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A construction cost estimation framework using DNN and validation unit
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ABSTRACT
Accurate construction cost estimation is crucial to completing projects within the planned
timeframe and expenditure. The estimation process depends on multiple variables maintaining
complex relationships between themselves and the target cost. As a result, an in-depth analysis
from an experienced construction consultant is required to estimate construction costs
accurately. Machine learning (ML) technology can learn from previous data, which is equivalent
to human experience. Many project-specific ML models estimate the construction cost, which
misses the generalizability. This paper addresses the gap and designs, develops, implements,
and analyzes a deep learning (DL) based novel framework that maps 94.67% of the
independent variables with a mean average percentage error (MAPE) of 11.60%. The proposed
framework is not limited to any specific project. It estimates the construction cost of similar
projects, further validated by an innovative estimator validation unit.
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Introduction

Constraining factors like costs, schedules, and quality
all work together to ensure a project is completed suc-
cessfully. The construction phase provides an opportu-
nity to inspect and enhance a project’s quality while
ensuring that the schedule and cost remain within
the bounds of its contracts. The contractors and the
stakeholders are very involved in these estimates (Mar-
kiz & Jrade, 2022). When stakeholders and decision-
makers have a realistic idea of how much a project
will cost before it even begins, they can make informed
decisions about feasibility studies, bidding, and cash
flow management (Al-Nassafi, 2022). To the detriment
of the project’s stakeholders and contractors, cost over-
runs are a typical result of an underestimated project
budget (Banks-Grasedyck et al., 2022). Several
methods have been used in practice, and others have
been proposed in the literature to accurately predict
construction costs to limit losses and satisfy project
profitability targets.

Costs can be estimated in a few different ways, but
the two most common are qualitative and quantitative
assessments. Qualitative methods relying on experts’
opinions may be biased, resulting in erroneous esti-
mates (Strömbäck & Tärnell, 2022). The proposed
methodology estimates construction costs from

quantitative assessment, and thus, the prediction by
the proposed system is more accurate.

There has been a growing body of literature employing
both classical statistical techniques (Akintoye & Fitzger-
ald, 2000; Chan & Park, 2005; Hitsanu, 2022) and
machine learning (ML) models (Alshboul et al., 2022b;
Kim & Cha, 2022; Matel et al., 2022; Shoar et al., 2022).
The state-of-the-art machine learning approach is deep
neural network (DNN)-based algorithms. This paper
uses DNN to estimate construction costs. The DNNs
are capable of establishing relations among complex, het-
erogenous, and multidimensional features, and so the
proposed methodology generates better and more
reliable estimations. Sometimes the data can bemore cru-
cial than the process itself (Amoore, 2022). However,
developing and optimizing machine learning models
for construction cost estimation in data-specific scenarios
demonstrates promising results, which have been studied
and presented in this paper.

Multiple construction variables impact the construc-
tion cost directly and indirectly. However, they demon-
strate irregular patterns among themselves when the
cost is considered the target variable and related to
these influencing variables (Elhegazy et al., 2022). More-
over, these variables are further dependent on other
indirect variables (Okonkwo et al., 2022). As a result,
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the traditional simple summation of construction cost
variables is not enough to accurately estimate the cost.
The proposed framework overcomes this limitation.
The complex distribution pattern, multiple internal,
external, and hidden dependencies, and their temporal
instability make construction cost estimation challen-
ging (Dang-Trinh et al., 2022). This challenge has
been beaten using the DNN-based construction cost
estimation framework presented in this paper. Usually,
rule-based approaches are not enough for complex
relations between features and the target variable. The
promising human-intelligence-like performance of
deep learning (DL) technology is being used in this
complicated field of studies, including: the medical ima-
ging sector (Faruqui et al., 2021); stock market analysis
(Kumbure et al., 2022); targeted marketing (Sun et al.,
2022); autonomous vehicles (Hui et al., 2022); virtual
assistants (Liao et al., 2022); robotics (Nguyen et al.,
2022); and in many other fields. Inspired by DL’s capa-
bility in human intelligence replication, this paper
designs, studies, analyzes, and experiments, applying
deep neural networks (DNN) in construction cost
estimation.

Despite the successful application of artificial neural
networks (ANN) in construction cost estimation
(Baduge et al., 2022), the coherence and relevancy of
the recent literature are not leaning towards a standar-
dized solution in this regard (Zabin et al., 2022). It is
a significant research gap in this sector, which has
been observed and studied by the researcher of this
paper, and thus, the framework presented in this
paper leads the way to standardize the methodology of
applying machine-learning solutions to estimate con-
struction costs. This study proposes an innovative con-
struction cost estimation framework using DNN to
bridge the gap. Another research gap is the applied vali-
dation of the DNN-based cost estimator. It is a common
practice in the deep learning domain to split the data set
into training, test, and validation sets and evaluate the
validity of the network (Kahloot & Ekler, 2021). How-
ever, construction cost estimation is an influential
business factor that directly impacts the stakeholders’
benefits (Doloi, 2013); thus, algorithmic and external
validation is essential in order to rely on cost estimation
by DNN practically. However, external validation is a
significant research gap in the application of DNN in
construction cost estimation. This research has evolved,
encompassing these two research gaps, and contributes
by carrying out the following:

. Design, implement, analyze, and evaluate a DNN-
based framework to estimate construction costs
using direct variables.

. Incorporate an estimation validator unit to address
the credibility issue of practical uses of DNN in con-
struction cost estimation.

. Analyze the limitation of the DNN-based construc-
tion cost estimator and the scope of mining opportu-
nities from the limitations.

Literature review

The calculation of building costs has always been a task
that places a premium on the knowledge and insight of
industry professionals (Elhag et al., 2005). That means
human intelligence with acquired experience can esti-
mate construction costs. The DNN-based solution,
which exhibits human-like intelligence, is thus a good
fit in the field explored in this paper. Not every organiz-
ation, especially small or newly established construction
firms, can afford to allocate a budget to keep experi-
enced consultants (Choudhry, 2016). Large organiz-
ations or companies may have the resources and
experience to compile their in-house construction cost
database. Apart from large construction firms, some
individuals take construction responsibilities into their
own hands, and those who aren’t construction industry
experts may rely on commercial vendors’ published
construction cost indexes (Zhang et al., 2017). Govern-
ment construction cost statistics also assist people in
estimating construction costs. However, these data are
not always up to date (K’akumu, 2007). An automatic
computerized system employed to estimate the con-
struction cost, which can replace the necessity of using
a consultant or government statistics, benefits many
people. The research conducted in this paper is such
an endeavour.

Like many different sectors, researchers in the con-
struction sector have started using statistical and
machine learning methods to improve the precision
and timeliness of cost estimates (Makridakis et al.,
2018). Statistical and machine learning methods
improve the decision-making process by transforming
data from the past into decision-support systems (Lee
et al., 2016). This can overcome the lack of data for pre-
cise estimation at the beginning of a project. Based on
this observation, the proposed framework focused on
developing innovative network architecture to estimate
construction costs precisely and validate the estimation
with an external validation unit.

A study by Al-Momani (1996) builds an LR model
for building cost prediction with three project features
as explanatory variables. This research gives an idea of
the variables to consider for construction cost esti-
mation in the proposed methodology. The research
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focused on the effect of public procurement law on
construction costs in Turkey and applied decision
tree (DT), support vector machines (SVM), and artifi-
cial neural networks (ANN). Information related to
projects, such as start and end dates, geographic
scope, and discount percentages, were used as inputs
(Erdis, 2013). Although this experiment aims to find
the deviation from the estimated time and cost, it
lays down an essential theoretical background to
adopt in developing the construction cost estimator
framework.

To better anticipate the costs of building in China,
Shutian et al. (2017) created a fusion method that com-
bines the Kalman filter with least-squares support vector
machines (LS-SVM) and linear regression (LR). The
output of the experiment is promising. However, the
variable distribution of the construction cost is non-lin-
ear. This raises the question of using linear approaches.
In the proposed methodology, the DNN has been used
to address this issue. Sub-gradient SVM has been used
to evaluate the network’s performance along with LR.
There are many variables to estimate the construction
cost. Using those which are most influential in training,
a DNN is essential. The construction area, application
type, city hierarchy, and other project characteristics
were used as inputs. The unit cost of concrete, the
unit cost of formwork, the type of structural assembly,
and the amount of superimposed load were all taken
into account by Chakraborty et al. (2020) when estimat-
ing the total construction cost. A filtered version of these
variables has been used in the proposed framework.

An attempt to increase the precision of BIM labour
cost predictions was made by Huang and Hsieh (2020)
by coupling random forest and linear regression. The
apartment complex’s total square footage and the total
number of stories are part of the input variables. How-
ever, this approach is specific to a particular scenario.
The proposed framework is not limited to a particular
problem but instead has a more straightforward and
lightweight network architecture. It aims to develop a
uniform platform for estimating construction costs.
An innovative construction cost estimation method
based on statistical analysis, particularly regression
analysis, was proposed by Li et al. (2022), and it studied
the norm. A similar approach was published by Lowe
et al. (2006) but with much more simplicity, clarity,
and familiarity with the applied algorithms. Although
these two methods are good construction cost estima-
tors, they require a linear data set that maintains math-
ematical linearity. Compared to these approaches, the
performance of the proposed methodology is invariant
to data set linearity because of the use of a DNN. Other-
wise, the performance tends to degrade.

One of the reasons behind choosing the machine
learning (ML) method for the framework tested and
developed in this paper is that it captures complicated
correlations between input and output without requir-
ing the specification of mathematical representations.
A systematic review by Tayefeh Hashemi et al. (2020)
discusses the common approaches to construction cost
estimation using machine learning techniques, includ-
ing the support vector machine (SVM), the dynamic
tree (DT), and the random forest (RF). The SVM then
separates the data along a hyperplane by nonlinearly
mapping the raw data into a high-dimensional space.
Using a recursive partitioning procedure, the DT can
find a good tree structure inside a data set without
requiring expert knowledge (Tayefeh Hashemi et al.,
2020). However, the deep neural network approaches
perform better than any other machine learning
approach in construction cost estimation (Wang et al.,
2022). Comparing the effectiveness, robustness, opti-
mizable nature, and capability to map between target
and complexly distributed dependent variables, the
DNN has been used as the cost estimator in the pro-
posed framework (Yanik et al., 2022).

Methodology

The framework consists of a data set manager, a deep
neural network (DNN), and an estimation validator.
These significant components have sub-components.
The overview of the proposed framework is illustrated
in Figure 1.

Data set preparation

The proposed framework uses a specific data-set vari-
able pattern. It is essential to follow this pattern to get
an optimized and accurate output from it. Table 1 lists
and explains the variables. These variables are common
in every building construction. Depending on the
requirements, construction types, and specifications,
additional variables come into consideration. However,
the variables used in this paper are the fundamental
features.

The core variables related to constructions are con-
sidered in this paper. Other variables influence the
cost (Bernagros et al., 2021). However, these have
been ignored for the simplicity of the framework.

Data processing

The ranges of the variables are not uniform, but it is
essential to transform them into a uniform scale. In
this experiment, the mean normalization has been
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used to scale the variable values between 0 and 1.
Equation (1) has been used for mean normalization
(Saranya & Manikandan, 2013).

oi = xi − m

max(xi)−min(x)
(1)

Here, oi is the normalized value of the ith feature. The m
is the simple mean. The mean of the categorical values
has not been used. Equation (1) applies to numerical
variables only.

Data cleaning and splitting

Irrelevant observations, structural errors, outliers, and
missing values severely impact the overall performance
of machine-learning models. The proposed framework
requires a clean data set. The experimenting data set
has been manually cleaned in this research. The pro-
posed framework splits the data set into training,

testing, and validation. The literature review on the
state-of-art machine learning approaches suggests that
the training and test ratio of 70:30 is a standard data
splitting ratio (Presnell & Alper, 2019). Thus, the same
ratio has been used in this paper.

Subset of the data set

A subset of the data set after processing using Equation
(1) is listed in Table 2. Except for building type and the
number of special facilities, the rest of the features are
scaled between 0 and 1. The x1 and x3 are encoded
using the one hot encoding method. The rest of the
values are directly used during the training and testing
period.

The subset of the data set presented in Table 2 has
been selected randomly, which gives a general idea
about the overall characteristics of the complete data set.

Deep neural network (DNN) architecture

This experiment uses a deep neural network with four
hidden layers to estimate the construction cost. A fully
connected network architecture with 28 hidden nodes
has been used (Bird et al., 2019). It is illustrated in
Figure 2.

The network has seven input nodes, one output node,
and 28 nodes in each hidden layer. The output vector of

Figure 1. Overview of the proposed framework.

Table 1. Variable list, description, and pattern.
Variable Role Description

O Cost This is the final estimated cost.
x1 Building type Different types of buildings, categorical

type. Here 0 = residential, 1 = 0
commercial

x2 Number of rooms
per floor

Numerical number of floors, including the
ground floor

x3 Number of special
facilities

Three facilities have been considered in
this framework Categorial type. Here, 0
= no, 1 = lift, 2 = garage, 3 = both 1 and
2

x4 Total floor area Total area, including all floors; the
numerical value measured in square
metres

x5 Number of levels Number of floors, including the ground
floor

x6 Floor area per level Area of individual floors
x7 Construction

worker cost
Average construction worker cost of a
project

Table 2. Subset of the data set.
x1 x2 x3 x4 x5 x6 x7 O

1 0.50 0 0.90 0.75 0.81 0.65 0.72
1 0.78 0 0.91 0.79 0.85 0.77 0.85
0 0.85 0 0.85 0.64 0.49 0.92 0.89
1 0.90 3 0.81 0.81 0.55 0.75 0.91
0 0.80 1 0.79 0.67 0.61 0.75 0.90
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the network is defined using Equation (2).

Kl = sl(Bl +WlKl−1) (2)

Here the Kl is the output vector; Bl is the bias vector;Wl

is the weight matrix; and sl is the activation function.
The tanh, ReLU (Agarap, 2018), and sigmoid functions
have been used as the activation functions of the input
layer, hidden layers, and output layers, respectively,
and are defined by Equations (3), (4), and (5) sequen-
tially.

tanh(x) = ex − e−x

ex + e−x
(3)

k(x) = max (0, x) (4)

k(x) = x (5)

The bias for active neurones is set to 1, and dropped-
off neurones are 0 (Mianjy et al., 2018).

Training and optimization

The proposed framework has experimented with the
Residential Building Data Set publicly available at
the Machine Learning Repository of the University
of California, Irvine (UCI) (Asuncion & Newman,
2007). The initial weight plays a role in learning
optimization, which has been done using the normal-
ized Xavier weight initialization (Datta, 2020) defined
by Equation (6).

Wi = PD −
�������

6
n+m

√
,

�������
6

n+m

√[ ]
(6)

Here, Wi is the initial weight; PD a uniform prob-

ability distribution between the range −
�������

6
n+m

√
and�������

6
n+m

√
. The n and m are the numbers of input and

output nodes, respectively, in this range. The adaptive
moment estimation (ADAM) optimizer (Kingma &
Ba, 2014) has been used in this paper to optimize
the learning process.

Estimation validation unit

An innovative estimation validation unit introduces
uniqueness to the proposed framework. This unit has
been created using four different machine-learning
algorithms to validate the estimation done by the
DNN. These two machine learning models are linear
regression (LR) (Weisberg, 2005) and support vector
machines (SVM) (Hearst et al., 1998) with a sub-gradi-
ent descent algorithm (Shalev-Shwartz et al., 2011).

The LR model consists of eight variables (xn) with
eight different learning parameters. The LR mode is
defined by Equation (7). It discovers the linear relation
between the price estimation and construction cost esti-
mating variables.

y = u0x0 + u1x1 + . . .+ u7x7 + 1 (7)

Here, the y is the estimated price; u0 = 1; x0 = 1; u1 to
u7 are the learning parameters of x1 to x7 respectively.
The 1 is the error term.

The variable distribution for building cost estimation
demonstrates a non-linear pattern in different segments.
To address this issue, the SVM with a sub-gradient des-
cent algorithm has been used in this experiment to vali-
date the estimation by the DNN. The soft-margin-based
SVM (Hu et al., 2010) used in this paper tries to mini-
mize the expression of Equation (8).

f (W, b) = 1
n

∑n
i=1

max (0, 1− yi(W
Txi − b))

[ ]

+ lW2 (8)

Here, the f (W, b) is the convex function of weight
matrix W and bias b. The construction variable

Figure 2. Deep neural network architecture.
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distribution does not follow a specific scale. Equation
(8) does not scale with n in iterations, which makes it
a good fit for construction cost estimation.

Result and experimental evaluation

The proposed framework estimates the construction
cost using a deep neural network and validates the result
using SVM and LR. Each of these three algorithms per-
forms regression in this context. The literature review
shows that the state-of-art evaluation matrices for
regression are the coefficient of determination (R2)
(Ozer, 1985) defined by Equation (9); the root mean
square error (RMSE) (Chai & Draxler, 2014) expressed
in Equation (10); the mean of absolute error (MAE)
(Chai & Draxler, 2014) formulated in Equation (11);
and the mean average percentage error (MAPE) (Good-
win & Lawton, 1999) demonstrated in Equation (12).

R2 = 1−
∑m

i=1 (ai − pi)
2∑m

i=1 (ai −mean(a))2
(9)

RMSE =
���������������������
1
m

×
∑m
i=1

( pi − ai)
2

√
(10)

MAE = 1
m

×
∑m
i=1

| pi − ai| (11)

MAPE = 1
m

×
∑m
i=1

pi − ai
ai

∣∣∣∣
∣∣∣∣ (12)

Here, the ai is the target variable provided in the data
set; pi is the corresponding predicted target variable, and
m is the number of instances in the data set.

Experimental result

The proposed framework has experimented with two
different data sets and one augmented data set. These
data sets are the Residential Building Data Set developed
by the University of California, Irvine (UCI) (Asuncion
& Newman, 2007), the Reinforced Concrete Building
Data Set prepared by M. Y. Cheng and Hoang (2018),
and an augmented combination of these two data sets.
Table 3 lists the performance of the proposed frame-
work on the UCI data set.

The performance of the framework on the
Reinforced Concrete Building (RCB) Data Set is listed
in Table 4. The data set’s relevant variables that align
with the proposed framework have been used in this
experiment.

Multiple attempts have been made during the exper-
iment to compare the results with other similar

approaches. However, the attempts failed because of
the unavailability of the experimenting data set and
different evaluation matrices of measurement. As a
result, the experimenting data sets have been merged
and augmented by introducing random noise to the
normalized values. The range of the noise is between
0.01 and 0.2. The augmented data set’s experimental
results have been listed in Table 5.

The experimental results demonstrate that the per-
formance of the framework is satisfactory. The R2 for
the UCI, RCB, and augmented data sets are 0.96,
0.969, and 0.91, respectively. That means the model
properly fits 94.67% data.

Performance evaluation

The coefficient of determination (R2) value for the DNN
for the three experimenting data sets is illustrated in
Figure 3. It shows a minor variation for the three data sets.

The R2 value for DNN and SVM are similar. The LR
works best for linear relations. The data set is not

Table 3. Performance on UCI data set.
Model R2 RMSE MAE MAPE

DNN 0.96 27.94 17.22 11.60%
LR 0.82 34.10 25.09 16.99%
SVM 0.91 31.44 21.38 13.92%

Table 4. Performance on reinforced concrete building data set.
Model R2 RMSE MAE MAPE

DNN 0.969 23.42 14.50 9.81%
LR 0.843 31.65 21.72 14.20%
SVM 0.930 27.11 19.76 11.52%

Table 5. Performance on augmented data set.
Model R2 RMSE MAE MAPE

DNN 0.91 29.44 20.63 13.54%
LR 0.78 36.83 28.87 18.01%
SVM 0.88 33.58 23.42 15.26%

Figure 3. Coefficient of determination (R2) evaluation.
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linear. As a result, the R2 for the LR is lower than for
the DNN and SVM. However, the average of R2 is
94.67%, which indicates models properly fit the data
distribution. The mean average percentage error
(MAPE) has been illustrated for the three experiment-
ing data sets in Figure 4.

The MAPE is a little higher for the LR, as expected.
However, the DNN and SVM exhibit similar MAPE
values. The average MAPE for the DNN is 11.65%,
which demonstrates the correctness of the cost estimation.
The average MAPE of the SVM is 13.56%. There is only a
1.91% difference between the MAPE of the DNN and the
SVM. It indicates the estimation from the DNN is valid.
The experimental values show a similar nature to the
MAE values, which have been illustrated in Figure 5.

The performance evaluation of the proposed frame-
work highlights the validity of the estimation of the
DNN. The comparison of the three ML models with
three different data sets leaves no scope for questioning
the correct estimation made by the framework.

Performance comparison

The performance of the proposed system has been com-
pared to four similar methodologies. Each of these
approaches used different data sets and features.
Because of the similarity in the methodology, these

four papers have been compared with the proposed fra-
mework and listed in Table 6.

The accuracy of the proposed construction cost esti-
mation framework using DNN and the validation unit is
94.67% which is higher than three of the comparison
papers. However, the result obtained by Hashemi et al.
(2019) is 0.04% higher than the proposed framework,
which is a marginal difference. The methodology of Alex
et al. (2010) is much more complex than the proposed fra-
mework. The proposed method still holds the superiority
in terms of architectural simplicity, even if the accuracy is
0.04% lower than the work of Alex et al. (2010).

Limitations and future scope

Any computerized system has limitations. The proposed
framework is not an exception. There are four main
limitations of this framework, which have been dis-
cussed here.

Variable limit

The first limitation of the proposed framework is the
variable limit. It has been designed with the most com-
mon and influential seven building construction cost
estimators. It cannot handle more than seven variables.
One of the key contributions of this research is obtain-
ing accurate results with a limited number of variables.
Moreover, a limited internal variation of the variables
has been used in the proposed methodology. A modern
residential building may have multiple unique features.
These features vary from building to building. As a
result, it is not possible to incorporate every unique fea-
ture a building may possess (Juszczyk, 2017). This is a
major limitation of the proposed framework and any
framework. At the same time, there are no hard and
fast rules limiting the number of construction variables,
which imposes another challenge that this paper has not
solved. It is another drawback related to the variable
limit. However, these variable limitations pave the way
for more research on this topic: to find the optimum
number of variables and systematically handle the
unique features of buildings. These opportunities will
be explored in subsequent papers.

Figure 4. Mean average percentage error (MAPE) comparison.

Figure 5. The MAE values of DNN, SVM, and LR.

Table 6. Performance comparison.
Paper Method Accuracy

Alshemosi and Alsaad
(2017)

Multifactor Linear Regression 92%

Alex et al. (2010) Artificial Neural Network (ANN) 80%
Hashemi et al. (2019) ANN & Genetics Algorithm (GA)

Hybridization
94.71%

Rafiei and Adeli (2018) Machine Learning (ML) 89.90%
Proposed Deep Learning (DL) 94.67%

BUILDING RESEARCH & INFORMATION 7



Data set structure heterogeneity

The heterogeneity of the data set structure imposes a
challenge on an informed approach to estimating build-
ing costs through a machine learning algorithm (Scheres,
2016). The methodology followed by the researchers
while developing the data sets varies based on the per-
spective, core focus, building type, time, location, and
many other factors. Different data sets come up with
different structures depending on the point of interest,
the emphasis of certain factors, or the goal of the data col-
lection project. As a result, applying a uniform frame-
work becomes challenging. Designing, implementing,
and training a DNN based on a particular data set leaves
no scope for complexity. However, comparing the
trained network with similar approaches becomes
difficult because there is no available similar enough pub-
lished research on the same data set structure. This is a
major limitation of the proposed framework for any suit-
able methods. The data set deformation method, where
any construction cost-related data sets are dissolved
into the stream of fragmented data to reconstruct it
into a uniform structure by maintaining a standard pro-
portional range of values, is a potential solution to this
problem. However, the level of complexity of such an
approach requires a separate study, which leaves scope
for another field of research in this domain.

Limited data repository

The data are like fuel to machine-learning-based
approaches. Machine-learning models learn from pre-
vious data to estimate or predict the target variable. It
has been observed during this experiment that the data
repository for building construction cost estimation is
not enriched enough (Scheres, 2016). The literature
reviews suggest that most published literature uses UCI
data sets or privately collected data that are not publicly
available. Moreover, the data collection methodologies
are yet to be standardized. These challenges limit the
capability of machine-learning algorithms to estimate
building construction costs. However, the future scope
of the research, to develop a standard methodology for
creating construction-cost-related data sets to build a
shared and rich data repository, which would accelerate
the machine-learning research in this sector is revealed.

Economic variables

The economic variables are indirectly valuable but
directly impact the construction cost (Tas & Yaman,
2005). The proposed framework’s limitation is that the
economic variables have not been considered. However,

the economic variables are not ignored either. It has
been observed that the framework becomes complicated
when both economic and non-economic variables are
considered. For the sake of simplicity, the economic
variables are ignored in this study. However, research
is ongoing by the author of this paper to develop
another framework to estimate the impact of economic
variables on construction costs. In the future, these two
frameworks will be merged to prepare a complete con-
struction cost estimation, including economic and non-
economic variables.

A study conducted by Rafiei and Adeli (2018)
included both economic and non-economic variables
in construction cost estimation using machine learning.
The proposed methodology loses its superiority to the
research published by Rafiei and Adeli (2018) from
the variable diversity perspective. Green building con-
struction is a recent and eco-friendly trend that is turn-
ing into modern construction standards. The proposed
research does not take the green building construction
parameters into consideration; however, this was done
by Alshboul et al. (2022b). Considering the heavy con-
struction equipment as one of the features, which was
done by Alshboul et al. (2022a), would make the pro-
posed methodology more reliable. However, these limit-
ations have not been overcome in the current state of
the research.

Discussion and conclusion

Accurate cost estimation is a vital step in project success.
Usually, consultants with years of experience enjoy
handsome consultation fees to estimate construction
costs accurately. Today’s advanced machine-learning
algorithms, especially deep neural networks, learn
from data and demonstrate human-like estimation
capability. However, applying deep learning and
machine learning in construction cost estimation is
still nominal. This research aimed to utilize the potential
of DNN to prepare a practical framework to estimate
construction costs. The implementation principle used
in this research mapped 94.67% of independent vari-
ables into target variables. Furthermore, it estimated
the price with a MAPE of 11.60%. The estimator vali-
dation unit validates the estimation from the DNN to
increase the reliability of the estimation. Whereas
most of the research focuses on project-specific cost
estimation, this paper took an innovative, generalized
approach to estimate the cost of any similar project.

A machine-learning model designed to predict the
construction cost of a particular construction project
is made redundant after the project is completed unless
a similar project is launched. Therefore, the
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generalization addressed in this paper is significant in
this research field. However, the nature of the problem
imposes multiple challenges in developing an all-in-
one framework; thus, the research scope of this paper
was limited to residential buildings with seven cost esti-
mators. However, this limitation opens the door to
further research. This paper is a milestone in applied
machine learning with an outstanding demonstration
of accurately estimating construction costs. It has been
observed in the literature review that the data processing
approaches are different in multiple papers. The data set
used is also exclusive to unique construction projects.
The methodology presented in this paper generalizes
the data processing approaches into a standard struc-
ture, potentially a state-of-the-art method to process
data for construction cost estimation. Making an impor-
tant business decision, such as large-scale construction,
requires cross-validation. The existing construction cost
estimation methodologies estimate the costs. However,
those approaches’ external cross-validation of the pre-
dicted cost is absent. The proposed construction cost
estimation framework not only predicts the target vari-
ables with 94.67% accuracy but also validates the predic-
tion to enhance the acceptability of the projection.
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