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Abstract 15 

The construction of polders in the coastal region of Bangladesh has significantly 16 

modified the patterns of flooding, as well as leading to significant land use/land cover 17 

(hereinafter, LULC) changes. The impact of LULC change and flooding on poverty is complex 18 

and poorly understood. This study presents a spatiotemporal appraisal of poverty in relation to 19 

LULC change and pluvial flood risk in the south western embanked area of Bangladesh. A 20 

combination of logistic regression (LR), cellular automata (CA), and Markov Chain models 21 

were utilised to predict future LULC based on historical data. Flood risk assessment was 22 

performed at present and for future LULC scenarios. A spatial regression model was 23 

developed, incorporating multiple parameters to estimate the wealth index (WI) for present-24 

day and future scenarios. In the study area, agricultural lands reduced from 34% in 2005 to 8% 25 

in 2010, while aquaculture land cover increased from 17% to 39% during the same time. The 26 

rate of LULC change was relatively low between 2010 and 2019. Based on the recent trend, 27 

LULC was predicted for the year 2030. Flood risk was positively correlated with LULC and 28 

the expected annual damage (EAD) was estimated at $903 million in 2005, which is likely to 29 

increase to $2096 million by 2030, considering changes in LULC scenarios. The analysis 30 

further showed that the EAD and LULC change were negatively associated with the WI. 31 

Despite consistent national GDP growth in Bangladesh in recent years, the rate of increase of 32 

WI is likely to be low in the future because flood risk and patterns of LULC change have a 33 

negative effect on WI.  34 
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1. Introduction  36 

It is widely recognised that poor people are disproportionately exposed to 37 

environmental hazards (Winsemius et al., 2018). There are several possible reasons for this. 38 

For instance, poor people tend to inhabit remote low-lying floodplains, due to the limited 39 

development opportunities and relatively cheaper lands (Dasgupta, 2007). Their livelihoods 40 

and assets are less protected (Bangalore et al., 2019; Hossain et al., 2012), and thus, they have 41 

relatively a low capacity to cope with property losses resulting from flooding (Brouwer et al., 42 

2007).  43 

Bangladesh is located in the floodplain of three major rivers — the Ganges, 44 

Brahmaputra, and Meghna. The combined discharge generated of these three rivers is the 45 

highest in the world. The peak run-off depth is also the highest, which, combined with storm 46 

surges generated from the Bay of Bengal. This makes a major portion of the country is prone 47 

to flooding (Dasgupta, 2007). Flood processes in the coastal region of Bangladesh are complex, 48 

as it can occur from multiple sources such as intense precipitation during the monsoon, high 49 

water levels in the rivers, and cyclone induced storm surges (Adnan et al., 2019). Different 50 

environmental stresses create biophysical and socioeconomic challenges in the coastal region. 51 

For instance, frequent flooding and increasing soil salinity limit agricultural productivity, 52 

which is the main source of livelihoods in coastal Bangladesh (Rahman et al., 2020).    53 

Flood management approaches in the coastal region of Bangladesh include both 54 

structural and non-structural measures (Paul and Rashid, 2017; Rahman and Salehin, 2013). 55 

Major surge events induced by cyclones in the 1950s forced the then government to invest in 56 

the Coastal Embankment Project (CEP) in the 1960s. The CEP aimed at increasing agricultural 57 

production to ensure food security, by preventing salinity intrusion in the coastal region 58 

particularly during the dry season. As a part of the CEP, 139 polders (enclosed coastal 59 

embankments) were created in between the 1960s and 1980s (Islam et al., 2016; Warner et al., 60 

2018). The construction of the polders has brought both beneficial and harmful effects on 61 

society and the environment. The protection from flooding afforded by embankments led to an 62 

increase in agricultural productivity until the 1980s (Adnan et al., 2020). Embankments have 63 

demonstrably protected the polder area against storm surges and fluvio-tidal floods of moderate 64 

severity (Adnan et al., 2019). However, the separation of floodplains from adjacent rivers 65 

caused geomorphological changes in the polder areas, exacerbating land subsidence inside 66 

polders (Auerbach et al., 2015). Accelerated land subsidence and inadequate drainage are 67 

accountable for frequent pluvial flooding (locally called ‘waterlogging’) (Adnan et al., 2019).  68 
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Generally, the construction of structural flood control measures, such as polders, shapes 69 

the pattern of human settlements and land use, which in turn impacts the extent of flood risk. 70 

Such flood control measures create the so-called “levee effect” (White, 1945). Whilst people 71 

tend to settle in less flood-prone areas, presence of structural flood defence system encourages 72 

floodplain development by engendering a sense of safety (Di Baldassarre et al., 2013; Montz 73 

and Tobin, 2008). Therefore, the failure of structural systems in the form of overtopping or 74 

breaching of embankments may exacerbate flood damages (Hui et al., 2016). 75 

The pattern of land use/land cover (LULC) in the coastal region of Bangladesh has 76 

experienced major changes over the past half-century, following the construction of polders 77 

(Abdullah et al., 2019; Huq et al., 2015; Khan et al., 2015; Parvin et al., 2017; Rahman et al., 78 

2017). Such changes largely occurred due to frequent and diverse natural hazards (e.g., floods) 79 

and increases in inundation, soil salinity, and land erosion (Brouwer et al., 2007; Khan et al., 80 

2015). For instance, about 1% of agricultural land along the south western coast was 81 

transformed into non-agricultural use in each year over the past four decades due to the 82 

occurrence of frequent flooding (Rahman et al., 2017). The transformation of agricultural land 83 

to shrimp culture has been a common practice in the area since the 1980s as it can be more 84 

profitable (Khan et al., 2015). However, such land transformation has reportedly been leading 85 

to an increase in soil salinity, reducing agricultural production (Khan et al., 2015; Rahman et 86 

al., 2017).     87 

Whilst anthropogenic drivers profoundly change the pattern of LULC, such 88 

transformation of land may affect local flooding processes (Wheater and Evans, 2009). The 89 

pattern of LULC determines the amount of runoff generated during a precipitation event, thus, 90 

influencing the water balance in an area. Hence, LULC may affect both the probability of 91 

flooding and its consequences (McColl and Aggett, 2007; Szwagrzyk et al., 2018). Flood losses 92 

are not only dependent on extreme hydro-meteorological conditions of a region, unplanned 93 

land use can multiply property damages (Lee and Brody, 2018). In coastal Bangladesh, 94 

unplanned LULC change may lead to environmental degradation such as soil salinization, 95 

disappearance of seasonal lagoons, and deterioration of water quality by increasing salinity 96 

(Islam et al., 2015).  97 

Generally, flooding and poverty coexist particularly within rural communities, as 98 

damages caused by recurring flood events deplete assets, negatively impact agricultural 99 

incomes and thus lower quality of life of communities (Dube et al., 2018). It has been 100 
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hypothesised that increasing flood risk and unplanned LULC change may create a poverty trap 101 

in the coastal region of Bangladesh (Ahmed, 2018; Borgomeo et al., 2017), inhibiting long-102 

term development prospects (Parvin et al., 2017). Marginalised farmers could not generate 103 

adequate income through agricultural activities, whilst being unable to transform their 104 

agricultural land into aquaculture due to high cost associated with such change (Islam et al., 105 

2015). As a result, they are unable to migrate out of such areas due to social and economic 106 

constraints and related costs (Dasgupta, 2007).  107 

Regulating LULC change is an intervention to reduce flood risk, which has been 108 

adopted in different coastal cities (Adnan and Kreibich, 2016). Therefore, it is essential to 109 

understand the association between LULC and flood risk. Risk-based flood management 110 

approaches have received attention globally due to recent experience of several catastrophic 111 

events in many regions across the world (Hall et al., 2015; Hall et al., 2003b; Poussin et al., 112 

2015), as well as the projected increase in the frequency and severity of flooding due to climate 113 

change-induced sea level rise (Koks, 2018). An empirical analysis of flood risk can support 114 

decision-makers to appraise and sequence investments for flood management (Dawson et al., 115 

2011; Hall et al., 2003a; Hall et al., 2019; Hino and Hall, 2017; Sayers et al., 2002). The 116 

methods used in research and practice for quantifying flood hazard and vulnerability range 117 

from simple approaches (with numerous simplifying assumptions) to very complex 118 

applications, which are both data and time-intensive and computationally expensive (Apel et 119 

al., 2009; Dewan, 2013).  120 

In the existing literature, the association between flood risk and poverty has been 121 

comprehended primarily by estimating exposure of poor people to flooding at various 122 

geographical scales (Bangalore et al., 2019; Brouwer et al., 2007; Qiang et al., 2017; 123 

Winsemius et al., 2018). In the case of coastal Bangladesh, a few studies have applied 124 

quantitative approaches (based on household survey data) to show how poverty exacerbates 125 

flood vulnerability/risk (Akter and Mallick, 2013; Brouwer et al., 2007). However, little is 126 

known about (i) how the pattern of LULC change influences flood risk at present and in the 127 

future; (ii) what is the association between LULC change and risk of flooding, and how they 128 

impact poverty spatially. We address these questions by estimating: (i) flood risk in relation to 129 

current and future LULC scenarios; and (ii) the change in poverty in relation to a change in 130 

LULC and flood risk. 131 
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 132 

Figure 1 South western embanked area of Bangladesh 133 

2. Materials and methods 134 

This study was conducted in three stages. First, a model was established to analyse 135 

spatiotemporal patterns of LULC change and predict future LULC. Second, pluvial flood 136 

hazard was modelled to simulate the depth and extent of inundations for various return periods 137 

of monsoonal precipitation. Then flood risk was estimated at each LULC scenario (historical 138 

and future), for different flood return periods. Finally, a spatial regression model was developed 139 

to estimate poverty, incorporating geographical, environmental, and socio-economic 140 

parameters including LULC change and flood risk.  141 

2.1. Description of the study area  142 

This study focussed on polders in the south western coast of Bangladesh. The area 143 

includes a total of 44 polders, located in five coastal districts: Bagerhat, Jessore, Khulna, 144 

Pirojpur, and Satkhira (Figure 1). These polders were constructed to protect about 5187 km2 of 145 

land, where approximately 5.3 million people live (WorldPop, 2018).  The area has a mean 146 

elevation of 3.5 m and is heavily intersected by tidal rivers. The area is prone to three types of 147 

flooding — pluvial, fluvio-tidal, and surge floods. Inadequate drainage channels and increasing 148 

land subsidence exacerbate frequent pluvial flooding during the monsoon months (May to 149 
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September) (Adnan et al., 2019), when the area receives the maximum amount of precipitation 150 

(Figure 2). A lack of sedimentation and accelerated compaction within the embanked area led 151 

to a loss of 1.0-1.5 m elevation since the construction of polders in the 1960s (Auerbach et al., 152 

2015). Agriculture, shrimp farming, and the natural resources of the Sundarban mangrove 153 

forest (located in the south of the study area) are the major sources of livelihoods and economy 154 

of the inhabitants (Khan et al., 2015). Approximately 80% of the total shrimp ponds of 155 

Bangladesh are located in south western coast (Ahmed, 2018). However, increased soil salinity 156 

resulting from the excessive shrimp farming has negatively impacted crop yield. The situation 157 

potentially affects the livelihoods of the poorest segments of society (Szabo et al., 2016). A 158 

risk-sensitive land use policy would help to alleviate the complex problems of the south 159 

western coast (Rahman et al., 2017). Thus, this study aimed to provide spatial information on 160 

land use change and flood risk, as well as their association with poverty.  161 

 162 

Figure 2 Box and whisker plot of monthly rainfall (1965-2012) for south western embanked 163 
area 164 

2.2. Data  165 

This study examined the effects of LULC change and flood risk on poverty. A range of spatial 166 

and hydrometeorological data were used to model LULC change, assess flood risk, and 167 

estimate poverty. A list of data is given in Table 1. The LULC dataset used in this study is an 168 
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updated version of Abdullah et al. (2019). The dataset contains five classes: agricultural, 169 

aquaculture, bare land, built-up area (urban), vegetation with the rural settlement, and 170 

waterbody. The Advanced Land Observing Satellite (ALOS) digital elevation model (DEM) 171 

(JAXA, 2015) at 30 m resolution used to derive maps of various geomorphological parameters 172 

(e.g. elevation, slope, curvature) and establish flood hazard model. The ALOS DEM was used 173 

as it is considered to be highly reliable and freely available DEM, which has a low root mean 174 

square error (1.78m) in vertical accuracy (Adnan et al., 2020). Hydrometeorological data were 175 

collected from various organisations including Bangladesh Meteorological Department 176 

(BMD), Bangladesh Agricultural Research Council (BARC), and Water Resources Planning 177 

Organisation of Bangladesh (WARPO). This study considered the Wealth Index (WI) as an 178 

indicator of poverty. The WI data was obtained from Steele et al. (2017).     179 

Table 1. Different data types used in this study 180 

Data   Description   Source  

1. LULC  LULC data of 2005, 2010, and 2019 at 30 

m resolution 

(Abdullah et al., 2019) 

2. DEM  ALOS DEM of 30 m resolution (JAXA, 2015) 

3. Precipitation  Gridded (5km grid points) precipitation 

data of 10-day temporal resolution from 

1965-2012 

 

(www.bmd.gov.bd/)  

4. Climate  Monthly average temperature, monthly 

average daylight hour data from 1988-2012, 

across four weather stations 

 (http://www.barc.gov.bd/) 

5. Poverty  Gridded Demographic and Health Surveys 

(DHS) Wealth Index (WI) 

(Steele et al., 2017) 

6. Soil salinity Gridded soil salinity index  (Abdullah et al., 2018) 

7. Population density Total number of people per 100 m grid-cell  (https://www.worldpop.org) 

8. Gross Domestic 

Product (GDP)  

Gridded GDP data of 30 arc-sec (~900m) 

resolution    

(Kummu et al., 2018) 

9. Agricultural 

employment  

Number of people employed in the 

agricultural sector 

(De Bono and Chatenoux, 

2014) 

10. Spatial data GIS vector data of road network, river 

channels, and growth centre  

 (http://www.warpo.gov.bd)  

 181 

 182 

The effects of changing land use and flood hazard on poverty in coastal Bangladesh

http://www.bmd.gov.bd/
https://www.worldpop.org/
http://www.warpo.gov.bd/


8 
 

2.3. Modelling LULC change  183 

This study predicted LULC during 2030 using a combination of logistic regression 184 

(LR), cellular automata (CA), and Markov Chain models, following an approach by Arsanjani 185 

et al. (2013). A similar modelling approach has been used in several studies for detecting and 186 

simulating LULC change (Ahmed et al., 2013; Kityuttachai et al., 2013; Mitsova et al., 2011; 187 

Shahbazian et al., 2019; Wang et al., 2019). We applied this approach for following reasons: 188 

(i) it can incorporate both environmental and socio-economic variables; (ii) the model can 189 

incorporate a wide range of spatial factors; (iii) the LR model can use data at different scales; 190 

and (iv) the CA model can control spatial dynamics of LULC changes (Arsanjani et al., 2013; 191 

Shahbazian et al., 2019).  192 

The CA model uses a principle that areas tend to change to a state based on the state of 193 

their neighbouring areas (Arsanjani et al., 2013). A CA system includes four components such 194 

as cells, states, neighbourhoods, and rules (Shahbazian et al., 2019). Cells are defined as the 195 

smallest unit and the state of each cell is determined by its initial state, the conditions in the 196 

surrounding cells, and a set of transition rules (Arsanjani et al., 2013; Verburg et al., 2004). 197 

The CA model in this study incorporated a LULC change map, transition potential maps 198 

created using LR models, the change rate calculated in the change analysis step, and a transition 199 

probability matrix predicted for a future year (using Markov Chain model).  200 

2.3.1. Analysing LULC change 201 

LULC data of 2005, 2010, and 2019 were analysed to detect spatiotemporal changes. 202 

The model initially calibrated LULC change over the period 2005-2010. While developing a 203 

LULC change map, the transition areas less than 5 km2 (~0.001% of total area) were ignored, 204 

otherwise, the modelling approach would have been computationally expensive. As a result, 205 

the 2005-2010 change map included a total of 12 LULC transition categories.  206 

2.3.2. Driving forces for detecting change  207 

The LR models were established for all 12 transitions, to estimate the degree of 208 

influence of different factors (driving forces) on a type of LULC (Shahbazian et al., 2019). 209 

LULC changes could be governed by various combinations of geographical, environmental, 210 

and socio-economic factors (Dewan and Yamaguchi, 2009). Based on the knowledge attained 211 

from literature as well as expert knowledge on the study area, a total of 14 variables were 212 

selected (Table 2). For a LULC transition, the LR model incorporated a binary (change to a 213 

LULC class and no-change) dependent variable and different combinations of independent 214 
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variables (driving forces). Combinations of independent variables were selected in a way that 215 

yielded the highest relative operating characteristic (ROC) and adjusted odds ratio values, 216 

indicating performance of the models (Arsanjani et al., 2013).    217 

The LR model creates probability surface maps using the following equation (Hosmer 218 

Jr et al., 2013):  219 

𝑝 = 1 (1 + 𝑒−𝑧)⁄  (1) 

where p ranges from 0 to 1 on an S-shaped curve, explaining the probability of a cell 220 

changing to a LULC class; z is the linear combination of independent variables (driving forces), 221 

which was estimated using the following equation:  222 

𝑧 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 (2) 

where b0 is the model intercept, bi (i = 1, 2, ..., n) indicates the coefficients of 223 

independent variables, and xi (i = 1, 2, ..., n) represents the n number of independent variables. 224 

2.3.3. Simulating future LULC  225 

The CA-Markov Chain model was used to predict LULC change based on the estimated 226 

transition probabilities (Arsanjani et al., 2013; Shahbazian et al., 2019). The Markov Chain 227 

model predicted the quantity of change in each LULC transition. Based on the Bayes’ theorem 228 

of conditional probability, LULC was predicted using the following formula (Sang et al., 229 

2011):   230 

𝑆 (𝑡 + 1) =  𝑃𝑖𝑗 × 𝑆(𝑡) (3) 

where S(t) and S(t+1) are the LULC status at the time t and t+1, respectively; the 231 

transition probability matrix Pij was estimated as follow:   232 

𝑃𝑖𝑗 = [

𝑃11 𝑃12 ⋯ 𝑃1𝑛

𝑃21 𝑃22 ⋯ 𝑃2𝑛

⋯ ⋯ ⋯ ⋯
𝑃𝑛1 𝑃𝑛2 ⋯ 𝑃𝑛𝑛

] 

(0 ≤ 𝑃𝑖𝑗 < 1 𝑎𝑛𝑑 ∑ 𝑃𝑖𝑗 = 1, (𝑖, 𝑗 = 1,2,3, … 𝑛)

𝑛

𝑗=1

) 

(4) 

where n is the total number of LULC classes. In this study, probability values of 2019 233 

and 2030 were predicted based on transition matrices of 2005-2010 and 2010-2019, 234 

respectively. However, the spatial distribution of LULC in a Markov Chain model is unknown. 235 
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Therefore,  the CA model was integrated to provide a spatial dimension to the model (Arsanjani 236 

et al., 2013; Corner et al., 2014; Shahbazian et al., 2019).  237 

2.3.4. Validating the outputs  238 

The LULC change model was validated for the year 2019. Therefore, considering 239 

LULC maps of 2005 and 2010 as the initial and final state maps, the model predicted LULC 240 

map of 2019. We compared predicted LULC map with observed data of 2019. Kappa statistic 241 

was estimated to determine the degree of agreement between observed and modelled LULC 242 

maps (Mitsova et al., 2011).  243 

2.4.Flood risk assessment  244 

Flood risk assessment was carried out for various LULC scenarios to estimate temporal 245 

changes of direct economic damage due to floods of various magnitudes. The risk was defined 246 

as the product of flood hazard, exposure, and vulnerability. The expected annual damages 247 

(EAD) at different LULC scenarios were estimated to represent spatiotemporal pattern of flood 248 

risk (Rojas et al., 2013).  249 

2.4.1. Flood frequency analysis  250 

This study primarily focused on pluvial flooding, considering increased frequency and 251 

severity of this type of flooding in the study area. Although historically, three types of flooding 252 

(pluvial, fluvio-tidal, and storm surge induced flooding) affect the study area, occurrence of 253 

pluvial flooding is a relatively recent and frequent phenomenon. Adnan et al. (2019) 254 

documented that monsoon precipitation caused inundation in the area every year from 1988 to 255 

2012. Persistent pluvial flooding damages crops and therefore impacts the livelihoods of people 256 

who inhabit the south western coast (Alam et al., 2017).    257 

Flood frequency analysis was carried out to estimate return periods of monsoon 258 

precipitation, which is the main source of pluvial flooding in the study area (Adnan et al., 259 

2019). Seven recurrence intervals (i.e. 1, 2, 5, 10, 20, 50, and 100 years) of floods were 260 

considered here. Inundation depth was estimated at each cell within the study area. Since 261 

pluvial flood hazard model takes monthly precipitation as an input, we generated raster layers 262 

of monthly precipitation of seven return periods. To decide whether the climate in the near 263 

future (i.e. 2030) is likely to be in a ‘changed’ or ‘unchanged’ state, a precipitation trend 264 

analysis was performed. Therefore, linear regression models of monthly precipitation were 265 

established (Panda and Sahu, 2019). We also applied an autocorrelation function (ACF) to 266 

estimate whether monthly total precipitation was autocorrelated between years (Feng et al., 267 
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2016). No significant autocorrelation was found between successive years. The linear 268 

regression models confirmed the absence of a significant trend in monthly precipitation. The 269 

results of precipitation trend analysis are summarised in Table S3 and Figure S1 (see 270 

supplementary document). To generate monthly precipitation layers of seven return periods, 271 

extreme value analysis was conducted at each grid cell by fitting a generalized extreme-value 272 

(GEV) distribution using the L-moment method, following Adnan et al. (2019).    273 

2.4.2. Flood hazard assessment  274 

Flood hazard assessment included a hydrological simulation of floods of various return 275 

periods (Rojas et al., 2013). Inundation maps were also derived for seven recurrence intervals 276 

of monsoon precipitation — 1, 2, 5, 10, 20, 50, and 100 years — using a pluvial flood rainfall-277 

runoff and spreading model established for the study area by Adnan et al. (2019). The 278 

modelling process started with estimating monthly water balance. A Thornthwaite and Mather 279 

water balance model was accompanied by the flood model, which estimated monthly excess 280 

precipitation at each grid cell, after subtracting evapotranspiration from monthly total 281 

precipitation. Monthly excess precipitation layers from May to September were aggregated to 282 

prepare excess precipitation layers during the monsoon. The inundation model incorporated 283 

the ALOS DEM to identify depressions and their catchments. During a flood event, the 284 

estimated total volume of excess precipitation was assigned to each depression according to 285 

the respective catchment position to represent both flood depth and extent. Further description 286 

of the model, validation process and sensitivity analysis can be found in Adnan et al. (2019). 287 

The flood hazard mapping resulted in inundation maps of seven recurrence intervals. 288 

2.4.3. Flood vulnerability analysis   289 

Flood vulnerability assessment generally includes the estimation of direct or indirect 290 

damages due to floods. Direct damages, which primarily occurred because of physical contact 291 

of houses, building, and public infrastructures with floodwater, are estimated as a function of 292 

flood depth in different cells, the relationship between flood depth and LULC (or structural 293 

use), and total cell area (Apel et al., 2009). Indirect damages can be an outcome of the failures 294 

of critical infrastructure systems, such as transportation, production, and energy (Koks et al., 295 

2019). The scope of the study was however limited to estimating direct flood damages. It was 296 

estimated for three types of LULC (i.e. agriculture, aquaculture, and residential) using the 297 

following equation (Islam et al., 2019): 298 
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𝐷𝑗 = (∑ 𝑥𝑖

𝑛

𝑖=1

× 𝑓(𝑥𝑖)) × 𝐴  (5) 

where Dj is the total damage (in million USD ($)) during a flood return period of j, xi is 299 

the flood depth (m) in cell i, f(xi) is the damage function for the flood depth level x in cell i, 300 

and A is the area of a cell. Global depth-damage curves, adopted from Huizinga et al. (2017), 301 

were used to estimate direct tangible flood damage to residential and agricultural LULC. The 302 

depth-damage curve for aquaculture lands was obtained from Islam et al. (2019) (Figure 3). 303 

The maximum damage values in depth-damage functions were given in Euro, which we 304 

converted into USD using a currency conversion rate of 1 Euro = 1.11 USD.  305 

 306 

Figure 3 Depth-damage curves (adopted from Huizinga et al. (2017) and Islam et al. (2019)) 307 

Pixel-scale (30 m resolution) flood damage was estimated in a GIS for seven flood 308 

return periods (1, 2, 5, 10, 20, 50, and 100-year) at four LULC scenarios of 2005, 2010, 2019, 309 

and 2030. Inundation maps (see section 2.4.2) were overlaid on LULC maps to record flood 310 

depth and LULC according to each pixel. This dataset was imported in an R package and 311 

integrated with equation 5 to estimate pixel-scale flood damage, as well as total damage of the 312 

study area.      313 
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2.4.4. Estimating flood risk  314 

Following flood hazard and vulnerability assessments, risks were estimated in the form 315 

of expected annual damage (EAD) for four LULC scenarios (2005, 2010, 2019, and 2030). The 316 

EAD can be estimated using the following equation (Olsen et al., 2015):   317 

𝐸𝐴𝐷 = ∬ 𝐷(𝑝)𝑑𝑝𝑑𝐴

𝐴 𝑝

 (6) 

where D(p) is the damage occurred during an event with the annual probability of 318 

exceedance p (approximated by the inverse of the flood return period (T)), A is the total area 319 

of the region under study. Since the choice of return periods influences flood risk estimates, a 320 

consideration of all return periods between the low and high probability floods enables an 321 

accurate estimation of risk (Ward et al., 2011). The probability space of flood risk for each 322 

integer year flood return period between 1 and 100 is discretised into 100 equal intervals, by 323 

interpolating flood damages estimated between seven recurrence intervals (Rojas et al., 2013). 324 

An exceedance probability curve was developed by plotting flood damages against 325 

corresponding exceedance probabilities. The exceedance probabilities of 0.01 (100-year) and 326 

1 (1-year) were considered correspondingly as the lower and upper limits of the probability 327 

curve. The EAD was estimated as the area under the curve (AUC), applying the trapezoidal 328 

rule given in equation 7 (Olsen et al., 2015).   329 

𝐸𝐴𝐷 =  
1

2
∑ (

1

𝑇𝑖
−

1

𝑇𝑖+1
) (𝐷𝑖 + 𝐷𝑖+1)

𝑛

𝑖=1

 (7) 

where n is the total number of return periods which is 100; Ti is the return period of 330 

the ith event; Di is the estimated flood damage during the ith event.     331 

2.5. Downscaling poverty data  332 

Flood damage may exacerbate the degree of poverty in a region, whilst poor people 333 

may be compelled to live in riskier locations (Dube et al., 2018). This study aimed at 334 

investigating the spatiotemporal distribution of poverty, diagnosing its association with flood 335 

risk and LULC change. Steele et al. (2017) developed a gridded poverty dataset for Bangladesh, 336 

combining data from multiple sources such as mobile phone, satellite, and traditional survey. 337 

The spatial scale of the database was determined by developing the service area coverage of a 338 

cellular network using the Voronoi polygons. The spatial resolution of the data varies from 60 339 

m to 5 km, where poverty was represented as asset, consumption, and income-based measures 340 
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of wellbeing. In this study, we considered the asset-based measure, i.e., Demographic and 341 

Health Surveys (DHS) Wealth Index (WI), because the WI yielded the highest accuracy of 342 

predictions than other poverty metrics (Steele et al., 2017). The WI is a measure of household’s 343 

living standard that is calculated using survey data on household characteristics (e.g. material 344 

used for housing construction), ownership of selected assets (e.g., television, bicycles), and 345 

access to different facilities such as water supply and sanitation 346 

(https://www.dhsprogram.com). The values of the WI can be either positive or negative, where 347 

a higher value implies higher socioeconomic status (Steele et al., 2017).          348 

We downscaled the gridded WI data obtained from Steele et al. (2017), establishing a 349 

GIS-based ordinary least square (OLS) model (equation 8) based on ten spatial parameters 350 

(Table 4). The south western embanked area is comprised of 303 Voronoi polygons. The 351 

polygons were used to extract the values of all parameters.  352 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (8) 

where y is the WI, Xn is the value nth parameter, β is the regression coefficient, and ε is 353 

the random error in prediction or residuals.  354 

Spatial parameters included soil salinity, elevation, EAD, relative flood frequency, 355 

distance from northing and easting coordinates, LULC change, population density, GDP, and 356 

the number of people employed in the agricultural sector. The selection of parameters was 357 

based on their (i) role in influencing poverty (ii) availability as gridded data. Soil salinity 358 

impacts poverty as increasing salinity in the coastal region hinders agricultural activity (Szabo 359 

et al., 2016). A map of relative flood frequency was collected from Adnan et al. (2020). To 360 

represent ground elevation, ALOS DEM was used. The EAD map developed in this study (see 361 

section 2.4.4) was included in the regression model. A binary (change or no-change) LULC 362 

change map from each previous time step was incorporated. Two layers, representing the 363 

Euclidean distance from northing and easting lines were produced, to understand the spatial 364 

distribution of WI. GDP indicates the extent of human and economic development of a country, 365 

may influence WI. Gridded GDP data was extracted for the study area from a global dataset 366 

developed by Kummu et al. (2018). The dataset has a spatial resolution of 30 arc-sec (~900m) 367 

and generated for years 1990, 2000, and 2015. Using the GDP data of 2015, we projected the 368 

GDP of 2010, 2019, and 2030, incorporating existing and projected GDP growth rates provided 369 

by the World Bank and the International Monetary Fund (IMF), respectively. Sources of 370 
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gridded soil salinity, population density, and agricultural employment data are given in Table 371 

1.   372 

The year 2010 was considered as a base year for this analysis, as WI data was developed 373 

based on 2011 DHS and 2010 Household Income and Expenditure (HIES) survey data. 374 

Performance of the model was determined by estimating the coefficient of determination (R2). 375 

The generated OLS regression equation was used to predict WI for the year 2019 and 2030. 376 

Therefore, four independent variables were adjusted accordingly: The EAD, LULC change, 377 

population density, and GDP, while other variables were assumed to be constant.  378 

3. Results  379 

3.1. LULC change modelling   380 

3.1.1. Temporal change of LULC 381 

Figure 4 (a) shows temporal changes of observed LULC from 2005 to 2019 and their 382 

spatial variations are presented in Figure S2 (see supplementary document). From 2005-2010, 383 

a significant decrease in agricultural land was observed, while the proportion of aquaculture 384 

category increased substantially. More than 50% of agricultural lands transformed into 385 

aquaculture use, with another 25% into rural settlements. Contrarily, LULC change from 2010-386 

2019 was relatively stable, when the main transformation took place in bare land; about 23% 387 

bare land area transformed into rural settlements. Stable growth in rural and urban settlements 388 

was observed between the years 2005 and 2019.    389 

3.1.2. Driving factors 390 

Various combinations of geographical, environmental, and social factors account for 391 

different types of LULC transition. Table 2 shows regression coefficients of different factors 392 

influencing the transformation of agricultural lands into aquaculture, rural, and urban use 393 

within 2005-2010. The probability of LULC change from agricultural to aquaculture use is 394 

higher in areas characterised by low elevation, concave curvature, frequently affected by 395 

flooding, located in proximity to existing aquaculture lands, roads, and drainage channels, high 396 

level of soil salinity, and located in the northern portion of the study area. Notably, we found a 397 

positive correlation of flood frequency with LULC change from agriculture to rural and urban 398 

settlements. About 57% of the study area was inundated by at least two historical flood events 399 

from 1988 to 2012 (Adnan et al., 2020). Therefore, substantial development of the residential 400 

area took place in the flood-prone zones. A summary of LR models of the remaining nine 401 

LULC transitions is given in Table S1 of the supplementary document.    402 
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Table 2. Driving factors of LULC change from 2005 to 2010 403 

Factors  Regression coefficient 

Agriculture to 

aquaculture 

Agriculture to 

rural settlement 

Agriculture to built-

up area (urban) 

Intercept  1.41 1.25 9.53 

Elevation -0.02 0.11 -0.37 

Slope  -1e-04 2e-05 -2e-04 

Curvature  0.05   

Flood frequency 0.69 0.19 0.43 

Distance from aquaculture land -0.34   

Distance from existing road -0.04 -0.05 -0.06 

Distance from residential area  -0.07 -2.42 

Distance from adjacent river -0.11   

Distance from drainage channel -0.35   

Distance from growth centre   0.07 0.11 

Soil salinity 0.39 0.25  

Distance from northing 

coordinates 

-0.19 -0.31 -0.09 

Distance from easting 

coordinates  

 -0.003 0.10 

Population density  -0.21 0.05 0.18 

 404 

The performance of each LR model is indicated by the estimated ROC and odds ratio 405 

(Table 3). A ROC value 1 indicates a perfect fit and ROC value 0.5 represents a random fit. 406 

Also, a higher adjusted odds ratio indicates a better performance of a model (Arsanjani et al., 407 

2013). In this study, the LR model for LULC transformation from agriculture to aquaculture 408 

cover obtained highest estimates of these performance indicators. 409 

Table 3. ROC and adjusted odds ratio values of LR models 410 

*Transitions ROC Adjusted odds ratio 

LULC -1 to LULC -2 0.93 81.27 

LULC -1 to LULC -3 0.71 5.23 

LULC -1 to LULC -4 0.91 24.67 

LULC -1 to LULC -5 0.73 4.60 

LULC -1 to LULC -6 0.89 17.82 

LULC -2 to LULC -3 0.74 8.10 

LULC -3 to LULC -1 0.67 4.28 

LULC -3 to LULC -2 0.89 14.38 

LULC -3 to LULC -5 0.68 2.96 

LULC -5 to LULC -1 0.63 2.07 

LULC -5 to LULC -2 0.93 35.74 

LULC -5 to LULC -3 0.82 9.81 
* LULC -1= Agriculture; LULC -2 = Aquaculture; LULC -3 = Bare land; LULC -4 = Built-up 

area (urban); LULC -5 = Vegetation with rural settlement; LULC -6 = Waterbody  

  411 

 412 
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3.1.3. Predicting LULC  413 

The combination of LR and CA-Markov chain model determined LULC quantitatively, 414 

where the LR model generated probability surfaces of different transitions, the Markov chain 415 

model predicted the quantity of change in each LULC transition, and the CA model controlled 416 

the spatial dynamics the projected LULC. The Markov chain model estimated the transition 417 

probability of 2030 based on the transition matrix 2010-2019 (Table S2, supplementary 418 

document). The simulation suggests that the proportion of agricultural land, bare land, and 419 

general waterbody is likely to decrease, while aquaculture lands, as well as rural and urban 420 

settlement areas, would increase (Figure 4a). In the case of the spatial distribution of different 421 

categories of LULC, aquaculture is likely to remain as the dominant type of LULC in northern 422 

and western segments of the study area given its economic return. Agricultural activities would 423 

mostly take place in the eastern segment, where “vegetation with rural settlement” is likely to 424 

be the dominant LULC category (Figure S2, supplementary document). The validation process 425 

yielded a kappa coefficient of 0.87, which indicates an acceptable degree of accuracy. 426 

However, the choice of driving forces affects the accuracy of the model (Wang et al., 2019). 427 

Although different environmental and socio-economic factors were considered in this study, a 428 

limited number of driving forces may have resulted in some errors in the predicted LULC.   429 

3.2. Association between LULC change and flood risk  430 

3.2.1. Flood damage   431 

Flood damages are associated with the type of LULC in the study area. Figure 4 (b) 432 

shows estimated damages during floods of different recurrence intervals, under four LULC 433 

scenarios. An increasing trend of flood damages was estimated, with changes in recurrence 434 

intervals and LULC scenarios. The estimated average damage (across all recurrence intervals) 435 

of $1180 million in 2005 is likely to increase by the year 2030 to $2601 million. From 2005-436 

2010, the highest increase of flood damage was estimated at $839 million for a flood event 437 

with a 50-year return period. Within this period, a significant transformation of LULC was 438 

observed, which resulted in a decrease in agriculture lands and an increase in aquaculture land 439 

(Figure 4 (a)).  440 
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 441 

Figure 4 (a) Trend of LULC change from 2005 – 2030; (b) Estimated damages during floods 442 

of different return periods under four LULC scenarios; (c) Exceedance probability 443 

distribution curve; (d) Comparison of EAD among four LULC scenarios  444 

3.2.2. Flood risk for various LULC scenarios  445 

An exceedance probability curve in Figure 4 (c) and estimated EAD in Figure 4 (d) 446 

indicates contribution of LULC change to flood risk. Notably, in Figure 4 (c), the difference of 447 

flood losses between the highest and the lowest exceedance probabilities does not vary greatly. 448 

In 2005, damage of $809 million was estimated for the median annual maximum flood event 449 

(an event with a 2-year return period). The damage increased to $1591 million when the 450 

exceedance probability reduced to 0.01. In 2030, damages may range from $1586 million to 451 

$3384 million for floods with annual exceedance probabilities from 1 to 0.01, respectively. A 452 

relatively small difference in estimated damages between the low and high probability floods 453 

is because even frequent floods (e.g. the median annual maximum) cause a substantial extent 454 

of inundation, and thus, significant damages (Figure 4 (b)). With an increase in the magnitude 455 

of precipitation, depths in the inundated areas tend to increase substantially, rather than the 456 

extent of inundations. We estimate that the extent of inundation may range from 5% area (for 457 

the 2-year return period flood) to 15% area (for the 100-year flood).  458 

LULC change has resulted in increased exposure primarily of residential (rural and 459 

urban) and aquaculture lands, which may result higher flood risk in the future. The EAD of the 460 
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year 2005 was estimated to be approximately $903 million, which may be more than twice 461 

($2096 million) by the year 2030 (Figure 4 (d)), assuming persistent LULC change in the 462 

future.     463 

3.3. Association among LULC change, flood risk, and poverty  464 

Table 4 summarises the results of the OLS regression model, developed to explain the 465 

degree of influence of different parameters on WI in the study area. Among the ten factors 466 

included, nine were found to be statistically significant. The estimated regression coefficients 467 

indicate that the WI was relatively higher in areas where land elevation, population density, 468 

and GDP are high, as well as a larger number of people employed in agriculture. Conversely, 469 

higher soil salinity, EAD, flood frequency, and LULC change negatively affected the WI. The 470 

regression coefficients were incorporated in Equation 8 in a GIS to estimate WI at each pixel, 471 

encompassing the study area. The estimated R2 in Figure 6 (c) exhibits the performance of the 472 

model. The R2 value of 0.81 indicates an acceptable level of agreement between observed 473 

versus modelled WI values for 2010. 474 

Table 4. Estimated regression coefficients for downscaling wealth index (WI) data  475 

Variables  Coefficient Standard error t-value VIF  p-value 

Intercept  -2.984 0.536 -5.572  0.000*** 

Soil salinity -0.125 0.136 -0.925 2.70 0.317 

Land elevation  0.042 0.009 4.472 3.08 7e-06*** 

EAD -0.016 0.007 -2.153 1.14 0.0373* 

Relative flood 

frequency  

-0.324 0.181 -1.791 1.81 0.059▪ 

Distance from 

northing coordinates 

-0.132 0.018 -7.481 1.59 0.000*** 

Distance from easting 

coordinates  

0.151 0.028 5.345 3.07 0.000*** 

LULC change  -0.213 0.091 -2.336 1.40 0.003** 

Population density  0.182 0.012 14.754 1.68 0.000*** 

GDP  0.012 0.005 2.520 1.31 0.013* 

Agricultural 

employment 

0.298 0.039 7.342 1.40 0.000*** 

R2: 0.81 Significance level:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘▪’ 0.1 ‘ ’ 1 

 476 

The WI of the study area was classified according to five categories using the Jenks 477 

scheme (Figure 5). During the base year of 2010, most of the south western zone (about 58%) 478 

was classified as areas with ‘low’ and ‘very low’ level of WI. Relatively, a higher WI was 479 

observed in the northern and western segments of the study area (Figure 5 (a)). The simulation 480 
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showed a potential increase in WI in the year 2019 and 2030 (Figure 5 (b and c)). Figure S3 in 481 

the supplementary document compares the spatial distribution of WI in 2010 between the 482 

disaggregated data created in this study and the WI grid developed by Steele et al. (2017).   483 

 484 

Figure 5 Spatiotemporal change of wealth index (WI) in the study area 485 

Areas classified as ‘very low’ WI would potentially decrease from 15% area in 2010 to 486 

about 6% area in 2030, while the proportion of areas with ‘moderate’ WI may increase from 487 

30% to 46%, respectively. However, the rate of increase in the proportion of areas classified as 488 

‘high’ and ‘very high’ WI was estimated to be insignificant (Figure 6 (a)). The proportion of 489 

total area with positive WI (‘high’ and ‘very high’ categories) is likely to increase from 11% 490 

in 2010 to 18% in 2030. Bangladesh has an increasing GDP per capita growth, which was about 491 

6.9% annually, on average, from 2010-2019. Population density has also been projected to 492 

increase in the future. Although these two variables exhibited a positive correlation with WI, 493 

LULC change and increasing EAD may hinder the growth of the WI in 2030. The estimated 494 

WI of 2010, 2019, and 2030 were disaggregated at the polder scale to identify marginalised 495 
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polders at present and in future (Figure 6 (b)). In general, more than 50% of the total area in 496 

most of the polders were classified as zones with ‘low’ and ‘very low’ WI. In 2010, there were 497 

19 polders where more than 50% area was classified as ‘moderate’ to ‘very high’. Nonetheless, 498 

the numbers increased in 2019 and 2030 for which correspondingly 21 and 34 polders were 499 

identified, with the majority of the area (>50%) classified as ‘moderate’ to ‘very high’ WI.  500 

 501 

Figure 6 Temporal change of wealth index in: (a) South western embanked area and (b) 502 

Polders; (c) Association between observed and estimated WI in 2010 503 

4. Discussion  504 

Monitoring and managing LULC changes have been recognised as an essential 505 

geographic phenomenon for guiding socio-economic development (Corner et al., 2014; 506 

Shahbazian et al., 2019). This study analysed and simulated LULC changes in the south 507 

western embanked area of Bangladesh to understand their association with flood risk and 508 

poverty. The study results indicated that the proportion of agricultural lands decreased 509 

significantly between 2005 and 2019. This result is similar to a few other studies that focused 510 

on LULC changes in south western Bangladesh (Islam et al., 2015; Khan et al., 2015; Rahman 511 

et al., 2017). A significant reduction of agricultural lands is reportedly associated with growing 512 

prevalence of shrimp farming, which reflects a socio-economic trend whereby land-owners 513 

near existing shrimp farms are more likely to convert to shrimp, together with the effect of 514 

salinity intrusion, in particular following surge flood events, which forced farmers to transform 515 
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their agricultural lands into aquaculture use (Islam et al., 2015; Khan et al., 2015). The 516 

projection of future LULC indicated a potential increase in settlement areas, while bare lands 517 

are likely to decrease. Such LULC transformation may follow a pattern which was observed 518 

from 2010-2019. Rahman et al. (2017) also predicted a similar pattern of LULC change by 519 

2028 in a small administrative unit (‘upazila’) of the south western coast. They explained that 520 

the natural increase of settlement and vegetation may lead to such changes in LULC.   521 

Simulating future LULC is subject to uncertainty (Szwagrzyk et al., 2018). Although 522 

combined LR and CA-Markov Chain model considers a wide range of driving forces, it does 523 

not incorporate exogenous covariates such as personal preferences and government regulations 524 

(Arsanjani et al., 2013). For instance, lower market price, higher production cost, and increased 525 

frequency of diseases caused a decline in benefits in brackish water shrimp farming in the last 526 

decade (Akber et al., 2017). Although aquaculture was perceived as one of the few options for 527 

economic development (Akber et al., 2017), intensive aquaculture and subsequent salinity 528 

intrusion may result in poverty, promoting rural unemployment, social unrest, conflicts and 529 

forced migration (Johnson et al., 2016). Despite a reduction in brackish water shrimp 530 

cultivation in recent years, mixed cultivation of sweet water shrimp and fish has proved to be 531 

beneficial, which may persist in future. Therefore, in the current study, we considered the trend 532 

of LULC change in the last decade to predict future LULC. An alternative to the current LULC 533 

change model, an Agent Based Model (ABM) can incorporate individual-related factors, an 534 

approach which has been followed in recent studies to model LULC change (Arsanjani et al., 535 

2013). However, the main limitation of the ABM is that it requires a large sample of empirical 536 

data to parameterise the model (Valbuena et al., 2010). In summary, LULC change modelling 537 

is a complex process and therefore, results should be used with caution (Wang et al., 2019). 538 

For example, areas predicted to be transformed into settlements by the LULC model should be 539 

interpreted as areas most suitable for future settlement development, rather than the precise 540 

locations of future change (Szwagrzyk et al., 2018).  541 

Notably, this study found a positive association between LULC change and losses 542 

caused by floods for various recurrence intervals. A lack of risk-oriented residential 543 

development might be associated with increased flood risk. The majority of rural houses are 544 

temporary or semi-permanent structures (Akter and Mallick, 2013). Exposure of those areas to 545 

floods results in significant damages. Similar evidence of residential development in wetlands 546 

in recent years can be found in the existing literature (Akber et al., 2018). Aquaculture lands, 547 

comprised of shrimp or freshwater ponds, can withstand a certain depth of floodwater (i.e. < 2 548 
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m). However, when the depth increases, shrimp or fish may escape and cause financial losses 549 

(Islam et al., 2019).  550 

We found that pluvial floods that occur each year cause substantial damage in the south 551 

western embanked region. This more or less inevitable flood damage is attributed to 552 

geomorphological characteristics of the study area. Land subsidence in the embanked region 553 

created depressions, which are prone to frequent pluvial flooding. Therefore, annual monsoon 554 

precipitation causes a substantial extent of inundation. For instance, a monsoon precipitation 555 

event of 2.1-year return period in 1990 inundated about 9.3% of the total area (Adnan et al., 556 

2019). From 2009-2014, pluvial flooding in Khulna Division (where the study area located) 557 

caused greater damage than any other natural hazards (BBS, 2015). Frequent pluvial flooding 558 

in the south western embanked region causes both damages to crops and delay to winter crop 559 

cultivation (Alam et al., 2017).  560 

This study further presented a spatially explicit regression model to estimate poverty in 561 

terms of the WI. The results indicated a positive correlation of GDP and population density 562 

with the WI. A similar pattern of association of these parameters with poverty was reported 563 

elsewhere (Dasgupta, 2007). The results of poverty modelling in this work highlighted that the 564 

rate of increase of WI is likely to be low in the future because of the pattern of LULC change 565 

and associated increase in flood risk. Few other studies have quantified the association between 566 

poverty indicators and flood risk/vulnerability (Akter and Mallick, 2013; Brouwer et al., 2007). 567 

Those studies were based on household-level survey data, where poverty was considered as an 568 

indicator of flood risk.      569 

5. Conclusion  570 

This study quantified the degree of influence of LULC change and flood risk on poverty 571 

in the south western embanked area of Bangladesh. Poverty was estimated, in terms of WI, for 572 

the present-day and for future LULC and flood risk scenarios. The analysis indicated that the 573 

region has been experiencing a rapid LULC change, resulting in a significant decrease in 574 

agricultural lands, while the proportion of aquaculture lands increased consequently. Based on 575 

the recent pattern of changes, LULC was predicted for the year 2030. The study further 576 

demonstrated that losses due to floods of various recurrence intervals have increased with 577 

LULC change. The exposure of residential areas (rural and urban) was predicted to increase in 578 

future. A lack of attention to flood is risk in land development decisions may explain the 579 

increased flood loss. Likewise, the expected annual flood damage (EAD) was also estimated 580 
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to increase in the future LULC scenario. Moreover, we further estimated that LULC change 581 

and EAD negatively influence WI, which may restrict the growth of the WI in the future. The 582 

area with negative WI is predicted to decrease from 89% area in 2010 to 82% area in 2030, 583 

which is slower than one might expect given Bangladesh’s predicted GDP growth. This is 584 

because flood risk and patterns of LULC change have a negative effect on WI. Among 44 585 

polders analysed, more than 50% area in 11 polders would potentially have ‘low’ and ‘very 586 

low’ WI.   587 

When interpreting the findings of this study, uncertainty related to flood damage 588 

functions and values of input parameters for poverty estimation should be considered. We 589 

considered global flood depth-damage functions for different LULC, due to the unavailability 590 

of micro (local)-level functions. We estimated flood losses for different categories of LULC, 591 

as building-level land use data are not available for all of the study area. While describing 592 

uncertainty in flood depth-damage function, Huizinga et al. (2017) highlighted that materials 593 

of structures primarily determine the maximum damage that may occur during a flood. In this 594 

study, the accuracy of the projected WI depends on the accuracy of input parameters. 595 

Parameters value (e.g. soil salinity and flood frequency) which were assumed to remain 596 

constant in may change in the future. The dynamics in soil salinity may also change in future 597 

climate change scenarios. Although few studies focused on modelling soil salinity in coastal 598 

Bangladesh under future climate change scenario (Dasgupta et al., 2015; Payo et al., 2017), the 599 

coarser resolution of their results restricted this study to incorporate such data in estimating 600 

WI. However, the statistical significance of salinity remains low. Also, GDP and population 601 

density were projected for the future year considering national-level growth rates, which may 602 

vary at the local scale such as polder level.    603 

This study highlights that the absence of risk-oriented land use planning is potentially 604 

increasing flood risk in the coastal region. Various national and regional level policies of 605 

Bangladesh have addressed this issue and express the need to formulate land use plans 606 

following a risk-based approach. For instance, the Coastal Development Strategy focused on 607 

developing a coastal land use plan. More recently, the Bangladesh Delta Plan (BDP) 2100 608 

emphasised the adoption of measures to mitigate flood risk, to achieve a long-term goal of 609 

reducing poverty and ensuring sustainable livelihoods (Khan, 2018). Spatial information on 610 

flood risk and land use changes provided in this study should inform stakeholders such as the 611 

Ministry of Land in identifying areas required land use policy intervention. Also, the proposed 612 

methodology to assess the implications of changing land use and flood risk for poverty should 613 
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be of interest to land use planners. The results can help target policies in areas with greater 614 

poverty at present and in future scenarios. To the best of our knowledge, this study is the first 615 

attempt to model spatiotemporal change of poverty with changes in land use and flood risk. 616 

Although many studies focused on land use change modelling and/or flood risk assessment, 617 

there is a dearth of studies that quantify their combined influence on local level poverty.   618 
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Supplementary tables  

Table S1. Influence of driving forces on LULC change 

Factors  LULC 1 

to 

LULC 3  

LULC 1 

to 

LULC 6 

LULC 2 

to 

LULC 3  

LULC 3 

to 

LULC 1  

LULC 3 

to 

LULC 2 

LULC 3 

to 

LULC 5 

LULC 5 

to 

LULC 1 

LULC 5 

to 

LULC 2 

LULC 5 

to  

LULC 3 

Intercept  2.38 -2.01 -0.57 -3.92 -5.86 -1.35 0.50 -1.51 2.14 

Elevation -0.32 -0.49 -0.03 0.32 0.03 0.10 -0.10 -0.51 -0.63 

Curvature   0.39  -0.20 -0.01 -0.03    

Flood frequency 0.01 0.79 -0.41 0.13 0.72 0.17 -0.22 0.61 -0.18 

Distance from aquaculture 

land 

       -0.10  

Distance from existing road -0.06   0.08  0.02 0.02 0.02 0.03 

Distance from residential 

area 

     -0.22    

Distance from adjacent river   0.004       

Distance from drainage 

channel 

  0.006 0.04    -0.03  

Distance from growth centre      0.03    

Soil salinity -0.08   0.05 0.31 0.11 -0.18 0.17 -0.06 

Easting coordinates 0.16  0.07 0.07 0.21 0.05 2e-04 -0.17  

Northing coordinates -0.11 -0.02 0.02  -0.11   0.16  

Population density          

Slope -1e-04  7e-05       

ROC 0.71 0.89 0.74 0.67 0.89 0.68 0.63 0.94 0.82 

Adjusted odds ratio 5.23 17.82 8.10 4.28 14.38 2.96 2.07 35.74 9.81 

LULC 1= Agriculture; LULC 2 = Aquaculture; LULC 3 = Bare land; LULC 4 = Built-up area (urban); LULC 

5 = Vegetation with rural settlement; LULC 6 = Waterbody  
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Table S2. Markov Chain transition probability matrix of LULC change  

 LULC class Agriculture  Aquaculture  Bare 

land 

Built-up 

area 

(urban) 

Vegetation 

with rural 

settlement 

Waterbody 

Transition 

probability 

of 2019 

based on 

the 

transition 

matrix of 

2005-2010 

Agriculture  0.0571 0.4943 0.0713 0.0425 0.2160 0.1189 

Aquaculture 0.0112 0.6845 0.0310 0.0198 0.0492 0.2044 

Bare land / 

others 

0.0983 0.2865 0.2527 0.0227 0.2853 0.0546 

Built-up area 

(urban) 

0.0062 0.1078 0.0121 0.7319 0.0356 0.1063 

Vegetation with 

rural settlement 

0.1226 0.2433 0.1075 0.0246 0.4708 0.0312 

Waterbody 0.0044 0.6815 0.0204 0.0079 0.0236 0.2622 

Transition 

probability 

of 2030 

based on 

the 

transition 

matrix of 

2010-2019 

Agriculture  0.2296 0.1756 0.2314 0.0189 0.3439 0.0007 

Aquaculture 0.0080 0.7358 0.0724 0.0355 0.0677 0.0806 

Bare land / 

others 

0.0779 0.2742 0.4352 0.0266 0.1790 0.0071 

Built-up area 

(urban) 

0.0007 0.0422 0.0128 0.9310 0.0081 0.0053 

Vegetation with 

rural settlement 

0.0585 0.1897 0.0947 0.0264 0.6257 0.0051 

Waterbody 0.0000 0.7527 0.0569 0.0222 0.0261 0.1421 

 

 

Table S3. Autocorrelation diagnosis of monthly precipitation  

Month Autocorrelation Significant 

January -0.12 FALSE 

February 0.14 FALSE 

March  -0.14 FALSE 

April  0.02 FALSE 

May  0.18 FALSE 

June  -0.01 FALSE 

July  0.09 FALSE 

August -0.14 FALSE 

September -0.14 FALSE 

October -0.21 FALSE 

November -0.24 FALSE 

December -0.17 FALSE 
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Supplementary Figures   

 

Figure S1. Trend of monthly rainfall from 1965 to 2012  
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Figure S2. Predicted and observed LULC change between 2005 and 2030  
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Figure S3. Wealth Index in 2010: a) obtained from Steele et al. (2017); and b) downscaled for this 

study  
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