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In this dissertation we study two important issues in wireless ad hoc and sensor

networks: lifetime maximization and fault tolerance. The first part of the disser-

tation investigates how to maximally extend the lifetime of randomly deployed

wireless sensor networks under limited resource constraint, and the second part of

the dissertation focuses on how to measure the fault tolerance and attack resilience

of wireless ad hoc networks.

When trying to maximize the lifetime of randomly deployed wireless sensor

networks, we take the approach of adaptive traffic distribution and power con-

trol. After abstracting the network into multiple layers, we can model the lifetime

maximization problem as a linear program. First we focus on the scenario where

transmission energy consumption plays the dominant role in overall energy con-

sumption, that is, the receiving and processing energy consumption is ignored. In



this case we mathematically prove that in order to maximally extend the network

lifetime, each node should split its traffic into two portions, where one portion

is sent directly to the sink, and the other one to its neighbor in the next inner

layer. Next we consider the effect of incorporating the processing energy consump-

tion. In this case, we have a similar observation: for each packet to be sent, the

sender should either transmit it using the transmission range with the highest en-

ergy efficiency per bit per meter, or transmit it directly to the sink. This is also

proved true under some general conditions. Besides studying the upper bound of

maximum achievable lifetime extension, we discuss some practical issues, such as

how to handle the signal interference caused by adaptive power control. Finally, we

propose a fully distributed algorithm to adaptively split traffic and adjust transmis-

sion power for randomly deployed wireless sensor networks. Extensive simulation

studies demonstrate that the network lifetime can be dramatically extended by

applying the proposed approach in various scenarios.

Besides studying the lifetime extension problem for fully deployed wireless sen-

sor networks, in this dissertation we also investigate how to extend the network

lifetime via joint relay node deployment and adaptive traffic distribution. We

considered wireless sensor networks with two types of nodes: sensors and relays.

Sensor nodes will be deployed randomly under certain coverage constraint, and

relay nodes will be deployed in a partially controlled way such that the network

lifetime can be maximally extended. We formulated the joint relay deployment

and adaptive traffic distribution problem as a mixed-integer nonlinear program

problem. Since this problem is NP-hard in general, we propose a greedy heuristic

to attack it. The numerical results demonstrate that significant network lifetime

extension can be achieved if relay nodes can be deployed in an effective way. For



example, when the proposed joint scheme is used, adding 10% extra relay nodes

can extend the network lifetime by 50% further compared to using adaptive traffic

distribution and power control solely for a large scale sensor network with 2000

nodes. We then conduct a set of simulations to verify the numerical results. Since

some approximations have been made when solving the problem numerically, life-

time extension obtained by the numerical solution is slightly higher than the net-

work lifetime extension obtained in the simulation. However, the network lifetime

extension is still significant.

In the second part of this dissertation, we investigate how to measure the fault

tolerance and attack resilience for randomly deployed wireless ad hoc networks.

Due to the randomness and distributiveness of such networks, traditional measure-

ment metrics, such as network connectivity, may not work well. Before proposing

the metric for fault tolerance and attack resilience measurement, we first propose

two new metrics to measure the average case of network service quality: average

pairwise connectivity and pairwise connected ratio, where the former denotes the

average number of node-disjoint paths per node pair in a network and the latter

is the fraction of node pairs that are pairwise connected. We derive a theoretical

upper-bound for the average pairwise connectivity of randomly deployed wireless

ad hoc networks, which can approximate the exact value very well. Based on these

two metrics, we then propose the fault tolerance and attack resilience metric: α-

p-resilience, where a network is α-p-resilient if at least α portion of nodes pairs

remain connected as long as no more than p fraction of nodes are removed from the

network. The fault tolerance and attack resilience of randomly deployed wireless

ad hoc networks are then studied under different attack models.
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Chapter 1

Motivation and Contributions

During the last decade, wireless ad hoc and sensor networks have become a very

active research area. Roughly speaking, a wireless ad hoc network is a group of

nodes without requiring centralized administration or fixed network infrastructure,

in which nodes can communicate with other nodes out of their direct transmission

ranges by cooperatively forwarding packets for each other [47, 60]. Since wireless

ad hoc networks can be easily and inexpensively set up as needed, a wide range of

applications have been envisioned, such as search and rescue, disaster relief, target

tracking, and smart environments. However, before ad hoc networks can be widely

used in practice, there still remain a lot of important issues to be solved. In this

dissertation, we will study two important issues: network lifetime maximization in

wireless sensor networks, and fault tolerance and attack resilience measurement in

wireless ad hoc networks.
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1.1 Lifetime Maximization in Wireless Sensor Net-

works

Wireless sensor network, a special type of wireless ad hoc network, has drawn

extensively attentions due to the demand of future combat systems and plenty

of civilian applications, such as battlefield surveillance, environment and habitat

monitoring, healthcare applications, home automation, and traffic control [1, 12,

23, 39, 40, 48, 61, 65]. A wireless sensor network usually consists of spatially dis-

tributed autonomous devices using sensors to cooperatively monitor physical or

environmental conditions at different locations. In addition to one or more sen-

sors, each node in a wireless sensor network is typically equipped with a wireless

communications device, a small microcontroller, and an energy source, usually a

battery.

In many applications, wireless sensor networks are deployed in a very large

scale. To make such deployment affordable and viable, sensors are usually made

small and cheap. Therefore the amount of energy each node can carry is also very

limited. Meanwhile, replacing batteries in those sensor nodes will be either difficult

or extremely costly. This makes energy become one of the most precious resources

in wireless sensor networks. This also motivates us to study how to efficiently

utilize the limited energy such that lifetime of such networks can be maximized1.

In the literature, lifetime maximization in wireless ad hoc and sensor networks

is a very active research topic and various approaches have been proposed. Below

are some of them that are related to our work.

1In the literature, various definitions of network lifetime have been proposed. Roughly speak-

ing, a network is regarded as alive if it still can operate properly, such as no nodes have become

dead.
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• Energy aware routing: In traditional routing protocols designed without con-

sidering the energy constraint, some nodes may die much faster than other

nodes due to extra packet forwarding burden. To address this issue, some re-

searchers have proposed energy aware routing [8,13,28,52–54]. For example,

in [13], the authors study how to design energy aware routing protocols for

ad hoc networks where the nodes have limited initial amounts of energy and

each node may adjust its power within a certain range that determines the

set of possible one hop away neighbors. The authors propose algorithms to

select the routes and the corresponding power levels such that the time until

the batteries of the nodes drain-out is maximized, and show that in order

to maximize the lifetime, the traffic should be routed such that the energy

consumption is balanced among the nodes in proportion to their energy re-

serves. One big assumption in [13] is that the topology of network needs to

be known, which limits its applicability.

• Energy-aware sleeping scheduling and medium access control: Another ap-

proach to extend the lifetime of wireless ad hoc sensor network is to design

energy aware sleep scheduling and Medium Access Control (MAC) protocols,

such as [11, 51, 66]. By taking into the consideration that nodes in wireless

sensor networks are inactive and/or idle in most time, scheduling and MAC

protocols can be designed in a more energy efficient way. Their results also

demonstrate that significant lifetime extension can be achieved when such

approaches are used.

• In-network data aggregation: By applying in-network data aggregation, the

network lifetime may also be significantly extended, as demonstrated in

[29, 32, 42]. In sensor networks, the data collected by sensors in the nearby
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neighborhood are usually correlated. If the redundancy among the collected

data can be exploited, less traffic is needed to be forwarded, which can re-

duce the forwarding burden of those bottleneck nodes and may consequently

extend the network lifetime.

• Energy-efficient clustering and hierarchical routing: This approach tries to

divide the network into multiple clusters and routing in a hierarchical struc-

ture, as demonstrated in [3, 12, 24, 67]. For example, in [3], a distributed

randomized clustering algorithm is proposed to organize the sensors in a

wireless sensor network into clusters, and observe that the energy saving in-

creasing with the number of levels in the hierarchy. If clustering can be done

in an efficient way, the network lifetime can also be extended.

• Joint mobility and Routing for Lifetime Elongation: If the data sink is allowed

to move around when collecting data, then routing and mobility control can

be jointly considered to further extend the network lifetime, as demonstrated

in [38]. In their work, the authors try to design optimal data collection

protocols by taking both base station mobility and multi-hop routing into

consideration. Their results have shown that significant lifetime extension

can be achieved. However, one major disadvantage of their approach is that

in reality seldom data sink can be mobile.

• Energy-aware resource allocation: Another straightforward way to extend the

network lifetime is to allocate more resources into specific areas to relieve the

bottleneck effect, as illustrated in [27,33,64].

• Energy-balanced data propagation: Another promising solution to extend the

network lifetime is energy-balanced data propagation, as demonstrated in

4



[20, 34, 49, 63]. In [20, 34, 49], Rolim et. al. try to derive schemes which can

make all nodes in network die at the same time by focusing on a special

strategy, where for each node, when it has a packet to send, it only has two

options: either send to its immediate down stream relay, or directly send to

the sink. They later derive an algorithm and proved that it can compute the

traffic split ratio optimally so that all nodes will die at the same time. In [63],

the authors also experimentally study energy-balanced data propagation by

taking into consideration the processing energy consumption with the goal

to be let nodes consume energy at same speed.

In this dissertation the problem of extending network lifetime is attacked by

applying adaptive traffic distribution and power control. The basic idea is to let

each sensor adaptively split its traffic with each portion being transmitted using

a different transmission range such that the network lifetime can be maximized.

This is motivated by the following observation: in a sensor network where nodes

need to send data to the sink and all nodes use the same transmission power,

nodes around the sink will experience much higher power consumption rate than

faraway nodes because of the extra relaying burden. As a consequence, the nodes

around the sink will run out of energy pretty fast, resulting in the quick death of

the network, though there is still considerable unused energy left in those nodes

far away from the sink. If nodes can adaptively adjust their transmission ranges,

nodes far away from the sink can at least directly send data to the sink to reduce

the relaying burden of the nodes around the sinks, and consequently increase the

network lifetime.

After abstracting the network using a layered model, we model the lifetime

maximizing adaptive traffic distribution and power control problem as a linear pro-
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gram. In order to help better understand the problem and meanwhile shed light

on the solution to more complicated scenarios, we first study the scenario by ignor-

ing the processing energy consumption (e.g., circuit-level energy consumed during

transmission and receiving). In this case, both numerical results and theoretical

analysis have confirmed the following important finding: in order to maximally

extend the network lifetime, for each packet to be sent, the node should transmit

it either directly to the sink, or to the immediate next inner hop. The significance

of such a finding lies in the fact that it can lead to very simple and efficient dis-

tributed algorithms for splitting the traffic and adjusting the transmission power

adaptively.

We then study the effect of incorporating processing energy consumption into

our model. In this case a similar finding is obtained: for each packet to be sent,

the sender should transmit it either directly to the sink, or to the certain inner

layers with the highest energy efficiency per bit per meter. Moreover, the results

indicate that incorporating processing energy consumption will not decrease the

effectiveness of the proposed adaptive traffic distribution and power control ap-

proach. Furthermore, incorporating the processing energy consumption can even

make the maximally extensible network lifetime increase. The results also show

that the variation of the processing energy consumption will not significantly affect

the extensible lifetime. In other words, the proposed approach can work in various

scenarios under various sensor node settings.

Although adaptive transmission power adjustment can lead to significant life-

time extension, in practice, we may not be able to reach the maximally achievable

extension that it has promised. One reason is that such an adaptive transmission

power adjustment scheme can introduce extra signal interference, especially when

6



long transmission ranges are used. To combat this issue, instead of focusing on

designing complicated scheduling and medium access control schemes, in this work

we propose a very simple yet effective approach: limiting the number of nodes that

are allowed to adjust their transmission range. Specifically, only a certain number

of nodes nearest to the sink are allowed to perform adaptive transmission range

adjustment, and all other nodes will keep their transmission power fixed. Although

this may reduce the maximally achievable lifetime extension, the simulation results

demonstrate that the lifetime extension is still significant.

Decentralization is one key feature of wireless sensor networks. In order to make

the proposed approach practically applicable, we need to implement it in a fully

distributed way. Towards this goal, we propose Energy-Aware Data Propagation

Algorithm, a fully distributed algorithm, to perform online adaptive traffic distri-

bution and transmission range adjustment. Our extensive results demonstrate that

the algorithm is very efficient and can significantly extend the lifetime of randomly

deployed wireless sensor networks in various scenarios and network settings. This

work can also be found at [56,57].

In the above lifetime maximizing adaptive traffic distribution and transmis-

sion power adjustment problem, we have focused on the situation in which the

optimization is performed after the network has been completely deployed, and

have implicitly assumed that certain quality of service (QoS) requirements, such

as network coverage constraint2, have been taken into consideration during the

deployment. In addition to that, in this work we have also studied the situations

that there are two types of nodes in a wireless sensor network: sensor nodes and

2Roughly speaking, we say a certain point has been covered if this point lies in at least one

active sensor node’s coverage range.
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relay nodes. Sensor nodes are randomly deployed with certain network coverage

requirement, and relay nodes will be deployed in a partially controlled way to fur-

ther extend the network lifetime. We have investigated how to extend the network

lifetime via joint optimization of node deployment and adaptive traffic distribution.

Since this optimization problem is mixed integer nonlinear programming problem,

which is NP-hard, we proposed a greedy algorithm to attack it. The numerical

results show that significant gain can be achieved, which has also been confirmed

by the simulation studied. This work can be found at [58].

1.2 Fault Tolerance and Attack Resilience Mea-

surement of Wireless Ad Hoc Networks

In addition to lifetime maximization with energy constraint, fault tolerance and at-

tack resilience are also important issues in wireless ad hoc and sensor networks. In

wireless ad hoc networks, due to the fragile wireless connections and possible mo-

bility, link breakages may happen very frequently. Meanwhile, some nodes may be

removed from the network due to the exhaustion of battery power. Therefore, the

study of fault tolerance should be an indispensable component, where the network

fault tolerance denotes the ability of a network to continue operating even though

some of its components have malfunctioned or failed3. Furthermore, such networks

may also be deployed in adversarial environments, and some parts of the network

may become unusable due to the attacks from malicious parties. For example,

3In this chapter “fault” refers to those link or node removals caused unintentionally, that is,

no malicious parties are involved. Those link or node removals involving malicious parties will

be referred to as “attack”.
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in wireless sensor networks, due to lacking enough physical protection, nodes can

be easily captured, compromised, or hijacked. Since nodes in such networks usu-

ally share the common communication channels, malicious parties can also launch

jamming attacks to disrupt the normal communications, which can consequently

result in some nodes or links becoming disconnected from the network. In such

circumstances, the ability of a network to continue operating even under attacks

becomes critical, which is referred to as attack resilience. Before further studying

the fault tolerance and attack resilience of a wireless ad hoc network, we need to

know how to quantify them. Without a metric, we cannot say one network is more

fault tolerant or attack resilient than another network.

To measure the network fault tolerance, one widely used metric is network con-

nectivity. For example, network fault tolerance has been defined as the maximum

number of elements that can fail without inducing a possible disconnection in the

network [43,50], that is, the network connectivity [6]. However, the use of network

connectivity to measure network fault tolerance only focuses on the worst case.

First, a network not being k-connected only implies that there exists some choice

of k − 1 nodes whose removal would disconnect the network, but does not mean

that if k− 1 nodes are removed, it is likely that the network will be disconnected.

Second, even if the removal of a group of nodes disconnects the network, it is still

possible that only one or a small number of nodes become isolated from the rest,

and may not have a significant impact on the usefulness of the network, and the

network may have high average pairwise connectivity and pairwise connected ratio.

Recently, the attack resilience issues have also drawn extensive attention. [2]

first study the attack resilience issues in scale-free networks. Following this, the

attack resilience of some other networks have been studied, such as Internet [10,15,
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16], food web [18, 19], protein network [30], email network [45], complex network

[25], and so on. To measure the attack resilience, one candidate is the average

vertex-to-vertex distance as a function of the number of vertices removed [2], or

equivalently, the average inverse geodesic length [25], where both measure the

average distance between node pairs in a network. However, such a metric may

not be appropriate to measure the attack resilience of wireless ad hoc networks for

the reason that in such networks the average vertex-to-vertex distance will increase

with the increase of network size for a fixed node density, while it is not necessarily

accompanied by a decrease in the network attack resilience.

To overcome the limitation of the existing metrics to measure the fault toler-

ance and attack resilience of wireless ad hoc networks, we first propose two new

metrics to measure the average case of network service quality: average pairwise

connectivity and pairwise connected ratio, where the former denotes the average

number of node-disjoint paths per node pair in a network and the latter is the

fraction of node pairs that are pairwise connected. We also derive a theoretical

upper-bound for the average pairwise connectivity of randomly deployed wireless

ad hoc networks, which can approximate the exact value very well. Based on these

two metrics, we then propose the fault tolerance and attack resilience metric: α-

p-resilience. Specifically, a network being α-p-resilient means that its expected

pairwise connected ratio is no less than α as long as no more than p fraction of

nodes are removed. It is worth pointing out that the α-p-resilience of a network

may not be the same under different node removal patterns. For example, a net-

work is usually more α-p-resilient to random fault than to attack. A similar metric

can be used to measure the decrease of average pairwise connectivity under fault

or attack.
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Under the proposed metric, we also study the fault tolerance and attack re-

silience of wireless ad hoc networks under different node failure patterns: random

node removal, selective node removal, and partition attack. Experimental studies

demonstrate that when the node density is relatively high, wireless ad hoc net-

works are more sensitive to partition attacks than selective node removal attacks

and random node failures, and selective node removal attacks are a little bit more

damaging than random node removal; when the node density is extremely low, all

the three node removal methods have similar effects, with partition attacks and

selective node removal attacks being a little bit more damaging than random node

removal. This work can be found at [59].

1.3 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2, Chapter 3 and

Chapter 4 study how to maximally extend the lifetime of wireless sensor networks

under energy constraint. Specifically, Chapter 2 focuses on a simplified scenario

where processing and receiving energy are ignored. Chapter 3 studies the effect of

incorporating the processing energy consumption and describes a fully distributed

algorithm to perform online adaptive traffic distribution and transmission range

adjustment. Chapter 4 investigates how to maximize the network lifetime via joint

optimization of node deployment and adaptive traffic distribution. The service

availability, fault tolerance and attack resilience measurement of wireless ad hoc

networks is studied in Chapter 5. Finally, Chapter 6 concludes this dissertation

and presents future directions.
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Chapter 2

Wireless Sensor Network Lifetime

Maximization Without

Considering Receiving &

Processing Power

As mentioned in Chapter 1, in our work we attack the problem of extending net-

work lifetime by applying adaptive traffic distribution and transmission range ad-

justment. The basic idea is to let each node adaptively split its traffic with each

portion being transmitted using a different transmission range such that the net-

work lifetime can be maximized. As suggested in [13], we define the network

lifetime as the time elapsing between network deployment and the moment when

the first node dies.

To help better understand lifetime maximizing adaptive traffic distribution and

power adjustment problem and shed light on the solutions to more complicated

scenarios, we first study the lifetime maximization problem by ignoring process-
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ing and receiving energy consumption. This applies to the situations where the

transmitting power plays a dominant role, such as in long range communication.

The rest of this chapter is organized as follows. Section 2.1 describes the network

model and the problem formulation. Section 2.2 presents the numerical results.

The theoretical analysis is presented in Section 2.3. Finally Section 2.4 summarizes

this chapter.

2.1 System Model and Problem Formulation

We consider randomly deployed wireless sensor networks consisting of a set of ho-

mogeneous wireless sensors. Each sensor needs to submit the collected information

to the sink which is roughly located at the center of the area. We assume that all

sensors have the same amount of initial energy, denoted by E. This is usually true

in randomly deployed wireless sensor networks. However, we do not put an energy

constraint on the sink, which also makes sense in practice. Given the network

to be deployed, some Quality of Service (QoS) requirements, and specific types

of sensors, we also pose a minimum and maximum transmission range limitation

for each sensor, denoted by rmin and rmax. The value of rmin can be determined

by both hardware limitation and QoS requirements, such as network connectiv-

ity. The value of rmax is usually decided by hardware constraint. Currently the

maximum transmission range in general sensor networks is around several hundred

meters, however, along with the advance of the technology, especially the increase

of the receiver sensitivity, the maximum transmission range for sensors will be

much longer [37].

In this work, similar to [27,62], we model the transmission energy consumption
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at each node as follows:

Pt(r) = β · rα per bit. (2.1)

Here α is the path loss exponent, r is the targeted transmission range, and β is a

scalar indicating the energy needed to successfully convey an information bit to a

unit distance. Generally, the traffic load in sensor network is low, so in this work

we do not consider MAC protocol and assume perfect MAC protocol is available.

Next we model the lifetime maximization problem. If the exact distances be-

tween all pairs of nodes are known, it is possible to model the problem precisely.

However, in randomly deployed wireless sensor networks, such information is usu-

ally impossible to obtain. To make the problem tractable, we further abstract

the network model by assuming that the sensors are (deterministically) uniformly

deployed. These assumptions will be relaxed later when we conduct performance

evaluation. We then divide the network into multiple layers: a node belongs to the

lth layer if and only if its distance to the sink lies in the range ((l−1) ·rmin, l ·rmin],

and the layer 0 is the sink. Thus, the width of each layer is taken to be rmin.

We first begin with a simple one-dimensional case, where the sensors are equally

spaced deployed along a line with the sink located at the center of line. Let L

denote the total number of layers. For any integers l, k with 0 ≤ k < l ≤ L, let

xl,k denote the average number of bits that a node in the lth layer needs to request

nodes in the kth layer to forward per unit time. Let Tlife denote the network

lifetime and P = E
Tlife

be the average energy consumption rate. Here maximizing

Tlife is equivalent to minimizing P . Then we can model the lifetime maximization
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Figure 2.1: Layered network model illustration

problem as the following MIN-MAX linear program:

min{xl,k, 1≤l≤L, 0≤k≤L} P s.t. (2.2)

∑L
k=l+1 xk,l + g =

∑l−1
k=0 xl,k, 1 ≤ l ≤ L (2.3)

∑l−1
k=0 xl,k × P t

l,k ≤ P, 1 ≤ l ≤ L (2.4)

xl,k ≥ 0, 1 ≤ l ≤ L, 0 ≤ k < l (2.5)

xl,k = 0, (l − k)rmin > rmax, 0 ≤ l, k ≤ L (2.6)

xl,k = 0, 0 ≤ l ≤ k ≤ L (2.7)

where P t
l,k = Pt((l − k)rmin). Here condition (2.3) is for traffic conservation, that

is, the amount of transmitted traffic should be equal to the amount of received plus

generated traffic. Condition (2.4) indicates that the energy consumption rate of all

nodes should be no more than P , where the node with the maximum energy con-

sumption rate will determine the network lifetime. Condition (2.5) is introduced

to guarantee that the solutions are feasible. Condition (2.6) limits each node’s
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maximum transmission range. Condition (2.7) prevents nodes from sending traffic

further away from the sink.

Next we study the more general two-dimensional situation. The network model

is illustrated in Fig. 2.1. Let R denote the radius of the network and let L denote

the total number of layers in the network, that is, L = d R
rmin

e. Similarly to one-

dimensional case, we define g and xl,k for two-dimensional case. We can readily

check that the ratio between the number of nodes in the kth layer and the number of

nodes in the lth layer (k > l) is 2k−1
2l−1

. Thus the average number of bits that a node

in the lth layer will receive from nodes in the kth layer (k > l) should be 2k−1
2l−1

xk,l.

Then the two dimensional case can be modeled as the following MIN-MAX linear

program:

min{xl,k, 1≤l≤L, 0≤k≤L} P s.t. (2.8)

∑L
k=l+1

2k−1
2l−1

xk,l + g =
∑l−1

k=0 xl,k, 1 ≤ l ≤ L (2.9)

∑l−1
k=0 xl,kP

l,k
t ≤ P, 1 ≤ l ≤ L (2.10)

xl,k ≥ 0, 0 ≤ k < l, 1 ≤ l ≤ L (2.11)

xl,k = 0, (l − k)rmin > rmax, 0 ≤ l, k ≤ L (2.12)

xl,k = 0, 0 ≤ l ≤ k ≤ L (2.13)

where P l,k
t = Pt((l − k)rmin).

2.2 Numerical Results

Before presenting the theoretical results, we first examine the numerical solutions,

and compare the lifetime extension under different settings. The baseline approach

is as follows: each layer is only allowed to transmit to its next immediate inner layer,

that is, rmax = rmin. In the following comparison, extended lifetime (or lifetime
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Figure 2.2: Extended lifetime when there is no maximum transmission range con-

straint for all nodes

extension) denotes the ratio between the extended lifetime by other approach over

the lifetime obtained by the baseline approach. In other words, if the extended

lifetime is x%, the whole lifetime is (1+x%) times the lifetime of the baseline

approach. network radius identifies the network size. Without loss of generality

we normalize rmin = 1; then the network with radius R will have R layers.

We first study the maximum possible lifetime extension that can be achieved

by applying adaptive traffic distribution and power control. Fig. 2.2 illustrates

the numerical results for different network radii and path loss exponents by setting

rmax ≥ R and assuming interference-free medium access scheduling. Fig. 2.2 shows

that the adaptive power control scheme is more effective for the two-dimensional

network than for the one-dimensional network. For the two-dimensional network,

the nodes around the sink need to relay more traffic, so they are more critical than

their counterpart in the one-dimensional network in terms of energy consumption.

Thus, when we smooth the energy consumption rate by adjusting transmission

power, we can get more gain in the two-dimensional network. From these results
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Figure 2.3: Lifetime extension under the constraint rmax = 2rmin

we also observe that the larger the network size, the more the network lifetime

can be extended, especially when the path loss exponent is low. When the path

loss exponent becomes high, the benefit of increasing transmission range will be

reduced due to the fact that longer transmission range results in lower energy

efficiency per bit per meter.

Fig. 2.2 also shows that in the two-dimensional network, the network lifetime

can be extended about 75% when the path loss exponent is 3, and around 25%

when the path loss exponent is 4. When the path loss exponent is 2, the lifetime

extension can be up to 325% for the network size 15 (here network size denotes

the number of layers in the network).

As we mentioned before, in practice nodes usually have maximum transmission

range constraint. So we next study the numerical solutions by imposing maxi-

mum transmission range constraint. Fig. 2.3 illustrates the results for one case:

rmax = 2rmin. This can be modelled as a linear programming problem by adding

constraints xl,k = 0, l − k > 2 to equations. Similar to Fig. 2.2, Fig. 2.3 shows
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that when dimension is higher or the path loss exponent is lower, the network

lifetime can be extended more. It also shows that even after imposing such a re-

strictive constraint, significant lifetime extension can still be achieved: 75%, 33%

and 14% for path loss exponent being 2, 3, and 4 respectively for two-dimensional

case. Furthermore, given a fixed path loss exponent, the extended network lifetime

percentage remains almost the same for different network sizes.

We studied this phenomena a little bit and found following Lemma:

Lemma 2.1 Let P1 is the MIN-MAX P for LP 2.8-2.13 with α = 2, rmax =

2rmin, L ≥ 3; let P2 is the MIN-MAX P for LP 2.8-2.13 with α = 2, rmax =

rmin, L ≥ 3. Then P2

P1
≥ 7

4
, i.e., the lower bound for the network lifetime extension

is 75%.

Proof:

It is readily to check that when rmax = rmin, the solution for LP 2.8-2.13 is P2 =

L2gPt(rmin). We then prove this lemma by constructing one feasible solution P̃

for rmax = 2rmin case.

We slightly modify the original problem by putting one more extra constraint

(except rmax = 2rmin): only the inner 3 layers are allowed to adjust their transmis-

sion range, while all the other layers keep their transmission range fixed at rmin,
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i.e. xl,k = 0, l > 3, l − k > 1. Then we can get a simple LP:

min P s.t. (2.14)

3x2,1 + 5x3,1 + g = x1,0 (2.15)

5

3
x3,2 + g = x2,0 + x2,1 (2.16)

7

5
x4,3 + g = x3,1 + x3,2 (2.17)

x4,3 =
1

7
(L2 − 9)g (2.18)

x1,0Pt(rmin) ≤ P (2.19)

4x2,0Pt(rmin) + x2,1Pt(rmin) ≤ P (2.20)

4x3,1Pt(rmin) + x3,2Pt(rmin) ≤ P (2.21)

{x1,0 = 4
7
L2g, x2,0 = 1

7
L2g, x2,1 = 0, x3,1 = 1

5
(4

7
L2 − 1)g, x3,2 = 3

5
(1

7
L2 − 1)g} is one

set feasible solution to above LP and the corresponding P is P̃ = 4
7
L2gPt(rmin).

P̃ is one feasible solution to the LP 2.8-2.13 with rmax = 2rmin, then P̃ ≥ P1. So

P2

P1
≥ 7

4
. 2

Similar to α = 2 case, we can prove that when rmax = 2rmin, the lower bound

lifetime extension for α = 3 is 32.8% when there are more than 4 layers in the

network and the lower bound for α = 4 is 14% when there are more than 5 layers

in network.

The other interesting observation is that the extended lifetime decreases when

the network size increases for the one-dimensional case. Through the analysis in

the two-dimensional case, we know that when the maximum transmission range is

2, mainly the inner 3 layers count. On the other hand, in the one-dimensional case,

the larger the network size, the smaller the relative traffic difference between the

inner layers when all nodes use same transmission range. So the gain by adjusting

the transmission range is smaller when the network size is larger.
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Figure 2.4: Lifetime extension for 2-dimensional case under different rmax con-

straint, α = 2

Now we study the more general cases by varying rmax. Fig. 2.4 illustrates the

numerical results under different rmax values, where α = 2. We can see that with

the increase of rmax, the network lifetime extension also increases. This is easy to

understand: with the increase of rmax, each node has more choices to send traffic

to, and the optimization problem becomes less constrained. Similar to the results

in Fig. 2.3, we can also observe that the extended lifetime remains almost the same

for different network size, 125% for rmax = 3 and 160% for rmax = 4. The reason

is as before: in this case the network lifetime is mainly determined by how those

innermost layers behave.

To demonstrate the important role that the innermost layers play, we consider

the following simple strategy obtained by imposing an extra constraint: only those

innermost layers that can directly reach the sink are allowed to adaptively adjust

their transmission range, while all the other layers fix the transmission range at

rmin. Fig. 2.5 illustrates the numerical results as well as the comparison to the
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Figure 2.5: Comparison between constraining transmission power adjustment to in-

nermost several layers versus imposing a maximum transmission range constraint.

results without imposing this extra constraint, that is, all nodes can adjust their

transmission range up to rmax. From these results we can see that although there

is performance loss compared to the case where all nodes are allowed to adjust

transmission range, the lifetime extension is still significant: 50%, 91% and 126%

when only innermost 2, 3, and 4 layers are allowed to adjust their transmission

range, respectively. As will be mentioned many times later, the attraction of

this extra constraint lies in that it can greatly simplify the implementation: if

only some innermost layers are allowed to adjust their transmission power, the

scheduling and medium access control protocol can be greatly simplified and the
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Figure 2.6: Traffic splitting ratio for each layer. where the whole traffic is split

between the next inner layer and the sink. Two-dimensional network with path

loss exponent α = 2. (a) network radius = 9 (b) network radius = 15

extra signal interference caused by power adjustment can be significantly reduced.

If we take a further look at the numerical solutions to the problem (2.8)-(2.13),

we can see for each node its whole traffic will be split into two portions, one is

directly sent to the sink and one is sent to the next inner layer, as illustrated

in Fig. 2.6. This can be translated into the following statement: when there is

no maximum transmission range constraint (e.g., rmax ≥ R), the optimization

problem (2.8)-(2.13) should have at least one optimal solution with the following

form:

{xi,i−1 ≥ 0, xi,0 ≥ 0, xi,j = 0, 1 ≤ i ≤ L, 1 ≤ j ≤ i− 2} (2.22)

We refer to such a solution as having standard form. The attraction of this form

lies in that it can direct us to design an efficient and fully distributed algorithm

to perform online traffic distribution and power adjustment. We will study this

result further in Section 2.3.

From Fig. 2.6, we can see that although the splitting ratio is different, both
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subfigures have a similar shape: the nodes in the middle layers will send traffic to

sink with a lower ratio, while the nodes in the layers either near the sink or near

the boundary will send traffic to the sink with a higher ratio. The reason is that

nodes in faraway layers near the boundary have less traffic, so they can afford to

send a higher percentage of traffic directly to the sink, and nodes in the innermost

layers can afford to send a higher percentage of traffic directly to the sink because

their distance to the sink is small.

2.3 Theoretical Analysis

The results in Section 2.2 suggest the following conjecture: when a sensor node

can send traffic to the sink directly, then it should either send the traffic to the

sink directly, or send to its next inner layer. In this section, we will formally prove

this conjecture.

We will give out the detail proof for two-dimensional case and one-dimensional

case can be proved similarly.

Theorem 2.2 When α > 1, and each node can reach the sink by adjusting its

transmission power, there always exists an optimal solution to the optimization

problem (2.8)-(2.13) with the standard form (2.22).

Proof:

We will show that any optimal solution can be transformed into a solution in

standard form (2.22) without losing optimality.

Let {xi,j} be an optimal solution. If this optimal solution is not in the standard

form, then we can transform {xi,j} to {x̃i,j} such that {x̃i,j} is in the standard form.

The whole procedure is as follows:
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We iteratively apply the following procedure: find the first link xl,l−r > 0

(l ≥ 3) with the following properties:

• {xi,i−1 ≥ 0, xi,0 ≥ 0, xi,j = 0, 2 < i < l, 1 ≤ j ≤ i − 2}, that is, for all i < l,

except xi,0 and xi,i−1, no other links can have non-zero traffic value.

• For all 0 < j < l − r, xl,j = 0.

Next we show how to redistribute xl,l−r to the other links. Specifically, we will

redistribute the traffic on links in such a way that no traffic will go through the

link (l, l − r) and the MIN-MAX power among all layers does not increase. For

layer l − r, its initial power is:

Pl−r = (l − r)αxl−r,0 + xl−r,l−r−1

≥ 2l − 2r + 1

2l − 2r − 1
xl−r+1,l−r +

2l − 1

2l − 2r − 1
xl,l−r +

L∑

i=l+1

2i− 1

2l − 2r − 1
xi,l−r + g

(2.23)

where 2l−2r+1
2l−2r−1

xl−r+1,l−r + 2l−1
2l−2r−1

xl,l−r +
∑L

i=l+1
2i−1

2l−2r−1
xi,l−r + g = xl−r,0 +

xl−r,l−r−1 is the traffic that layer l − r needs to transmit.

We split traffic xl,l−r into two parts ∆xl,l−r+1 and ∆xl,0 which will be sent to

the layer l − r + 1 and the sink respectively. To conserve traffic and to keep the

layer l power consumption unchanged, we need to have




∆xl,0 + ∆xl,l−r+1 = xl,l−r

lα∆xl,0 + (r − 1)α∆xl,l−r+1 = rαxl,l−r

⇒





∆xl,l−r+1 = lα−rα

lα−(r−1)α xl,l−r

∆xl,0 = rα−(r−1)α

lα−(r−1)α xl,l−r

(2.24)

After this traffic rerouting, the power consumed by layer l does not change.

However, the incoming traffic of layer l − r + 1 has been increased. Therefore we

need to adjust layer l−r+1’s traffic too. We intend to keep the power consumption

of layer l−r+1 the same, so we try to increase xl−r+1,l−r by ∆xl−r+1,l−r and decrease
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xl−r+1,0 by ∆xl−r+1,0. Traffic conservation and power consumption invariance imply

that 



∆xl−r+1,l−r −∆xl−r+1,0 = 2l−1
2l−2r+1

∆xl,l−r+1

∆xl−r+1,l−r = (l − r + 1)α∆xl−r+1,0

⇒





∆xl−r+1,l−r = (l−r+1)α

(l−r+1)α−1
· 2l−1

2l−2r+1
·∆xl,l−r+1

∆xl−r+1,0 = 1
(l−r+1)α−1

· 2l−1
2l−2r+1

·∆xl,n−r+1

(2.25)

Then there are two possible scenarios:

• Scenario I: ∆xl−r+1,0 ≤ xl−r+1,0

• Scenario II: ∆xl−r+1,0 > xl−r+1,0

For scenario I, {xi,j} is updated as follows:

x1
l,l−r = 0

x1
l,l−r+1 = xl,l−r+1 + ∆xl,l−r+1

x1
l,0 = xl,0 + ∆xl,0

x1
l−r+1,l−r = xl−r+1,l−r + ∆xl−r+1,l−r

x1
l−r+1,0 = xl−r+1,0 −∆xl−r+1,0

x1
i,j = xi,j, for other i, j and i > l − r

x1
i,j =

∑L
k=i+1

2k−1
2i−1

x1
k,i + g

∑L
k=i+1

2k−1
2i−1

xk,i + g
xi,j, i ≤ l − r

After updating, the traffic for layers beyond l−r+1 stays the same except layer

l, so their power consumption do not change. The power consumption of layers l

and l − r + 1 does not change, and the incoming traffic of layer l − r is changed

by 2l−2r+1
2l−2r−1

∆xl−r+1,l−r − 2l−1
2l−2r−1

xl,l−r = 2l−1
2l−2r−1

( (l−r+1)α

(l−r+1)α−1
· lα−rα

lα−(r−1)α − 1)xl,l−r. If

(l−r+1)α

(l−r+1)α−1
· lα−rα

lα−(r−1)α ≤ 1, the incoming traffic of layer l − r will not increase.
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Thus, the power consumption of layer l − r will not increase. Now, we show

(l−r+1)α

(l−r+1)α−1
· lα−rα

lα−(r−1)α ≤ 1.

(l − r + 1)α

(l − r + 1)α − 1
· lα − rα

lα − (r − 1)α
≤ 1

⇔ [(l − r + 1)r]α + (r − 1)α ≥ [(l − r + 1)(r − 1)]α + lα (2.26)

Noting that (l− r + 1)r + r − 1 = (l− r + 1)(r − 1) + l = C where C is constant,

equation (2.26) is equivalent to

(C − r + 1)α + (r − 1)α ≥ (C − l)α + lα (2.27)

Consider the function f(x) = (C − x)α + xα. This function is convex since

f ′′(x) ≥ 0 when α > 1 and it is symmetric about x = C
2
. It is easy to verify that

the larger the value of |C−2x|, the larger the value of f(x). Further f(x) is strictly

increasing with |C − 2x| when α > 1. So the inequality (2.26) is equivalent to

|(l − r + 1)r − (r − 1)| ≥ |(l − r + 1)(r − 1)− l| (2.28)

It is easy to check that inequality (2.28) holds for all 2 < l ≤ L, 1 < r < l,

so (l−r+1)α

(l−r+1)α−1
· lα−lα

lα−(r−1)α ≤ 1, and 2l−ar+1
2l−2r−1

∆xl−r+1,l−r ≤ 2l−1
2l−2r−1

xl,l−r, that is, the

incoming traffic of layer l − r does not increase. We then recursively update the

traffic from layer l− r to layer 1. Since the incoming traffic for layer l− r does not

increase, the traffic for all layers 1 to l − r do not increase either, so their power

consumption does not increase. Thus, the MIN-MAX power does not increase in

scenario 1.

Actually, |(l − r + 1)r − (r − 1)| is strictly greater than |(l − r + 1)(r − 1)− l|
when 2 < l ≤ L, 1 < r < l. So (l−r+1)α

(l−r+1)α−1
· lα−lα

lα−(r−1)α < 1, which means the incoming

traffic and power consumption of layer l − r are actually decreased.
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Now let us consider scenario II: ∆xl−r+1,0 > xl−r+1,0. In this scenario, we

cannot decrease xl−r+1,0 by the whole amount ∆xl−r+1,0. Consequently, {xi,j} is

updated as follows:

x1
l,l−r = 0

x1
l,l−r+1 = xl,l−r+1 + ∆xl,l−r+1

x1
l,0 = xl,0 + ∆xl,0

x1
l−r+1,l−r = xl−r+1,l−r + xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1

x1
l−r+1,0 = 0

x1
i,j = xi,j, for other i, j and i > l − r

x1
i,j =

∑L
k=i+1

2k−1
2i−1

x1
k,i + g

∑L
k=i+1

2k−1
2i−1

xk,i + g
xi,j, i ≤ l − r

After updating, the power consumption of layer l stays the same. The power

consumption of layer l − r + 1 is

P 1
l−r+1 = xl−r+1,l−r + xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1.

Next we will show P 1
l−r+1 ≤ Pl−r. Since ∆xl−r+1,0 > xl−r+1,0, we have

xl−r+1,0 +
2l − 1

2l − 2r + 1
∆xl,l−r+1 < ∆xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1

= ∆xl−r+1,l−r ≤ 2l − 1

2l − 2r + 1
xl,l−r, (2.29)

where the last equality is from Eqn. (2.25) and the last inequality comes from

scenario I. We then have

P 1
l−r+1 < xl−r+1,l−r +

2l − 1

2l − 2r + 1
xl,l−r < Pl−r (2.30)

So the power consumption of layer l − r + 1, P 1
l−r+1, is smaller than the original

MIN-MAX power.
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The incoming traffic of layer l − r is changed by xl−r+1,0 + 2l−1
2l−2r+1

∆xl,l−r+1 −
2l−1.

2l−2r−1
xl,l−r < 0. Thus, the incoming traffic of layer l − r is decreased, so the

power consumption of layer l − r will not increase. The power consumption of all

other layers do not increase either. Therefore, in scenario 2, after updating, the

MIN-MAX power does not increase either.

Thus, after this procedure, {xi,j} is updated to {x1
i,j} by redistributing traffic on

links to delete the traffic on (l, l− r), and the MIN-MAX power does not increase.

We keep executing this procedure until the solution is in the standard form. Since

each application of this procedure does not increase the MIN-MAX power, the

theorem is proved. 2

Further, the standard form solution (2.22) is the unique solution for LP (2.8)-

(2.13).

Lemma 2.3 In any optimal solution for the optimization problem (2.8)-(2.13),

the nodes in all layers will use energy at the same rate.

Proof:

Suppose in an optimal solution, the nodes in different layers use the energy at

different rate. Considering the innermost layer j from those layers with the highest

energy consumption rate, there are two cases:

(i) If j ≥ 2, let the energy consumption rate for nodes in layers j and j − 1 be

p1 and p2 respectively. Let the nodes in layer j send 0 < ∆x < (p1−p2)(2j−3)
(j−1)α(2j−1)

more

traffic to layer j − 1 and the nodes in layer j − 1 send 2j−1
2j−3

∆x more traffic to the

sink. In this way the nodes in the layer j will reduce their energy consumption

rate, and the nodes in the layer j − 1 will increase their energy consumption rate

but it remains smaller than p1. Notice that since all nodes have the same initial

energy and same traffic generation rate, this adjustment is always applicable. By
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applying this adjustment iteratively, the MIN-MAX power will be reduced, thus

the original optimal solution is not optimal, contradiction;

(ii) If j = 1, we denote layer i as the layer where all layers between layer 1

and layer i (including layer 1 and layer i) have the same energy consumption rate

and layer i + 1 has smaller energy consumption rate. Let the energy consumption

rate for nodes in layers i and i + 1 be p1 and p2 respectively. Let the nodes in

layer i + 1 send 0 < ∆x < (p1−p2)
(i+1)α−1

more traffic to the sink, so the nodes in layer

i have less relay traffic. In this way the nodes in the layer i will reduce their

energy consumption rate, and the nodes in the layer i+1 will increase their energy

consumption rate but the rate remains smaller than p1. Similar to case (i) this

leads to a contradiction. 2

Corollary 2.4 When α > 1,the optimal standard form (2.22) solution is the

unique optimal solution to the optimization problem (2.8)-(2.13)

Proof:

According to the proof for Theorem 2.2, any solution can be transformed into

standard form without decreasing the network lifetime. During the transforma-

tion, there always exist some layers whose energy consumption rate is lowered. It

indicates that any other solution form except standard form cannot be optimal

solution according to Lemma 2.3. And it is readily verified that there only exists

one standard form optimal solution. 2

Similar to two-dimensional case, we have following theorem for one-dimensional

case.

Theorem 2.5 When α > 1, and each node can reach the sink by adjusting its

transmission power, there always exists an optimal solution to the optimization
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problem (2.2)-(2.7) with the standard form (2.22).

Lemma 2.6 In any optimal solution for the optimization problem (2.2)-(2.7), the

nodes in all layers will use energy at the same rate.

Corollary 2.7 When α > 1,the optimal standard form (2.22) solution is the

unique optimal solution to the optimization problem (2.2)-(2.7)

2.4 Summary

In this chapter, we have studied the lifetime maximization problem without con-

sidering processing and receiving energy consumption. We investigated both one

dimensional network and two dimensional network. We modeled the problem into

a linear program problem and studied the numerical results. The numerical re-

sults show that the proposed adaptive traffic distribution and transmission range

adjustment scheme brings significant gain. The numerical results obtained also

suggest a surprising conjecture, namely that if a node can reach the sink directly,

the optimal way for it to split the traffic is to either send to the next layer toward

the sink (i.e., using the minimum transmission range) or send directly to the sink.

We then theoretically analyze this optimization problem and prove the conjecture.
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Chapter 3

Wireless Sensor Network Lifetime

Maximization With Receiving &

Processing Power

In Chapter 2, we studied the lifetime maximizing problem without considering pro-

cessing energy. When no processing energy consumption is considered, due to the

nonlinear (e.g., quadratic for α = 2) increase of transmission power consumption

with respect to the transmission range, shorter transmission range is usually pre-

ferred. In other words, as long as the network connectivity can be maintained and

certain QoS requirements can be satisfied, the smaller the value of rmin, the higher

the energy efficiency per bit per meter, and consequently the higher the maximum

achievable lifetime extension. However, when processing energy consumption is

also considered, shorter transmission range may not always be preferred to longer

transmission range.

In this chapter, we study the network lifetime maximization problem under

a more general setting by incorporating the processing and receiving energy into
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the model. The rest of this chapter is organized as follows. Section 3.1 describes

the modified system model and re-formulated the network lifetime optimization

under the new model. Section 3.2 presents the numerical results to the modified

optimization problem, which is followed by the theoretical analysis. In Section 3.3

a fully distribution algorithm is proposed to let nodes adaptively distribute traf-

fic and adjust transmission range. The simulation results are demonstrated in

Section 3.4. Finally, Section 3.5 summarizes this chapter.

3.1 System Model and Problem Formulation

Same as the model in Chapter 2, we assume that all sensors have the same amount

of initial energy, denoted by E. Each node has a minimum and maximum trans-

mission range limitation denoted by rmin and rmax.

The transmission energy consumption at each node is modeled as follows:

Pt(r) = β · rα per bit. (3.1)

Here α is the path loss exponent, r is the targeted transmission range, and β is a

scalar indicating the energy needed to successfully convey an information bit to a

unit distance.

Besides transmission energy consumption, circuit-level energy consumption,

such as energy consumed during encoding, decoding, modulation, and demodula-

tion, also plays an important role in many scenarios. In this work we refer to this

as the processing energy. We first consider processing energy consumed during

transmission. In general this contributes a constant additive term to the overall

energy consumption, which can be modeled as follows:

Pc = γ1 per bit. (3.2)
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The value of γ1 is determined by the underlying communication technologies, such

as the encoding and modulation schemes used. Similarly, the processing energy

consumed per bit during receiving stage is modeled as follows:

Pr = γ2 per bit. (3.3)

The value of γ2 is also determined by the underlying technologies, such as the

decoding and demodulation schemes used.

Next we model the lifetime maximization problem with processing energy. To

make the problem tractable, in this work we first focus on a sensor network de-

ployed inside a circular area with the sink located in the center. Same as Chapter

2, we divide the network into multiple layers. Then we can model the lifetime

maximization problem as follows:

min{xl,k, 1≤l≤L, 0≤k≤L} P s.t. (3.4)

∑L
k=l+1

2k−1
2l−1

xk,l + g =
∑l−1

k=0 xl,k, 1 ≤ l ≤ L (3.5)

∑l−1
k=0 xl,kP

l,k
t +

∑L
k=l+1

2k−1
2l−1

xk,lPr ≤ P, 1 ≤ l ≤ L (3.6)

xl,k ≥ 0, 0 ≤ k < l, 1 ≤ l ≤ L (3.7)

xl,k = 0, (l − k)rmin > rmax, 0 ≤ l, k ≤ L (3.8)

xl,k = 0, 0 ≤ l ≤ k ≤ L (3.9)

where P l,k
t = Pc+Pt((l−k)rmin). Eqn. (3.5) models the traffic conservation, i.e., for

each node the amount of transmitted traffic should be equal to the traffic received

plus the traffic generated. Eqn. (3.6) poses the energy constraint. Eqn. (3.7)

guarantees the feasibility of the solutions. Eqn. (3.8) limits each node’s maximum

transmission range. Eqn. (3.9) prevents nodes from sending traffic further away

from the sink.
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3.2 Numerical Results and Theoretical Analysis

Now we study the effect of processing energy consumption on the lifetime max-

imization problem (3.4)-(3.9). When no processing energy consumption is con-

sidered, due to the nonlinear (e.g., quadratic for α = 2) increase of transmission

power consumption with respect to the transmission range, shorter transmission

range is usually preferred. In other words, as long as the network connectivity

can be maintained and certain QoS requirements can be satisfied, the smaller the

value of rmin, the higher the energy efficiency per bit per meter, and consequently

the higher the maximum achievable lifetime extension. However, when processing

energy consumption is also considered, shorter transmission range may not always

be preferred to longer transmission range. Instead, there exists an optimal trans-

mission range such that the energy consumption per bit per meter is minimized,

which is referred to as the characteristic distance [5]. In our model, it is easy to

check that the characteristic distance dchar is:

dchar =

(
γ1 + γ2

β(α− 1)

) 1
α

. (3.10)

Later we will see that dchar plays a critical role in the solution to the optimization

problem (3.4)-(3.9).

In order to obtain the optimal solution to (3.4)-(3.9), our first step is to apply

numerical analysis. To make the results solid, our analysis is based on the typical

energy consumption parameters as well as their variations [5,24]. To have a better

understanding of how processing energy consumption affects the results, we impose

different constraints on the original problem (3.4)-(3.9). Specifically, four sets of

constraints are imposed separately, as described in Table 3.1. To compare the

lifetime obtained under different constraints, we regard the lifetime obtained by

imposing constraint C1 as the baseline.

35



Table 3.1: Extra constraints imposed on the original problem (3.4)-(3.9)

C1: always transmit using rmin.

C2: always transmit using dchar.

C3: either transmit using dchar, or directly to the sink.

C4: no extra constraint.
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Figure 3.1: Lifetime comparison among different scenarios. Both rmin and the

network radius are fixed. α = 2

We set γ1 = 45nJ/bit, γ2 = 135nJ/bit, and β = 10pJ/bit/m2 for α = 2 [24].

Thus, dchar ' 134m. We then fix rmin to be the characteristic distances calculated

based on the above parameters, and decrease the value of β to get different charac-

teristic distances. Such decrease happens when the receiving technologies advances,

or when some special decoding techniques are applied. We fix R = 20rmin. Fig. 3.1

illustrates the results obtained by imposing different constraints.

First, Fig. 3.1 shows that dramatic lifetime extension can be achieved by C3 and

C4. For example, when dchar = rmin, more than 700% extension is achieved, while

when dchar = 5rmin, the lifetime extension can be up to 5000%. The results indicate
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that instead of decreasing the effectiveness of the adaptive traffic distribution and

power control approach, the introduction of processing energy consumption can

even further increase the maximum achievable network lifetime extension. Second,

we can see that the lifetime extension also increases with the increase of character-

istic distance. For example, even for C2, when dchar = 5rmin, the lifetime extension

can reach 1200%. This suggests that transmitting using characteristic distance is

much more energy efficient than transmitting using rmin. In other words, shorter

transmission range is not always preferred when the processing energy consump-

tion is taken into account. When processing energy consumption plays a more

important role in overall energy consumption (i.e., γ1+γ2

β
increases), transmitting

using a short range becomes less energy efficient per bit per meter.

After examining the numerical solutions, we observe that when no extra con-

straint is imposed (corresponding to C4), in most situations each node either di-

rectly transmits the traffic to the sink, or to some inner layers around dchar away.

This also explains why the lifetime gap between C3 and C4 is small, where the life-

time obtained by imposing C4 is only slightly longer than the lifetime obtained by

imposing C3. Due to its simplicity and the concern of distributed implementation,

the constraint C3 is usually preferred.

So far when we have changed dchar, we fixed the values of γ1 and γ2. However,

with the advance of technology, both γ1 and γ2 may change. For example, applying

sophisticated decoding techniques may lead to the increase of γ2, while applying

sophisticated encoding techniques may increase γ1, and either can lead to the

decrease of β. Now the question is whether the change of γ1 and γ2 will result

in the dramatic change of the solutions. To study this issue, we consider the

following three scenarios when increasing dchar: 1) simultaneously increase γ1 and
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Figure 3.2: Lifetime extension comparison by varying the ratio of γ1/γ2, α = 2.

γ2 by keeping γ1/γ2 = 1/3; 2) increase γ2 only by fixing γ1; 3) increase γ1 only

by fixing γ2. Fig. 3.2 illustrates the numerical results obtained under 3 different

scenarios by applying constraint C4. From Fig. 3.2 we can see that although

the maximum achievable lifetime extension is slightly different among the three

scenarios, the three curves look very similar. This suggests that varying γ1 and

γ2 will not affect the effectiveness of the adaptive traffic distribution and power

control approach.

In the above analysis we focus on studying the effect of different transmitting

and receiving technologies (i.e., different γ1, γ2 and β settings). Now we fix the

values of γ1, γ2, and β, and study the effect of rmin. As we mentioned before,

besides physical limitation, rmin is also determined by certain QoS requirements,

such as network connectivity. For example, in a dense network we can use a

small rmin, while in a sparse network we need a large rmin to maintain necessary

connectivity. Fig. 3.3 illustrates the results for various rmin. As before, we set

α = 2, γ1 = 45nJ/bit, γ2 = 135nJ/bit, β = 10pJ/bit/m2. Two network sizes are
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Figure 3.3: Lifetime comparison for different network size 5 ∗ dchar and 10 ∗ dchar

by fixing dchar and changing rmin, α = 2.

studied: 10dchar and 5dchar. Since we have observed that imposing constraint C1

is not energy efficient, here we use the lifetime obtained by imposing constraint C2

as baseline. The results illustrated in Fig. 3.3 show the extended lifetime obtained

by imposing no extra constraints (C4).

First, Fig. 3.3 shows that higher lifetime extension can be obtained with the

increase of network size. This is similar to the results illustrated in Fig. 2.2. Second,

with the decrease of rmin, the extensible lifetime increases. This is because smaller

rmin allows nodes to adjust their transmission power in a finer way since rmin is the

width of each layer. On the other hand, though the extensible lifetime decreases

when rmin increases, there is still considerable lifetime extension available. For

example, when the network size is 10dchar and rmin is 2dchar, the extended lifetime

is about 400%. This also suggests that the approach of adaptive traffic distribution

and power control effectively extend the network lifetime under different network

size and node density.
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When we further examine the numerical solutions to optimization problem

(3.4)-(3.9), we find that when rmin ≥ 1.2dchar, the optimal solution also exhibits a

standard form. This has been generalized by the following theorem:

Theorem 3.1 When all nodes can reach the sink by adjusting their transmission

power, as long as rmin

dchar
≥ max {( (α−1)(lα−rα)

[r(l−r+1)]α+(r−1)α−lα−[(l−r+1)·(r−1)]α
)

1
α , 3 ≤ l ≤ L,

2 ≤ r ≤ l − 1}, there always exists an optimal solution to the problem (3.4)-(3.9)

with the standard form (2.22).

Proof:

We let rmin = c · dchar, where c is constant. Then P l,k
t = γ1 + β((l − k)cdchar)

α =

γ1 + γ1+γ2

α−1
· (c(l−k))α. We will show that any optimal solution can be transformed

into a solution in standard form without losing optimality.

Let {xi,j} be an optimal solution. If this optimal solution is not in the standard

form, then we can transform {xi,j} to {x̃i,j} such that {x̃i,j} is in the standard form

(2.22). The whole procedure is as follows:

We iteratively apply the following procedure: find the first link xl,l−r with the

following properties:

• {xi,i−1 ≥ 0, xi,0 ≥ 0, xi,j = 0, 0 < i < l, 1 ≤ j ≤ i − 2}, that is, for all i < l,

except xi,0 and xi,i−1, no other links can have non-zero value.

• For all 0 < j < l − r, xl,j = 0.

Next we show how to redistribute xl,l−r to the other links without increasing

the MIN-MAX power. For layer l − r, its initial power is:

Pl−r = xl−r,0P
l−r,0
t + xl−r,l−r−1P

l−r,l−r−1
t + Pr

L∑

i=l−r+1

2i− 1
2l − 2r − 1

xi,l−r

≥ (P l−r,l−r−1
t + Pr)

(
xl−r+1,l−r(2l − 2r + 1)

2l − 2r − 1
+

xl,l−r(2l − 1)
2l − 2r − 1

+
L∑

i=l+1

2i− 1
2l − 2r − 1

xi,l−r

)

(3.11)
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where
xl−r+1,l−r(2l−2r+1)

2l−2r−1
+

xl,l−r(2l−1)

2l−2r−1
+

∑L
i=l+1

2i−1
2l−2r−1

xi,l−r + g = xl−r,0 + xl−r,l−r−1

is the traffic that layer l − r needs to transmit.

We split traffic xl,l−r into two parts ∆xl,l−r+1 and ∆xl,0 which will be sent to

the layer l − r + 1 and the sink respectively. To conserve traffic and to keep the

layer l power consumption unchanged, we need to have





∆xl,0 + ∆xl,l−r+1 = xl,l−r

P l,0
t ∆xl,0 + P l,l−r+1

t ∆xl,l−r+1 = P l,l−r
t xl,l−r

⇒





∆xl,l−r+1 = lα−rα

lα−(r−1)α xl,l−r

∆xl,0 = rα−(r−1)α

lα−(r−1)α xl,l−r

(3.12)

After this traffic rerouting, the power consumed by layer l does not change.

However, the incoming traffic of layer l − r + 1 has been increased. Therefore we

need to adjust layer l−r+1’s traffic too. We intend to keep the power consumption

of layer l−r+1 the same, so we try to increase xl−r+1,l−r by ∆xl−r+1,l−r and decrease

xl−r+1,0 by ∆xl−r+1,0. Traffic conservation and power consumption invariance imply

that




∆xl−r+1,l−r −∆xl−r+1,0 = 2l−1
2l−2r+1

∆xl,l−r+1

P l−r+1,l−r
t ∆xl−r+1,l−r + Pr

2l−1
2l−2r+1

∆xl,l−r+1 = P l−r+1,0
t ∆xl−r+1,0

⇒





∆xl−r+1,l−r = α−1+(c(l−r+1))α

(c(l−r+1))α−cα
2l−1

2l−2r+1
∆xl,l−r+1

∆xl−r+1,0 = α−1+cα

(c(l−r+1))α−cα
2l−1

2l−2r+1
∆xl,l−r+1

(3.13)

Then there are two possible scenarios:

• Scenario 1: ∆xl−r+1,0 ≤ xl−r+1,0

• Scenario 2: ∆xl−r+1,0 > xl−r+1,0
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For scenario 1, {xi,j} is updated as follows:

x1
l,l−r = 0

x1
l,l−r+1 = xl,l−r+1 + ∆xl,l−r+1

x1
l,0 = xl,0 + ∆xl,0

x1
l−r+1,l−r = xl−r+1,l−r + ∆xl−r+1,l−r

x1
l−r+1,0 = xl−r+1,0 −∆xl−r+1,0

x1
i,j = xi,j, for other i, j and i > l − r

x1
i,j =

∑L
k=i+1

2k−1
2i−1

x1
k,i + g

∑L
k=i+1

2k−1
2i−1

xk,i + g
xi,j, i ≤ l − r

After updating, the traffic for layers beyond l−r+1 stays the same except layer

l, so their power consumptions do not change. The power consumptions of layers

l and l− r + 1 do not change, and the incoming traffic of layer l− r is changed by

2l−2r+1
2l−2r−1

∆xl−r+1,l−r − 2l−1
2l−2r−1

xl,l−r = 2l−1
2l−2r−1

(α−1+(c(l−r+1))α

(c(l−r+1))α−cα · lα−rα

lα−(r−1)α − 1)xl,l−r. If

α−1+(c(l−r+1))α

(c(l−r+1))α−cα · lα−rα

lα−(r−1)α ≤ 1, the incoming traffic of layer l − r will not increase.

It is readily verified that

α− 1 + (c(l − r + 1))α

(c(l − r + 1))α − cα
· lα − rα

lα − (r − 1)α
≤ 1 ⇔

c ≥
(

(α− 1)(lα − rα)

[r(l − r + 1)]α + (r − 1)α − lα − [(l − r + 1) · (r − 1)]α

) 1
α

Thus the incoming traffic of layer l− r and the layers inside layer l− r will not

increase, so the MIN-MAX power will not increase.

Now let us consider scenario 2: ∆xl−r+1,0 > xl−r+1,0. In this scenario, we cannot

decrease xl−r+1,0 by the whole amount ∆xl−r+1,0. Consequently, {xi,j} is updated
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as follows:

x1
l,l−r = 0

x1
l,l−r+1 = xl,l−r+1 + ∆xl,l−r+1

x1
l,0 = xl,0 + ∆xl,0

x1
l−r+1,l−r = xl−r+1,l−r + xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1

x1
l−r+1,0 = 0

x1
i,j = xi,j, for other i, j and i > l − r

x1
i,j =

∑L
k=i+1

2k−1
2i−1

x1
k,i + g

∑L
k=i+1

2k−1
2i−1

xk,i + g
xi,j, i ≤ l − r

After updating, the power consumption of layer l stays the same. The power

consumption of layer l − r + 1 is

P 1
l−r+1 = P l−r+1,l−r

t (xl−r+1,l−r + xl−r+1,0 +
2l − 1

2l − 2r + 1
∆xl,l−r+1)

+Pr(
L∑

k=l−r+1

2k − 1

2l − 2r + 1
xk,l−r+1 +

2l − 1

2l − 2r + 1
∆xl,l−r+1)

≤ (P l−r+1,l−r
t + Pr)(xl−r+1,l−r + xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1)

Next we will show P 1
l−r+1 ≤ Pl−r. Since ∆xl−r+1,0 > xl−r+1,0, we have

xl−r+1,0 +
2l − 1

2l − 2r + 1
∆xl,l−r+1 < ∆xl−r+1,0 +

2l − 1

2l − 2r + 1
∆xl,l−r+1

= ∆xl−r+1,l−r ≤ 2l − 1

2l − 2r + 1
xl,l−r, (3.14)

where the final inequality has been obtained in scenario 1. We then have

P 1
l−r+1 < (P l−r+1,l−r

t + Pr)(xl−r+1,l−r +
2l − 1

2l − 2r + 1
xl,l−r) ≤ Pl−r (3.15)

So the power consumption of layer l − r + 1, P 1
l−r+1, is smaller than the original

MIN-MAX power.
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The incoming traffic of layer l−r is changed by 2l−2r+1
2l−2r−1

xl−r+1,0+
2l−1

2l−2r−1
∆xl,l−r+1−

2l−1
2l−2r−1

xl,l−r < 0. Thus, the incoming traffic of layer l−r is decreased, so the power

consumption of layer l − r will not increase. The power consumptions of all other

layers do not increase either. Therefore, in scenario 2, after updating, the MIN-

MAX power does not increase either.

Thus, after this procedure, {xi,j} is updated to {x1
i,j} by redistributing traffic

to delete the traffic on (l, l − r), and the MIN-MAX power does not increase. We

keep executing this procedure until the solution is in the standard form. Since each

application of this procedure does not increase the MIN-MAX power, the theorem

is proved. 2

Theorem 3.1 shows that as long as the layer width is large enough –i.e., rmin is

sufficient large– there is always an optimal solution in standard form. At the same

time, according to Fig. 3.1, although the standard form solution is not optimal

when rmin is small (relative to dchar), it can still approximate the optimal solution

very well.

Corollary 3.2 When all nodes can reach the sink by adjusting their transmission

power, and α = 2, as long as rmin

dchar
≥

√
5

2
, there always exists an optimal solution

to the problem (3.4)-(3.9) with the standard form (2.22).

Proof:

When α = 2,

(
(α− 1)(lα − rα)

[r(l − r + 1)]α + (r − 1)α − lα − [(l − r + 1) · (r − 1)]α

) 1
α

=

(
l + r

2(l − r + 1)(r − 1)

) 1
α

Regarding r as constant, let f(l) = l+r
2(l−r+1)(r−1)

, then we have

f(l) ≥ f(l + 1) ⇔ l + r

2(l + 1− r)(r − 1)
≥ l + 1 + r

2(l + 1 + 1− r)(r − 1)
⇔ 2r ≥ 1 (3.16)
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Figure 3.4: Lifetime extension for different rmax under extra constraint C5

So when r is fixed, f(l) is a nonincreasing function.

Regarding l as constant, let g(r) = l+r
2(l−r+1)(r−1)

, and let l − 3 ≥ w ≥ 1, then

we have

g(2) ≥ g(2 + w) ⇔ l + 2

2(l − 1)
≥ l + 2 + w

2(l − w − 1)(w + 1)

⇔ l2 ≥ lw + l + 2w + 3

⇔ w ≤ l2 − l − 3

l + 2
(3.17)

At the same time, l − 3 ≤ l2−l−3
l+2

⇔ −3 ≤ 0. It guarantees that (3.17) holds when

w ≤ l − 3. So the max of g(r) is achieved at r = 2.

Thus when α = 2, max {( (α−1)(lα−rα)
[r(l−r+1)]α+(r−1)α−lα−[(l−r+1)·(r−1)]α

)
1
α , 3 ≤ l ≤ L, 2 ≤

r ≤ l− 1} is achieved at l = 3, r = 2 which makes it
√

5
2

. According to Theorem 2,

the corollary holds. 2

As we mentioned before, allowing nodes to adaptively adjust transmission

power and transmit using a long range may cause significant signal interference.

In Chapter 2 we combat this issue by only allowing a small number of sensors that

are nearest to the sink to adjust their transmission range, while all other nodes fix
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their transmission range to be rmin. In this chapter we also adopt a similar ap-

proach with the difference being that now outside nodes will fix their transmission

range to be dchar. Fig. 3.4 illustrates the results by limiting the number of nodes

that are allowed to adjust transmission range. The baseline is the lifetime obtained

by imposing constraint C2. The results are obtained by fixing the network size to

be 10dchar, setting rmin = dchar, changing rmax, using constraint C3, and imposing

the extra constraint, denoted as C5, that only nodes which can directly reach the

sink are allowed to adjust transmission range.

From the results presented in Fig. 3.4 we can see that even when only several

innermost layers are allowed to adjust their transmission power, the lifetime ex-

tension can still be significant. When α is large, the performance loss compared

to the case without the extra constraint is small. For example, when α = 3, which

is a typical path loss exponent value, by only allowing the innermost 3 layers to

adjust transmission power, we can have 100% lifetime extension. The conclusion

is similar to those obtained from Fig. 2.4 and Fig. 2.5. The difference is that the

network lifetime extension has been increased by incorporating the processing en-

ergy consumption. As discussed before, the significance of the constraint C5 lies in

that it can greatly simplify the distributed algorithm implementation and reduce

the extra signal interference.

3.3 Distributed Algorithm

In Section 3.2 we found that imposing constraint C3 (either transmitting using

dchar or to the sink directly ) can significantly simplify the implementation with-

out much performance loss. Further, in order to combat the negative effect of long

transmission range, we impose the extra constraint C5: only those nodes that can
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directly reach the sink are allowed to adjust their transmission range. As long as

rmax is small, the extra signal interference caused by adaptive power adjustment

will be limited. However, all these numerical results are obtained through cen-

tralized computation which is not appropriate for wireless sensor networks. For

example, the randomness of the sensor locations may lead to big relay burden dif-

ference between nodes in the same layer, so it is not appropriate to assign a fixed

splitting ratio to the sensors in the same layer.

In this section we propose Energy Aware Data Propagation Algorithm (EADPA),

a fully distributed algorithm, to adaptively split traffic and adjust transmission

power for each node. For a given node, if it is allowed to adjust its transmission

range, it needs to determine how to split the traffic to be sent between the sink and

the next relay respectively. It is not efficient to let some sensors relay a lot since

it will make the network die fast. Thus when a node has higher residual energy

than its relays, it should send the traffic directly to the sink.

The basic idea of EADPA is as follows: suppose each node has selected a set

of nodes (possibly one) as its relays, where the relays are around dchar away from

it. Each node keeps record of the residual energy of its relays. When a node has

a packet to send, it first compares its residual energy to the residual energy of its

relays. If its residual energy is more than the residual energy of all relays and it

can directly reach the sink, then it sends the packet directly to the sink; otherwise,

it sends the packet to one of the relays that has the maximum residual energy.

The algorithmic description of EADPA is illustrated in Algorithm 1. In Algo-

rithm 1 we assume that for each node the set of its relays P has been given. This

can be obtained in the following way: for each node, if the sink is within dchar dis-

tance, then set the sink as its only relay; otherwise, pick k nodes within its c ·dchar
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distance, who have the shortest distances to the sink, as its relays. Here k ≥ 1 and

c ≥ 1 are system parameters that can be determined empirically. Another issue is

how a node monitors the residual energy of its relays. This can be done by letting

all nodes broadcast their residual energy periodically.

Algorithm 1 Energy Aware Data Propagation Algorithm

Input: E denotes a node’s initial energy, P denotes the set of its relays, r denotes

its distance to the sink;

1: Eresidual = E; d = min{r, dchar};
2: while (Eresidual > 0) do

3: Let T denote the total traffic needed to be sent this time;

4: if (T · (Pc + Pt(d)) > Eresidual) then

5: break;

6: end if

7: Find the relay p with the maximum residual energy from P, and use Ep
residual to denote

p’s residual energy;

8: if (Ep
residual < Eresidual AND r ≤ rmax) then

9: Directly send the packet to the sink;

10: Eresidual = Eresidual − T · (Pc + Pt(r));

11: else

12: send the packet to p;

13: Eresidual = Eresidual − T · (Pc + Pt(dchar));

14: Ep
residual = Ep

residual − T · Pr;

15: if (Ep
residual < 0) then

16: break;

17: end if

18: end if

19: end while

Algorithm 1 describes the procedure for the data transaction. Most steps are

executed by the sender except steps 14-17 which are executed by the receiver.
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3.4 Simulation Results

This section evaluates the performance of proposed distributed algorithm EADPA,

which is the distributed implementation of proposed adaptive traffic distribution

and power control approach, in randomly deployed wireless sensor networks. In

all simulations, for each sensor, we set γ1 = 45nJ/bit, γ2 = 135nJ/bit, β =

10pJ/bit/m2 for α = 2, therefore dchar ' 134m. We set rmin = dchar, and set

the node density to be 25/πr2
min. Initially, each sensor has 2000 Joule energy. In

each unit time (round) each node will generate a 25-Byte message to be sent to

the sink. The network radius varies from 600m to 1000m. Next we evaluate the

performance of the proposed EADPA algorithm. The baseline network lifetime

is obtained by letting all sensors transmit using dchar. In the simulations, only

the nodes that can reach the sink directly execute EADPA. We then set rmax to

different values to test different scenarios.

We first focus on randomly deployed circular sensor network with radius R.

The sink is located at the center of the area. Fig. 3.5 illustrates the simulation

results, where the four curves correspond to the lifetime extension obtained under

four different rmax settings: 300m, 400m, 500m, and R. It is worth pointing out

that in our simulations, interference has not been considered separately.

First, from Fig. 3.5 we can see that after applying adaptive traffic distribution

and power control, the network lifetime can be significantly extended. For example,

when rmax = R = 1000m, more than 400% lifetime extension has been achieved,

which also agrees with our numerical results. These results also confirm that even if

only a small portion of nodes are allowed to adjust transmission range, the lifetime

extension can still be significant. For example, when R = 1000m and rmax = 300m,

only 9% of the nodes are allowed to adjust their transmission power, while 80%
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Figure 3.5: Lifetime extension for EADPA in circular network

lifetime extension can be achieved. Third, we can see that the lifetime extension is

mainly determined by rmax, and changes little with the variation of network radius

R, which also agrees with our numerical analysis.

Next we change the network area from circular to square. In this set of simu-

lations, nodes are randomly deployed in a square with the sink lying in the center.

The length of each edge is 2R. The simulation results are illustrated in Fig. 3.6.

Comparing the results in Fig. 3.6 with the results in Fig. 3.5, we can see that the re-

sults are almost identical except for some minor differences. One difference is that

when rmax = R, the squared case results are slightly higher in lifetime extension

due to the fact that more nodes are in the squared network. Another difference

is that when rmax < R, the squared case results are slightly lower in lifetime ex-

tension since a smaller portion of nodes are allowed to adjust their transmission

range in the squared case.

Finally let us consider the rectangular network. In this set of simulations, nodes

are randomly deployed in a rectangle with the sink lying in the center. The size of
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Figure 3.7: Lifetime extension for EADPA in rectangle network
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the rectangle is 2R × 4R. The simulation results are illustrated in Fig. 3.7. From

this figure, we can see that the maximum achievable lifetime extension is similar to

the previous case. This confirms that the proposed scheme works well in rectangle

too. We also observe that when rmax < R, the extension for the rectangle case is

lower than the circular and squared cases. This is because when we only consider

the several inner layers, the achievable lifetime extension mainly depends on the

ratio between the number of the nodes allowed to adjust transmission range and

the number of total nodes.

The above results show that the proposed distributed algorithm EADPA can

work well in different shaped sensor networks.

3.5 Related work and Summary

In [20, 34, 49, 63], similar approaches have been studied to extend the network

lifetime. There are several major differences between our work with these work.

First, instead of maximizing the network lifetime, their goal is to let nodes die

at the same time, which may lead to a suboptimal solution. Second, their work

has not considered processing energy consumption, which limits their applicability.

Third, they have only considered the situation that the path loss exponent is 2.

Fourth, they do not provide any distributed algorithms, and all their solutions

need to be calculated in a centralized way.

In this chapter we have demonstrated that adaptive traffic distribution and

power control can significantly extend the lifetime of wireless sensor networks. We

have also demonstrated that by incorporating the processing energy consumption,

the lifetime can be further extended comparing to only considering the transmis-

sion energy consumption. When investigating the optimal solutions to the lifetime
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maximizing adaptive traffic distribution and power control problem, one impor-

tant finding is that nodes should either transmit in the most energy efficient way,

or directly transmit to the sink. This has been verified by both numerical results

as well as theoretical analysis. We have also shown that the network lifetime can

still be dramatically extended even if only a small portion of innermost nodes are

allowed to adjust their transmission power. This has great practical implication

since it can significantly simplify the medium access control and scheduling pro-

tocol design. Finally, we have proposed a fully distributed algorithm to perform

adaptive traffic distribution and transmission power adjustment for randomly de-

ployed wireless sensor networks. Extensive simulation have also been conducted,

and the results have demonstrated that the network lifetime can be dramatically

extended by applying the proposed approach in various scenarios.
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Chapter 4

Prolonging Network Lifetime via

Partially Controlled Node

Deployment and Adaptive Data

Propagation

In Chapter 2 and Chapter 3, we have studied the lifetime maximizing problem for a

fully deployed sensor network. In this chapter we will investigate how to maximize

the network lifetime via joint optimization of node deployment and adaptive traffic

distribution and power control. The rest of the chapter is organized as follows.

Section 4.1 describes the network model and problem formulation. Section 4.2

presents the numerical results for the joint optimization problem. Section 4.3

provides the simulation studies. Finally Section 4.4 summarizes this chapter.
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4.1 Network Model and Problem Formulation

In this chapter we consider the following flat circular wireless sensor network model.

There are two types of wireless nodes in the network: sensors and relays. Each

sensor needs to submit the collected information to the sink which is located in the

center of the network. Relay nodes will not generate traffic, that is, relay nodes will

only forward packets, but will not generate traffic. The sensor nodes are randomly

deployed according to the uniform distribution with fixed density such that the

network coverage constraint can be satisfied with high probability [41, 69]. Let

N denote the total number of sensor nodes, which can be easily calculated. We

consider the problem of deploying M relay nodes into the network in a partially

controlled way to prolong the network lifetime. Here partially controlled way means

that the relays cannot be deployed to specific positions controllably, but can be

deployed with specific distribution density. Our objective is to find the optimal

relay distribution achieving maximum network lifetime when sensor nodes have a

fixed and nonrenewable battery.

We assume that all nodes (sensors and relays) have the same amount of initial

energy, denoted by E. There is no energy constraint on the sink. Given the

network to be deployed, some Quality of Service (QoS) requirements, and specific

types of sensors, we also pose a minimum transmission range limitation for each

sensor, denoted by rmin. The value of rmin can be determined by both hardware

limitation and QoS requirements, such as network connectivity. We assume all

nodes can adjust their transmission range as needed.

Same as before, we model the energy consumption at each node as follows:

Pt(r) = γ1 + β · rα per bit (4.1)

Pr = γ2 per bit (4.2)
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Here Pt(r) is the processing and transmission energy consumption and Pr is the

receiving energy consumption. γ1 and γ2 are constant which are determined by

the underlying technology. α is the path loss exponent, which is determined by

the environment. r is the targeted transmission range, and β is a scalar indicating

the energy needed to successfully convey an information bit to a unit distance.

We assume that all nodes (sensors, relays and the sink) use a common frequency

channel. Since the relay nodes do not produce traffic nor sense the environment,

here we refer to network lifetime as the time elapsing between network deployment

and the moment when the first sensor node dies.

To make the problem tractable, we follow the network model used in previous

chapters. Specifically, the network is divided into multiple layers: a node belongs

to the lth layer if and only if its distance to the sink lies in the range ((l − 1) ·
rmin, l · rmin], and the layer 0 is the sink. So the width for each layer is rmin.

Due to the symmetry of network topology and traffic pattern relative to the

sink, intuitively relay nodes should be deployed in a symmetric way. When the

network size is large and the number of relay nodes is not too small, deploying nodes

in a certain layer can be approximated by uniformly distributing extra energy

to sensor nodes in this layer. The effect of this simplifying assumption will be

examined through simulation. Now the original problem can be transformed to

determining how to distribute the extra energy in the most efficient way such that

the network lifetime can be maximized. Let M denote the total number of available

relay nodes, Nl denote the number of sensor nodes in the lth layer, and el is the

extra energy assigned to each node in the lth layer.

Let R denote the radius of the network and let L denote the total number of

layers in the network. For any integers l, k with 0 ≤ k < l ≤ L, let xl,k denote
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the average number of bits that a node in the lth layer needs to request nodes in

the kth layer to forward per unit time. Let g denote the average number of bits

each sensor node will generate per unit time. We can readily check that the ratio

between the number of nodes in the kth layer and the number of nodes in the lth

layer (k > l) is 2k−1
2l−1

. Thus the average number of bits that a node in the lth layer

will receive from nodes in the kth layer (k > l) should be 2k−1
2l−1

xk,l. Let Tlife denote

the network lifetime. Then the original problem can be simplified as follows:

max
{xi,j , el}

Tlife s.t. (4.3)

L∑

k=l+1

2k − 1

2l − 1
xk,l + g =

l−1∑

k=0

xl,k, 1 ≤ l ≤ L (4.4)

l−1∑

k=0

xl,kPt(l, k) +
L∑

k=l+1

xk,lPr ≤ E + el

Tlife

, 1 ≤ l ≤ L (4.5)

xl,k ≥ 0, 0 ≤ k < l, 1 ≤ l ≤ L (4.6)
L∑

l=1

elNl ≤ M · E, 1 ≤ l ≤ L (4.7)

el =
k · E
Nl

, k is a non-negative integer, 1 ≤ l ≤ L (4.8)

where Pt(l, k) = Pt((l − k)rmin). Eqn. (4.4) models the traffic conservation, i.e.,

for each node the amount of transmitted traffic should be equal to the traffic

received plus the traffic generated. Eqn. (4.5) poses the energy constraint. Eqn.

(4.6) guarantees the feasibility of the solutions and prevents nodes sending traffic

further away from the sink. Eqn. (4.7) applies relay nodes quantity constraint.

Eqn. (4.8) guarantees the integrity of the relay nodes, that is, the energy of one

relay node cannot be split into two parts.
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4.2 Numerical Results

This section is devoted to solving the optimization problem defined in Section 4.1

numerically. Since the optimization problem (4.3)-(4.8) is a mixed-integer non-

linear programming problem, which is known to be a NP-hard problem, in this

work we resort to developing efficient heuristics to solve this problem.

We attack this problem using the following greedy heuristic approach: after

sensor nodes have been deployed, relay nodes will be added to the network one

by one. Each time when a relay node is added to the network, it will be put in

a location that can maximally extend the network lifetime, or more specifically, it

will be put in a layer that leads to longest network lifetime. This is motivated by

the following observation: due to the asymmetric role of each layer, some layers

have utilized energy in a less efficient way by transmitting a large portion of their

traffic using a very long range, while some layers have utilized energy in a more

efficient way by transmitting most of their traffic with a short range. This indicates

that those nodes utilizing energy highly efficiently play a bottleneck role. Here

it is worth pointing out that once a new relay is added, the proposed adaptive

data propagation scheme in Chapter 3 will be applied to re-calculate the lifetime

extension.

Now let us analyze the numerical solutions obtained by the proposed heuristic.

To make the results solid, our analysis is based on some typical energy consumption

parameters [5, 24]. Specifically, we set γ1 = 45nJ/bit, γ2 = 135nJ/bit, and β =

10pJ/bit/m2 for α = 2. For each parameter setting, there exists an optimal

transmission range such that the energy consumption per bit per meter can be

minimized, which is referred to as the characteristic distance [5]. In our model, as
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in Chap. 3, it is easy to check that the characteristic distance dchar is:

dchar =

(
γ1 + γ2

β(α− 1)

) 1
α

. (4.9)

We fix rmin = dchar, which is the layer width. The sensor node density is set

to be 20
π×d2

char
, which guarantees the network is 3-connected with probability more

than 99.99% [4]. Here we further assume the sensor sense area radius is dchar. So

the sensor density will guarantee the sensing coverage too.

To demonstrate the network lifetime that can be further extended by applying

joint relay deployment and adaptive data propagation, we regard the proposed

adaptive data propagation scheme, which allows each sensor to send traffic to mul-

tiple destinations in multiple layers to maximize the network lifetime (Chapter

3), as the baseline, and normalize the network lifetime achieved by this baseline

scheme as 1. Besides the above proposed greedy heuristics, we have also studied

the gain achieved by randomly deploying those relay nodes in the network. Specif-

ically, in this case the extra energy provided by the relay nodes will be distributed

uniformly to the sensor nodes.

Fig. 4.1 illustrates the numerical results for different network size with different

number of extra relay nodes. Specifically, X-axis denotes the total number of

relays that will be put to the network, and Y-axis denotes the normalized network

lifetime. The two curves represent the achieved network lifetime by applying two

different relay deployment scheme: one is solving the optimization problem (4.3)-

(4.8) by the above greedy heuristic and one is deploying the relays randomly.

In both schemes, the adaptive data propagation scheme in Chapter 3 has been

applied.

Fig. 4.1(a) shows the results for the network with radius 10dchar. That is,

there are 10 layers in the network. Based on the network size and sensor node

59



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

N
or

m
al

iz
ed

 L
ife

tim
e

Ratio between number of Relays and Sensors

 

Deploying relays using greedy heuristic
Deploying relays randomly

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 L
ife

tim
e

Ratio between number of Relays and Sensors

 

Deploying relays using greedy heuristic
Deploying relays randomly

(a) (b)

Figure 4.1: Normalized network lifetime by deploying extra relays (a) 10-layer

network (b) 5-layer network

density, it is easy to calculate that there are 2000 sensors in the network. From

these results we can see that if we can deploy relays in an effective way, significant

gain can be achieved even when only a small number of relays are introduced. For

example, when only 10% of extra relay nodes are deployed, the network lifetime can

be further extended more than 50% by applying the greedy heuristic deployment

method. We can also see that if we deploy nodes randomly, the gain is very minor.

For example, adding 1000 relay nodes can only increase the network lifetime by

50% if we deploy them randomly. On the other hand, the network lifetime can be

tripled if the 1000 relays are deployed in an efficient way, as demonstrated by the

figure.

Fig. 4.1(b) shows the results for a smaller network size. Now we set the network

radius to be 5dchar, that is, there are 5 layers in network. From these results we

can see that significant network lifetime extension still can be achieved by joint

relay deployment and power control. For example, when only 10% of extra relays

are added, the network lifetime can be extended by more than 30%. If we compare
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Figure 4.2: The relay nodes distribution in different layers

the results in Fig. 4.1(a) and Fig. 4.1(b), we can see that more network extension

can be achieved in a larger network, where 10% extra relays can bring 50% lifetime

extension. This is because in larger network, the bottleneck effect around the sink

is more significant. This also suggests that the proposed scheme can effectively

alleviate the bottleneck effect.

To help better understand the results, we have plotted the relay deployment

obtained by the proposed greedy heuristic for the 10-layer network case. The

results are illustrated in Fig. 4.2. Given the total number of relay nodes, which

is denoted by the total relay node number, this figure plots the number of relay

nodes deployed in each layer. For example, when 300 relays will be added, 179 of

them will be put into the first (innermost) layer, 118 of them will be put into the

second layer, and 3 of them will be put into the third layer. From these results

we can see that most relay nodes will be deployed in the inner several layers. For

example, even when the number of relays is 1000, there are still no relay nodes

that will be deployed to the layers beyond the 4th layer.
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Figure 4.3: Normalized network lifetime by deploying extra relays using simple

routing

One problem with the proposed joint node deployment and adaptive data prop-

agation scheme is that it involves a complicated routing scheme. The traffic from

one layer may need to be transmitted to several different layers due to the op-

timality requirement. In previous chapters, we have proposed one simple traffic

distribution and power control algorithm: all traffic will be sent to the next inner

layer or the sink directly, which is shown to be optimal in some cases and near

optimal in the other cases. To make the proposed method more practical, from

now on when we do adaptive data propagation, we will adopt this simple strategy.

To reflect this change, we modify the original optimization by adding one more

constraint: {xi,j = 0, j 6= 0 & j 6= i− 1}. Then we can apply the proposed greedy

heuristic to re-solve the joint optimization problem.

Fig. 4.3 shows the results for 10-layer network case after applying the modified

greedy heuristic. First, from these results we can see that significant gain can still

be achieved by the modified scheme, though the modified scheme is much simpler
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than the original scheme. For example, when adding 10% extra relay nodes, the

network lifetime can still be extended by around 50%. Second, comparing the

results in Fig. 4.3 and Fig. 4.1(a), we can see that the modified scheme causes slight

performance loss compared with the original case. For example, when 1000 relays

are deployed in the network, the network lifetime is extended by 190% instead

of 200%. Since the loss is very small, we believe the modified scheme should be

adopted when doing joint node deployment and adaptive data propagation due to

its simplicity.

4.3 Simulation

This section evaluates the performance of proposed greedy heuristic in randomly

deployed sensor network.

The simulation is set up on a randomly deployed circular sensor network with

radius R = 10dchar. The sink is located at the center of the area. For each node

(sensor or relay), we set γ1 = 45nJ/bit, γ2 = 135nJ/bit, β = 10pJ/bit/m2 for

α = 2, therefore dchar ' 134m. The initial energy is 2000 Joule per node. In each

unit time (round) each sensor generates a 25-Byte message to be sent to the sink,

and relays generate none.

The simulation results are the average from 10 different randomly generated

networks. The baseline lifetime is achieved by using simple adaptive data propa-

gation scheme described in Chapter 3 without extra relays. It is worth pointing

out that in our simulation, interference has not been considered separately.

In each test, we first randomly deploy the sensor nodes into the network ac-

cording to the uniform distribution with density 20
πd2

char
. We then randomly deploy

the relays in layers according to the numerical results from Section 4.2. During
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test, each node transmits its traffic either to the sink or its neighbors which are

around dchar away.

The simulation results are illustrated in Fig. 4.4. From the results we can

see that the proposed scheme brings considerable performance gain. For example,

when 10% relay nodes are added into the network strategically, around 35% lifetime

extension can be obtained. The results also show the same trend as the numerical

results (Fig. 4.3), but with lower lifetime extension. This is because when we

model the problem into the joint optimization problem (4.3)-(4.8), we make an

approximation that adding relay nodes into the network is equivalent to adding

energy to the sensor nodes. In real network, when a sensor runs out of energy,

the network will lose the coverage and then the network will terminate; however,

the relay nodes may still have considerable energy left. In this situation, adding

relay nodes into the network is actually not equivalent to adding energy to the

sensor nodes. So this approximation leads to the gap between numerical results
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and simulation results.

4.4 Summary

Battery powered wireless sensor network is extremely energy constrained. The

all-to-one communication pattern in general homogeneous sensor networks makes

the sensors around the sink deplete the energy much faster than faraway sensors

due to the heavily relay burden. To conquer this problem, various schemes are

proposed. In this paper we solve this problem by joint relay deployment and

adaptive data propagation scheme. We model the problem as a mixed-integer

nonlinear programming problem, which is known to be NP-hard. We then solve

the optimization problem using greedy heuristic which is verified to be effective by

both numerical results and simulation results.
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Chapter 5

Fault Tolerance and Attack

Resilience Measurement of

Wireless Ad Hoc Networks

In the first part of this dissertation (Chapter 2, Chapter 3 and Chapter 4) we have

studied how to maximally extend the lifetime of randomly deployed wireless sensor

networks by adaptive traffic distribution and power control. In this chapter we

will study another important issue in randomly deployed wireless ad hoc networks:

fault tolerance and attack resilience measurement. The rest of this chapter is

organized as follows. Section 5.1 introduces the network model and the metrics.

Section 5.2 investigates the properties of the pairwise connectivity for Poisson and

geometric random graphs. The network fault tolerance is studied in Section 5.3,

and the attack resilience is studied in Section 5.4. Finally, Section 5.5 summarizes

this chapter.
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5.1 Network Models and Metric Definitions

In this section, we first introduce the random graph models used to model the

wireless ad hoc networks, then describe the different connectivity definitions as

well as α-p-resilience, and finally compare pairwise connectivity with network con-

nectivity.

5.1.1 Network Modeling

In the literature, random graphs have been widely used to model various networks

[4, 6, 35, 46]. In order to model wireless ad hoc networks, Poisson random graphs

have been suggested by [14]. However, since Poisson random graphs do not consider

correlations between different links, in many situations it may not be the best

model. To fix this problem, a modified version of Poisson random graphs, geometric

random graphs, have been widely used recently [4]. In this work, both models will

be studied, though the geometric random graph model will be the focus.

Poisson Random Graphs

After being independently proposed by [55], and [21, 22], Poisson random graphs

have been widely applied to model various networks [6], and have been well studied

by mathematicians, and many results, both approximate and exact, have been

proved [7, 44]. In general, a Poisson random graph G(N, p) is a graph with N

nodes in which for each pair of nodes, with probability p there is an edge between

them. By holding the average node degree λ = p(N − 1) constant, the probability

of a node having degree k can be calculated as

pk =

(
N − 1

k

)
pk(1− p)N−1−k ' e−λλk

k!
, (5.1)

67



with the last approximate equality becomes exact in the limit of large N and fixed

k, from which the name “Poisson random graph” comes.

Geometric random graph

In the literature, geometric random graphs have also been widely used to model

various ad hoc wireless networks [4, 35, 46]. Since the construction of geometric

random graphs has incorporated the spatial correlations between nodes and edges,

it can better model the topologies of wireless ad hoc networks. In this work we

will mainly focus on the two-dimensional case, where now a geometric random

graph G(N, r) is a graph in which N nodes are independently deployed inside a

large area of size A according to the 2D uniform distribution1, and for any pair

of nodes there exists an edge between these two nodes if and only if the distance

between them is no more than r (e.g., in wireless ad hoc networks, r is nodes’

maximum transmission range). Let γ = Nπr2

A
denote the normalized average node

density of such a random graph, which denotes the average number of nodes inside

a circle with radius being r. In this work, we simply refer to normalized average

node density as average node density. For any node not lying in the boundary

area2 of the network deployment, the probability of a node having degree k can be

calculated as

pk =

(
N − 1

k

)(
πr2

A

)k (
1− πr2

A

)N−1−k

' e−γγk

k!
, (5.2)

1A node v is deployed inside an area A according to the 2D uniform distribution if for any

subarea A1 ⊂ A, P (v ∈ A1|v ∈ A,A1 ⊂ A) = A1/A.

2In this work, we say a node v lies in the boundary area of a network deployment if and only

if there exists at least one location which does not lie in the deployment area and whose distance

to node v is less than r
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with the last approximate equality becomes exact in the limit of large A and N

and fixed k. That is, the distribution of degree also follows Poisson distribution

with the average degree being γ. It is worth mentioning that due to the boundary

effects (e.g., the average degree of nodes inside the boundary area is less than the

average degree of nodes not inside the boundary area), the average node degree of

a geometric random graph is less than its average node density.

5.1.2 Pairwise Connectivity and α-p-resilience

Based on the above network models, a wireless ad hoc network can be represented

as an undirected graph G = G(V, E) at each time instant, which comprises |V |
nodes and |E| edges, and for any u, v ∈ V , if (u, v) ∈ E, then (v, u) ∈ E. Two

nodes u and v are said to be connected if there exists at least one path between u

and v; otherwise these two nodes are said to be disconnected. Given any pair of

nodes u, v ∈ V , let C(u, v) denote the maximum number of node-disjoint paths3

from node u to node v, which we refer to as the pairwise connectivity of node pair

(u, v). Equivalently, C(u, v) = k means that there exist no such set of k− 1 nodes

whose removal would make u and v disconnected, and there exists at least one set

of k nodes whose removal would make u and v disconnected. A node pair (u, v) is

said to be k-pairwise-connected if C(u, v) ≥ k. Since G is undirected, we always

have C(u, v) = C(v, u).

According to [6], a graph G = G(V, E) is said to be connected if any pair

of nodes in G is connected, and G is said to be k-connected if for any pair of

nodes u, v ∈ V , C(u, v) ≥ k. It is easy to see that this measure focuses on

3A set of paths from u to v are said to be node-disjoint if these paths do not share any common

nodes except u and v.
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the worst case scenario. However, in many situations, even if the network becomes

disconnected, i.e., some nodes become isolated, the remaining nodes in the network

can still communicate with each other with very high probability. For example, in

a self-organized wireless ad hoc network [68], individual nodes are only interested

in whether their own communication request can be satisfied, and in general a

single node isolated from the network will not significantly affect the other nodes,

although the network is disconnected.

In order to measure the average case network service availability, we introduce

the following metrics: average pairwise connectivity and pairwise connected ratio.

For any graph G, the average pairwise connectivity (APC) of G, denoted by C(G),

is defined as follows:

C(G) =
1

N(N − 1)

∑
u∈V

∑

v 6=u∈V

C(u, v), (5.3)

which is the average number of node-disjoint paths between any pair of nodes in

the network. Similarly, pairwise connected ratio (PCR) is defined as follows:

PCR(G) =
1

N(N − 1)

∑
u∈V

∑

v 6=u∈V

1[C(u, v) ≥ 1], (5.4)

which is the indicator version of APC. It is the proportion of node pairs that are

pairwise connected, i.e., can communicate with each other. In other words, from

an individual node’s point of view, this is the proportion of nodes in average that it

can reach in the network. Meanwhile, a network with PCR being α indicates that

there exists at least one connected component which comprises at least α portion

of the total nodes.

In general, fault tolerance or attack resilience can be measured as the decrease

of network performance due to node or edge removal. In this chapter we propose

α-p-resilience to measure the decrease of network service availability under node
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removal. Specifically, given a network G, if it is α-p-resilient in PCR, then even

after removing p portion of nodes, the PCR is still no less than α, that is, for any

remaining node in the network, it can still expect to connect to α portion of the

remaining nodes. Similarly, given a network G, if it is α-p-resilient in APC, then

even after removing p portion of nodes, the APC is still no less than α, that is,

the average number of node-disjoint paths between any pair of remaining nodes is

at least α.

5.1.3 Pairwise Connectivity vs. Network Connectivity

In this subsection we study the difference between pairwise connectivity and net-

work connectivity through experiments. In the experiments, a set of geometric

random graphs are generated with the deployment areas varying from 10r×10r to

50r× 50r, where r is node’s transmission range. The PCR and network connected

ratio (NCR) for different network size and node density are illustrated in Fig. 5.1,

where NCR denotes the percentage of connected networks among all the generated

networks. In Fig. 5.1 each data point is the average result over 1000 independently

generated random graphs.

First, from these results we can see that although in many situations the net-

work connected ratio is low, that is, a large portion of the generated networks are

not connected, almost all pairs of nodes in the network can communicate with each

other. For example, for the network size being 20r × 20r and node density being

10, which can be a very reasonable configuration for a wireless ad hoc network,

only about 14% of the generated networks are connected, while more than 99.9%

of node pairs in the generated networks can communicate with each other through

one or more routes. This suggests that in many situations network connectivity
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Figure 5.1: Comparison between pairwise connected ratio and network connected

ratio

may not be an appropriate metric to measure the average case network service

availability.

Second, by comparing the NCR values illustrated in Fig. 5.1 under different net-

work configuration, we can see that with the increase of network size, the network

connected ratio will decrease, which is easy to understand: the more the number of

nodes in the network, the higher the probability that some nodes will become iso-

lated. However, from Fig. 5.1 it is surprising to see that whenever the node density

is no less than 5, by fixing the node density, the larger the network size, the higher

the PCR, although more nodes will become isolated. That indicates that the more

the number of nodes in the network, usually the better the service availability that

the network may provide, since each node may have more resources to use and

more options to take. This also suggests that network connectivity may not be

appropriate when used to measure the network service availability.

Third, from these results we can see that the PCR curves exhibit sharp thresh-
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old behaviors, where the PCR increases dramatically when the node density in-

creases from 4 to 6. With node density 4 the PCR is less than 20% for most

cases, while with node density 6 the PCR becomes more than 90% in most cases.

Furthermore, all these PCR curves intersect with each other at around density 5.

When the node density is less than 5, the larger the network, the lower the PCR;

while when the node density is greater than 5, the larger the network, the higher

the PCR. This is the combined effect of path length and available resources: the

longer the path length, the lower the probability that a pair of nodes can connect;

while the more the resources, the higher the probability that a pair of nodes can

connect. When node density is very low, the effect of path length will dominate

the effect of available resources (the average path length in the networks with size

10r×10r is only about half of that in the networks with size 20r×20r). When the

node density becomes high, the effect of available resources will play a dominant

role.

Finally, from these results we can see that to maintain high pairwise connec-

tivity, the node density should be no less than 7. From the results in this figure we

can see that when the density is less than 7, in all five cases the PCR is less than

95%. The network size may affect this threshold, but not significantly. Meanwhile,

we can see that when the node density is larger than a certain value (e.g., 10), the

PCR will closely approach 1. In other words, as long as the node density is higher

than some threshold, a certain level of service availability can be guaranteed.
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5.2 The Pairwise Connectivity of Wireless Ad

hoc Networks

In this section we focus on studying the service availability of wireless ad hoc

networks based on the following two metrics: APC and PCR. When studying the

APC, we have derived an analytical upper-bound for APC, and demonstrated that

the APC can be approximated by its upper-bound very well for Poisson random

graphs and for the inner part of geometric random graphs.

Given any graph G(V,E) and any node u ∈ V , let d(u) denote the degree of

node u, that is, the number of neighbors of node u. Then for any pair of nodes

u, v ∈ V , let

Cupper(u, v) = min{d(u), d(v)}. (5.5)

Since it is obvious that the number of node-disjoint paths between u and v cannot

exceed the degrees of u and v, Cupper(u, v) is always an upper bound of C(u, v).

Accordingly, we can define the upper bound of C(G) as follows:

Cupper(G) =
1

N(N − 1)

∑
u∈V

∑

v 6=u∈V

Cupper(u, v). (5.6)

For any graph G(V, E) and any pair of nodes u, v ∈ V , let ddiff (u, v) denote

the difference between Cupper(u, v) and C(u, v), that is,

ddiff (u, v) = Cupper(u, v)− C(u, v). (5.7)

Let ddiff denote the random variable representing the difference between the upper

bound and exact value of any pair of nodes in the network. In other words, given

a graph, ddiff corresponds to picking a pair of nodes (u, v) at random and taking

ddiff (u, v). Then for any pair of nodes, the probability that the difference between
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Figure 5.2: Upper bounds and exact values of APC for Poisson random graphs

their upper bound of pairwise connectivity and the exact pairwise connectivity is

equal to k can be calculated as follows:

P (ddiff = k) =
∑
u∈V

∑

v 6=u∈V

1[ddiff (u, v) = k]

N(N − 1)
, (5.8)

where 1[condition] is an indicator function defined as follows:

1[condition] =





1 condition is true

0 condition is false
(5.9)

5.2.1 Poisson Random Graphs

We first study the APC in Poisson random graphs through experiments, which

are set up as follows: the total number of nodes, denoted by N , is fixed to be

1000, and for any pair of nodes, with probability p there is an edge to directly

connect them. Different values of p are tested, and the average node degree can

be calculated as (N − 1)p. The experimental results with different average node

degrees are shown in Fig. 5.2, where Fig. 5.2(a) illustrates the relationship between

the average node degree and the APC (both Cupper(G) and C(G) are shown), and
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Fig. 5.2(b) demonstrates the distribution of Ddiff , the difference between the upper

bound and exact value of the APC, under three different average node degrees: 5,

10, and 15. For each average node degree, the results are averaged over 1000

independently generated Poisson random graphs.

First, from these results we can see that the APC increases monotonically with

the increase of average node degree, which is easy to understand. Second, it is

surprising to see that the upper bounds and exact values of the APC are almost

equal in all configurations, except when the average node degree is extremely low

(e.g., average node degree is less than 5), which indicates that the APC of Poisson

random graphs can be almost completely characterized by the corresponding upper

bounds. These results also indicate that in Poisson random graphs, when the

average node degree is large, the bottleneck to find multiple node-disjoint paths

between a pair of nodes lies in the degrees of the two nodes themselves.

Now we show how to directly calculate the upper bound of APC for Poisson

random graphs. Here we make the simplifying assumption that the degree distri-

butions for different nodes are independent in Poisson random graphs, though it

may not be strictly true. When N is large and (N − 1)p = λ, given any pair of

nodes u and v, it is easy to show that the probability of Cupper(u, v) equal to k can

be calculated as follows:

P (Cupper(u, v) = k)

= P (d(u) = k)P (d(v) > k) + P (d(u) ≥ k)P (d(v) = k)

=
e−λλk

k!

( ∞∑

i=k+1

e−λλi

i!
+

∞∑

i=k

e−λλi

i!

)
(5.10)

Under the simplifying assumption of independence, according to the Strong Law of

Large Numbers [31], for large N , Cupper(G) is approximately equal to E[Cupper(u, v)],
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Figure 5.3: Relationship between E[Cupper(u, v)] and λ

where E[Cupper(u, v)] can be calculated as follows:

E[Cupper(u, v)]

=
∞∑

k=0

k
e−λλk

k!

(
1−

k∑
i=0

e−λλi

i!
+

∞∑

i=k

e−λλi

i!

)

= λ− λ

( ∞∑

k=0

e−λλk

k!

k+1∑
i=0

e−λλi

i!
−

∞∑

k=0

e−λλk

k!

∞∑

i=k+1

e−λλi

i!

)

= λ− λ

∞∑

k=0

e−λλk

k!

(
e−λλk

k!
+

e−λλk+1

(k + 1)!

)
(5.11)

Since there is no closed form for (5.11), next we study the relationship between

E[Cupper(u, v)] and the average node density λ by truncating the equation at k =

2000. Fig. 5.3 illustrates the computed results based on Eqn. (5.11). Fig. 5.3(a)

illustrates the ratio between E[Cupper(u, v)] and λ, which demonstrates that the

ratio increases fast when λ is small, then increases slowly. Fig. 5.3(b) illustrates

the values of E[Cupper(u, v)] for different average node degrees, which indicates

that although the ratio is not constant, E[Cupper(u, v)] is approximately a linear

function of the average node degree. This is also consistent with the experimental

findings illustrated in Fig. 5.2(a). From Fig. 5.3(b) we can also see that the absolute
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difference between E[Cupper(u, v)] and λ will increase with the increase of λ, which

indicates that the ratio can never be equal to 1.

It is easy to check that E[Cupper(u, v)] is an unbiased estimator for Cupper(G).

Now we study the normalized root mean square error (NRMSE) associated with

the estimator E[Cupper(u, v)], which is defined as

NRMSE =

√
E

[
(E[Cupper(u, v)]− Cupper(G))2]

]

E[Cupper(u, v)]
.

The experimental results are illustrated in Fig. 5.4, which are based on 1000 inde-

pendently generated Poisson random graphs. From these results we can see that

the normalized RMSE is very small and decreases with the increase of average

node degree, so Cupper(u, v) is well-approximated by its mean value E[Cupper(u, v)].

5.2.2 Geometric Random Graphs

Now we study the pairwise connectivity in geometric random graphs. In this set

of experiments, the geometric random graphs are generated as follows: nodes are
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independently deployed inside a rectangular area of 10r × 10r according to the

2D uniform distribution, and the total number of nodes in the network changes

with the change of average node density. The experimental results with different

average node densities are illustrated in Fig. 5.5, where Fig. 5.5(a) shows the

relationship between the average node density and the sample mean of APC (both

Cupper(G) and C(G) are shown), Fig. 5.5(b) demonstrates the distribution of ddiff ,

that is, the difference between the upper bound and exact value of the APC, under

three different average node densities: 10, 20, and 30, and Fig. 5.5(c) exhibits the

standard deviation of APC. Similar to the case of Poisson random graphs, for each

average node degree, the results are averaged over 1000 independently generated

geometric random graphs.

First, from Fig. 5.5(a) we can see that the APC increases with the increase of

node density, which is easy to understand. Second, unlike in Fig. 5.2(a) (Poisson

random graphs), the upper bounds and exact values of the APC are not approx-

imately equal in the Fig. 5.5(a) (geometric random graphs). The distributions of

ddiff are illustrated in Fig. 5.5(b), which shows that the difference between the

upper bounds and exact values can become large in certain situations. For ex-

ample, for average node density 10, with probability only 20% the upper bounds

are equal to the exact values. Further, for all the three node densities shown in

Fig. 5.5(b), with about probability of 15% the difference is larger than 3. The stan-

dard deviations exhibited in Fig. 5.5(c) show that when the average node density

is larger than 7, the standard deviation becomes negligible. In other words, for any

arbitrary geometric random graph generated according to the above procedure, its

actual APC can be approximated by the sample mean (illustrated in Fig. 5.5(a))

very well.
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Figure 5.5: Upper bounds and exact values of APC in geometric random graphs
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Figure 5.6: Upper bounds and exact values of APC in the inner part of geometric

random graphs

One possible reason for the existence of a gap between the upper bounds and

the exact values is the existence of boundary effects and the non-homogeneity

of geometric random graphs. Unlike Poisson random graphs, in which all nodes

are homogeneous and there is no such concept of boundary, in geometric random

graphs, some nodes may lie in the boundary areas and may have less resources

when trying to discover routes to the other nodes, which can greatly reduce the

pairwise connectivity.

To investigate the boundary effects in geometric random graphs, we have con-

ducted another set of experiments, where only nodes inside the inner area of geo-

metric random graphs are considered when calculating the APC. Specifically, given

a geometric random graph in a rectangular area of 20r× 20r, only node pairs with

both inside the inner area of 10r × 10r are considered. The new experimental

results are illustrated in Fig. 5.6. From these results we can see that with the in-

crease of node density, the exact values of the APC are almost equal to the upper

bounds. Meanwhile, the distribution of the difference between the upper bound
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and exact value also demonstrates that the differences become much smaller than

the results shown in Fig. 5.5(b), and with only very small probability the gap is

larger than 3. In other words, when the boundary effects are removed and the

node density is not too low, the pairwise connectivity of each node pair can be

completely characterized by their own node degrees.

The PCR in geometric random graphs has also been studied with the same

configuration, where the results are illustrated in Fig. 5.5. The sample mean

and standard deviation of PCR are illustrated in Fig. 5.7. Except for the sharp

threshold behavior, which has been illustrated in Section 5.1(C), from these results

we can also see that the standard deviation becomes very small when the average

node density becomes large (i.e., PCR approaches to 1). This indicates that for

an arbitrary geometric random graph with large average node density (e.g., larger

than 10), with very high probability nearly every pair of nodes can communicate,

though the network may be disconnected.
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5.2.3 Distribution of Pairwise Connectivity

We have also conducted a set of experiments to further study the distribution of

pairwise connectivity in geometric random graphs, and the results are illustrated in

Fig. 5.8. In this set of experiments, the network deployment area is fixed to be 10r×
10r, and for each node density, the results are averaged over 1000 independently

generated random graphs. For each curve in Fig. 5.8, each data point denotes the

total fraction of node pairs whose pairwise connectivity is no more than certain

value (i.e., x-axis value). Based on these results, we can not only calculate the APC,

but also find the distribution of node pairs with different pairwise connectivity.

First, comparing the results in Fig. 5.8 and Fig. 5.5 we can see that the average

values match the median values very well. For example, as illustrated in Fig. 5.5,

the APC for node density 20 is about 13, while as shown in Fig. 5.8, the median

point corresponding to node density 20 is also around 13. This is also true for

other node densities. This is because the pairwise connectivity for different nodes

pairs is distributed almost uniformly in a small region and centered at their median
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Figure 5.9: The α-p-resilience in APC for geometric random graphs under random

node failures

point. Second, from the results illustrated in Fig. 5.8 we can see that these curves

exhibit some threshold behaviors where the curves change sharply from 0 to 1 for

most node densities. That is, with very high probability most node pairs’ pairwise

connectivity is around the APC, which also shows that APC can be a very good

metric from each individual node’s point of view.

5.3 Experimental Evaluation of Fault Tolerance

In wireless ad hoc networks, some nodes may be removed from the network due to

exhaustion of battery power and some nodes may be disconnected from the network

due to unintentional configuration errors. Meanwhile, due to the fragile wireless

connections and possible mobility, link breakage may happen very frequently. The

measure of fault tolerance is thus critical in wireless ad hoc networks. In this

section, we study the fault tolerance of such networks under random node failures

based on the proposed α-p-resilience measure, where both APC and PCR have
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been studied.

We first conduct a set of experiments to study the decrease of APC in geometric

random graphs under random node failures. In this set of experiments, the initial

network is deployed in a rectangular area of 10r×10r, and the average node density

ranges from 5 to 30. The experimental results are illustrated in Fig. 5.9, where each

data point represents the APC after a portion of nodes are randomly removed from

the network, which corresponds to random node failure with certain failure ratio,

and are obtained through averaging over 1000 independently generated geometric

random graphs. In other words, for any point (x, y) in the curve corresponding

to the original average node density γ, this indicates that the above geometric

random network with average node density γ is y-x-resilient in APC. From these

results we can see that the APC decreases linearly with the increase of node failure

ratio. The results also confirm that the random failure of nodes with failure ratio

p has exactly the same effect as reducing the node density to 1− p of the original

density, which is trivial to understand.

The experimental studies of α-p-resilience in PCR for geometric random graphs

are illustrated in Fig. 5.10, where the same experiment configurations are used as

in Fig. 5.9. In this figure, each curve corresponds to a specific PCR (that is, α)

under certain portion of random node removal. For example, for the point (8,

0.3) in the curve corresponding to PCR = 99%, this indicates that a network with

APC being 8 is 99%-30%-resilient under random node failure, i.e., up to 30% of

the nodes can be randomly failed while maintaining a PCR of at least 99%. From

these results we can see that the network resilience increases with the increase of

APC, which is trivial to understand. These results also demonstrate that the extra

portion nodes that can be removed when decreasing the PCR from 99% to 95% is
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Figure 5.10: The α-p-resilience in PCR for geometric random graphs under random

node failures

much larger than that when decreasing the PCR from 95% to 90%. This can be

explained by the sharp threshold behavior: according to the results illustrated in

Fig. 5.7, with the decrease of average node density, the decrease of PCR from 95%

to 90% is much quicker than the decrease of PCR from 99% to 95%.

Random failure experiments have also been conducted on Poisson random

graphs, and the results are illustrated in Fig. 5.11. In this set of experiments,

there are 1000 nodes in the initial deployment of each network, and the average

node degree ranges from 5 to 30. The results confirm that the random failure of

nodes with failure ratio p has exactly the same effect as reducing the average node

degree to 1− p of the original average node degree.

5.4 Experimental Evaluation of Attack Resilience

This section evaluates the attack resilience of wireless ad hoc networks based on

the metric of α-p-resilience. In many situations the networks are deployed in ad-
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Figure 5.11: The α-p-resilience in APC for Poisson random graphs under random

node failures

versarial environments, and some nodes may become dysfunctional under attacks.

Thus the study of attack resilience is also critical. In this section, the following

two attack models are considered: selective node removal attacks according to node

degree and partition attacks.

When selective node removal attacks are applied, nodes in the network are

removed one by one, and at each step the node with the highest degree is removed.

This type of attack can degrade the network performance drastically in scale-free

networks, such as the Internet [2]. However, since randomly deployed wireless

ad hoc networks are not scale-free, selective node removal attacks may not be

the best attack model from the attackers’ point of view. In this section, we also

consider another type of attack whose goal is to partition the network into many

disconnected components through removal of nodes in certain areas. We refer to

this type of node removal attacks as partition attacks.

Fig. 5.12 shows the experimental results of α-p-resilience for Poisson random

graphs under selective node removal attacks, or more specifically, the decrease of
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Figure 5.12: The α-p-resilience in APC for Poisson random graphs under selective

node removal attacks

APC with the increase of node removal fraction for a given network configuration.

In this set of experiments, the original number of nodes in the network is set to

be 1000, the average node degree varies from 5 to 30. Each data point in this

figure corresponds to the APC under the selective removal of a certain fraction

of nodes, The result is obtained through 1000 independently generated Poisson

random graphs. From these results we can see that the APC decreases approxi-

mately linearly with the increase of node removal percentage, similar to the case

of random node failure shown in Fig. 5.11.

The comparisons between random node removal and selective node removal

have also been performed, as illustrated in Fig. 5.13. From these comparisons we

can see that although in both cases the APC will approximately decrease linearly

with the increase of node removal fraction, selective node removal can cause more

degradation than random node removal. Meanwhile, even under selective node

removal attacks, the APC in Poisson random graphs still decreases very gracefully,

which indicates that Poisson random graphs are robust to selective node removal
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Figure 5.13: Comparison of APC for Poisson random graphs under different attacks

attacks.

Since geometric random graphs can better capture the spatial correlation among

nodes in wireless ad hoc networks, in the remainder of this section we will focus

on geometric random graphs. Further, besides selective node removal attacks, the

effect of partition attacks will be studied. Fig. 5.14 illustrates the experimental

results for geometric random graphs. In this set of experiments, the network de-

ployment area is fixed to be 10r × 10r, the original node density ranges from 5 to

30, and the fraction of nodes removed varies from 10% to 50%.

From the results illustrated in Fig. 5.14(a), which correspond to the case of

selective node removal attacks, we can see that the APC decreases linearly and

gracefully with the increase of node removal percentage, similar to the case of

Poisson random graphs shown in Fig. 5.12. This also indicates that geometric

random graphs are robust to selective node removal attacks unless the node density

is too low, although the selective node removal attacks may cause more damage

than the random node failures.
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Figure 5.14: The α-β-resilience in APC for geometric random graphs under selec-

tive node removal and partition attacks

10% 20% 30% 40% 50%

Figure 5.15: Partition methods for different node removal ratios. In these figures,

the dark areas denote those areas from which all nodes have been removed, and

the width of each dark area is at least r.

Now we study the effects of partition attacks, where the partition strategies are

illustrated in Fig. 5.15. From the experimental results presented in Fig. 5.14(b)

we can see that partition attacks can cause severe performance degradation in

geometric random graphs. For example, when only 10% of nodes are removed,

the APC will decrease to about 40% of the original value. This makes sense since

according to the partition strategy shown in Fig. 5.15, after 10% of nodes are

removed, the network will be partitioned into two disconnected parts. In other

words, for any node in the network, it will lose connection to about half of the

nodes in the network. Further, due to the reduction of available resources and
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Figure 5.16: The α-p-resilience in PCR for geometric random graphs under selec-

tive node removal attacks

network size, the number of node-disjoint paths between pairs of nodes that remain

connected also decreases, which explains why the obtained APC is only about 40%

of the original value.

Fig. 5.16 demonstrates the α-p-resilience in PCR for geometric random graphs

under selective node removal attacks, that is, the fraction of nodes that can be

selectively removed without letting the PCR below a certain threshold (i.e., α).

The results are similar to those illustrated in Fig. 5.10 and they are compared in

Fig. 5.17. First, when the original APC is large, the network is more robust to

random node removal attacks than to selective node removal attacks. For example,

for α being 95% and the original APC being 12, when nodes are removed randomly,

p can be 0.6, while under selective node removal attacks, p is 0.5. This indicates

that selective node removal can cause more damage than random node removal

when the original network density is high. Second, it surprising to see that when

the original APC is relatively small and the PCR requirement is high, random

node removal can cause even more damage than selective node removal attacks.
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Figure 5.17: Comparison of α-p-resilience in PCR for geometric random graphs

between random failure and selective attack

For example, for α being 99% and the original APC being 5, p is 18% under selective

node removal, while p is 9% under random node removal. This can be explained as

follows: when nodes are removed in decreasing order of degrees, those nodes being

first removed are usually in areas with higher node density, and removal of such

nodes may cause less effect on node isolation or network disconnection comparing

to removal of nodes from low density area. This is why there is less effect on PCR.

Fig. 5.18 demonstrates the comparisons under different node removal patterns

in geometric random graphs. In these comparisons, three node densities are stud-

ied: 5, 10, 15. Fig. 5.18(a) shows the comparison results with the original node

density being 5. From this set of comparisons we can see that when the node

removal ratio is larger than 10%, selective node removal attacks may cause more

damage than partition attacks. This makes sense, since under low node density

and with a considerable amount of selective node removal, the network will be

partitioned into many small disconnected pieces, while partition attacks give rise

to larger connected subsets. Further, from this set of comparisons we can also see
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Figure 5.18: Comparison of APC under different attacks in geometric random

graphs
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that when the node removal percentage is more than 40%, the APC corresponding

to partition attacks is actually higher than the APC corresponding to random node

failure.

Fig. 5.18(b) and Fig. 5.18(c) show the comparison results for node densities 10

and 15. From these comparisons we can see that with the increase of node density,

the effects of partition attacks become more and more severe. For example, when

the original node density is 10, in only one situation (i.e., node failure ratio 50%)

partition attack can cause more damage than selective attack, while when node

density is 15, in no situations does selective attack perform better than partition

attack from the attackers’ point of view. Thus, partition attacks can cause more

damage than selective node removal attacks when the network node density is high.

We have also compared the evolution of pairwise connectivity ratio (PCR) un-

der different node removal patterns, with the results being illustrated in Fig. 5.19.

First we examine the comparison under node density 5. Similar to the case of

Fig. 5.18(a), selective attacks can cause more damage than partition attacks when

the node failure ratio is larger than 20%, which has been explained before. One

very interesting observation from Fig. 5.19(a) is that PCR under selective attacks

is even a little bit higher than PCR under random node removal when the node fail-

ure ratio is 10%. This can be explained as follows. For geometric random graphs,

selective node removal according to degree distribution tends to remove nodes in

denser regions. Since the regions are denser it is less likely that this will cause a

neighbor to become isolated. Another interesting observation is that although the

APC under selective attack is lower than the APC under partition attack when

the node failure ratio is 20% (shown in Fig. 5.18(a)), the PCR is still a little bit

higher (shown in Fig. 5.19(a)). This observation implies that under some attacks
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a higher APC may not indicate a higher PCR.

The comparison of PCR under various attacks for node densities 10 and 15 have

also been illustrated in Fig. 5.19. From the comparisons presented in Fig. 5.19(b)

and Fig. 5.19(c) we can see that when the node density is high, partition attacks

become very severe in degrading the pairwise connectivity ratio, which is also

consistent with the results presented in Fig. 5.18(b) and Fig. 5.18(c). Further,

when the node density is very high (e.g., 15), even selective attacks can cause

almost no degradation to the pairwise connectivity ratio. In other words, selective

attack is not an effective attacking strategy when the node density is high.

5.5 Summary

In this chapter, we have studied the service availability of wireless ad hoc networks

based on average pairwise connectivity and pairwise connected ratio, and derived

theoretical upper-bound for the average pairwise connectivity which can approxi-

mate the exact value very well. Based on the proposed metric, α-p-resilience, we

have also studied the fault tolerance and attack resilience of wireless ad hoc net-

works under different node failure patterns: random node removal, selective node

removal, and partition attack. Experimental studies have demonstrated that when

the node density is relatively high, wireless ad hoc networks are more sensitive to

partition attacks than selective node removal attacks and random node failures,

and selective node removal attacks are a little bit more damaging than random

node removal; when the node density is extremely low, all the three node removal

methods have similar effects, with partition attacks and selective node removal

attacks being a little bit more damaging than random node removal.
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Figure 5.19: Comparison of PCR under different attacks in geometric random

graphs
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation we have made important progress on the following two impor-

tant issues: lifetime maximization in randomly deployed wireless sensor networks

and fault tolerance and attack resilience measurement in wireless ad hoc networks.

In the first part of this dissertation we have studied how to maximize the net-

work lifetime of randomly deployed wireless sensor networks by applying adaptive

traffic distribution and power control scheme. After abstracting the network into

layers, we are able to model the optimization problem as linear program. We first

studied a simple scenario where only transmission power consumption was consid-

ered. The numerical results show that in order to maximally extend the network

lifetime, each node should split its traffic into two portions with one portion is sent

directly to the sink and the other one to its neighbor in the next inner layer. Then

we proved that this is generally true and the optimal solution is unique. We then

generalized the model by incorporating processing and receiving energy consump-

tion. In this case, similar results have also been observed: for each packet to be
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sent, the sender should either transmit it using the transmission range with the

highest energy efficiency per bit per meter, or transmit it directly to the sink. We

then proposed a fully distributed algorithm to adaptively split traffic and adjust

transmission power for randomly deployed wireless sensor networks. Extensive sim-

ulation studies have also confirmed that the network lifetime can be dramatically

extended by applying the proposed approach in various scenarios.

Besides studying lifetime maximization in fully deployed sensor networks, in

this dissertation we have also investigated how to further extend the lifetime of

wireless sensor networks via joint relay deployment and adaptive traffic distribu-

tion. In this case, after a sensor network has been randomly deployed, some extra

relay nodes will be put into the network in a partially controlled way such that the

network lifetime can be maximally extended. Since this is a mixed-integer non-

linear programming problem, which is generally NP-hard, we proposed a greedy

heuristic to attack it. Our studies show that if the relay nodes can be deployed

in a right way, significant network lifetime extension can be achieved even with a

small portion of extra relay nodes.

In the second part of this dissertation we have investigated how to effectively

measure the fault tolerance and attack resilience of randomly deployed wireless ad

hoc networks. We first introduced two metrics to measure the service quality of

such networks: average pairwise connectivity and pairwise connected ratio, where

the former denotes the average number of node-disjoint paths per node pair in a

network and the latter is the fraction of node pairs that are pairwise connected.

Based on these two metrics, we came out the fault tolerance and attack resilience

metric: α-p-resilience, where a network is α-p-resilient if at least α portion of nodes

pairs remain connected as long as no more than p fraction of nodes are removed
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from the network. Under the new measurement metric, we then studied the fault

tolerance and attack resilience of wireless ad hoc networks under different node

failure patterns, specifically random node removal, selective node removal, and

partition attack.

6.2 Future Work

Although some progress has been made in this dissertation, there are still many

other important issues left unsolved. Next we discuss some interesting and impor-

tant topics that are related to our research.

One interesting topic is network lifetime maximization via joint in-network data

aggregation and adaptive traffic distribution. As demonstrated in [9,17,29,32,36],

in-network data aggregation is able to significantly extend the network lifetime by

decreasing the forwarding burden in wireless sensor networks. However, data ag-

gregation can be computation intensive and energy consuming. If in-network data

aggregation is not designed properly, those nodes that are responsible to perform

data aggregation will die much faster than others. However, this situation can be

alleviated by letting such nodes forward fewer packets, which can be realized by

joint consideration of in-network data aggregation and adaptive traffic distribu-

tion. Motivated by this idea, in the future we would like to study how to jointly

perform in-network data aggregation and adaptive traffic distribution and power

control to maximize the network lifetime.

Another interesting topic is to study the effect of different network lifetime

definitions on the solution of lifetime maximization problem under resource con-

straint. In this dissertation, we define network lifetime as the time elapsing between

network deployment and the moment when the first node dies. However, this def-

99



inition may not always be the most meaningful one. For example, in order for a

sensor network to function properly, it has to maintain a certain coverage, there-

fore in such situation one alternative lifetime definition can be the time elapsing

between network deployment and the moment when the network losses its required

coverage. Then the question is: Are the solutions derived from previous lifetime

definition also optimal under new definitions? Our analysis indicates that although

in some situations they are, in most situations they are not. Then if they are not

optimal, how far are they away from the optimal solution? Studying and com-

paring the optimal solutions derived under different lifetime definitions can be an

interesting topic, which can help us better understand the problem and may lead

us to solutions for more general setting.
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