to a repeat failure mode as a fraction of the initial system 

unreliability.  This fraction is given by 

( )
( )

( )

( )

( )

1

1

1

1 1 1 1|
|

1| 1 1

k
t

i i
i

k k
k

i
i

p pE t p
t p

h t p p

ψ
φ

−

=

=

⎡ ⎤⎡ ⎤− − − − ⋅⎢ ⎥⎡ ⎤ ⎣ ⎦⎣ ⎦⎣ ⎦≡ =
= − −

∏

∏

K
K

K   (20) 
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Notice that the initial condition of (20) is ( )1| 0k t pφ = =K .  This means that the 

expected probability of system failure on the first trial due to a repeat failure mode is 

zero, as expected.  Also note that (19) and (20) are quantities that are independent of 

the corrective action process.  To take the limit of (20) as k →∞ , we proceed in a 

similar fashion as above by approximating ip  with an MME or MLE of ,k ip�  and 

expressing the equation in terms of the observed and unobserved failure modes.  After 

simplification we obtain 

( ) ( )
( )

( )

1
, ,1 1 1 1

| lim |
1|

t
i i

i obs
kk

p p
t p t p

h t p
φ φ

−

∞ ∞
∈

∞ →∞
∞

⎡ ⎤⎡ ⎤− − − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
≡ =

=

∏ � �
K K� � K�   (21) 

( )1|h t p∞ = K�  follows from (18) and ( )|k t pφ K�  is the estimate of (20). 

 

5.3. Numerical Example 

 

5.3.1. Estimation of Model Parameters 

 

 Using Monte Carlo simulation41, we present the following small numerical 

example to illustrate the proposed methodology for a system comprised of 10k =  

failure modes which is tested for 50T =  trials.  Only 10 failure modes are simulated 

to minimize the volume of output presented in this example.  Only 50 trials are 

simulated in order to minimize the volume of failure data available for estimation 

purposes.  The second column in Table 5, titled True, represents the true failure 

                                                 
41  Monte Carlo simulation was utilized to construct this example since the true failure probabilities are unknown in practice.  

Hence, by using Monte Carlo methods, the true values of our model equations are known and can be compared against our finite 
and limiting approximations. 
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probabilities which are unknown in practice.  These failure probabilities were 

generated from a beta distribution with a s-mean of 0.025μ =  and s-variance of 

2 0.0025σ = .  Trial outcomes are generated from a Bernoulli r.v. (1 if a failure mode 

occurred, 0 otherwise) with parameter ip  for each failure mode 1,...,i k=  (values 

shown).  The sum of the trial outcomes across the 50 trials are given in the third 

column of Table 5, titled Failures.  Column four shows the FEF which are generated 

via a beta r.v. with a s-mean of 0.80 and a s-variance of 0.01.  Unobserved failure 

modes are also assigned a finite and positive FEF in order to estimate the reliability 

growth potential given by (11).  Column five shows the standard MLE of a failure 

probability (1) computed from failure data.  The remaining columns are our 

approximations of the true failure probability using (2) in addition to the MME and 

MLE procedures presented in [10] and our derived limiting approximations in [8] for 

k →∞ .   

 

 True 

ip  
Failures 

iN  
FEF 

id  
Standard 
MLE ˆ ip  

MME K 

,k ip
�
�  

MME ∞ 

,ip∞

�
�  

MLE K 

,k ip
�
�  

MLE ∞ 

,ip∞

�
�  

1 0.0317 0 0.74 0 0.0051 0 0.0030 0 
2 0.0539 2 0.74 0.0400 0.0366 0.0329 0.0380 0.0361 
3 0.0000 0 0.88 0 0.0051 0 0.0030 0 
4 0.0008 0 0.92 0 0.0051 0 0.0030 0 
5 0.0109 0 0.70 0 0.0051 0 0.0030 0 
6 0.1114 7 0.78 0.1400 0.1154 0.1152 0.1254 0.1263 
7 0.0086 0 0.94 0 0.0051 0 0.0030 0 
8 0.0140 3 0.91 0.0600 0.0524 0.0494 0.0555 0.0541 
9 0.0193 0 0.62 0 0.0051 0 0.0030 0 
10 0.0013 0 0.82 0 0.0051 0 0.0030 0 

Table 5.  Failure Data and Estimates. 
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For all tables presented herein, numbers given as 0.0000 have a small but finite and 

positive value, whereas numbers given as 0 are null.  From Table 5 we can see that 

only 3 of 10 failure modes were observed in 50 trials with 2, 7, and 3 failures for 

failure modes 2, 6, and 8, respectively.  Note that while the MME and MLE estimate 

of , 0k ip →�  as k →∞  for i obs′∈ , the associated vector of these estimates yields a 

finite and positive approximation of ( )|h t p∞
K� .  Using the 12 failures shown in Table 

5, approximations of the beta shape parameters, n and x, are calculated and shown in 

Table 6. 

 

 True MME K MME ∞ MLE K MLE ∞ 
n 8.75 14.99 10.76 8.03 5.41 
x 0.22 0.36 0 0.19 0 

Table 6.  Beta Parameters. 
 

The column titled true refers to the true beta parameters used to generate the ip  for 

1,...,i k=  displayed in Table 5.  The columns titled MME K and MLE K refer to the 

well-known MME and MLE procedures in [10] utilized to estimate the beta 

parameters for an assumed value of k .  The columns denoted by MME ∞ and MLE 

∞ are our derived limits [8] of these estimators as k →∞ .  The motivation of these 

limits is twofold: (1) to eliminate the third and final unknown k and (2) to study the 

sensitivity of not knowing k. 

 Table 7 shows estimates of the beta mean and variance.  These quantities are 

used to estimate ( )iE p  and ( )iVar p  in (4). 
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 True MME K MME ∞ MLE K MLE ∞ 
μ 0.0250 0.0240 0 0.0234 0 
σ2 0.0025 0.0015 0 0.0025 0 

Table 7.  Beta Mean and Variance. 
 

The column titled True refers to the true mean and variance of the beta distribution.  

The remaining columns use the corresponding estimates from Table 6 to approximate 

the mean and variance of the beta distribution as given by 

( )i
xE P
n

=      (22) 

and 

( ) ( )
( )2 1i

x n x
Var P

n n
⋅ −

=
⋅ +

     (23) 

Notice that the beta mean and variance both converge to zero as k →∞ , which 

follows since 0x →  as k →∞ .  Hence, the distribution becomes degenerate in the 

limit.  Incidentally, this causes no inconvenience, as the important shrinkage factor 

approximations below (which are a function of the mean and variance) are finite and 

positive as k →∞ . 

Table 8 shows the approximations of our derived shrinkage factor (4) using 

the mean and variance estimates in Table 7.  These approximations of θ are utilized to 

calculate our estimates of the failure probabilities given in Table 5, columns 6-9. 

 

 True MME K MME ∞ MLE K MLE ∞ 
θ 0.7394 0.7875 0.8229 0.8737 0.9023 

Table 8.  Shrinkage Factor. 
 

The approximations of our model parameters above are utilized in the following 

sections to illustrate the proposed analytical framework. 
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5.3.2. Reliability Growth 

 

 Figure 14 below displays a plot of the conditional expected reliability growth 

of a one-shot system.  The displayed curves can be interpreted for each t  as the 

expected true system reliability and associated estimates for trial t , based on the data 

through trial 1t − , given the failure modes surfaced prior to t  have been mitigated.  

There are 5 series in total, all of which are very close to one another.  The first series, 

titled Expected, represents the true reliability growth based on (8) using the true ip  

and id  shown in columns 2 and 4 of Table 5, respectively.  The series MME K and 

MLE K are also computed by (8) with the true id , but are based on our corresponding 

MME K and MLE K estimates of ip  given in Table 5.  Similarly, the remaining 

series, MME ∞ and MLE ∞, are calculated from (10) using the true id .  Error 

associated with fix effectiveness is not considered for a number of reasons.  First, the 

focus of this example is to illustrate the model and highlight model accuracy with 

respect to our statistical estimation procedure for the ip .  Simulating error in the id  

will incorporate another dimension of error and variability that will cloud our 

understanding of the accuracy per our methods of estimating failure probabilities.  

Second, the impetus of many applications of reliability growth projection models is to 

determine the reliability that could hypothetically be achieved if select failure modes 

are mitigated with a specified fix effectiveness.  Sensitivity analyses and cost trade-

off studies associated with the quantity of fixes and degree of their effectiveness are 

examples of such applications of reliability growth projection models.  Finally, all 
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reliability growth projection models whose purpose is estimating reliability after 

corrective action must use some assessment of the degree to which failures have been 

mitigated via fixes.  Hence, all such models [5]-[8] and [11]-[13] are subject to the 

same error in assessed fixed effectiveness.   
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Figure 14.  Reliability Growth. 

 

The significance of this model equation is to estimate reliability growth (i.e., 

the ability to estimate reliability improvement resulting from correction to known, or 

observed, failure modes).  In this example, notice the initial condition is the true 

initial reliability of the system given by ( )
1

1 0.77
k

i
i

p
=

− =∏ .  After correcting 3 of the 

10 failure modes, with fix effectiveness as specified in Table 5, the true expected 

reliability has improved from 0.77 to 0.91.  The reliability growth potential given by 

(11) is 0.94.  We assume that all fixes are delayed until the end of the current test 

phase so the major emphasis of Figure 14 is the initial reliability in trial 1 and the 

final reliability after correction in trial 50.  Notice that our model is insensitive to not 

knowing k given by the series displayed for MME ∞ and MLE ∞.  More specifically, 
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our assessments in these cases (i.e., where k →∞ ) are very accurate despite the fact 

that there are only a very small number of failure modes (i.e., 10k = ).  Also note 

model accuracy despite the few failure data (i.e., only 3 failure modes and 7 failures) 

available for estimation purposes.  An important aspect to learn from this example is 

that a system need not be complex for our limiting approximations to be suitably 

applied, nor is a large volume of failure data required to obtain reasonably accurate 

results. 

 

5.3.3. Number of Failure Modes 

 

 Figure 15 below displays a plot of the cumulative expected number of failure 

modes versus trials.  The series titled Expected is given by (13) using the true value 

of k and the true values of ip  shown in column 2 of Table 5 .  The series for MME K 

and MLE K are also given by (13) but utilize the corresponding estimates of ip  

which are shown in columns 6 and 8 in Table 5, respectively.  The remaining series 

follow from (14) by estimating ip  with the estimates shown in columns 7 and 9 of 

Table 5.  In this example, the failure modes 2, 6, and 8 were discovered on trials 13, 

7, and 20 respectively. 
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Figure 15.  Number of Failure Modes. 

  

The significance of this model equation is linked to GOF.  Figure 15 provides 

graphical insight into the GOF of the presented methodology by plotting the actual 

number of failure modes observed, against the expected number of failure modes 

given by our model.  The example presented in this paper is deliberately kept small 

(i.e., only 10 failure modes) for brevity in illustration but a more interesting plot of 

Figure 15 is given in the Appendix for a much larger example.  Finally, while we 

have developed formal statistical GOF procedures for this model, they are not 

presented in the scope of the current paper. 

 

5.3.4. Probability of Discovering a New Failure Mode 

 

 Another useful measure to program management is the probability of 

discovering a new failure mode on trial t .  The significance of this model equation is 

associated with programmatic risk.  For example, as the development effort is 

ongoing, it is helpful to gauge the level of maturity of the system by having a 

quantitative estimate for the likelihood of observing a failure mode that has not yet 
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been uncovered.  Clearly, we would like the estimate of ( )| 0kh t p →K  as the TAFT 

process continues, which would indicate that program management has observed the 

dominant failure modes in the system.  Consequently, the likelihood of the customer 

encountering unknown failure modes during fielding and deployment can not only be 

quantified by the model but mitigated through effective management and goal-setting 

of ( )|kh t pK . 
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Figure 16.  Probability of Finding a New Failure Mode. 

  

Figure 16 shows a plot of the expected probability of discovering a new 

failure mode versus trials.  Notice the initial condition is the initial system probability 

of failure (i.e., 0.23).  The series titled Expected is computed via (16) using the true 

values for k and ip .  The series denoted by MME K and MLE K are also computed 

by (16) using the true value of k, but use our estimates of ip  given in columns 6 and 8 

of Table 5.  The remaining series, generated from (18) with corresponding estimates 

from columns 7 and 9 of Table 5, show our model’s insensitivity to not knowing k. 
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5.3.5. Portion of System Unreliability Observed 

 

 Figure 17 shows a plot of the portion of system unreliability associated with 

observed failure modes.  Notice the initial condition is zero since failure modes have 

not yet been observed.  The series titled Expected is computed from (20) using the 

true values of k and ip .  The series denoted by MME K and MLE K are also 

generated by (20) with the true value of k but use the corresponding estimates of ip  

in Table 5, columns 6 and 8, respectively.  The remaining series follow from (21) 

with ip  estimated by the corresponding estimates given in columns 7 and 9 from 

Table 5.  
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Figure 17.  Portion of System Unreliability Observed. 

  

This model equation is useful in serving as a system maturity metric.  As 

suggested in [6], specifying goals for ( )|k t pφ K  at program milestones would be a 

good practice as part of a reliability growth program.  For example, small values of 

( )|k t pφ K  indicate that more testing is required to observe additional failure modes 
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that can be corrected.  Whereas, large values of ( )|k t pφ K  may indicate further testing 

is no longer economically justifiable.  Also notice that ( )|k t pφ K  is independent of the 

corrective action process in that it does not depend on when fixes are implemented 

nor how effective they are.  Therefore, regardless of fix effectiveness, program 

management can eliminate at most only a portion of ( )|k t pφ K  from the initial system 

unreliability (i.e., probability of failure).  

 

5.4. Concluding Remarks 

 

 In this paper we have introduced a new reliability growth methodology for 

one-shot systems.  The methodology consists of the following four model equations: 

• ( )|kR t pK , expected reliability given by (8), which estimates the reliability 

improvement of a one-shot system resulting from the correction of failure 

modes observed during testing.  The theoretical upper-limit on reliability (i.e., 

the reliability growth potential) is given by (11). 

• ( )|k t pμ K , the expected number of failure modes to be observed in testing 

given by (13), which is useful for addressing model GOF concerns, as well as 

planning with respect to programmatic corrective action resources. 

• ( )|kh t pK , the expected probability of discovering a new failure mode given 

by (16), which serves as a measure of programmatic risk. 
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• ( )|k t pφ K , the expected portion of initial system unreliability associated with 

failure modes that have been observed given by (20), which serves as a 

system maturity metric. 

These model metrics provide an analytical framework from which reliability 

practitioners can estimate reliability growth, address GOF concerns, quantify 

programmatic risk and resource needs, and assess system maturity.  A numerical 

example was provided to illustrate the value and utility of the presented approach.  

Since model accuracy will vary per application, Monte-Carlo simulation studies of 

specific systems of interest are recommended. 

 

Appendix 

 

 Figure 18 below displays a plot of the actual observed number of failure 

modes for a one-shot system comprised of 200 failure modes.  In this example, 98 

failure modes were observed in a total of 200 trials.  The actual observed number of 

failure modes are represented by black dots.  The remaining series are given by our 

model.  The series titled Expected is computed by (13) using the true values of k and 

ip .  The series denoted by MLE K and MLE ∞ are generated via (13) and (14), 

respectively.  Given the high correlation of our approximations in relation to the 

actual observed number of failure modes, Figure 18 suggests that our model 

reasonably fits the data and can be suitably applied.  
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Figure 18.  Number of Failure Modes. 
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6. MANAGEMENT METRICS FOR NON-DELAYED FIXES42 

 

Abstract 

 

In this paper, reliability growth management metrics are prescribed for one-shot 

systems under an arbitrary corrective action strategy (i.e., corrective actions can be 

applied to prototypes at anytime after associated failure modes are first discovered).  

The methodology consists of four model equations for estimating reliability growth, 

the expected number of failure modes observed during test, the probability of 

discovering new failure modes, and the portion of system unreliability associated with 

repeat failure modes.  These model equations can be utilized as management metrics 

to: estimate reliability (i.e., demonstrated, projected, and growth potential), address 

model goodness-of-fit concerns, quantify programmatic risk, and assess reliability 

maturity of one-shot systems undergoing development.  A new likelihood function 

and maximum likelihood procedure is derived to estimate model parameters (i.e., the 

shape parameters of the beta distribution).  Limiting approximations of our 

management metrics are also given, which are found to be simple functions in terms 

of only a single unknown parameter.  A numerical example is given to illustrate the 

utility of the presented approach.  This methodology is useful to program managers 

and reliability practitioners who wish to quantitatively assess the progress of the 

development effort of one-shot systems. 

 

                                                 
42 Chapter 6 was submitted to Technometrics on 24 March 2008 for consideration of publication. 



- CHAPTER 6 - 

 - Page 148 - 
 

Keywords:  Discrete, Growth Potential, Management Metrics, Projection, Reliability 

Growth. 

 

Acronyms43 

 

AEC – Army Evaluation Center 

AMSAA – Army Materiel Systems Analysis Activity 

DoD – Department of Defense 

FEF – Fix Effectiveness Factor(s) 

FOT – First Occurrence Trial 

GOF – Goodness-of-Fit 

IDA – Institute for Defense Analyses 

MLE – Maximum Likelihood Estimation/Estimate(s) 

MME – Method of Moments Estimation/Estimate(s) 

TAFT – Test, Analyze, Fix and Test 

 

Definitions 

 

1. FEF – fraction reduction in an initial failure mode probability due to 

implementation of a unique corrective action. 

2. Failure mode – the root-cause associated with the loss of a required function or 

component whose probability (or rate) of occurrence is reduced by a specified 

FEF, if addressed by corrective action.  Note that it may be the case that some 
                                                 

43 The singular and plural of an acronym are always spelled the same. 
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failure modes are not observed during testing, or may not be corrected if they are 

observed (e.g., some failures may not be economically justifiable to correct). 

3. Unobserved failure mode – a failure mode which exhibits zero failures during 

testing. 

4. Observed failure mode – a failure mode which exhibits at least one failure 

during testing. 

5. Repeat failure mode – a failure mode which exhibits at least two failures during 

testing. 

 

Notation 

 

k  - total number of potential failure modes. 

m  - total number of observed failure modes. 

T  - total number of trials. 

iN  - total number of failures for mode i  in T  trials. 

iP  - random variable denoting the true but unknown probability of occurrence of 

failure mode i . 

it  - the trial number when observed failure mode i  is first discovered. 

n  - beta parameter representing the pseudo number of trials. 

x  - beta parameter representing the pseudo number of failures. 

IR  - initial system reliability. 

( )kR t  - expected reliability growth on trial t . 
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,k GPR  - expected reliability growth potential. 

( )k tμ  - expected number of unique failure modes observed on or before trial t . 

( )kh t  - expected probability of discovering a new failure mode on trial t . 

( )k tϕ  - expected probability of observing a repeat failure mode on trial t . 

( )k tφ  - expected fraction of system unreliability on trial t  due to a repeat failure 

mode. 

 

6.1. Introduction 

 

6.1.1. Background 

 

The elimination of design weaknesses inherent to intermediate prototypes of 

complex systems via the TAFT process is generally what is meant by the term 

reliability growth.  Specifically, reliability growth is the improvement in the true but 

unknown initial reliability of a developmental item as a result of failure mode 

discovery, analysis, and effective correction.  Corrective actions generally assume the 

form of fixes, adjustments, or modifications to problems found in the hardware, 

software, or human error aspects of a system.  Some examples may include (but are 

not limited to) engineering redesign work of system / subsystem architectures, 

alterations in the material properties of components, modifications to associated 

manufacturing and industrial processes, elimination of electrical sneak circuits and 

software code syntax errors, or amendments to operating (or maintenance) procedures 
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of a system.  Since the 1950s (e.g., Weiss [1] being one of the earliest papers on the 

subject), the genesis of three main areas of the field have emerged where a wealth of 

methods have been developed to plan, track, and project the reliability of 

developmental items.  Perhaps one of the most well-known, widely-used, and pivotal 

concepts in the field includes the Weibull process (i.e., the non-homogeneous Poisson 

process with intensity function ( ) 1r t t βλ β −= ⋅ ⋅ ), which is accompanied by a wealth 

of inference procedures (e.g., see Finkelstein [3], Lee & Lee [4], Engelhardt & Bain 

[5], Bain & Engelhardt [6], Lee [7], and Crow [10]). 

Each of these three areas of reliability growth apply to complex systems 

whose test durations are measured in the continuous time domain, as well as via 

discrete trials (e.g., one-shot systems, such as, guns rockets, missile systems, 

torpedoes).  The AMSAA Reliability Growth Methodology Guide given by Ellner, et 

al. [15], and the Fries-Sen survey of discrete reliability growth models [14] are among 

the most comprehensive and detailed works on the subject.  Military Handbook 189 

[8], while outdated, and Appendix C of the DoD Guide for Achieving RAM [19] are 

also good references covering methods available for reliability growth analysis.  

Naturally, some areas are more developed than others.  In particular, more work 

needs to be done in the area of discrete reliability growth projection, as indicated by 

Mortin & Ellner [20].  In this paper, we introduce a robust methodology (independent 

of the Weibull process) that serves as a management framework from which 

practitioners can gauge the progress of the development effort of one-shot systems 

throughout the TAFT process. 
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6.1.2. Overview 

 

This paper is organized as follows.  The methodology of our approach is 

presented in Section 2.  This includes a list of assumptions, the technical details of 

our likelihood function and ML procedure for point-estimation , as well as the 

mathematical derivations of our management metrics.  In section 3, we illustrate the 

presented approach by a simple numerical example.  Concluding remarks are given in 

section 4. 

 

6.2. Methodology 

 

6.2.1. Model Assumptions 

 

1. Initial failure mode probabilities of occurrence 1, , kp p…  constitute a 

realization of a s-random sample 1, , kP P…  such that ( )~ ,iP Beta n x  for each 

1, ,i k= … .  We shall use the following PDF parameterization, 

( )
( )

( ) ( ) ( ) [ ]11 1 0,1

0 otherwise

n xx
i i i

i

n
p p p

f p x n x
− −−⎧ Γ

⋅ ⋅ − ∈⎪≡ Γ ⋅Γ −⎨
⎪
⎩

  (1) 

where n  represents pseudo trials, x  represents pseudo failures, and 

( ) 1

0

x tx t e dt
∞ − −Γ ≡ ⋅∫  is the Euler gamma function.  The associated s-mean, and 

s-variance of the iP  are given respectively by, 
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( )i
xE P
n

=      (2) 

and 

( ) ( )
( )2 1i

x n x
Var P

n n
⋅ −

=
⋅ +

     (3) 

2. The number of trials 1, , kt t…  until the first occurrence of each failure mode 

constitutes a realization of a random sample 1, , kT T…  such that 

( )~i iT Geometric p  for each 1, ,i k= … . 

3. Potential failure modes occur s-independently of one another and their 

occurrence is considered to constitute a failure.   

 

6.2.2. Estimation Procedures 

 

6.2.2.1. Likelihood Function 

 

The area of reliability growth projection focuses on estimating the reliability 

that could be achieved in a system if observed failure modes are addressed via 

corrective action.  There are two types of reliability growth projection models.  The 

first type addresses the case where all corrective actions are delayed until the end of 

the current test phase, as in [2], [9], [16], [22], and [23].  In general, the functional 

forms of these models are expressed in terms of failure mode probabilities (or rates) 

of occurrence.  Generally, their statistical estimation procedures only require count 

data (i.e., the number of failures for observed failure modes in a period of time, or 
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number of trials) and FEF.  The count data is obtained directly from testing.  The FEF 

are typically based on expert engineering judgment and assigned by a Failure 

Prevention and Review Board. 

The second type of reliability growth projection models (e.g., [13], [18], and 

the approach presented herein), address the case were corrective actions can be 

implemented to system prototypes anytime after associated failure modes have been 

found (a more complicated scenario).  The statistical estimation procedures of these 

models are generally based on the exact trials (or times) when failure modes were 

first discovered.  In subsections 2.3 - 2.7 below, our model equations are shown to be 

functions of only the two beta shape parameters (i.e., n  and x ), and k , the total 

potential number of failure modes in the system.  The MME and MLE procedures in 

Martz and Waller [12] are two well-known procedures for approximating the beta 

shape parameters.  These procedures are very useful for the first type of projection 

models when all fixes are delayed.  For the case we are considering, however, these 

procedures cannot be adequately applied (mainly because the failure probabilities that 

generate the count data iN  for which these procedures are based does not remain 

fixed).  For example, let { }: 0 for =1, ,iobs i N i k≡ > …  represent the index set of 

failure modes observed during testing, and let { }: 0 for =1, ,jobs j N j k′ ≡ = …  denote 

its complement.  Also let the total number of observed failure modes be denoted by 

m obs= , which gives obs k m′ = −  unobserved failure modes.  Since failure modes, 

in the case considered, can be addressed via corrective action at anytime after they are 

first discovered, their associated failure probabilities { }:obs ip p i obs≡ ∈K  may not 



- CHAPTER 6 - 

 - Page 155 - 
 

remain constant.  If addressed during the test phase, they are reduced by the fractional 

amount specified by an assigned FEF.  Hence, the MME and MLE procedures in 

Martz and Waller are only tailored to the case where the ip  for 1, ,i k= …  do not 

change.  As a result, we have developed a new likelihood function and associated 

MLE procedure to provide suitable approximations of the beta shape parameters in 

the case where fixes may occur during the test phase.  Our likelihood function is 

given by, 

( ) ( ) ( )1, | ! 1 1i

m

t T
k i i i

obs S i obs j obs

L m t P m P P P−

′∈ ∈ ∈

⎛ ⎞⎡ ⎤≡ ⋅ − ⋅ ⋅ −⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∏ ∏

KK
   (4) 

where 

1. ( ) 11 it
i i

i obs

P P−

∈

− ⋅∏  is the joint geometric density function of a random sample of 

size m , which represents the probability that the observed failure modes first 

occur on trials { }:it t i obs≡ ∈
K

 (e.g., the term ( ) 11 it
i iP P−− ⋅  is a geometric 

probability of observing failure mode i  on trial it ). 

2. ( )1 T
i

j obs

P
′∈

−∏  is the joint geometric reliability function of a random sample of 

size k m− , which represents the probability that the unobserved modes do not 

occur in T  trials. 

3. The summation over mobs S∈  represents the sum of all mutually exclusive 

sets comprised of exactly m  observed failure modes.  Clearly, there are 

m

k
S

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 such sets of size m , and there are !m  ways in which the failure 

modes in each index set can be observed during testing. 
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Overall (4) represents the likelihood that the m  observed failure modes occur with 

FOT t
K

 and that the unobserved failure modes do not occur before trial T .  By 

interpreting the iP  in (4) as iid beta r.v., the marginal likelihood function becomes, 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1

1 1

, , |

! 1 1

1 1
!

,

!
!

i

m

k k

t T
i i i

obs S i obs j obs

m k m
i

i ji

k

L m t E L m t P

m E P P E P

k n x t x n n x T
m

m x n x n t n x n T

n n x Tk
k m n x n T

−

′∈ ∈ ∈

−

= =

⎡ ⎤≡ =⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ ⋅ −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤Γ − + − ⋅Γ + Γ ⋅Γ − +⎛ ⎞
= ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ Β − ⋅Γ + Γ − ⋅Γ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

⎡ ⎤Γ ⋅Γ − +
= ⋅ ⎢ ⎥

− Γ − ⋅Γ +⎢ ⎥⎣ ⎦

∑ ∏ ∏

∏ ∏

KK K

( ) ( )
( ) ( )1

1 1
,

m
m

i

i i

x n x t
x n x n t

−

=

⎡ ⎤Γ + ⋅Γ − + −
⋅ ⎢ ⎥

Β − ⋅Γ +⎢ ⎥⎣ ⎦
∏

 (5) 

where ( ) ( ) ( )
( ) ( )

1 11

0
, 1 baa b

a b t t dt
a b

−−Γ ⋅Γ
Β ≡ = ⋅ −

Γ + ∫  is the Euler beta function.  Notice 

that the middle product-term in (5) represents the k m−  Type I (i.e., time) censored 

observations, and that the product on the right represents the “complete observations” 

(i.e., the m  failure modes discovered on trials it  for 1, ,i m= … ). 

 

6.2.2.2. Maximum Likelihood Estimates 

 

6.2.2.2.1. Finite k  Approximations 

 

The partial derivatives of the natural logarithm of the likelihood (5) with 

respect to the beta shape parameters n  and x , respectively, yield the following MLE 

equations: 
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( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

ln ,
0

1

k

m

i i
i

L m t
n

k n n x n x T n T

n t n x t n x T n T

ψ ψ ψ ψ

ψ ψ ψ ψ
=

∂
= ⇒

∂
⎡ ⎤⋅ − − + − + − + =⎣ ⎦

⎡ ⎤= + − − + − + − + − +⎣ ⎦∑

K

 (6) 

and 

( )

( ) ( ) ( ) ( )
1

ln ,
0

11

k

m

i
i

L m t
x

k n x n x T n x t n x T
x

ψ ψ ψ ψ
=

∂
= ⇒

∂
⎡ ⎤⎡ ⎤⋅ − − − + = − + − − − − +⎣ ⎦ ⎢ ⎥⎣ ⎦

∑

K

 (7) 

where ( ) ( )
( )

x
x

x
ψ

′Γ
≡
Γ

 denotes the digamma function.  These equations, when solved 

simultaneously, yield the MLE n̂  and x̂  that maximize the marginal likelihood 

function (5).  Notice that these ML equations depend upon the unknown value of k .  

In applications where the system is well understood, one can assume a value of k  and 

use (6) and (7) to estimate the parameters.  To avoid such an assumption, the limiting 

approximations of these MLE as k →∞  can be used.  These limiting approximations, 

derived in the following section, reveal the sensitivity of not knowing k .  They also 

show the limiting behavior of the assessment procedure for complex systems.  Via 

heuristics in Monte Carlo simulation, we have found that the management metrics are 

not sensitive to the value of k  provided that it is chosen to be large (i.e., 5k m≥ ⋅  as a 

rule-of-thumb).  Thus, we do not bother deriving an ML estimate for k .  The 

numerical example given in Section 3 illustrates the rapid convergence of these 

limiting approximations (e.g., there is little difference in the magnitudes of the 

management metrics between assuming 25k =  failure modes versus infinitely many 

failure modes). 
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6.2.2.2.2. Limiting Approximations 

 

To derive the limiting behavior of the likelihood function, we proceed by 

reparameterizing (5), and taking the limit as k →∞ .  A logical reparameterization is 

obtained by using the fact that the true but unknown initial reliability of a one-shot 

system is a realization of the product ( )
1

1
k

i
i

P
=

−∏  (i.e., the product of failure mode 

success probabilities).  By interpreting the iP  for 1, ,i k= …  as an iid beta r.v., the 

resulting unconditional expectation is , 1
k

k I
xR
n

⎛ ⎞= −⎜ ⎟
⎝ ⎠

.  This yields the useful 

reparameterization of x  into terms of n  and the expected initial reliability of the 

system ,k IR , 

( )1

,1 k
k Ix n R= ⋅ −     (8) 

In this expression, notice that 0x →  as k →∞ , hence our first motivation for 

reparameterizing.  The second motivation is that the reparameterization allows us to 

obtain an estimate of the expected initial reliability the system, which is a quantity of 

basic interest to management.  After reparameterizing, the limit of the natural 

logarithm of the likelihood (5) is, 

( ) ( )

( ) ( ) ( )
( )

,
,

1

ln , lim ln ,

ln 1
ln ln

kk

nm
k I in

k I
i i

L m t L m t

R n t
R n T n

n t
ψ ψ

∞ →∞

−

=

≡ =

⎡ ⎤⋅Γ + −
⎡ ⎤= ⋅ + − + ⎢ ⎥⎣ ⎦ Γ +⎢ ⎥⎣ ⎦

∑

K K

 (9) 
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The first partial derivative of (9) with respect to ,k IR  is ( )
,

ln ,

k I

L m t
R
∞∂

=
∂

K

,ln k I

m
R

−  

( ) ( )n n T nψ ψ⎡ ⎤⋅ + −⎣ ⎦ .  Maximizing this expression yields a limiting approximation 

for the expected initial reliability of the system, 

( ) ( ),
ˆ exp

ˆ ˆ ˆI
mR

n n T nψ ψ∞
∞ ∞ ∞

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟⎡ ⎤⋅ + −⎣ ⎦⎝ ⎠
   (10) 

In (10), n̂∞  is obtained as the numerical solution to, 

( ) ( ) ( )
( ) ( )1

ˆ ˆln , 1 0
ˆ ˆ ˆ ˆ1

m

i i

L m t n T n
m

n n t n T n
ψ ψ
ψ ψ

∞ ∞ ∞

=∞ ∞ ∞ ∞

⎡ ⎤′ ′∂ + −⎛ ⎞
= + =⎢ ⎥⎜ ⎟∂ + − + −⎢ ⎥⎝ ⎠ ⎣ ⎦
∑

K
 (11) 

which is the partial derivative of (9) with respect to the beta parameter n . 

There are a few notable features of these limiting approximations.  First, we 

have derived a mathematically convenient functional form for the expected initial 

reliability of a one-shot system, given by (10).  Second, our limiting approximations 

reduce the estimation procedure to solving only one equation, for one unknown, 

namely, the beta shape parameter n  (i.e., pseudo trials).  Another interesting 

discovery is that the functional form for the initial reliability (10) derived from our 

likelihood function (5) is identical to that which we derived similarly in [22] from the 

likelihood function of the beta-binomial distribution given by Martz and Waller in 

[12], 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1

!
! !

k
i i

i
i i i

T n N x T n N x
L N

N T N T n x n x=

⋅Γ ⋅Γ + ⋅Γ + − −
=

⋅ − ⋅Γ + ⋅Γ ⋅Γ −∏    (12) 

Note that the two likelihood functions (5) and (12) are quite different from one 

another, and even require different types of data (i.e., the trial numbers of first 
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occurrence it  for (5), and count data iN  for (12).  One reason why this result may not 

be surprising is that the initial reliability of a system is independent of the corrective 

action process (e.g., when fixes are applied to prototypes), which is the primary 

difference between the two likelihood functions. 

 

6.2.3. Model Equations 

 

6.2.3.1. Overview 

 

The methodology presented herein is comprised of four management metrics, 

which are derived in the following sections.  These metrics build off of the 

methodology advanced in our earlier paper [23], which addresses the case where all 

corrective actions are delayed until the end of the current test phase.  We now address 

the more complicated case where corrective actions can be installed after failure 

modes are first discovered.  These equations are extensions of the earlier ones in the 

sense that they are unconditional expectations of their counterpart metrics (i.e., 

unconditioned on the iP  for 1, ,i k= … ).  The resulting expressions below are found 

to be functions of the two beta shape parameters, rather than the vector of unknown 

failure probabilities inherent to the system.  Equation numbers from our earlier 

publication [23] are given for cross-reference. 

 

6.2.3.2. Expected Reliability 
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Per Equation 8 in [23], the expected reliability of a one-shot system on trial t  

conditioned on the vector of unknown failure probabilities ( )1, , kP P P≡
K

…  is given as, 

( ) ( )( )1

1

| 1 1 1 1
k

t
k i i i

i

R t P P d P−

=

⎡ ⎤⎡ ⎤≡ − − − − ⋅ ⋅⎢ ⎥⎣ ⎦⎣ ⎦∏
K

   (13) 

The unconditional expectation of ( )|kR t P
K

 with respect to the iP  for 1, ,i k= …  is, 

( ) ( ) ( ) ( )
( ) ( )

1 1
| 1 1 1

k

k k

n x t n xR t E R t P d
n x n t n

⎡ ⎤⎛ ⎞⎡ ⎤Γ − + − ⋅Γ +⎡ ⎤ ⎢ ⎥≡ ≈ − − − ⋅ ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟Γ − ⋅Γ +⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

K
 (14) 

where i
i obs

d d m
∈

≡ ∑  is an average FEF.  This expression models the true but 

unknown expected reliability of a one-shot system on trial t , where corrective actions 

can be implemented at anytime after their associated failure modes are first 

discovered.  The parameters n  and x  in (14) are estimated by the solutions which 

satisfy (6) and (7) simultaneously.  Note that our model is independent of the A-

mode44 / B-mode45 classification scheme proposed in [9], as A-modes need only be 

distinguished from B-modes via a zero FEF (i.e., 0id =  if failure mode i  is not 

observed, or is not corrected).  Also notice that the initial condition of (14) equates to 

the expected initial reliability of the system as required, 

( )1 1
k

k
xR t
n

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

     (15) 

It is also desirable to study the limiting behavior of (14) as k →∞ , since the 

total potential number of failure modes inherent to a complex one-shot system is 

                                                 
44 An A-mode is a failure mode that will not be addressed via corrective action. 
45 A B-mode is a failure mode that will be addressed via corrective action, if observed during testing. 
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typically large, and since k  is unknown.  After reparameterizing (14) via (8), our 

limiting approximation simplifies too, 

( ) ( )
11

ˆ 1

,
ˆ ˆ ˆlim

td
n t

k Ik
R t R t R

⎛ ⎞−
− ⋅⎜ ⎟⎜ ⎟+ −∞⎝ ⎠

∞ ∞→∞
≡ =     (16) 

where ,
ˆ

IR∞  and n̂∞  are obtained via (10) and (11), respectively. 

 

6.2.3.3. Reliability Growth Potential 

 

Reliability growth potential [11] is a characteristic of a number of reliability 

growth models, such as [9], [13], [16-18], and [22-23].  It represents the theoretical 

upper-limit on reliability achieved by finding and effectively correcting all failure 

modes in a system with a specified fix effectiveness.  Per Equation 11 in [23], the 

reliability growth potential for one-shot systems is given by, 

( ) ( ),
1

1 1
k

k GP i i
i

R P d P
=

⎡ ⎤≡ − − ⋅⎣ ⎦∏
K

    (17) 

The unconditional expectation of (17) with respect to the  iP  for 1, ,i k= …  is, 

( ) ( ) ( ), ,
1

1 1 1 1
kk

k GP k GP i i
i

xR E R P E d P d
n=

⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤≡ = − − ⋅ ≈ − − ⋅⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∏

K
  (18) 

To estimate (18), the value of k  is assumed and the parameters n  and x  in 

approximated by the MLE obtained from (6) and (7).  After reparameterizing (18) via 

(8) and taking the limit as k →∞ , the limiting behavior simplifies to, 

1
, , ,

ˆ ˆ ˆlim d
GP k GP Ik

R R R −
∞ ∞→∞

≡ =     (19) 

where ,
ˆ

IR∞  is given by (10). 
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6.2.3.4. Expected Number of Failure Modes 

 

Per Equation 13 in [23], the conditional expected number of unique failure 

modes observed on or before trial t  is given by, 

( ) ( )
1

| 1
k

t
k i

i

t P k Pμ
=

= − −∑
K

    (20) 

The resulting unconditional expectation of (20) with respect to the iP  for 1, ,i k= …  

is, 

( ) ( ) ( )

( ) ( )
( ) ( )

1

| 1
k

t
k k i

i

t E t P k E P

n n x t
k k

n x n t

μ μ
=

⎡ ⎤⎡ ⎤≡ = − −⎣ ⎦ ⎣ ⎦

⎡ ⎤Γ ⋅Γ − +
= − ⋅ ⎢ ⎥

Γ − ⋅Γ +⎢ ⎥⎣ ⎦

∑
K

   (21) 

These expressions have the following convenient interpretation: the expected number 

of unique failure modes observed in t  trials is equal to the total potential number of 

failure modes in the system minus the expected number of failure modes that will not 

be observed in t  trials.  The initial condition of (21) implies that the expected number 

of failure modes observed on trial 0t =  (i.e., before testing begins) is ( )0 0k tμ = = , 

as expected.  An estimate of (21) is obtained by using the finite k  MLE for the beta 

shape parameters n  and x . 

To derive the limiting behavior of (21), we have used the reparameterization 

(8) and taken the limit as k →∞ .  After some detailed calculation we find, 
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( ) ( ) ( ) ( )

( ) ( )
( ) ( )

,
ˆˆ ˆ ˆ ˆ ˆlim ln

ˆ ˆ
ˆ ˆ

k Ik
t t n R n n t

n t n
m

n T n

μ μ ψ ψ

ψ ψ
ψ ψ

∞ ∞ ∞ ∞ ∞→∞

∞ ∞

∞ ∞

⎡ ⎤≡ = ⋅ ⋅ − +⎣ ⎦

⎡ ⎤+ −
= ⋅ ⎢ ⎥

+ −⎢ ⎥⎣ ⎦

   (22) 

where n̂∞  is the numerical solution of (11).  The significance of (21) and (22) is 

associated with model GOF.  As illustrated by numerical example below, this 

management metric provides graphical insight into the GOF of the presented 

approach.  This is achieved by plotting the actual cumulative number of failure modes 

observed during testing versus trials, against the cumulative expected number of 

failure modes versus trials (given by the model).  Good agreement between the actual 

stochastic realization and our estimates indicate that the model reasonably fits the 

data and the associated reliability growth management metrics can be suitably 

applied.  Finally, notice that (21) and (22) are mean-value functions that can be 

compared against ( )t t βμ λ= ⋅  from a typical Weibull process approach. 

 

6.2.3.5. Expected Probability of Discovering a New Failure Mode 

  

 Per Equation 16 in [23], the conditional expected probability of discovering a 

new failure mode on trial t  is given as, 

( ) ( ) ( ) 1

1

| | 1 1 1
k

t
k i i

i

h t P E h t P P P−

=

⎡ ⎤⎡ ⎤≡ = − − − ⋅⎣ ⎦ ⎣ ⎦∏
K K

  (23) 

The unconditional expectation of (23) with respect to the iP  for 1, ,i k= …  is, 

( ) ( ) ( ) ( )
( ) ( )

1 1
| 1 1

,

k

k k

n x t x
h t E h t P

x n x n t
⎡ ⎤Γ − + − ⋅Γ +⎡ ⎤≡ = − −⎢ ⎥⎣ ⎦ Β − ⋅Γ +⎢ ⎥⎣ ⎦

K
  (24) 
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Equation (24) is estimated by using the finite k  approximations for n  and x  

obtained as the solution to (6) and (7).  The initial condition of (24) equates to, 

( ) ( ) ( )
( ) ( ) ( )1

1 1 1 1 1 1 1
, 1

k k

k k

n x x xh t R t
x n x n n

⎡ ⎤Γ − ⋅Γ + ⎛ ⎞= = − − = − − = − =⎢ ⎥ ⎜ ⎟Β − ⋅Γ + ⎝ ⎠⎢ ⎥⎣ ⎦
 (25) 

This means that the expected probability of discovering a new failure mode on the 

first trial is equivalent to the initial system probability of failure, as expected. 

After reparameterizing via (8), the limiting approximation of (24) as k →∞  

simplifies to, 

( ) ( )
ˆ

ˆ 1
,

ˆ ˆ ˆlim 1
n

n t
k Ik

h t h t R
∞

∞ + −
∞ ∞→∞

≡ = −     (26) 

The estimates ,
ˆ

IR∞  and n̂∞  in (26) are obtained by (10) and (11), respectively.  The 

expressions above estimate the expected probability of discovering a new failure 

mode on trial t , and can be utilized as a measure of programmatic risk.  For example, 

as the development effort (e.g., TAFT process) continues, we would like the estimate 

of ( ) 0kh t → , which would indicate that program management has observed the 

dominant failure modes in the system.  Conversely, large values of ( )kh t  would 

indicate higher programmatic risk with respect to additional unseen failure modes 

inherent in the current design.  Effective management and goal-setting of ( )kh t  

would be a good practice to reduce the likelihood of the customer encountering 

unknown failure modes during fielding and deployment. 

 

6.2.3.6. Portion of System Unreliability Observed 
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In the absence of failure mode mitigation during test, the portion of system 

unreliability on trial t  associated with failure modes that have already been observed 

during testing (e.g., the probability of only observing repeat failure modes with 

continued testing) is given in [23] as, 

( ) ( ) 1

1

| 1 1 1 1
k

t
i i

i

t P P Pϕ −

=

⎡ ⎤⎡ ⎤= − − − − ⋅⎢ ⎥⎣ ⎦⎣ ⎦∏
K

   (27) 

The unconditional expectation of (27) with respect to the iP  for 1, ,i k= …  is, 

( ) ( ) ( ) ( )
( ) ( )

1 1
| 1 1

,

k

k

n x t xxt E t P
n x n x n t

ϕ ϕ
⎛ ⎞⎡ ⎤Γ − + − ⋅Γ +⎡ ⎤≡ = − − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟Β − ⋅Γ +⎢ ⎥⎣ ⎦⎝ ⎠

K
 (28) 

Using (25) and (28) we express the expected probability of failure on trial t  due to a 

repeat failure mode as a fraction of initial system unreliability.  This fraction in the 

absence of failure mode mitigation is given by, 

( ) ( )
( )

( ) ( )
( ) ( )

( )

1 1
1 1

,

1 1 1

k

k
k

k k

n x t xx
n x n x n tt

t
h t R t
ϕ

φ

⎛ ⎞⎡ ⎤Γ − + − ⋅Γ +
− − −⎜ ⎟⎢ ⎥⎜ ⎟Β − ⋅Γ +⎣ ⎦⎝ ⎠≡ =

= − =
 (29) 

Once again, approximations of this management metric are obtained via the MLE 

procedure based on (6) and (7).  The initial condition of (29) is ( )1 0k tφ = = , which 

means that the expected probability of failure on the first trial due to a repeat failure 

mode is zero, as expected.   

To take the limit of (29) as k →∞ , we proceed in a similar fashion as above 

by using the reparameterization (8).  After simplification we obtain, 

( ) ( )

1
ˆ 1
,

,

ˆ1ˆ ˆlim ˆ1

t
n t

I
kk

I

R
t t

R
φ φ

∞

−
+ −

∞
∞ →∞

∞

−
≡ =

−
   (30) 
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where ,
ˆ

IR∞  and n̂∞  follow from (10) and (11), respectively.  The value, or benefit, of 

these expressions is that they can be used as a system maturity metric.  For instance, a 

good management practice would be to specify goals for ( )tφ∞  at important program 

milestones in order to track the progress of the development effort with respect to the 

maturing design of the system (from a reliability standpoint).  Small values of ( )tφ∞  

indicate that further testing is required to find and effectively correct additional 

failure modes.  Conversely, large values of ( )tφ∞  indicate that further pursuit of the 

development effort to increase system reliability may not be economically justifiable 

(i.e., the cost may not be worth the gains that could be achieved).  Finally, note that 

program management can eliminate at most the portion ( )tφ∞  from the initial system 

unreliability at the conclusion of trial t  regardless of when fixes are installed or how 

effective they are (i.e., since this metric is independent of the corrective action 

process). 

 

6.3. Numerical Example 

 

6.3.1. Estimation of Model Parameters 

 

Since the true failure probabilities and values of the beta shape parameters n  

and x  are unknown in practice, we have utilized Monte Carlo simulation to illustrate 

the proposed methodology via numerical example.  In this example, the system is 

comprised of 25k =  failure modes and is tested for 50T =  trials.  Only 7m =  in 25 
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failure modes were observed.  Table 9 shows the associated failure data.  The second 

column shows the failure mode numbers that comprise the index set of observed 

failure modes denoted by obs .  The third column is the true failure mode probability 

of occurrence that is unknown in practice.  The fourth column shows the trial number 

when each observed failure mode was first discovered.  Our statistical estimation 

procedures for the beta shape parameters only require and use the FOT (i.e., the seven 

datapoints shown in column 4).   

 

 Failure 
Mode i  

Failure 
Probability ip  

FOT 
it  

1 2 0.1329 14
2 4 0.0108 39
3 6 0.0596 22
4 14 0.0171 33
5 15 0.0946 2
6 20 0.0755 1
7 23 0.0180 11

Table 9.  Failure Data. 
 

The MLE of the beta shape parameters approximated from the FOT data are shown in 

Table 10.  The column titled True denotes the true values of beta parameters that were 

utilized to stochastically generate the ip  for 1, ,i k= … .  The column titled MLE K 

displays the estimates that are obtained when maximizing equations (6) and (7) 

simultaneously.  Recall that these procedures require an assumed value of k , the total 

potential number of failure modes in the system.  In this example, the true value of 

25k =  is used.  The sensitivity of not knowing k  is highlighted by our limiting 

approximations shown in the column labeled MLE ∞.  In this case, the estimates are 

obtained as the numerical solutions that maximize (11). 
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 True MLE K MLE ∞ 
n  8.800 7.193 4.721
x  0.176 0.152 0.000

Table 10.  Maximum Likelihood Estimates. 
 

Recall, per equation (8), that ( )1

,1 0k
k Ix n R= ⋅ − →  as k →∞ , which means that the 

beta mean (20) and variance (21) also converge to zero.  Hence, the distribution 

becomes degenerate in the limit.  Incidentally, however, this causes no 

inconvenience, as the important limiting approximations of our model equations 

remain finite and positive.   

 

6.3.2. Expected Reliability Growth 

 

Figure 19 below displays a plot of the expected reliability of a one-shot 

system versus trials (that would typically be conducted in a developmental test 

program).  The curves can be interpreted as an estimate of reliability on trial t  that 

results from implementing corrective actions to failure modes discovered in test prior 

to trial t .  The series labeled Expected is generated via (14) using the true values of 

the beta parameters and k .  The series labeled MLE K is also generated via (14) 

using the true value of k , but use the finite ML approximations for the beta 

parameters (i.e., column 3 of Table 10).  The series labeled MLE ∞ is generated via 

(16) using the limiting ML approximations of the beta parameters (i.e., column 4 of 

Table 10). 
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Figure 19.  Reliability Growth. 

 

The significance of this model equation is that it gives practitioners the 

capability to estimate the reliability of one-shot systems when observed failure modes 

are corrected at anytime during a typical developmental test program.  In this 

example, the true initial reliability, given by (15), is 0.6035 .  After correcting 7 of 25 

failure modes with an average fix effectiveness of 0.80d = , the true reliability has 

improved from 0.6035 to 0.8662.  The reliability growth potential given by (18) is 

0.9047.  Notice that all the series are close to one another despite only having 7 

datapoints from which to estimate model parameters.  Also notice that our model is 

insensitive to not knowing the value of k .  Thus, our limiting approximation as 

k →∞  is quite accurate despite the fact that the system is only comprised of a small 

number of failure modes (i.e., 25k = ). 

 

6.3.3. Expected Number of Failure Modes 

 

Figure 20 displays a plot of the cumulative (observed and expected) number 

of failure modes versus trials.  The curves can be interpreted as an estimate of the 
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total number of unique failure modes expected to be observed on or before trial t .  

The series labeled Observed, plotted as black dots, represents the actual stochastically 

realized number of cumulative failure modes observed on trial t .  The series labeled 

Exact is generated via (21) with the true values of the beta parameters and k .  The 

series labeled MLE K is also generated by (21) with the true value of k , but uses the 

finite ML approximations for the beta parameters (e.g., column 3 of Table 10).  The 

last series, MLE ∞, is generated via (22) using the limiting ML approximations of the 

beta parameters (e.g., column 4 of Table 10). 
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Figure 20.  Observed vs. Expected No. Failure Modes. 

 

One may ask the question: Why have we developed a model equation to 

estimate the expected number of failure modes observed during testing, when we 

already know how many failure modes were observed, namely 7m = ?  The answer is 

so we can construct a GOF procedure to determine if our model fits a given sample of 

data and can be suitably applied.  Hence, the significance of this model equation is to 

give practitioners the means to assess model GOF.  This is accomplished in two ways.  

First, a plot such as Figure 20 can provide graphical insight for such an assessment.  
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Good agreement between the actual observed number of failure modes versus trials, 

against the expected number of observed failure modes (e.g., MLE K, or MLE ∞) 

versus trials illustrates graphically that the model fits the data well and can be suitably 

applied.  If, on the other hand, these two series are not in good agreement, the model 

may not fit the data.  Due to the subjectivity of graphical assessments, we have 

derived a statistical GOF test procedure based on a chi-squared random variable.  

This test procedure is not presented in the scope of the current paper, but will follow 

in a later publication. 

 

6.3.4. Expected Probability of a New Failure Mode 

 

The curves in Figure 21 can be interpreted as an estimate of the expected 

probability on trial t  of observing a failure mode that has not been previously 

revealed.  The series labeled Expected is generated via (24) using the true value of k  

and the true values of the beta shape parameters.  The series labeled MLE K is also 

generated via (24), and uses the finite ML approximations of the beta parameters 

(e.g., column 3 of Table 10) and the true value of k .  The last series, MLE ∞, is 

generated via (26) using the limiting ML approximations of the beta parameters (e.g., 

column 4 of Table 10). 
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Figure 21.  Probability of a New Failure Mode. 

 

The significance of this model equation is that it can be utilized by 

management as a measure of programmatic risk.  For example, as the development 

effort is ongoing, it is useful to gauge the likelihood of observing new problems, such 

as additional unknown failure modes.  The prospect of finding new failure modes late 

in a developmental test program may translate into additional schedule and budgetary 

requirements associated with root-cause analysis and the correction action effort.  

Naturally, we would like these types of programmatic risks to diminish as the system 

design matures.  This model equation serves as a management metric aimed at 

quantifying such a phenomenon. 

 

6.3.5. Expected Probability of a Repeat Failure Mode 

 

The curves in Figure 22 can be interpreted as the expected probability of 

observing a repeat failure mode on trial t  expressed as a fraction of initial system 

unreliability.  The series labeled Expected is generated via (29) using the true value of 

k , as well as the true values of the beta shape parameters.  The series labeled MLE K 
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is also generated via (29) using the true value of k , but uses the finite MLE of the 

beta parameters (e.g., column 3 of Table 10).  The series labeled MLE ∞ is generated 

via (30) using the limiting ML approximations (e.g., column 4 of Table 10). 
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Figure 22.  Probability of a Repeat Failure Mode. 

 

The significance of this model equation is that it quantifies the portion of 

initial system unreliability associated only with known failure modes (i.e., the 

observed failure modes).  The reason why this quantity is important is because prior 

to trial t  program management can eliminate at most the portion ( )k tφ  from the 

initial system unreliability – regardless of when corrective actions are implemented or 

how effective they are.  For example, the initial unreliability of the system in this 

example, given by (25), is ( )1 0.3965kh t = = .  On the first trial the portion of 

( )1kh t =  associated with known failure modes is ( )1 0k tφ = = , as shown above.  At 

the end of the current test phase, however, the portion of ( )1kh t =  associated with 

failure modes we know about is ( )50 0.9137k tφ = = .  In other words, the 7 failure 

modes observed comprise about 91.4% of the initial probability of failure of the 
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system.  Consider trying to make a decision on whether to continue or terminate 

testing, especially in light of the fact that the purpose of a developmental test program 

is to find and eliminate design weaknesses.  Given that the 7 failure modes we know 

about comprise 91.4% of system initial unreliability, continued testing may not be 

economically justifiable.  The ultimate decision depends on the current reliability of 

the system relative to its requirement.  Hence, a good management practice as part of 

a reliability growth program would be to monitor and specify goals for ( )k tφ . 

 

6.4. Ground-to-Air Missile Application 

 

The trial numbers of first occurrence of 16m =  failure modes given in Table 

11 were obtained in 68T =  flight tests of an unspecified ground-to-air missile 

system46.   These failure modes were determined to have failed independently of one 

another during testing. 

 FOT it   FOT it  
1 1 9 24 
2 6 10 27 
3 7 11 36 
4 8 12 41 
5 9 13 42 
6 10 14 58 
7 12 15 61 
8 21 16 65 

Table 11.  FOT. 

Using the data in Table 11, ML estimates of the beta shape parameters were 

calculated and are shown in Table 12.  The finite k  estimates (given in column 2) are 

found as the numerical solutions that satisfy Equations (6) and (7) simultaneously for 
                                                 

46 Details regarding the system and its failure mode information cannot be discussed due to proprietary reasons. 
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an assumed 50k =  total potential number of failure modes.  The limiting 

approximation of the beta parameter n  (i.e., pseudo trials) given in column 3 is the 

solution to Equation (11).  Recall via (8) that the limiting approximation of the beta 

parameter 0x →  as k →∞ .  

 MLE K MLE ∞ 
n  31.535 19.084
x  0.331 0

Table 12.  Parameter Estimates. 

The ML estimates given in Table 12, were then used to generate the curves for 

each of the management metrics shown in Figures 23-26.  Note that the blue series 

titled MLE K may be difficult to see in some of these plots, which is due to the close 

approximation between this series and the red series based on MLE ∞. 
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Figure 23.  Expected Reliability.             Figure 24.  Expected Failure Modes. 
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Figure 25.  Probability of New Mode.            Figure 26.  Fraction Surfaced. 

Figure 23 shows that by correcting the 16 failure modes with an average FEF 

of 0.8d = , system reliability can be increased from about 0.58 to 0.81.  The 
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reliability growth potential computed via Equation (19) is 0.90.  Figure 24 shows that 

the model reasonably fits the data and yields and estimate of 16 failure modes by the 

end of the test.  Figure 24 shows that the probability of discovering a new failure 

mode decreased from 0.42 to 0.11 by finding the 16 failure modes in these 68 trials.  

Figure 25 shows that the portion of the initial system probability of failure (i.e., 0.42) 

associated with failure modes program management found in these 68 trials has 

increased from 0 to 0.82.  Thus, the 16 failure modes that were discovered account for 

82% of the initial probability of failure of the system. 

 

6.5. Concluding Remarks 

 

In this paper, we have introduced a new methodology that serves as an 

analytical framework from which one-shot reliability growth programs can be 

assessed.  The methodology consists of the following model equations that can be 

used as management metrics: 

• Expected reliability growth of a one-shot system when corrective actions are 

implemented to prototypes at anytime after associated failure modes are first 

discovered.  Our finite and limiting approximations are given by (14) and (16)

, respectively. 

• Expected number of failure modes observed in testing.  Our finite and limiting 

approximations are given by (21) and (22), respectively. 

• Expected probability of discovering a new failure mode.  Our finite and 

limiting approximations are given by (24) and (26), respectively. 
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• Expected probability of a repeat failure mode expressed as a fraction of initial 

system unreliability.  Our finite and limiting approximations are given by (29) 

and (30), respectively. 

These model metrics provide the means by which reliability practitioners can estimate 

reliability improvement of a one-shot system, address model GOF concerns, quantify 

programmatic risk, and assess system maturity. To approximate these quantities, 

we have derived a new likelihood function (5) and associated ML procedures to 

estimate the shape parameters n  (i.e., pseudo trials) and x  (i.e., pseudo failures) of 

the beta distribution.  The parameter MLE for an assumed number of total potential 

failure modes are obtained as the numerical solutions to (6) and (7).  Since the 

number of total potential failure modes in a complex system is large and unknown, 

we have derived limiting approximations which have reduced the estimation 

procedure to solving only one equation (11), for one unknown.  In particular, these 

approximations yield a mathematically convenient functional form (10) for the 

expected initial reliability of a one-shot system.  The limiting behavior of our model 

equations (summarized in the Appendix) have led to interesting simplifications, and 

are shown to be a functions of only a single unknown, the beta shape parameter n . 

 

Appendix 

 

DESCRIPTION MANAGEMENT METRICS 
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Reliability Growth Potential 1
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7. GOODNESS-OF-FIT AND CONFIDENCE INTERVAL PROCEDURES47 

 

Abstract 

 

This paper gives Goodness-of-Fit (GOF) and Confidence Interval (CI) 

procedures for our reliability growth projection model published in an earlier paper.  

The first GOF technique is a graphical approach which compares the actual 

cumulative number of observed failure modes versus trials, to the expected number of 

observed failure modes versus trials.  The second technique is a statistical GOF test 

procedure based on a chi-squared random variable.  Both techniques are based on our 

exact expression for the expected number of observed failure modes, also derived 

herein.  Maximum likelihood procedures are outlined for approximating this exact 

expression.  A Fisher matrix normal approximation approach is employed using a 

log-odds transform to construct a CI estimate on expected reliability.  Monte Carlo 

simulation is utilized to study the coverage associated with this approximate CI 

routine, as well as the approximating GOF test statistic.  Numerical examples are 

given to illustrate the proposed GOF and CI procedures.  This methodology is useful 

to practitioners who wish to address GOF concerns with our earlier reliability growth 

projection model, and/or obtain a CI estimate on the expected reliability of one-shot 

systems undergoing development. 

 

                                                 
47 Chapter 7 will be submitted to a journal once Chapter 6 has been accepted with revisions by a journal (e.g., the material in 

Chapter 7 builds upon, and must refer to, the methodology given in Chapter 6). 
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Acronyms48 

 

AEC – Army Evaluation Center 

AMSAA – Army Materiel Systems Analysis Activity 

CI – Confidence Interval 

FEF – Fix Effectiveness Factor(s) 

FOT – First Occurrence Trial(s) 

GOF – Goodness-of-Fit 

MGF – Moment Generating Function 

ML – Maximum Likelihood 

MLE – ML Estimation/Estimate(s) 

MME – Method of Moments Estimation/Estimate(s) 

NHPP – Non-Homogeneous Poisson Process 

PLP – Power-Law Process 

 

Definitions 

 

1. FEF – fraction reduction in an initial failure mode probability due to 

implementation of a unique corrective action. 

2. Failure mode – the root-cause associated with the loss of a required function or 

component whose probability, or rate, of occurrence is reduced by a specified 
                                                 

48 The singular and plural of an acronym are always spelled the same. 
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FEF, if addressed by corrective action.  Note that it may be the case that some 

failure modes are not observed during testing, or may not be corrected if they are 

observed (e.g., some failures may not be economically justifiable to correct). 

3. Unobserved failure mode – a failure mode which exhibits zero failures during 

testing. 

4. Observed failure mode – a failure mode which exhibits at least one failure 

during testing. 

5. Repeat failure mode – a failure mode which exhibits at least two failures during 

testing. 

 

Notation 

 

k  - total number of potential failure modes. 

m  - total number of observed failure modes. 

n  - beta shape parameter representing the pseudo number of trials. 

x  - beta shape parameter representing the pseudo number of failures. 

T  - total number of trials. 

,i jN  - number of failures for mode i  in trial j  – zero or unity. 

iN  - total number of failures for mode i  in T trials. 

iO  - observed frequency for class interval i . 

iE  - expected frequency for class interval i . 

id  - FEF for failure mode i . 
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ip  - probability of occurrence for failure mode i . 

( ) ( )t
xM s  - t-th derivative of the beta MGF. 

( )k tμ  - expected number of failure modes observed on or before trial t . 

( )tμ∞  - limiting approximation of ( )k tμ  as k →∞ . 

2X  - chi-squared test statistic. 

α  - significance level. 

c  - number of class intervals in a chi-squared GOF table. 

2
, 2cXα −  - chi-squared critical point with 2c −  degrees of freedom. 

( ) ,kR t R  - expected reliability on trial t . 

 

7.1. Introduction 

 

7.1.1. Background Material 

 

7.1.1.1. Reliability Growth 

 

In general, the term reliability growth refers to the increase in the true but 

unknown reliability of a developmental item that is achieved by finding, analyzing, 

and effectively correcting failure modes inherent to initial or intermediate system 

prototypes.  Each of the three main areas of reliability growth (i.e., planning, tracking, 

and projection) apply to systems whose usage is measured in terms of discrete trials, 

as well as in the continuous time domain.  The focus of this paper lies in the area of 



- CHAPTER 7 - 

 - Page 187 - 
 

discrete projection.  Applications involve estimating the reliability of one-shot 

systems49 that could be achieved if known failure modes (discovered during testing) 

are mitigated via the corrective action process.  The impact of corrective actions, with 

respect to increasing reliability, are quantified via FEF and are typically assigned by a 

Failure Prevention and Review Board via expert engineering judgment. 

There are two types of models in the area of discrete reliability growth 

projection.  The first type addresses the case were all corrective actions are delayed 

until the end of the current test phase.  The second type address the more common 

scenario where corrective actions are applied to system prototypes anytime after 

associated failure modes are first discovered.  The genesis of discrete reliability 

growth projection is marked by a paper written by Corcoran, Weingarten, and Zehna 

in 1964 [2], which addresses the delayed corrective action strategy.  Since then, a 

number of other methods have been developed.  They include the delayed models 

[10], [33], [37], and [38], and the non-delayed models [21], [32], and [39]. 

A vast amount of literature is available on each of the three areas of reliability 

growth.  The most comprehensive presentation of discrete tracking and projection 

models is given by Fries and Sen’s survey [22].  More general references include the 

AMSAA Reliability Growth Guide [28], Appendix C of the OSD Guide for 

Achieving RAM [35], and the frequently referenced Military Handbook 189 [7]. 

 

7.1.1.2. GOF Methods for Reliability Growth 

 

                                                 
49 One-shot systems such as guns, rockets, missile systems, torpedoes etc. 
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As in nearly any field of study, model validation is a basic necessity in 

reliability growth assessment.  There have been several approaches published over the 

years for addressing GOF concerns with various reliability growth tracking and 

projection models.  Most of these procedures have been centered around the NHPP 

interpretation [3] of the Duane model [1].  This is due to the wide use of the PLP50 in 

reliability growth and complex, repairable systems theory.  Some of the associated 

approaches in the literature include Crow [4], Rigdon [13], Park & Kim [16], Klefsjö 

& Kumar [17], Park & Seoh [20], Baker [23], Crétois & Gaudoin [24], Gaudoin [25], 

Crétois, El Aroui, & O. Gaudoin [26], and Gaudoin, Yang, & Xie [31].  Convenient 

graphical GOF explorations of the NHPP are discussed by Xie & Zhao [19], and by 

Donovan & Murphy [27].  Not all reliability growth models, however, are based on 

the PLP (e.g., the AMSAA Maturity Projection Models [21] and [33] are based on the 

gamma-Poisson relationship51),  As a result, these models are accompanied by their 

own unique GOF procedures discussed by Broemm in [34].  The approach developed 

herein can be utilized for studying the conformity of our reliability growth projection 

models [37-39] against a given sample of discrete data.  The procedures are not based 

on the PLP, but lend themselves to analogous graphical explorations. 

 

7.1.1.3. CI Procedures for Reliability Growth 

 

                                                 
50 NHPP with failure intensity function ( ) 1

r t t
β

λ β
−

= ⋅ ⋅ .  This is also sometimes referred to as the PLP, or the Weibull 
process since the time to first failure follows the Weibull distribution. 

51 By gamma-Poisson relationship we are referring to the doubly-stochastic process where the distribution of the number of 

failures for each failure mode 1, ,i k= …  is assumed Poisson with gamma initial failure rates 
1
, ,

k
λ λ… . 
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Similarly, a great deal of work has been done on CI construction for reliability 

growth.  Finkelstein [5] developed confidence bounds on the parameters λ  and β  of 

the Weibull process.  Crow gave small sample and asymptotic confidence intervals 

for system MTBF under Type I and Type II (i.e., time and failure) censoring in [3-4], 

[6], and [9].  These procedures were later modified in [18] to address the case were 

the data is generated from multiple systems operated over the same test interval 

[ ]0,T .  Bhattacharyya, Fries, & Johnson [14] derived large-sample standard-error 

formulas and normal approximation CI procedures for the parameters of a discrete 

analogue to the PLP.  Robinson & Dietrich [15] built a nonparametric-Bayes 

reliability growth tracking model (continuous time domain) from which Bayesian 

probability limits can be obtained on system failure intensity at the end of 

developmental testing.  Ellner et al. [28] adapted the Lindström-Madden method to 

compute an approximate LCB on system MTBF from subsystem data (continuous 

time domain).  Pulcini [30] developed exact and approximate CI procedures for 

current failure intensity, and interval prediction of current lifetime given by an 

exponential reliability growth model under a multiple system test program.   

The above literature represents only a handful of approaches for obtaining 

interval estimates in reliability growth applications.  Since small sample analytical 

results cannot always be derived, exact CI procedures may not always exist for 

certain models.  This has led to the use of normal approximation approaches (e.g., see 

Nelson [8]) to be widely employed in the fields of reliability and reliability growth.  

The impact of data censoring on the coverage of an approximate CI procedure is 

particularly important.  Comparisons of approximate CI procedures under Type I 
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censoring is given by Jeng and Meeker in [29].  Hong, Meeker, and Escobar [36] also 

discuss how to avoid problems with normal approximation interval estimates for 

probabilities.  Later in this paper, we use the popular Fisher matrix normal 

approximation approach in Nelson [8], which is widely used in reliability growth and 

associated commercial software products.  Our procedure takes into account a number 

of features to include: the use of a log-odds transform to guarantee interval estimates 

in [ ]0,1 , the use of a multi-parameter distribution, and consideration to data-

censoring.  The coverage probability of the approximation routine is investigated via 

Monte Carlo simulation. 

 

7.1.2. Overview 

 

 This paper is organized as follows.  The methodology of our approach is 

presented in Section 2 and consists of: a list of model assumptions, the derivation of 

our exact expression for the expected number of observed failure modes, an outline of 

ML procedures to estimate model parameters, graphical & statistical test procedures 

for assessing GOF, and CI construction on expected reliability.  Section 3 illustrates 

these techniques via numerical example.  Monte Carlo simulation results addressing 

the coverage probability of the CI procedures, as well as the approximating GOF test 

statistic are also presented.  Concluding remarks are given in Section IV. 

 

7.2. Methodology 
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7.2.1. Model Assumptions 

 

1. A trial results in a dichotomous success/failure outcome such that 

( ), ~i j iN Bernoulli p  for each 1, ,i k= …  and 1, ,j T= … . 

2. The distribution of the number of failures in T trials for each failure mode is 

binomial.  That is, ( )~ ,i iN Binomial T p  for each 1, ,i k= … . 

3. Initial mode failure probabilities 1, , kp p…  constitute a realization of a s-

random sample 1, , kP P…  such that ( )~ ,iP Beta n x  for each 1, ,i k= … .   

4. Failures associated with different failure modes arise s-independently of one 

another on each trial.  As a result, the system must be at a stage in 

development where catastrophic failure modes have been previously 

discovered and corrected and are therefore not preventing the occurrence of 

other failure modes. 

 

7.2.2. Estimation Procedures 

 

In [39] we derived a likelihood function and associated ML procedure to 

estimate model parameters (i.e., the shape parameters of the beta distribution) under a 

non-delayed corrective action strategy.  These procedures are briefly outlined here.  

Let { }: 0 for =1, ,iobs i N i k≡ > …  represent the index set of failure modes observed 

during testing, and let { }: 0 for =1, ,jobs j N j k′ ≡ = …  denote its complement.  Also 

let the total number of observed failure modes be denoted by m obs= , which gives 
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obs k m′ = −  unobserved failure modes (i.e., right-censored, or suspended, 

observations).  Our likelihood function is given by, 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )1

1 1!, | ,
! ,

k m
m

i
k

i i

n n x T x n x tkL m t n x
k m n x n T x n x n t

−

=

⎡ ⎤ ⎡ ⎤Γ ⋅Γ − + Γ + ⋅Γ − + −
= ⋅ ⋅⎢ ⎥ ⎢ ⎥

− Γ − ⋅Γ + Β − ⋅Γ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏

K
(1) 

where ( ) ( ) ( )
( ) ( )

1 11

0
, 1 baa b

a b t t dt
a b

−−Γ ⋅Γ
Β ≡ = ⋅ −

Γ + ∫  is the Euler beta function.  The 

middle product-term in (1) represents the k m−  Type I (i.e., time) censored 

observations (i.e., the failure modes not observed on or before trial T ).  The partial 

derivatives of the natural logarithm of (1) with respect to the beta shape parameters n  

and x  yield the following MLE equations respectively: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

ln ,
0

1

k

m

i i
i

L m t
k n n x n x T n T

n

n t n x t n x T n T

ψ ψ ψ ψ

ψ ψ ψ ψ
=

∂
⎡ ⎤= ⇒ ⋅ − − + − + − + =⎣ ⎦∂

⎡ ⎤= + − − + − + − + − +⎣ ⎦∑

K

(2) 

and 

( ) ( ) ( )

( ) ( )
1

ln ,
0

11

k

m

i
i

L m t
k n x n x T

x

n x t n x T
x

ψ ψ

ψ ψ
=

∂
⎡ ⎤= ⇒ ⋅ − − − + =⎣ ⎦∂

⎡ ⎤= − + − − − − +⎢ ⎥⎣ ⎦
∑

K

   (3) 

Equations (2) and (3), when maximized simultaneously, yield the ML estimates n̂  

and x̂  that maximize the marginal likelihood function.  Notice that these equations 

are a function of the unknown variable k , the total potential number of failure modes 

in the system.  Thus, one must assume such a value when using this estimation 

procedure.  To avoid this, and to assess the sensitivity of not knowing k  we have 

derived limiting approximations of the model parameters.  The equations to obtain 
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these estimates are derived by taking the limit of (1) as k →∞ , followed by 

evaluating the partial derivatives.  After some detailed analysis we have found, 

( ) ( ),
ˆ exp

ˆ ˆ ˆI
mR

n n T nψ ψ∞
∞ ∞ ∞

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟⎡ ⎤⋅ + −⎣ ⎦⎝ ⎠
   (4) 

where ,
ˆ

IR∞  is a limiting approximation of initial system reliability, and where n̂∞  is 

found as the numerical solution to 

( ) ( )
( ) ( )1

ˆ ˆ1 0
ˆ ˆ ˆ1

m

i i

n T n
m

n t n T n
ψ ψ
ψ ψ

∞ ∞

= ∞ ∞ ∞

⎡ ⎤′ ′+ −⎛ ⎞
+ =⎢ ⎥⎜ ⎟+ − + −⎢ ⎥⎝ ⎠ ⎣ ⎦

∑   (5) 

It can be shown that finite k  estimators n̂  and x̂  that satisfy Equations (2) and (3) 

converge to n̂∞  and zero, respectively, as k →∞ .  Via heuristics in Monte Carlo 

simulation we have found 5k m≥ ⋅  to be a good rule-of-thumb for the choice of k  

when using the finite estimation procedure.  In general, however, prior work [39] has 

shown that approximations of the management metrics of interest (e.g., expected 

reliability) are not sensitive to the value of k  provided it is chosen to be sufficiently 

large, as indicated by the rule-of-thumb criterion above.  This means that the limiting 

approximations as k →∞ are not much different in magnitude than those based on 

the true value of k  (even for small values such as 25k = ).  Hence, the reason why 

we do not bother deriving an estimate of k .  Finally, note that the use of the failure 

mode first occurrence data allows this assessment procedure to be used independently 

of the corrective action strategy.  However, additional estimation procedures based on 

count data (i.e., number of failures for individual failure modes) [37] are available in 

the case where all corrective actions are delayed until the end of the current test 
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phase.  These alternate procedures can be used to estimate model parameters in a 

similar fashion under a delayed corrective action strategy. 

 

7.2.3. GOF Procedures 

 

7.2.3.1. Expected Number of Failure Modes 

  

The GOF of our model can be graphically studied by comparing the actual 

cumulative number of observed failure modes versus trials, against the expected 

number of failure modes given by our model.  GOF can also be examined via a 

statistical test.  Both of these approaches depend on our logically derived exact 

expression for the expected number of failure modes observed on or before trial t .  

To develop this expression, let ( )iI t  denote the indicator function such that 

( )
1 if failure mode  is observed on or before trial 
0 otherwisei

i t
I t

⎧
≡ ⎨
⎩

  (6) 

From (5), the true number of unique failure modes observed on or before trial t  is, 

( ) ( )
1

k

i
i

m t I t
=

≡ ∑     (7) 

where k  is the true but unknown total potential number of failure modes in the 

system.  Assuming that trials are statistically independent and that the ip  for 

1,...,i k=  are constant, the mathematical expectation of (5) is 

( ) ( )1 1 t
i iE I t p⎡ ⎤ = − −⎣ ⎦     (8) 
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Let ( )1, , kp p p≡K …  denote the vector of the true (but unknown) failure probabilities 

inherent in the system.  From (7) and (7) the conditional expected number of failure 

modes (i.e., conditioned on pK ) observed on or before trial t is, 

( ) ( ) ( ) ( ) ( )
1 1 1

| 1 1 1
k k k

t t
k i i i

i i i

t p E m t E I t p k pμ
= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ = = − − = − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ ∑K  (9) 

This expression has the following convenient interpretation: the expected number of 

failure modes observed on or before trial t  is equivalent to the total potential number 

of failure modes in the system minus the expected number of failure modes that will 

not be observed in t trials.  Notice the initial condition of (13) suggests that the 

expected number of failure modes on trial 0t =  (i.e., before testing begins) is 

( )0 | 0k t pμ = =K , as expected. 

 To assess the mathematical expectation of (13) with respect to the ip  recall 

that the t-th moment of a beta r.v. X  is defined as 

( )( )

0

t t
x s

E X M s
=

⎡ ⎤ ≡⎣ ⎦     (10) 

where 

( ) ( )
1

( )

0 !

i ti
t

x
i t j

n x j sM s
n j i t

−−∞

= =

⎡ ⎤⎡ ⎤⎛ ⎞− +
= ⋅ ⎢ ⎥⎢ ⎥⎜ ⎟+ −⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∏    (11) 

is the t-th derivative of the beta MGF.  By interpreting the failure probabilities in (13) 

as iid beta r.v., we have derived the unconditional expected number of failure modes 

observed on or before trial t.  The motivation for doing this is to express (13) in terms 

of the beta shape parameters, rather than the ip  for 1,...,i k=  (e.g., to obtain a 

marginal expression).  From (10) and (11) we have found 
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( ) ( ) ( ) ( )
( ) ( )

( )1 0t t
i x

n n x t
E P M

n x n t
Γ ⋅Γ − +⎡ ⎤− ≡ =⎣ ⎦ Γ − ⋅Γ +

   (12) 

where ( ) 1

0

x tx t e dt
∞ − −Γ ≡ ⋅∫  denotes the Euler gamma function.  From (13) and (12) 

the true unconditional expected number of unique failure modes observed on or 

before trial t  becomes 

( ) ( ) ( ) ( ) ( )
( ) ( )1

| 1 1
k

t
k k i

i

n n x t
t E t P k E P k

n x n t
μ μ

=

⎛ ⎞Γ ⋅Γ − +⎡ ⎤⎡ ⎤≡ = − − = ⋅ −⎜ ⎟⎣ ⎦ ⎜ ⎟⎣ ⎦ Γ − ⋅Γ +⎝ ⎠
∑

K
 (13) 

Notice that (13) is only a function of three unknowns, namely, k  and the two beta 

shape parameters n  (i.e., pseudo trials) and x  (i.e., pseudo failures).  Since k  is 

typically large and unknown, it is desirable to derive the limiting behavior of (13) as 

k →∞ .  After reparameterizing (13) with ( )1

,1 k
k Ix n R= ⋅ −  (e.g., see [37]), we find its 

limiting behavior to be, 

( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ
ˆ ˆlim

ˆ ˆkk

n t n
t t m

n T n
ψ ψ

μ μ
ψ ψ

∞ ∞
∞ →∞

∞ ∞

⎡ ⎤+ −
≡ = ⋅ ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
  (14) 

where ( ) ( )
( )

x
x

x
ψ

′Γ
≡
Γ

 denotes the digamma function, and n̂∞  satisfies (11).  Note that 

Equations (13) and (14) are mean-value functions that can be utilized to estimate the 

expected number of unique failure modes observed on or before trial t .  Thus, they 

are comparable to ( )t t βμ λ= ⋅  of the typical PLP approach. 

 

7.2.3.2. Hypothesis Test 
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To assess model GOF via a statistical test, one can use the common chi-

squared approach [12] with our expected frequency function.  The null hypothesis, 

0H , is the conjecture that our model fits the data and can be suitably applied, whereas 

the alternative hypothesis, denoted by aH , expresses the contrary.  The test statistic is 

calculated in the usual manner, 

( )2

2

1

ˆ

ˆ
c i i

i i

O E
X

E=

⎡ ⎤−⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑      (15) 

where c is the number of cells in the GOF table .  The observed frequencies, iO , 

represent the total number of new failure modes observed in class interval 1, ,i c= … .  

Using (14) (without loss of generality (13) could also be used), the expected 

frequencies in (15) are calculated by 

( ) ( )
( )

( ) ( )
( ) ( )

1 1ˆ i i i i
i

y y n y n y
E m m

T n T n
μ μ ψ ψ

μ ψ ψ
∞ + ∞ ∞ + ∞

∞ ∞ ∞

⎡ ⎤ ⎡ ⎤− + − +
≡ ⋅ = ⋅⎢ ⎥ ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� � � �
� � �  (16) 

where iy  for 1, , 1i c= +…  are the endpoints of the class intervals chosen by the 

practitioner (note that 1 0y = ).  The right-hand product term in (16) represents the 

class probability (i.e., the probability of being in a given class interval).  Thus, the 

condition 
1

1 ˆ 1
c

i
i

E
m =

⋅ =∑  holds.  Given the high test cost of some one-shot systems, the 

number of observed failure modes in many applications will be limited.  Thus, the 

total number of trials should be divided into class intervals such that the expected 

frequencies 2iE ≥  for 1, ,i c= …  and 3c ≥  at a bare minimum. 
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The rejection region is any value of the test statistic (15) greater than the 

critical point.  The critical point (obtained by table-lookup) is denoted by 2
, 2cXα −  with 

α significance level and 2c −  degrees of freedom.  A degree of freedom is lost for 

each estimated model parameter.  In this case, the first degree of freedom is lost by 

using m , the total number of observed failure modes.  This means that only 1c −  

observed cell frequencies in the GOF table are uniquely determined.  The second 

degree of freedom is lost by estimating the beta shape parameter n  (e.g., pseudo 

trials).  Hence, the critical point is based on 2c −  degrees of freedom.  Clearly, the 

null hypothesis, 0H , is rejected if 2 2
, 2cX Xα −≥ .  In this case, there is statistical 

evidence at the α level of significance that the model does not fit the data.  Failure to 

reject 0H  occurs when 2 2
, 2cX Xα −< , indicating that there is no statistical evidence 

against the model.  Either way, the graphical method discussed above illustrates the 

associated correlation (e.g., high, or lack thereof) between (13) and/or (14) in 

comparison to the actual cumulative number of observed failure modes versus trials.  

A numerical example is given below for a dataset comprised of only a small number 

of (i.e., 7m = ) observed failure modes. 

 

7.2.4. CI Procedures 

 

We shall now derive an approximate CI estimate on the expected reliability of 

a one-shot system [39] given by, 

( ) ( ) ( )
( ) ( )

1 1
1 1 1

k

k

n x t n xR t d
n x n t n

⎡ ⎤⎛ ⎞⎡ ⎤Γ − + − ⋅Γ +
⎢ ⎥= − − − ⋅ ⋅⎜ ⎟⎢ ⎥⎜ ⎟Γ − ⋅Γ +⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

  (17) 
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where i
i obs

d d m
∈

≡ ∑  is an average FEF.  For simplicity, let the expression in (17) be 

denoted by R .  To derive an approximate CI on R , we utilize the Fisher matrix 

normal approximation approach discussed by Nelson in [8].  Since ( )0,1R∈  is not 

consistent with the domain of a normal r.v., we proceed by developing a CI on the 

monotone increasing and differentiable log-odds transform of R  given by, 

ln
1

Rh
R

⎛ ⎞≡ ⎜ ⎟−⎝ ⎠
      (18) 

which ensures that ( ),h∈ −∞ ∞ .  Thus, for large sample sizes the cumulative 

distribution of ĥ  (i.e. ML estimate of (18)) is approximately normal with mean h  and 

standard deviation 

( ) 1
0

ˆ ˆ ˆ ˆTs h H F H−= ⋅ ⋅      (19) 

Let the ML estimate of (17) be denoted by R̂ .  In (19), Ĥ  is the column vector of 

partial derivatives of the log-odds transform (18) w.r.t. the beta parameters given as, 

( )

( )

ˆ
ˆ

ˆ ˆ1
ˆ

ˆ ˆ
ˆ ˆ1

n

x

R
h

R RnH
Rh

x R R

⎡ ⎤′⎡ ⎤∂ ⎢ ⎥
⎢ ⎥ ⋅ −⎢ ⎥∂⎢ ⎥≡ = ⎢ ⎥
⎢ ⎥ ′∂ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⋅ −⎢ ⎥⎣ ⎦

    (20) 

(the partial derivatives ˆ
nR′  and ˆ

xR′  are given in the Appendix) and 1
0̂F −  is an estimate 

of the inverse of the true theoretical Fisher information matrix (i.e., the true 

asymptotic covariance matrix of the ML estimators n̂  and x̂ ).  0F  is given as, 
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( ) ( )

( ) ( )

2 2

0 02

0 2 2

0 0 2

, ,

, ,

L n x L n x
E E

n n x
F

L n x L n x
E E

x n x

⎡ ⎤⎡ ⎤ ⎡ ⎤−∂ −∂
⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ⋅∂⎢ ⎥⎣ ⎦ ⎣ ⎦= ⎢ ⎥⎡ ⎤ ⎡ ⎤−∂ −∂⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ⋅∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

   (21) 

The expectations in (21) are calculated as, 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

0 2

2 2

2 2
1

2 2

2 2
1

,

ln | , ln | ,
| , | ,

ln | , ln | ,
| , | ,

i

i

T
i

i
i obs t j obs

T
i

i
t

L n x
E

n

f t n x R T n x
f t n x R T n x

n n

f t n x R T n x
m f t n x k m R T n x

n n

′∈ = ∈

=

⎡ ⎤−∂
≡⎢ ⎥∂⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ ⋅ + − ⋅ ⋅⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

∑∑ ∑

∑
  (22) 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

0 2

2 2

2 2
1

2 2

2 2
1

,

ln | , ln | ,
| , | ,

ln | , ln | ,
| , | ,

i

i

T
i

i
i obs t j obs

T
i

i
t

L n x
E

x

f t n x R T n x
f t n x R T n x

x x

f t n x R T n x
m f t n x k m R T n x

x x

′∈ = ∈

=

⎡ ⎤−∂
≡⎢ ⎥∂⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ ⋅ + − ⋅ ⋅⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

∑∑ ∑

∑
  (23) 

and 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

0 0

2 2

1

2 2

1

, ,

ln | , ln | ,
| , | ,

ln | , ln | ,
| , | ,

i

i

T
i

i
i obs t j obs

T
i

i
t

L n x L n x
E E

n x x n

f t n x R T n x
f t n x R T n x

n x n x

f t n x R T n x
m f t n x k m R T n x

n x n x

′∈ = ∈

=

⎡ ⎤ ⎡ ⎤−∂ −∂
= ≡⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ + ⋅⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−∂ −∂

= ⋅ ⋅ + − ⋅ ⋅⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∑∑ ∑

∑
(24) 

where, 
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( ) ( ) ( )
( ) ( )

1 1
| ,

,
i

i
i

x n x t
f t n x

x n x n t
Γ + ⋅Γ − + −

≡
Β − ⋅Γ +

   (25) 

is the marginal beta-geometric density for the m  observed failure modes (i.e., the 

complete observations) and, 

( ) ( ) ( )
( ) ( )

| ,
n n x T

R T n x
n x n T

Γ ⋅Γ − +
≡
Γ − ⋅Γ +

    (26) 

is the marginal beta-geometric reliability function for the k m−  Type I censored 

observations.  After the detailed Fisher analysis required to obtain the estimate of the 

standard deviation, the desired 100 %γ⋅  CI on expected system reliability is given by, 

( )
1,

ˆ1 ˆ1 expˆ

R R
R z s h

R γ

⎡ ⎤ =⎣ ⎦ ⎛ ⎞− ⎡ ⎤+ ⋅ ± ⋅⎜ ⎟ ⎣ ⎦⎝ ⎠

�
�

   (27) 

where R̂  is an ML estimate of (17), zγ  is the ( )100 1 2γ⋅ −  percentile of the standard 

normal distribution, and ( )ˆs h  is given by (19). 

 

7.3. Numerical Examples & Simulation 

 

7.3.1. GOF Procedures 

 

7.3.1.1. Graphical Method 

 

Since the true failure probabilities, beta parameters, and other quantities of 

interest are unknown in practice, Monte Carlo simulation is used to generate the 

following numerical example.   The simulation performed 50 trials of a one-shot 
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system comprised of 25 failure modes.  The probabilities of occurrence 1, , kp p…  for 

each failure mode were stochastically generated via a beta r.v. with a s-mean of 

0.0200μ =  and a s-variance of 2 0.0020σ = .  The number of failures for each failure 

mode per trial were stochastically generated from a Bernoulli r.v. with parameter ip  

for 1, ,i k= … .  During simulation, only 7 of 25 failure modes were observed with a 

total of 23 failures.  The statistical estimation procedures presented above (e.g., to 

obtain ML estimates of the beta shape parameters) only require and use the 7 FOT, 

denoted by it  for i obs∈ .  In this example the FOT are { }1, 2,11,14, 22,33,39t =
K

.  

These ML estimates in addition to their limiting approximations as k →∞  are given 

in Table 13.  The column titled True represents the true values of the beta parameters 

utilized to stochastically generate the failure probabilities 1, , kp p… .  The column 

labeled MLE K shows the ML estimates obtained as the solutions to Equations (2) 

and (3).  The column titled MLE ∞ denotes our limiting approximations of the beta 

parameters.  The limit of the MLE for the beta parameter n  is found as the solution to 

(11).  The MLE of x  converges to zero as k →∞ . 

 

 True MLE K MLE ∞ 
n  8.800 7.193 4.468 
x  0.176 0.152 0 

Table 13.  Beta Parameters. 
  

 The parameter estimates shown in Table 13 are utilized to approximate 

Equations (13) and (14) above.  These curves, shown in Figure 27,  provide a 

graphical means from which the GOF of our model can be assessed.  The actual 

cumulative number of observed failure modes (i.e., the stochastic realization) are 
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represented by black dots, and correspond to the series titled Observed.  The smooth 

black series, labeled Expected, is generated by (13) with the true values of k , as well 

as the true values of the beta parameters (e.g., column 1 of Table 13).  This series 

represents the true expected number of failure modes observed on or before trial t  

given by our model with no parameters estimated.  The series labeled MLE K is also 

generated via (13) with the true value of k , but uses the ML estimates shown in 

column 2 of Table 13.  The sensitivity of not knowing k  is illustrated by the series 

titled MLE ∞, which is generated by (14) with the limiting approximations of the beta 

parameters given in column 3 of Table 13.  The high correlation of our 

approximations in comparison to the actual observed number of failure modes, shown 

in Figure 27, is a graphical indication that our model reasonably fits the data.  Hence, 

the associated reliability growth management metrics in [39] can be suitably applied. 
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Figure 27.  Observed / Expected Failure Modes vs. Trials. 

 

7.3.1.2. Hypothesis Test 
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Using the procedure outlined above, the chi-squared GOF table is constructed 

and shown in Table 14.  The class intervals are divided such that the expected 

frequencies in each cell ˆ 2iE ≥  and are approximately equal in magnitude.  The class 

intervals and associated number of trials are shown in the second and third columns.  

The observed frequency represents the actual number of new failure modes 

discovered in the each class interval.  For example, there were 2 failure modes 

discovered in the first 5 trials.  The expected frequencies are computed from our 

model based on (16) with 7m =  and { }0,5,15,50y =K .  The last column shows the 

terms of the chi-squared GOF test statistic for each class interval.  The value of the 

test statistic is 2 0.0662X ≈ .   

 

 Class 
Interval 

No. Trials 
in Class 

iO  Observed 
Frequency 

iE  Expected 
Frequency 

( )2
i i

i

O E
E
−

 

1 1-5 5 2 2.1833 0.0154 
2 6-15 11 2 2.1478 0.0102 
3 16-50 34 3 2.6689 0.0411 
  Total: 7 7 0.0667 

Table 14.  GOF Table. 
  

Using a significance level of 0.20α = , the one-sided upper rejection region is 

defined as any value of the test statistic such that 2 2
0.20,1 1.6424X X≥ ≈ .  Since the test 

statistic is not in the rejection region, we fail to reject 0H  (i.e., fail to reject that the 

model fits the data).   
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Figure 28.  Chi-Squared Test Statistic. 

 

7.3.1.3. Monte Carlo Simulation 

 

The GOF procedure presented above assumes that the test statistic (15) 

follows the chi-squared distribution.  As a means to investigate the assumed 

approximation, we have utilized Monte Carlo simulation to construct an empirical 

distribution for the test statistic to compare against the chi-squared PDF for the 

appropriate degrees of freedom.  The simulation consists of the following steps: 

1. Simulation inputs.  Due to high costs of missile and other types of one-shot 

systems, the number of trials conducted and failure data obtained from 

developmental testing can be very limited.  As a result, our study simulates a 

very conservative scenario with respect to the number of trials conducted and 

failure data available for estimation purposes.  This also means that most 

applications of these test procedures will require 3 or 4 cells to construct the 

GOF table (since the expected frequencies will not be large in magnitude).  

Thus, this study focuses on the approximation for a chi-squared distribution 

based on 1 and 2 degrees of freedom.  Simulation inputs include: 30T =  trials 

Chi-squared test statistic 

Rejection Region 
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(per replication), and 50k =  total potential number of failure modes.  The 

mean and variance of the failure probabilities used in the study include 

( )0.0165,0.02875μ∈  (adjusted to increase the expected frequencies when 

increasing the number of cells in the GOF table) and 2 0.001σ = , respectively.  

The mean and variance of the beta distribution are chosen as inputs, rather 

than the beta parameters, since they are more intuitive quantities to specify.  

An average FEF of 0.80d =  was used. 

2. Failure probabilities.  Failure mode probabilities of occurrence 1, , kp p…  were 

stochastically generated from a beta distribution with shape parameters 

( )2 2 2n μ μ σ σ= − −  pseudo trials, and x n μ= ⋅  pseudo failures. 

3. Failure histories.  Failure histories for each failure mode were stochastically 

generated via a Bernoulli distribution with parameter ip  for 1, ,i k= … .  The 

it  for i obs∈  required in our estimation procedures are obtained by these 

failures histories as the trial numbers when each observed failure mode was 

first discovered. 

4. Test statistic.  As a bare minimum, our test procedure requires 3c ≥  (i.e., at 

least 3 cells in the GOF table to give at least one degree of freedom).  Using 

the failure data stochastically generated from the previous step, the test 

statistic is calculated by a routine which takes into consideration three factors.  

First, the routine requires the expected frequencies ˆ 2iE ≥  for each 1, ,i c= … .  

Second, the cell boundaries of the class intervals are chosen such that their 

expected frequencies are close in magnitude to one another.  For example, if 
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there are 12m =  observed failure modes and 3c =  cells in the GOF table, the 

expected frequencies would be about / 4iE m c≈ =  for each 1, ,i c= … .  

Flexibility in the magnitudes of the expected frequencies for adjacent class 

intervals is incorporated as a result of the use of an optimality criterion to 

minimize error in the test statistic.  This is achieved by selecting the cell 

boundaries as the trial number which yields the lowest mean squared error (in 

addition to satisfying the first two conditions). 

The simulation, as outlined above, generates data analogous to that which is typically 

captured during a single developmental test for a one-shot system.  The results below 

are based on 10,000r =  replications of the simulation.  For Figures 29 and 30, only 

12 and 20 of 50 failure modes were observed on average, respectively, from which to 

estimate model parameters and the test statistic.  Given so few data (which is realistic 

in many applications) only 3 and 4 cells, respectively, were used to construct the GOF 

table during each replication.  The associated chi-squared distributions have 1 and 2 

degrees of freedom, respectively.  Figure 29 and 30 show plots of the empirical 

distributions of the test statistic constructed via simulation, versus their actual chi-

squared distributions.  The close agreement between the true and empirical 

distributions indicate that the approximation procedure even under limited data 

availability for estimation purposes is quite good.  Naturally, deterioration in the 

approximating statistic was observed as the expected frequencies in these plots get 

smaller than 4 and 5, respectively.   
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   Figure 29.  Empirical Distribution, d.f. = 1.         Figure 30.  Empirical Distribution, d.f. = 2. 
 

7.3.2. CI Procedures 

 

7.3.2.1. Numerical Example 

 

Using an average FEF of 0.80d = , and the it  for i obs∈ , the ML estimate of 

the expected reliability via (17) is ˆ 0.8649R = .  Thus, the ML estimate of (18) is 

ˆˆ ln 1.8569ˆ1
Rh

R
⎛ ⎞

≡ =⎜ ⎟
−⎝ ⎠

.  The column vector of partial derivatives of the log-odds 

transform (18) w.r.t. the beta parameters is, [ ]ˆ 0.1086, 6.4720 TH = − , where the 

partial derivatives (i.e., given by (28) and (29) in the Appendix) evaluate to 

ˆ 0.0127nR′ =  and ˆ 0.7561xR′ = − , respectively.  The ML estimate of the inverse Fisher 

information matrix is 1
0

227.2270 5.0428ˆ
5.0428 0.1003

F − − −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

.  Given these estimates, the 

desired standard deviation is ( ) 1
0

ˆ ˆ ˆ ˆ 0.4541Ts h H F H−= ⋅ ⋅ = .  From (27), an 80% CI 

estimate on the true but unknown expected reliability is ( )0.7816,0.9197R∈ .  The 

true reliability in this example is 0.8662R = . 
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7.3.2.2. Monte Carlo Simulation 

 

A natural concern in the use of an approximate CI routine is the accuracy 

associated with its coverage probability.  In the context of this paper, the coverage 

probability estimates the fraction of times (out of the total numbers of replications) 

that the approximate CI contains the true expected reliability of a one-shot system 

after correction.  It is well-known that CI procedures based on a normal 

approximation (especially when data censoring is involved) tend to yield a coverage 

probability less than the nominal, or advertised, confidence level (e.g., see Meeker et 

al. [29], and [36]).  This means that an approximate CI tends to be slightly tighter 

than one which is exact.  As a result, an approximate CI routine may advertise, for 

example 80% confidence, when it is really only giving say 75%. 

To address these concerns we have developed a Monte Carlo simulation to 

estimate the coverage associated with the approximate CI procedure presented herein.  

The simulation consist of the previous three simulation steps in addition to the point 

and CI estimation of the quantities given above.  Simulation results, after 10,000r =  

replications, yield 7,920 confidence intervals that contained the true reliability (e.g., 

79.2% coverage against an 80% confidence level).  The histogram (scaled to a 

probability density) of the 10,000 estimates of (18) are shown in Figure 31.   
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Figure 31.  Probability Density of ĥ  based on 10K Replications. 

 

As illustrated by Jeng and Meeker in [29], the coverage of an approximate CI 

routine depends on the volume of censored data involved.  Using the same inputs 

given above with the exception of decreasing 0.02μ =  (which decreases the number 

of observed failure modes to 14m = ), the coverage decreases to 71.5%.  Not 

surprisingly, 71.5% coverage is less than the nominal 80% confidence level that was 

used.  Overall, the important point to take away from this is to be cognizant of the 

deterioration in the coverage probability (relative to the value of m ) when using any 

approximate CI routine. 

 

7.4. Concluding Remarks 

  

In this paper, we have presented approximate GOF and CI procedures for our 

reliability growth projection model given in [39].  The graphical GOF approach 

highlights the correlation between the actual cumulative number of observed failure 

modes versus trials, against the expected number of observed failure modes given by 

our model.  The second technique is a statistical GOF test procedure based on an 
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approximating chi-squared random variable.  Both of these techniques are based upon 

our logically derived exact expression (13) of the expected number of failure modes 

observed in testing.  This exact expression is found to be a function of only three 

unknowns including k  (the total potential number of failure modes in the system) and 

the two beta shape parameters n  and x .  For an assumed value of k , our ML 

estimates of these parameters are given as the solutions to (2) and (3).  The sensitivity 

of not knowing k  is quantified by our limiting approximations as k →∞  (e.g., the 

solutions to (10) and (11)), which are used in conjunction with (14).  Monte Carlo 

simulation results show that the approximating test statistic follows the chi-squared 

distribution for the appropriate degrees of freedom when the expected frequencies are 

sufficiently large (e.g., greater than 4).  Using a Fisher matrix normal approximation 

approach, an approximate CI routine was developed to obtain an interval estimate on 

the expected reliability of a one-shot system (17).  Monte Carlo simulation results 

indicate that the coverage of this approximate routine is largely a function of the 

volume of censored data involved.  Coverage probabilities generally ranged between 

0.70-0.80 in comparison to a nominal 80% confidence level.  These results are based 

on a conservative volume of data (e.g., 14 33−  observed failure modes on average out 

of 50) available for estimation purposes.  Numerical examples were presented to 

illustrate these techniques. 

 

Appendix 
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The partial derivatives of the expected reliability (17) with respect to the beta shape 

parameters n  (i.e., pseudo trials) and x  (i.e., pseudo failures) are given respectively 

by, 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1

2 2

1 1
1 1 1

,

1 1

k

n

n n x t x xR k d
x x n x n t n

x n n x t n n t n x n x tx x d
n n n t n x

ψ ψ ψ ψ

−
⎡ ⎤⎛ ⎞⎡ ⎤⋅Γ − + − ⋅Γ +

′ ⎢ ⎥= ⋅ − − − ⋅ ⋅ ×⎜ ⎟⎢ ⎥⎜ ⎟⋅Β − ⋅Γ +⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎡ ⎤⋅Γ ⋅Γ − + − ⋅ − + − − + − + −⎣ ⎦⎢ ⎥× − + ⋅⎜ ⎟

⎜ ⎟Γ + ⋅Γ −⎢ ⎥⎝ ⎠⎣ ⎦
(28) 

and 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1
1 1

1 1 1
,

1 1 11 1

k

x

n n x t x xR k d
x x n x n t n

n n x t x n x x n x t
d

n n t n x n
ψ ψ

−
⎡ ⎤⎛ ⎞⎡ ⎤⋅Γ − + − ⋅Γ +

′ ⎢ ⎥= ⋅ − − − ⋅ ⋅ ×⎜ ⎟⎢ ⎥⎜ ⎟⋅Β − ⋅Γ +⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎡ ⎤Γ ⋅Γ − + − ⋅ + ⋅ − − ⋅ − + −⎣ ⎦⎢ ⎥× − ⋅ −⎜ ⎟
⎜ ⎟Γ + ⋅Γ −⎢ ⎥⎝ ⎠⎣ ⎦

(29) 

The ML estimates, ˆ
nR′  and ˆ

xR′ , for these expressions are obtained by substitution of 

the ML estimates n̂  and x̂  in place of the true but unknown beta parameters n  and 

x , respectively. 
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8. BAYESIAN ESTIMATION PROCEDURES 

 

Abstract 

 

The purpose of this chapter is to develop Bayesian procedures that can be 

utilized as alternatives to the classical estimation methods developed in Chapters 4 

and 6.  One of the advantages of these Bayesian procedures is that they directly 

quantify the epistemic uncertainties in model parameters (i.e., the shape parameters of 

the beta distribution), and the management metrics previously discussed.  Another 

advantage is that all a priori engineering knowledge can be utilized in the assessment 

procedure.  Analytical results are presented to obtain Bayes’ estimates of the beta 

shape parameters for both corrective action strategies.  A Monte Carlo approach is 

outlined for constructing uncertainty distributions on the management metrics.  For 

inference on interval estimation, Bayesian probability limits are obtained in the usual 

manner (i.e., via desired percentiles of the uncertainty distributions).  Numerical 

examples are given to illustrate these Bayesian procedures.  In particular, Bayes’ 

estimates of the beta shape parameters are obtained for a given sample of data.  Also, 

Bayesian epistemic uncertainty distributions for all reliability growth management 

metrics are constructed via the proposed Monte Carlo approach. 

 

Keywords:  Bayesian, beta distribution, shape parameters. 
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Acronyms 

 

FEF – Fix Effectiveness Factor(s) 

FOT – First Occurrence Trial(s) 

MME – Method of Moments Estimation/Estimate(s) 

MLE – Maximum Likelihood Estimation/Estimate(s) 

 

Notation 

 

k  - total number of potential failure modes. 

m  - total number of observed failure modes. 

n  - beta shape parameter representing the pseudo number of trials. 

x  - beta shape parameter representing the pseudo number of failures. 

T  - total number of trials. 

,i jN  - number of failures for mode i  in trial j  – zero or unity. 

iN  - total number of failures for mode i  in T trials. 

it  - trial number of first occurrence of failure mode i . 

ip  - probability of occurrence for failure mode i . 

 

8.1. Background 

 

The foundation of Bayesian statistical inference rests upon the notion of 

subjective probability, which contrasts with the well-known classical frequency 
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interpretation52.  The Bayesian approach is achieved via the construction of a 

posterior distribution of belief for a given parameter.  Such a distribution follows 

directly from Bayes’ Theorem [97] given by, 

( ) ( ) ( )
( )

|
|

P B A P A
P A B

P B
⋅

=     (1) 

where 

1. ( )|P A B  is the posterior distribution. 

2. ( )|P B A  is the likelihood function. 

3. ( )P A  is the prior distribution. 

4. ( )P B  is referred to the normalization, or correction, factor. 

In (1) the prior, ( )P A , expresses the state of knowledge, or ignorance, about event A 

without sample data or previous experience.  The likelihood function, ( )|P B A , 

expresses the state of knowledge about event B given evidence A.  The normalization 

factor, ( )P B , ensures that the posterior distribution is a PDF and can be expressed 

as, 

( ) ( ) ( ) ( ) ( )| |P B P B A P A P B A P A= ⋅ + ⋅    (2) 

where A  denotes the compliment of the event A.  Finally, the posterior distribution, 

( )|P A B , expresses the state of knowledge about A given some type of known 

information, data or evidence, B. 

 

8.2. Likelihood Functions 
                                                 

52 The frequency interpretation refers to the concept of probability as defined by the limiting frequency of repeatable events. 
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8.2.1. Delayed Strategy 

 

Estimation procedures (e.g., MME and MLE) were developed in Chapter 4 to 

estimate the beta shape parameters under a delayed corrective action strategy.  When 

corrective actions are delayed until the end of the current test phase, the failure 

probabilities ip  generating the failures iN  for 1, ,i k= …  are not reduced by their 

corresponding FEF (e.g., the id  for observed failure modes) during test.  In this case, 

the marginal distribution of an individual observation (e.g., iN ) given by Martz and 

Waller [97] is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

!
| ,

! !
i i

i
i i

T n N x T n N x
f N x n

N T N T n x n x
⋅Γ ⋅Γ + ⋅Γ + − −

=
⋅ − ⋅Γ + ⋅Γ ⋅Γ −

  (3) 

where n represents pseudo trials, x represents pseudo failures, and 

( ) 1

0

x tx t e dt
∞ − −Γ ≡ ⋅∫  is the Euler gamma function.  The product of these terms for 

each failure mode is the (joint) marginal likelihood function of the entire sample, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1

!
| , | ,

! !

k k
i i

i
i i i i

T n N x T n N x
L N x n f N x n

N T N T n x n x= =

⋅Γ ⋅Γ + ⋅Γ + − −
= =

⋅ − ⋅Γ + ⋅Γ ⋅Γ −∏ ∏
K

 (4) 

Two important assumptions associated with the derivation of (4) is that the failure 

probability, and number of failures observed for each failure mode (e.g., the 

conditional distributions) follow the beta, and binomial distributions, respectively.  

Thus, (3) is sometimes refereed to as the marginal beta-binomial distribution, and is a 

popular doubly stochastic process. 
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8.2.2. Arbitrary Strategy 

 

If program management adopts an arbitrary corrective action strategy where, 

failure probabilities for observed failure modes (e.g., the ip  for 

{ }: 0 for =1, ,ii obs i N i k∈ ≡ > … ) can be reduced by the fractional amounts specified 

by their corresponding FEF.  Under this corrective action strategy, the marginal 

distribution for a single observation iN  is not, in general, given by (3).  The reason 

why is because this strategy does not operate under binomial sampling since the 

otherwise binomial parameter ip  may not remain constant over the entire T  trials for 

each 1, ,i k= … , as assumed in the derivation of (3).  Thus, to estimate the beta shape 

parameters under this corrective action strategy a likelihood function is needed that is 

consistent with the manner in which failure modes are mitigated.  Such a likelihood 

function is presented in detail in Chapter 6 and is based on the trial numbers when 

failure modes are first discovered.  The (joint) marginal likelihood function for the 

sample is given by, 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1
| , !

,

k m

i

i obs i

k n n x T x n x t
L t n x m

m n x n T n t x n x

−

∈

⎡ ⎤ ⎡ ⎤Γ ⋅Γ − + Γ + ⋅Γ − + −⎛ ⎞
= ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ Γ − ⋅Γ + Γ + ⋅Β −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

∏
K

  (5) 

where ( ) ( ) ( )
( ) ( )

1 11

0
, 1 baa b

a b t t dt
a b

−−Γ ⋅Γ
Β ≡ = ⋅ −

Γ + ∫  is the Euler beta function, m  is the 

total number of observed failure modes, and t
K

 is the vector of first occurrence trial 

numbers it  for i obs∈ .  Notice that the middle product-term in (5) represents the 

k m−  Type I (i.e., time) censored observations which result from the unobserved 

failure modes.  Thus, data censoring is accounted for. 
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8.3. Estimation of Beta Shape Parameters 

 

8.3.1. Delayed Strategy 

 

To construct a joint posterior distribution on the beta shape parameters, a 

natural prior selection, at least initially, would be uniform, 

( )0 ,x n cπ += ∈\     (6) 

If the failure probabilities 1, , kp p…  are assumed to constitute a realization of an i.i.d. 

sample 1, , kP P…  such that ( )~ ,iP Beta n x , the joint posterior based on the entire 

sample for a uniform prior is, 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0

00 0

1

0 0
1

| , ,
, |

| , ,

!
! !

!
! !

n

n x

k
i i

i i i

kn i i

n x
i i i

L N x n x n
x n N

L N x n x n dxdn

T n N x T n N x
N T N T n x n x

T n N x T n N x
dxdn

N T N T n x n x

π
π

π
∞

= =

=

∞

= =
=

⋅
=

⋅

⎡ ⎤⋅Γ ⋅Γ + ⋅Γ + − −
⎢ ⎥⋅ − ⋅Γ + ⋅Γ ⋅Γ −⎣ ⎦=
⎡ ⎤⋅Γ ⋅Γ + ⋅Γ + − −
⎢ ⎥⋅ − ⋅Γ + ⋅Γ ⋅Γ −⎣ ⎦

∫ ∫

∏

∏∫ ∫

K
K

K

 (7) 

Under squared-error loss, the Bayes’ estimates of n  and x  are calculated as 

mathematical expectations of the posterior distribution.  The Bayes’ estimates are 

given by, 

( ) ( )
0 0

, | , |
n

n n x
n E x n N n x n N dxdnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫

K K
  (8) 

and 

( ) ( )
0 0

, | , |
n

x n x
x E x n N x x n N dxdnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫

K K
  (9) 
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respectively. 

 

8.3.2. Arbitrary Strategy 

 

For a delayed or non-delayed corrective action strategy, the posterior 

distribution is constructed similarly using (5), 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0

00 0

0

| , ,
, |

| , ,

1 1
,

1 1
,

n

n x

k m

i

i obs i

k m
n i

n x
i obs i

L t x n x n
x n t

L t x n x n dxdn

n n x T x n x t
n x n T n t x n x

n n x T x n x t
dxdn

n x n T n t x n x

π
π

π
∞

= =

−

∈

−

= =
∈

⋅
=

⋅

⎡ ⎤ ⎡ ⎤Γ ⋅Γ − + Γ + ⋅Γ − + −
⋅⎢ ⎥ ⎢ ⎥Γ − ⋅Γ + Γ + ⋅Β −⎣ ⎦ ⎣ ⎦=

⎛ ⎞⎡ ⎤ ⎡ ⎤Γ ⋅Γ − + Γ + ⋅Γ − + −⎜ ⎟⋅⎢ ⎥ ⎢ ⎥Γ − ⋅Γ + Γ + ⋅Β −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∫ ∫

∏

∏∫

K
K

K

0

∞

∫

(10) 

The resulting Bayes’ estimates of the beta shape parameters based on the entire 

sample are, 

( ) ( )
0 0

, | , |
n

n n x
n E x n t n x n t dxdnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫

K K
  (11) 

and 

( ) ( )
0 0

, | , |
n

x n x
x E x n t x x n t dxdnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫

K K
  (12) 

 

8.3.3. Numerical Example 

 

Since the true values of the beta shape parameters are unknown in practice, 

Monte Carlo simulation is used to stochastically generate the data from which the 

proposed Bayes estimates are obtained and compared against the true parameters.  In 
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this example, the system is comprised of 20k =  failure modes and the system is 

tested for 50T =  trials.  The mean and variance of the beta distribution used to 

generate the failure mode probabilities of occurrence are 0.025μ =  and 2 0.0025σ = , 

respectively.  During simulation, 7m =  (of 20) failure modes were observed with a 

combined total of 24N =  failures.  The failure data that was generated is shown in 

Table 15.  The second column shows the failure mode numbers comprising the index-

set of observed failure modes.  The third column gives the true probability of failure 

for each of these observed failure modes.  The number of failures, trials of first 

occurrence, and individual FEF are shown in columns 4-6, respectively. 

 

 Failure 
Mode 

Probability
ip  

Failures 
iN  

FOT 
it  

FEF 
id  

1 10 0.0211 2 11 0.8874 
2 12 0.0172 1 27 0.8010 
3 13 0.1016 10 7 0.8613 
4 14 0.0195 1 30 0.8958 
5 17 0.0286 2 17 0.5812 
6 19 0.1187 7 4 0.6189 
7 20 0.0164 1 32 0.9222 

Table 15.  Failure Data. 
 

For a delayed corrective action strategy, estimates of the beta shape 

parameters are obtained using MME, MLE, as well as the Bayesian estimation 

procedures given above.  These parameter estimates, which are based on the count 

data shown in column 4 of Table 15, are given in columns 2-5 of Table 16, 

respectively.  The true values of the parameters are given in column 2.  The MME 

estimates for n  and x , given in column 3, are obtained via Equations (22) and (23), 

respectively, from Chapter 4.  The MLE estimates, shown in column 3, are obtained 



- CHAPTER 8 - 

 - Page 225 - 
 

as the solutions to Equations (31) and (32) from Chapter 4 when solved 

simultaneously.  The Bayesian estimates of n  and x  are obtained by Equations (8) 

and (9) above, respectively.   

For an arbitrary corrective action strategy, estimates of the beta parameters are 

obtained via MLE and Bayesian estimation procedures.  These estimates are shown in 

columns 6 and 7 in Table 16.  The MLE estimates are obtained as the solutions to 

Equations (6) and (7) in Chapter 6.  The Bayes estimates are given by Equations (11) 

and (12) above.  Notice that the Bayesian estimation procedure requires the beta 

shape parameter n  (i.e., pseudo trials) to be theoretically integrated over the entire 

parameter space ( )0,n∈ ∞ .  The practical parameter space (i.e., as opposed to the 

theoretical) from which the numerical integration must be carried-out includes 

realistic values for the parameter.  For example, if n  represents the true value of the 

parameter, the parameter space should cover the interval ( )0, n .  Since the true value 

of the parameter is unknown, one can use either the MME, MLE, or a multiple 

thereof.  The best results were discovered to result when integrating over the 

parameter space ( )0,1.5 kn n∈ ⋅ � , where kn�  is the finite k  MLE estimate for the beta 

parameter n  given in column 4 of Table 16.  For some stochastically generated 

datasets, this MLE can be lower than the true value of n .  This is the reason why the 

integration was performed using a multiple of 1.5 beyond kn� .  This endeavors to 

ensure the entire volume of under the parameter space is accounted for numerically. 

  DELAYED ARBITRARY 
 True MME MLE Bayes MLE Bayes 

n  8.750 9.650 9.206 8.797 32.320 9.168 
x  0.219 0.232 0.220 0.241 0.458 0.245 

Table 16.  Beta Parameter Estimates. 
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Notice that the MLE obtained under an arbitrary corrective action strategy is larger 

then the Bayes estimate.  There are a few points to be aware of when studying these 

estimates.  First, the estimates under an arbitrary corrective action strategy are not 

directly comparable to the true parameters, or the parameter approximations given in 

the delayed case.  The reason why is because the distribution is changing as a result 

of the failure probabilities being reduced via the corrective action effort.  Second, 

what would seem like large error in the magnitudes of the beta parameters, does not 

translate into large error for approximating the distribution, or the management 

metrics.  Finally, it should be noted that these estimates were generated from a single 

dataset (not estimated over several stochastic realizations).  Thus, the departures 

between the MLE and Bayes estimates are only an artifact of the outcome of a single 

dataset, and not stable results that would be achieved by replicating this process 

thousands of times. 

Figures 32 and 33 show the beta PDF approximations using the parameter 

estimates given in Table 16 for the delayed and arbitrary corrective action strategies, 

respectively.  Not surprisingly, the PDF approximations based on classical versus 

Bayesian methods are very close to one another.  For this particular stochastic 

realization, the Bayesian estimation procedure based on FOT (i.e., Figure 33) is found 

to more accurately approximate the true beta PDF in comparison to MLE. 
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   Figure 32.  Beta PDF – Delayed.            Figure 33. Beta PDF – Arbitrary. 
 

8.4. Management Metrics 

 

8.4.1. Simulation Approaches 

 

In the preceding section, Bayesian estimates of the beta shape parameters 

were obtained to approximate the initial prior density function of the failure 

probabilities inherent to a complex one-shot system.  This density can now be used to 

construct an initial prior density for each of the management metrics (e.g., a prior for 

the reliability of the corrected system).  Two Monte Carlo approaches, outlined 

below, are utilized to construct the desired empirical distributions.  The first 

simulation approach addresses the case where the 1, , kP P…  are considered to be a 

random sample from an i.i.d. beta r.v..  The second simulation approach address the 

case where the iP  for 1, ,i k= …  are still independent beta random variables, but not 

necessarily identically distributed.  Without loss of generality, a numerical example is 

given to illustrate the first simulation approach.  The simulation steps are as follows: 
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1. Use the Bayesian estimation procedures in the preceding section to estimate 

the shape parameters of the beta distribution.  This distribution represents an 

uncertainty distribution for the failure probabilities inherent to the system. 

2. Stochastically generate a size k  vector of failure probabilities 1, , kp p…  from 

the distribution constructed in the previous step. 

3. For each ip  for 1, ,i k= … , simulate a failure history by generating trial 

outcomes (i.e., 0 or 1) from a Bernoulli distribution with parameter ip .  The 

trial outcomes indicate either the occurrence or nonoccurrence of each failure 

mode in each trial 1, ,j T= … .  The count data iN  for each failure mode are 

obtained by summing the trial outcomes over all T  trials, for each failure 

mode 1, , kp p… .  The index-set of observed failure modes is the set of indices 

associated with failure modes observed during simulation.  The FOT it  for 

i obs∈  are obtained as the trial numbers when failure modes are first 

discovered. 

4. Stochastically generate a size k  vector of FEF 1, , kd d…  from a beta 

distribution.  The example below calculates the beta parameters based on a 

mean of 0.80 and variance of 0.01, which yield values of FEF typically 

assigned by a FPRB.  Note that these FEF remain fixed (i.e., are not generated 

anew) during each replication. 

5. Use the data obtained in the previous steps to calculate the management 

metric of interest.  In the example below, uncertainty distributions are 
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constructed for all of the management metrics.  They include: the expected 

initial reliability of the system (Equation (8) in Chapter 5), 

( ) ( )
1

1| 1
k

k i
i

R t p p
=

= = −∏K     (13) 

the expected reliability of the corrected system in trial T  (i.e., the final 

reliability, also computed via Equation (8) in Chapter 5), 

( ) ( )( )1

1

| 1 1 1 1
k

T
k i i i

i

R T p p d p−

=

⎡ ⎤⎡ ⎤= − − − − ⋅ ⋅⎢ ⎥⎣ ⎦⎣ ⎦∏K    (14) 

the reliability growth potential (i.e., the theoretical upper-limit on reliability 

that is achieved if all failure modes are found and corrected via a specified 

level of fix effectiveness, computed by Equation (11) in Chapter 5), 

( ) ( )
1

| 1 1
k

GP i i
i

R t p d p
=

⎡ ⎤= − − ⋅⎣ ⎦∏K    (15) 

the expected number of unique failure modes observed on or before trial T  

(i.e., observed before the end of the test phase, computed via Equation (13) in 

Chapter 5), 

( ) ( )
1

| 1
k

T
k i

i
T p k pμ

=

= − −∑K     (16) 

the expected probability of observing a new failure mode on trial T  (Equation 

(16) in Chapter 5), 

( ) ( ) 1

1

| 1 1 1
k

T
k i i

i

h T p p p−

=

⎡ ⎤= − − − ⋅⎣ ⎦∏K    (17) 

the expected probability of failure on trial T  due to a repeat failure mode, 

expressed as a fraction of the initial system unreliability (Equation (20) in 

Chapter 5), 
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( )
( )( )
( )

1

1

1

1 1 1 1
|

1 1

k
T

i i
i

k k

i
i

p p
T p

p
φ

−

=

=

⎡ ⎤− − − − ⋅⎣ ⎦
=

− −

∏

∏
K    (18) 

6. Repeat steps 1-3 and step 5 several times (e.g., 10,000r = ).  This generates 

values of the management metrics from which their empirical distributions are 

constructed. 

After the simulation is replicated several times, construct a histogram scaled to an 

area of unity using the data generated in step 6.  Beta and normal PDF 

approximations to the histogram can be obtained by estimating distribution 

parameters as either the mean and variance of the data, or functions thereof.  The 

Bayesian point-estimate and probability limits for the expected reliability of the 

corrected system are obtained in the usual manner (e.g., as the mean and desired 

percentiles of the distribution, respectively). 

If the 1, , kP P…  are not identically distributed an uncertainty distribution can 

be constructed for each observed failure mode by using in (7), ( )| ,if N x n  given by 

(3) in place of ( )| ,L N x n
K

.  For a uniform prior distribution, this gives a different 

joint distribution of the beta parameters in  and ix  for each ip  for 1, ,i k= … , 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0

00 0

0 0

| , ,
, |

| , ,i

i i

i

i i

i i i i i
i i i n

i i i i i i in x

i i i i i i

i i i i

n i i i i i i
i in x

i i i i

f N x n x n
x n N

f N x n x n dx dn

n N x T n N x
T n x n x

n N x T n N x
dx dn

T n x n x

π
π

π
∞

= =

∞

= =

⋅
=

⋅

⎡ ⎤Γ ⋅Γ + ⋅Γ + − −
⎢ ⎥Γ + ⋅Γ ⋅Γ −⎣ ⎦=
⎡ ⎤Γ ⋅Γ + ⋅Γ + − −
⎢ ⎥Γ + ⋅Γ ⋅Γ −⎣ ⎦

∫ ∫

∫ ∫

 (19) 

with Bayesian parameter estimates 
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( ) ( )
0 0

, | , |i

i
i i

n

i n i i i i i i i i in x
n E x n N n x n N dx dnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫   (20) 

and 

( ) ( )
0 0

, | , |i

i
i i

n

i x i i i i i i i i in x
x E x n N x x n N dx dnπ π

∞

= =
⎡ ⎤≡ ≡ ⋅⎣ ⎦ ∫ ∫   (21) 

Note that the distribution and associated Bayesian parameter estimates will be 

identical for failure modes i  and j  when i jN N= .  Using  and, failure probabilities 

1, , kp p…  are stochastically generated from a beta distribution with Bayesian shape 

parameter estimates in  (pseudo trials) and ix  (pseudo failures).  Let ( )~ ,i i iP beta n x  

denote this distribution, and let ( )|g t pK  represent one of the model metrics given in 

Chapter 5 (e.g., the expected reliability of the corrected system on trial t ).  Using a 

single realization for each ip , one can calculate a single estimate of ( )|g t pK .  Once 

again, an empirical distribution for the model metric is constructed by replicating this 

process (e.g., say 10,000r =  times).  The Bayesian point-estimate and probability 

limits of the expected reliability of the corrected system are obtained in the usual 

manner.  Note that these procedures take into account Type 1 (i.e., time) censoring, as 

well as complete data.  For example, right-censored, or suspended, observations occur 

when 0iN = , which yields the reliability function of  the marginal beta-binomial 

distribution53 given by ( ) ( ) ( )
( ) ( )

0 i i i
i

i i i

n n x T
P N

n T n x
Γ ⋅Γ − +

= =
Γ + ⋅Γ −

.   

 

                                                 
53 The reliability functions for the beta-binomial and beta-geometric distributions are identical.  For example, if 

( )~ ,
i

X bin T p , then ( ) ( )0 1
T

X i
R P X p≡ = = − .  Also, if ( )~

i
Y geo p , then ( )

Y
R P Y T≡ >  ( )1 P Y T= − ≤  

( ) 1

1

1 1
T

i

i i

i

p p
−

=

= − − ⋅∑  ( )1
T

i
p= − .  

X Y
R R∴ = . 
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8.4.2. Numerical Example 

 

Continuing from the example presented in Section 8.3.3, a size 20k =  

realization of failure probabilities 1, , kp p…  were stochastically drawn from a beta 

distribution whose Bayes’ estimates are shown in column 5 of Table 16.  Using these 

failure probabilities, failure histories for each failure mode where generated from a 

Bernoulli random variable.  The index-set of observed failure modes were defined 

uniquely in each replication.  A size 20k =  realization of FEF were then generated 

from a beta distribution.  Only failure probabilities associated with the observed 

failure modes are reduced by their corresponding FEF during each replication.  

Unobserved failure modes are assigned a zero FEF.  Using these data, estimates of the 

management metrics were calculated.  This process was replicated 10,000r =  times 

during simulation.  Figures 34-39 below show the empirical densities for each of the 

management metrics that were constructed.  Table 17 summarizes the true values of 

the management metrics, as well as their associated point and interval estimates.  The 

point and interval estimates are obtained as the mean and as the 10th and 90th 

percentiles of the uncertainty distributions, respectively.   

Using the same inputs given above, the approximate confidence interval on 

projected reliability given in Chapter 7 is R∈ (0.73, 0.91) with a point estimate of 

ˆ 0.8436R = .  While the results obtained from the classical and Bayesian approaches 

are nearly identical, one should note that the Bayesian point and interval estimates are 

much more stable.  The reason why is because the Bayesian estimates are based on an 

uncertainty distribution (e.g., shown in Figure 35) constructed from 10,000 
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stochastically generated datasets.  The classical confidence interval procedure is only 

structured for one dataset, hence, it is only based on a single stochastic realization.  

As mentioned, the same simulation inputs were used to generate the data for these 

two approaches. 

Management 
Metric Distribution Parameters True & Point 

Estimate 
80% Interval 

Estimate 
Initial 
Reliability Beta 

11.62
6.62

n
x
=
=

 
0.6918

ˆ 0.5699
I

I

R

R

=

=
 ( )0.38,0.75IR ∈  

Projected 
Reliability Beta 

45.25
37.74

n
x
=
=

 
0.8766

ˆ 0.8341

R

R

=

=
 ( )0.76,0.90R∈  

Growth 
Potential Beta 

32.43
28.81

n
x
=
=

 
0.9182

ˆ 0.8883
GP

GP

R

R

=

=
 ( )0.81,0.95GPR ∈

 
Expected 
Failure Modes Normal 

7.58
1.71

μ
σ
=
=

 
7

ˆ 6.38
m
μ
=
=

 ( )5.39,9.78μ∈  

Probability 
of New Mode Beta 

374.90
17.12

n
x
=
=

 
0.0542

ˆ 0.0510

h

h

=

=
 ( )0.04,0.07h∈  

Fraction of 
P[F] Observed Beta 

17.10
15.54

n
x
=
=

 
0.8697

ˆ 0.9085

φ

φ

=

=
 ( )0.82,0.98φ ∈  

Table 17.  Management Metrics. 
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Figure 34.  Initial Reliability.   Figure 35.  Projected Reliability.   Figure 36.  Reliability Growth Potential. 
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Figure 37.  Expected Number of Failure Modes. Figure 38.  Probability of New Failure Mode. Figure 39.  P[F] due to a Repeat Failure Mode.
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A 
• A-mode – a failure mode that will not be addressed via corrective action. 
• Assignable-cause failure mode – a failure mode whose root-cause has been 

identified. 
 
B 
• B-mode – a failure mode that will be addressed via corrective action, if observed. 
• BC-mode – a B-mode that is addressed via corrective action before the 

conclusion of the current test phase. 
• BD-mode – a B-mode that is addressed via corrective action at the conclusion of 

the current test phase. 
 
C 
• Corrective action – any physical action taken to permanently mitigate the 

occurrence of a failure mode.  Tactical fixes are not considered to be a corrective 
action. 

 
D 
• Developmental test – a test of initial or intermediate prototypes of a system (e.g., 

typically possessing an immature design) which is focused on exposing design 
weaknesses (i.e., failure modes) that can be analyzed and effectively corrected. 

 
F 
• Failure discounting – the practice of removing fractions of previous failures 

associated with a given failure mode after corrective action has been 
implemented. 

• Failure mode – the root-cause associated with the loss of a required function or 
component whose probability (or rate) of occurrence is reduced by a specified 
FEF, if addressed by corrective action.  Note that it may be the case that some 
failure modes are not observed during testing, or may not be corrected if they are 
observed (e.g., some failures may not be economically justifiable to correct). 

• Fix Effectiveness Factor (FEF) – the fraction reduction in an initial mode failure 
probability (or rate) due to implementation of a unique corrective action. 

• First Occurrence Trial/Time (FOT) – the trial number (or exact time) when an 
individual failure mode was first discovered during testing. 

 
G 
• Growth Rate – the growth rate, typically denoted by α , is a reliability growth 

planning parameter that represents the negative of the cumulative failure rate 
versus cumulative test time on a log-log scale (i.e., the slope of the Duane plot).  
The growth rate should not be confused with the general rate of improvement in 
the reliability of a developmental item.  It is a specific reliability growth planning 
parameter associated with a single model, namely, the Duane model. 
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I 
• Idealized Curve – a reliability growth planning curve that is based on initial 

conditions (e.g., initial MTBF, length of the initial test phase), and other planning 
parameters, such as, an assumed growth rate and management strategy. 

 
M 
• Management Strategy (MS) – a reliability growth planning parameter that 

represents the portion of a system’s failure intensity (or probability of failure) 
associated with failure modes that program management is planning to address 
via corrective action. 

 
N 
• Non-homogeneous Poisson Process (NHPP) – a non-stationary Poisson process 

(e.g., a Poisson process with an increasing or decreasing intensity function, such 
as the power-law process). 

 
O 
• Observed mode – a failure mode which exhibits at least one failure during 

testing. 
• One-shot system – a system whose usage is measured in terms of discrete trials, 

or demands, such as, guns, rockets, missile systems, and torpedoes. 
 
P 
• Planning curve – a smooth-curve representation (i.e., given by the Duane model) 

of the anticipated reliability growth of a system over the course of its planned test 
program. 

• Poisson Process – a stationary counting process of discrete events, say ( )N t , in 
an interval of time that is independent of the number of events that have 
previously occurred.  A Poisson process must have an initial condition of 
( )0 0N t = = , and events must be orderly in the sense that the occurrence of two 

or more events in an small interval of time is impossible. 
• Power-law process (PLP) – a non-homogeneous Poisson Process with intensity 

function ( ) 1r t t βλ β −≡ ⋅ ⋅ .  A PLP is also referred to as a Weibull process because 
its time to first failure follows the Weibull distribution. 

 
R 
• Reliability growth – the increase in the true (unknown) reliability of a system as 

a result of failure mode discovery, analysis, and effective correction. 
• Reliability growth management – the systematic planning for reliability 

achievement by controlling the ongoing rate of achievement by the allocation and 
reallocation of program resources based on comparisons between planned and 
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demonstrated reliability values. 
• Reliability growth planning – an area of reliability growth that addresses 

program schedules, amount of testing, resources available, and the realism of the 
test program in achieving its requirements.  Reliability growth planning is 
portrayed and quantified through a reliability growth planning curve. 

• Reliability growth potential – the theoretical upper-limit on system reliability 
achieved by finding and correcting all failure modes with a specified level of fix 
effectiveness. 

• Reliability growth projection – an area of reliability growth that focuses on 
quantifying the reliability that could be achieved if observed failure modes 
inherent to the system are mitigated by a specified level of fix effectiveness. 

• Reliability growth tracking – an area of reliability growth that provides 
management the opportunity to gauge the progress of the development effort by 
quantifying the demonstrated reliability of a system throughout its test program. 

• Repeat failure mode – a failure mode which exhibits at least two failures during 
testing.  Repeat failure modes are particularly important under a delayed 
corrective action strategy.  The reason why is because the moment estimators and 
the likelihood estimators of the beta (or gamma) parameters do not exist unless 
there is at least one repeat failure mode. 

• Runs-test – a sequence of tests that are conducted until a specified number of 
consecutive successful trials are achieved. 

 
S 
• Seglie’s stopping criterion – a stopping criterion for a developmental test that 

consists of stopping all trials after a successful runs-test is achieved. 
 
T 
• Tactical fix – a physical action that temporarily mitigates the occurrence of a 

failure mode during test (e.g., a tactical fix is not a permanent design change). 
 
U 
• Unobserved mode – a failure mode which exhibits zero failures during testing. 
• Utility – the number of systems expected to perform successfully in the field after 

deployment of a single lot.  The size, or number of units, in a lot varies by system. 
 
W 
• Weibull process – a non-homogeneous Poisson process with a power-law mean 

value function.  A Weibull process is also referred to as a power-law process. 
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