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The role of infauna on permeable sediment processes is poorly understood due to 

methodological limitations and a lack of empirical data.  The interactions among 

porewater flows, sediments, and biogenic structures present a physically and 

biogeochemically complex sedimentary environment in which traditional measurement 

techniques and heuristic models are of minimal applicability.  Chapter one provides an 

executive summary of this research. The second chapter describes a field investigation of 

the impact of the common lugworm and two species of thalassinid shrimp on porewater 

transport and chemistry in permeable sediments.  In this work, novel experimental 

methods are employed to measure infaunal effects on porewater transport and chemistry.  

This experiment found differential effects of each taxon on porewater transport and solute 

chemistry that were highly related to infaunal functional characteristics, and independent 

of sediment properties.   



  

Results from the field study prompted a laboratory microcosm study of lugworm 

effects on permeable sediment solute fluxes, presented in chapter three.  Flow-through 

sediment microcosms mimicked tidal draining of intertidal flats and measured the effects 

of lugworms on sediment biogeochemistry. Lugworms were found to significantly alter 

solute fluxes as well as stoichiometric ratios from the microcosms.  The potential 

ecosystem consequences of stoichiometric changes to regenerated solutes are explored 

with a new metric.  Finally, chapter four presents a synthesis examination of the infaunal 

functional attributes important to permeable sediment processes with a multi-site, multi-

species field investigation.  Head-down deposit feeders were found to have similar effects 

on advection and chemistry, whereas other infauna had differential effects linked to the 

composition and morphology of the burrow/tube.  The mechanisms by which different 

infauna may affect permeable sediment properties are discussed, and include 

consideration of covariates such as organism activity and density.    

The results from this research highlight the importance of infauna to permeable 

sediment processes, while recognizing the limitations of their effects under different 

physical regimes.  Benthic infauna play a significant role in the biogeochemistry of 

common permeable sediment habitats in coastal and near-shore environments.  The 

results presented herein suggest the loss of large bioturbating infauna from permeable 

sediments due to human activities may result in significant changes to coastal 

biogeochemical cycles.   
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Chapter 1: Executive Summary: Infaunal Effects on 
Permeable Sediment Processes 
 

The seafloor of shallow coastal marine and estuarine ecosystems is a complex 

association of physical, biological, and chemical processes.  These shallow water 

sediment habitats serve as sites of intense organic matter and biogeochemical cycling 

(Jahnke et al. 2003, Meile and Van Cappellen 2003, Billerbeck et al. 2006).  One class of 

recently recognized sedimentary habitats important to biogeochemical and ecosystem 

type processes are permeable sediments (Boudreau et al. 2001).  Permeable sediments are 

physically dynamic, sandy habitats found in shelf, near-shore, and inter-tidal locations. 

Previously, it was believed that these sandier sediments with low standing stocks of 

organic matter were biogeochemically inactive.  Several key studies however illustrated 

that permeable sediments remineralize organic matter more rapidly than muddy diffusion 

dominated sediments (Huettel et al. 1996, 1998, Marinelli et al. 1998).  Characterizing 

the factors that modify processes in shallow-water permeable sediments is important 

because coastal ecosystems are susceptible to changes in benthic biogeochemistry due to 

anthropogenic impacts (Torgersen et al. 1997, Tyler et al. 2003, Lucea et al. 2005).  

 

Porewater advection is the dominant porewater transport process in permeable 

sediments, resulting in porewater exchange rates orders of magnitude higher than 

molecular diffusion alone.  On very short temporal (seconds to minutes) and spatial 

scales (millimeters) diffusion can be a very rapid process, however the divergence in 

rates of transport between advection and diffusion occurs when the temporal and spatial 

scales are increased. Two conditions must exist for porewater advection to occur: 1) the 
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sediment must be permeable to advective flow and 2) a pressure gradient driving flow 

from high to low pressure must be present.  The results of rapid porewater transport 

through permeable sediments include increased rates of organic matter remineralization 

(Cook et al. 2007), rapid exchange between pools of reduced porewater and oxidized 

overlying water (de Beer et al. 2005), and elimination of diffusional gradients in solute 

concentrations.  

 

Advective porewater flow may erase infaunal associated diffusive gradients, but 

infauna may modify permeable sediments in other significant ways.  Two primary 

mechanisms by which benthic infauna may affect permeable sediment processes are 

through modifying sediment permeability or altering porewater pressure gradients.  For 

example, non-local transport of particles by deposit feeders will translocate sediment 

between depth and the sediment surface and counteract normal compaction processes in 

sediments (Thayer 1983, Craig et al. 1998).  Burrow, tubes, and galleries created by 

infauna will result in void spaces beneath the sediment surface serving to increase the 

overall permeability of the sediment (D’Andrea et al. 2002, 2004, Volkenborn et al. 

2007).  Ingestion and feeding on sediment by infauna results in stripping of organic 

material, and may result in a reduction of fine material, also increasing permeability 

(Volkenborn et al. 2007).  Alternatively, the creation of impermeable biogenic structures, 

such as clay lined burrows, may also decrease sediment permeability and result in 

decreased porewater transport (Waldbusser and Marinelli 2006).  Suspension feeding 

organisms also have the potential to alter sediment permeability through the 

biodeposition.   
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Infauna may further affect permeable sediment processes by altering pressure 

gradients within and acting upon the sediment.  Direct pumping of fluid into the sediment 

has been well studied for its effect on porewater advection and resulting biogeochemistry 

(Timmerman et al. 2002, Meysman et al. 2006).  The creation of biogenic structures both 

above and below the sediment surface may interact with flow fields to alter pressure 

gradients.  Mounds created by excavating infauna interact with overlying water to 

generate porewater advection (Munksby et al. 2002).  Tubes extending above the 

sediment surface may also result in passive irrigation of sediments due to the Bernoulli 

effect (Ray and Aller, 1985, Huettel and Gust 1992, Libelo et al. 1994).  Benthic infauna 

exhibit a diverse array of life history strategies that have the potential to act differentially 

on sediment permeability and pressure gradients driving porewater advection.  An 

important question is whether these effects are broad scale and promote significant 

alteration of biogeochemical cycles 

 

The overarching goal of this dissertation research was to examine the role of 

benthic infauna on permeable sediment processes.  This question was examined using 

three general approaches: 1) examining the extent to which infauna modify advection and 

biogeochemistry in unmanipulated field environments using a correlative approach, 2) 

quantifying infaunal effects on permeable sediment fluxes of ecologically important 

solutes using laboratory microcosms, and 3) examining multiple organisms and sites to 

identify the specific infaunal attributes that promote sediment biogeochemical alteration 
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in these habitats. The dissertation includes four chapters, including this introductory 

chapter.  The three remaining chapters are aligned with the three approaches noted above.   

  

Initial field experiments were conducted in False Bay, WA to examine whether 

two common, co-occurring, and active infaunal taxa have measureable effects on 

porewater advection and solute concentrations.  The arenicolid lugworm polychaete, 

Abarenicola pacifica and two species of thalassinid shrimp (Upogebia pugettensis and 

Neotrypaea californiensis) are known to have significant effects on sediment processes, 

though their feeding modes and life history strategies are different.  I hypothesized that 

the differences in how each taxon interacts with the sediment column and the close 

spatial proximity of burrows should result in complex and differential effects of each 

taxon on porewater advection and biogeochemistry.  Experimental plots composed 

primarily of one of the study taxa or mixed communities of both were evaluated for their 

effects on porewater advection, solute concentrations, and sediment characteristics.  

Fluorescein-impregnated acrylamide gels were used to infer rates of transport (via loss of 

the tracer), and acrylamide gel peepers were used to record temporally integrated 

porewater concentrations of diagenetically important constituents among experimental 

plots.  Laboratory studies evaluated rates of diffusive transport in non-bioturbated 

sediments for comparative analysis.  Results presented in chapter two found: 1) 

functionally different macrofauna affect rates of porewater advection in permeable 

sediments, 2) organism effects are not attributable to changes in average measures of 

sediment granulometry, 3) species composition may further complicate the advective 

environment and the resulting diagenetic processes, and 4) species effects vary according 
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to reaction rate kinetics.  Species interaction effects on transport are potentially due to 

inhibition of arenicolid feeding by thalassinid tubes that serve to block sediment 

fluidization and advective flow.  Thus, specific behaviors and interactions among 

organisms appear to affect transport rates and sediment function in advectively-

permeable habitats.  The results indicate the importance of integrating behavior, kinetics, 

and transport into future studies of sedimentary biodiversity and ecosystem function.  

  

The infaunal effects on porewater transport and chemistry found in the previous 

field investigation led to the question as to whether infauna can affect solute fluxes from 

permeable sediments.  Using flow-through sediment microcosms the effects of the 

common lugworm (arenicolid polychaete) Abarenicola pacifica on permeable sediment 

solute fluxes were measured and presented in chapter three.  Burrow mimics of 

thalassinid shrimp also were employed to examine effects of these highly impermeable 

structures on lugworm activity, and consequences to sediment biogeochemistry. This 

simplified experimental system simulated tidal flushing of an intertidal sandflat and 

permitted direct measures of A. pacifica effects on biogeochemical fluxes. Porewater 

advection rates were also manipulated to imitate advection rates measured in-situ and 

evaluate how different physical conditions affect lugworm-biogeochemistry interactions.  

Fluxes of ammonium, nitrate, phosphate, silicate, and alkalinity were measured by 

determining the concentration difference between overlying water input and effluent from 

the flow-though sediment microcosms.  Statistically significant results under the low-

flow conditions show that arenicolids reduced the flux of ammonium, carbon, phosphate, 

and alkalinity.  The thalassinid burrow mimics had little to no effect on sediment 
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biogeochemistry.  The high-flow conditions appeared to minimize lugworm effects on 

permeable sediment fluxes.  The results provide a context for evaluating the range of 

advective porewater flows in which infauna influence biogeochemistry.  Potential 

ecosystem consequences of infauna on the ratios of regenerated elements were examined 

with a new metric (d-value).  These d-values calculated the molar distance in graphical 

space for elemental pairs and are used to evaluate stoichiometric relationships of 

remineralized solutes in relation to empirical ratios.  The stoichiometric evaluations 

suggest effects of arenicolids on biogeochemical processes in permeable sediments may 

influence water column nutrient stoichiometry and could have broad ecosystem 

consequences. 

  

A comparative field campaign investigating the effects of several different 

common infauna on sediment porewater transport and chemistry identified general effects 

of functionally similar and dissimilar species.  An important research goal is to evaluate 

the nature, extent, and species-specificity of these effects within realistic porewater 

advection regimes in different sites.  Findings from field studies of three different 

intertidal flats (False Bay, WA, Cara’s Flat, VA, and Debidue Flat, SC), inhabited by six 

taxonomically different infauna (Abarenicola pacifica, Upogebia pugettensis, 

Neotrypaea californiensis, Diopatra cuprea, Balanoglossus aurantiacus, and Onuphis 

jenneri) are presented in chapter three.  Porewater advection, solute concentrations, bulk 

sediment granulometry, and density of infauna were measured within experimental plots 

at each site.  Stepwise regression was used to identify independent variables (organism 

density and granulometry) having the greatest effects on porewater advection and solute 
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concentrations within sites and develop the best fitting statistical relationships.  Different 

infaunal species at three sites had significant effects on porewater advection and at two 

sites had significant effects on porewater chemistry.  Infaunal density effects on 

porewater transport or chemistry were statistically confounded with variability in 

sediment granulometry in some cases.  Within site variability of granulometry was found 

to be small however, and probably not environmentally relevant to transport and reaction 

processes.  Different infaunal species exert significantly different effects on porewater 

transport and sediment biogeochemistry, while important infaunal attributes appear to be 

related to feeding strategies and burrow characteristics.  Head down deposit feeders 

increased porewater advection and lowered solute concentrations, while effects of surface 

feeders appeared to depend more on burrow/tube properties.  Additionally, construction 

of impermeable burrows increased porewater concentrations of several solutes.  The 

infauna functional effects across sites can not be completely disentangled from variability 

in sediment fines content and hydraulic conductivity.  This suggests that infaunal effects 

on permeable sediment processes may also be context-dependent on sediment properties.  

Although replication of functional analogs across all sites was not possible in this 

unmanipulated multi-site experiment, the results do provide evidence of functionally 

specific effects of infauna on these physically active sediments.  

   

The broader implications of this work suggest that infauna can have important 

effects on physically active permeable sediments, though these effects will vary with 

infaunal attributes, interactions among species, and general characteristics of the actual 

site.  Biodiversity effects were not explicitly tested in any of the experiments presented 
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here, but the significantly different effects of different infauna on porewater transport and 

chemistry in field studies suggest that infaunal community composition (and other 

metrics such as biodiversity) may be important variables in permeable sediments.  

Furthermore, the non-linear effects of infaunal density on porewater solute concentrations 

in mixed communities in False Bay suggests  that community interactions may result in 

non-linear responses of permeable sediment processes.  Likewise, the shift towards 

“healthier” or lower nutrient regeneration ratios in response to infauna in microcosms 

suggests that changes to stoichiometric ratios of regenerated nutrients may be another 

ecosystem effect of infauna on permeable sediment processes.  In all a complex picture 

emerges, though some general patterns are revealed.  However, given the complex ways 

in which infauna may modify porewater transport, solute concentrations, and solute 

fluxes, it may not be possible to develop simplified models of infaunal effects on 

permeable sediment processes that are applicable to the broader ecosystem.     
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Chapter 2: Macrofaunal modification of porewater advection: 
The role of species function, species interaction, and kinetics. 

2.1 Introduction 

Marine sedimentary systems are complex associations of biological, chemical and 

physical processes that operate on varying spatial and temporal scales.  From these 

collective elements, ecosystem function emerges.  The difficulty in understanding 

intermediate and small scale process complexity of coastal sedimentary systems arises, in 

part, from current limitations in our characterization of macro-organism interactions with 

physical and biogeochemical processes (Marinelli & Waldbusser 2005).  Studies 

increasingly point to the importance of species-related differences in activity rates 

(Boudreau and Marinelli 1994), and density dependent processes (Marinelli and Williams 

2003, Lohrer et al. 2004) that create geochemical variability with fundamental ecological 

significance.  For example, keystone species such as urchins or maldanid polychaetes that 

alter local community structure and small scale sediment geochemistry have broad-scale 

effects on ecosystem function when integrated over larger scales (Levin et al. 1997, 

Widdicombe & Austen 1998, Waldbusser et al. 2004).  The diagenetic setting, dictated 

by rates of organic input and internal geochemical cycling (Canfield et al. 1993a 1993b, 

Thamdrup et al. 1994, and Jahnke & Jahnke 2000), is an additional element of 

complexity that co-determines the outcome of ecosystem processes (Kristensen et al. 

1985).  Lastly, physical-biological interactions related to boundary layer dynamics affect 

interfacial processes (Eckman 1983, Huettel et al. 1998), with significant implications for 

resource utilization (Taghon  et al. 1980), population dynamics (Eckman 1996), and 

sediment-seawater exchange (Jahnke et al. 2000).  Given the diversity of processes and 
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potential interactions among them, identification of mechanisms that alter system 

function is crucial to developing predictable relationships between ecosystem structure 

and function (Levin et al. 2001). 

 

It is increasingly clear that consideration of the geochemical milieu helps 

elucidate the mechanisms by which biodiversity alters system function.  For example, 

Waldbusser et al. (2004) found that biodiversity effects associated with lower than 

predicted phosphate fluxes (underyielding) was largely explained by depth integrated 

oxygen concentrations within the sediment and the effect of oxygen on phosphate 

adsorption.  This relationship was driven by the presence of one active deep dwelling 

organism in the experimental treatments and therefore may be considered a selection 

effect (Wardle 1999).  The extensive literature on diagenetic and other sedimentary 

process may readily provide explanatory mechanisms for many of the effects found in 

biodiversity and ecosystem function studies of sediments.  Ongoing debate regarding the 

nature of biodiversity effects (Kinzing et al. 2001) and lack of congruity among 

conclusions from sediment diversity experiments (Emmerson et al. 2001, Biles et al. 

2002, Bolam et al. 2002) point to the need for a more integrated and thorough 

investigation of sediment dynamics.   

 

Concurrent with the expansion of biodiversity research in benthic environments 

has been the increased recognition of permeable sediments (and associated porewater 

advective flows) as habitats of significant and rapid biogeochemical cycling.  As Rocha 

(2000) argues, the basis for modern diagenetic research has focused on non-permeable 
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sediments with diffusion and bioirrigation as the primary transport mechanisms.  Extant 

bioirrigation models have successfully captured average geochemical environments 

inhabited by organisms in diffusive sediments (Guinasso and Schink 1975, Aller 1980, 

Boudreau 1984).  However, these models generally are not suited to permeable 

sedimentary habitats due to assumptions regarding diffusive transport around organism 

burrows.  A common assumption regarding advectively-dominated environments is the 

erasing of chemical potential gradients generated by organism burrows, and therefore a 

dampening or lack of sedimentary organism effects.  Rather, the primary importance of 

infauna in permeable sediments are as creators of topographic features and associated 

pressure gradients that in turn, drive advective flow (Huettel & Webster 2001, but see 

D’Andrea et al. 2002, D’Andrea et al. 2004 for counter examples).  Furthermore, de Beer 

et al. (2005) estimated roughly 25% of the exchange between sediment and overlying 

water on an advective intertidal sand flat was due to bioturbational activities of infauna, 

emphasizing the potential importance these communities may have on geochemical 

cycling in permeable sediments.  Although recent findings indicate the importance of 

infauna on sedimentary processes in permeable sediments, it is critical to 

biodiversity/ecosystem function research that we understand whether functionally 

different species and interactions among them create ecologically significant variance in 

permeable sediment processes.   

 

In the current study, we conduct several field experiments in a muddy-sand 

intertidal flat dominated by three species of two functionally different bioturbating 

macrofauna, consider the complexity associated with non-diffusion dominated 
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environments, and the implications for biodiversity/ecosystem studies in terms of species 

interactions.  Our questions in this study are: 1) Do two functionally different 

bioturbating infauna have different effects on sedimentary processes in this permeable 

sedimentary habitat, 2) Does the interaction between the two functional types affect the 

transport of porewater solute distributions, 3) What are the possible mechanisms for any 

organism effects found on sediment dynamics, and 4) What are the implications for the 

future of biodiversity and ecosystem function research within permeable sediments, as 

well as in other habitats?  

2.2 Methods 

2.2.1 Site and Organisms 

This study was conducted in False Bay, WA, U.S.A. (Lat = 48.488° , Lon = -

123.065°), an intertidal flat approximately one km2 in area during maximum exposure, 

located on San Juan Island.  The tides are mixed semi-diurnal with a maximum 4 m tidal 

range and daily exposure times of nearly 12 hours during late spring and summer, 

imparting considerable temperature fluctuations of overlying water and within the 

sediment (Waldbusser unpublished data).  The sediment column in the study area was 

underlain by an impermeable clay layer roughly 30 cm beneath the sediment surface.  All 

experiments were conducted at the +1 m tidal height (from mean low water).   

 

The study area is relatively pristine and has a diverse infauna, including errant 

(e.g. nereidid and glycerid polychaetes) and relatively sedentary species (e.g. the bivalve 

Macoma sp. and lumbrinereid polychaetes).  However, the dominant taxa are the 
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lugworm Abarenicola pacifica and two species of thalassinid shrimp, Upogebia 

pugettensis and Neotrypaea californiensis.  Maximum densities of surface features, a 

proxy for organism density, were roughly 75 fecal mounds or burrow openings m-2 for 

both the arenicolid and thalassinid taxa, respectively (Table 1 and Krager & Woodin 

1993).  No differentiation could be made between the thalassinid species without 

destructive sampling, and therefore they are treated as one taxonomic unit.  

 

The arenicolid and thalassinids are characterized by differences in feeding mode 

and burrowing.  Abarenicola pacifica, is a head-down deposit feeder with a body length 

of up to 10 cm.  It maintains a mucus-lined, j-shaped tube and feeds indirectly on surface 

material by fluidizing the sediment above the feeding area at the tube base and 

subducting surface material downward.  Taghon (1988) measured fecal production rates 

up to 280-d (grams of sediment to grams of ash free dry weight worm per day) for A. 

pacifica.  A significant body of literature exists on the ecology of arenicolids and the 

reader is directed to Hobson (1967), Brenchley (1981), Riisgård & Banta (1998), Linton 

and Taghon (2000) and references therein for further information.  The presence and 

abundance of A. pacifica can be verified by characteristic fecal mounds found on the 

sediment surface next to its well formed tail shaft (Krager & Woodin 1993).  

 

In contrast, thalassinid species create large subsurface galleries with one or more 

openings to the sediment surface (Nickell & Atkinson 1995).  They excavate large 

volumes of sediment, often suspending fine particles, increasing turbidity of the 

overlying water, and negatively affecting other organisms (MacGinite 1930, Suchanek 
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1983, Posey et al. 1991, Pinn et al. 1998, Feldman et al. 2000).  Both Upogebia 

pugettensis and Neotrypaea californiensis are obligate burrow dwellers, and are 

considered to be facultative suspension and deposit feeders, respectively (Posey et al. 

1991).  Further, differences in reproduction and life history strategies seem to allow these 

sympatric species to co-occur (Dumbauld et al. 1996, Coelho et al. 2000 and references 

therein).   

 

Experimental plots of areas dominated by the arenicolid, thalassinids, and mixed 

communities were identified in mid June and maintained until the end of August.  Three 

0.5 m by 0.5 m plots within three larger blocks were selected by visual inspection of the 

sediment surface for features characteristic of each taxon.  All plots within a block were 

within 1-2 meters of each other, and blocks were ~50-100 meters apart, and at similar 

tidal heights.  Plots were designated as: 1) arenicolid dominated, 2) thalassinid 

dominated, or 3) mixed communities of the two taxa.  At three intervals over the field 

season, a series of daily photographs were taken at low tide (23-25 June, 19-22 July, and 

4-7 August) to verify these designations, and the persistence of the organisms.  

Photographic image data, used to estimate the abundances of arenicolids and thalassinids 

by surface features, were analyzed using Image-J software.   

2.2.2 Advection and Diffusion Measurements  

The potential importance of advective porewater movement within the 

experimental area was evaluated using a conservative tracer, fluorescein, released from 

an acrylamide gel diffuser over an outgoing and incoming tide.  A 20% acrylamide gel 

plug (2.54 cm diameter, 5 cm length), containing 1mg ml-1 fluorescein was made 
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according to Browne & Zimmer (2001).  A 1 m transect line was established parallel to 

the long axis of the bay, on a sand bar with a gradual slope, within a site that appeared to 

lack any obvious surface features that would indicate the presence of large bioturbating 

infauna.  At 1200 hrs the gel was inserted (via core replacement) into the middle of the 

transect with the center of the gel roughly at 5 cm depth.  The gel was then covered with 

sediment such that the surface was flush with the surrounding area.  Starting at 1245 hrs 

and every hour subsequent, a small volume (~1ml) of porewater was taken at 5 cm depth, 

along both directions of the linear transect, at three locations:  1, 3, and 5 cm from the 

gel.  The sample was obtained by inserting a canula, attached to a syringe, to the 5 cm 

depth interval and gently withdrawing fluid at depth.  The last sample was taken at 1830 

hrs; this was the time the incoming tide had begun to cover the experimental area.  We 

assumed that the major axis of flow would be horizontal, based on the pressure gradient 

generated by the retention and drainage of porewater within the sediments, though some 

vertical transport probably occurred.  Upon retrieval, all samples were filtered through a 

0.45µm filter, and placed in a dark cooler, until analysis on a Turner-Quantech 

fluorometer.  The acrylamide gel plug was left in the sediment for 3 days before retrieval 

on 26 May 2004, when the porewater sampling was repeated, as above.   

 

To evaluate the relative magnitude of advective versus diffusive transport in these 

sediments, a lab experiment was conducted to measure tracer movement in a diffusion-

dominated environment.  Since diffusive transport is the sum of random non-directional 

Brownian movements resulting in transport down gradient, the vertical or horizontal 

orientation of the experimental set up is irrelevant on this spatial scale, and thus measures 
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of vertical diffusion in a controlled experiment can be compared to measures of advective 

transport measured in-situ in a horizontal direction.  A PVC pipe 10 cm in diameter and 

30 cm long was capped on the bottom, outfitted with a vertical line of sampling ports 

drilled at 1.5 cm intervals to a height of 15 cm, and fitted with rubber septa as described 

in Marinelli et al. (1998).  A 20% acrylamide solution with 1 mg ml-1 fluorescein was 

made, poured into the bottom of the PVC pipe, and allowed to polymerize.  Sediment 

from the study site was collected, mixed, and defaunated by allowing the mixture to go 

anoxic for 2 weeks.  Once defaunated, the sediment was carefully added to the pipe to a 

depth of roughly 10 cm on 9 July 2004 (day 0).  The diffusion experiment was kept at 

constant room temperature and does not reflect the temperature variability found at the 

site.  Temperature changes of surface sediments due to solar heating were roughly 10o C 

at the field site (Waldbusser unpublished data).  Using the Wilke-Chang formula to 

calculate the temperature dependence of changes in the diffusion coefficient of 

fluorescein (Browne and Zimmer 2001), the free solution diffusion coefficient varied by 

0.1 x10-6 cm s-1 with a 10o C temperature change from 10o C to 20o C.  Thus, the 

consequence of not mimicking field temperatures on diffusive transport is minimal.  

Porewater samples (~1-2 ml) were taken on days 10, 18, and 25, filtered, and analyzed 

for fluorescein concentration immediately, as described above.   

2.2.3 Fluorescein Loss Measurements  

To assess differences in rates of porewater advection between plots dominated by 

functionally different fauna, we deployed acrylamide gels infused with fluorescein in the 

experimental plots, described above.  The fluorescein concentrations remaining in the 

gels after a given period of time acted as a proxy for relative rates of porewater 
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advection.  We hypothesized that gels in areas of higher advective flows would lose 

fluorescein faster due to the increased flushing of the surrounding sediment.  

 

Acrylamide plugs (1.1 cm diameter, 9 cm length) were made with a 15% gel 

(Browne & Zimmer 2001, as above) containing 1 mg ml-1 fluorescein.  After 

polymerization, the gels were removed from the cylinders and wrapped individually in a 

single layer of #75 nitex mesh.  On 19 July 2004, five replicate gels were deployed in 

each experimental plot (described above) 10 cm apart along a 0.5 m transect 

perpendicular to the axis of advective flow measured previously.  The gels were retrieved 

on 21 July 2004 by taking a 5 cm diameter sediment core around the plug, and then 

breaking apart the core to obtain the gel plug.  Excess sediment was gently wiped from 

the exterior, and two 5 mm subsections of the plug were taken roughly ~1 cm from each 

end of the plug.  The subsections were placed in pre-weighed sample vials and covered 

with foil to prevent photo-degradation of fluorescein within the gels.  Immediately upon 

returning from the field, the sample vials were reweighed, and 2.5 ml of D.I. water was 

added to each vial for back-equilibration of fluorescein out of the gel and into solution.  

The samples were placed on a shaker table in the dark for 48 hrs.  The fluorescein 

concentration in the back-equilibrated water was then determined via fluorometry and the 

fluorescein remaining in the gel was corrected based on the dilution factor and the 

volume of the acrylamide.   

2.2.4 Sediment Porewater Solutes 

Porewater peepers, containing acrylamide gels as solute recorders (modified from 

Hesslein 1976 and Mortimer et al. 1999), were used to measure depth profiles of 
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ammonium, phosphate, silicate, alkalinity, and pH at the study site, and evaluate the 

effects of biologically modified porewater flow on sediment biogeochemistry.  Each 

peeper had ten wells (0.75 cm deep by 3.2 cm wide by 8 mm high) of approximately 2 ml 

in volume, allowing the measurement of a 10 cm profile from 1 cm below the sediment 

surface to 11 cm depth.  Two milliliters of a 15% acrylamide gel was added to each well.  

Gels were made with potassium persulfate as an initiator rather than ammonium 

persulfate, to avoid ammonium contamination (Engstrom & Marinelli in press).  After 

polymerization, the peeper wells were covered with 0.45 µm Magna nylon filter paper 

and were prehydrated in 30 psu NaCl solution for 5 days prior to deployment in the field 

on 4 August 2004.  Peepers were deployed in the same experimental plots used to 

measure fluorescein loss but 11 days after these experiments concluded.  Three replicate 

peepers were deployed in each plot within all three blocks, with the narrow edge facing 

the dominant axis of flow.  Peepers were retrieved on 10 August 2004 (6 day 

deployment), wiped clean of sediment, placed in plastic bags, and refrigerated.  

Subsequently, the individual gels from each depth interval were removed using clean 

stainless steel spatulas and latex gloves and placed in 15ml sterile centrifuge tubes 

containing 8 ml of D.I. water.  For back-equilibration, tubes were placed in the dark on a 

shaker table in a cold room at 10 oC for 48 hrs.  Solutes and pH were then measured on 

the back equilibrated solution and corrected for the dilution.  Random checks of salinity 

on the back equilibrated water were done to detect possible evapo-concentration of 

solutes within the gels either though the course of handling or during deployment in the 

field.   
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Calculations were made to verify the response time of the gels to changes in 

surrounding porewater concentrations.  Using free solution diffusion coefficients for 

ammonium, phosphate, and silicate (Boudreau 1997), the Acrylamide-specific diffusion 

coefficients were calculated and Bessel series summations were performed as in Browne 

& Zimmer (2001).  Roughly 10% or less of the solute would be present in the gel (75 mm 

diffusion length based on well depth) after 1 day of equilibration, if exposed to solute-

free water.  In other words, it would take roughly 24 hrs for the gel to equilibrate within 

90% of surrounding concentrations, if those concentrations were constant.  Integrating 

the temporal variability associated with the tidal draining and saturation of these 

sediments requires an extended sampling.  We estimated that a deployment time of 6 

days would be sufficient to allow for the gels to accurately record average porewater 

values; this was true based on prior measures of sediment porewater constituents using 

direct extraction (Waldbusser unpublished data).  Therefore, gels successfully integrated 

temporal variability in porewater constituents over the deployment period.  

2.2.5 Chemical Analyses 

Analyses of ammonium, phosphate, silicate, and alkalinity were performed on a 

Smartchem discrete chemical analyzer (Westco Scientific, Danbury, CT).  Ammonium 

was analyzed using a modification of the phenol method as outlined by Koroleff (1976).  

Phosphate analysis followed a modification of the EPA method 365.2 and Eaton et al. 

(1995).  Silicate was analyzed according to Strickland and Parsons (1972).  Alkalinity 

was determined using the methyl orange method, EPA 310.2.  Dissolved inorganic 

carbon was calculated from the pH and alkalinity measures by dissociation constants 

using a MATLAB routine (csys.m and equic.m) developed by R.E. Zeebe and D.A. 
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Wolf-Gladrow (http://www.awi-bremerhaven.de/Carbon/co2book.html).  The 

measurement of pH was conducted using a pH electrode and meter (VWR Scientific 

model 8000).   

2.2.6 Sediment Parameters and Measured Permeability 

Grain size analysis was conducted on composite samples from each experimental 

plot using standard sieving techniques and graphical analysis of the cumulative percent 

distributions following Folk & Ward (1957).  Three 3 cm diameter cores of roughly 7 cm 

deep were taken from each plot and were combined to obtain a composite sample of each 

plot on 14 August 2004.  Composite samples were weighed, dried and re-weighed to 

calculate porosity [volume pore water/volume (sediment + porewater)].  A value of 2.65 

g ml-1 was used to correct for the density of quartz, and 1.023 g ml-1 for seawater in the 

calculations.  Permeability was calculated by the Rumpf-Gupte equation (Boudreau 

1997) using grain size and porosity measures.  Sediment organic carbon and nitrogen 

were determined for three 1 cm diameter surface cores (0.5-1.0 cm deep) taken in each 

plot using a Carlo Erba-440 Elemental Analyzer.   

 

As an independent permeability measure, one intact sediment core (5.08 cm 

diameter by ~10 cm high sediment column) was taken in the middle of each plot within 

one of the three blocks and returned to the laboratory.  These cores lacked obvious 

surface features that would indicate the presence of large bioturbating infauna.  

Permeability of these intact cores was determined using the falling head permeameter 

method (Gray 1958).  The measured permeability is based on the actual velocity of 

porewater movement through an intact sediment core (given a certain pressure head), 
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whereas the calculated permeability uses theoretical considerations and empirically 

derived relationships between porosity and grain size (Boudreau 1997).    

2.2.7 Data Analyses 

Porewater profiles were depth-integrated using trapezoidal integration.  A two-

way analysis of variance (ANOVA), with treatment, block, and treatment*block 

interaction effects, was used to analyze differences in fluorescein loss and integrated 

porewater data as a function of the dominant taxon/treatment (Arenicolid, Thalassinids, 

or Mixed).  The fluorescein loss and integrated porewater data were transformed to meet 

the assumptions of normality and homogeneity of variance in the ANOVA tests as 

follows: fluorescein loss data and porewater data were natural log transformed, and 

organism abundance data were square root transformed.  When no block effect was 

found, the block effect was dropped from the model, and data were reanalyzed as a one-

way ANOVA.  A Tukey-Kramer correction was used on the individual t-tests of 

treatment differences.  Statistically-determined outlier values were found and removed 

from the fluorescein loss analysis in 3 observations of the thalassinid treatment and one 

observation of the mixed treatment.  All statistical analyses were conducted using SAS 

Version 8.    

 

Two types of post-hoc exploratory regression analyses were conducted to 

investigate possible density dependence and interaction effects of these two species on 

variability in sediment porewater constituents.  In the analyses, the abundance data 

obtained from the August photographs were averaged over the three day period.  The 

chemistry data (three replicates per plot) were not averaged for each experimental plot, in 
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order to reflect spatial variability of porewater within each plot.  The original treatment 

assignments of Arenicolid, Thalassinid, and Mixed were ignored, and the densities of 

each organism within all plots were regressed against the porewater solute 

concentrations.  We acknowledge the observations are not independent, but point to two 

reasons why such a method may be appropriate in this exploratory analysis.  First, there 

is a lack of straightforward statistical analysis that may deal with variables that vary on 

differing spatial scales, such as porewater chemistry and organism abundance.  If we are 

to average up to the largest scale (plots in this analysis) we hide the variance of the 

porewater chemistry that may be relevant and could be accounted for in a regression 

analysis.  Secondly, standard ANOVA is simply a special case of regression in which 

measures of a dependent variable are assigned to an ordered categorical independent 

variable.  The determination of a significant slope in such a regression analysis 

(ANOVA) is the equivalent of a significant treatment effect in a one-way ANOVA.  

Although our approach is non-traditional, we feel the results provide considerable insight 

into the data in spite of the limitations of such a post-hoc exploratory analysis.   

 

The first series of post-hoc exploratory analyses were simple linear regressions of 

each chemical parameter vs. organism density for each species (as determined by surface 

features).  The second series of post-hoc exploratory analyses were multiple linear 

regressions using each chemical parameter vs. organism density plus a species overlap 

index (Schoener 1970).  Species overlap was calculated by a modification of Schoener’s 

index (1970): 
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Overlap = 1-|pa-pt|   

 

where pa is the proportion of arenicolids and pt is the proportion of thalassinids.  

Application of a spatial overlap index would account for potential nonlinearities in 

sediment geochemistry resulting from interactions among infauna.  The closer in value 

the percentages of the two species are, the smaller the absolute difference between them 

and closer to an overlap value of one.  Overlap indices were arcsine transformed because 

they were proportions.  After transformations, all parameters within the data set were 

standardized (or non-dimensionalized) so each parameter had a mean of 0 and a standard 

deviation of 1.  These values have units of standard deviations and are called 

standardized deviates or Z-scores (Sokal & Rolf 1969) and are calculated by: 

 

σ
µ−

= i
i

X
Z  

 

where Xi is the value of parameter X and observation i, µ is the mean of the measured 

parameter, σ is the standard deviation of the measured parameter, and Zi is the new 

standardized value of observation i.  Regression parameters estimated using Z-scores can 

be directly compared to each other even if the original observations had different units.  

Differences in magnitude among the standardized regression parameters can be used to 

investigate which dependent variables (integrated porewater concentrations) are most 

influenced by density of arenicolids or thalassinids.   
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Assumptions (normality, homogeneity of variance) were checked and potential 

outliers were examined using Cook’s Distance, DFBETA values, and studentized 

residuals (Sokal & Rolf 1969).  In all cases 1 to 3 outliers were detected, and in most 

cases it was the same observation for different solutes, therefore those points were 

excluded from the regression as true outliers due to overly influential effects on 

parameter estimates.   

  

2.3 Results 

2.3.1 Organism Abundance  

Results from the photographic surveys indicate the treatment assignments were 

appropriate and differences among plots remained relatively consistent with time (Table 

1).  No attempt was made to control or regulate the actual abundance of the two major 

taxa in the plots throughout the course of these experiments because we wanted to 

minimize disturbance to the sediment fabric.  Therefore, small changes in the relative 

abundances were expected due to natural variability associated with undisturbed habitats, 

and minor variability in surface features not directly related to abundance. 

2.3.2 Advection and Diffusion Experiments 

Results from the field measurements of tracer release from a gel diffuser indicate 

that advective flows are occurring in these sediments over a tidal cycle.  Measurable 

fluorescein concentrations were found 1 cm from the gel source toward the mouth of the 

bay and slightly down slope 1 hr 45 min from the time of insertion, with a maximum (75 

µg ml-1) occurring at 3 hr 45 min from gel insertion (Figure 1).  On the opposite side of 
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the gel, maximum fluorescein concentrations at 1 cm distance reached a peak of only ~2 

µg ml-1 (data not shown).  Thus transport was asymmetric and rapid, likely due to 

advective processes associated with pressure gradients generated during drainage of the 

tidal flat.  A concern of extracting porewater samples is the possibility of inducing 

transport via the removal of porewater.  Although we cannot unequivocally dismiss some 

sampling effect of porewater extraction, the directionality of the measured transport is 

suggestive of advection.  The missing section of the curve in Figure 1 (4 hr 45 min from 

time of gel insertion) was due to little to no extractable porewater in the sediments at 5 

cm depth.  Three days subsequent to the gel insertion, porewater samples were again 

taken at 5 cm depth along the same transect as the first sample set (Figure 2).  Results 

confirm a similar pattern of asymmetrical concentration gradients.   

 

A comparison of tracer concentration and transport time in the field to that 

obtained in the laboratory diffusion experiments confirms the occurrence of advective 

porewater movement in these sediments.  Compared to field data, a similar concentration 

in the diffusion experiment was found between 10 (5.50 µg ml-1 @ 1.5 cm) and 18 days 

(95.00 µg ml-1 @ 1.5 cm) (Figure 3).  The difference in time and concentration between 

advection field experiments and diffusion experiments indicates that advective processes 

have substantial impacts on porewater transport in this habitat.   

2.3.3 Fluorescein Loss Experiments  

The recovery of the fluorescein-impregnated gels was not completely efficient.  

For each treatment, there should have been a total of 30 observations (5 surface and 5 

deep gel sections per plot in each of 3 blocks).  The actual recoverable gel samples for 
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each treatment were 23, 15, 25 for the arenicolid, mixed, and thalassinid treatments, 

respectively.  Thus, the degrees of freedom were relatively balanced between the 

arenicolid and thalassinid treatments, but the mixed treatment had fewer observations. 

 

In spite of these difficulties, significant differences were found in the fluorescein 

loss data (p < 0.0001, F2, 58.7 = 14.03).  Fluorescein loss was higher in the arenicolid plots 

relative to the thalassinid and mixed plots, suggesting that porewater transport was 

highest in arenicolid regions.  No significant effect of depth (p = 0.2480, F1, 57 = 1.36) or 

block (p = 0.3018, F2, 57 = 1.22) was found, therefore the data were pooled and a one-way 

ANOVA was conducted with block and depth as covariates.  Once again, a significant 

treatment effect was found, with the arenicolid plots showing significantly less 

fluorescein remaining in the gels relative to the mixed (p = 0.0049, t59.5 = 3.28) and 

thalassinid plots (p < 0.0001, t57.6 = 5.19), respectively.  No significant difference was 

found between the mixed and thalassinid plots (p = 0.5368, t59.4 = 1.07) (Figure 4).  These 

differences in fluorescein loss suggest that macrofaunal species composition is an 

important regulator of the extent of advective transport in permeable sediments.  In 

particular, the arenicolids appear to be greater facilitators of advective transport relative 

to thalassinids.  The lack of difference between deep (~8 cm) and surface (~2 cm) 

sections of the gel also indicate that these differences are not driven by organism effects 

on surface topography.  Surface topography-driven flows tend to have shallow (3-5 cm) 

penetration into the sediment column (e.g. Huettel et al. 1998). 
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2.3.4 Sediment Porewater Solutes 

The porewater peepers with acrylamide gels appeared to accurately record 

average porewater solute concentrations (Figure 5), and corresponded well to direct 

porewater extractions at this site (Waldbusser, unpublished data, Marinelli 1994).  

Overall trends in the porewater data support differential rates of porewater transport 

associated with the different taxa in this study.  In most cases the depth-integrated 

porewater concentrations were lower in the arenicolid plots relative to thalassinid plots 

(Figure 6).  However, mixed plots showed considerable variation.  For all solutes 

measured (NH4
1+, PO4

3-, Si(OH)4, D.I.C., alkalinity, and pH) there was a significant 

treatment*block interaction in the two-way ANOVA making the interpretation of main 

treatment effects somewhat difficult (Table 2, Figure 6).  Closer examination of the data 

revealed that in most cases the interaction is driven by significant variation in the mixed 

treatment across blocks, perhaps associated with differences in abundance of the two 

organisms in these plots (Table 1).  Because of the significant interaction terms in the 

original two-way ANOVA, the possibility of density-dependent effects (Tables 1 & 2), 

and kinetic differences in solute reaction rates, post-hoc regression analyses were 

conducted to explore relationships between organism density and porewater solute 

concentrations.     

 

Linear regression results support the prediction of both density effects and kinetic 

effects.  Parameter estimates suggest a stronger, negative effect of arenicolid density, and 

positive effect of thalassinid density, on ammonium and phosphate concentration relative 

to silicate concentration (Table 3).  However, a pattern was detected in the distribution of 
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the residuals for several of the simple linear regressions.  Positive residuals were 

clustered about intermediate abundances (occurring generally in mixed plots), and 

negative residuals were found at the extremes (occurring generally in the single species 

plots).  The presence of this non-random pattern in residuals, and failure of the data to 

meet the Shapiro-Wilkes test for normality, indicates that an additional variable may be 

needed in the regression analyses.    

 

The results from multiple linear regressions, with overlap index, show better fits 

than the single linear models in most cases, as indicated by p-values and adjusted r2 of 

the two parameter model (Table 4).  The results also indicate a positive relationship 

between degree of species overlap and depth integrated porewater concentrations of 

silicate, ammonium and DIC.  This suggests that, while species identity and kinetic 

effects may contribute to overall porewater concentrations (Table 3), species interaction 

effects are also operative. 

2.3.5 Sediment Parameters 

Granulometric analysis of composite sediment samples indicated very little 

difference in sediment grain size, porosity and other measures among the experimental 

plots (Table 5).  This argues against the hypothesis that the effects of the different 

organisms on porewater transport are related directly to changes in bulk sediment 

characteristics.  In addition, organic C and N measures of surficial sediments among plots 

also show very little difference (Table 5).   
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Consistent with the bulk sediment analyses, the calculated permeability from each 

site shows no clear distinction as a function of experimental treatment, nor is it related to 

fluorescein loss data (Figure 4 & 7).  A simple linear regression between fluorescein 

remaining in the gels and the calculated permeability for the experimental plots was not 

significant (p = 0.6038, F1, 8 = 0.30, r2 = 0.04).  The porosity measures could be biased 

toward low values since the sediment samples were taken at low tide and the drainage 

may have removed some of the water, though this should not affect among-site 

comparisons.  However, the values calculated by loss of weight via drying are very close 

to earlier porosity measures made of the same area by using direct measurements of 

changes in volume of dried sediment added to known volumes of water (unpublished 

data).  

 

Results of the measured permeability using the falling head permeameter 

experiments of intact sediment cores taken from Block I found the following coefficients 

of permeability: Arenicolid (26.49 cm h-1), Mixed (18.55 cm h-1), and Thalassinid (23.60 

cm h-1).  As noted above, these values were based on one core from each site, and 

therefore do not capture the extent of variability within the experimental plots.  

Qualitative comparison of the calculated permeability (Figure 7) and the measured 

permeability (above) show similar patterns in the values between arenicolid and 

thalassinid plots, but not in the mixed plot.  
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2.4 Discussion 

To understand the effect of biodiversity and community structure on system 

function in benthic environments, it is important to adopt a mechanistic approach that 

includes both organisms and processes (Bolam et al. 2002, Reise 2002, and Lohrer et al. 

2004).  The complex milieu of marine sediments requires investigation of geochemical 

and physical processes in concert with biological characterization.  Geochemical 

parameters such as organic matter input and reaction rate kinetics, physical parameters 

such as boundary layer interactions, and sediment granulometry all interact with 

organism characteristics (behavior, activity rates) and community level processes (density 

dependence) to determine the ecological landscape.  Integration of these features over 

various scales in space and time determine the emergent ecosystem function. 

 

The results from this study underscore the need for an integrative approach for 

studies of advectively permeable sediments, an environment that is prominent and 

biogeochemically significant in coastal and continental shelf habitats (Jahnke et al. 2000, 

Rocha 2000, Rusch et al. 2001, Jahnke et al. 2003, Reimers et al. 2004).  Such 

environments are characterized by porous sediments with low standing stock but high 

throughput of organic material and rapid rates of biogeochemical cycling and porewater 

exchange (Marinelli et al. 1998).  We utilized the natural variability of dominant infauna 

in this permeable sediment habitat to more accurately represent the role of functionally 

different infauna and their interaction on ecosystem-type processes over previous 

manipulated experimental systems.  An important concern in using unmanipulated 

naturally occurring infaunal communities is the potential for other larger-scale correlated 
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parameters to be the drivers of among treatment variability.  The spatial proximity of 

plots, lack of differences in granulometry, and lack of any noticeable pattern in species 

distributions across the flat all indicate that species distributions (on the scale of the 

experiment) are not the result of larger scale physical factors that may be confounding 

treatment effects.  In other words, on our scales of measurement, the biology seems to be 

a causative agent, not responding to our measured parameters.  We have shown that: 1) 

functionally different macrofauna affect rates of porewater advection in permeable 

sediments, 2) the effects are not attributable to changes in average, vertically-integrated 

measures of sediment granulometry or other plot specific characteristics that may be due 

to non-biological effects, 3) species interactions may further complicate the advective 

environment and the resulting diagenetic processes, and 4) species effects on 

geochemistry vary according to reaction rate kinetics of particular spoutes (described 

below).   

 

Previous studies of infaunal effects on permeable sediments have emphasized 

surface processes related to topographic variation or sediment disturbance (Huettel et al. 

1998, D’Andrea et al. 2002).  This study emphasizes below-surface processes, including 

species-specific effects and species interactions.  Although D’Andrea et al. (2002) also 

examined below-surface effects on sediment dynamics, our results suggest a different 

suite of mechanisms for organism effects on transport.  In their study, thalassinids were 

found to increase organic matter reaction rates in closer proximity to burrows, and to 

increase flushing rates at depth in the less-permanent sections of the burrow.  Our study 

emphasizes the effects of functionally different species’ burrow morphology and feeding 
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behavior on below-surface advective transport.  In addition, below-surface species 

interactions appear to promote nonlinear relationships between infauna and sediment 

geochemistry that may form the basis for “biodiversity effects” in sedimentary habitats 

(Waldbusser et al. 2004).    

 

Surface processes that generate porewater advection include surface gravity 

waves in shallow water and interactions between surface topography and fluid flow fields 

(Reimers et al. 2004, Huettel & Gust 1992).  Both of these mechanisms are present at 

False Bay.  However, the lack of difference between near surface and deep sections of the 

gel indicates that transport does not decrease with depth (across the interval we studied, 

surface to ~10 cm), as is often the case with surface processes affecting the upper 5 cm of 

the sediment column (Huettel et al. 1998).  Examination of the photographic data found 

roughly 5-7 sand ripple peaks in the sediment surface across a 50 cm transect, 

corresponding to an average ripple wave length of roughly 10 cm.  The shape of the 

ripples indicates that the dominant flow direction is during the flood tide, counter to the 

direction of tracer gradient after three days of gel deployment (Figure 2).  Observations 

made during the gel diffuser experiments found that overlying water covers the sediment 

faster than it can percolate through horizontally due to the pressure gradient.  Therefore, 

the lack of a depth effect on fluorescein loss, the size and shape of the sediment ripples, 

and the observed direction of tracer transport all indicate that pressure gradients 

associated with tidal drainage and flooding, coupled with fine-scale variation driven by 

organisms, are likely the dominant mechanisms driving patterns of advective exchange.  

Other sources of pressure differentials such as boundary interactions, surface gravity 
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waves, and thermal convection may also be contributing to rapid transport within these 

sediments.   

 

The fluorescein loss experiments and sediment permeability analyses suggest that 

fine scale measurements and consideration of organism behavior may be necessary to 

capture the mechanisms that promote the observed species differences in advective flow.  

Finer scale features, such as burrow wall composition or channels associated with feeding 

and sediment fluffing, are likely to be extremely important in either blocking or 

facilitating flow; these are not captured by traditional bulk analyses.  More advanced 

measures such as high-resolution CT Scan or ultrasound may be required to reveal these 

features and their significance to transport in coastal sediments (Wethey & Woodin in 

review, Solan et al. 2003).  Therefore, based on our findings and many prior studies, we 

must look to organism-specific attributes for discerning mechanism in the differences we 

found.   

 

We hypothesize that increased flushing rates found in the arenicolid plots 

compared to thalassinid plots probably relate to differences in motility, feeding, and 

burrow construction between the two dominant taxa.  During feeding, arenicolids fluidize 

sediment at the base of the feeding area and create localized hot spots of vertical 

advective throughput (Huettel 1990, Riisgård & Banta 1998, Timmermann et al. 2002, 

Timmermann et al. 2003).  In addition, recent ultrasound measurements (Woodin & 

Wethey, unpublished data) indicate advective pumping of the area immediately below 

and surrounding the burrow opening (upper 2-3 cm) during near hourly defecation 
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events.  The effects of vertical advective displacement of particles and fluid by 

arenicolids may directly or indirectly influence the rate of horizontal transport due to 

pressure gradients generated through tidal sediment saturation and draining.  Arenicolids 

also appear to move reasonably frequently (Krager & Woodin 1993), perhaps in response 

to food patches (Woodin, unpublished data), ammonium concentrations (Marinelli, 

unpublished data) or in relation to life stage (Linton & Taghon 2000).  Thus, sediment 

fluidization and movement may link resources and life history with advective transport.  

The potential effect of these linkages and their relation to microbial activity, benthic 

primary production, and nutrient cycling has been noted by Jumars et al. (1990), but little 

to no empirical evidence exists to verify or nullify these ideas.   

 

In contrast to arenicolids, thalassinids create large feeding galleries where they 

feed directly in the sediment within the gallery (Neotrypaea californiensis), or filter feed 

by pumping overlying water (Upogebia pugettensis).  Some investigators have suggested 

that microbes yielded through “gardening” are also an important food source for 

thalassinids (Kinoshita et al. 2003, see also Jumars et al. 1990).  Thalassinid species are 

often observed to eject fines (MacGinite 1930, Suchanek 1983, Posey et al. 1991, Pinn et 

al. 1998, Feldman et al. 2000) or have high pumping rates of burrow water compared to 

physical processes of tidal exchange (Dworschak 1981) and therefore it should be 

expected that they would in turn increase the transport rates of porewater within 

sediments and affect rates of organic matter remineralization (Ziebis et al. 1996, 

D’Andrea et al. 2002).  In contrast to prior studies, our study found no difference in grain 

size distributions (Table 5) and transport rates were slower in thalassinid areas compared 
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to arenicolid areas (Figure 4), though true organism-free control plots were lacking.  It 

should also be noted that surface features often found in association with thalassinid 

burrows were lacking from the experimental area.  The redistribution of the fine grained 

sediment during tidal flows or the dominance of the filter feeding U. pugettensis (Griffis 

& Shuchanek 1991) are two potential reasons sediment mounds associated with burrow 

openings were not found.  Observations from various burrows around the experimental 

site found that the upper portions of the thalassinid burrows are thickly lined with clay 

and appear to be impermeable.  In addition, pressure sensors placed near thalassinid 

burrows indicate little to no signal associated with feeding or movement, suggesting the 

walls are extremely thick (Woodin & Wethey, unpublished data) relative to arenicolid 

burrow walls (Wethey & Woodin, in review).  We suggest that thalassinids in False Bay 

actually decrease bulk permeability through creation of near-solid structures that serve to 

interrupt flow.  Analogous to pipes running through the sediment column, these near-

solid structures may interfere with arenicolid feeding via inhibition of sediment 

fluidization and subduction.  

 

The use of organism density in our analyses of porewater solutes coupled with 

kinetic differences among the solutes provides a mechanistic basis for interpreting the 

complex results obtained.  The significant block by treatment interactions in the original 

two-way ANOVA of porewater data is not surprising, given the differences in relative 

densities of the two experimental organisms across the mixed treatments (Table 1).  Prior 

investigations of benthic community dynamics and sedimentary functioning used 

biomass to account for bulk organism effects (Emmerson et al. 2001, Bolam et al. 2002) 
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but measures of abundance more explicitly account for the effects of burrow surface area 

on sediment-seawater exchange (Aller 1980) and individual interactions (Marinelli 1994).  

Furthermore, recent investigators have found density dependent effects on sediment 

chemistry (Gilbert et al. 2003, Marinelli & Williams 2003, Lohrer et al. 2004) driven in 

part by kinetic effects.  We predicted that, based on kinetics arguments (Aller 1980, 

Marinelli 1992, Boudreau & Marinelli 1994), ammonium and phosphate should be most 

sensitive to advective processes facilitated by infauna, and exhibit strong density 

dependence.  Both ammonium and phosphate are produced by organic matter 

decomposition, and production is not affected by porewater concentration.  Such solutes 

are highly sensitive to the degree of biologically-mediated transport in sediments.  

Phosphate also is readily adsorbed to particles in the presence of oxygen, so rapid 

advection of oxic seawater is likely to further decrease phosphate concentrations in the 

porewater.  Conversely, silica dissolution is abiotic, partly controlled by the degree of 

saturation, and less sensitive to biologically-driven transport.  Thus, differences in the 

effects of infauna on solute concentration may relate in part to interactions between 

density and reaction rate kinetics, as observed in the regression parameters (Tables 3 & 

4).   

 

The inclusion of the overlap parameter also resulted in better model fits, a more 

detectable density effect, and some congruence with the expected relationship between 

density, kinetics and solute loss (Table 4).  A possible mechanism behind the significant 

overlap effect may lie in our proposed interaction between arenicolids and thalassinids, 

where thalassinid burrows act as impermeable objects that restrict the feeding and 
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fluidizing behaviors of the arenicolids.  Posey et al. (1991), and references therein, have 

shown the negative effects of thalassinids on smaller macrofauna related to bioturbation 

and/or adult larval interactions.  Similar negative effects have been documented with 

arenicolid feeding and depositional burial of smaller macrofauna (Riisgård & Banta 1998 

and refs therein).  More importantly to the current study,  we present a potential 

inhibition of arenicolid feeding by thalassinid burrows linking organism behavior and 

transport mechanisms in sediments possibly cascading into ecosystem functions such as 

nutrient cycling, microbial dynamics, and benthic primary production.  Current models of 

advective transport include bulk sediment parameters and hydraulic pressure head 

(Boudreau 1997) and do not reflect this level of complexity.  Experiments incorporating 

the fine scale measures of these processes are required if we are to incorporate 

biologically complex parameters into current models of elemental cycling in permeable 

sediments, and into our evaluation of ecosystem services provided by coastal habitats. 

 

Complex associations of the biological, chemical, and physical processes co-act to 

determine ecosystem function.  Our findings illustrate the importance of behavior and 

ecological considerations in studies of sediment dynamics, and conversely the importance 

of dynamics and processes in studies of biodiversity and ecosystem function.  Developing 

predictive models of the effects species loss has on the functioning of coastal systems 

requires a mechanistic, process based approach.  Given the broad scope of anthropogenic 

impacts on many coastal ecosystems, and the well documented changes in the structure of 

the coastal marine biological community (Levin et al. 2001), integrative studies are 

critical to understanding and maintaining living resources.  
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2.5 Tables 

Table 2.5.1- Organism Density.  Density of surface features per m2 from photographic 

surveys of experimental plots for the three blocks and for two of the three experiment 

dates.  July values correspond to the fluorescein loss experiments, and the August values 

correspond to the porewater peeper experiments.  Values represent number of fecal 

mounds (arenicolids) and burrow openings (thalassinids).  The last column is the ratio of 

fecal mound to burrow opening for each plot.  

 
Experimental Experiment Surface Features   
Plot Block Date Arenicolid Thalassinid Ratio (A:T) 
Arenicolid I July 49.33 ± 7.42 2.66 ± 1.33 18.54 
Arenicolid II July 70.66 ± 9.61 16.00 ± 4.00 4.41 
Arenicolid III July 36.00 ± 6.92 12.00 ± 0.00 3.00 
Mixed I July 37.33 ± 2.66 21.33 ± 4.80 1.75 
Mixed II July 20.00 ± 6.11 50.66 ± 5.81 0.39 
Mixed III July 21.33 ± 3.52 54.66 ± 2.66 0.39 
Thalassinid I July 2.00 ± 2.00 34.00 ± 6.00 0.05 
Thalassinid II July 2.66 ± 1.33 61.33 ± 9.61 0.04 
Thalassinid III July 2.66 ± 1.33 62.66 ± 8.11 0.04 
Arenicolid I August 74.66 ± 10.41 18.66 ± 2.66 4.00 
Arenicolid II August 81.33 ± 3.52 25.33 ± 9.33 3.21 
Arenicolid III August 37.33 ± 3.52 28.00 ± 4.00 1.33 
Mixed I August 50.00 ± 10.00 28.00 ± 4.00 1.78 
Mixed II August 25.33 ± 4.80 50.66 ± 10.41 0.50 
Mixed III August 36.00 ± 4.00 58.66 ± 3.52 0.61 
Thalassinid I August 1.33 ± 1.33 65.33 ± 11.85 0.02 
Thalassinid II August 9.33 ± 1.33 74.66 ± 13.13 0.12 
Thalassinid III August 6.66 ± 6.66 48.00 ± 6.92 0.13 
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Table 2.5.2- ANOVA Interactions.  F-values for the interaction terms in the two-way 

ANOVA for block and treatment effects.  The interaction is highly significant in all cases 

except silicate.  

 
Solute Effect DF F-Value p-Value 
Ammonium blk*trt 4, 18 6.89 0.0015
Phosphate blk*trt 4, 18 6.57 0.0019
Silicate blk*trt 4, 18 4.16 0.0148
D.I.C. blk*trt 4, 18 5.95 0.0031
Alkalinity blk*trt 4, 18 6.83 0.0016
pH blk*trt 4, 18 10.32 0.0002

 



 

 40 
 

Table 2.5.3- Simple Linear Regression.  Results from the standardized simple linear 

regression analysis for effects of arenicolid and thalassinid density on integrated 

porewater solute concentrations.  Analyses were performed on standardized data, and 

therefore the parameter estimates are directly comparable.  Asterisks indicate significance 

at the following levels * = 0.05  ** = 0.01  *** = 0.001.  Degrees of freedom for each 

analysis were between 27 and 24 and dependent on outlier detection and removal.  

 

Model=      Arenicolid                    Thalassinid 
Solute        Estimate      Adj. R2      Estimate         Adj. R2 
NH4

+           -0.698***      0.42          0.737***       0.49 
PO4

2-          -0.532***      0.37          0.678***       0.59 
Si(OH)4      -0.412**        0.24          0.456***       0.39 
DIC            -0.505*          0.18          0.411*           0.14 
Alk             -0.616***      0.38          0.829***       0.68 
pH               0.109           -0.03          0.126            -0.02 
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Table 2.5.4- Multiple Linear Regression.  Results from the standardized multiple linear 

regression analysis inclusive of the overlap index and density effects on integrated 

porewater concentration.  Parameter estimates for both density and overlap are presented 

for models run with arenicolid density and thalassinid density for each solute.  Asterisks 

indicate level of significance, * =0.05  ** =0.01  *** =0.001.   

 
Model= Aren. & Overlap  Thal. & Overlap  
Solute Aren.  Overlap Adj. R2 Thal. Overlap Adj. R2 
NH4 -0.972*** 0.439* 0.50 0.901*** 0.180 0.55 
PO4 -0.684*** 0.227 0.40 0.808*** 0.183 0.60 
Si(OH)4 -0.783*** 0.514** 0.48 0.670*** 0.329** 0.58 
DIC -0.690** 0.647** 0.29 0.766*** 0.643*** 0.48 
Alk -0.617** 0.067 0.37 0.879*** 0.114 0.68 
pH 0.041 0.110 -0.06 0.068 0.007 -0.08 
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Table 2.5.5- Sediment Properties.  Sediment characteristics from composite samples of 

all the experimental plots, blocks (I, II, III) and treatments (M=mixed, A=arenicolid, 

T=thalassinid).  Organic carbon and nitrogen are from replicate (3) samples within each 

plot and in %w/w (± 1 S.D.), standard deviations in organic nitrogen within site was 

<0.00.  Categorical classifications of the sediments are poorly sorted, fine sands that are 

symmetrical and mesokurtic, from Folk and Ward (1957).   

Measure I-M I-A I-T II-M II-A II-T III-M III-A III-T
Grain (phi) 2.88 2.88 2.93 2.93 2.71 2.83 3.11 2.99 3.07
Sorting 1.78 1.78 1.78 1.91 1.77 1.84 1.88 1.79 1.86
Skewness 0.00 0.01 0.01 -0.02 -0.02 -0.01 0.01 0.01 0.02
Kurtosis 1.11 1.11 1.08 1.05 1.08 1.07 1.08 1.07 1.09
Porosity 0.44 0.43 0.42 0.42 0.41 0.43 0.44 0.44 0.44
Organic C 0.17 0.21 0.21 0.19 0.18 0.21 0.18 0.20 0.17
Org. C S.D. ± 0.01 ± 0.09 ± 0.02 ± 0.01 ± 0.01 ± 0.03 ± 0.01 ± 0.06 ± 0.02
Organic N 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.02  
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2.6 Figures  
 
Figure 2.6.1- Porewater Tracer with Tide. Results from preliminary studies of 

porewater advection in False Bay sediments.  On the left y-axis (solid line), fluorescein 

concentration at 1cm distance from the gel edge, toward the mouth of the bay, at 5 cm 

depth in the sediment.  The x-axis is time from gel insertion into the sediment.  The 

broken section of the solid line corresponds to the sampling period when no porewater 

could be extracted from the sediment.  The right y-axis (dotted line) is estimated tidal 

height in False Bay in meters, based on observations and predicted tides in Friday 

Harbor.  The directionality in concentration away from the gel plug down grade and not 

up indicates the importance of tidally generated pressure gradients in facilitating 

porewater advection.   
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Figure 2.6.2- Distribution of Tracer in Sediment.  The spatial transect showing 

fluorescein concentration at 5 cm depth on 26 May 2004, 3 days after the gel was 

inserted.  The peak at 1cm illustrates the effect of tidally-induced pressure gradients on 

porewater movement and indicates directional (advective) transport. The solid vertical 

line at x = 0 represents the location of the fluorescein impregnated gel.  
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Figure 2.6.3- Tracer Porewater Profiles.  Time series of fluorescein concentration 

profiles obtained from diffusion experiment, in a controlled sediment tower with no 

advective transport.  The profiles refer to time from initiation of the experiment.  The 

Stdy. St. line is the theoretical profile at steady state assuming no loss of tracer.  This 

profile was calculated based on the known concentration of tracer in a given volume of 

gel, volume of sediment and water in the column overlying the gel, and a representative 

porosity of the sediments in the experiments.  Depth 0 is the depth adjacent to the 

acrylamide gel source. 
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Figure 2.6.4- Infaunal Treatments on Porewater Advection.  Mean values (± 1 S.E.) 

of fluorescein remaining in the gels for each treatment (A = arenicolid, M = mixed, and T 

= thalassinid.  Data are pooled for block and depth as no significant effect was found for 

either factor.  Common letters indicate no significant difference between treatments.  
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Figure 2.6.5- Treatment Effects on Porewater Profiles.  Representative porewater 

profiles from two peeper deployments, one in an arenicolid plot (filled symbols), and one 

in a thalassinid plot (open symbols).  Profiles of ammonium (circle), phosphate (square), 

and silicate (triangle) are shown. 
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Figure 2.6.6- Integrated Porewater Concentrations by Treatment.  The calculated 

least square means and standard errors for depth- integrated porewater profiles of each 

plot within each block.  The x-axis refers to block number, and the y-axis is the depth 

integrated porewater concentration (µmol cm-2), note scales are different.  Ar = 

Arenicolid, Mi = Mixed, and Th = Thalassinid.  
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Figure 2.6.7- Sediment Permeability within Experimental Plots.  Calculated 

permeability by the Rumpf-Gupte equation for composite samples from each plot among 

blocks.  
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Chapter 3: Macrofaunal influences on permeable sediment 
fluxes:  Species effects, stoichiometric relationships, and 
environmental consequences. 

3.1 Introduction 

Coastal and estuarine sediments influence water column nutrients and elements 

through solute fluxes from remineralized organic matter (Balls 1994, Nixon et al. 1996, 

Beck and Bruland 2000).  Porewater advection within coastal, permeable sediments has 

been recognized as a process that can alter ecosystem-wide solute regeneration rates 

(Marinelli et al. 1998, Boudreau et al. 2001, Jahnke et al. 2003).  Many highly-productive 

estuarine and coastal habitats consist of sediment types that are advectively permeable 

with low organic matter standing stocks but high rates of remineralization (Boudreau et 

al. 2001, Middelburg et al. 2005)  It is well established that benthic infauna modify 

transport-reaction processes within muddy (diffusive dominated) sediments in complex 

and ecologically important ways (Marinelli and Williams 2003, Waldbusser et al. 2004, 

Thrush et al. 2006).  Permeable sediments however, due to their dynamic nature, present 

significant challenges to collecting empirical data (Berg et al. 2003, Precht et al. 2004, 

Polerecky et al. 2005) that may be used to verify and expand theories of animal-sediment 

relationships in physically active sediments.  Subsequently the effects of infauna on 

permeable sediment functioning have been relatively unexplored (D'andrea et al. 2002, 

Nogaro et al. 2006, Waldbusser and Marinelli 2006). 

 

In permeable sediments, irrigation and other activities by macro-infauna causes 

bioadvection though the sediment column and alters biogeochemical processes (Huttel 
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1990, Timmermann et al. 2002, Meysman et al. 2005).  However, the consequences of 

bioadvective flow, relative to flows imposed by tidal draining and wave pumping, are 

poorly understood.  Infaunal effects on permeable sediment solute fluxes should have 

ecological relevance to coastal elemental cycling, when bioadvection is comparable to 

rates of physically driven porewater advection.  These two different transport processes, 

bioadvection and physically drive porewater advection, will often occur simultaneously, 

but are fundamentally very different.  The net effect of interacting transport processes on 

sediment biogeochemistry will likely be different than from either process in isolation.  

The interaction of bioadvective and physically-driven flows could: 1) increase the total 

volume of oxic and suboxic zones within the sediment, 2) increase the residence time of 

porewater within the sediment, and 3) result in upward pumping of porewater from the 

sediment-water interface due to irrigation.  Specific effects on biogeochemical processes 

may include stimulation of sub-oxic processes such as denitrification, and alteration of 

oxygen sensitive adsorption/desorption processes such as those associated with 

phosphoric minerals.  Reaction rate kinetics and the balance of reaction and transport are 

also likely to be affected, leading to changes in nutrient regeneration rates relative to 

Redfield Ratio organic matter.  These types of stoichiometric imbalances have significant 

consequences to ecosystem dynamics by altering the relative availability of limiting 

nutrients (Sterner and Hessen 1994, Sterner and Elser 2002, Turner 2002).   

 

Characterizing functional infauna effects on sediment reaction-transport processes 

provides the basis for understanding how changes to benthic community composition 

may affect coastal biogeochemical cycling.  Models of animal-sediment biogeochemical 
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relationships often characterize infaunal effects as “bulk” or “average” properties that do 

not capture dynamic behavior, although experimental studies in diffusive-dominated 

sediments suggest these species-specific and population-level effects are important to 

sedimentary processes (Waldbusser et al. 2004, Mermillod-Blondin et al. 2005, Norling 

et al. 2007).  Benthic-pelagic coupling is tight in coastal permeable sediments where 

organic matter is rapidly remineralized and advective throughput is high (Boudreau et al. 

2001, Middelburg et al. 2004). Therefore, quantifying the relationship between infaunal 

species and biogeochemical processes within permeable sediments provides an important 

mechanistic bridge between infaunal communities and the coastal ecosystem. This 

relationship is particularly important given the ecosystem-engineering behavior of active 

bioturbating infauna, such as the common lugworm, arenicola. 

 

We examined the role of the ubiquitous lugworm, Abarenicola pacifica, on 

sedimentary fluxes of ecologically and diagenetically important solutes within an 

experimental permeable sediment habitat.  The objectives of this study were to: 1) verify 

and expand on previous field experiments showing the importance of infaunal behavior 

and species interactions on intertidal permeable sediment functioning, 2) examine 

whether species-specific effects are expressed differently at two representative porewater 

advection rates, and 3) examine the broader ecological implications of infaunal activity 

and interactions in permeable sediments through examination of solute regeneration 

stoichiometry. We used a simple flow-through microcosm system to simulate tidally 

driven porewater movement within intertidal sediments.  Additionally we develop a novel 
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metric (molar distance “d”) to quantitatively assess stoichiometric relationships of solute 

exchange that may be applied more broadly to evaluate ecosystem functioning. 

3.2 Methods  

We established a simplified intertidal community in laboratory microcosms, 

analogous to the upper intertidal sandflat of False Bay, described by Waldbusser and 

Marinelli (2006). The dominant large bioturbators in the False Bay study area are the 

arenicolid Abarenicola pacifica and two species of thalassinid shrimp Upogebia 

pugettensis and Neotrypaea californiensis (Waldbusser and Marinelli 2006).  The 

ecology and behavior of these taxa have been reviewed extensively elsewhere (e.g. 

Riisgård and Banta 1998, Nickell and Atkinson 1995).  Briefly, arenicolids are active 

head-down deposit feeders that fluidize sediment during feeding, while thalassinids 

excavate and live in extensive burrow networks, typically irrigating only their burrow 

lumen during deposit- or filter feeding.  The two taxa occur in dominant patches or mixed 

assemblages in the upper intertidal reaches of False Bay.  Thalassinids create relatively 

thick clay lined burrows in the upper 10-20 cm of the sediment column, the same depth 

range inhabited by the arenicolids.  In contrast to thalassinids, arenicolid burrows are 

mucus lined.  A previous field investigation at False Bay found that thalassinid burrows 

may decrease the effect of arenicolid bioturbation on sediment porewater profiles due to 

structural type effects of thalassinid burrows (Waldbusser and Marinelli 2006). 

3.2.1 Microcosms  

Flow-through microcosms were constructed using 20 cm diameter by 18 cm tall 

plastic buckets (Fig. 1).  A nitex mesh glued into place two cm above the base of the 
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bucket was used to retain sediment while creating a sediment free dead-space at the 

bottom of the microcosm, allowing overlying water to percolate through the sediment 

column and out the bottom.  This system therefore provided an integrated measure of the 

biogeochemical processes occurring within the sediment column via difference between 

the overlying water and effluent from the microcosms.  Microcosms were kept in a water 

bath at Friday Harbor Laboratories (Fig. 1-A) that was continuously flushed with running 

ambient seawater from Friday Harbor (T = 10o C and S = 32).  The siphon pressure from 

the bottom of the microcosm pulled overlying water through the container and sediment 

column (Fig. 1-B). After passing through the sediment and the 60 µm nitex mesh, 

porewater drained to the 2 cm dead-space beneath the sediment (Fig. 1-C), and flowed 

through the outlet tubing (4.8 mm I.D.) (Fig. 1-D).  To control the rate of flow a screw-

type pinch valve (Fig. 1-E) was used in conjunction with adjusting the pressure head.  

Water samples were timed, weighed, and converted to volume with appropriate 

corrections for salinity and temperature to provide a measure of flow rate, later corrected 

to exchange rate.  Two 300 watt halogen lamps were suspended roughly 0.5 m above the 

water surface to mimic 12 hr day/night cycles and provide light for benthic 

photosynthesis. A relatively uniform light input was measured as ~150 µmol s-1 m-2 at the 

water surface.  

 

3.2.2 Sediment and Organisms  

Sediment and arenicolid polychaetes were collected on 17 May 2005 from False 

Bay, San Juan Island, WA (Lat = 48.488°, Lon = -123.065°) and returned to the Friday 

Harbor Laboratories, University of Washington, where the laboratory experiment was 
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conducted.  Sediment characteristics from the collection area are: grain size = 133 µm, 

porosity = 0.43, and % (wt/wt) organic carbon = 0.19 (from Waldbusser and Marinelli 

2006, see Table 1).  Layers of sediment from the upper 3-5 cm were placed directly into 

the microcosms in the field to minimize disturbance to sediment structure.  This sediment 

layering was done until a sediment column of roughly 12 cm was reached in each 

microcosm. Previous studies suggest that this portion of the sediment column is regularly 

flushed by advective porewater flows (Billerbeck et al. 2006, Waldbusser and Marinelli 

2006).  Microcosms were transported back to the lab and placed in a flow-through 

seawater bath.  Abarenicola pacifica were collected from the same intertidal area as the 

sediment.  Individuals were placed gently in a bucket of seawater and returned to the 

laboratory where they were examined for injuries.  Whole undamaged individuals were 

selected and randomly divided into groups of five.  Worm groups were collectively wet 

weighed, and groups were added to the appropriate microcosms within 36 hrs of the field 

collection, as described below.  Activity of arenicolids was monitored by recording the 

number of fresh fecal coils observed on the sediment surface in each microcosm during 

sampling periods (described below).  The physical presence of thalassinid burrows was 

simulated with a clear, rigid plastic tubing (wall thickness ~2 mm), roughly 1 cm in 

diameter and 15 cm in length, open on both ends, and filled with sediment to the level of 

the sediment-water interface. These tubes were placed in flowing seawater for three days 

prior to use and scrubbed before adding to the microcosms.  Five mimic burrows were 

inserted into the sediment in a circular pattern, at a distance roughly half of the radius of 

the microcosm and at a slight angle from vertical in each replicate "mimic" microcosm 

(below).  The mimics simulated the structural component of thalassinid burrows in the 
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field in that they allowed water to flow through the sediment within the tubes but no 

exchange was possible across the tube walls.  The mimics were used to overcome the 

difficulties associated with collecting intact individuals and maintaining them in 

containers much smaller than their extensive burrow networks.    

3.2.3 Experimental Design 

A total of 11 microcosms were partitioned among four experimental treatments as 

follows: Arenicolid (3), Mimic (2), Arenicolid & Mimic (3), and a Sediment-only 

Control (3).  The following abbreviations are used to denote each treatment Arenicolid 

(A), Mimic (M), Arenicolid & Mimic (AM) and Control (C).  The Mimic was replicated 

only twice due to space limitations in the overlying water bath.  These densities of worms 

or mimics were used to reflect the densities found in False Bay (Krager and Woodin 

1993, Waldbusser and Marinelli 2006).   

 

Previous studies of porewater advection in False Bay demonstrated that the tidal 

draining of porewater was a dominant physical force of porewater movement 

(Waldbusser and Marinelli 2006).  Therefore, we designed our experiments to reproduce 

tidal draining as the dominant physical mechanism inducing porewater water advection.  

The “low flow” scenario used in these experiments reflected porewater advection rates in 

False Bay (Waldbusser and Marinelli 2006) and other intertidal systems (De Beer et al. 

2005, Billerbeck et al. 2006).  We also used a higher rate of flow (“high flow”) to 

represent more physically active sediments such as continental shelf sands (Reimers et al. 

2004) and very active tidal flats (De Beer et al. 2005).  Using two flow rates allowed us 

to evaluate the relative importance of infaunal effects in varying physical regimes. The 
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“low flow” and “high flow” rates used in the microcosms were 0.5 ml min-1 and 5.0 ml 

min-1, respectively.  These flow rates translate to exchange rates of 20 L m-2 d-1 or 200 L 

m-2 d-1 for the low and high flows, respectively and vertical porewater velocities of 0.2 

cm hr-1 or 2.0 cm hr-1 (corrected for porosity).  At time = 0 the low flow rate was set, 

worms were added, and the flow was maintained at a constant rate for a 32 hr acclimation 

period.  After the acclimation period, a 4 hr no flow, 8 hr low flow regime was 

established for 48 hrs to simulate tidal effects on porewater movement.  During this 

period, simultaneous effluent samples from all microcosms were taken three times over 

each 8 hr flow period at 2, 5, and 8 hrs after initiating flow.  After 48 hrs of low flow/no 

flow regime, the high flow rate was established. The high flow rate was held constant for 

the remainder of the experiment, and effluent samples were taken at 2, 4, 6, 24, and 36 

hrs following the initiation of the high flow rate.  Overlying water samples were also 

taken at all sample points.   

3.2.4 Chemical Analyses 

After sample collection, pH was measured using a standard pH probe and meter 

calibrated to three points with pH standards of 4, 7, and 10.  Immediately thereafter, 

samples were filtered using a 0.45 µm filter, and placed in a 4o C refrigerator.  Within one 

week of collection,  all samples were analyzed for alkalinity, ammonium, nitrate, 

phosphate, and silicate on a SmartChem discrete chemical analyzer (Westco Scientific, 

Danbury CT) using modifications of the following methods: Alkalinity- E.P.A. 310.2, 

Ammonium- Koroleff 1976, Nitrate- E.P.A. 353.3, Phosphate- E.P.A. 365.2 and Eaton et 

al. 1995, and Silicate- Strickland and Parsons 1972. Dissolved inorganic carbon (DIC) 
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was calculated from alkalinity and pH using dissociation constants (Zeebe and Wolf-

Gladrow 2001).  Fluxes were calculated using the following formula: 

 

[ ] [ ]( )inouta aaEJ −×=           

where Ja is the flux of solute a (in mmol m-2 d-1), E is the exchange rate (in L m-2 d-1), and 

[aout] and [ain] are the concentrations (in mmol L-1) of solute a in the effluent and 

overlying water, respectively. The exchange rate (E) was calculated as follows: 

 

           

where F is the flow rate of the effluent in L d-1 and A is the sediment surface area in m2.  

Overlying water pH values were missing, so we were unable to calculate dissolved 

inorganic carbon (DIC) in the overlying water and therefore we lack DIC flux by 

difference in concentration, as was done with the other solutes.  Therefore, we present the 

DIC values as a release rate, the effluent concentration multiplied by the exchange rate 

from above.  This value does not account for the difference between the overlying water 

and effluent concentrations (reaction), and simply accounts for the flow rate and effluent 

concentration, not the extent of reaction, as do the flux measures described above.   

3.2.5 Stoichiometric Values 

In order to better quantify effects of infauna on nutrient regeneration ratios we 

developed a novel quantitative metric.  The metric, similar to a regression residual in two 

dimensions, provides one value that accounts for the two-dimensional difference between 

an observation (point) and a prescribed relationship (line), in this case the Redfield Ratio.  

 
= 

A 
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The measured concentrations of two (or potentially more) solutes are treated as axes in 

geometric space with units of concentration or mass (Fig. 2).  The perpendicular 

distances of the points or observations from the prescribed line are determined by the 

Law of Cosines, and provide a measure of deviation from an empirical/prescribed 

relationship in molar distance, referred to as d-value.  The d-value is sensitive to changes 

in either or both solute concentrations.  As calculated, the d-value is the summed 

minimum concentration needed to bring an observation to a prescribed relationship. 

Therefore, if both values change in the same ratio as the prescribed line, a smaller overall 

change in transport/reaction processes is needed to minimize the d-value than if each 

concentration changed independently. Additionally, geometric relationships in molar 

space are less susceptible to statistical and numerical problems of ratios.   

 

For each stoichiometric relationship considered (C:N, N:P, C:P, Si:N), the 

perpendicular distance (d) of all observations from the prescribed line was determined 

(Fig. 2).  Redfield Ratio organic matter (106:16:1 for C:N:P) was used as the empirical 

ratio for all pairs except Si:N, where 1:1 was used (Brzezinski 1985).  For example the d-

value of C:N was determined as:  

 

d = ∆C x sin(θ)          

where d is the molar distance (in µmol),  θ is the angle (in radians) where the hypotenuse 

of the right triangle crosses the prescribed line, and ∆C is the difference between the 

measured carbon concentration and the predicted carbon concentration based on 

measured nitrogen concentrations and Redfield Ratio. Concentration differences (or legs 
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of the triangle) were calculated based on the difference between measured and 

stoichiometrically predicted values (Fig. 2). The calculated molar distance (d) was then 

multiplied by the ratio of the absolute value and actual value of one of the legs of the 

triangle, thereby indicating which side of the prescribed line an observation is on.  The 

sign of the d-values therefore determines whether there is a subsidy or deficiency in one 

element relative to the other, based on expected Redfield stoichiometry. 

3.2.6 Data Analyses 

Porewater velocity data were analyzed to ensure that porewater advection was consistent 

among treatments throughout each of the two flow regimes.  A one-way ANOVA was 

conducted with flow as the dependent variable and treatment as the independent variable.  

Individual treatment differences were determined using t-tests with Tukey’s adjustment 

for multiple comparisons.  Assumptions of normality and heteroscedascity of residuals 

were checked by Shapiro-Wilke’s statistic and Hartley’s F-max test, respectively.  Solute 

flux data and stoichiometric d-values (molar distance) were analyzed with a repeated 

measures ANCOVA to determine organism effects on both solute fluxes and effluent 

stoichiometry.  The high flow data lacked enough replication over time to conduct the 

proper data analysis, therefore, no data analyses were run on the high flow data. Separate 

analyses were run with each solute or stoichiometric pair (e.g. C:N, N:P, C:P, and Si:N) 

as independent variables, treatment as dependent variable, and time as the covariate.  

Solute and stoichiometric data were log transformed, and a spatial-power covariance 

structure was used in the repeated measures analyses to account for the unequal spacing 

of measures over time.  Assumptions of ANCOVA were checked as described above, and 

in all cases the data were heteroscedastic.  Therefore, the variance was partitioned by 
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treatment to account for the unequal variance.  For most of the solutes in the flux 

analyses, and all the stoichiometric comparisons, the ANCOVA assumptions of normality 

were violated.  In these instances the Fisher-Pittman permutation test (10,000 

permutations) was used to produce distribution-free probabilities for the fixed effects in 

the ANCOVA and the treatment differences in the Tukey’s t-tests (Edgington 1995).  

When a significant treatment by time interaction was detected, the predicted values of 

each treatment over time were plotted to visually ensure that the interaction occurred 

between two treatments that were not statistically different from each other.  All data 

analyses were conducted using SAS Version 8.   

 

3.3 Results 

3.3.1 Porewater Velocity 

Within each flow regime, the microcosms maintained relatively consistent flow 

rates among the replicate microcosms (Fig. 3).   The mean (± 1 S.D.) vertical porewater 

velocities for all microcosms by flow rate were 0.24 ± 0.05 cm hr-1 and 2.10 ± 0.19 cm 

hr-1 for the low and high flows, respectively.  Mean vertical porewater velocities (cm hr-1) 

for each treatment with standard deviations for the low flow regime were: A = 0.25 ± 

0.04, AM = 0.26 ± 0.06, M = 0.23 ± 0.05, and C = 0.23 ± 0.06.  The high flow regime 

porewater velocities were: A = 2.17 ± 0.12, AM = 2.25 ± 0.19, M = 1.93 ± 0.09, and C = 

2.00 ± 0.13.  Analysis of variance of porewater velocity by treatment showed no 

statistical difference among the low flow treatments (F3,117 = 1.75, P = 0.1606), while 

differences were detected among the high flow treatments (F3,51 = 15.10, P = <0.0001) 

(Fig. 3).  Tukey’s t-test detected statistical differences in the high flow experiments as 
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follows: A > C (t51 = 3.52, P = 0.0050) and M (t51 = 4.31, P = 0.0004); AM > C (t51 = 

5.02, P = <0.0001) and M (t51 = 5.65, P = <0.0001). Thus, microcosms containing 

arenicolids had significantly higher flow rates than microcosms not containing 

arenicolids during the high flow regime.     

3.3.2 Fecal Production 

Fecal production, assessed as number of new coils per sampling period, was very similar 

between the two animal treatments throughout the course of the experiment (Fig. 4) 

varying from 0-4 new fecal mounds at each observational period.  These data indicate 

that the burrow mimics had little to no effect on arenicolid feeding activity and defecation 

frequency.  There was considerable within treatment variability, although error bars have 

been excluded for presentation purposes.  Interestingly, during the low flow regime, fecal 

mound production in each treatment seemed to follow a 24 hr cycle coinciding with the 

extreme tides in the False Bay mixed semi-diurnal tidal cycle.   

3.3.3 Solute Fluxes  

Although fluxes of solutes were variable over the course of this experiment (Fig. 

5), significant effects of arenicolid were found.  In general, these effects were greatest at 

low porewater advective flow and diminished at higher advective flow (Table 2).  The 

presence of arenicolid worms significantly lowered fluxes of ammonium, phosphate, DIC 

(release rate), and alkalinity relative to non-animal (C and M) treatments during the low 

flow regime (Table 2 & 3).  There was little difference between the two arenicolid 

treatments (A and AM), or between the non-animal treatments (C and M) (Tables 2 & 3).  

This finding suggests that the mimics did not influence the effects of arenicolids on 
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sediment biogeochemical processes, nor did the mimics themselves affect sediment 

biogeochemistry.  The permutation tests did not change the inferences from the original 

statistical analyses.   All treatment by time interactions occurred between non-animal 

treatments (Control and Mimic), or animal treatments (Arenicolid and Arenicolid & 

Mimic), therefore, the differences between animal and non-animal treatments are valid.     

 

The increase in flow resulted in increased fluxes and decreased differences among 

treatment fluxes (or effluent concentrations) (Table 2, Fig. 5), illustrating that effects of 

arenicolids are minimized under increased porewater flow conditions.  The effects of 

arenicolids were not consistent for all solutes; ammonium fluxes in the C and M 

treatments during the low flow regime and all high flow treatments were very similar, 

while low flow A and AM treatment fluxes were almost an order of magnitude lower 

than the C and M low flow treatments (Table 2). Nitrate fluxes increased an order of 

magnitude with a 10-fold increase in porewater velocity, irrespective of treatment.  

Conversely, silicate fluxes were highly variable over the course of the experiment.  

Within the low flow regime A and AM treatments promoted net silicate uptake whereas 

C and M treatments promoted net silicate dissolution. Under high flow, silicate uptake 

occurred in all treatments, with the highest uptake in the C and M treatments.  Phosphate 

fluxes followed a similar pattern within the low and high flow regimes, A and AM 

treatments typically reduced fluxes of phosphate by a factor of two relative to C and M 

treatments.  A and AM treatments also decreased DIC release rates by roughly a factor of 

two relative to C and M in the low flow regime, while release rates were similar in all 

treatments in the high flow regime.  Finally, alkalinity fluxes followed a pattern similar to 
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ammonium where low flow A and AM treatments had lower fluxes than all other 

treatments of both flow rates.  The overall variance in fluxes among treatments is also 

noteworthy.  In general, the A treatment had the smallest variance in flux rates, followed 

by the AM treatment, with the C and M treatments had the largest variance in flux rates 

(Table 2).   

3.3.4 Stoichiometry 

Arenicolids had differential effects on solute fluxes, relative to non-animal 

treatments) that led to changes in the stoichiometry of solutes returned to the water 

column by sediment biogeochemical processes.  Stoichiometric effects were evaluated 

using molar distance on the low flow data only because arenicolid effects were most 

pronounced in this flow regime, and we lacked replication in the high flow data (Fig. 6 & 

7, Table 4).  Statistical differences were detected between A, AM (animal) and C, M 

(non-animal) treatments for three of the four stoichiometric molar distances calculated 

(C:P, N:P, Si:N) (Table 4, Fig. 7).  Furthermore, statistical differences were found 

between the A and AM treatments for Si:N and N:P molar distances.  Significant 

treatment by time interactions were also detected for these molar distances, and therefore, 

the between-animal treatment differences should be viewed cautiously.  Other significant 

treatment by time interactions occurred only between the C and M treatments or between 

the A and AM treatments.  In the case of N:P, C:P, and N:Si molar distances, A and AM 

treatments were characterized by stoichiometric molar distances closer to zero (or nearer 

to the prescribed relationship), while C and M treatments were characterized by a greater 

deviation from zero.  In total, the stoichiometric consequences of arenicolids on 
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remineralized solutes to the overlying water are: 1) decreasing the phosphorous relative 

to nitrogen and carbon and 2) decreasing nitrogen relative to silica.  

 

3.4 Discussion 

The experiments presented here coupled with field studies (D'andrea et al. 2002, 

De Beer et al. 2005, Waldbusser and Marinelli 2006) and modeling exercises 

(Timmermann et al. 2002, Meysman et al. 2006) advance a mechanistic understanding of 

infaunal effects on permeable sediment functioning.   Methodological limitations 

currently inhibit direct measures of infaunal effects on permeable sediment fluxes in the 

field.  Therefore, laboratory and modeling studies are needed to quantify biological 

effects on permeable sediment processes and the potential ecosystem consequences.  The 

simple yet novel experimental system we constructed simulated advective porewater 

movement associated with tidal flushing and draining of intertidal sediments, while 

providing control of vertical porewater velocity.  Furthermore, we used a simplified 

“community” consisting of one species, and burrow mimics from a second species.  

Within our experimental microcosms, arenicolids created statistically significant changes 

to several solute fluxes, while the differential effects on specific solutes created 

stoichiometric changes in elemental regeneration ratios.  The changes in biogeochemistry 

that we measured in this system represent an integrated effect of all arenicolid activities 

on permeable sediment processes, and provide a starting point to estimate the potentially 

large scale effects of this common infauna on important ecosystem services such as 

nutrient cycling. 
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 Permeable sediments are significant contributors to the cycling of organic matter 

and nutrients in coastal environments (Marinelli et al. 1998, Jahnke et al. 2005, 

Billerbeck et al. 2006), and therefore factors that cause variability in permeable sediment 

fluxes have potential ecosystem scale effects.   Given the low standing stocks of organic 

matter found in these sandier environments, and the difficulties in measuring flux and 

reaction rates have limited understanding of their biogeochemical significance.  Recent 

studies have allowed quantification of fluxes from permeable sediment habitats, and 

comparison to organically rich muddy sediments (Table 5).  Although the techniques 

among studies vary, one should note flux rates between permeable and diffusive 

sediments are within the range of values of each other.  Furthermore, the range of flux 

values measured in this study, due to the presence or absence of arenicolids, is wide 

compared to full range of values in the studies listed in Table 5, especially for 

ammonium, phosphate, and silicate.  The arenicolid induced variability in flux rates 

highlights the importance of these organisms and possibly other infauna on altering rates 

and pathways of sediment biogeochemical processes as found in diffusion dominated 

sediments (Andersen and Kristensen 1988, Lohrer et al. 2004, Waldbusser et al. 2004).    

 

The measured flux rates of various solutes in the microcosms were within the 

range of values measured in other permeable sediment systems (Table 5). The most 

appropriate values to compare to this study are those of Billerbeck et al. 2006, as this 

study specifically looked at tidal seepage, the process that was simulated in our 

experimental microcosms. Our measured fluxes of ammonium, silicate, and phosphate 

are similar to those measured in-situ by Billerbeck et al. 2006. Interestingly, the relatively 
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low N:P ratios found in our microcosms (Figure 6), were also observed in-situ by 

Billerbeck et al. (2006) in their seepage water. As we argue below, they also note that 

coupled nitrification-denitrification or phosphate release from mineral phases with anoxic 

porewater are likely mechanisms for this enhanced phosphate release relative to nitrogen. 

The C:P ratios in the microcosm effluent (Figure 6) indicate that at least in the non-

arenicolid treatments, phosphate desorption is the likely mechanism, while in the 

arenicolid treatments it is likely a combination of denitrification and increased phosphate 

adsorption.   

 

A comparison of measured porewater advection rates with arenicolid irrigation 

rates suggests that arenicolids exert significant force on the total porewater flow within 

permeable sediments.  Measured porewater advection and arenicolid bioirrigation rates 

compiled from previous studies and scaled to a modeled lugworm areal domain (400 cm2 

from Meysman et al. 2006) are shown in Table 6 (A, B).  These calculations suggest that 

arenicolid irrigation may increase porewater flow by 10% to over 100% of the advective 

porewater flow within intertidal flats.  Although we lacked direct measures of arenicolid 

irrigation in our study, we applied the scaled values from prior studies for comparison 

with our experimental system (Table 6-C).  The calculations suggest that lugworms could 

increase total porewater flow within the microcosms by a factor of 10 in the low flow 

regime.  Furthermore, field arenicolid densities are often greater than one individual per 

400 cm2 (Krager and Woodin 1993, Waldbusser and Marinelli 2006), potentially 

magnifying the bioirrigation effect.  The interaction of the upward irrigation through the 

arenicolid feeding funnel and downward tidal draining likely creates additional variability 
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in the extent of sediment oxygenation.  The irrigation may also make available 

remineralized nutrients in the overlying water, if the porewater velocity from upward 

irrigation exceeds downward transport via tidal draining, and the vertical length scales 

are short enough to overcome dispersive effects.  Virtually no effects of the worms were 

found on sediment biogeochemistry under high flow conditions, even though 

bioirrigation may have doubled total porewater flow. The lack of worm effects in the 

high flow experiments may be due to effects of flow on behavior and irrigation, lower 

residence time of porewater in the sediment, or interactions among these factors.  The 

above calculations do however provide a mechanistic and quantitative basis for the effect 

of arenicolids (and potentially other infauna) on permeable sediment processes.   

 

Thalassinid burrow mimics did not alter arenicolid effects on biogeochemical 

fluxes, indicating that the structural component of the burrows do not modify arenicolid 

behavior significantly.  The mimics were intended to represent the physical properties of 

the clay lined burrows found in False Bay, and therefore other possible effects of the 

thalassinid burrows such as exchange across the burrow wall and hot-spots of microbial 

activity were not captured in our experimental system.  Although fluxes between the 

arenicolid (A) and arenicolid & mimic (AM) treatments did not differ statistically (Table 

3), there was a general trend of diminished effect of arenicolids on solute fluxes in the 

AM treatment relative to A treatment. The lack of an effect of mimics may be due to 

container effects, the simplified geometry of our mimics relative to real thalassinid 

burrows, or other properties of natural burrows and organisms that our mimics did not 

adequately replicate.  Although our previous field studies have found that thalassinid 
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burrows appeared to alter arenicolid effects on porewater concentrations (Waldbusser and 

Marinelli 2006), our experimental system of porewater advection is also rudimentary.  

Flow rates in our laboratory simulations were relatively constant, whereas in-situ 

porewater advection (driven by other physical processes in addition to tidal draining) are 

likely more tortuous creating variable residence times of porewater within the sediment.  

This variation may lead to local differences in porewater solute concentrations among 

patches of fauna that could not be captured in our experimental system.  

 

The significantly large decrease in nitrogen (~4 mmol m-2 d-1), dissolved 

inorganic carbon (>20 mmol m-2 d-1), and phosphate (~1 mmol m-2 d-1) release in the low 

flow, arenicolid treatments highlights the potential ecosystem consequence of these 

common infauna (Tables 2 & 3).  Uptake via primary production and loss via 

dentrification are likely sinks of the ~4 mmol m-2 d-1 of nitrogen (NH4
+ & NO3

-).  If the 

roughly 4 mmol m-2 d-1 decrease of DIN flux in the arenicolid treatments was attributed 

to arenicolid-enhanced denitrification, this would match estimates of continental shelf 

denitrification rates (Seitzinger and Giblin 1996).  While arenicolid irrigation would 

increase total porewater flow though permeable sediments, we suggest that the 

heterogeneity in porewater movement created by complex irrigation patterns (Meysman 

et al. 2006, Wethey and Woodin 2005, Wethey unpublished data) is also an important 

mechanism affecting biogeochemical processes.  Arenicolid bioturbation coupled with 

porewater advection would presumably increase the: 1) size of the sub-oxic zone as 

shown by Timmermann et al. (2006), 2) residence time of a porewater parcel draining 

through the sediment, particularly in the area encompassing the feeding funnel, and 3) 
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upward transport of porewater.   The upward movement of porewater in the feeding 

funnel flowing against the downward movement of tidally draining porewater would 

result in a net increase in the time a parcel of porewater is retained within the sediment 

column.  Rao et al. (in press) have shown in experimental sediment columns that 

residence time of porewater within permeable sediments may be an important factor in 

rates of denitrification.  Increased porewater residence time coincident with the injection 

of overlying oxygenated water at depth should enhance nitrification, typically the rate-

limiting step in coupled nitrification-denitrification (Jenkins and Kemp 1984, Kemp et al. 

1990).  Structures such as the semi-permeable tail shaft in the arenicolid burrow may also 

serve as important microzones for microbial transformations in permeable sediments, as 

they are in diffusion-dominated sediments (Aller 1988, Kristensen 1988).  Furthermore, 

Huttel (1990) measuring porewater profiles of nitrogen species in sandy sediments found 

that arenicolids increase nitrate relative to ammonium, suggesting that the presence of 

arenicolids stimulates nitrification.  Our experimental results coupled with the previous 

studies noted above suggest that arenicolid-stimulated denitrification in permeable 

sediments is likely and may be an important ecosystem consequence of bioturbation.    

 

The net uptake or sink of nutrients in our arenicolid treatments may also be 

explained by phosphate (or ammonium) adsorption (Krom and Berner 1980, Sanudo-

Wilhelmy et al. 2004), or primary production.  Although we lack direct measurements 

that would allow us to differentiate the sink(s) of nitrogen and phosphorus, the balance 

between loss via biogeochemical processes versus primary production does have 

important ecosystem scale consequences.  The reduction in DIC release of greater than 20 
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mmol m-2 d-1 from treatments with arenicolids relative to those without may indicate a 

50% increase of microphytobenthic production when compared to field measurements in 

False Bay (Pamatmat and Fenton 1968) and other intertidal flats (Underwood and 

Kromkamp 1999).  Previous investigators have shown a stimulatory effect of bioturbators 

on benthic primary production (Bianchi and Rice 1988) or nutrient uptake in the absence 

of light (Marinelli 1992) in diffusion-dominated sediments.  This potential stimulation of 

primary production is likely due to the upward transport of porewater to the sediment 

surface, and it is also possible that some portion of the upwardly transported solutes are 

lost to the overlying water.  If arenicolids stimulate benthic primary production in this 

permeable sedimentary system, an increase in labile food availability to these deposit-

feeders and the rest of the intertidal flat community may result.  While this postulate is 

speculative and warrants further investigation, our findings suggest potentially important 

links among bioturbators, porewater advection, nutrient cycling, and benthic primary 

production in permeable sediments.   

 

The differential infauna effects on specific biogeochemical pathways in 

permeable sediments leads to imbalanced elemental regeneration ratios.  We developed a 

new metric to determine the “molar distance” of our observations from empirical 

elemental relationships in geometric space (Fig. 2 & 7).  This analog to a geometric mean 

regression residual overcomes statistical and interpretive problems associated with the 

use of ratios and carries units of concentration.  Ratios fail to capture information about 

the absolute values of the two numbers; rather they only capture relative concentrations 

to each other.  There is utility in ratios for this reason, but when investigating aspects of 
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marine ecosystems such as nutrient cycling, ratios may also hide important characteristics 

of the system.  An example of this can be seen when comparing ratios from different 

ecosystems (Table 7).  The d-values represent a combined change to the system that is 

needed to bring the two values closer to a prescribed line, in this case Redfield 

nitrogen:phosphorous, rather than simply the relative concentrations. For example, High 

Venice Lagoon has an N:P ratio of 48, compared to Redfield (16) this appears to be 

incredibly imbalanced, but note the small concentrations of both N (2.40) and P (0.05) 

and small d-value (0.10) therefore only a small absolute change in concentration is 

needed in either nutrient to bring it back in line with Redfield.  In other words, only small 

variation in the rates of processes controlling concentrations of these two nutrients are 

needed to move it from a N:P ratio of 48 to 16.  Additionally in Table 7, several systems 

have an N:P ratio of roughly 5.00 to 5.75, while their d-values range from -0.51 to -2.51 

reflecting more accurately the change in concentrations needed to move the system closer 

to Redfield.  Ratios therefore do not capture an important aspect of marine ecosystem 

dynamics, the absolute changes in concentrations that may move the system from limited 

in one nutrient, to limited in another.  Whereas d-values provide a useful metric that 

captures a measure of how “far” a system may be from a prescribed relationship, which 

may be much more relevant when considering nutrient regeneration in coastal 

ecosystems.  

 

To further illustrate the utility of the d-value over straight ratios, we have plotted 

two pair of values for two hypothetical elements in Figure 8.  The figure illustrates that 

the d-values capture a level of information that is not apparent in the ratios. In this 
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example, observations with x, y values of 4, 13 and 28, 89 have a similar ratio of 0.3, but 

the distance of those values relative to an empirical relationship, (1:1 ratio) is quite 

different having d-values of  6.4 and 43.1, respectively.  In other words, values of a given 

ratio will fall upon a line of a slope different than the empirical 1:1 line, and therefore the 

ratio will remain constant as x, y values increase, but the distance of a given observation 

will deviate further from the empirical line.  Thus, a larger increase or decrease in given 

processes regulating the concentration of the elements would be required to bring the 

observation inline with the empirical relationship.  Similarly, two observations may have 

the same d-value, while the ratio is very different, as in figure 8.  This illustrates that the 

actual change in some process required to bring these two observations inline with the 

empirical relationship is similar, even though the ratios are dramatically different.   

 

The mean molar ratio (and standard deviation) are provided below the x-axis on 

Fig. 7 for each stoichiometric pair, for comparison.  The ratios alone suggest that 

differences between arenicolid and non-arenicolid treatments are not very large for Si:N 

or N:P.  However, the molar distance values (d) indicate that a much smaller change in 

the silica:nitrogen balance is needed to move the arenicolid treatments across the “0” or 

prescribed line relative to non-arenicolid treatments.  Therefore, we believe molar 

distance may be an important metric used in conjunction with ratios to examine 

stoichiometric relationships in benthic-pelagic exchange and other ecological 

applications.  Molar distances may also be calculated for multiple dimensions or elements 

in geometric space thereby overcoming another limitation of simple ratios.   
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We have calculated molar distances (d) for 4 different stoichiometric pairs (Fig. 

7) that have potentially important ecosystem consequences (Table 4).  Several 

investigators have shown that the values of Si:N >  1 provide diatoms a competitive 

advantage over dinoflagellates, while values < 1 tend to slow diatom growth and give 

dinoflagellates a competitive advantage (Brzezinski 1985, Rahm et al. 1996, Turner et al. 

1998).  A diatom versus dinoflagellate community has potential implications for the 

occurrence of harmful algal blooms, the structure of marine food webs, and the rate and 

timing of organic matter deposition to the sediment surface (Officer and Ryther 1980, 

Cloern 2001).   Our experiment showed that arenicolids promoted Si:N d-values > 1 in 

fluxes from sediments, which would favor diatoms over dinoflagellates (Fig 7).  

Therefore given the strong coupling between sediment and overlying water, the loss of 

arenicolids may promote water column stoichiometry favoring dinoflagellates over 

diatoms.  Our experiments, coupled with other recent studies, illustrate the potentially 

important consequence of bioturbator loss in permeable sediments to coastal ecosystem 

dynamics (e.g.Volkenborn and Reise 2007), a concern in coastal environments subject to 

anthropogenic degradation via eutrophication or dredging.   

   

In conclusion, our experiments illustrate the important ecological role infauna 

may play in biogeochemical exchange between permeable sediments and overlying 

water.  Benthic fluxes in shallow coastal areas are sufficient to modify water column 

composition of ecologically important solutes (Nixon et al. 1996, Beck and Bruland 

2000, Sohma et al. 2001).  Therefore, if infaunal species modify solute fluxes in 

ecologically relevant ways then infaunal species loss or replacement may have large 
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“bottom up” consequences on coastal and estuarine ecosystem functioning.  

Anthropogenic disturbances to permeable sediment infaunal communities may have 

indirect effects on elemental cycling and alter ecosystem function, as in diffusion-

dominated sediments (Solan et al. 2004).  Our results build upon other recent studies in 

diffusion-dominated sediments showing the important role infaunal community structure 

plays in remineralization of biogenic elements (e.g. Biles et al. 2003, Covich et al. 2004, 

Michaud et al. 2005).  The extrapolation of results from microcosm studies to larger scale 

ecological phenomenon is not without pitfalls, although these comparisons are needed if 

we are to understand the potential consequences of benthic species loss/change on coastal 

ecosystem functioning.     
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3.5 Tables  

Table 3.5.1- Sediment Properties. Sediment granulometry of the study site where 

experimental sediment was collected. Values are means (± 1 S.D.) across 9 sites from 

composite samples within 0.5 m-2 plots. Note the low variability in parameters. Methods 

and data originally published in Waldbusser and Marinelli (2006).  

 

Measure Value Identification 
Grain (phi) 2.92 ± (0.120) Fine Sands  
Sorting 1.82 ± (0.050) Poorly Sorted 
Skewness 0.00 ± (0.014) Symmetrical 
Kurtosis 1.08 ± (0.020) Mesokurtic 
Porosity  0.43 ± (0.012)  
Organic C % (w/w) 0.19 ± (0.017)  
Organic N % (w/w) 0.02 ± (0.005)  
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Table 3.5.2- Average Solute Fluxes. (Next page) Mean flux (mmol m-2 d-1 ± 1 σ) for 

each treatment and flow regime, and general effect of arenicolids on fluxes. DIC is 

release rate rather than flux (see text for explanation). Letters in the parenthesis indicate 

low (L) or high (H) flow.  Positive values indicate release from sediments and negative 

values indicate uptake by sediments.  Arenicolid effects are denoted as (▼) decreases 

flux, (▲) increases flux, (n/c) no change, and (n/s) indicates a change that is not 

statistically significant during the low flow regime.  *The high flow fluxes were 

calculated excluding the first three sampling periods as this represented a transitional 

phase that was quite different than the values measured later, and therefore the general 

arenicolid effects in the high flow regime are based on observation rather than statistical 

tests.  
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Table 3.5.3- Treatment Effects on Fluxes. p-values for fixed effects from the 

ANCOVA and for organism treatment comparisons of low flow flux data. Asterisks 

denote p-values obtained using permutation tests as explained in the text. Treatment 

abbreviations as follows: A= Arenicolid, AM= Arenicolid & Mimic, C= Control, and M= 

Mimic.  Bold values indicate significance at α = 0.05.  

 

Fixed Effects *NH4
+ NO3

- Si(OH)4 *PO4
3- *DIC Alk 

Treatment  0.0001 0.2946 0.3641 0.0001 0.0054 0.0007 
Time 0.0001 0.6581 <0.0001 0.0110 0.3397 0.4319 
Treatment x Time 0.0103 0.0744 0.2010 0.0009 0.3447 0.0066 
Treatment Diffs.        
A   vs. AM          0.1201 0.7140 0.3646 0.1126 0.0322 0.1253 
A   vs. C           0.0001 0.9726 0.2476 0.0001 0.0001 0.0001 
A   vs. M            0.0001 0.9976 0.2103 0.0001 0.0001 <0.0001 
AM vs. C 0.0001 0.6855 0.0878 0.0002 0.0079 0.0390 
AM vs. M 0.0001 0.5974 0.0885 0.0001 0.0007 0.0128 
C   vs. M 0.9398 0.9855 0.9775 0.4554 0.1883 0.9990 
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Table 3.5.4- Treatment Effects on Stoichiometry. p-values for fixed effects from the 

ANCOVA and for organism treatment comparisons of stoichiometric molar distances (d) 

for the low flow regime only. Treatment abbreviations as follows: A= Arenicolid, AM= 

Arenicolid & Mimic, C= Control, and M= Mimic.  Bold values indicate significance at α 

= 0.05.  

ANOVA Fixed Effects C:N Si:N N:P C:P 
Treatment  0.1082 0.0001 0.0001 0.0001 
Time 0.0076 0.0113 0.2978 0.0751 
Treatment x Time 0.4337 0.0050 0.0292 0.6167 
Treatment Comparisons     
A   vs. AM 0.1370 0.0491 0.0197 0.0204 
A   vs. C 0.0730 0.0001 0.0001 0.0001 
A   vs. M 0.0001 0.0001 0.0001 0.0001 
AM vs. C 0.8646 0.0001 0.0001 0.0001 
AM vs. M 0.4856 0.0001 0.0001 0.0001 
C   vs. M 0.2323 0.8563 0.7030 0.2910 
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Table 3.5.5.- Comparison of Flux Measurements. Measured flux values for various 

solutes from permeable sediment systems, and diffusion dominated systems.  The values 

from Asmus et al. 2000 (subtidal) are compiled from nine studies of various systems 

along the Atlantic coast of the U.S.A. and are all subtidal with depths less than 10 m.  

The Asmus et al. (2000) tidal flat values are compiled from six studies in Europe.  All 

flux values are in mmol m-2 d-1.  

 
Permeable Sediment Habitat NH4

+ NO3
- Si(OH)4 PO4

3- TCO2/DIC
D'Andrea et al. 2002 Tidal Flat ~3 to 7 - - - 20 to 140
Billerbeck et al. 2006 Tidal Flat 1.10 to 7.60 - 0.14 to 1.70 0.28 to 2.50 -
Cook et al. 2007 Tidal Flat - - - - 32 to 120
Billerbeck et al. 2007 Tidal Flat (coarse) ~0 ~-0.15 ~-0.05 -0.005 -2.64 to 0.83
Billerbeck et al. 2007 Tidal Flat (fine) -0.02 to 0.90 ~-0.10 0.10 to 0.18 0.08 -1.49 to 5.50
This Study (low flow) Tidal Flat 0.35 to 4.02 -0.40 to -0.46 -0.33 to 0.07 0.01 to 1.05 32.47-64.00

Marinelli et al. 1998 Continental Shelf -0.33 to 1.42 - -0.14 to 6.50 - -
Ehrenhauss et al. 2004 Continental Shelf -0.33 to 0.54 -0.20 to 1.16 0.22 to 0.30 0.00 to 0.06 -
Jahnke et al. 2005 Continental Shelf 2.45 - 0.62 - 17.7

Diffusive Sediment
from Asmus et al 2000 Shallow Subtidal -0.13 to 1.58 -0.67 to 0.25 0.04 to 1.04 -0.03 to 0.29 -
Cook et al. 2004 Shallow Subtidal 0.10 -0.04 - - 20-180
Serpa et al. 2007 Shallow Subtidal 0.10 to 0.25 - - 0.003 to 0.01 -

from Asmus et al 2000 Tidal Flat -0.29 to 0.37 -0.49 to 0.36 -2.64 to 1.49 -0.01 to 0.04 -
Serpa et al. 2007 Tidal Flat 0.50 to 1.00 - - 0.02 to 0.08 -
Billerbeck et al. 2007 Tidal Flat -0.01 to 0.60 -0.15 to 0.10 0.20 to 0.40 0.05 2.67 to 3.35

Murray et al. 2006 Sand ~7.20 ~1.44 - ~2.88 -
Mud ~7.80 ~2.16 - ~0.96 -
Marsh ~6.60 ~4.08 - ~0.72 -  
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Table 3.5.6- Advection and Bioirigation Rates. Estimates of advective and bioirrigation 

effects from: A. Field studies of advective porewater exchange scaled to a modeled 

arenicolid areal domain of 400 cm2 from (Meysman et al., 2006), B. Laboratory and 

modeling studies of arenicolid irrigation rates, and C. Estimates from this study of the 

low and high flow rates and arenicolid pumping based on 5 worms per microcosm 

pumping at 1 ml min-1 worm-1, scaled to the areal domain (the microcosms were ~346 

cm2).  It is important to note, in the field, often several worms may occupy the modeled 

areal domain of 400 cm2. 

 

A. Physically Driven Advection  Advection Rate (ml min-1 domain-1) 
Billerbeck et al. 2006 (North Sea, intertidal) ~0.1 
Le Hir et al. 2000 (Humber Estuary, intertidal) 0.6 
De Beer et al. 2005 (Wadden Sea, intertidal) 4.4 to 13.9 
Reimers et al. 2004 (Atlantic Bight, shelf) 6.9 to 38.8 
B. Arenicolid Pumping Rates Bioirrigation Rate (ml min-1 worm-1) 
Timmermann et al. 2002 0.18 to 1.02 
Meysman et al. 2006 0.30 to 1.30 
Riisgård et al. 1996 1.5 
Wells 1949 4.5 
C. Estimates from Microcosms Microcosm Rates (ml min-1 domain-1) 
Advective flow (Low or High flow) 0.6 or 5.8 
Bioirrigation (5 worms at 1ml min-1) 5.0 
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Table 3.5.7- Comparison of Stoichiometric Ratios. Comparison of nitrogen, 

phosphorous, stoichiometric ratios, and d-values for several different marine ecosystems. 

Nitrogen and phosphorous concentrations are in µmol L-1 and ranked from lowest to 

highest N:P ratio. Note that d-values vary considerably from ratios. Nitrogen and 

Phosphorous data from Boynton et al. 1982.   

 
System N P N:P d

Roskeeda Bay, Ireland 0.40 2.20 0.18 -2.17
Pamlico River, NC 1.50 8.00 0.19 -7.89
Narrangansett Bay, RI 0.60 1.60 0.38 -1.56
Upper Chesapeake, MD 5.00 6.00 0.83 -5.68
Beaufort Sound, NC 0.50 0.50 1.00 -0.47
Bedford Basin, Nova Scotia 0.60 0.50 1.20 -0.46
Chincoteague Bay, MD 3.20 2.50 1.28 -2.30
Peconic Bay, NY 1.90 1.30 1.46 -1.18
W. Wadden Sea, Netherlands 3.00 2.00 1.50 -1.81
E. Wadden Sea, Netherlands 4.00 2.50 1.60 -2.25
Mid-Patuxent River, MD 4.20 2.30 1.83 -2.03
S.E. Kaneohe Bay, HI 1.00 0.50 2.00 -0.44
St. Margarets Bay, Nova Scotia 1.10 0.50 2.20 -0.43
Cen. Kaneohe Bay, HI 0.80 0.30 2.67 -0.25
Long Island Sound, NY 1.50 0.50 3.00 -0.41
Up-Patuxent River, MD 10.00 2.00 5.00 -1.37
L. San Francisco Bay, CA 20.60 3.80 5.42 -2.51
Barataria Bay, LA 4.60 0.80 5.75 -0.51
U. San Francisco Bay, CA 11.50 2.00 5.75 -1.28
Victoria Harbor, British Columbia 11.50 2.00 5.75 -1.28
Mid-Chesapeake Bay, MD 4.50 0.60 7.50 -0.32
Baltic Sea 1.30 0.10 13.00 -0.02
Loch Etive, Scotland 1.10 0.06 18.33 0.01
Vostok Bay, Russia 1.00 0.05 20.00 0.01
Duwwamish River, WA 60.00 3.00 20.00 0.75
Hudson River, NY 5.00 0.16 31.25 0.15
High Venice Lagoon, Italy 2.40 0.05 48.00 0.10
Apalachiocola Bay, FL 10.00 0.10 100.00 0.52  



 

 84 
 

3.6 Figures  
 
Figure 3.6.1- Illustration of Microcosm Setup. Cartoon of the experimental flow-

through microcosm system. Letters denote the following: (A) overlying water bath, (B) 

microcosm and sediment column, (C) dead-space below sediment column, (D) outlet 

tubing, (E) screw-pinch valve used to regulate porewater flow through microcosm, (F) 

the effluent point of collection from the microcosms.  Timed collection of effluent 

occurred across all 11 microcosms simultaneously while timing sample period, then each 

sample was weighed in order to calculate flow rate at each sampling period.  

 

 

A 

B 

C 

D

E 

F 
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Figure 3.6.2- Illustration of d-value Calculation. Graphical illustration of the 

calculations used to determine d-values for the stoichiometric relationships in the case of 

C:N (not to scale).  Solute concentrations are represented by the x (DIN) and y (DIC) 

axes.  Measured concentration is indicated by Ni and Ci, while the expected value based 

on known stoichiometric relationships are Ne and Ce.  The length of a perpendicular line 

from the observation (obs) to the theoretical line was calculated by simple geometric 

relationships (as shown), providing a distance with the units of mass or µmol in this case.  

The angle θ reflects the slope of the Redfield relationship between C and N, or any other 

stoichiometric relationship (a constant); therefore if a change occurs in one solute and not 

the other the change in the d-value will reflect the different scales of variability between 

the two elements/solutes.   
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Figure 3.6.3- Porewater Velocity in Microcosms. The mean vertical porewater velocity 

as calculated from the rate of effluent discharge, surface area of the sediment within the 

microcosm, and porosity of the sediment.  Error bars are ± one standard deviation. The 

light grey bars and left y-axis represent the velocities during the low flow experiments, 

while the dark grey and right y-axis are the high flow values.  Treatment groups are along 

the x-axis, with A&M representing the Arenicolid and Mimic treatment.  Treatment 

differences are indicated by different letters in the high flow regime (no differences found 

in the low flow treatments).   
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Figure 3.6.4- Fecal Production and Tide. Mean number of new fecal mounds per 

treatment at each sampling period, variance excluded for illustrative purposes. The tidal 

height from Friday Harbor is overlain to illustrate the coincidence of feeding activity in 

the laboratory microcosms, with the tidal cycle in the field. The False Bay tides are offset 

approximately 1 hour behind those of Friday Harbor.   
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Figure 3.6.5- Effluent Concentrations.  Time series plots of ammonium (A) and silicate 

(B) effluent concentrations over the course of the entire experiment for all replicates.  

The non-shaded/shaded sections along the x-axis represent the day/night cycle, beneath 

the light cycle is listed the flow regime.  Changes to the flow regime are demarcated by 

the bold vertical lines, low flow was roughly 0.5 ml min-1, and high flow was roughly 5.0 

ml min-1.  
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Figure 3.6.6- Effluent Stoichiometry. Stoichiometric plots of the low flow effluent 

concentrations for C:N (upper left), N:P (upper right), C:P (lower left), and Si:N (lower 

right).  The line on each graph represents the Redfield Ratio line, with the exception of 

Si:N. The Si:N line represents the 1:1 line denoting the elemental ratios that promote 

diatom production (silica surplus), or dinoflagellete (nitrogen surplus).  Note the 

separation of the animal (black symbols), and non-animal (grey symbols) treatments as 

well as the large difference in variance between these two groups. Note differences in 

scale among the four plots. 
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Figure 3.6.7- Treatment effects on d-values. Box plots of the d-values (molar distance) 

of observations from the theoretical ratio calculated as noted in the text and Figure 2.  

The lower and upper bounds of the box represent the 25th and 75th percentile of the data. 

The lower and upper error bars represent the 10th and 90th percentile, and dots represent 

values outside the 10th or 90th percentile.  The median is represented by the horizontal 

line, and the mean by the asterisk.  Values presented on the x-axis below the treatment 

names are the mean and (standard deviation) of the effluent ratios for comparison of 

stoichiometric ratios to d-values.  Note differences in scale among the four plots. 
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Figure 3.6.8- Comparison of Ratios and d-values. Selected observations from a 

randomly generated data set of two hypothetical elements having an empirical 

stoichiometric relationship of 1:1.  The points in black have the same stoichiometric ratio, 

but different d-values, as noted on the graph.  The points in grey have the same d-value, 

but different stoichiometric ratios.  In total, the d-values capture a level of information 

not captured by the ratios.  The d-values provide a value that more closely represents the 

magnitude of change required in various processes to bring an observation inline with the 

empirical relationship.  In other words, the d-value better represents the deviation of an 

observation from a prescribed relationship, in real units, compared to ratios.   
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Chapter 4: Infaunal Functional Groups and Important 
Attributes to Permeable Sediment Processes: A Multi-site, 
Multi-species Investigation 

4.1 Introduction 

Intertidal and shallow subtidal coastal sediments host a diverse community of 

infauna, including many that alter the sediment column in complex and often non-

intuitive ways.  Most infaunal studies in permeable sediments have focused on species of 

the ubiquitous arenicolid polychaete family (e.g. Huettel et al. 1990, Timmerman et al. 

2002, Meysman et al. 2006, Volkenborn et al. 2007), although a handful of studies have 

examined other species (Jones and Jago 1993, D’Andrea et al. 2002, 2004, Nogaro et al. 

2006, Mermillod-Blondin and Rosenberg 2006, Waldbusser and Marinelli 2006).  Recent 

modeling (Meysman et al. 2005, Timmerman et al. 2006), laboratory (Wethey and 

Woodin 2005), and field efforts (Volkenborn et al. 2007) involving arenicolids have 

advanced our understanding of bioirrigation in permeable sediments.  However, using a 

representative bioturbator in a diverse benthic community may mask other processes that 

are significant to the broader ecosystem.  Estuarine and coastal ecosystems are sensitive 

to changes in benthic processes (Torgersen et al. 1997, Meile and Van Cappellen 2003, 

Tyler et al. 2003, Lucea et al. 2005) and the extensive modification of sediments by 

infauna implies that biogeochemical processes altered by different infauna may affect 

system wide biogeochemistry (Waldbusser et al. 2004).  Therefore, an important goal for 

marine sediment research is to determine the infaunal attributes that modify sediment 

biogeochemical processes.  One approach to this complex problem is to characterize 
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infaunal behaviors and assign functional groups according to similar effects on sediment 

processes.   

 

 Applying functional groups in permeable sediments may require a different 

approach than traditionally used for diffusion dominated sediments.  Traditional 

functional groupings in marine sediments have used feeding modes or guilds (Fachauld 

and Jumars 1979, Hutchings 1998) or particle mixing effects (Pearson 2001, Biles et al. 

2002, Gerino 2003).  However D’Andrea et al. (2004) found no direct effect of traditional 

functional groupings on particle mixing in permeable sediments.  Gerino (2003) 

suggested using an inverse approach for functional groups: first identifying key 

processes, then grouping organisms based upon their impact on given processes. The 

physically active nature and role of porewater advection in permeable sediments makes 

the use of an inverse approach to functional groups in permeable sediments potentially 

very effective.  

 

Within permeable sediments, there are several “key” processes that alter physical 

and chemical dynamics; the rapid movement and exchange of porewater is a key process 

that differentiates permeable from diffusive sediments.  Permeable sediments permit 

porewater advection to occur when pressure gradients are applied that force water from 

high to low pressure.  Currents and surface gravity waves create flow interactions with 

sediment surface topography that result in oscillating or constant pressure gradients 

capable of inducing porewater advection (Reimers et al. 2004).  Larger scale pressure 

gradients may also drive porewater advection through tidal flats (Le Hir et al. 2000, 
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Billerbeck et al. 2006), submarine groundwater aquifers (Burnett et al. 2003), or beneath 

tidal marshes (Jahnke et al. 2003).  The advection of porewater through sediments 

increases organic matter remineralization rates, moves particulates through the sediment, 

stimulates biogeochemical processes, and rapidly removes metabolites relative to 

diffusive sediments (e.g. Huetttel et al. 1996, 1998).  The basic parameters that regulate 

porewater advection are the permeability of the sediment (k > 2 x 10-11 m-2) and the 

presence of a pressure gradient.  Therefore, the two primary mechanisms by which 

infauna may modify porewater advection (and resulting biogeochemistry) are through 

modifying the permeability of the sediment or pressure gradients (through pumping or 

structure/flow interactions) acting on the sediment.      

 

Infaunal organisms have diverse life history strategies that include myriad 

behaviors and biogenic sediment structures, many of which alter sediment granulometry 

(e.g. Rhoads and Young 1970) or have the potential to alter or create pressure gradients 

(e.g. Huettel and Gust 1992, Wild et al. 2005).  The scale of these infaunal effects is 

localized to areas immediately surrounding a burrow, feeding funnel, or other structure 

created through infauna activity.  Many of these localized effects increase permeability 

and counter normal sediment compaction processes (Craig et al. 1998).  Infauna may 

have broad scale effects if their density and activity is large enough to modify a 

significant proportion or critical region of the sediment column.  Volkenborn et al. (2007) 

have shown that populations of arenicolids maintain the permeability of intertidal 

sediments relative to areas where the arenicolids have been excluded.  Abundant smaller 

organisms can also have substantial effects on permeable sediments; D’Andrea et al. 
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(2004) found that amphipods were responsible for significant sediment mixing and 

creating void spaces in the presence of several larger, less abundant species.  A 

combination of organism attributes and their density ultimately determine whether 

infaunal communities influence porewater advection and chemistry over broad scales, 

through modifying permeability and pressure gradients.  Characterizing key functional 

attributes of infauna in permeable sediments provides a basis for predictive animal-

sediment models to quantify the potential effects of benthic species loss or replacement 

on important coastal processes.  Therefore, applying an inverse approach to functional 

groups (Gerino 2003) in permeable sediments, infauna may be grouped as porewater 

advection enhancers or inhibitors through sediment permeability modification and 

pressure gradient modification.  

  

 A multi-site, multi-species investigation of infaunal effects on porewater 

advection and biogeochemistry was initiated to examine differential effects of infauna on 

permeable sediments.  The primary questions were: 1) What infaunal traits affect fluid 

transport and sediment biogeochemistry? 2) How do these traits interact with other 

environmental variables? To address these questions, I compared the effects of different 

infaunal species on porewater advection and biogeochemistry both within and across 

permeable sediment sites.  Sediment differences across sites were evaluated to determine 

broader scale controls on permeable sediment processes, and couch infaunal effects in the 

proper context.  Infaunal attributes found to affect permeable sediment processes were 

identified and the potential mechanisms linking attributes to transport and reaction 

processes were explored. 
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4.2 Methods  

4.2.1 Sites and Organisms 

 This study was conducted at three tidal flats in the U.S.A.: False Bay located on 

San Juan Island, Washington (lat = 48.489, lon = -123.066), Cara’s Flat located in the 

coastal bays area of Virginia (lat = 37.591, lon = -75.616), and Debidue Flat located east 

of Georgetown, South Carolina (lat = 33.335, lon = -79.167).  All three sites are well 

flushed with coastal ocean waters over daily tide cycles, consist of fine sands, and contain 

relatively low organic matter.  Resident bioturbating benthic infauna create distinct 

surface features visible at low tide when each of the flats are exposed (figure 1).  These 

large bioturbating organisms are significant habitat modifiers through their burrowing, 

irrigation, and feeding activities evident on the sediment surface.     

 

False Bay, WA, USA- The tidal flats of False Bay are located within a semi-enclosed bay 

that drains fully during the lower of the semi-diurnal tides.  The average daily tidal range 

is ~2.3 m.  False Bay is adjacent to the Georgia Strait of the Pacific Northwest Passage, 

and is subject to strong seasonal storms during the winter months.  Within False Bay, the 

tidal flats comprise a series of sand bars, pools, and tidal creeks creating greater 

topographic relief over shorter distances than the other two sites described below.  

Sediment ripples had a wavelength of roughly 8 cm during the time of this study.  The 

sample area is located near the head of the bay on a homogenous shallow sand bar subject 

to 12 hr plus exposure times.      
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 The arenicolid polychaete Abarenicola pacifica and two species of thalassinid 

shrimp Upogebia pugettensis and Neotrypaea californiensis are found in high densities 

on this flat.  These two taxonomic groups will be referred to as arenicolids and 

thalassinids, respectively. The thalassinids  are treated as one taxonomic unit, given their 

functional similarities including the creation of relatively impermeable burrows/galleries 

over large areas of intertidal and subtidal sediments(Kinoshita et al. 2005, Papaspyrou et 

al. 2005).  They may filter or deposit feed. (Posey et al. 1991, Ziebis et al. 1996, Pinn et 

al. 1998). The arenicolid is an active head-down deposit-feeder that pumps overlying 

water through its tail shaft into the sediment fluidizing sediment in the feeding funnel 

(Huettel 1990, Riisgard and Banta 1998, Meysman et al. 2006).  This irrigation activity 

allows the arenicolids to subduct and feed on fresh organic matter, resulting in localized 

areas of increased permeability (Jones and Jago 1993).   

 

Cara’s Flat, VA, USA- This flat was recently formed when a storm cut through the barrier 

island roughly seven years ago.  The flat is adjacent to a tidal salt marsh that has been 

slowly encroaching across the flat from south to north (pers. comm. M. Lukenbach). A 

gradient in sediment characteristics exists from finer grained muddy sediments adjacent 

to the marsh, to sandy sediments adjacent to the small creek where the breach in the 

barrier island was formed.  Along this gradient is also a gentle slope from the higher 

muddy/marsh areas to the sandy sediment closer to the creek of roughly 50 cm over 200 

m in distance. The sediment surface is relatively flat over the plot scales of 0.25 m2.  

Only a few poorly formed ripples in the sediment were found at this site, ripples that 

were noted in some plots were typically 1 cm in wavelength. The spring tidal range at 
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this location is roughly 1.5 m.  The spring tides are noted here because these are the tides 

that coincided with sampling. 

 

 In the fine-sands area of Cara’s Flat (closer to the creek than marsh), the dominant 

infauna are the hemichordate Balanoglossus aurantiacus (referred to as hemichordate) 

and onuphid polychaete Diopatra cuprea (referred to as diopatra). B. aurantiacus is a 

large deep dwelling deposit feeder that inhabits a u-shaped tube.  It uses multiple feeding 

funnels to subduct surface material in the anterior end of the burrow to depth, and creates 

new feeding funnels over tidal cycles to days (Duncan 1987). Unconsolidated fecal 

mounds are produced at the position of their tail shaft (figure 1).  The hemichordates are 

also known for their production of bromylphenols as chemical defense (Kicklighter et al. 

2004).  Diopatra cuprea, the onuphid polychaete commonly known as the junk worm, is 

a surface feeding omnivore (Myers 1972, Brenchley and Tidball 1980). It lives in a 

leathery parchment tube with various shell fragments, algae, and other materials glued to 

its burrow. The top of the tube (tube cap) extends several centimeters from the sediment 

surface into the overlying water.  The tube cap is particularly impermeable, given the 

thick parchment tube and additional material glued there by the worm.  

 

Debidue Flat, SC, USA- This is a well studied intertidal flat located in a shallow tidal 

creek network on North Island, adjacent to North Inlet (Grant 1981, D’Andrea et al. 

2002).  Tides are heavily influenced by the wind direction. Most of the area has fringing 

tidal marshes, situated between a barrier island and North Island.  The upper 2-3 cm of 

sediment on the flat regularly migrates over a few days with the changing tides (Grant 
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1981).  Ripples and changes to surface topography were noted during experiments, as 

movement of ripples is observed in consecutive daily sediment surface photographs. The 

surface ripples were not organized as well as False Bay in terms of long perpendicular 

ripples, indicating that the flow direction is probably more variable at Debidue Flat 

relative to False Bay.  Wavelengths in sediment features were approximately 20 cm in 

length.  The spring tidal range in this area is 1.7 m.  

 

 There are two general areas on Debidue Flat, a lower muddier area with a diverse 

infaunal community, and a sandier higher section dominated by the onuphid polychaete 

Onuphis jenneri (referred to as onuphis).  Studies were focused on the sandier upper and 

mid-level portions of the flat where both onuphid polychaetes, O. jenneri and Diopatra 

cuprea are found. O. jenneri is a surface deposit feeder, smaller in size than diopatra.  It 

builds tubes that extend several centimeters from the sediment surface; onuphis burrows 

are thin, flimsy, and made from sand grains embedded in a polysaccharide matrix.  The 

diffusional characteristics of these burrows have been characterized (Aller 1983, 

Hannides et al. 2005) and found to be more permeable then diopatra burrows (Aller 

1983).   

4.2.2 Sampling Design  

 The sampling design at each site varied slightly according to site characteristics 

and previous measurements made, although the general methodology and comparisons 

within sites are similar.  The experimental plots consist of 50 x 50 cm quadrants, marked 

by wooden dowels inserted into the sediment on the corners of each plot.  The biggest 

difference among the three study sites is how the experimental plots were situated.  In 
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False Bay, a block design was used to locate plots of varying densities of arenicolids and 

thalassinids within close (< 5 m) proximity of each other. This resulted in nine sites that 

were used for both the porewater advection and chemistry measurements.  Plots were 

chosen that were dominated by arenicolids, thalassinids, or a mixture of both, and these 

three treatments were applied within 3 blocks, resulting in 9 total plots.  The original 

analyses may be found in Waldbusser and Marinelli (2006).  Since there were no block 

effects, all data were pooled and analyzed with regression (detailed below), with 

organism density and sediment properties as independent variables, and measures of 

porewater advection or solute concentrations as dependent variables.  The porewater 

advection measurement was conducted 19 July 2004 to 21 July 2004, and porewater 

solutes were measured from 4 August 2004 to 10 August 2004, within the same 

experimental plots.  

  

 Experimental plots at Cara’s Flat also consisted of three blocks and three plots 

within each spatially explicit block.  As above, no differences in sediment characteristics 

were found across blocks, and therefore, data were pooled and analyzed by regression 

analyses.  All the plots within a block at Cara’s Flat were also within meters of each 

other, and plots were selected based on the abundance of either hemichordates or 

diopatra.  The same plots were used for both the porewater advection and chemistry 

measurements.  Advection measurements were made 22 July 2005 to 24 July 2005, and 

porewater solutes were measured 17 August 2005 to 22 August 2005.   

  



 

 101 
 

 Experimental plots at Debidue Flat were arranged in transects across the flat, with 

each experimental plot roughly within a meter of the next plot.  The advection 

measurements were arranged in two different transects, one across the sandy area and one 

across a slightly less sandy area higher in diopatra density.  Both transects had eight 

experimental plots.  As no statistically different sediment properties were found between 

these two transects, the data were pooled for the regression analyses.  Porewater solutes 

were only measured in the sandy area, with one transect of nine sites.  The porewater 

solute and advection measurement sites were different due to the fact that the porewater 

solutes were measured one year after the advection measurements and the site markers 

would not last the winter.  Porewater advection measurements were made 16 October 

2005 to 18 October 2005, and porewater solutes were measured 10 July 2006 to 16 July 

2006.   

4.2.3 Organism Density 

 The densities of infauna within each experimental plot were estimated by 

replicate photographs of each plot and enumeration of surface features (tubes, fecal coils, 

burrow openings) associated with different infauna (Figure 1) (Krager and Woodin 1993, 

Widdicombe et al. 2003, Waldbusser and Marinelli 2006).  A photo-quadrant, the same 

size as each plot (50 cm x 50 cm), was used to take daily photographs during each 

deployment of fluorescein gels and porewater peepers (both described below).  In the 

case of the fluorescein gels which were only deployed for 2 days, photographs were taken 

the day before the deployment to ensure at least 3 days of photographs were taken.  Each 

surface photograph was then inspected manually and distinct digital markers were placed 

on each type of feature.  The software package Image-J was used to produce scaled maps 
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of the burrow features, as well as count, and record the spatial coordinates, of each 

feature. The counts were then averaged over the days that photographs were taken to 

determine average densities of each organism within each plot. More than a year after the 

initial image processing, several images from each site were reviewed and counts redone 

manually for quality control.  Additionally, plots that had considerable day to day 

variance were re-examined. Densities were adjusted for Debidue Flat because the 

migration of sand ripples caused previously exposed tube caps to be flush with the 

sediment surface.  This resulted in only a moderate increase in densities of Onuphis 

jenneri that were previously counted as “other”.   

4.2.4 Advection Measurements  

 The rates of porewater advection within each experimental plot were inferred by 

quantifying loss of a tracer from replicate gel diffusers inserted into the sediment. This 

method is described fully in Waldbusser and Marinelli (2006), and will be reviewed 

briefly here. Tracer is released to the surrounding sediment from a gel via diffusion.  As 

advection occurs next to and around the gel, it removes the tracer that was diffused out of 

the gel, creating a steeper concentration gradient, and therefore larger loss of tracer from 

the gel.  Acrylamide gel plugs made following (Browne and Zimmer 2001) and 1 mg ml-1 

of fluorescein were cast in 1.1 x 9 cm cylinders.  Gels were inserted into the sediment and 

buried approximately 1-2 cm below the sediment surface. Within each plot 5 replicate 

gels were aligned perpendicular to the slope of the sediment surface.  The exact spatial 

coordinates of the gels within the plot were recorded so that they could be retrieved with 

minimal sediment disruption at the end of the experimental period.   

 



 

 103 
 

The acrylamide gels were deployed during spring tides at Cara’s Flat and Debidue 

Flat or exceptionally good semi-diurnal tides at False Bay (typically every two weeks) for 

48 hrs.  After the 48 hr deployment, the gels were extracted from the experimental plots 

at low tide. Any remaining sediment was gently wiped from the gel surfaces.  A 5 mm 

subsection was taken 1 cm from both the near surface and deep ends of the gel.  These 

sub-sections were placed into pre-weighed 5 ml sample vials, weighed again, and diluted 

with 2.5 ml of deionized water.  Any gels that were exposed on the sediment surface or 

had been damaged while they were deployed in the sediment were noted.  During the 

back equilibration, all samples were kept in a 4o C refrigerator.  Back equilibrations of 

the gels were conducted for 48 hrs - 5 days, and during back equilibration, sample vials 

were either manually agitated or kept on a shaker table.  After the back equilibration 

period, the fluorescein concentration in the deionized water was determined on either a 

Turner Designs fluorometer, or an Agilent high performance liquid chromotographer 

(HPLC) equipped with a fluorescence detector and calibrated to at least 5 standard 

solutions of fluorescein.  The concentration of the fluorescein in the gels (Fluorgel) was 

then determined from the dilution factor of the gel volume and diluent by: 

 

sample
V

VV
gel Fluor

Gel
DilGelFluor ∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=    

 

where GelV is the volume of the gel section, DilV is the volume of diluent, and Fluorsample 

is the fluorescein measured in the back equilibrated sample.  
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4.2.5 Porewater Solutes 

 Porewater peepers (Hesslein 1976) were used to determine time averaged 

porewater concentrations of ammonium (by Koroleff 1976), nitrate (by EPA 353.3), 

phosphate (by Eaton et al. 1995), silicate (by Strickland and Parsons 1972), alkalinity (by 

EPA 310.2), pH (standard potentiometric electrode), dissolved inorganic carbon (DIC), 

and calcite saturation state.  These methods are described fully in Waldbusser and 

Marinelli (2006), and therefore the methodology will be reviewed briefly here.  The 

calculation of DIC and saturation state from alkalinity and pH was conducted using the 

co2sys.exe program (Lewis and Wallace 1998).  All chemical analyses were run on a 

Smartchem discrete chemical analyzer (Westco Scientific). The porewater peepers were 

constructed of PVC plastic and have a sampling depth range of roughly 10 cm.  Each 

peeper had ten wells, each was roughly 0.75 cm deep, 3.2 cm wide, and 0.8 cm high, 

resulting in a volume of roughly 2 ml.  The wells of the peeper were filled with 15% 

acrylamide gel polymerized with potassium persulfate, rather than ammonium persulfate 

to prevent ammonium contamination of samples (Engstrom and Marinelli 2005).  The 

acrylamide gels within the peeper wells were allowed to polymerize overnight and were 

then placed in a sodium chloride solution of 30 ppt, in order to prevent ionic imbalance 

between porewater and the hydrated acrylamide.   

 

The peepers were hydrated for 5 days prior to deployment in the field.  Before 

deployment, peepers were affixed with 0.45 µm Magna Nylon filter paper in a shallow 

water bath to prevent trapped air bubbles behind the filter paper. Three replicate peepers 

were deployed in each experimental plot within the three sites, oriented such that the 
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narrow edge of the peeper was perpendicular to the relief of the flat.  Peepers were 

deployed for 5-6 days, and daily photographs of each plot were taken during the 

deployment.  Upon retrieval, peepers were extracted from the sediment, wiped clean of 

sediment, quickly placed in zip lock bags in a cooler until returned to the laboratory.  

Once in the lab, peepers were kept in a 4o C refrigerator while the gels from each peeper 

were extracted and placed into individual pre-weighed sample vials. All gels were 

extracted from the peepers within 24 hrs. Gels and sample vials were weighed again, and 

8 ml of deionized water was added to each sample to back equilibrate solutes within the 

gels for 48-72 hrs.  Spot checks of salinity were conducted on the back equilibrated water 

to ensure that peepers had not evapo-concentrated solutes, and that the back equilibration 

period was sufficient to equilibrate the gels and water.      

 

4.2.6 Granulometry 

 Individual sites were sampled differently for granulometry. Three 3 cm diameter 

cores were taken and combined for each experimental plot in False Bay and Debidue 

Flat, while separate triplicate cores for each plot were taken for Cara’s Flat, with surface 

and deep subsections of each core.  Cores were taken to a depth of roughly 10-15 cm.  

Sediment samples were placed in sealed containers, in the dark, and frozen within 12 hrs 

of collection.  Porosity was measured by loss of mass by drying at 60o C.  Samples were 

weighed, dried for 24 hrs, re-weighed, then dried for subsequent 24 hr periods until there 

was no change in mass.  After a stable mass measurement was made, the sample was 

placed on a sieve shaker for 15 min. with a distribution of five sieves from 0 to 3.5 phi 

and a pan.  From these measurements, percent fine content is material passing the 3.5 phi 
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sieve.  The mass of sediment remaining on each sieve was weighed and granulometric 

properties were determined by the methods of Folk and Ward (1957).  Several 

representative sediment samples were sub-sampled for organic carbon and nitrogen after 

drying by high temperature combustion and elemental analysis (EPA #440.0 1997).    

 

4.2.7 Statistical Analyses 

 To determine the relative roles of infauna and sediment properties on transport 

and reaction processes in permeable sediments, stepwise multiple regression analyses 

were employed.  This technique can be used to eliminate correlated variables and identify 

multiple statistically significant independent variables acting on one dependent variable. 

All data were averaged within each experimental plot, and these within-plot averages 

were used for all regression analyses at a given site.  Differences in near surface versus 

deep sections of the fluorescein gels were determined by analysis of variance (ANOVA).  

If a significant difference was found, separate regressions for the surface and deep 

sections of the gels were conducted.  In order to determine organism effects and the role 

of sediment properties, organism density and sediment granulometric variables at each 

site were treated as independent variables in regression analyses.  The response or 

dependent variables in the regression analyses were the fluorescein remaining in the gels 

(a proxy for porewater advection), or integrated porewater solute concentrations at each 

site.   

 

The stepwise regression provides best-fit combinations of independent variables 

for one to the total number of variables in the regression.  For these analyses a maximum 
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of five variables were put into the model for the selection process.  The stepwise 

regression then runs all possible combinations of variables and provides the best fitting 

models based on user defined selection criteria.  Adjusted r-squared, mean square error 

(MSE), and Mallow’s cp index were used to identify the best possible model with fewest 

possible variables by maximizing adjusted r-squared and minimizing MSE and Mallows 

cp.  Collinearity of independent variables can be a problem with this technique, whereby 

variability is overly reduced by fitting a model that has correlated variables. Therefore, 

collinearity was checked by the condition index of the independent variables (calculated 

by Eigen values), using 5 as a value that requires further investigation.  With a condition 

index below 5 the variables in the model are not artificially lowering MSE because of 

correlated variables.  

 

Once the best fitting independent variables were determined with stepwise 

regression, the regression (simple or multiple depending on selection process) with only 

these parameters was run, and statistical significance was evaluated for each variable in 

the model.  If a variable chosen with the stepwise regression was not significant in the 

multiple regression model, then the variable was removed from the model, and the model 

was re-run.  Natural log transformations were made on variables as needed in order to 

meet assumptions.  Once a suitable model was determined for each regression, overly 

influential data points were evaluated by studentized residuals (> 2) and Cook’s distance 

(> 1).  If overly influential data points were found, these were examined, removed, and 

the regression was re-run without these points.  If no change in the results was found due 

to removal of the point, it was left in the regression because the presence or absence of 
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the point did little to change the inference of the analysis.  In some cases removing one 

data point created a second overly influential data point; these were not removed from 

subsequent analyses.  No more than one data point was removed from any regression 

analysis run.  All statistical analyses were conducted using SAS software version 8.    

 

4.3 Results  

4.3.1 Across Site Differences  

 Differences in granulometry, porewater solute concentrations, and porewater 

advection were measured among the three sites (table 1 & 2).  Differences in sediment, 

biogeochemistry, and physical flows are potentially important covariates with organism 

effects at these three muddy-sand intertidal habitats. The primary differences among sites 

in sediment characteristics were in grain size, percent fines, and hydraulic conductivity 

(calculated from porosity and grain size by Carmen-Kozeny Equation) (table 1).  The 

larger fines content in False Bay was likely due to clay particles given the clay lens found 

roughly 30 cm beneath the surface sediment layer (Waldbusser and Marinelli 2006).  

There was no relationship between percent fines and organic carbon at False Bay, as was 

found at Cara’s Flat (figure 2), further suggesting the high fines content at False Bay is 

dominated by clay rather than organic matter.  Although organic matter can be bound to 

clay particles, the data suggests that at False Bay there is an abundance of clay relative to 

organic matter. The percent fines decrease by roughly an order of magnitude across each 

site from False Bay to Cara’s Flat to Debidue Flat (table 1).  Differences in grain 

characteristics and hydraulic conductivity would suggest that the highest overall 

porewater advection rate occurs at Debidue Flat, followed by Cara’s Flat, then False Bay. 
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In fact, False Bay is subject to the highest integrated rate of porewater advection, 

followed by Debidue Flat, then Cara’s Flat, as measured by the tracer gels (figure 3).  It 

should be noted that the tracer gels measure an integrated porewater advection over time. 

Therefore, it is possible that intermittent high energy effects could alter granulometry, yet 

not result in a greater time averaged porewater advection rate. Differences in porewater 

advection across sites appears to be driven by tidal range (figure 3) while bulk sediment 

properties do not reflect overall physical porewater flows.   

  

 Porewater solute concentrations (of select solutes) also appear to be driven by 

tidal range (figure 4).  The grand means of silicate, DIC, and ammonium within each site 

vary with site differences in tidal range, with increased tidal range increasing DIC (r2 = 

0.73) and ammonium (r2 = 0.99) concentrations, and decreasing silicate concentrations (r2 

= 0.96).  Additionally, grand means of saturation state (r2 = 0.70), alkalinity (r2 = 0.97), 

and pH (r2 = 0.47) increase with increasing percent fines content of sediment across sites 

(figure 5).    

4.3.2 Within Site Infaunal Effects  

 Within all three sites infaunal effects on porewater advection were found (table 3) 

and within two sites infaunal effects on porewater solute concentrations were found (table 

4).  The head-down deposit feeders at False Bay and Cara’s Flat significantly decreased 

solute concentrations, where as the thalassinids at False Bay significantly increased solute 

concentrations (table 4).  The onuphid polychaete Onuphis jenneri at Debidue Flat 

significantly increased porewater advection (lower fluorescein concentration in gels), yet 

this effect did not result in changes to porewater solute concentrations. The 



 

 110 
 

taxonomically similar onuphid polychaete Diopatra cuprea did not have significant 

effects on porewater advection at Debidue Flat or Cara’s Flat (table 3).  Individual site 

and organism effects are examined in greater detail below.     

 

False Bay, WA-Within False Bay, there was no significant difference in fluorescein 

concentrations between the surface and deep sections of the tracer gels (ANOVA p = 

0.6780, F1,16 = 0.18).  Due to significant correlation between arenicolid and thalassinid 

density in False Bay, separate stepwise regressions were run with arenicolid and 

thalassinid density in two different models inclusive of sediment variables in each.  No 

statistically significant models of thalassinid density effects (alone and in combination 

with sediment variables) on fluorescein were found.  For the arenicolid stepwise 

regression a two parameter model with arenicolid density and grain size was found to be 

the best model variability in fluorescein gel concentrations (p = 0.0043, F2,8 = 15.51, adj 

R2 = 0.78).  The results from the two parameter model indicate that increasing arenicolid 

density decreases fluorescein concentrations (increasing advection) (table 3, figure 6) and 

increasing grain size increases fluorescein concentrations (decreasing advection). The 

range in grain size values was roughly 30 µm, resulting in a coefficient of variance (CV) 

of 0.04%.  The relationship between increasing grain size and increasing fluorescein 

concentration indicates that a larger grain size is decreasing porewater advection.  

 

Statistically significant effects of both arenicolid and thalassinid density on 

porewater solute concentrations were detected with simple linear regression. No 

significant differences were detected in sediment parameters in the original analyses of 
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this data set (Waldbusser and Marinelli 2006), and variance in sediment parameters were 

very small (Table 1).  Therefore, simple linear regressions were run for each organism 

density separately on each solute, resulting in separate analyses of arenicolid and 

thalassinid densities on porewater solute concentrations.  For both groups of regressions, 

concentration data were natural log transformed.  Arenicolid density significantly 

reduced porewater concentrations of: ammonium (p = 0.0179, t1,8 = 3.08, adj R2 = 0.51), 

phosphate (p = 0.0078, t1,8 = 3.69, adj R2 = 0.61),  silicate (p = 0.0095, t1,8 = 3.54, adj R2 

= 0.59), alkalinity (p = 0.0475, t1,8 = 2.49, adj R2 = 0.37), and DIC (p = 0.0222, t1,8 = 

2.92, adj R2 = 0.49). Thalassinid density significantly increased porewater concentrations 

of: ammonium (p = 0.0284, t1,8 = 2.75, adj R2 = 0.45), phosphate (p = 0.0013, t1,7 = 5.68, 

adj R2 = 0.82),  silicate (p = 0.0116, t1,7 = 3.58, adj R2 = 0.63), alkalinity (p = 0.0004, t1,7 

= 7.21, adj R2 = 0.88), DIC (p = 0.0001, t1,7 = 2.92, adj R2 = 0.92), Ωaragonite (p = 

0.0290, t1,7 = 2.86, adj R2 = 0.51), and Ωcalcite (p = 0.0290, t1,7 = 2.86, adj R2 = 0.51).  

The denominator degrees of freedom are lower in several of the thalassinid regressions 

because an overly influential data point was found and removed.  As noted previously 

(Waldbusser and Marinelli 2006), the densities of arenicolids and thalassinids in False 

Bay are negatively correlated, so differential organism effects on porewater chemistry are 

suggestive.  Overall, the results show differential infaunal influence on solutes that are 

subject to different formation and uptake processes in permeable sediments. 

 

Cara’s Flat, VA- Fluorescein concentrations were significantly lower in deep sections of 

the gels relative to surface gel sections (ANOVA p = 0.0002, F1,17 = 23.56), indicating 

increased rates of porewater advection ~10 cm deep in the flat relative to near the 
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sediment surface.  The difference in deep fluorescein concentrations relative to near 

surface indicated separate regression analyses should be run for organism and sediment 

effects on surface and deep gel fluorescein concentrations.  The stepwise regression for 

near surface gel fluorescein concentrations best fit a two parameter model with percent 

fines and hemichordate density, however it was not significant. A simple linear 

regression of hemichordate density on near-surface fluorescein concentrations was not 

significant either (p = 0.2528, F1,8 = 1.55, Adj. R2 = 0.06).  The stepwise regression for 

fluorescein remaining in the deep gel sections found that a three parameter model 

including percent fines, hemichordate and diopatra densities was the best at explaining 

variance in deep gel fluorescein concentrations.  When running the three parameter 

model for the deep section of the gels, only hemichordate density was significant in 

explaining variance in the fluorescein remaining in the gels.  A simple linear regression 

was run with hemichordate density on deep fluorescein gel concentrations and was 

significant (p = 0.0080, F1,8 = 13.42, Adj. R2 = 0.61) (figure 6).  These results indicate 

that hemichordates had a significant effect on increasing porewater advection at depth, no 

effect on near sediment surface advection, and these effects were independent of 

sediment characteristics.  No significant effects of diopatra density on fluorescein gel 

concentrations in deep or near-surface gel sections were found. It should also be noted 

that maximum densities of hemichordate and diopatra in Cara’s Flat (~15 and 16 per m2, 

respectively) were much lower than arenicolid and thalassinid (~ 75 and 60 per m2, 

respectively) densities in False Bay.    
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 The stepwise regressions for porewater solutes identified a two parameter model 

with hemichordate and percent fines as the best fitting model explaining variance in 

solute concentrations. Solute concentrations of nitrate (p = 0.0462, F2,7 = 6.05, Adj. R2 = 

0.59), phosphate (p = 0.0010, F1,7 = 35.86, Adj. R2 = 0.83), and silicate (p = 0.0072, F1,7 

= 15.97, Adj. R2 = 0.68) were significantly affected by hemichordate density and percent 

fines.  Percent fines was not significant in the two parameter model explaining variance 

in phosphate and silicate concentrations.  Therefore percent fines was dropped for 

subsequent analyses, and a simple linear regression was run for hemichordate density 

effects on phosphate and silicate porewater concentrations.  Hemichordate density 

significantly decreased phosphate and silicate concentrations (figure 7).  In the significant 

two-parameter model explaining variability in nitrate, nitrate concentrations decreased 

with increasing hemichordate density (p = 0.0183, t1,7 = 3.45) and increased with 

increasing percent fines (p = 0.0494, t1,7 = 2.58). In the significant models for phosphate, 

silicate, and nitrate, there was an overly influential data point as determined by 

studentized residuals and Cook’s distance.  This data point was therefore removed. The 

final degrees of freedom for all F and t-tests reflect this above.     

 

Debidue Flat, SC- Fluorescein concentrations were significantly greater in the near-

surface sections of the gels than the deep sections by one-way ANOVA (p = 0.0045, F1,31 

= 9.43), as was seen in Cara’s Flat.  Therefore, separate stepwise regressions were run for 

the surface and deep sub-section fluorescein concentrations of the gels.  The stepwise 

regression determined that a two parameter model with onuphis density and porosity was 

the best for explaining variance in the amount of fluorescein remaining the gels.  A 
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significant model was fit for both the near surface gels (p = 0.0001, F2,15 = 19.00, adj R2 

= 0.71) and the deep gels (p = 0.0090, F2,15 = 6.92, adj R2 = 0.44), though only porosity 

was statistically significant in the deep gel section model.  In the near-surface fluorescein 

gels model, both onuphis density and porosity were highly significant, but it is important 

to note that the variance in porosity was quite small, with a range of 0.42 to 0.45. This 

would indicate that although the porosity is statistically significant, it probably is not 

environmentally relevant in terms of a degree of change that would actually impact 

porewater transport.  The porosity term was left in the model due to the statistical 

findings.  More interesting was that the onuphis density had a significant effect on 

fluorescein remaining in the near surface gels (or porewater transport).       

  

 The porewater chemistry study at Debidue Flat was restricted to the sandier upper 

section of the flat (dominated by onuphis) due to the significant effect of onuphis on 

porewater advection determined by the fluorescein gels.  The porewater chemistry study 

was conducted the season after the fluorescein study, and therefore, the same sites could 

not be maintained throughout the winter.  No sediment granulometry samples were taken 

during the porewater study because the samples from the previous season indicated very 

little variability in any of the values (Table 1).  A simple linear regression of onuphis 

density on porewater solute concentrations found no significant effects of density on any 

of the solutes measured (ammonium, nitrate, phosphate, silicate, DIC, pH, alkalinity, or 

saturation state).   
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4.4 Discussion 

The results from this multi-species, multi-site investigation illustrate that different 

attributes of infauna are important to permeable sediment processes.  The total number of 

species utilized in this study was small, but nevertheless provides a comparative context. 

Within the current study, natural variability of infaunal density across the scale of meters 

was used as an explanatory variable for within site differences in porewater advection 

and solute concentrations.  Using an undisturbed sedimentary habitat and naturally 

occurring infaunal densities is a powerful approach to examine infaunal effects on 

permeable sediment function, though controlling for variability in sediment parameters is 

difficult.  In spite of this difficulty, statistically significant effects of infauna on porewater 

advection were measured at three sites (table 3), and porewater chemistry at two sites 

(table 4).  In most cases the within-site variability in sediment parameters is very small 

(table 1), and not likely to be environmentally relevant.  These results suggest that certain 

functional characteristics may have similar effects on permeable sediment processes, and 

therefore, it may be possible to define new functional groups that link infaunal attributes, 

porewater advection, and solute dynamics. 

4.4.1 Functional Groups and Infaunal Attributes  

 Functional characteristics or groups have long been used to find similarities in 

benthic infauna (e.g. Fauchald and Jumars 1979, Hutchings 1998, Pearson 2001) that can 

help explain interactions (Woodin 1976) as well as processes.  Recent work has focused 

on the link between functional groups and ecosystem processes in sediments (Biles et al. 

2002, Gerino et al. 2003, Widdicombe and Austen 2003, Michaud et al. 2005, Caliman et 

al. 2007, Norling et al. 2007).  In muddy diffusion dominated sediments, traditional 
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feeding guild functional groups or bioturbator groups would classify the study organisms 

as: 1) head-down deposit feeders/conveyer belt (arenicolid and hemichordate), 2) surface 

deposit feeders/inverse conveyer belt (diopatra and onuphis), and 3) gallery diffuser 

(thalassinids).  The results from this study only partially support these groupings.  In 

particular the two head-down deposit feeders have strong similarities, while the surface 

deposit feeders have different effects (tables 3&4).  Therefore, infauna in the current 

study could be tentatively grouped as: 1) advection enhancers by permeability and 

pressure gradient modification (arenicolids and hemichordates), 2) advection enhancers 

by pressure gradient modification (onuphis), and 3) advection inhibitors by permeability 

modification (thalassinids and potentially diopatra).  Although diopatra has similar 

feeding strategies to onuphis, the lower permeability of its tubes may classify it as an 

advection inhibitor.  The groupings outlined here should not replace current functional 

groups, but rather help to refine groups for their specific effects on permeable sediments. 

The broader applicability of these functional groups and possible basis for a predictive 

framework may be examined by identifying the mechanisms linking infaunal attributes to 

permeable sediment processes.    

 

 The head-down deposit feeders (advection enhancers) feed by subducting surface 

material in a feeding funnel, translocating sediment particles vertically on non-local 

scales between the sediment surface and deeper within the sediment.  Ingestion of surface 

sediment by head-down deposit feeders requires significant pumping of overlying water 

through the sediment to subduct surface material for high ingestion rates (Timmerman et 

al. 2002, 2006, Meysman et al. 2005, 2006).  This behavior is found in other head-down 
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feeders with dead-end burrows (such as maldanids), or relatively unconsolidated anterior 

burrow openings (such as hemichordates).  Subduction and mixing of sediment decreases 

sediment compaction and increases the permeability of sediment on localized spatial 

scales in the burrow/feeding funnel/fecal mound (Jones and Jago 1993, Craig et al. 1998, 

Wild et al. 2005).  Localized increases in permeability would result in localized increases 

in porewater advection under the same pressure gradient compared to other non-mixed 

sediments.  Additionally, dense populations of arenicolids have been shown to strip 

organic rich fine material (Wild et al. 2005, Volkenborn et al. 2007), and create an “open 

bed” for advective exchange.  The maximum population sediment ingestion rates for the 

organisms in this study are roughly 0.35 L sediment per m2 per day for the arenicolids in 

False Bay (estimated from Linton and Taghon 2000), and almost 2.0 L of sediment per 

m2 per day for the hemichordates in Cara’s Flat (estimated from Duncan 1981, Thayer 

1983).  These calculations and results of this study suggest that extensive sediment gut 

passage, direct irrigation associated with feeding, and mixing of sediment are important 

mechanisms by which the head-down deposit feeders increase sediment permeability, and 

therefore transport/reaction processes, in similar ways (tables 3&4, figures 6&7).  The 

lack of large covariance in bulk sediment parameters and organism density by either 

head-down deposit feeder is surprising given the sediment turnover rates for each 

population.  This may be due to a mismatch between fine scale sediment alteration and 

bulk sediment measurements.  Regardless, head-down deposit feeders appear to be an 

important functional group to permeable sediment processes as flow enhancers.  
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The surface deposit feeders (advection enhancer and non-affecter) are not actively 

feeding at depth, nor fluidizing the sediment column in order to subduct fresh organic 

matter. Onuphis and diopatra do cause non-local particle transport by ingesting sediment 

at the sediment surface and defecating at depth.  This feeding mode results in a very 

localized effect on particles and given the sedentary nature of both species within their 

tubes their bioturbation potential is small (Swift 1993).  Additionally both diopatra and 

onuphis tube caps extend several centimeters above the sediment surface, though their 

burrows differ in permeability and morphology.  Projecting tube caps into the overlying 

water interact with strong tidal flows, creating pressure gradients that may drive 

porewater advection within the upper sediment layers (Huettel and Gust 1992). Onuphis 

burrows are thin and made of mucus bound sand grains which are more permeable than 

the leathery tubes of diopatra based on porosity of burrow walls (Aller 1983, Hannides et 

al. 2005). The morphology of tube caps is quite different in these taxonomically similar 

species.  Onuphis tube caps are oriented vertically whereas diopatra tube caps are usually 

curved over and down towards the sediment surface (figure 1), with significant 

attachment of algae and other debris restricting the opening.  Although the bioturbation 

potential of this group is small, the interaction of burrows and tube caps with overlying 

water currents is another mechanism by which these tube building surface deposit-feeders 

may affect permeable sediment processes by modifying pressure gradients.   

 

The porewater advection enhancer onuphis increasing porewater flow in the upper 

sediment of Debidue Flat was the only measurable effect of the surface deposit feeders 

(table 3).  Lack of porewater solute effect may be due to the lower reactive material at 
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Debidue Flat (table 1), and highlights the potential for context dependency of infaunal 

effects across sites.  Onuphis increased porewater advection may be due to direct 

irrigation of their burrows, their higher density (than diopatra), and more permeable 

burrow walls.  It is also possible that passive irrigation (Ray and Aller 1985, Libelo et al. 

1994, Munksby et al. 2002) of these burrows is responsible for increased porewater 

advection.  Passive irrigation can exceed active ventilation rates of even intense irrigators 

(Libelo 1994).  Any infaunal tube-building species having burrow openings above a 

permeable sediment surface has the potential to create an “open bed” due to pressure 

gradients generated by the Bernoulli effect (Libelo et al. 1994).  Infaunal tubes above the 

sediment surface have different orientations (figure 1).  Difference in tube cap 

morphology could be a mechanism for the onuphis effect relative to diopatra on 

porewater advection, though density and differences in tube composition are likely to 

play a role also.  More work is needed to examine tube effects on passive irrigation, but 

evidence suggests that tube building species with vertically oriented tube caps and dead 

ended burrows may be advection enhancers due to passive irrigation.  

 

Results from this study indicate that thalassinids are advection inhibitors due to 

their effects on solutes such as silicate and phosphate (table 4).  Both silicate and 

phosphate concentrations in porewater are sensitive to mixing with overlying water, and 

therefore are sensitive to changes in porewater advection/exchange (discussed further 

below).  The presence of impermeable burrows within the sediment column should act to 

decrease porewater advection by creating obstacles that impede flow, lowering 

permeability.  Galleries of thalassinids create large open spaces beneath the sediment 
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surface and could act as channels for porewater or overlying water flow. The 

impermeable nature of the burrow linings suggests that there is little advective exchange 

across burrow walls, while overlying water may drain through galleries during low tide.  

Waldbusser and Marinelli (2006) suggest that thalassinid burrows in the upper sediment 

column act as impermeable barriers to porewater flow and irrigation by arenicolids.  

Therefore, obstacle building thalassinids, species that create impermeable tubes, and 

other permeability lowering species such as suspension feeders (through biodeposition) 

represent a third group or mechanism by which infauna may affect permeable sediment 

processes; through decreasing sediment permeability.  Little evidence of porewater flow 

inhibitors in permeable sediments has been found experimentally or otherwise, and this 

relatively unexplored theme is potentially an important infaunal effect on permeable 

sediments.   

 

An important question is whether changes in transport (table 3, figure 6) have 

measureable effects on porewater chemistry and sediment-seawater exchange.  Phosphate 

and silicate are sensitive to irrigation and play an important role in coastal 

biogeochemical cycles.  Active ventilation of burrows can maintain silicate porewater 

concentrations below equilibrium values (Marinelli 1992, 1994), and within permeable 

sediments silica is typically more undersaturated relative to diffusion dominated 

sediments (Ehrenhauss and Huettel 2004). The advective flow enhancers (with the 

exception of onuphis) lowered porewater silicate concentrations, while the flow inhibitor 

thalassinid increased porewater silicate (table 4, figure 7).  The difference between the 

onuphis and other flow enhancers is probably linked to differences among sites in 
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reactive organic material and fines content (table 1), and differences in how each species 

interacts with the sediment resulting in changes to sediment properties. 

 

Phosphate is sensitive to irrigation as silicate is, and should respond similarly to 

infaunal modification of porewater advection.  Variability of porewater phosphate is 

driven in large part by the interaction of phosphate, porewater oxygen, and minerals 

(Sundby et al. 1992).  Oxygen causes phosphate to strongly adsorb to particles and can 

precipitate to form several different minerals.  Infauna can reduce porewater phosphate 

due to increasing porewater oxygen in diffusion dominated sediments (Widdicombe and 

Austen 1998, Waldbusser et al. 2004, Michaud et al. 2006).  The advection enhancing 

organisms decreased porewater phosphate (except onuphis) and the advection inhibitor 

(thalassinid) increased porewater phosphate (table 4, figure 7).  Interestingly, the per 

individual effect of hemichordate relative to arenicolid on lowering phosphate 

concentrations is an order of magnitude greater, and nearly a factor of four greater on 

lowering silicate (from regression slopes in figure 7).  The larger per individual impact of 

the hemichordate relative to the arenicolid is likely due to size dependent sediment 

ingestion rates (Cammen 1979) and more importantly  the calculated difference in 

population sediment throughput above.  This potential relationship between sediment 

throughout and equilibrium type solute concentrations suggests a possible allometric 

relationship linking ingestion rates of the head-down feeders and sediment 

biogeochemistry.  Species functionality, activity, and other components of biodiversity 

appear to be ecologically important to biogeochemical cycles in permeable sediments, 

while this study also suggests these relationships are context dependent across sites.   
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4.4.2 Within Site Granulometry  

 Bulk sediment measurements of parameters such as porosity, percent fines, or 

grain size provide valuable information about the physical environment at a given site 

and the context in which animal-sediment interactions manifest.  The fine-scale 

modification of sediment properties by infauna, such as sediment fluidization in 

arenicolid feeding funnels (e.g. Jones and Jago 1993, Craig et al. 1998), is often not 

captured in typical bulk grain analyses.  Bulk sediment properties within some sites 

covary with infaunal density, though the variability in bulk grain parameters was 

typically small (table 1) and probably not sufficient to drive changes in transport and 

chemistry.  Within False Bay, the arenicolid effect of increasing porewater advection was 

confounded by a statistically significant negative effect of increasing grain size on 

porewater advection (table 3).  The range of values in False Bay grain size was 30 µm; 

theoretical work would predict a positive effect on porewater advection with increasing 

grain size. The arenicolids in False Bay may be causing a small loss of fines (as seen in 

Volkenborn et al. 2007) and increasing the mean grain size.  Within Cara’s Flat, the 

decrease in porewater nitrate with increasing hemichordate density was statistically 

confounded by a barely significant effect of nitrate increase with increasing fines (p = 

0.0494, t1,7 = 2.58). Percent fines content in the flat ranged from 0.64 to 1.49%.  The 

positive relationship between fines and nitrate may be related to increased reactive 

substrate (figure 2). Additionally geochemical hotspots of the hemichordate burrows and 

increased fines interacting with elevated flushing of the sediment due to bioirrigation may 

increase suitable habitat for denitrifying bacteria. However, the exact mechanisms by 

which hemichordates and fines content are affecting nitrate in the porewater cannot be 
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determined from the current study. Lastly, increases in porosity at Debidue Flat were 

found to decrease porewater advection (table 3) but the range of porosity measured was 

only 0.42 to 0.45 and again likely not relevant.  Although there were some statistical 

effects of granulometry, the relative changes within sites in these values were very small 

and probably not environmentally relevant.   

4.4.3 Across Site Granulometry  

 The functional group effects suggested by this data may be entangled with general 

across site differences, and therefore, the environmental effects cannot be fully 

disengaged from the differential effects of functional groups.  Differences in sediment 

properties can vastly alter the effects of similar organisms. For example, Jones and Jago 

(1993) noted corophium amphipods increased permeability in sandy sediments, while 

Meadows and Tait (1989) found that corophium amphipods decreased permeability in 

muddy sediments.  The primary difference among sites in this study is the two order of 

magnitude change in fines content from False Bay to Cara’s Flat to Debidue Flat (table 

1).  The lowest percent fines at Debidue Flat correspond with the smallest organism 

effects on porewater solute concentrations (tables 3&4).  However, the order of 

magnitude decrease in fines content at Cara’s Flat does not translate into significantly 

lower effects of hemichordates relative to arenicolids on porewater chemistry (figure 6).  

Unfortunately only one species was located at two different sites, and two functional 

groups (as defined in the current study) located at only two sites each, making detailed 

statistical analyses across sites impossible.  The results however still highlight important 

infaunal attributes to permeable sediment processes. Across site differences is one 
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difficulty in using undisturbed sites and unmanipulated infaunal communities in studies 

of animal-sediment interactions.     

 

It is clear that different functional groups of organisms follow large-scale 

distributional patterns related to sediment/physical properties (e.g. Pearson and 

Rosenberg 1978).  This relationship may be used to focus efforts on habitats where 

certain functional groups will be found. For example, within the study area of Debidue 

Flat, no head-down deposit feeders were found, likely due to the lower of fines content 

and organic matter (table 1).  Hydraulic conductivity was also highest at Debidue Flat, 

but still over an order of magnitude below theoretical limits of efficient bio-pumping, 10-4 

m s-1 (Meysman et al. 2006).  Therefore, the effects of head-down deposit feeders on 

permeable sediment processes are likely limited to a range of permeable sediment 

habitats having higher fines and lower hydraulic conductivity.  Qualitative in nature, this 

result suggests that infaunal effects in physically dynamic environments are context 

dependent, but also limits the possible organism-habitat combinations that need to be 

quantified.    

 

Broad across site patterns in porewater advection and biogeochemistry are likely 

effects of hydrology, local tidal regime, geology, and a suite of other regional factors.  

These potential drivers of local transport and biogeochemical processes are important to 

note in order to understand the limits to infaunal effects on sediment parameters.  General 

across site trends in advection and solute concentrations in this study appear to be driven 

by tidal range (figure 3&4) and to a lesser degree by percent fines on some solutes (figure 
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5).  Although the functional group effects are potentially blurred by the across site trend 

in fines content, this does not negate the findings of this study.  Rather, it illustrates the 

importance of further studies examining these relationships in-situ, and the need to 

develop a more encompassing view of permeable sediment functioning to include both 

broad scale drivers and the integrated localized effects of infauna across plot-wide scales.   

4.4.4 Conclusions  

 Traditional functional groups related to feeding mode or guild may not be 

adequate to capture relevant mechanisms by which infauna modify permeable sediment 

processes. Grouping organisms based on their effects on permeable sediment processes, 

in particular porewater advection, simplifies complex infaunal behavior and provides a 

framework for predictive models.  Infauna affect permeable sediments by two primary 

mechanisms, modifying sediment permeability and modifying pressure gradients. An 

alternative functional classification scheme for infauna in permeable sediments would 

therefore be a two tier system of classifying first porewater enhancers and inhibitors and 

then the identifying mechanisms as sediment fabric modification and/or pressure gradient 

modification.  This classification scheme is presented to help refine functional groups in 

permeable sediments, identify potentially important groups of infauna, provide a 

framework for future modeling work. 

 

 The head-down deposit feeders in this study are porewater advection enhancers 

that modify pressure gradients due to irrigation, and modify fine-scale sediment 

properties through sediment ingestion.  The effects of the surface deposit feeders and 

gallery diffusers are variable and appear to be related to morphological differences of 



 

 126 
 

biogenic structures.  As flow inhibitors the thalassinids decrease permeability due to the 

impermeable burrows beneath the sediment surface.  Advection enhancing effects of 

onuphis relative to diopatra are likely due to the more permeable onuphis burrows, and 

possibly passive irrigation of their burrows by pressure gradient modifications.   

 

 Current models of animal-sediment interactions should be expanded to capture 

infaunal alteration of sediment permeability and modification of pressure gradients.  The 

differential infaunal effects on permeable sediments measured in this field study support 

the need for these expanded models.  More empirical data are also needed so models may 

be parameterized to better quantify the fine-scale modification of sediment permeability 

and porewater advection.  General site characteristics will also dictate the nature of 

animal-sediment interactions in permeable sediments, suggesting important context 

dependent relationships between infauna and sediment processes. Finally, the measured 

differential effects of infauna on permeable sediment processes in this study provide 

continuing evidence of the potentially important consequence of benthic species loss on 

coastal sediment biogeochemical cycling.  
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4.5 Tables  

Table 4.5.1- Sediment Properties of Experimental Sites. Grand means among sites of 

sediment characteristics. Bold values indicate characteristics that were variable across 

site, and numbers in parentheses indicate the number of samples from each site.  *From 

D’Andrea et al. 2002.  

 False Bay, WA (9) Cara's Flat, VA (54) Debidue Flat,SC (16) 
  µ ±σ µ ±σ µ ±σ 
Grain (phi) 2.92 0.12 2.35 0.10 2.44 0.03 
Grain (um) 133.08 11.05 197.50 13.34 185.29 4.10 
% Fines 17.44 4.03 1.12 0.51 0.17 0.04 
Porosity 0.43 0.01 0.39 0.02 0.44 0.01 
Hydraulic 
Conductivity 2.43x10-6 3.14x10-7 3.25x10-6 6.75x10-7 4.69x10-6 4.31x10-7 

Sorting 1.82 0.05 1.39 0.04 1.38 0.02 
Skewness 0.00 0.01 0.00 0.01 -0.01 0.02 
Kurtosis 1.08 0.02 1.10 0.01 1.09 0.01 
Organic C 0.19 0.02 0.11 0.04 *0.04  n/a 
Organic N 0.02 0.01 0.01 0.01 n/a n/a 
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Table 4.5.2- Average Porewater Concentrations. Grand means of porewater solute 

concentrations, averaged across all peepers and depths. All values are in mmol L-1 

except for alkalinity in meq L-1, and saturation state and pH are dimensionless.  

 

 False Bay, WA Cara's Flat, VA Debidue Flat, SC 
  µ ±σ µ ±σ µ ±σ
Ammonium 313.14 195.95 120.00 35.50 168.67 29.19
Nitrate n/a n/a 6.13 5.54 1.92 1.66
DIN n/a n/a 126.13 36.60 170.58 28.82
Phosphate 5.52 7.51 11.05 9.08 0.93 1.52
Silicate 101.73 86.03 280.78 72.88 204.24 110.75
Ph 6.92 0.19 6.78 0.14 6.19 0.11
Alkalinity 2513.73 823.21 1677.36 301.47 1445.04 506.13
DIC 2759.97 844.58 1854.17 330.15 2197.17 728.47
Calcite Sat. 0.44 0.29 0.28 0.11 0.05 0.03
Aragonite 
Sat. 0.28 0.19 0.19 0.07 0.03 0.02
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Table 4.5.3- Fluorescein Regression Results. Arrows indicate direction of a statistically 

significant effect (α = 0.05). Numbers in parentheses indicate range of measured values 

for the variable. The first p-value is the probability for the given variable, and the “p-

value model” is the probability for the full model. 

 

Site/Model Parameter p-value Adj. R2 p-value model 

False Bay “Best Fit” 
Arenicolid  
(▼ 2-70 m-2) 0.0025 0.78 0.0043 

 
Grain Size   
(▲ 117-153 µm) 0.0084   

     
False Bay Thalassinid Thalassinid 0.0819 0.28 0.0819 
     
Cara's Flat Surface Hemichordate 0.2528 0.06 0.2528 
     

Cara's Flat Deep 
Hemichordate  
(▼ 0-15 m-2) 0.0080 0.61 0.0080 

     

Debidue Surface 
Onuphis   
(▼ 8-79 m-2) 0.0096 0.71 0.0001 

 
Porosity   
(▲0.42-0.45) 0.0051   

     

Debidue Deep 
Porosity     
(▲0.42-0.45) 0.0005 0.59 0.0005 
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Table 4.5.4- Regression Results for Porewater Chemistry. Direction of triangles 

indicate the direction of a significant effect of organism density on specific solute (α = 

0.05), n/s =  not significant, and n/a = measurements of solute not available. Numbers in 

the parentheses are the adjusted R2 for the model and p-value for the variable. Some of 

the models included sediment parameters in addition to the organism densities based on 

model selection criteria.    

 False Bay   Cara's Flat   
Debidue 
Flat 

 Arenicolid Thalassinid   Hemichordate Diopatra   Onuphis 
Ammonium ▼(0.51, 0.0179) ▲(0.45, 0.0284)  n/s n/s  n/s 
Nitrate n/a n/a  ▼(0.59, 0.0462) n/s  n/s 
DIN n/a n/a  n/s n/s  n/s 
Phosphate ▼(0.61, 0.0078) ▲(0.81, 0.0013)  ▼(0.83, 0.0010) n/s  n/s 
Silicate ▼(0.59, 0.0095) ▲(0.62, 0.0116)  ▼(0.68, 0.0072) n/s  n/s 
pH n/s n/s  n/s n/s  n/s 
Alkalinity ▼(0.37, 0.0475) ▲(0.87, 0.0004)  n/s n/s  n/s 
DIC ▼(0.48, 0.0222) ▲(0.91, 0.0001)  n/s n/s  n/s 
Ω 
Aragonite n/s ▲(0.50, 0.0290)  n/s n/s  n/s 
Ω Calcite n/s ▲(0.50, 0.0290)  n/s n/s  n/s 
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4.6 Figures 

Figure 4.6.1- Surface Features of Infauna. Representative images of surface features 

associated with the experimental species in this study, A- Abarenicola pacifica, B- 

Thalassinid, C- Diopatra cuprea, D- Balanoglossus aurantiacus, and E- Onuphis jenneri. 
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Figure 4.6.2- Organic Matter and Percent Fines. Organic content versus percent fines 

at False Bay (grey) and Cara’s Flat (black).  Note the order of magnitude difference on 

the x-axis between False Bay and Cara’s Flat.  There was no significant relationship 

between organic C and fines at False Bay, where as the relationship was highly 

significant at Cara’s Flat.  
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Figure 4.6.3- Fluorescein in Gels and Tidal Range.  The grand mean fluorescein 

remaining in gels plotted on top of tidal range at each experimental site.  Error bars are 

standard deviations. Fluorescein remaining in the gel is the inverse of porewater 

advection, less fluorescein indicates higher rates of porewater advection. Surface and 

deep fluorescein refers to the near surface and deep subsections of the gels.   
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Figure 4.6.4- Solute Concentrations versus Tidal Range.  Plots of grand mean solute 

concentrations for silicate, ammonium, DIC, and pH versus tidal range for each 

experimental site.  Left y-axis is concentration (grey) and right y-axis is tidal range 

(blue), and error bars are standard deviations.  
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Figure 4.6.5- Solute Concentrations versus Percent Fines. Plots of grand mean solute 

concentrations for pH, alkalinity, saturation state, and ammonium versus percent fines for 

each experimental site.  Solute concentrations are plotted on the right y-axis, percent 

fines is plotted on the left y-axis and on a log scale.  Percent fines is plotted in blue and 

mean solute concentration in grey.  
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Figure 4.6.6- Fluorescein in Gels versus Organism Density. Fluorescein remaining in 

gels versus arenicolid and hemichordate densities. The fluorescein concentrations in the 

arenicolid versus fluorescein plot (circles) are average of deep and surface gel sections.  

The fluorescein concentrations in the hemichordate regression (squares) are for the deep 

gels only.  Note the different scales on the x-axis, and the slopes from the significant 

regression analyses next to each line. The slopes are the per organism effects on 

fluorescein remaining in the gels for each species and site.  
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Figure 4.6.7- Phosphate and Silicate versus Organism Density. Integrated 

concentration of phosphate (black circles) and silicate (grey squares) plotted against 

arenicolid and hemichorate density (left and right panels, respectively).  The 

concentrations are natural log transformed, and note the order of magnitude difference in 

the x-axes. The slopes for each significant regression are noted in the figure legend.  The 

slopes are the per individual effect of each species on solute concentrations.    
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