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Abstract 

Purpose 
To evaluate the impact of multiple design criteria for reference sets that are used to 
quantitatively assess the performance of pharmacovigilance signal detection algorithms 
(SDAs) for drug-drug interactions (DDIs). 

Methods 
Starting from a large and diversified reference set for two-way DDIs, we generated custom-
made reference sets of various sizes considering multiple design criteria (e.g., adverse event 
background prevalence). We assessed differences observed in the performance metrics of 
three different SDAs when applied to FDA Adverse Event Reporting System (FAERS) data. 

Results 
For some design criteria, the impact on the performance metrics was neglectable for the 
different SDAs (e.g., theoretical evidence associated with positive controls), while others 
(e.g., restriction to designated medical events, event background prevalence) seemed to have 
opposing and effects of different sizes on AUC and PPV estimates. 
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Conclusions 
The relative composition of reference sets can significantly impact the evaluation metrics, 
potentially altering the conclusions regarding which methodologies are perceived to perform 
best. We therefore need to carefully consider the selection of controls to avoid 
misinterpretation of signals triggered by confounding factors rather than true associations as 
well as adding biases to our evaluation by “favouring” some algorithms while penalising 
others. 

Key points 

• Performance assessment of SDAs in pharmacovigilance has often relied on the 
generation of custom-made reference sets of limited size that consider ad-hoc exclusion or 
inclusion criteria to define eligible controls. 
• SDA performance assessment might be biased based on the selected benchmarks, as 
each methodology can be impacted to a different extent by different confounders. 
• We tested 14 design criteria for reference sets in the case of DDIs, showing that some 
of them considerably affected the performance and comparative evaluation of different 
SDAs for DDI surveillance while others did not have a significant effect. 
• Overall, this analysis advocates the utilisation of large, to the extent possible, 
reference sets that are less likely to suffer from overrepresentation of controls that make 
different SDAs behave in different ways due to confounding. Any decision to restrict the 
evaluation set using specific design criteria should be carefully justified. 

Plain Language Summary 

Reporting of suspected side effects experienced by patients following drug approval is a key 
component to identify novel drug safety issues. Statistical methods are then used to analyse 
reports and reveal signals of novel associations between drugs and side effects. Performance 
evaluation of those methods traditionally relies on custom-made reference sets of limited size 
that consider ad-hoc exclusion or inclusion criteria to define eligible controls. However, each 
method can be impacted to a different extent by those criteria, as they can act as potential 
confounders. This study investigated the impact of 14 criteria on three methods that have been 
developed to detect signals of potential adverse drug-drug interactions, showing that some of 
them had opposing effects or effects of different levels of magnitude on the performance of 
the different methods. The relative composition of reference sets can therefore significantly 
affect the evaluation metrics, potentially altering the conclusions regarding which 
methodologies are perceived to perform best. The selection of controls should be carefully 
performed to avoid misinterpretation of signals triggered by confounding factors rather than 
true associations as well as adding biases to our evaluation by “favouring” some algorithms 
while penalising others. 
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1 Introduction 

Monitoring drug safety issues during the post-approval phase requires reporting of suspected 
drug-related adverse reactions by healthcare professionals, patients, and pharmaceutical 
companies. The reports are collected in spontaneous reporting system (SRS) databases, such 
as the FDA Adverse Event Reporting System (FAERS) database in the US, the 
Eudravigilance database in the EU, and Yellow card database in the UK.  These databases 
form an important part of the pharmacovigilance strategy since they do not only contain 
information on adverse events (AEs) and suspected drugs, but also details regarding 
concomitant medications, indications, and patient demographics.  

By applying statistical methods known as signal detection algorithms (SDAs), novel 
associations between drugs and AEs (i.e., signals) that have not been identified in clinical 
trials can be identified in the SRS data. Given the absence of a control group, SDAs 
predominantly rely on disproportionality analysis, which calculates the degree of 
disproportional reporting of drug-AE combinations compared to what would be expected if 
there was no association between them.1 However, the presence of synthetic associations (i.e., 
causative covariates that have not been taken into account or remain unobserved) can lead to 
confounding, either upward or downward, thus generating faulty associations between the 
drug and the AE and complicating the detection of safety signals.2–4 For example, reporting 
quality issues arising from a poor distinction between symptoms of disease-related AEs and 
treatment effects of drugs (or drug combinations) is a result of a synthetic association called 
confounding by indication.5,6 

The practice of using larger clusters of medical terms to perform quantitative signal detection 
in pharmacovigilance has been widely discussed in the literature.1,7 Many previous efforts 
investigated the impact of MedDRA granularity on signal detection tasks.8,9 Also, many 
studies have considered the use of term grouping to identify relevant reports.10,11 However, 
recommendations from the IMI-PROTECT project suggest that signal detection at the PT 
level should be considered the standard approach in real-life pharmacovigilance.9,12 

The development of novel SDAs in pharmacovigilance requires the existence of appropriate 
reference sets that can be utilized both for absolute performance evaluation as well as for 
comparison with existing methodologies. Given that each SDA, depending on the applied 
modelling, might be impacted to a different extent by a confounder, the performance 
evaluation might be biased based on the selected benchmarks. The challenge of building 
appropriate reference sets in pharmacovigilance has been previously acknowledged in the 
literature.13–16 Most studies have attempted to comparatively evaluate SDAs by testing their 
performance against custom-made reference sets, often limited in size17–19 or not publicly 
available20,21 , which commonly consider ad-hoc inclusion or exclusion criteria to generate 
positive and negative controls. Examples of such criteria include those related to AE 
background prevalence (given that, in disproportionality analysis, the denominator signifies 
the expected rate of occurrence)22, disease-related AEs23, AE seriousness23,24 or evidence 
associated with positive controls22–26. The criteria are typically used to attempt to address the 
limitations of disproportionality analysis and to tackle issues with potential confounders.  

In the case of adverse drug-drug interactions (DDIs), signal detection is considered more 
complicated, with the existing methodology being less mature compared to the one in the case 
of signals for single drugs. A previous study has suggested that detection of DDI-related 
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signals might suffer from multiple confounders.27 For example, concomitant medications 
appear to be a significant source of confounding (i.e., the signal associated with a drug 
combination was triggered by drugs are usually given concomitantly but not signify true 
adverse drug-drug-event associations). In addition, only limited efforts exist in the literature 
to generate reference sets related to two-way DDIs.17,19,27,28 

In this study, we aim to explore the relative impact of different factors that could be potential 
sources of confounding on the performance evaluation of existing methods for signal 
detection of DDIs. By utilising a large and diversified reference set, we were able to create 
custom-made reference sets considering multiple design criteria to assess any differences 
observed in the quantitative evaluation of SDAs tailored for two-way DDIs. 

2 Methods 

2.1 Data Sources 

2.1.1 FAERS data – Spontaneous reports 

We used a curated and standardized version of the publicly available FAERS database. The 
data pre-processing pipeline was based on the Adverse Event Open Learning through 
Universal Standardization (AEOLUS) process and included removal of duplicate reports, drug 
name normalization at the RxNorm ingredient level, and AE mapping to MedDRA Preferred 
Terms (PTs).29 The curated data set included 9,203,239 reports containing at least one drug 
and one AE between 2004 (Q1) and 2018 (Q4), with 3,973,749 (43.18%) reports mentioning 
more than one drug. Each drug was considered equivalent in the analysis irrespective of its 
reported role (i.e., primary suspect; secondary suspect; concomitant; and interacting). 

2.1.2 Reference sets for DDIs 

CRESCENDDI, a reference set for two-way DDIs, was the primary source of controls.30 This 
reference sets covers 454 drugs and 179 adverse events mapped to RxNorm Ingredient and 
MedDRA PT concepts, respectively, from the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (version 5). We used 4,455 positive and 4,544 negative 
controls from CRESCENDDI that were also present in the curated FAERS dataset (hereafter 
called PT Reference Set). 

To accommodate and test the impact of MedDRA granularity to detect signals at the medical 
concept (MC) level, we extended CRESCENDDI by building PT groups (event groups), 
where possible, that are relevant to the adverse events described in the original reference set. 
These groups were formed by examining Standardised MedDRA Queries (SMQs) and event 
definitions from a time-indexed reference standard by Harpaz et al.31 and were manually 
reviewed for clinical relevance. In total, 20 adverse events from CRESCENDDI deemed 
suitable for extension to the MC level (Table 1). A full list of the event groups is available in 
Appendix S1. The new reference set (hereafter called MC Reference Set) contained 1,097 
positive and 614 negative controls (Appendix S2). 

2.2 Data mining 

We performed the case/non-case analysis at two different levels, based on the reference sets 
that we utilised. The first one was restricted to the reports that included the PT that was 
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related to each control from the PT Reference Set. The second one considered as cases all the 
reports that contained any of the PTs that were part of the MC linked to the control in the MC 
Reference Set.  

For example, the case/non-case analysis for a control related to torsade de pointes resulted in 
two contingency tables: the first one only considered the PT ‘Torsade de pointes’ to retrieve 
case reports, while the second one included the following terms (as PTs): ‘Electrocardiogram 
QT interval abnormal’, ‘Electrocardiogram QT prolonged’, ‘Long QT syndrome’, ‘Torsade 
de pointes’, ‘Ventricular tachycardia’. Non-cases included the reports without the 
aforementioned PTs, while reports containing more than one of the relevant PTs linked to the 
MC were not double counted. 

2.3 Design Criteria 

Table 2 shows the design criteria that were considered as potential confounding factors, 
which fall into the following categories: (i) evidence level; (ii) event seriousness; (iii) event 
frequency; (iv) potential confounding by indication; and (v) potential confounding by 
concomitant medication. PT Reference Set controls were stratified based on each of the 
design criteria, forming suitable restricted subsets of different sizes in each case, depending 
on the criterion under consideration. MC Reference Set could not be stratified using 
categories (ii) and (iii). 

2.4 PT prevalence 

The impact of reference set restriction by PT prevalence on AUC estimates was also 
examined. The PT prevalence was calculated in the curated FAERS data set as the frequency 
of PTs from reports containing at least one drug. We grouped the 179 PTs from the PT 
Reference Set using quartile binning of their prevalence.  The controls were then stratified in 
4 groups (Groups Q1-Q4) based on their PTs by considering the respective PT prevalence 
quartile. 

2.5 SDAs 

Three SDAs that have been previously described in the literature were considered:  

(i) An observed-to-expected shrunk interaction measure (Omega)32; 
(ii) The ‘interaction coefficient’ in a linear regression model with additive baseline 

(delta_add)33; 
(iii) A measure based on an adapted version of Multi-Gamma Poisson Shrinker 

(MGPS) model, called Interaction Signal Score (IntSS)17. 

2.6 Impact of MedDRA Granularity on SDA Performance Evaluation 

To assess the impact of MedDRA granularity on the SDAs that were considered in this study, 
we performed a Receiver Operating Characteristic (ROC) analysis to examine the difference 
in the Area Under the Curve (AUC) when considering matched controls from the two 
reference sets. 
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2.7 Estimation of Design Criteria Impact on SDA Performance Evaluation 

For each reference set and design criterion, we simulated the generation of a constrained 
reference set by randomly drawing an equal number (1:1) of positive and negative controls 
from the restricted control subset that used the specified design criterion for control 
stratification. An unconstrained reference set of equal size was generated in each case by 
following a similar process but using the original reference set.. This sampling generation 
process took into account the correlation between the two sets, as the probability of drawing 
one control for the constrained reference set did not affect the probability of drawing any 
control for the unconstrained reference set. The size of the simulated reference sets varied 
from 100 to 2 × 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 was determined by either the number of positive or 
negative controls (depending on which one was smaller) in each of the restricted subsets. For 
each SDA, we calculated: (i) AUC scores; and (ii) PPV for fixed sensitivity values (i.e., 0.60, 
0.75, and 0.90)for both reference set types (i.e., constrained and unconstrained) by 
performing 1,000 simulations. The statistics of the samples were summarised by fitting a 
Normal distribution, for which we report the mean and variance. The difference of the means 
of AUC (𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), and PPV (𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (with 95% confidence intervals) were the target 
measures. The probability of 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 being non-zero, P(|𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑| >  0), was also estimated 
under the normality assumption:  

|𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|~ N(|µAUCR𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅 –  µAUCUnrestricted_𝑅𝑅𝑅𝑅𝑅𝑅| ,�σAUCR𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅
2 + σAUCUnr𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅

2 ) (1) 

P��𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� >  0� =  1 −  P��𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� =  0� =  1 – F𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑(0) (2) 

where µ is the mean, σ is the standard deviation, and F𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 is the normal cumulative 
distribution function (CDF) of 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

Figure 1 illustrates the simulation workflow for the calculation of differences in AUC scores 
and PPV when considering the various design criteria. 

3 Results 

Τhe total number of positive and negative controls when applying each of the design criteria 
to the  PT Reference Set is presented in Figure 2. In cases where restricted subsets contained 
both positive and negative controls (Figure 2a), the maximum number of controls considered 
from each type (i.e., positive or negative) to form simulated reference sets (𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎) is denoted 
with white color in the respective bar. For the design criteria under the Evidence level 
category, where restriction was only applied to positive controls (Figure 2b), 𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 was 
defined as the total number of positive controls in the respective restricted subsets. Apart from 
two cases (i.e., Shared indications - False and AE is an indication – False), positive controls 
outnumbered negative controls in the restricted subsets. The simulated reference sets varied in 
size, with 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  ranging from 131 to 3,568. Hence, more than 250 positive and negative 
controls were considered for every design criterion. For the MC Reference Set, the restricted 
subsets were smaller in size (Supplementary Table S1). Three design criteria (BNF – 
Anecdotal, BNF – Theoretical, and AE is an indication – True) were not tested with this 
reference set, as their 𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎 was less than or equal to 100. Figure 3 provides the frequency 
distribution of PT prevalence in: (a) the set of unique PTs in the PT Reference Set; (b) PT 
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Reference Set positive controls; and (c) PT Reference Set negative controls. The right-tailed 
distribution of unique PTs in CRESCENDDI shows that the data set was populated with less 
common PTs, with only small number of them having a prevalence over 0.01 in FAERS. 
Similar trends were present in the curves of the positive and negative controls, with the latter 
consisting of more cases with a higher PT prevalence in FAERS. The 1st, 2nd and 3rd quartiles 
for the PT prevalence were 0.000343, 0.00135, and 0.00410, respectively. The total number 
of positive and negative controls for each group formed using PT prevalence quartile binning 
is shown in Figure 4. Group Q3 contained the largest volume in the case of positive controls, 
with Group Q1 and Group Q2 being considerably smaller, while negative controls showed an 
increasing trend while moving to groups of higher PT prevalence.  

The MedDRA granularity affected the SDA performance metrics in different ways (Table 3). 
Omega and IntSS performed worse at the MC level as opposed to the PT level, with their 
mean AUC score dropping by 0.0605 and 0.0489, respectively. For Omega, here was a 
statistically significant decrease in the AUC between the PT and MC level evaluations. In the 
case of delta_add, the mean AUC slightly increased (0.0311) when considering the MC level, 
however without outperforming Omega. 

By plotting 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for a fixed constrained reference set size of 100 and ordering design 
criteria by increasing range of 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values among the three SDAs (Figures 5, S1), points 
that lie above the x-axis signify positive estimates for 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, meaning that the design 
criterion had a positive effect on the calculated AUC. Conversely, points below the x-axis 
were associated with negative effect on the AUC when the specific design criterion was 
applied to constrain the reference set. Also, for the different sizes of restricted reference sets 
using the PT Reference Set and the MC Reference Set, 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 value estimates and 
associated probabilities of a non-zero 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  estimate were plotted (Figures S2, S3). With 
the PT Reference Set, the largest 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values were associated with the EMA Designated 
Medical Event Terms criterion (between 0.071 and 0.095), while Common PTs resulted in 
negative values in the range of -0.041 to -0.021 for the 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 measure for all SDAs. In the 
case of the MC Reference Set, BNF – Study had the largest positive impact on all 
𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑values (between 0.098 and 0.051), while negative 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑values derived from 
Shared indications – True and AE is an indication – False (up to -0.043). Some design criteria 
affected performance evaluation of all three SDAs in a similar way and level of magnitude 
(e.g., BNF – Anecdotal, BNF – Study), while others (e.g., Shared indication – False) seemed 
to have opposing and different in size effects on AUC estimates. 

Supplementary Tables S2-S3 report the 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 estimates (with 95% CIs) for the different 
design criteria, and a fixed reference set size of 100, for the PT Reference Set and MC 
Reference Set, respectively. For both reference sets and a sensitivity equal to 0.60, some 
design criteria affected PPV in opposing ways among the different SDAs. For example, 
Shared indications – False resulted in negative 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 estimates for Omega and IntSS (in 
the range between -0.029 and -0.021) as opposed to positive ones for delta_add (around 
0.051). For other design criteria (i.e., BNF – Study and EMA – Designated Medical Events),  
𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 estimates were positive across the different sensitivity values for all three SDAs. For 
a sensitivity value of 0.90, 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for the different design criteria were close to zero in all 
cases (values between 0.029 and -0.009). 
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With the PT Reference Set, we identified three main categories: 

(i) Positive 𝑨𝑨𝑨𝑨𝑨𝑨𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 values 
a. BNF – Anecdotal 
b. EMA IME Terms 
c. BNF – Study 
d. Micromedex – Probable 
e. EMA DME Terms 
f. Rare PTs 

(ii) Negative 𝑨𝑨𝑨𝑨𝑨𝑨𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 values 
a. Common PTs 
b. Micromedex – Theoretical 

(iii) Mixed effect on 𝑨𝑨𝑨𝑨𝑨𝑨𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 values 
a. AE is an indication - False 
b. AE is an indication - True  
c. Micromedex – Established 
d. BNF – Theoretical 
e. Only drug pairs that share at least one indication are included  
f. Drug pairs that share at least one indication are excluded 

With the MC Reference Set study, Omega and IntSS were affected in a similar way by the 
different design criteria. BNF – Study and Micromedex - Established had a positive impact on 
the target measure for all SDAs, while excluding AEs related to drugs’ indications (AE is an 
indication – False) or only considering drug pairs with shared indications as controls (Shared 
indications – True) negatively affected the SDA performance in all cases. 

In terms of PT prevalence (Figure 6), there was a similar trend for Groups Q1 to Q3, with 
𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 metric increasing for all algorithms as we moved to more common PTs. However, 
this relationship appears to be reversed in Group Q4, which contains the most frequent PTs in 
FAERS from the original data set, for Omega and delta_add, showing a negative impact on 
their AUC. 

4 Discussion 

This study provides a systematic evaluation of the impact of multiple design criteria for 
reference sets on the comparative assessment of signal detection methodologies of adverse 
DDIs in SRS data. Performance assessment of SDAs in pharmacovigilance has often relied on 
the generation of custom-made reference sets that consider exclusion or inclusion criteria to 
define eligible controls. Thus, the motivation behind this research was to examine how 
different criteria could affect the evaluation, potentially altering the conclusions regarding 
which algorithms perform best.  

Our study highlighted that the relative composition of reference sets might significantly 
impact the evaluation metrics. Some criteria affect the comparison of different methodologies, 
such as the restriction of controls to only include PTs from the EMA’s designated medical 
event list. Other criteria that were thought to have a potential effect on the evaluation process 
(e.g., anecdotal evidence supporting a positive control) were not found to significantly change 
the observed difference in metrics amongst the methodologies, as all of them were influenced 
in a similar way (Figure 5). Moreover, we found that the size of the reference set did not have 
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a considerable effect on the 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, although the associated probability of that metric being 
non-zero increased when considering larger sizes (Figures S1-S2). Apart from AUC, 
commonly applied sensitivity values were considered to identify the impact of design criteria 
on PPV. For most of the design criteria (e.g., EMA Designated Medical Events, Micromedex 
evidence categories), 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values were affected consistently with the  𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 estimates 
across the three different SDAs. For the highest sensitivity that was considered (0.90), the 
difference in PPV was in most cases neglectable. 

Given the inability of SDAs to account for all potential confounding factors that are present in 
SRS data, each methodology might be impacted to a different extent by a confounder. At the 
same time, there might be cases where signals are triggered by those confounding factors. As 
an illustrative example, the majority of DDI signals identified using IntSS in the original 
research paper27 were composed of drug pairs that are usually given concomitantly (e.g., 
antibiotics).27 We therefore need to consider the selection of appropriate controls to avoid 
misinterpretation of signals triggered by confounding factors rather than true associations as 
well as adding biases to our evaluation by “favouring” some algorithms while penalising 
others. On the other hand, by attempting to completely remove all potential sources of 
confounding in our evaluation sets, we are more likely to fail to demonstrate their utility in 
real-life application, which should be determined by its ability to perform at a commensurate 
level when it is applied prospectively to identify novel signals in SRS databases.14,15 Overall, 
this analysis advocates the utilisation of large, to the extent possible, reference sets when it 
comes to comparative performance assessment, that are less likely to suffer from 
overrepresentation of controls that make different SDAs behave in different ways due to 
confounding. Also, regarding novel reference sets, the decision to restrict the evaluation set 
using specific design criteria should be adequately supported.  

A major concern about reference sets used for prospective signal detection in 
pharmacovigilance revolves around the validity of established (i.e., well-known) positive 
controls to test the performance of algorithms. This aspect has been widely discussed in the 
literature.14,15,34 It has been acknowledged that the combination of established and emerging 
positive controls might be a better choice when we try to evaluate the prospective 
performance and compare different methodologies, because merely emerging positive 
controls (i.e., recently detected ADRs) cannot establish a reliable reference standard.18 
Especially for DDIs, the establishment of reference sets by only using emerging positive 
controls turns out to be particularly challenging, as we would end up having a very limited 
number of controls to be able to quantitatively assess differences in the performance of the 
SDAs under comparison. A solution to this issue would be to perform a backdated analysis to 
detect the time point of that a signal of a true positive association (‘positive control’) was first 
highlighted, as proposed in previous studies.35 However, this backdated analysis was not 
possible in this study due to the lack of a time-indexed reference set for DDIs. A previous 
study compared the performance of SDA algorithms for DDI surveillance between established 
and emerging positive controls, with Omega and delta_add showing increased specificity but 
diminished sensitivity in the latter case.19 In our analysis, the results related to evidence level 
are consistent with what we would expect to see. In terms of theoretical DDIs, it is common 
for drug interaction compendia to extend the included DDIs to the drug class level, therefore 
covering drugs under the same drug class that sometimes, but not necessarily, have a similar 
interaction profile. Our results showed declining AUC when considering theoretical DDIs 
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(i.e., Micromedex – Theoretical) as opposed to improvements with established ones (i.e., BNF 
– Study and Micromedex – Established). On the other hand, all three examined methodologies 
demonstrated enhanced performance against anecdotal DDIs from BNF and probable DDIs 
from Micromedex. However, the former category represented only a small fraction of the 
overall positive cases contained in the PT Reference Set (2.94%). 

In terms of event background prevalence, the simulation results suggest that, if we restricted 
the evaluation set to specific ranges of PT prevalence, the conclusions would change, i.e., the 
sole choice of common PTs would have an inverse impact on the comparative evaluation as to 
rare AEs. We know that SRS data are predominantly used in the post-marketing setting to 
spot rare adverse reactions that have not been revealed during clinical trials. However, the use 
of SRS data for the detection of DDIs can be considered a different scenario, given that 
clinical trial data are not sufficient to detect adverse reactions of drug combinations due to 
inherent limitations (e.g., patient recruitment processes that excludes people taking multiple 
medications). Hence, the detection of novel DDI-related adverse reactions, even with a 
common background rate, in SRS data should be of special interest. 

Disease-related AEs are a challenging issue in the effort to generate signals using SRS data, 
as confounding by indication can occur. A previous study reported that around 5% of the total 
reports for any drug in FAERS mention a drug’s indication as an adverse event.36 This might 
be related to poor reporting quality or intended to report a disease's exacerbations due to a 
drug. Our results support that the choice of excluding disease-related AEs (i.e., AE is an 
indication – False) did not have a significant effect on the AUC across the SDAs with the PT 
Reference Set, while it decreased the performance of all SDAs with the MC Reference Set. 
On the other hand, Omega demonstrated deteriorated performance in the scenario of detecting 
controls with AEs that were drugs’ indications at the same time (i.e., AE is an indication – 
True), while the other two SDAs did not seem to be substantially affected by this design 
criterion. 

Event seriousness has been used to build reference sets and assess SDA performance, as it 
could be utilised to filter signals in real-life pharmacovigilance settings.23,24 Our study 
suggests that, by only considering ‘significant’ events, bias is introduced to evaluating SDAs 
that could be potentially used in routine pharmacovigilance to detect a broader set of events. 
Also, given that DMEs are rare events (i.e., have low prevalence) with a high drug-
attributable risk, it is important to note that this category might have been confounded to an 
extent by other design criteria categories that were considered in our study, such as the event 
frequency. 

Quantitative signal detection is only one aspect of the more complex framework before a 
safety signal is validated. In the case of adverse DDI surveillance, previous studies have 
considered triage filters alongside disproportionality analysis to direct preliminary signal 
assessment.37,38 These filters might be less suitable depending on the type of DDI. For 
example, there are more filters relevant to pharmacokinetic DDIs (e.g., cytochrome P450 
activity) as opposed to pharmacodynamic interactions. Although the clinical significance of 
the differences between SDAs that are reported in this study might be questioned, it is 
important to note that quantitative methods for adverse DDI surveillance remain way less 
mature compared to those for single-drug safety surveillance, also considering the additional 
complexity that is inherent to DDIs. In this way, the potential impact on real-world 
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pharmacovigilance could not be refuted, as even small changes in the performance of an SDA 
might have a considerable impact on the number of generated signals that are captured for 
further evaluation, leading to either missed signals or large amounts of potential signals that 
need to be evaluated, thus increasing the manual effort needed. It is also important to note that 
the three SDAs that were included in our study are not implemented to the same extent in the 
real-world. Omega and IntSS are two of the major methods that we understand to be used for 
routine pharmacovigilance screening for DDIs. delta_add is a less mature method that is 
described in the literature, for which, as far as we are aware, is not as widely used in practice. 

Although this study provides a novel framework for studying how SDA performance may 
change by considering different criteria for eligibility of controls, there are some limitations 
worth mentioning. First, only a single test data set (i.e., FAERS) was utilised for the purposes 
of this study. Also, CRESCENDDI was the only reference set utilised to generate estimates of 
the impact on AUC, in the absence of another comprehensive data set that could be used as a 
comparative source. We acknowledge that, by modifying the CRESCENDDI data set to 
consider adverse events at the MC level, we ended up with a smaller reference set that only 
included controls that could be represented by event groups (e.g., angioedema). This might 
have an impact on the extrapolation of the results and conclusions drawn from our analysis 
when considering single PTs as opposed to event groups. Additionally, for the determination 
of hit versus miss, it is important to consider how the results calculated at the PT level can 
depict the signal generation at the MC level. For example, if one SDA signals polymorphous 
ventricular tachycardia and another one signals torsade des points at the PT level, they have 
both made the same classification in real-world pharmacovigilance, as both would have 
triggered the same case review by a diligent pharmacovigilance organization. The 
performance of SDAs was only assessed using the default values provided in the original 
research papers describing those methods (e.g., tuning parameter for shrinkage, a, equal to 0.5 
in the case of Omega). Finally, the aspect of unbalanced reference sets was not explored in 
this study (i.e., positive to negative control ratio different than 1:1), since previous studies in 
pharmacovigilance have evaluated SDAs using asymmetrical reference sets.18,24,31 

5 Conclusions 

This study revealed a varying impact of design criteria for reference sets on the performance 
metrics of three SDAs that are used for DDI post-marketing surveillance. This analysis 
showcases that the design of reference sets should be performed carefully, as the comparison 
of SDA performance might be affected by the choices made when building a reference set and 
the decision to restrict the evaluation to specific controls. Also, it highlights the need to 
establish frameworks that can make use of large and disparate data sources to support the 
generation of open-source, flexible benchmarks in pharmacovigilance. These benchmarks can 
not only ensure transparency and enable a fair evaluation of SDA performance, but also 
provide a strong foundation that promotes productive research in pharmacovigilance signal 
detection methodologies. 
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Tables 

Table 1: Medical concepts in the MC Reference Set. 

Name   
Acute kidney injury Drug-induced liver injury Myopathy 

Acute psychosis Hyperglycaemia Priapism 

Angioedema Hypertension Rhabdomyolysis 

Arrhythmia Hypoglycaemia Tachycardia 

Bradycardia Hyponatraemia Thrombocytopenia 

Cardiac failure Hypothyroidism Torsade de pointes 

Drug withdrawal syndrome Lactic acidosis  

 

Table 2: Categories and descriptions of design criteria for reference sets that could affect 
performance evaluation of SDAs for DDI surveillance. The categories marked with an 
asterisk (*) contain design criteria that were not applicable to the MC Reference Set. 

Category Design Criterion (DC) Description 

Evidence level BNF - Study Interactions where the information is based on formal study 
including those for other drugs with same mechanism, e.g. known 
inducers, inhibitors, or substrates of cytochrome P450 isoenzymes 
or P-glycoprotein. 

 BNF - Theoretical Interactions that are predicted based on sound theoretical 
considerations. The information may have been derived from in 
vitro studies or based on the way other members in the same class 
act. 

 BNF – Anecdotal Interactions based on either a single case report or a limited number 
of case reports. 

 Micromedex – 
Established 

Controlled studies have clearly established the existence of the 
interaction. 

 Micromedex – 
Theoretical 

Available documentation is poor, but pharmacologic considerations 
lead clinicians to suspect the interaction exists; or documentation is 
good for a pharmacologically similar drug. 

 Micromedex – Probable Documentation strongly suggests the interactions exists, but well-
controlled studies are lacking. 

Event 
seriousness* 

 

EMA Important Medical 
Event (IME) Terms 

Any untoward medical occurrence that at any dose:  
* results in death,  
* is life-threatening,  
* requires inpatient hospitalisation or prolongation of existing 
hospitalisation,  
* results in persistent or significant disability/incapacity, or  
* is a congenital anomaly/birth defect. 
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 EMA Designated Medical 
Event (DME) Terms 

Medical conditions that are inherently serious and often medicine-
related (e.g., Stevens-Johnson syndrome). This list does not address 
product specific issues or medical conditions with high prevalence 
in the general population. 

Event 
frequency* 

Common PTs PT prevalence ≥ 90th percentile of prevalence of PTs reported in 
FAERS 

 Rare PTs PT prevalence ≤ 10th percentile of prevalence of PTs reported in 
FAERS 

Potential 
confounding by 
indication 

AE is an indication - True The AE is also an indication for at least one of the two drugs from 
the drug-drug-event triplet under consideration 

 AE is an indication - 
False 

The AE is not an indication for either of the drugs from the drug-
drug-event triplet under consideration 

Potential 
confounding by 
concomitant 
medication 

Shared indications – 
False 

Drug pairs that share at least one indication are excluded 

 Shared indications – True Only drug pairs that share at least one indication are considered 

Table 3: Statistics related to the performance evaluation of three SDAs for DDIs using 
matched controls from the PT Reference Set and MC Reference Set. 

SDA PT Reference Set 

AUC (95% CI) 

MC Reference Set 

AUC (95% CI) 

Omega 0.6011 (0.5704, 0.6317) 0.5406 (0.5150, 0.5662) 

delta_add 0.4645 (0.4408, 0.4882) 0.4956 (0.4721, 0.5191) 

IntSS 0.5374 (0.5100, 0.5648) 0.4885 (0.4654, 0.5117) 
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Figures 

 

(a) 

 

(b) 

Figure 1: (a) Initial positive and negative control sets (𝑃𝑃 and 𝑁𝑁) and their respective 
restricted subsets (DC-restricted, 𝑝𝑝 and 𝑛𝑛) when applying a design criterion; (b) Simulation 
workflow for the of differences in AUC (𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and PPV (𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) when considering the 
specified design criterion. 
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(a)  

 

(b) 

Figure 2: (a) Number of positive and negative controls from the PT Reference Set for each of 
the different design criteria when the restricted subsets contained both control types. The 
maximum number of controls considered from each type to form simulated reference sets 
(𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎) is denoted with white color in the respective bar; (b) Number of PT Reference Set 
positive controls for the Evidence level design criteria, where restriction could not be applied 
to negative controls.  
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(a) 

 

  (b)       (c) 

Figure 3: Frequency distribution of PT prevalence in FAERS for: (a) the set of unique PTs in 
the PT Reference Set; (b) PTs contained in the PT Reference Set positive controls; and (c) 
PTs contained in the PT Reference Set negative controls. 

 

Figure 4: Number of positive and negative controls for groups Q1 to Q4 that were formed 
using PT prevalence quartile binning, with Q1 containing the controls with the lowest 
prevalence and Q4 the highest one.   
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(a) 

 

(b) 

Figure 5: 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for a fixed restricted reference set size of 100 for: (a) the PT Reference 
Set; (b) the MC Reference Set. Design criteria are ordered by increasing range of 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
values among the three SDAs. The dot size represents the probability of the estimated score, 
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𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, being non-zero.

 

Figure 6: 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values for Groups Q1 to Q4 relevant to PT prevalence. The dot size 
represents the probability of the estimated score, 𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, being non-zero. 
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