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A B S T R A C T   

Most materials contract laterally when stretched axially i.e. they have a positive Poisson’s ratio. Negative 
Poisson’s ratios (NPR, also auxetic) are largely limited to single crystals or to artificial meta-materials such as 
honeycombs, foams and composites, which does limit their applications. This meta-study shows that NPR is 
abundantly present in an extremely common and useful category of natural materials, woods. This effect is so 
ubiquitous that 87 out of 123 measured hardwood samples and 58 of 62 softwood samples exhibit the property. 
In wood, NPR occurs predominantly in quite narrow off-axis directions, with values as low as − 3.32. This effect 
is chiefly attributable to the tubular structure of the wood cells. This suggests that low-cost, large-scale auxetic 
structural parts can be obtained by cutting low to medium density timber in specific off-axis directions, with 
potential benefits in a wide range of structural and construction applications.   

1. Introduction 

20 years ago Baughman and co-workers [1] demonstrated that 
around 69% of cubic elemental metals have a negative Poisson’s ratio 
(NPR, also auxetic [2]) using an extensive meta-analysis of published 
elasticity data and considering simple geometric models. In this letter, 
by using similar approaches, we prove that almost all softwoods and 
most hardwoods (those with a density lower than 0.8 kg.l− 1) are also 
auxetic. 

More auxetic behaviour has been uncovered, in single crystals [1,3] 
or in artificial meta-materials such as honeycombs [4], foams [4] and 
composites [5]. Our study [3] based on full 3D tensor transformations 
has shown that around 37% of known single crystals display NPR, but 
normally in off-axis directions over arrow angle ranges. This goes a long 
way to explain why the property had been elusive. This unusual property 
is known to have the potential of improving the overall mechanical 
performance in a wide range of applications such as impact resistance 
[6], vibration absorption [7], reduced fibre pull-out in composites [8] 
and workability/synclasticity [9]. However, the lack of a relatively 
common, easily manufactured, low cost auxetic material is hindering 
progress. 

Wood, a very traditional building material, is used extensively in 
construction, and environmental concerns are leading to a renewal of 
interest in a broad range of high-performance structural applications, for 
instance engineered wood products [10], wood-based skyscrapers [11, 

12], transparent wood [13], high-performance densified wood [14]. 
Structural engineers already fine-tune the mechanical properties of 
wood beams or panels to improve earth-quake resistance [15], and using 
NPR could help further in this approach. Double curvatures synclastic 
wood panels based on multi-angle laminating, modern adhesives and 
water proofing could even see a resurgence of wooden aircraft, partic
ularly at a time when carbon footprint is so important and when most 
modern composites are not yet fully recyclable. 

The elastic properties of wood are in general well understood [16,17] 
in relation to the composite structure and geometric arrangement of 
wood cells (see Fig. 1(a)). The elastic tensors of samples taken far 
enough from the heart of trees have an orthotropic symmetry (equiva
lent to orthorhombic in crystals). The majority of wood cells are 
essentially long, thin columns, of irregular rectangular, pentagonal or 
hexagonal cross-section (a few mm long, a few tens μm wide, aspect 
ratios around 100 albeit with much variability) and therefore wood is 
much stiffer (by a factor of around 14) in the longitudinal (Axial) L di
rection. The radial R and transverse T direction are comparatively 
equivalent, even if the R direction is in general stiffer (by around 1.8). 
This more modest anisotropy has been attributed to the stiffening effect 
of rays (a less common, 5–12% in softwood –SW– 10–32% in hardwood 
–HW–, type of cells oriented in the R direction), and to the less ordered 
arrangement of cell walls in the T direction, therefore more prone to wall 
bending while the more regular arrangement in the R directions requires 
more wall stretching. In addition, the cell walls themselves consist of 
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several layers of anisotropic helical composites of crystalline celluloses 
in a lignin matrix, and the extent of the anisotropy depends on the 
so-called microfibril angle at which the cellulose coils. As a conse
quence, cell walls are about 4 times stiffer in the L direction. 

Almost all the studies of the elasticity of wood are limited to the three 
anatomical axes only, and the on-axis elastic properties are conven
tional. However a few works already allude to the presence of NPR. 
Rotating from the principal directions, Yamai [18] and Kawahara [19] 
found NPR in the TL plane in certain Japanese species, at around 30◦ off 
the L axis. Sliker [20] observed NPR, also in the TL plane, in three 
hardwoods, at 20◦ from the L axis. In a recent study [21], we directly 
measured NPR in white pine in the RL plane, at 27◦ from the L axis. The 
lowest value was reported by Bucur [22] in Douglas Fir, at − 0.95, but 
the directions were not mentioned in this case. As early as 1948, using 
typical values of the elastic tensors for a hardwood and softwood, 
Hearmon postulated the existence of NPR in the TL plane for a wide 
range of directions [23], although no one seems to have picked up on 
this. 

2. Methods 

2.1. Data collection and conversion 

Elastic data for wood were obtained from many experimental 
studies, the earliest published in 1932, the latest in 2018, see Table 1. 

2.1.1. Formats 
Elastic constants values can be described in several ways, and the 

literature for wood does not follow a systematic format at all, which did 
complicate the data collection. 

First of all, the constants can either be the terms of an elastic tensor, 
compliance or stiffness, or the so-called engineering constants, Young’s 
moduli, shear moduli and Poisson’s ratios, or even combinations of 
elastic tensors and engineering constants. For the orthotropic symmetry, 
the conversion between engineering constants and compliances is 
straightforward, but slightly less direct with stiffnesses. 

Second, older data is often given in imperial units. Conversion is of 
course simple, but direct comparison, for instance to gauge if two data 
sets are related, is cumbersome. 

Third, certain terms can be given relative to a leading term, often the 
Young’s modulus along a leading direction. Again, conversion is very 
easy, but direct comparison is hampered. 

Fourth, different frames of reference can be chosen. Often the first 

direction (x, or 1) corresponds to the longitudinal axis, and the second 
and third corresponds to the radial and tangential axes, which is denoted 
by LRT Table 1. But this is by no mean systematic and several authors 
use LTR and RTL representations. 

When we display the collected information in Supplementary 
Table 1, we choose the RTL representation. First of all, it makes sense for 
the longitudinal axis to be in the z direction, as would happen in a 
natural tree trunk. Secondly, this representation is better adapted to 
conversion to tetragonal and hexagonal systems, where the less sym
metric direction is conventionally along z. 

Fifth, certain authors use the non-conventional definition for Pois
son’s ratio νij = − εi

εj 
instead of the more commonly used νij = −

εj
εi
. 

2.1.2. Data sources 
Metadata for the different data sources are compiled in Table 1. 
The primary sources can be relatively large databases, in which case 

their naming code references the principal author, sometimes arbitrarily 
(They can also correspond to collections of articles from university 
research groups and the naming codes reflect this). 

In several cases, a reference uses data from one or more earlier 
source, but presents it in a different format, and sometimes without 
proper, detailed, attribution. The oft used “Wood Handbooks” are 
especially bad in this respect. Because of the relative difficulty in tracing 
data interrelations as mentioned in Section 2.1.1, Table 1 also contains 
some of these those secondary sources (in italics), but notes which pri
mary sources they refer to. 

Some important works (principally Bodig [24], also Guitard [25]) 
also used statistical analyses to derive formulae to relate elastic prop
erties to density, and tabulated the corresponding elastic properties for 
many more wood species. We have decided against using these, and they 
are not counted in the numbers of hard or soft wood species given in 
Supplementary Tables 1 and 2. 

2.2. Experimental approaches 

Several approaches have been used to measure the elasticity of wood, 
from many variations of the direct, “static” method (tension, compres
sion, three point bending, all sort of sample shapes) to acoustic methods. 
In this study, we do not take into account the type of experimental 
methods by which the elastic tensor has been determined. Very pre
liminary analyses do not seem to identify major differences between 
methods, and all seem to show the existence of NPR. It might be inter
esting in further work to study more finely the effect of the experimental 

Fig. 1. Models of wood. (a) A diagram of cells arrangement and anatomical directions in a typical softwood, L longitudinal, R radial, T transverse. (b) An idealised 
model of a single wood cell as a thin-walled prismatic tube, illustrating NPR under off axis loading; a “diagonal” extension of the initial square-section tube (solid 
grey) leads to flattening into a diamond-section tube (wireframe) and to dimension changes. (c) A 3D Plot of Poisson’s ratio for Douglas Fir, where the blue envelope 
represents the maximum value and the red the minimum, negative value. 
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method on the existence, preponderance and directionality on NPR in 
wood. 

2.3. Calculation of off-axes Poisson’s ratio 

On-axes Poisson’s ratios, for instance νxy, can be obtained directly 
from the components of the compliance tensor S as 

vxy = −
S12

S12
, (1)  

where the Voigt notation is used to flatten the dimension 3, order 4 
tensor into a dimension 6, order 2 matrix. 

Off-axes Poisson’s ratios require two perpendicular directions, lon
gitudinal and transverse. These can be represented by vectors l and t 
whose spherical coordinates can be given in terms of the standard Euler 
angles θ, φ and χ as 

l =

⎛

⎝
sinθcosφ
sinθsinφ

cosθ

⎞

⎠ =

⎛

⎝
r11
r12
r13

⎞

⎠

t =

⎛

⎝
cosθcosφcosχ + sinφsinχ
cosθsinφcosχ − cosφsinχ

− sinθcosχ

⎞

⎠ =

⎛

⎝
r21
r22
r23

⎞

⎠. (2) 

These two vectors are also the first two columns of the rotation 
matrix [r] (the third column vector is not required for Poisson’s ratios, 
see Eq. (4)). 

The compliance tensor S transforms in the new basis set formed by l 
and t as 

S
′

αβγδ = rαirβjrγkrδlSijkl. (3) 

And finally, Poisson’s ratio for any two directions is given by 

ν(l, t) = −
S′

12(θ,φ, χ)
S′

11(θ,φ)
= −

liljtktlSijkl

liljlkllSijkl
. (4) 

This procedure is automated in our dedicated ElAM code [45], and 
the extrema of Poisson’s ratio for all directions were calculated from the 
axial elastic data The relevant ElAM database and input files are avail
able as part of the supplementary information (files “db_ALL.txt” and 
“ALL.txt”). 

3. Results 

The values for the density, Ledbetter anisotropy ratio [46], extrema 
of Poisson’s ratio and corresponding directions for 185 wood samples 
from the literature were calculated with the ElAM code [45] and are 
given in Supplementary Table 2. Selected results for ten representative 
samples are given here in Table 2. The softwoods are almost all auxetic, 
as all but three samples (94%) exhibit NPR. Values range from − 3.32 to 
0.03, with an average of − 1.01 and a median of − 0.91. The maximum 
values are also rather large, from 0.47 to 4.07. The hardwood samples 
are also mostly auxetic, but not quite so systematically (72%), and the 
Poisson’s ratios are generally higher than for the softwood, varying 
between − 2.76 and 0.11 (average − 0.21 and median − 0.15). 

Fig. 2 shows how the minimum Poisson’s ratio varies with the den
sity (a) and anisotropy ratio (b) of the sample. The results are scattered, 
but auxeticity tends to occur only below a certain density threshold 
(around 0.8 kg/dm3). With a few exceptions, samples with a Ledbetter 
anisotropy ratio above 8 are auxetic, and higher anisotropy correlates 
with more pronounced auxeticity. 

As wood is a natural material, intra-specie variability is expected, 
even within a single tree. In addition, different experimental techniques 
might produce slightly different results. Supplementary Tables 3 to 9 
show the elastic results, grouped by species, for 7 of the most commonly 
studied wood species (Spruce, Pine, Douglas fir, Beech, Oak, Ash and 
Birch). The elastic results for all 15 samples of Spruce are reproduced 
here in Table 3. The inclusion of subspecies is somewhat arbitrary, but in 
general the results are consistent, with one or two exceptions (the early 
acoustic measurements by the Bucur group (code D) looking particularly 
out of place). 

Auxeticity in wood is highly localised, and in order to better un
derstand the possible mechanisms it is useful to qualify the directions of 
minimum Poisson’s ratio. These can be given in term of the Euler angles 
θ and φ, or more synthetically in term of anatomical directions. Thus, a 
direction code is constructed first by the sign of the Poisson’s ratio (- or 
+), followed by one letter if on an anatomical axis, two letters if in a 
plane, or RTL if in a generic direction. 

Around 52% of the samples (71% of the softwoods, 42% of the 
hardwoods) have NPR in a generic direction (code “-RTL”), but the 
distribution is very narrow with a (θ, φ) range of (16º-31º, 40º-50º) for 
the softwoods (ignoring two outliers) and (22º-44º, 41º-68º) for the 
hardwoods. This corresponds to an average direction at (22º, 46º) with 
an average deviation of 3.4º (maximum 8.2º) for the softwoods and an 
average direction at (33º, 50º) with an average deviation of 11º 

Table 1 
Main data sources for elastic properties of wood (Hardwood HW, Softwood SW).  

Code Date #HW #SW Data type Units Directions References Notes 

A_Hearmon 1–29 1948  18  11 E, G, ν, absolute IS LRT [23] Repository of earlier measurements by several 
groups, too many to reference here. 

B_Bodig 30–58 1973  5  24 E, G, ν, absolute Imperial LRT [24] i) Aspen2 has a badly conditioned tensor 
ii) Many more of the results in this paper are 
predictions based on density 

C_Guitard 59–81 1987  21  2 E, G, 1/Sij, absolute IS RTL [25] In French 
D_Bucur 82–87 1984, 2016  3  3 C, G, ν, absolute IS LRT [26]  
E_Yamai 88–96 1957  5  4 E, G, ν, Sij absolute IS LTR [18] 2 extra HW (Yachidamo and Makaba, but with 

incomplete tensor) 
F_Mascia 97–105 1991  8  1 E, G, ν, absolute IS LTR [27] In Portuguese 
G_Zuerich 

106–153 
2008–2017  38  10 E, G, ν, absolute IS LRT [28–35] Nonstandard definition of Poisson’s ratio 

H_Wang 154–158 2004  5  0 E, G, ν, absolute IS LTR [36] All GTL and GLR are identical 
I_Campinas 

159–170 
2011, 2014  0  12 E, G, ν, Cij absolute IS LRT [37,38] 2011 Ultrasonic and Static methods 

2014 All Ultrasonic, both on Discs and Polyhedra 
J_Various 

171–185 
2014–2017  8  7 Various but usually E, 

G, ν, absolute 
IS LRT, LTR, 

RTL 
[39–44] [40]: rare results on green wood, which do seem to 

behave differently 
Handbook1987 1987    7 E, G, ν, relative N/A LTR  Secondary source, copies Hearmon [23] and Bodig [24] 
Handbook1999 1999  15  20 E, G, ν, relative N/A LTR  Idem 
Handbook2010 2010     E, G, ν, relative N/A LTR  Idem 
Goodman 1970  6  6 E, G, ν, absolute Imperial LRT  Same values as Bodig [24], some Poisson’s ratio missing  
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(maximum 22º) for the hardwoods. If NPR does not occur in this narrow 
“cone”, it then occurs predominantly in the TL plane (SW 21%, HW 
26%). Four hardwood have minimum NPR in the RL direction and one 
softwood in the L plane. 

4. Discussion 

4.1. Idealised hollow-cell model 

Most wood cells are essentially slender hollow “tubes”, with cross 
sections of varying shape, mostly irregular hexagons or parallelograms. 

Table 2 
Density, anisotropy ratio, Minimum Poison’s ratio and direction code for 10 selected wood samples. Full list in Supplementary Table 2.  

ID # ID name Specie ρ (g/cm3) A* νmin Dir.  

5 Spruce1_A Picea spp.  0.37  191.2  -2.49 -RTL  
91 Akamatsu_E Pinus densiflora  0.46  81.2  -1.41 -RTL  
36 DouglasFir1_B Pseudotsuga menziesii  0.47  63.7  -0.55 -RTL  
110 Yew_G Taxus baccata  0.62  15.0  -0.70 -TL  
14 Balsa1_A Ochroma pyramidale  0.1  80.6  -0.88 -RTL  
156 Birch_Japanese_white_3_H Betula platyphylla  0.6  7.71  -0.04 -RTL  
119 Ash_b_G Fraxinus excelsior  0.6  10.85  -0.14 -TL  
75 Hetre_C Fagus sp.  0.63  12.7  -0.07 -TL  
96 Ichiigashi_E Quercus gilva  0.84  15.2  0.01 +RTL  
161 CupiubaU_2011_I Goupia glabra  0.85  3.06  0.07 +T  

Fig. 2. Minimum Poison’s ratio variability in wood. The blue “+ ” and red “× ” symbols refer to experimental data for softwood and hardwood. The long-dash 
blue line and continuous red line derive from the statistical models of Guitard [25] for softwood and hardwood. The short-dash green line come from the honeycomb 
model of Gibson [47] for all wood. (a) As a function of wood density. In general, lighter wood are more likely to exhibit pronounced NPR. (b) As a function of the 
anisotropy ratio (Ledbetter formulation [46]); more anisotropic woods exhibit more pronounced NPR, in line with other materials [3]. 

Table 3 
Auxetic properties of spruce samples.  

ID # Code Specie ρ (g/cm3) A* νmin Dir. 

53 Spruce_engelman1_B Picea engelmannii  0.31  52.5  -1.13 -RTL 
56 Spruce_engelman4_B Picea engelmannii  0.32  39.9  -1.10 -RTL 
54 Spruce_engelman2_B Picea engelmannii  0.32  34.5  -1.04 -RTL 
55 Spruce_engelman3_B Picea engelmannii  0.33  29.8  -1.04 -RTL 
57 Spruce_sitka_B Picea sitchensis  0.36  119.6  -1.28 -RTL 
5 Spruce1_A Picea spp.  0.37  191.20  -2.49 -RTL 
11 Spruce_sitka_A Picea sitchensis  0.39  128.60  -1.89 -RTL 
90 Yezomatsu_E Picea Jezoensis  0.39  279.30  -2.98 -RTL 
8 Spruce4_A Picea spp.  0.39  180.30  -2.27 -RTL 
7 Spruce3_A Picea spp.  0.39  200.00  -2.46 -RTL 
83 Spruce_D Picea  0.41  40.32  -1.94 -TL 
9 Spruce5_A Picea spp.  0.43  189.80  -1.99 -RTL 
10 Spruce6_A Picea spp.  0.44  203.10  -2.15 -RTL 
111 Spruce_G Picea abies  0.47  107.60  -1.22 -RTL 
6 Spruce2_A Picea spp.  0.5  201.20  -2.11 -RTL 
Average    0.39  133.14  -1.81  
St. Dev.  + /-  0.06  79.89  0.63   
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In this study, we chose a regular square cross-section but a regular 
hexagonal cross-section leads to the same results for Poisson’s ratio (see 
the closely related geometrical model in reference [21]). Fig. 3 depicts 
such an idealised cell, where the model consists of four rigid plates, 
linked by flexible linear hinges. 

It is surprisingly simple to explain the presence of auxeticity in all but 
a few woods with a very simple geometric model of a wood cell that 
could be made in minutes with a sheet of paper/card and tape/glue. 
Manually applying a tensile load (basically pulling the cell) along two 
diametrically opposite corners naturally flattens it, which produces both 
negative and positive Poisson’s ratio in the two main transverse 
directions. 

More formally, most simple loads (except directly along the axes) 
affect the hinges and essentially flatten the cell in the load plane if 
tensile or the plane normal to the load if compressive. In the interest of 
simplicity, we consider a load across two diametrically opposite corners. 
This load could be tensile or compressive, it does not matter, and Fig. 1 
illustrates a tensile load resulting in a flattening of the cell and therefore 
a positive Poisson’s ratio in the transverse direction perpendicular to the 
plane of Fig. 3(b) but also a negative one in the transverse direction 
within the plane of Fig. 3(b). The resulting Poisson’s ratio νlt can be 
expressed as the opposite of the quotient of the transverse strain to the 
longitudinal strain and simplifies to 

νlt = −
εt

εl
= −

Δt/t
Δl/l

= −
Δt/Δl

t/l
= −

tan(θ)
tan(θ)

= − 1, (1)  

where θ is the angle between the long diagonal and the base plane, t and 
l are the initial dimensions and Δt and Δl are the changes in dimension. 

This simple model shows that νlt = − 1 for a single cell. But the 
argument still holds if the original undeformed square tube is replaced 
by an array of square tubes. This suggests that off-axis NPR is intrinsic to 
anisotropic thin walled cellular structures. Although the derivation is 
done here for a load along diametrically opposite corners of the hollow 
cell, it is also valid for any angle (except 0◦ or 90◦), as one can just 
consider a section of the cell. At 0◦ or 90◦, hinging does not occur, and 
the Poisson’s ratio is 0. Even if some form of buckling is likely to occur 
above some critical loads, it would affect the Poison’s ratio of a single 
cell, but not of an array of cell. 

This νlt = − 1 value relies on perfect hinging at the walls’ intersec
tion, which becomes less realistic as the wall thickness (and therefore 

wood density) increases. 

4.2. Density dependent models 

This simple geometric model explains much, but leaves some unan
swered questions: What about the variation with direction? What about 
NPR below − 1? What of NPR in the TL plane? Two types of models of 
the elastic properties of wood can shed light on directionality and 
bounding values of NPR. The first type is essentially statistical and aims 
to find functions that fit observed data, for hardwoods and softwoods 
[24,25], while the second derives the elastic tensor from a model hon
eycomb [47,48]. More sophisticated developments [49] of these models 
use finite element analysis to consider realistic irregular honeycomb 
geometry and the anisotropy of the wood cell but are thus limited to 
single species and not useful to our purpose. The resulting auxetic 
properties for the statistical model of Guitard (hardwood and softwood) 
and first principle model of Gibson (generic wood) are given in Table 4 
and shown in Fig. 2. The models capture the most salient trends well and 
predict NPR for densities below 0.6 (Guitard) and 0.8 (Gibson) and 
anisotropy indices above 5 and 20. NPR can certainly take values below 
− 1, for densities below 0.35 (Guitard) or 0.45 (Gibson). When NPR is 
present, it is always minimum in an off-axis direction (“-RTL“ code). At 
low densities, NPR bleeds into the anatomical planes RL and TL, albeit 
with reduced magnitude: in the TL plane at densities below 0.5, from 
54% of the off-axis minimum at 0.25 to 16% at 0.5 with the Gibson 
model and from 46% to 6% with the Guitard model of softwood. This 
confirms previous in-plane observations, and corroborates Hearmon’s 
early suggestions of NPR in the TL planes, even if auxeticity is more 
pronounced in off-axis directions. Still, the models do not predict min
imum NPR in TL planes: we suspect that lengthy and detailed finite 
element simulations of realistic wood models might be required to 
address this level of subtlety. 

5. Conclusion 

This meta-study shows that NPR is present in many woods, albeit 
mostly in off-axis directions. The property is so prevalent that it occurs 
in 87 out of 123 measured hardwood samples and 58 of 62 softwood 
samples. Almost all woods of density lower than 0.8 kg.l− 3 are auxetic. 
The lowest value is − 3.32, for Crypteria Saponica, and values below 
− 1.0 are very frequent. A very simple geometric model illustrates how 

Fig. 3. Deformation of an Idealised wood cell model of square section subjected to a diagonal tensile load. The initial undeformed cell is represented by grey walls 
and thin dashed lines, and the deformed elongated cell by a wireframe of full lines. (a) shows the tensile load in 3D, (b) shows a projection and relevant dimensions. 
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the tubular structure of the wood cells automatically generates NPR. 
This suggests that truly large scale auxetic parts (beams, panels.) can 

be fabricated at low cost, as timber is a cheap material. 
In addition, the nature of the mechanism responsible for NPR, based 

on the shape and hollowness of the cells, is such that it is likely to lead to 
comparable effects in man-made materials. 
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power laws, Hardwood  

0.1  67.56  -0.83  23  47 -RTL  
0.2  39.41  -0.42  27  50 -RTL  
0.3  28.99  -0.23  30  52 -RTL  
0.4  22.37  -0.12  33  52 -RTL  
0.5  18.63  -0.04  39  54 -RTL  
0.6  15.42  0.01  47  56 +RTL  
0.7  12.98  0.03  90  90 +T  
0.8  11.02  0.03  90  90 +T  
0.9  4.07  0.03  90  90 +T  
1  3.88  0.03  90  90 +T  
1.1  3.71  0.04  90  90 +T  
1.2  3.57  0.04  90  90 +T  
1.3  3.44  0.04  90  90 +T 

Guitard, statistical model, 
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0.25  48.45  -1.29  23  50 -RTL  
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0.45  60.76  -1.05  23  47 -RTL  
0.5  46.48  -0.79  24  47 -RTL  
0.55  34.93  -0.58  26  47 -RTL  
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1  7.38  0.05  90  47 +TR  
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