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1 Introduction 

Dynamic probabilistic risk assessment (DPRA) is a systematic and 

comprehensive methodology that has been used and refined over the past two decades 

to evaluate the risks associated with complex systems such as nuclear power plants, 

space missions, chemical plants, and military systems.  A critical step in DPRA is 

generating risk scenarios which are used to enumerate and assess the probability of 

different outcomes.  The classical approach to generating risk scenarios is not, 

however, sufficient to deal with the complexity of the above-mentioned systems. 

The primary contribution of this dissertation is in offering a new method for 

capturing different types of engineering knowledge which are used to automatically 

generate dynamic risk scenarios that are presented as generalized event sequence 

diagrams.  These scenarios can be used in at least three ways.  The risk analyst can 

use them to study the behavior of the system.  A simulation environment may utilize 

the risk scenarios to guide the simulation toward more interesting scenarios.  And, the 

system designers can incorporate their analysis into the process of risk-based design. 

The organization of this study is such that each chapter provides greater detail 

about a concept introduced in the previous chapter.  In chapter 2, dynamic 

probabilistic risk assessment is discussed in detail and the advantages of simulation 

methods of DPRA are emphasized.  In chapter 3, SimPRA, the improved DPRA 

simulation technique enhanced by automated risk scenario generation is introduced 

and the three main components of it including the simulator, scheduler, and planner 

are discussed.  In chapter 4, SimPRA’s advantages over other simulation techniques 

are explained. In chapter 5, the contribution of the planner as a new method for 
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incorporating engineering knowledge into the automatic generation of dynamic risk 

scenarios is explained.  In chapter 6, the contribution of this thesis is assessed by 

presenting an evaluation of the SimPRA planner at three different levels—within the 

context of the SimPRA approach as a package, as an element within the SimPRA 

approach, and as a stand-alone method for risk scenario generation.  Chapter 7 

highlights the strength of this method by demonstrating its use to the field of risk-

based design.  Chapter 8 summarizes the contributions of this work and recommends 

a path forward. 
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2  PRA/DPRA and the role of scenarios in risk assessment 

2.1 Probabilistic Risk Assessment (PRA) 

Probabilistic risk assessment (PRA), also known as Quantitative Risk 

Assessment and Probabilistic Safety Assessment (PSA), has been defined as “a 

systematic and comprehensive methodology to evaluate risks associated with every 

life-cycle aspect of…complex engineered” systems (such as nuclear power plants, 

airliners, space missions, chemical plants and military equipment) “from concept 

definition, through design, construction and operation, and up to removal from 

service” (Stamatelatos, 2000). PRA was first used by the aerospace industry around 

the time of the Apollo space program (Stamatelatos, 2000). The first full-scale 

application of PRA methods was WASH-1400, The Reactor Safety Study (NRC 

1975). WASH-1400 considered the course of events which might arise during a 

serious accident at a light water reactor and estimated the radiological consequences 

of these events as well as the probability of their occurrence using a fault tree/event 

tree approach. Another major adaptation of PRA methodology occurred after an 

extensive review of NASA safety policies following the Challenger accident in 1986. 

At that time, NASA instituted a number of programs for quantitative risk analysis 

such as risk assessment of the Space Shuttle program (Fragola 1995). The Office of 

Safety and Mission Assurance at NASA headquarters has published several 

handbooks to enhance the PRA expertise at NASA (Stamatelatos et al. 2002).  

In the process of assessing the risk associated with a system, PRA answers 

three major questions, which can be represented as the set of triplets {< si, fi, pi >}: 

“scenarios – frequencies – consequences” (Kaplan and Garrick 1981): 
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1. What can go wrong? [Scenarios] 

2. How likely is each scenario? [Probability] 

3. How severe is the consequence of each scenario? [Consequence] 

Scenarios with the same consequence are usually grouped together to provide 

the risk factor for each consequence. 

The classical PRA approach involves the construction of separate models 

describing the system behavior and structure by the risk analysts. Models are 

typically built in the form of fault trees and event trees (FT/ET) which are graphical 

representations of Boolean expressions describing the combinations of so-called basic 

events leading to system failure. Basic events typically represent the failure of some 

components or subsystems. The level of granularity in these models, e.g., the extent 

to which events are decomposed into the contributing basic events, is driven by the 

PRA objectives, as well as the availability of data to quantify the basic events 

(Mosleh and Bier 1992). The knowledge required to solve the FT/ET is basic 

probability calculation. Commercial software packages are readily available to 

construct FT/ETs and conduct the necessary computations.   

The accuracy of PRA results will diminish when the necessary probabilistic 

failure information is scarce or entirely unavailable for use as input to the 

quantification process.  In such cases, PRA results are more suitable for relative risk 

comparisons or risk rankings rather than absolute risk evaluations.  Such comparisons 

and rankings are extremely useful for the improvement of systems designs and 

concepts in a resource scarce environment (Stamatelatos, 2000).  
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Naturally, when probabilistic failure information is more readily available, 

PRA efforts have been found to have a number of additional benefits for the 

implementing organization.  A number of these benefits are listed in Stamatelatos 

2000 and include: 

• New insights into design flaws and cost-effective ways to eliminate them in 

design prior to construction and operation;  

• An in-depth understanding of the normal and abnormal operation of 

complex systems and facilities;  

• A better understanding of approaches to reducing operation and 

maintenance costs while meeting or exceeding safety requirements;  

• Acquisition of technical bases to request and receive exemptions from 

unnecessarily conservative regulatory requirements. 

The importance of PRA techniques have come to be recognized by a number 

of regulatory agencies that have integrated them directly into their regulatory 

frameworks. In situations where risk management is critical to mission success, PRA 

methods are increasingly playing an important role in informing the decisions of 

management and/or regulatory agencies. In 1988 the NRC, for example, instituted the 

requirement that each nuclear power plant in the United States perform an 

Independent Plant Evaluation (IPE) to identify and quantify plant vulnerabilities to 

hardware failures and human faults in design and operation (NRC 1995).  

2.2 Classical PRA methodological limitations 

The PRA methodology has been successfully applied in a number of different 

projects. It has been recognized, however, that it is difficult to characterize some 
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complex dynamical systems by solely applying such techniques as event tree/fault 

tree analyses. Classical techniques face challenges in every aspect of the problem 

when applied to complex and dynamic systems that are often comprised of hybrid 

systems of hardware, software, and human components among which many 

interactions occur. Probability estimation and consequence determination processes 

are affected by the influence of the dynamics of the system on the failure rates and 

failure mechanisms of the components of the system. Most importantly, scenario 

generation confronts many impediments, one being the problem of combinatorial 

explosion. 

As mentioned earlier, scenarios play an important role in probabilistic risk 

assessment. One of the major questions that PRA tries to answer is what can go 

wrong or, more precisely, what are the risk scenarios. The quantification of risk is 

also dependant upon the risk scenarios defined by the analyst. For the purposes of risk 

assessment, it is necessary that the set of scenarios be complete, that scenarios be 

disjointed and that the number of scenarios be finite (Kaplan and Garrick 1981). One 

of the biggest challenges that PRA methods face when applied to a dynamic complex 

system is capturing a complete set of disjointed scenarios. 

PRA methods such as event trees and fault trees are implementations of logic. 

A major limitation of the Boolean logic-based models is their inability to specify the 

timing of events or even the order in which events occur. It is also difficult to model 

the dependency of the occurrence of events on scenarios or time.  

In a Boolean logic-based model, even with the “dynamic” expansions, it is the 

risk analysts who identify the interactions between the different parts of the system 
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and their influence on the system safety. In a dynamic system such a task is far from 

trivial.  

In the fault tree analysis, an often-used but unstated assumption is that when 

the cut set occurs, the top event occurs simultaneously. In most cases, this assumption 

is legitimate, but in a dynamic system, especially when there are complex interactions 

between the hardware-software-human elements, the sojourn time or response time 

must be explicitly taken into account. This is illustrated in Cojazzi 1996.  

Apart from the issue of time-dependent analyses, leaving the system dynamics 

out of the picture is in some cases a significant oversimplification (Devooght 1998). 

The event tree analysis can display the correct failure logic of dynamic systems, but 

due to its ignoring the role of process variables explicitly, it cannot determine the 

distribution of time to an undesirable state. An event tree is basically a pictorial 

representation of Boolean logic, so the only way it can take the process variable into 

account is by discretizing the process variables’ ranges. When we need detailed 

process variables or when the number of variables increases, the event tree may grow 

unmanageable. Without a physical model the event tree analysis has to involve a 

subjective judgment of the interaction between variables. As a result, the assessment 

of the probability of achieving the absorbing state may be inaccurate. The stochastic 

process induced by the random hardware/software failures, coupled with the system 

dynamics and/or human intervention would possibly trigger other significant failures 

in the system.  
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2.3 Dynamic PRA 

Acknowledging such difficulties, a set of new methodologies were developed 

under the name “Dynamic Reliability” or “Dynamic PRA (DPRA)”. Because of the 

range of disciplines working on this problem, it is sometimes hard to recognize the 

different terms being used to refer to similar proposed methodologies, nevertheless, it 

is accepted that the methods that try to handle systems with the following 

characteristics for PRA purposes are DPRA methods (Aldemir and Zio 1998): 

1. The dynamic phenomena have a strong influence on the system’s response 

(e.g. the operation of control/protection devices upon reaching assigned 

thresholds of the process variables values) 

2. The hardware component failure behavior and human operator actions depend 

on the process dynamics. 

3. The complex interactions between human operator actions and hardware 

components influence the system’s response and failure behavior.  

4. There are a variety of degraded modes related to multiple failure modes and 

the process dynamics.  

Dynamic PRA methods are supplemental tools to PRA techniques that are 

capable of handling interactions among components and process variables explicitly. 

In principle, they constitute a more realistic modeling of systems for the purposes of 

reliability, risk and safety analysis. With the DPRA tools in hand, system risk analysts 

can more clearly understand the limits of classical approaches, and determine when 

the dynamic methods are needed and applicable. Since the problem with classical 

PRA lies in the simplifications and compromises which need to be made by the 
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analyst, the burden of proof of correctness of the methodology lies on the analyst 

(Labeau, Smidts et al. 2000). However, DPRA techniques provide a framework for 

explicitly capturing the influence of time and process dynamics on scenarios and 

therefore, the burden of proof of correctness is significantly shifted from the analyst 

to the methodology. 

DPRA methods have evolved significantly over the past few decades.  In 

1981, Amendola and Reina 1981  explored the possibility of global treatment of 

dynamic PRA. A few years later, the DYLAM and ADS implementations were 

applied to treat DPRA problems in nuclear power plants and other areas 

(Nivolianitou, Amendola et al. 1986; see also: Cojazzi 1996; Hsueh and Mosleh 

1996; Chang 1999). More recently, a more general mathematical framework was 

introduced for probabilistic dynamics (Devooght and Smidts 1992). Probabilistic 

dynamics theory interprets the DPRA problems as problems equivalent to transport 

problems to be solved by, for example, Monte Carlo simulation. For a broader 

overview of dynamic PRA methodologies, several review papers of DPRA are 

available (Siu 1994; Labeau, Smidts et al. 2000). 

2.4 Review of different DPRA approaches with an emphasis on 
modeling/scenario generation 

DPRA methods can be divided into two basic categories depending upon 

whether or not they originated from attempts to enhance classical PRA modeling 

techniques.  Those DPRA methods that originated from classical PRA methods 

include Dynamic Fault Tree (DFT) and Extended Event Sequence Diagram (ESD) 

methods.  Those that did not originate from classical PRA methods include GO-
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FLOW, Dynamic Flowgraph, and Simulation techniques.  Below, each of these 

methods is described in greater detail. 

2.4.1 Dynamic Fault Tree 

Static fault trees are poorly suited for dealing with real-world PRA problems 

that may include sequence dependency, fault and error recovery, and the presence of 

redundancies, among other things. Due to the wide acceptance and use of static Fault 

Tree Analyses, however, one natural approach was to try to modify and enhance them 

in ways that would allow them to capture the dynamic characteristics of systems 

while preserving the familiar FTA format and capabilities. The Dynamic Fault Tree 

(DFT) approach proposed by Dugan et al. (Dugan 1991) does this by adding several 

new gates such as a functional dependency gate, a cold spare gate, a priority-AND 

gate, and a sequence-enforcing gate to the regular fault tree so that it can handle the 

redundancy and sequencing of the events.  

Markov Chain (MC) models and Binary Decision Diagrams (BDD) are used 

to solve a DFT. The process of converting a DFT into a Markov model has been 

automated.  When the dimension of a system grows, however, this conversion may 

generate a huge state space. As a result, efforts have been devoted to automatically 

separate the Fault-Tree into sub-trees, which may be either static or dynamic, and the 

sub-trees would be solved using different algorithms (Dugan 2000; Amari, Dill et al. 

2003). Combinational methods, such as BDD would be used if the sub-tree is static, 

and Markov-chain models would be used to solve dynamic sub-trees.  

Software packages, such as DITree and later Galileo have been developed at 

the University of Virginia to solve the Dynamic Fault tree model (Dugan 2000; 



11 

Dugan, Sullivan et al. 2000). The Dynamic Fault Trees are supported in several 

commercial fault tree software packages, such as Relex, Sapphire, and FaultTree+. 

Cepin et al. proposed a different kind of Dynamic Fault Tree to address the 

time requirements in safety systems (Cepin and Mavko 2002). House events which 

could be turned on or off at discrete time points were introduced to the classic fault 

tree to deal with the time requirements. A house event matrix represents the house 

events being switched on and off through discrete time point.  

Both types of DFT extend the functionality of the FTA to include some 

dynamic features, but neither of them is able to deal with the full spectrum of 

dynamic characteristics. They both rely on the Markov assumption of the model. 

Therefore, complex dynamic interactions, such as the interaction between component 

behavior and the process parameters are not easily captured. 

2.4.2 Extended ESD 

An Event Sequence Diagram (ESD) is a graphical representation of the 

success or failure scenarios. An ESD shows the path from an initiating event to the 

end-states. ESD can be used to document accidents and help engineers understand the 

accidents scenarios. In the nuclear industry, Pickard, Lowe and Garrick, Inc. (Pickard 

1983) used ESD to help construct event trees. ESD is used extensively in the space 

industry to identify possible accident scenarios.  

Swaminathan and Smidts extended the static ESD framework to capture many 

dynamic phenomena like time conditions, physical conditions, competing events, 

synchronizations, concurrent independent processes, mutually exclusive processes, 

and cyclic scenarios (Swaminathan and Smidts 1999). The mathematical 

formulization to set up the Markov or semi-Markov state transition equations is also 
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provided (Swaminathan and Smidts 1999). QRAS® (Groen, Smidts et al. 2002) is a 

software package, which provides an interactive tool to build ESDs, but the software 

is primarily a classic (static) PRA tool.  

The ESD approach relies on the accurate description of sequences, which 

cannot be performed automatically. The quality of the ESD depends, therefore, on the 

analyst’s attempts to identify the missing scenarios by Monte Carlo methods 

(Swaminathan and Smidts 1999).  

2.4.3 GO-FLOW 

GO-FLOW (Matsuoka and Kobayashi 1988) is a success-oriented system 

analysis technique. The GO-FLOW chart consists of signal lines and operators that 

represent the system configuration and functions as well as possible failures. Nearly a 

dozen different types of operators are used to construct the charts that represent the 

functioning or failure of physical equipment, logical gates and a signal generator. 

Signals, which represent physical variables or time or any information, propagate 

through the system of interest. The state of the system or components at any point in 

time is determined algebraically through the logic gates and other operators. The 

NOT logic gate and procedures to address common cause failures were later 

introduced into the methodology. Additional improvements allow GO-FLOW to treat 

the logic-loop and maintenance activity (Matsuoka 2004). The generation of a GO-

FLOW chart as well as the calculation procedures has been computerized. 

GO-FLOW charts are very useful insofar as they correspond to the physical 

layout of a system, are easy to construct and easy to validate. Matsuoka (Matsuoka 

2004) claimed GO-FLOW can model a phased mission more compactly than the 

FT/ET approach.  
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Despite these advantages, GO-FLOW has some limitations.  GO-FLOW can 

only handle binary systems in phased mission situations and any deviations from 

nominal behavior are treated as failures. Furthermore, although GO-FLOW does not 

track the evolution of each individual risk scenario, all the possible combinations of 

events must be laid out explicitly in GO-FLOW charts. This makes the representation 

of some types of system configuration, such as k-out-of-n systems very difficult 

(Labeau, Smidts et al. 2000). Hierarchical charts are not available either, thus the 

problem of combinational explosion is significant when dealing with large systems. 

Another problem is that some important information that is routinely provided by 

FT/ET, such as minimal cuts sets and importance measures is not easily obtained in 

the GO-FLOW model (Siu 1994). Finally, the GO-FLOW methodology can only be 

applied to treat constant failure and/or repair rates.  

2.4.4 Dynamic Flow-graph 

Garrett et al. introduced the Dynamic Flow-graph Model (DFM) to model 

software-driven embedded systems (Garrett, Guarro et al. 1995). More recently, DFM 

has been used in the nuclear, space and other industries to analyze control systems 

(Houtermans and Apostolakis 2002).  

DFM has two fundamental goals: 1) to identify how certain postulated events 

may occur in a system; and 2) to identify an appropriate testing strategy based on an 

analysis of the system’s functional behavior. To achieve these goals, the system 

models are developed in light of the cause-effect relationships between physical 

variables and timing characteristics. The DFM model is analyzed by a backward 

tracing of the sequences of events through the model, i.e. deductively moving from 

effect to cause to determine how the system reaches certain states. The result is timed 
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fault-trees, which take the form of the logic combinations of static trees relating 

system parameters at different times.  The minimal cut sets of the fault trees can be 

used to identify and eliminate system faults resulting from unanticipated 

combinations of potential failure modes arising from these combinations of system 

conditions. 

DFM based hazard analysis can be used to identify system hazards, including 

the previously unknown failure modes, and thereby guide hazard mitigation efforts. 

The use of multi-value logic is advantageous as compared with the binary nature of 

fault trees. 

The biggest draw back of DFM is the combinatorial explosion problem. 

Labeau pointed out that the discretization of physical variables may produce large 

multi-dimensional matrices and even discretization errors (Labeau, Smidts et al. 

2000). DFM is also not capable of quantifying the probability of scenarios. Efforts to 

add quantification capabilities to DFM that would enable it to represent stochastic 

characteristics are under way (Oliva 2006). 

2.4.5 Simulation methods 

Simulation methods have been extensively used for the analysis of the 

behavior of dynamic systems and comprise a major portion of the scholarly literature 

on DPRA. There are two primary strategies for simulation approaches to DPRA: the 

Discrete Dynamic Event Tree (DDET) strategy, and the Continuous Event Tree 

strategy (in its more general form, CET is known as the Monte Carlo method). 

Discrete Dynamic Event Tree (DDET) methods systematically explore a large 

number of scenarios by generating, at certain points in time (usually fixed time steps), 

branch points whose branches represent distinct courses of events, thus leading to 
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distinct sequences of events. All possible branches of the system evolution which 

form all possible directions that the scenarios of the system might take are simulated 

systematically.  

Continuous Event Tree (CET) simulations do not involve the discretization of 

the event sequence space. The event sequences are randomly generated by randomly 

deciding on the occurrence and timing of events. Biasing techniques are typically 

applied in the DPRA approaches based on CET simulation (Labeau and Zio 2001).  

2.4.5.1 Discrete Dynamic Event Tree simulation methods 

Discrete Dynamic Event Tree (DDET) simulation methods are simulation 

methods implemented by forward branching event trees. The branch points are 

restricted at discrete times only. The knowledge of the physical system under study is 

contained in a numerical simulation, written by the analyst. The components of the 

system are modeled in terms of discrete states. All possible branches of the system 

evolution are tracked systematically (Nivolianitou, Amendola et al. 1986; Cojazzi 

1996; Hsueh and Mosleh 1996). One restriction of DDET is that the events (branches) 

only happen at predefined discrete time intervals. It is assumed that if the appropriate 

time step is chosen, DDET will investigate all possible scenarios. As such, DDET is a 

straightforward extension of the classical event trees with the binary logic restriction 

removed.  

One issue with DDET simulation methods is that the systematic branching 

may easily lead to such a huge number of sequences that the management of the 

output event tree becomes awkward. Different measures have been suggested for 

dealing with this problem. The length of the time step, for example, may be increased 

although this may be at the expense of the accuracy of the analysis. Another approach 
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is to introduce cut-off criterion in some implementations so that the branches that 

meet that criterion (for example, branches with a probability lower than a specific 

value) would be discarded. Finally, Amendola suggested that when the number of 

failures in a sequence exceeds a user-defined value (which is problem-dependent), 

further evolution along this sequence would be stopped (Amendola 1988).  

Implementations of DDET include DYLAM (Nivolianitou, Amendola et al. 

1986; Cacciabue, Carpignano et al. 1992; Cacciabue and Cojazzi 1994; Cojazzi 

1996), DETAM (Siu 1994), ADS (Hsueh and Mosleh 1996), and ADS-IDA (Chang 

1999). 

2.4.5.2 Continuous Event Trees (Monte Carlo) simulation methods 

While DDETs require the events to occur at predefined discrete times only, 

CET approaches allow events to happen at any time. This avoids the combinatorial 

explosion problem that DDETs face. Monte Carlo methods are insensitive to the 

complexity and dimension of the system. Any modeling assumption such as the non-

fixed failure rate assumption, random delays, interaction between components and 

process dynamics, etc can be included. Indeed, Dubi claimed that Monte Carlo is the 

only practical approach to solving realistic systems (Dubi 1998).  

Discrete Event Simulation is a special case of the CET approach based on the 

concepts of state, events, activities, and processes (Carson 2004). In discrete event 

simulation, the operation of a system is represented as a chronological sequence of 

events. Each event occurs at an instant in time and marks a change of state in the 

system (Robinson 2004). When an event occurs, it may trigger new events, activities, 

and processes. Between events, the system is considered to be deterministic. Like the 

Monte Carlo approach, this is an implicit state-transition methodology, where there is 
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no need to enumerate the possible system states, and the possible transition rates. 

Extensions to treat continuous process variables are needed in most risk analysis 

problems (Dang 1998). According to Siu, discrete event simulation is better equipped 

to dealing with arbitrary complex systems than Markov analysis, DDET, or analog 

Monte Carlo approaches (Siu 1994).  

The analogy between Monte Carlo simulation for PRA and the transport 

problem is often drawn (Devooght and Smidts 1992; Smidts and Devooght 1992; 

Dubi 1998). In the Monte Carlo simulation framework, a system is defined as a 

collection of components and a given state of the system is described by at least one 

real valued “system function” as the function of its state vector and possibly other 

relevant parameters. The system function is defined on phase space ),( tS  where the 

state vector of the system is defined as ),...,,( 21 nSSS=S and iS  is the state of 

component i. The phase space vector ),( tS  indicates that the system entered the state 

vector S at time t. The problem could be depicted as that of a “particle” moving in a 

phase space of states and time. The behavior of systems is governed by an underlying 

transport equation. 

The system transport kernel is the product of the free flight kernel and the 

collision kernel: ( ) ( ) ( )SStCttSTtStSK →×→=→ ';',',','  The free flight kernel 

( )ttST →',' is defined as the probability density that a system which entered state S ′  

at time t′  will have a next event at time tt ′> . The collision kernel, which is also 

called event kernel, ( )SStC →',  is defined as the probability that upon an event at t in 

state S ′  the system will change its state into S . 
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Let { }S ′  be the set of all state vector S ′  from which it is possible to transfer to 

S  in a single event. The event density 

( ) ( ) ( ) ( ) ( ) τψδψ
τ

dtStSKtStSPtS
S

⋅→′⋅′+⋅= ∑∫
′}{

0 ,',',, . 

If we consider a system with n components, each of which has ki different 

states, the dimension of the phase space would be∏
=

n

i
ik

1

. And if the order of events is 

important, we will have to consider ∏
=

n

i
ikn

1

! different situations. The state explosion 

makes the analytical solution of the transport equation prohibitively difficult. The 

Monte Carlo simulation is practically the only feasible solution.  

Please note here that the state vector is defined as a finite set of discrete states 

of the components, and that the continuous process variables were not considered. 

The extension to account for continuous-time process variables has been addressed by 

a number of scholars. (Smidts and Devooght 1992; Labeau and Zio 1998; 

Tombuyses, DeLuca et al. 1998).  

Despite all their advantages, CET simulation methods (such as MC and DES) 

have some limitations when applied to DPRA problems. Due to the high reliability of 

most systems, the number of simulation runs required to explore the high-risk 

scenarios may become extremely large and impractical. Much scholarship has been 

conducted on using biased sampling for rare event simulation. In rare event 

simulation, great care must be taken to address the completeness of the scenarios 

generated while ensuring that everything happens within a reasonable time frame.  
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Importance sampling tries to address these problems by improving sampling 

efficiency with the help of advanced biasing techniques that allow statistically 

superior results to be obtained with fewer runs of simulations.  The principle behind it 

is that some variables are more important in terms of their impact on the outcomes of 

the scenarios and should, therefore, be sampled more frequently.  However, more 

frequent sampling of a chosen variable introduces bias that must be corrected. This is 

done by weighting the simulation outputs.  

A number of scholars have proposed and/or tested different variations on 

importance sampling methods.  Marseguerra et al. introduced a new biasing technique 

that seeks to improve computational efficiency by driving the system toward a cut set 

configuration of more interesting but highly improbable events (Marseguerra and Zio 

1993). Labeau and Zio 2002 compared the system-based indirect Monte Carlo 

method with the component-based direct MC method and found that component-

based sampling is more efficient.  Finally, Marseguerra, Zio et al. 2002 concluded 

that sampling from a discrete uniform distribution generates better results than 

sampling from an exponential failure rate, at least in the case of smaller systems. A 

more general discussion of variance reduction techniques and rare event simulation 

can be found in Rubinstein and Melamed 1998, and Bucklew 2004. 

2.4.5.3 SimPRA 

The SimPRA framework which is the foundation of the methods developed in 

this dissertation can be seen as a combination of CET and DDET approaches. In fact 

SimPRA is a CET approach that is guided by a planner that, like DDET approaches, 

takes advantage of the classical event sequence diagram and event tree approaches 

with the binary logic restriction removed.  
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In SimPRA, events are simulated in continuous time. When the simulation 

reaches a branch point, the direction that it has to take is decided based not only on a 

random selection of the events according to the probability of branches, but also by 

the importance measure of the events and the expected entropy gain from simulating 

each branch. The SimPRA framework is explained in more detail in the following 

chapter. 
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3 SimPRA framework overview 

The SimPRA framework is comprised of three major components: a simulator 

that generates the detailed scenarios and identifies the ultimate fate of each one, a 

scheduler which controls the timing and occurrence of the events and a planner 

which is responsible for guiding the simulation through high level scenario 

generation. Figure 1 illustrates the main elements of the SimPRA framework as well 

as the interactions among them.  
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Figure 1: SimPRA framework components and the interactions among them 

In the SimPRA framework, high level knowledge about the system’s behavior 

and vulnerabilities is actively employed through a plan—or group of high level 

scenarios—to guide the simulator to generate those detailed scenarios that are most 

likely to lead to interesting situations. These scenarios and their consequences, as 

identified by the simulator, are recorded and grouped for later study. The planner may 
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‘learn’ from the simulation results, and update the high level scenarios to better guide 

the scheduler in future runs of the simulation. The rest of this chapter discusses 

SimPRA components and the interactions among them in more detail. 

3.1 Simulator 

The simulator is responsible for generating detailed behavior of the system as 

intended by the system designers. Simulation can consist of both discrete and 

continuous elements that simulate the behavior of software, hardware or human 

components of a real system. It is even possible to let the real elements play a part in 

the simulation by providing an interface between them and the rest of the simulation 

program. 

The granularity or the level of detail in a simulation model depends on many 

factors including the risk assessment goals, availability of data, computational power 

and the simulation speed.  

There are two types of stochastic events in the simulator: time-based events 

and demand-based events. Time-based events describe the probability distribution 

function of the time to occurrence of the event.  Demand-based events, on the other 

hand, present the probability of occurrence of each set of outcomes of the event. For 

these events, the timing of the occurrence is not random; instead, the outcomes at that 

point of time are random. 

To link the simulator with the scheduler, the simulation model needs to 

include some model elements that are able to notify the scheduler of the branch points 

and look for guidance from it. Practically, this translates into using some elements 

from a tool box in the simulation model that are predefined to provide the 
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communication. Most of these elements will be the elements with stochastic behavior 

that are guided by the scheduler. 

Specifically, any simulation model in the Simulink® environment with 

embedded SimPRA tool-box components can be used by SimPRA for risk assessment 

(Figure 2). However, to make a simple model that only simulates the reliability 

behavior of the software, hardware, and human elements of simulation without 

presenting other unnecessary aspects of these elements, several modeling techniques 

are developed and suggested for the SimPRA environment. Please refer to Hu, et al. 

2004, Mosleh, et al. 2004, and Zhu, et al. 2006 for more details about these modeling 

techniques. 
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Figure 2: A typical simulation model with SimPRA blocks added for risk assessment 

In the case that the multi-level objects are defined in hardware, software, or 

human components, a separate knowledge base needs to be constructed for each sub- 

component. The prior knowledge related with level selection is stored in the 

knowledge base, including time-factor related information (the relationship between 
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the high-level scheduler simulation time requirement and the simulation level of 

detail for this component) and the relationship between pre-defined component 

conditions and the simulation level of detail. 

Data provided to the simulator (Figure 1: link III) contains the simulation 

commands that are executed in the branch points. These commands include: a) 

Checking some conditions in the simulation model; b) Setting some simulation 

variables that are directly provided by the scheduler; and c) Running queries on the 

simulation model to decide the availability of options to set for the continuation of the 

simulation and perhaps doing a random selection among the possible options. 

The simulator notifies the scheduler when branching points are generated. It 

also provides the results of the condition tests on the simulation elements when 

requested by the scheduler (Figure 1: link V). The simulator also keeps a record of all 

of the state changes in every simulation run with the time of these changes. Figure 3 

shows the algorithm behind the simulator component. 

 

Set the simulation parameters
  For each run of the simulation {
     Initiate event sequences
     While (not reached an end state or cut off time) {
       Perform continuous/discrete-time simulation
       If (Reached a branching point) {
           Inform the scheduler of the possible branches with their   
                         probabilities
          Wait for the scheduler to select a branch and the level of detail
                         for multi-level components by giving appropriate
                         commands
          Execute the scheduler commands
     }
   }
   Inform the scheduler of reaching an end state or cut-off time
 }
 End the simulation

Report the results  
Figure 3: Overview of SimPRA simulator algorithm 



25 

3.2 Scheduler 

The scheduler manages the simulation process, by, among other things: saving 

system states, deciding the branch selection, adjusting the simulation levels of detail, 

and restarting the simulation. The scheduler guides the simulation toward the plan 

generated by the planner.  

The scheduler keeps track of the simulation and guides it adaptively. The 

simulator proposes the transitions to the scheduler whenever the simulator reaches a 

branching point. The scheduler then retrieves the value of the proposed transitions 

and decides which branch is to be explored. The exploration command is sent to the 

simulator for execution and the simulation continues until the next branching point or 

an end-state is reached. Two kinds of knowledge—prior knowledge and knowledge 

obtained from previous runs of the simulation—are used to guide the scenario 

exploration. 

The engineering knowledge is represented in the plan. In the SimPRA 

framework, the high level scenarios generated by the planner serve as a guide for the 

simulation (Figure 1: link I). The importance level of events based on prior 

information or engineering experience is integrated into the plan. The knowledge 

obtained during simulation is measured using the expected entropy gain, which 

evaluates how much information is expected to be gained by simulating / exploring 

that scenario. Shannon introduced the idea that information is a statistical concept and 

proposed using entropy as measure of information (Shannon, 1948). Lindley applied 

these ideas to measure the information in an experiment rather than in a message 

(Lindley, 1956). The amount of information provided by an experiment is measured 
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by comparing the knowledge before and after the experiment, while the measure of 

information is given by Shannon’s entropy. The details of the entropy-based 

exploration strategy are discussed in Hu et al., 2004. It is important to mention that 

although the guide is not expected to be complete or even correct, due to the 

randomness of the simulation, a sufficiently large number of guided simulation runs 

should generate all event sequences of interest.  

In addition to branch selection, the scheduler also handles the adjustment of 

the simulation levels in the case where multi-level objects are defined in the 

simulator. The planner is loaded into the scheduler at the beginning of the simulation. 

The simulation level of detail is adjusted adaptively based on the information in the 

plan, the information in the knowledge base of different components, and the 

previous simulation results.  

A System Level Knowledge Base (SLKB) is established in the scheduler to 

represent the compatible combinations of the level of detail for different sub-

components. The type of level control nodes includes: 

1. Direct level control: the direct value for the level of simulation 

2. Time Factor: the required time factor  

3. Undefined: the level control is undefined. 

The scheduler is established to handle multi-level objects in the simulation 

model if a multi-level plan is loaded. The scheduler checks the plan for level control 

commands and, based on the type of the command, it will take one of the following 

approaches:  
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1. If Level Control Node (LCN) contains the direct control information, the 

scheduler reads the level information from LCN and sets the simulation level 

of detail for all multi-level objects accordingly.  

2. If LCN contains time factor requirements, the scheduler sends the time factor 

requirements to the sub-components. The sub-component queries its own 

knowledge-base to get the level control information based on the time factor 

requirement and sends it back to the high-level scheduler. The scheduler sets 

the simulation level of detail for all multi-level objects based on the 

combination. 

3. If LCN is undefined, the scheduler sends this information to the sub-

component. The sub-component decides the simulation level based on the 

information in its own knowledge base and sends it back to the high-level 

scheduler; the scheduler sets the simulation level of detail for all multi-level 

objects based on the combination. 

After the start of the simulation, the scheduler controls the simulation level of 

detail during each simulation run. The simulation continues until it reaches an LCN. 

The simulation level of detail for multi-level objects only changes when the 

simulation reaches an LCN. Figure 4 shows the algorithm behind the scheduler 

component. 

It is necessary to mention that the term scheduler has been used in other 

simulation-based probabilistic risk assessment frameworks, such as DYLAM 

(Cojazzi 1996) and ADS (Hsueh and Mosleh 1996) as well. However, the role of the 

scheduler is quite different in our framework. In DDET implementations the 
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scheduler directs the simulation to perform the systematic traversal of all the possible 

branches, typically in a depth-first manner. In the SimPRA framework, the scheduler 

is not only capable of performing the depth-first search as in the DDET, but is also 

able to adaptively guide the simulation toward the scenarios of interest by actively 

choosing branches. The scheduler’s role is crucial since it has to be able to cover all 

the event sequence space, and it also has to maintain sufficient coverage of all of the 

planned scenarios and guide the simulation toward areas of greatest uncertainty. For 

the details of the scheduler algorithm please refer to Hu et al., 2004; Zhu et al., 2006 

 

 
Figure 4: Overview of SimPRA scheduler algorithm 

3.3 Planner 

As mentioned earlier, the planner is responsible for guiding the simulation by 

providing the high-level scenarios to the scheduler. These scenarios might be 
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incomplete or even in some cases incorrect. The planner itself, after a number of 

simulation runs, learns the detailed simulation results (Figure 1: link IV) and comes 

up with suggestions for the system analysts on ways to improve the plan model 

(Figure 1: link II) to generate unseen scenarios or eliminate impossible ones.  

Modeling the system for plan generation is done in three steps: First the 

hierarchy of the system is defined in the form of a structure tree. Then, state 

transitions are defined for each element of the system hierarchy, and finally, the 

details of the transitions that link higher level elements to lower level ones are 

defined. 

The primary contribution of this dissertation is its proposal and development 

of the planner portion of the SimPRA approach which, on a stand-alone basis, can be 

seen as an automated tool for the generation of risk scenarios presented in the form of 

generalized event sequence diagrams.  The theory and operation of the planner are 

discussed in greater detail in chapter 5 after chapter 4 reviews the primary advantages 

of the SimPRA framework over alternative simulation-based methods for risk 

assessment. 
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4 Problem statement and contributions 

The advantages of the SimPRA framework over other simulation-based 

techniques used for risk assessment can be grouped into the following five categories. 

The contributions of this thesis are comprised of the capabilities provided by the 

planner element of the SimPRA environment. 

4.1 Handling a large number of scenarios without compromising 
completeness 

The ability to handle a large number of scenarios without compromising 

completeness is one of the most challenging problems that simulation-based risk 

assessment methodologies have encountered. As mentioned in Chapter 2, DDET 

simulation methods are faced with the combinatorial explosion problem while CET 

simulation methods are unable to ensure the completeness of risk scenarios. 

All the different combinations of events happening in a large number of 

discrete time steps define the universe of event sequence possibilities in DDET 

simulation methods. Assuming there are n independent combinations of events and t 

time steps, a crude estimate of the size of the event sequences will be tn . A small 

system with five components that are either up or down (working or failed) observed 

in only 10 time steps will generate 105)2( event sequences. Obviously, however, some 

of these event sequences are either physically impossible or they are so low in 

probability compared to others that simulating them is not worth the effort.  

The classical way of dealing with this problem in DDET simulation methods 

has been to define a certain number of criteria that will halt the progress of a scenario 

when the simulation encounters them: 
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• Cut-off criteria: The probability of a scenario is continuously monitored 

during the simulation run and when that probability falls lower than a 

certain level, that scenario will be considered to be an extremely rare 

scenario and will no longer be pursued.  

• Absorption point criteria: A set of rules are defined before running the 

simulation that would define the conditions under which the scenario will 

be deemed uninteresting. Examples are scenarios containing specific 

combinations of events or scenarios reaching specific pinch points.  

A problem with these approaches is that a lot of precious simulation time may 

be wasted before a cut-off or absorption point is finally attained that flags a given 

scenario as extremely rare or uninteresting. Also, since DDET simulation methods 

employ search algorithms to find possible scenarios, searching in a large universe 

with a lot of uninteresting possibilities is a big waste of resources and can even 

overflow system resources before results are achieved. 

For CET methods, the primary challenge is in defining a complete set of risk 

scenarios. CET methods generally rely on the natural probability of scenarios. Since 

most systems are designed to be highly reliable, the natural probability of high-

consequence scenarios is likely to be very low.  As such, a prohibitively large number 

of simulation runs may be required to ensure that those low-probability high-

consequence scenarios are sufficiently explored. Recalling that risk is a function of 

consequences as well as probabilities, the generation of low-probability high-

consequence scenarios is at least as important as the generation of high-probability 
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low-consequence scenarios and the limitations of CET methods in this regard is 

significant. 

The typical way of dealing with this problem has been the use of Importance 

Sampling. Importance Sampling artificially pushes the simulation to sample 

important or risk-relevant variables more frequently so that high-consequence 

scenarios are more likely to be explored. Simulation outputs are then weighted in 

order to try to correct for any bias that may have been introduced. 

The SimPRA approach is a hybrid of the DDET and CET approaches that 

seeks to avoid the combinatorial explosion problem while simultaneously optimizing 

the completeness of the set of risk scenarios.  Similar to the DDET approach, 

SimPRA begins by discretizing the world of possibilities into high-level events. 

System behavioral knowledge is then used to reduce the world of combinatorial 

scenarios to a pool of physically, logically, and temporally possible high-level 

scenarios called a plan.  The simulation is run in a CET-type format that uses the plan 

for biasing (Importance Sampling) purposes.  Entropy rules with user-defined 

importance measures of events are used to select the branch points on an event tree 

generated from the plan.  Multi-level scheduling is also used to decide on the level of 

detail the events should have and to ensure that the simulation time is spent wisely on 

each detailed scenario generated by the simulator. Cut-off points and absorption 

points are also used to increase productivity. 
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4.2 Doing risk assessment without compromising the complexity of 
the problem 

Most risk assessment tools use or provide a specific modeling framework that 

suits the theory behind their approach. The use of these modeling frameworks is not 

without cost: 

1. The user must remodel the problem to fit the new framework which can be 

very time consuming. He or she also will need some risk assessment expertise. 

2. The complexities in the model are often reduced to comply with the tacit and 

explicit assumptions behind the risk assessment methodology. This 

complexity reduction makes the system behavior model and risk assessment 

results increasingly unrealistic and hence decreases the accuracy or precision 

of the results. 

The model used in SimPRA for risk assessment can be the same model that 

the designers have developed in the simulation environment to show how their system 

works. The simulation model might combine discrete and continuous events as the 

model for risk assessment. The only limitations on the simulation are the general 

computational limitations that a simulation environment might have and there is 

nothing imposed on it that is specific to the risk assessment approach taken. 

4.3 Providing tools for the system modelers to do risk assessment 
easily and quickly 

As mentioned earlier, SimPRA uses general simulation capabilities for risk 

assessment. SimPRA software comes with a Matlab/Simulink® toolkit which helps to 

implant stochastic and deterministic elements in the simulation model and connect 

these elements to the SimPRA scheduler in order to guide the simulation for risk 
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assessment purposes. The simulation model itself can be any model generated in the 

Simulink® environment. This provides a simple and quick environment for risk 

assessment, since the simulation model can come from the designers and not the risk 

analysts. 

4.4 Making the communication of risk scenarios compatible with 
what risk analysts are generally familiar with 

Automatically generated high level scenarios are grouped and presented in a 

generalized form of event sequence diagrams (ESD). This is a very useful feature for 

the risk analysts to verify the outcome of the planner and decide whether the high 

level scenarios generated by the planner are sound and complete. This will also be 

good for communicating the risk scenarios with system designers and verifying the 

high level scenarios before running the simulation. 

4.5 Providing an environment that will progressively improve 
efficiency over time 

SimPRA provides a dynamic environment in which the risk assessment 

technique matures in the process of simulation. An updating algorithm provides 

feedback and suggestions to the analysts as to how the planner’s knowledge may be 

updated so that it will be able to generate observed scenarios that were not originally 

in the plan and stop generating high-level scenarios that do not correspond to any 

observed detailed scenarios generated by the simulator. After several refinements of 

the plan, plan-updating might stop giving new suggestions. This would be an ideal 

situation in which the plan is a reflection of all of the possible high-level scenarios 

generated by the simulator and none of the scenarios in the plan is left unexecuted. 
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5 Planner 

Automated planning is a part of computer science literature that concerns the 

realization of strategies or action sequences for execution by intelligent agents, 

autonomous robots, unmanned vehicles, etc. A plan is defined as a representation of 

future behavior, usually a set of actions with temporal and other constraints that is 

executed by some agent or agents (Wilson 2001). Planning is an abstract, explicit 

deliberation process that chooses and organizes actions by anticipating their expected 

outcome. This deliberation aims at achieving as best as possible some pre-stated 

objectives (Ghallab, et al. 2004). 

Both the binary and multi-state planning processes introduced here assume 

that: 

1. The model is finite, meaning it has a finite set of states.  

2. The system is fully observable, meaning that the planner has complete 

knowledge about the state of the system. 

3. The system is deterministic, that is, if an action or event is applicable to the 

system, it brings the system to a single other state.  

4. The system is static, meaning it remains in the same state until another action 

or event is applied (Ghallab, et al. 2004).  

It is important to mention that these assumptions only apply to the planner’s 

planning model and not to SimPRA’s simulation model. More specifically, 

assumptions 3 and 4 are only used for generating a plan from the planner’s model of 

the system. The planner makes these assumptions to simplify the model and give a 

road map to the scheduler for guiding the simulation. However, events in the 
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simulator can be probabilistic and fully dynamic. The possible wrong or missing 

assumptions are fixed or added to the planner’s model during the updating process. 

The planning process is done off-line meaning that the planner alone knows 

the initial states and final (goal) states and does not track the state of the system in 

real time for generating the plan, although on-line planning capabilities are also 

present and can be used for the future work.  

5.1 Comparison between SimPRA planner and other automated 
planning algorithms 

In this chapter, relevant areas of the Automated Planning field—which is a 

part of the Artificial Intelligence literature in computer science—are very briefly 

reviewed and the place of the SimPRA planner among other automated planning 

approaches is clarified. It is important to mention that since the SimPRA planner is 

designed to serve the risk assessment field and be used for risk scenario generation 

purposes, it does not follow a generic modeling language (such as first or second 

order logic languages) like other general purpose planners. The SimPRA planner 

modeling language can thus be categorized as a Domain Specific Language and 

SimPRA planner should be categorized as a Domain Specific planner. The following 

comparison is, however, still valid because the purpose of the comparison is not to 

compare the models but the planning process itself. To reduce the confusion between 

the domains, the planning processes suggested in the literature are explained as 

broadly as possible. However, it is almost impossible to avoid the terminology of the 

automated planning field which is more intuitive for explaining these planning 

approaches.  
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5.1.1 STRIPS 

STRIPS is probably the most well-known classical planning approach (Fikes 

and Nilsson 1971) and usually used as the benchmark problem for planning 

algorithms. Using the set theoretic planning representation, a STRIPS instance is 

composed of: 

• An initial system configuration Ss ∈0 where s0 is the initial configuration 

and S is the set of all enumerable sets of configurations of the system 

( LS 2⊆ assuming binary states for L system elements—comparable to L 

propositions); 

• Goal states Lg ⊆ – states which the planner is trying to reach; 

• Operators O where each operator is itself a 

triple >=< )(),(),( oeffectsoprecondonameo . These three elements, in 

order, specify the name of the operator, pre-conditions for the operator and 

the effects of the operator (comparable with functionalities in the SimPRA 

modeling language); 

A plan for such a planning instance is a sequence of operators (functionalities) 

that can be executed from the initial state and that leads to a goal state. Transitions 

between states are modeled by a transition function γ , which is a function mapping 

states into new states that result from the execution of actions and events.  

Figure 5 shows the STRIPS planning algorithm. Simply stated, STRIPS tries 

to find a sequence of actions that can take the system from state s0 to state g by 

identifying the sequence of actions whose preconditions can be satisfied by the effects 

of earlier actions. This is achieved by going backward from the goal state g and 
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finding actions whose effects would satisfy g. When an action is found, the state that 

would satisfy its precondition is set as the new goal (or sub-goal) and the process will 

continue until state s0 is reached. Reversing the order of the actions will now take the 

system from s0 to g. 

 

 
 

Figure 5: STRIPS planning algorithm extracted and modified from Ghallab et al. 2004 

According to Ghallab, et al. 2004 the limitations on STRIPS are: 

1. In each attempt to identify a sub-goal, the only sub-goals that are considered 

are the preconditions of the last previous operator that was added to the plan. 

This reduces the branching factor substantially but makes STRIPS incomplete. 

2. If the current state satisfies all of an operator’s preconditions, STRIPS will 

commit to executing the operator and will not backtrack over this 

commitment. This prunes off a large portion of the search space but, again, 

makes STRIPS incomplete.  

STRIPS (O, s0, g) 
π  ← the empty plan 
loop 
    if s0 satisfies g then return π  

A←  {a І a is an operator in 0, and a is relevant for g} 
if A=ø then return failure 
non-deterministically choose any action Aa ∈  

  π ′←  STRIPS(O, s0, )(aprecond ) 
if π ′ =  failure then return failure 

   ;; if we get here, then π ′  achieves )(aprecond  from s0 

   s← ),( 0 πγ ′s  

   ;; s now satisfies )(aprecond  

          s0← ),( asγ ′  

         π ← a..ππ ′  
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Other than incompleteness—which is a huge problem for the application of 

the planner in the SimPRA approach—modeling real world problems for solving with 

STRIPS is not trivial. The STRIPS language is very abstract and unable to capture the 

wide range of expert knowledge that can help the planning process become more 

effective and accurate.  

5.1.2 Hierarchical Task Network (HTN) 

Hierarchical Task Network (HTN) planning is probably the most popular 

planning technique currently used in real world applications. HTN is similar to 

STRIPS in the deterministic assumption made for actions.  It differs from STRIPS in 

the way the problem is modeled, goals are defined, and consequently, the planning 

process is done.  

In HTN, the goal of the planning is not just to reach a number of goals but to 

find a way to reach the goals by performing a number of tasks. Tasks are a group of 

operators and other tasks that define a sequence of actions that are put together to 

serve a specific purpose in the planning domain. Tasks can be either primitive or non-

primitive. Primitive tasks are only composed of the planning operators while non-

primitive tasks are composed of both operators and other primitive or non-primitive 

tasks. During the planning process, tasks are recursively decomposed to lower level 

tasks, primitive tasks and finally to simple operators while the preconditions of the 

tasks and operators are constantly checked and the new states generated by the 

execution of actions and events are traced and accounted for. Figure 6 shows the 

algorithm for an abstract-HTN planner. 
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Using set theoretic presentation, an HTN domain is a pair >=< MOD , and an 

HTN planning problem is a four-tuple >=< MOwsP ,,,0 where: 

• s is the (initial) configuration. 

• >=< CUw ,  is the task network where U is a set of task nodes and C is a 

set of Constraints and tu is the task of U. 

• O is the set of operators. 

• M is a set of HTN methods where each method: 

>=< )(),(),( mwmtaskmnamem . 

 

 
    Figure 6: HTN planning algorithm extracted and modified from Ghallab et al. 2004  

Simply said, the HTN planner tries to identify a sequence of tasks that, when 

decomposed to primitive tasks and actions and executed, would change the state of 

the system from the initial state to the goal state while ensuring that the preconditions 

Abstract-HTN(s, U,C,O,Ml) 
if (U, C) can be shown to have no solution 

then return failure 
else if U is primitive then 

if (U, C) has a solution then 
nondeterministically let π be any such solution  
return π 

else return failure 
else 

choose a nonprimitive task node Uu ∈  
active ← { Mm ∈  І  tm can follow tu} 
if active ≠ ø then 

nondeterministically choose any activem ∈  
(U’, C’) ← decompose (U, C) 

  return Abstract-HTN(s, U’,C’, 0, M) 
           else return failure 
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of each task and action is satisfied by the execution of the previous tasks and actions. 

The decomposition of tasks to subtasks and actions is predefined by the task network. 

As mentioned before, Hierarchical planning is much more intuitive compared 

to the STRIPS language. Albus and Meystel 2001 argue that Hierarchical planning is 

similar to the way that the human brain performs planning. HTN provides a platform 

in which the planning process is done by first considering the longer-term goals in the 

highest levels of the task network and then breaking it into simpler tasks and actions 

to achieve shorter-term goals until the entire task is complete.  

5.1.3 SimPRA Planning Method 

The SimPRA planning method uses the hierarchical task network approach 

with a number of simple modifications: 

• First, In HTN planning, to execute a task it is decomposed into another 

predefined group of sub-tasks which in turn are decomposed into predefined 

primitive tasks and actions and so on. In the SimPRA planner, however, 

each task (or in SimPRA terminology, each function) defines a new sub-

goal (i.e. reaching a subsystem state) which after a simple planning process 

will provide the sub-tasks (or, in SimPRA terminology, events).  

• Second, the SimPRA planning algorithm seeks to find all of the solutions to 

the planning problem unlike STRIPS and HTN, which seek only one 

solution.  

• Third, for reasoning purposes, SimPRA takes advantage of other sources of 

information (like qualitative reasoning) which are not necessarily a part of 

the planning process but can help making the planning process more 
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efficient by pruning the branches that are not interesting to the user of the 

system. 

As mentioned earlier, it is important to remember that although in this chapter 

the SimPRA planner is being compared with general purpose planners like STRIPS 

and HTN, the SimPRA planner is designed to best serve the risk analysis domain and 

thus the terminology used in the rest of the thesis is more consistent with risk analysis 

concepts. Also the modeling process that is suggested to capture the planner’s model 

is tailored to meet the risk assessment field’s needs. 

In the SimPRA approach, in contrast with the HTN approach which has a 

solid predefined task network, the task network itself is dynamically generated during 

the planning process. This approach provides the planner with an opportunity to 

perform real time planning by taking into account the state of system elements at the 

moment of planning. It also provides the users an opportunity to focus on one system 

component at a time during the modeling process and not worry too much about the 

whole structure of the network.  

Having compared the SimPRA planner with other general purpose planners, 

the next section describes SimPRA’s planning approach in greater detail.  

5.2 SimPRA binary vs. multi-state planner 

The SimPRA planner component proposed in this dissertation comes in two 

versions: A binary planner and a multi-state planner. The difference between these 

two versions is not only in the model of the system that they use, but also in the 

planning process and assumptions behind it. 
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The binary planner assumes that all of the subsystems and components have 

only two states, up and down. It also considers the failure and success of 

functionalities as the failure and success of the sub-components that provide those 

functionalities (this will be discussed in greater detail below). The planning problem 

for the binary planner is almost a classical one. The goal is to reach a set of system 

states and the plan is all possible sequences of actions and events that take the system 

from the initial state to the goal states. 

In the multi-state planner, subsystems and components can have more than 

two states. The functionality definitions have more substance to them as well. They 

can be defined by a range of states of the sub-components providing them. They can 

also have time and landmark testing preconditions and duration or landmark settings 

as their side effects. Qualitative reasoning is used to enhance the definition of the 

planning goals and to generate more realistic plans for complex and dynamic systems. 

The planning problem in the multi-state planner is different from classical planning 

problems in that: 1) the definition of goals entails more than just reaching a set of 

system states; goals are defined through a qualitative reasoning process; 2) The plan 

is not just a sequence of actions or events as it also includes some time and landmark 

constraints; and 3) Time can be explicit in this modeling process—actions and events 

can have a duration and the occurrence of them can be conditioned on time and 

landmarks as well. In the planning process, some of the lines of plan that do not 

comply with the goal statement are pruned and quickly taken out of the process. 

Among the most important capabilities of both the binary and multi-state 

planners is the capture of different types of engineering knowledge with which risk 
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scenarios can be automatically generated.  Table 1 shows which data structures are 

used by the planners to capture twelve different types of engineering knowledge. 

Each of these data structures are discussed in greater detail in the following two 

sections of this chapter. 

 

Table 1: Types of engineering knowledge captured by planner 
Captured by Type of Engineering Knowledge 

Binary planner Multi-state planner 
System elements and hierarchy Structure Tree Structure Tree 
Elements' states and operational 
modes 

Assumed binary (work 
or fail) 

Structure Tree 

Functionalities/ Activities/Events 
provided/Acted upon by elements 

Functionalities for 
System level only 

Functionality Tree 

The relationship between 
functionalities and sub-
functionalities/Activities and events 

- Functionality Tree 

The allocation (assignment) of 
functionalities among components 

Mapping between 
Functional and 
Structural Trees 

Mapping between 
Functional and 
Structural Trees 

The interplay between functionalities 
and states of the system 

State Transition 
Diagram 

State Transition 
Diagrams 

The interplay between functionalities 
and states of the subsystems/ 
components 

Assumed only one 
transition from work to 
fail state 

State Transition 
Graphs 

The relationship between the 
functionality of the system with the 
state of the subsystems and 
components 

Mapping between 
Functional and 
Structural Trees 

Transition Rules 

Time dependencies - Transition Rules 
Conditionality of the functionalities 
on the state of the other elements 

- Transition Rules 

Importance of the elements to risk 
assessment 

- Transition Rules 

Boundary conditions Deducted from the 
Mapping between 
Functional and 
Structural Trees 

Qualitative Reasoning 
Influence Diagram 

 

To aid in the explanation of both of the planning approaches, an earth 

observation satellite (EOS) system is used as an example. This example was 

introduced by a Jet Propulsion Laboratory (JPL) research team as a way to compare 
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the risk assessment approaches of several NASA and university research groups 

during a workshop held on the topic.  

The example EOS system has two major parts, a ground station and a satellite. 

To simplify the problem, the ground station is assumed to work without failure and is 

controlled automatically by the simulation software so that only the satellite part is 

modeled for risk assessment. The satellite system goes through several operational 

modes in cycle and in each mode it uses some of its subsystems and components to 

perform the needed tasks. The major operational modes are: 

• Receive-command (uplink-data): Various commands are sent to the satellite 

for observation and housekeeping purposes to determine the timing and 

locations for observations and to maintain the satellite in a healthy state. 

The satellite’s computer, communication subsystem (including receiver and 

antenna), BUS, RCS and software are engaged in the functionalities of this 

mode.  

• Collect-data: The satellite acts on the received commands to collect the 

planned data and store it in the memory. The satellite’s computer (memory 

and processor), BUS, RCS and software are engaged in the functionalities 

of this mode.  

• Process-data: The raw data collected by the observation tools and 

housekeeping sensors go through several processes such as quality control 

and compression for future use. The satellite’s computer, BUS and software 

are engaged in the functionalities of this mode.  
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• Downlink-data: The range where the satellite and the ground station can 

communicate is limited. The data collected outside of that range will be 

transmitted to the ground when the satellite is in the range where it can 

communicate with the ground. The Satellite’s computer, communication 

subsystem (including transmitter and antenna), BUS, RCS and software are 

engaged in the functionalities of this mode. 

• Standby: The satellite waits for the ground station to process the transmitted 

data and provide it with a new plan for data collection and housekeeping 

purposes. The satellite’s computer (clock and processor) and software are 

engaged in the functionalities of this mode. 

• Safe-mode: When there is a minor hardware or software problem, the 

satellite goes into this mode for automatic repairs. If the satellite can 

recover, it continues in the same mode it was operating in before the failure. 

For the purposes of simplification, the assumption in this example is that the 

satellite will only go to the safe-mode if there is a problem in the collect-

data mode. The satellite’s computer (clock and processor), communication 

subsystem (including transmitter and antenna) and software are engaged in 

the functionalities of this mode. The computer’s clock failure will get the 

system in this mode and if there is a redundant clock available, it will 

recover, otherwise the system will go to the fail mode. 

• Fail: The satellite goes to the fail mode when a major subsystem or 

component has failed and the satellite can not recover from this failure. 

Again, to simplify the problem, it is assumed that the system goes into fail 
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mode from collect-data and safe-mode. If the computer’s memory or 

processor, or if BUS, RCS, or software fail, the system will end up in this 

state. 

5.3 Binary planner 

As mentioned earlier, the binary planner assumes that all of the subsystems 

and components have only two states, work and failure (or up and down). It also 

considers the failure and success of functionalities as the failure and success of the 

sub-components that provide those functionalities. The planning problem is defined 

as finding all sequences of actions and events that take the system from the initial 

state to the goal states. 

The inputs for the binary planner include: states, state transitions (transition 

name, sub-goals and constraints), goal, and system hierarchy. Using the set theoretic 

presentation, a SimPRA domain is a pair >=< γ,TD and a SimPRA planning 

problem is a four-tuple >=< γ,,,0 TgsP where: 

• s0 is the (initial) state and g is the goal state. 

• >=< EWT ,  is the hierarchical network which is composed of Events E and 

functionalities W where in each functionality >=< )(, FDecompFw , F is 

the functionality name and Decomp(F) is a function that decomposes F to 

events E (practically returns the cut-sets for F) 

• ),( sts γ=′  where Tt ∈ and ),( stγ  is the transformation function that 

transforms the state of the system from s to s’. 

Figure 7 presents the set theoretic presentation of the SimPRA binary plan 

algorithm. At the start of the planning process []Sol  and []Π  are empty. In this 
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algorithm, if we consider ),...,,([] 21 ntttSol =  then ),,...,,([] *
21

* tttttSol n=⊕ and 

nlast tSolt =[])( . Also, the )(πexecute  function will return ‘True’ when the 

functionalities can be decomposed to events. An example of a case in which 

)(πexecute  might return ‘false’ would be if the decomposition logic requires that a 

component be in the success state but the same component has already been required 

to fail (no repair assumption). In the binary planner, the decomposition process is 

very simple and consists of replacing the functionality with the logic that links it to 

the success or failure of the components. To have a complete plan, all the 

combinations of decomposition logics must be considered. 

 

 
Figure 7: SimPRA binary plan algorithm 

The modeling process suggested for the SimPRA binary planner starts with a 

top down, step-by-step approach to soliciting knowledge from the user. When the 

model is ready, the planning algorithm is applied to generate the scenarios. Using 

detailed scenarios generated by the simulator after a number of simulation runs, the 

SimPRA-Binary-Plan ( [][],,,,,0 ΠSolTgs γ ) 
if s0=g 

then return []Sol  
  else  

 []Sol  =  I[]Sol { t⊕Π[] І Tt ∈ , gstlast =Π )[]),(( 0γ } 
 []P  =  { tp ⊕ І Tt ∈ , Π∈p , gsssptlast ≠= ,)),(( 0γ } 
    []Π ={ π І TrueexecuteP ≡∈ )(, ππ } 
  if []Π = ø  then  
  return []Sol   
  else  
   Return SimPRA-Binary-Planner ( [][],,,,,0 ΠSolTgs γ ) 
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generated model can later be refined through the updating process. All of these steps 

are explained in more detail in the following three sections.  

5.3.1 Modeling 

The first step in the modeling process for the binary planner is for the user to 

define the hierarchical structure of the system that includes the relationship between 

the system, subsystems and components. In the second step, the functionalities that 

are involved in the process are defined and mapped to the subsystems and 

components that enable them. In the last step, the user defines the state transitions for 

the system. These transitions show the states of the system and how the system 

evolves over time. Each of these steps is explained in more detail below.  

STEP ONE: Defining structural hierarchy 

Structural hierarchy refers to the subsystems and components that the system 

is built of. The ‘AND’ relation shows the distinct elements while ‘OR’ is used to 

present the redundancies. Figure 8 presents the structural hierarchy of the example 

EOS system. The main subsystems are computer, camera, communications, BUS, 

RCS and software. The computer subsystem has memory, processor and clock (with 

redundancy) as components. The camera system has no other components.  Finally, 

the communications subsystem has transmitter (with redundancy), receiver and 

antenna as its components. 

STEP TWO: Defining the functionalities 

Functionalities are defined by the state of the components that are needed to 

perform the tasks. In the binary version of the SimPRA planner, the assumption is 

that components have binary states; they either work or fail. Since we are interested 
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in the functionalities that change the state of the system, component failures are only 

seen in this context. 

 
 

Figure 8: Structural hierarchy of example EOS system 

Christensen and Lind 1996 have suggested a similar approach to modeling the 

functional requirements of a complex system. They present the successful use of a 

Master Plan Logic Diagram in mapping between functionalities and components for 

capturing the functionalities of an autonomous submarine. 

Modarres 1996 also suggested a framework for the functional modeling of 

complex physical systems composed of human, software and hardware elements. In 

his framework, a complex system is described by five different hierarchies: structural 

hierarchy (system organization in space), functional hierarchy, behavioral hierarchy, 

goal/conditional hierarchy, and event hierarchy (the last four refer to system 

organization in time). Among these 5 hierarchies, however, the functional hierarchy is 
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viewed as especially important. This is because aspects of the functional hierarchy 

can be defined by other hierarchies and, more importantly, through use of the 

relationship class concept the functional hierarchy can be used to build other 

hierarchies. One of the most important outcomes of this framework is the generation 

of a Goal Tree Success Tree (GTST) model of the system that presents the logic of 

the success of the system considering the current state of the system. GTST changes 

as the state of the system changes to reflect changes in the goals or in the 

environment. 

The approach suggested in this dissertation is, in concept, very similar to the 

Modarres approach. The behavior of the system is defined by changes in the state of 

the system and its elements in the hierarchy. Changes in the states are triggered (or 

from the planner’s point of view are initiated) by changes in the functionalities and 

scenarios are generated by putting these changes in order to reach the goal states. The 

only main difference in the approaches is that in GTST, when the goal is defined, lack 

of any functionality that is deemed necessary for the success of the goal is considered 

a prohibitory event for reaching that goal and thus a failure initiator. This assumption 

is kept in the SimPRA binary planner, but is then relaxed for the multi-state planner.  

Figure 9 presents the relationship between components and functionalities. 

According to Figure 9, the STDB function, for example, uses COMPUTER 

(PROCESSOR and CLOCK which has a redundant part) and SOFTWARE in its 

process.  

If a component is shown to be used by a function, the subsystem that the given 

component is a part of will be selected as well. For example, if CLOCK1 is selected, 
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then CLOCK and COMPUTER will automatically be selected as well. The logic 

behind this is that it is not possible to have a component of a subsystem be involved 

in a function without the subsystem itself having a role in it.  

The logical relationship between the selected components and functionality 

comes from the structural hierarchy of the system. This logic is defined separately at 

the subsystem level and the component level (discussed later). 

 

COMPUTER X X X X X X X
CLOCK X X X X X X

CLOCK1 X X X X X X
CLOCK2 X X X X X

MEMORY X X X
PROCESSOR X X X X X X

CAMERA X
COMM X X X

TXMITTER X X
TXMITTER1 X X
TXMITTER2 X X

RECEIVER X
ANTENNA X X

BUS X X X X
RCS X X X
SOFTWARE X X X X X X

Functionality           
Component

Uplink CollectCrit RepairCollectSafe Process Downlink STDB

X

 
Figure 9: Component-Functionality matrix of example EOS system 

Another important use of this table is to define the complexity of the 

components/subsystems. One very simple criteria of complexity would be the 

coupling between functionalities and components/subsystems. Using components to 

do multiple tasks makes the design of the system very complicated. Complexity 

criteria such as coupling are used to rank the generated scenarios for the scheduler to 

prioritize the more complex scenarios for simulation. 
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STEP THREE: Defining system level state transition 

Explicit knowledge about the system behavior is obtained by Finite-State 

Machines (FSM). The Finite-State Machine is depicted by a directed graph (digraph) 

and consists of a set of states S, an initial state S0, a subset A of S which is the set of 

accepting-states or end-states, a finite set of input symbols T  and a transition function 

STS →×:γ  that maps input symbols and current states to a next state.  

The reason for choosing Finite State Machines over Event Sequence Diagrams 

for capturing the system behavior is that FSM is a stronger language for capturing the 

behavior of dynamic systems than ESD. FSM captures both states and transitions 

which in a sense defines not only the rules of changing the behavior, but also the 

conditions needed for these changes (states). 

FSMs are used in computability theory and in some practical applications 

such as digital logic design and graphical user interface design (Börger and Stärk 

2003; Horrocks 1999). 

The FSM that is used for modeling is a Mealy machine which assumes that 

actions are associated with transitions (Börger and Stärk 2003). There is also the 

possibility of defining more than one transition for a given input symbol and state 

(nondeterministic finite state machine). For our modeling purposes, if the state 

machine is always starting from one specific state, then the user has the option to 

define an initial state. There are three steps in modeling the system FSM: 

I. Defining the system level states:  

Modeling starts with the study of the system's mission to identify the modes of 

success and failure within the system. Each failure and success mode is given a name 

and will be considered as an end-state. There are usually several modes through 
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which the system progresses before reaching the end-states. These modes will be 

considered as the transitional states.  

Going back to our EOS system, the Satellite will be in the standby mode 

(Standby) until it is accessible from the ground station. At this time, the Satellite will 

start looking for signals that are sent from the ground station. When it receives the 

commands (Receive-command), it will start collecting data (Collect-data) as specified 

by the commands received, for example taking pictures from a specific location. The 

data will then be processed (Process-data) and sent to the ground station (Downlink-

data). If there is a critical failure, the system goes directly to the fail (Fail) mode, 

otherwise it will go to the safe mode (Safe-mode) for simple repairs. If the repairs are 

successful, the system will continue the work, otherwise it will enter Fail state. 

II. Defining the transition diagram:  

The visual representation of the transition of the system between states is the 

Transition Diagram. Figure 10 illustrates the example EOS system’s transition 

diagram. In this figure, states are shown as circles and the functionalities that enable 

the transitions among them are depicted by rectangles. The loop on the left is the 

normal process that the system goes through to collect the requested data and send it 

back to earth. On the right, two failure modes are shown. In this diagram, Standby is 

the initial state and Fail state is a sink, meaning that there is no way to recover the 

system once it enters the Fail state. 

III. Defining the transition rules:  

In order for a transition to become available, some input function should be 

provided. Since we are using FSM for planning, the input function is the set of 

actions that need to be taken to change the state of the system. The system will not 
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change its state unless one of the actions that can take it to another state is activated 

and has been successful. For example, Figure 10 shows that for the system to go from 

PROCESS_DATA to DOWNLINK_DATA, Downlink should be successful 

(Downlink_Success). If the Downlink process is activated but is not successful, the 

system will still remain in the PROCESS_DATA state.  

 

Init-state

A

STDB_success
Receive_ 
commandStandby

SpacecraftCollect_
data

Process_
data

Downlink_
data

Safe_
mode

Fail

B

Uplink_success

C
CollectCrit_success 

AND 
CollectSafe_success

D

Process_success

E

Downlink_success

F

CollectCrit_fail

G

CollectSafe_fail

H

Repair_success

I

Repair_fail

 
Figure 10: State transition diagram of example EOS system 

Input functions should be sentences of Boolean logic built from atomic 

sentences by means of truth-functional connectives alone. Constants (known as 

propositional names or simple statements) are Boolean function names that refer to 

the success or failure of functionalities. For example, “CollectCrit_Success AND 

CollectSafe_Success” is considered a valid statement.  
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5.3.2 Plan generation algorithm 

The plan is generated at two different levels: the subsystem level and the 

component level. This will affect the extent of control that the scheduler might have 

over the simulation. Plan generation can also be broken down into several steps: 

Step 1) The user defines the initial state and end-state(s) for generating the 

plan. The user also decides how many times an event might be repeated in a scenario. 

This is necessary to prevent the planner from getting trapped in infinite loops. Figure 

10 presents an example of this. As illustrated, it is theoretically possible for the 

system to enter and exit safe-mode a near infinite number of times.  This is not 

realistic, however.  Although it is true that a scenario with 100 safe-mode visits, for 

example, is different from a scenario with 101 safe-mode visits, limitations on the 

number of scenarios that can be executed within a reasonable amount of time dictate 

that the user should limit the number of revisits to a reasonable number. 

Step 2) All possible paths from the initial-state to end-state(s) will be 

considered and the functionalities that make the transitions possible are listed. For 

example, all of the scenarios for going from the Standby state to the Fail state with 

only one revisit would be the ones that are listed in Figure 11. 

States and functionalities are separated from one another by a bar sign. When 

an AND is used, it means that an event should be completed and the system should be 

in the new state before a new event can be started. 

Step 3) Functionalities are replaced with their logical equivalents in terms of 

subsystem/component states based on the level of planning. For example, with the 

help of Figure 8 and Figure 9,  the logic for the success of STDB functionality at the 

subsystem level is determined to be COMPUTER_W AND SOFTWARE_W and at 
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the component level is (CLOCK1_W AND PROCESSOR_W AND 

SOFTWARE_W) OR (CLOCK2_W AND PROCESSOR_W AND 

SOFTWARE_W). 

 

 
Figure 11: Possible paths from STANDBY state to FAIL state of the example EOS system 

Although SOFTWARE is only defined at the subsystem level, to maintain the 

consistency of the plan, it is repeated at the component level as well. The first line of 

the above plan (Standby|Uplink_Success| Receive-command| CollectCrit_Fail|Fail) 

will generate the scenarios at the subsystem level as presented in Figure 12. 

 

 
Figure 12: Partial plan based on one path from STANDBY state to FAIL state 



58 

Scenarios that are generated by the planner are very rough probable paths 

toward end-states. The scheduler uses this high level guidance to guide the simulation 

and generate distinct scenarios. The major difference between the scenarios generated 

by the planner and the scenarios generated by the scheduler/simulator is in the timing 

and level of detail. In the planner’s scenario, for example, we might see a command 

such as: “RECEIVE_COMMAND|SOFTWARE_F” which means that there should 

be a Software failure when the system is in the RECEIVE_COMMAND state. This 

one command can be used by the scheduler to generate a number of scenarios that 

differ as to: 1) the exact time of the failure within the time interval that the system is 

in the RECEIVE_COMMAND state; and 2) the type and importance of the software 

failure that is induced. 

5.3.3 Comparison and conclusion 

Risk scenarios in a traditional event tree analysis are all the paths from the 

initiating event to end-states. Some of the events might have a fault tree, showing 

how those events can be caused by some other primary events. Replacing these events 

with the set of minimal cut-sets of those events in each scenario will give all 

combinations of primary events that can generate that scenario.  

For example, the event tree in Figure 13 shows that the loss of Autopilot and 

loss of Engine can cause Loss of Airplane. The fault trees show how each of the 

‘Loss of Autopilot’ and ‘Loss of Engine’ events can be generated by the primary 

events. For example, Loss of Autopilot can be generated by one primary event such 

as ‘Power System _Fail’. ‘Loss of Engine’ needs two primary events to happen which 

are ‘Main Engine _Fail’ and ‘Spare Engine _Fail’. Putting the primary events 

together, the first scenario is generated. 
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Figure 13: Scenario generation in traditional FT/ET approach 

 

Figure 14: Scenario generation in SimPRA binary planner approach 
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For the sake of comparison between the approaches, Figure 14 shows the 

same problem modeled with the new approach. The state transition diagram shows 

that the airplane goes from the ‘Normal’ operational state to the ‘Auto Navigation 

Problem’ state when the Navigation functionality fails. We know from the 

Component-Functionality Matrix that the Navigation functionality is provided by the 

Autopilot subsystem which itself consists of ‘Power system’ and ‘Software’. So the 

navigation failure can be caused by the failure of either of these components. The 

same logic can be followed to the end of a path in the state transition diagram to 

generate the scenarios. 

The new approach produces the same results but from a different perspective. 

Instead of thinking about the sequence of events and what triggers them, one can 

think about the system’s hierarchy and its behavior in the form of state transitions. 

5.4 Multi-state planner 

For the multi-state planner, some of the assumptions used in binary planning 

are relaxed. As mentioned earlier, the binary planner assumes that all of the 

subsystems and components have only two states, up or down. In multi-state 

planning, however, all of the subsystems and components can have more than two 

states. This brings more flexibility to the modeling and planning environment, but it 

also requires more effort from the system modeler to determine the state transitions 

and what enables these transitions based on the state of any lower level elements that 

exist. Time is also explicitly presented in this version of the planner. State transitions 

can have a duration or set landmarks to indicate the progress of time. Transitions can 

be conditioned on time calculated from the start of a scenario based on the duration of 
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transitions coming before them. They also can be conditioned on the presence or 

absence of landmarks set by other transitions.  

Another major difference between the two versions of the planner is that in 

the binary planner, the system failure model is simply built upon the failure and 

success of functionalities providing the transitions between the system states, so that 

there is no ambiguity about what is considered to be a failure and what is considered 

as a success. In the multi-state plan, however, there is no exact definition for success 

and failure and the emphasis is on the system behavior in general. To provide a tool 

to specify the risk scenarios among all of the possible scenarios, a qualitative 

reasoning tool is provided that works as a filter for risk scenarios. The user can 

specify any combination of states of the system elements that he or she deems 

‘interesting’ in the form of qualitative reasoning logic—called a QR influence 

diagram in this dissertation—and use it to define the goal of the planning process.  

This helps the system analyst to focus solely on the system behavior when she is 

defining the system hierarchy and state transitions, and then focus solely on defining 

risky behaviors when the risk logic tree is constructed with the qualitative reasoning 

tool. 

The theory behind the multi-state planning process is explained using the 

same steps used to explain the binary process. Below, the modeling steps are 

explained first.  This is followed by an explanation of the planning and updating 

processes. The reader may also refer to Appendix A: Software implementation of the 

SimPRA multi-state planner for a step-by-step implementation of the multi-state 

planning process in the JAVA programming language. 
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5.4.1 Defining risk scenarios in the multi-state planner 

According to the Kaplan-Garrick definition of risk, Risk R is defined as 

(Kaplan and Garrick 1981):  

R= F<Si, Li, Xi>} 

where Si denotes the ith risk scenario, Li denotes the likelihood of that 

scenario and Xi denotes the damage vector or consequences of that scenario. For the 

purposes of risk assessment, it is necessary that the set of scenarios be complete, that 

individual scenarios be disjointed and that the number of scenarios be finite (Kaplan 

and Garrick 1981). To achieve this goal we use a systematic approach to modeling 

that considers the hierarchy of a typical system.  

By defining the states of each element of the system such that they partition 

the space of all possible behaviors of that element, different combinations of the 

states of the elements will generate all theoretically possible snap-shots of the overall 

system at a certain point in time. By considering all possible sequences yielded by 

different combinations of the snap-shots at time A with those at time B, C, D, etc. 

along with the actions required to move from one snap-shot to another, all possible 

scenarios of the overall system are generated. The number of scenarios generated may 

be extremely large but will nonetheless be finite. Furthermore, the acquisition of 

system behavior knowledge will restrict the eligible pool of scenarios even further by 

indicating that some combinations of states/snapshots are physically impossible while 

others may be impossible because of the history of the system, etc. As such, the 

number of scenarios that must be considered is expected to drop significantly. 

Returning to our satellite example, Figure 15 shows the states of the hardware 

subsystems and components. At any given point in time, each of the subsystems or 
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components is in one of its states.  Based upon the engineering knowledge acquisition 

stage, however, we may know that some combinations are physically impossible.  
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Figure 15: System hierarchy of the example satellite system 

Figure 16 further develops the satellite example by presenting four different 

snapshots of the system. Figure 16A, B, and C show the states of the satellite system 

and subsystems/components while sending data to the ground station, waiting for the 

specified time at which it can start receiving commands, and after having experienced 

a critical clock failure respectively. Figure 16D shows the physically impossible 

combination of the overall system being in the “PROCESS DATA” state while the 

computer processor is in the “FAIL CRIT” state. 

Sequencing these snapshots in time without repeating any given snapshot will 

give a number of different scenarios (for example, ABCD, BD, DAC). Based upon 

the system behavior model, we know, however, that not all of these scenarios are 

legitimate. For example we know that the satellite is inaccessible for repairs when the 

overall system is in the failed state—snapshot C.  As such, there is no way for the 

system to exit snapshot C. Therefore, any scenario in which C is not the last snapshot 
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of the sequence (ABCD, CAB, DCA, etc.) is impossible and will be discarded. As 

another example, any sequence including snapshot D will also be discarded since, as 

indicated above, this snapshot is itself physically impossible. It is important to 

mention that although scenarios consist of the sequence of snapshots combined with 

the actions required to move from one snapshot to the next, this example shows that 

the sequence of snapshots alone can be enough to indicate that a given scenario is 

unrealistic and should be eliminated. 

 

 
Figure 16: Four snapshots of the example system states 

The scenario generation approach introduced here takes an active role in 

generating scenarios by assuming a complete knowledge about the relationship 

among the system elements and the behavior of each element, presented as states and 
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functionalities that provide transitions between them. Since completeness of 

knowledge is a big assumption that might be far from reality, an updating algorithm 

introduced later, tries to come up with suggestions as to ways one can complete or 

repair the knowledge used for generating the scenarios when observations show that a 

scenario is missing from the plan or a scenario in the plan is impossible to generate. 

5.4.2 Modeling: Behavior modeling 

Behavior modeling for multi-state planning is designed in such a way as to 

follow the system design. It starts with defining the functionalities in a hierarchical 

manner. Then, the system’s high level structure is defined which will correspond to 

the previously defined functionalities. Each structure element will be responsible for 

providing a group of functionalities. Next, the exact mapping between functionalities 

and structures are defined. Each structure on the structure tree will provide one or 

more functionalities that are at the same level of hierarchy as that structure. Then, the 

state transition diagram of each structure tree element is defined based on the states 

and functionalities mapped to that element. The last step is defining the transitions 

and what enables them by the states of the sub-elements and the conditions that might 

block them. These steps are explained in more detail below. 

5.4.2.1 Functionality Tree 

The first step in designing a system is almost always defining the functional 

requirements. Functional requirements specify the functionalities that the system is 

required to provide and how the system behaves to provide them. The functionality 

tree, therefore, shows how the system’s functional requirements are provided by the 

subsystems and components and how these functionalities are divided among them. 

To enhance the functionality tree and make it more suitable for presenting the 
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behavior of the system, actions and events that enable these functionalities are also 

added to the functionality tree. To sum up, the functionality tree elements are defined 

here as: 

1. Functionalities are the system and subsystems’ functional requirements. 

Functionalities are provided by subsystems and hence should be broken down 

to events or replaced by actions. 

2. Actions are defined as the functionalities that are provided by the subsystems 

themselves and which, unlike other functionalities of a subsystem, do not 

break down to smaller elements. 

3. Events are functionalities provided by components of the system. Like actions, 

they are basic elements of the functionality tree and are indivisible. 

The functionality tree of the example EOS system is shown in Figure 17. 
 

5.4.2.2 Structure tree 

A structure tree shows the hierarchy of the system elements. Conceptually, a 

structure tree comes after the analysis of system functionalities and the clarification of 

how the functionalities are provided by different parts of the system. The system is 

usually supported by a number of components and subsystems. Subsystems 

themselves are comprised of additional groups of subsystems and components and so 

on.  Figure 18 and Figure 19 show the structural tree and the states of the elements for 

the example EOS system. 

The structure tree is expanded to include knowledge about the states of the 

system and its elements. The state of a system can, in general, be thought of as an 

optimal ensemble of system parameters which characterize it independent of its 

surroundings or its history. When the system is in a state, its history of getting to that 
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state is irrelevant to the future of its behavior. The process of partitioning a system in 

to different states is more of an art than a science. However, the general guideline is 

to try to keep the number of states at a minimum without sacrificing the plan’s ability 

to guide the system in an effective way.  

 

 
Figure 17: Functionality tree of the example EOS system 

There are several small assumptions that are made in multi-state planning that 

need to be mentioned. The first assumption is that every element of the system has an 

initial state. This initial state can, in fact, be imaginary and only a starting point for 

connecting to the real initial states. The second assumption is that the system level 
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states include all the end-states. So, the fate of the scenarios is practically defined by 

the state that the system ends up being in when the simulation is run fully to the end.  

 

 
Figure 18: Structural tree of the example EOS system 

 
Figure 19: States of the elements for the example EOS system 

5.4.2.3 Mapping between functional and structural trees 

The mapping between the functionalities and structures specifies which 

component or components are providing a specific functionality. As mentioned 

earlier, events only map to components while actions and functionalities map to 
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subsystems. This mapping provides a guideline for the system designer to make sure 

that all aspects of system behavior are modeled in response to the requested 

functionalities. 

 
Figure 20: A partial mapping between functionalities and structures for the example EOS system 

Generally speaking, a good design is one in which each functionality is 

provided by only one physical element. A design in which every physical element of 

the design provides one and only one functionality is called an uncoupled design (Suh 

2005). More coupling in the design can cause more complication, thus this map can 

also work as an indicator for exploring possible sources of complexity in the design.  

Figure 20 shows a partial mapping between functionalities and structures of 

the example EOS system. A ‘+’ or ‘++’ sign show that there is a mapping between 

the functionality in the row and component in the column while a ‘-’ sign is an 

indicator of no relationship between the functionality and component. A gray cell in 

the cross section means that because of the difference between the levels of 
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component in its hierarchy with the level of functionality in its own hierarchy, there is 

no chance of a mapping between them. 

5.4.2.4 State transition diagrams 

In this step, information about the state transition graphs is obtained from the 

system modeler.  Transition graphs show how each structure element provides the 

expected functionalities through the changes or lack of them in different functional 

states. 

Considering state transition graphs, it is possible to define three types of 

states: source states are the states from which transitions only exit; sink states are 

states which transitions only enter and transient states are states that transitions can 

both enter or exit. 

The sink states of the system’s state transition diagram only, are considered as 

the end-states. All of the scenarios will end up in one of these end-states. The state 

transition diagram should be a connected graph. 

Figure 21 shows an example of a state transition diagram. States are shown as 

the blue vertices and transitions are depicted as directed lines connecting them. The 

names of the transitions are provided next to the transition lines. It is possible to have 

several transition lines connecting two states. It is also possible to see a transition 

name being used for several transitions. This means that there is the same underlying 

mechanism for providing those transitions. 

5.4.2.5 Transition rules 

Each of the transitions in the state transition diagram can be conditional on 

time, a landmark, or the state of another component of the system. If the condition is 
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not met, it means that the state of that particular element cannot be changed by the 

transition that requires that condition.  

 

 
Figure 21: State transition diagram of EOS system 

Each transition can also have duration or set a landmark. This helps the 

modeler to condition the transitions on the clock of the system or by the scenario’s 

achievements to a certain point in the scenario. 

However, the most important thing is to define how the states of the system 

and subsystems are changed according to the states of their sub elements. This is 

where the hierarchical planning is shaped. The planner uses this knowledge to 

understand how to change the state of sub elements to get the system and subsystems 

to a particular state. These transition rules are summarized in Table 2.  

Figure 22 shows the details of some of the transitions used in the example 

EOS system. The first column in Figure 22 provides the name of the element, the 

second column gives the name of a transition for that element and the last column 

provides the details.  
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Table 2:  Transition rules 

Duration: Each transition can have a specified duration. When the planner reaches this 
rule, it adds the value of the duration time to the time of the scenario. It’s good 
practice to assign duration times for lower (rather than higher) level elements of 
the system. 
 

Landmark: Each transition can set a landmark. When the planner reaches this rule, it adds 
the landmark mentioned in the command to the scenario.  
 

Time condition: When the planner reaches a time condition, it compares the time of the scenario 
(which is the addition of the duration times in the scenario up to that point) with 
the time specified in the condition.  
 

Landmark 
condition 

When the planner evaluates a landmark condition, it searches in the scenario to 
see if the specified landmark has been set. 
 

State condition The planner checks the state of the element referred to in the condition to see if 
the condition holds or not. 
 

Sub-goals: This transition rule is only valid for the system and subsystem elements. The 
sub-elements of the system or subsystem and the state which can cause this 
transition are defined in this step. The planner considers these changes in the 
states to expand the plan to the lower level elements. The order of these 
transition rules are considered to be trivial to the process, however, the planner 
considers these transition rules in the order they appear. If the order can make a 
difference, another transition with the same transition rules but different order 
of elements can be added to the graph. The importance of each sub-goal is also 
set at this point. 
 

Level control: This is just a note for the scheduler to indicate whether there is a need to switch 
the level of detail during the simulation (see 3.2 for details) 
 

 
 

 
Figure 22: A number of transition rules for the EOS example 

5.4.3 Qualitative reasoning for developing risk scenarios 

Using the data provided so far, the planner can generate all of the scenarios 

that can take the system from its initial state to the end-states. Some of these scenarios 

indicate the normal behavior of the system while others show how the system can 
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deviate from its normal behavior and what might follow as a consequence. Risk 

scenarios are the ones that show how the system deviates from the normal behavior 

and these are the ones that are more interesting for the purposes of risk analysis. 

To distinguish the risk scenarios from the pool of system behavior scenarios in 

a multi-state environment, a tree structure, similar to a fault tree is introduced here. 

Qualitative reasoning is used in 2 ways: 

1. As an absorption point: If a scenario under development reaches a predefined 

group of system states, the scenario will be considered not interesting and will 

be abandoned from further development. This process is used when the 

scenarios are under construction and helps to increase the efficiency of the 

scenario development process. 

2. As a filter: Among the pool of developed scenarios, a) scenarios that during 

their development put the system in a specific group of states or b) scenarios 

that contain a group of events in them, are selected and the rest are considered 

not interesting. This is a post scenario development process and chooses the 

scenarios with a group of initiating events or vulnerable states among them 

from the rest of the scenarios. 

The modeling and reasoning process is very easy and straightforward. Like a 

fault tree with a top event, intermediate events, basic events and logic gates, a QR 

influence diagram has 4 main components: a top element, QR- elements, system 

elements and QR-Gates. Like fault trees in which events are connected to one other 

by logic gates, elements in a QR influence diagram are connected by QR-Gates. 
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However, unlike logic-gates that need at least 2 events to connect to another event, 

QR-Gates can connect even one element to another element. 
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Figure 23: Comparison between fault tree on the left and QR influence diagram on the right 

The reasoning process for a QR influence diagram starts from the basic 

elements. Since the system is considered to be fully observable and static, the state of 

every element is known at any time during the development of scenarios. Considering 

the lowest level QR-Gates on the QR influence diagram, since all their input elements 

are system elements, it is possible to find the state of their output element. This 

process will then continue with the next level of gates until the fate of the top element 

is determined. 
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For example, let’s consider the QR influence diagram in Figure 23 and 

assume that System Element A is in low state and System Element B is in zero state. 

The SIGN-Gate says that Intermediate Element C is in neg state since low is on the 

left side of the System Element A’s zero state. Now considering the MULT-Gate, the 

Intermediate Element D can be solved once the state of both of its inputs is known. 

Since Intermediate Element C is in neg state and System Element B is in zero state, 

Intermediate Element D will be in zero state as well. Finally, the state of the top 

element can be found to be False because Intermediate Element C is on the left side 

of the zero state. 

The list of QR-Gates can be very large. Below, 18 gates are listed and the 

logic behind them is described. More gates can be added to specific domains for 

domain-specific modeling needs. 

1. M+ (Positive Monotonic): Two variables are positively related by some 

unknown monotonic function when one of them changes value in some 

direction if and only if the other changes in the same direction 

2. M- (Negative Monotonic): Two variables are negatively related by some 

unknown monotonic function when one of them changes value in some 

direction if and only if the other changes in the opposite direction 

3. S+ (Positive Saturation): Like M+ but when one of the variables reaches a 

value, it won’t go higher than the value for the other variable. 

4. S- (Negative Saturation): Like M+ but when one of the variables reaches a 

value, it won’t go lower than that value for the other variable. 
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5. <? (Smaller than): A logical gate which is true if the state of the input variable 

is before the question-mark (?) state and false otherwise. 

6. <=? (Smaller than): A logical gate which is true if the state of the input 

variable is not after the question-mark (?) state and false otherwise. 

7. >? (Smaller than): A logical gate which is true if the state of the input variable 

is after the question-mark (?) state and false otherwise. 

8. >=? (Smaller than): A logical gate which is true if the state of the input 

variable is not before the question-mark (?) state and false otherwise. 

9. =? (Smaller than): A logical gate which is true if the state of the input variable 

is the same as the question-mark (?) state and false otherwise. 

10. !=? (Smaller than): A logical gate which is true if the state of the input 

variable is not the same as the question-mark (?) state and false otherwise. 

11. AND (And): A logical gate which is true if all the input variables are true 

12. OR (Or): A logical gate which is true if at least one of the input variables is 

true. 

13. SIGN: Looks for zero in the output states. States below zero will be mapped 

to negative state (neg) and states above it will be mapped to positive state 

(pos). 

14. MULT (Multiplication): Makes a new variable such that its values are the 

results of multiplication of the values of the input variables 

The QR-Gates listed above assign one state to the output element. These gates 

might be considered to be accurate gates. However, some QR-Gates (listed below as 

numbers 15 through 18) might only determine the possibility of the range of the 
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output values. These gates might be very useful for modeling purposes and show the 

best prediction for the risk scenario models; however, it is important to mention that 

using these gates might introduce erroneous scenarios into the plan. This might be 

totally fine for the first rounds of simulation since the updating process will later find 

these scenarios and help the designer to take these scenarios out of the model.   

15. INT (Integral):  by considering the rate of change in the input’s value, it 

provides a range of possible values for the output variable. 

16. ADD (Addition): Makes a new variable such that its values are the result of 

adding the values of the other variables 

17. D/DT+ (Positive Derivative): Direction and the rate of change in the values of 

a variable are positively correlated to the value of the other variable. 

18. D/DT- (Negative Derivative): Direction and the rate of change in the values 

of a variable are negatively correlated to the value of the other variable. 

Gate 
name 

Number 
of 

Inputs 

Input 
Size 

Output 
Size 

Fixed Input 
States 

Fixed Output 
States 

Output type 

M+ 1 m n=m - - Single value 

M- 1 m n=m - - Single value 

S+ 1 m n<m - - Single value 

S- 1 m n<m - - Single value 

<? 1 m 2 - {true, false} Single value 

<=? 1 m 2 - {true, false} Single value 

=? 1 m 2 - {true, false} Single value 

!=? 1 m 2 - {true, false} Single value 

>? 1 m 2 - {true, false} Single value 

>=? 1 m 2 - {true, false} Single value 

AND n 2 2 n{true, false} {true, false} Single value 

OR n 2 2 n{true, false} {true, false} Single value 

SIGN 1 m 3 {…, zero, …} {neg, zero, pos} Single value 

INT 2 m, 3 n=m -,{neg,zero,pos} - Range of values 

ADD 2 m, m n=m - - Range of values 

MULT 2 m, 3 n=m  {…, zero, …}, 
{…, zero, …} 

{neg, zero, pos} Range of values 

D/DT+ 1 3 3 {neg, zero, pos} {neg, zero, pos} Range of values 

D/DT- 1 3 3 {neg, zero, pos} {neg, zero, pos} Range of values 

Table 3: QR-Gates and their input/output variables 
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Table 3 shows the above mentioned QR-Gates and the possible input/output 

elements. A ‘-’ indicates that there is no restriction on the format of the states. 

5.4.4 Generating risk scenarios 

Risk scenarios are generated by the planner following the same basic concept 

presented theoretically in 5.4.1. The planner begins by defining the first snapshot of 

the system which consists of the initial state of the system, subsystems and 

components. Next, one of the immediate possible states of the system that can be 

reached from the system’s initial state will be considered. If all of the conditions for 

reaching this state are met, then the new state as well as the actions that can take the 

system from the initial state to this state will be recorded.  If the conditions for 

reaching this state are not met, the planner will consider the next immediate possible 

state of the system. This process continues until all of the immediate possible states 

branching from the initial state of the system have been examined. The same process 

is repeated with the consideration of the next immediate reachable states from the 

state the system is at.  The planner repeats the process until the scenario falls into a 

state for which there are no immediately following states (end-states) or until the 

conditions for continuing from that state are not available. In cases where the 

system’s FSM falls into a loop, the planner will limit the number of the revisits of a 

state so that it can generate a finite number of qualitatively distinct scenarios. 

After choosing the next state of the system, the planner will define the states 

of the subsystems that need to change to make the transition to that next state possible 

based on the details of the transition that takes the system to the new state. This 

process will continue until all of the new states of the subsystems and components are 



79 

defined and the actions that take them to the new states are determined. For the 

subsystems and components whose states are not changed, the state would be the 

same as it was before. 

An example will make this process more clear. Figure 24.A shows the initial 

states of the system, subsystems and components of our satellite example. Let’s 

assume the only available state for the system to go to from this initial state is the 

Receive Command state. According to Figure 24.B, for the system to be in this state, 

RCS must be ACTIVE, Computer must be in the UPLINK state and Communications 

must be in the RECEIVE mode. Computer’s UPLINK mode needs the processor to 

become ACTIVE while the Communications change to the RECEIVE mode requires 

that the Receiver and Antenna be in the ACTIVE mode. Finally, for the system to 

make all these transitions the following actions have to be taken: RCS_Active; 

Proc_A; Rec_A; Ant_A 

 

 
Figure 24: Snapshots of the example satellite system in A) Inital state and B) Next available state 
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The planner follows a similar process of identifying the changes required to 

move from the RECEIVE COMMAND state to the next available states, (which in 

this case would include FAIL, SAFE_MODE or COLLECT_DATA). Of course, 

since the satellite system is working in a looped process, there must be a limit to the 

number of revisits to each state of the system to guarantee the generation of a finite 

number of qualitatively distinct scenarios.  

The planning process is done from top to bottom recursively. The planning 

goal that is taking the system from the initial-state to all (or sometimes a group of) 

end-states is considered first. All of the transition paths that take the system to its 

goals are determined. These paths will include all of the states and transitions that 

change these states to finally reach the goal state(s). The reason that state changes are 

included is the delay in the system response to the transitions and events during the 

simulation; the transitions and events that follow should only be called upon when the 

local states are reached. In other words, the presence of states works as a benchmark 

for the start of the next transition or event. Figure 25 depicts a plan generated from a 

generic state transition graph. 

 
Figure 25: A high level scenario generated from the system hierarchy, state transitions and 

transition details 
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Obviously, for a transition to be considered in the plan, all of the 

preconditions of that transition need to be satisfied. Transitions that indicate the need 

for a multi-level planning process or the need to satisfy a sub-goal trigger the 

recursive planning process which in return will give all of the transitions and events 

that satisfy the sub-goals in the lower levels of the system.  

Using set-theoretic presentation, inputs to the multi-state planner include the 

system hierarchy and the states of its elements, state transitions (transition name, sub-

goals and constraints), qualitative reasoning logic and the goal state of the system. A 

SimPRA multi-state domain is a pair >=< γ,TD and a SimPRA planning problem is 

a four-tuple >=< γ,,, TgSP where: 

• S  is the system’s hierarchical structure with (initial)states of the elements 

and g is the goal state for the system. 

• >=< EWT ,  is the hierarchical network which is composed of events E and 

functionalities W where in each functionality >><=< [],, elSGCTRfw , f is 

the functionality name and TR is the transition rule.  A transition rule 

consists of constraints C and sub-goals SG—for sub-elements el—in order. 

• ),,( stElems γ=′  where Tt ∈ and ()γ  is the transformation function that 

transforms the state of the Element Elem from s to s’ in response to 

transition t. 

Figure 26 provides the planner’s algorithm. At the start of the planning 

process, the root of the structure hierarchy, which is the system itself, is 

passed to the Element-Plan() function to generate a plan just for that level (as 

detailed in Figure 27). 
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Figure 26: High level planning process algorithm for SimPRA multi-state planner 

 
 

Figure 27: The algorithm for Element-Plan function 
 
 

 
 

Figure 28: The algorithm for decomp function 

decomp ( [],Πc )’ c is the Element and []Π  is the plan that is not decomposed 
select each line []Π∈π  
   for each π∈t  
      if there is a >< [], elSGcTR  where []elSGsg ∈  is a sub-goal for c 
  )(πexecute  up to sg to get s the latest state of element c 
  replace sub-goal with Element-Plan ( ø,ø,,,,, γTgsc ) 
if Elem has sub-elements  
    []Π  = { p І )(csubElemel = , []),( Π= eldecompp } 
return []Π  

Element-Plan ( [][],,,,,, ΠSolTgsElem γ )  
s = g 

then return []Sol  
  else  

 []Sol  =  I[]Sol { t⊕Π[] І Tt ∈ , gstElem last =Π )[]),(,( 0γ } 
 []P  =  { tp ⊕ І Tt ∈ , Π∈p , gsssptElem last ≠= ,)),(,( 0γ , nsrevisit <)(  } 
   []Π ={ π І TrueexecuteP ≡∈ )(, ππ } 
  if []Π = ø  then  
  return []Sol   
  else  
   return Element-Plan ( [][],,,,,0 ΠSolTgs γ ) 

SimPRA-Multi-State-Plan ( γ,,, TgS ) 
   Elem = root(S)  ’returns the System  
   []Π  = Element-Plan ( ø,ø,,,,)(, γTgEleminitStateElem ) 

if []Π = ø  
return ø  

  else  
if Elem has sub-elements  
    []Sol  = { p І )(ElemsubElemc = , []),( Π= cdecompp } 

  return QR(Sol[]) 
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As in binary planner, considering ),...,,([] 21 ntttSol = then 

),,...,,([] *
21

* tttttSol n=⊕  and nlast tSolt =[])( . The result of that planning is a set of 

all the paths from the initial state to the goal state of the system in the format of 

ordered functionalities. Functionalities have transition rules that include constraints 

and sub-goals. Constraints are checked when executed during the Element-Plan() 

function. Sub-goals define a planning process for the sub-elements of the system. 

Planning for sub-goals is handled by the decomp() function (algorithm presented in 

Figure 28). The final plan is returned after the plan has gone through the qualitative 

reasoning process (explained in section 5.4.3) for filtering reasons. 

5.4.5 Generalized ESD generation algorithm 

High level scenarios that are generated in the form of sequences of events, 

changes in the states, and conditions are grouped into the format of Generalized Event 

Sequence Diagrams (ESD). An Event Sequence Diagram (ESD) is basically a 

flowchart of events where each path leading to an end-state is a scenario 

(Stamatelatos, 2002). The Generalized ESDs generated by the SimPRA planner 

incorporate condition elements and state changes in addition to events.  Figure 29 

presents one such GESD with events and functionalities that are represented by 

rectangles, condition elements that are represented by diamonds, and state changes 

that are represented by ovals. 

The ESD generation algorithm uses the high level scenarios it receives from 

the planner to generate a tree data structure of events. Figure 30 presents the ESD 

generation algorithm which uses the high level scenarios it receives from the planner 

to generate the tree structure of the generalized ESD. 
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Figure 29: A generalized ESD example 
 
 

To explain this algorithm better, let’s consider the following sequences of 

elements (events, conditions, and/or state changes): 

• A, B, D 

• A, B, E, F, G 

• A, C, D, E 

• A, B, C, E 

According to the algorithm, L= 5 which is the length of the 2nd sequence. For 

each 1 to L location, the unique elements are defined: 

1. {A} 

2. {B, C} 

3. {C,D,E} 

4. {E,F} 

5. {G} 
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Now the tree will be built in L layers from the top, adding one layer at a time 

(see Figure 31): 

1st layer: A 

Adding the 2nd layer, B and C will be added to A 

Adding the 3rd layer, C and E will be added to branch B only, while one D is 

added to B and one to C. 

Adding the 4th layer, E is added to C and D (on the 4th row of Figure 31), 

while F is only added to E.  

Adding the 5th layer, G is only added to F.  

 

 
Figure 30: Generalized ESD generation algorithm 

The following graph shows the generated tree for the above example.  The 

next step would be to change the visual representation of the elements in the graph to 

reflect differences between events, conditions, and state changes.  

A B C E

D

E F G

C D E  
Figure 31: An event sequence diagram generated by the GESD algorithm 
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5.4.6 Plan updating  

Updating starts when a predefined number of simulation-runs are completed. 

The details of the scenarios generated by the simulator are used for two purposes: 

scenario updating and level-control updating. 

For the planner, the updating engine checks every instance of a state change in 

the detailed scenarios for each element of the simulation. For components, if there is 

an event related to that component that is called between the changes of state, that 

event will be considered as the cause of the state transition for that component. If 

there is no event between state changes, then the previous event will be considered as 

the source of change in the state of the component although that event is not recalled 

again in the simulation. Since components are the lowest level elements in the 

structure tree, there is no other element that can affect or describe their behavior. For 

subsystems, the last state of each of their subsystems or components is considered as 

the cause of the change in their states. Figure 32 shows an example line of the 

simulation log as the input to the updater in the left column and the updating 

algorithm’s output in the right column. 

Simulation Log Updater Output 

1: #Comp1:c11--> !Comp1:event1--> #Comp1:c12 

2: #Comp1:c12--> !Comp1:event1--> #Comp1:c13 

3: #Comp2:c21--> !Comp2:event2--> #Comp2:c22 

4: #Subsystem1:ss1--> @Comp1:c13 AND 
@Comp2:c22 --> #Subsystem1:ss2 

#System:s1 > 
#Subsystem1:ss1 >  
#Comp1:c11 > #Comp2:c21  
> !Comp1:event1 > 
!Comp2:event2 >  
#Comp2:c22 > #Comp1:c12 
> #Comp1:c13 
>#Subsystem1:ss2 >  
#System:s2 

→

5: #System:s1--> @Subsystem1:ss2 --> #System:s2 

Figure 32: An example of the updating algorithm output 

 



87 

In this example, the simulator logs the changes of states of the system, 

subsystems, and components by putting a ‘#’ sign on the left. It also defines the 

generation of the events by a ‘!’ sign.  Events in the simulation log happen 

chronologically from left to right. The simulator also records the initial states of the 

simulation elements at the beginning of each realization. 

The logic behind each line of the updating algorithm is easy to follow based 

upon the rules defined above.  Lines 1 through 3 of the updating algorithm’s output 

on the right side are generated as the updater goes searching through the simulation 

log for changes at the component level.  Component 1 is observed to have changed 

from c11 to c12.  When searching for the reason for this change, the updater observes 

the occurrence of event 1.  Therefore, the updater output generates the transition 

#Comp1:c11--> !Comp1:event1--> #Comp1:c12 which translates to: component one at 

state c11 experiences event 1 which moves component one to state c12. The next 

change identified by the updater in the simulation log is that component one goes 

from state c12 to state c13.  The updater searches for an event that may have occurred 

between these two different states.  When an event is not found, the updater assumes 

that the state change must be related to the previous event. Line 2, therefore, indicates 

that the change in component one from state c12 to state c13 is due to event 1.  Line 3 

of the updater output, like Line 1, reflects the simulation log’s record of a change in 

component 2 from state c21 to state c22 as a result of experiencing event 2. Having 

identified all state changes at the component level, the updater turns to any state 

transitions at the subsystem and system level as shown in Lines 4 and 5 of the updater 

output.  Instead of events, however, the states of components and/or subsystems are 
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assumed to be responsible for observed transitions at these levels. Figure 33 shows 

the algorithm for the updating process and Figure 34 shows the potential benefits of 

the algorithm for the planner. 

 

Read the simulation log file
For each line of the log file {
   For each structure element {
       If element is a component {

Find the first two instances of state change of the element
Find the only corresponding event that comes between the states
Add the transition to the potential transitions list
While there are more of the element’s state changes in the log line {
    If there is an event in between
        Add the transition to the potential transitions list
    Else
        Add previous event and state changes to the potential transitions list
}

      }
      Else ‘if element is a subsystem {

Find the sub-elements from the structure tree
While there is a state change for the subsystem in the log line{
    Find the instances of state change of the element
    Find the state of sub-elements at the end of the change
    Add the transition to the potential transitions list
}

      }
   }
}
Compare the potential transitions list with the ones in the plan
If a transition is missing list it as the output    

 

Figure 33: Updating algorithm 
 
 
Transitions generated by the updating algorithms are compared with the state 

transitions of the system elements in the system model of the planner, and missing 

transitions will be suggested for addition while transitions not present in the updating 

data will be suggested for elimination. There are obviously other constraints on the 

transitions that the updating algorithm is not capable of determining. 

The second purpose of updating is to adjust the level-control information in 

the plan. The post-simulation analysis uses a level control measure, which is a 
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combination of Shannon’s entropy measure (Lindley, 1956; Shannon, 1948; Shannon 

and Weaver, 1949) and a risk measure.  

 

 

Figure 34: The potential benefits of the updating algorithm for the planner 
 
 

The Shannon entropy value is calculated for each multi-level object in the 

plan. The risk measure can be either: 

1. The conditional probability for the end-state of interest after the multi-level 

object node. This measure focuses on the consequence of the system when the 

multi-level objects fail. The conditional probability for the end-state of 

interest is a value ranging from 0 to 1. A large value indicates that the failure 

of this multi-level object has a large probability of leading the simulation to 

the end-state of interest.   
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2. The importance measure of the multi-level objects in the system. This 

measure focuses on the importance of the multi-level objects to the end-state 

of interest.  

Birnbaum introduced the concept of importance measure (Birnbaum, 1969). 

The measure of component i is described as: 

)(
)]([

tr
trR

I
i

isB
i ∂

∂
=  

Where  

B
iI            = Birnbaum importance of component i 

)]([ trR is  = Reliability of the system as a function of the reliability of the 

individual component  

)(tri         = Reliability of component i 

In the case of simulation, )]([ trR is  is replaced by the probability of the end-

state of interest )]([ trP ie . )(tri  represents the probability of failure of the multi-level 

component i. 

In the case that the multi-level object only has two different states: fail or 

success, the Birnbaum importance measure can be calculated as: 

]0)([]1)([ =−== trPtrPI ieie
B
i  

A large value of the importance measure indicates that the status of this 

component dramatically influences the end-state of interest. Thus the multi-level 

objects should be further decomposed to get more accurate results. A small value of 

the importance measure indicates that the status of this component does not influence 



91 

the end-state of interest. Thus the multi-level object should be simulated at a 

relatively high level.  

The threshold for the level control measure is defined by the analyst before 

the simulation begins. It can be further updated after each round of simulation. After 

each round of simulation, the level control measure for each multi-level object is 

calculated and compared with the level information in the previous LCN. If the value 

of the level control measure indicates that the simulation level should be adjusted, the 

scheduler submits a request to the multi-level objects to check if any updates are 

available. If no further updates are available for the multi-level objects, the plan is 

treated as the best plan available. The simulation results are calculated based on this 

plan. 

5.4.7  Good practices 

During the process of modeling several systems for plan generation (Hu et al., 

2006; Mosleh et al., 2004; Zhu et al., 2005), the following lessons have been learned 

that make the modeling process easier and smoother: 

• It is better to keep details in the component level and make the subsystem 

level elements as light as possible. This is a very important concept since it 

can make the modifications to the model much easier and make the planner 

more expandable. 

• If there seems to be a component that belongs to several subsystems, it is 

likely that the component should be considered as an independent 

subsystem. An example of this is the power system which usually provides 

service to most of the subsystems. There is a tendency to consider it as an 
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element of all subsystems, but in fact, it is better to be considered as an 

independent subsystem. 

• It is better to keep the model as similar to the real system as possible instead 

of making assumptions to reduce the size of the model. For example, if the 

real system has 4 layers of subsystems to get to the components, it is better 

to keep the model the same instead of merging some of the subsystems into 

each other. 
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6 Evaluation and comparison with other techniques  

In this chapter, the SimPRA planner is evaluated at three different levels.  

1- Within the context of the SimPRA approach as a package: The PSAM8 

benchmark problem has been proposed by NASA and worked on by a number of 

research teams using different risk assessment approaches and techniques.  The 

capabilities of SimPRA are highlighted through a detailed comparison of its solution 

to this problem with seven alternate approaches.  

2- As an element within the SimPRA approach: A holdup tank problem is used 

to evaluate the importance of the planner in guiding the simulation and generating 

risk scenarios.  

3- As a stand-alone tool: The planner is a risk scenario generation tool that 

captures different types of engineering knowledge with which it automatically 

generates risk scenarios in the format of Generalized Event Sequence Diagrams 

(ESDs).  This capability is evaluated in LRO satellite risk assessment study.  The 

study uses the SimPRA planner to generate an event sequence diagram of satellite 

activities during its mission and compares the results with a more traditional FT/ET 

approach. 

6.1 PSAM8 benchmark problem 

The proposed benchmark problem consists of an ion propulsion system used 

in a science mission to the outer solar system. During different mission phases, the 

propulsion system is turned on and thrust is continually provided until the specified 

operating time expires. The propulsion system has 5 thruster assemblies and a single 

propellant tank. In the first phase of the mission only 2 assemblies are needed while 
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in the rest of the phases, 3 assemblies are required for thrust generation. Each 

assembly has 1 propulsion power unit (PPU) and 2 ion engines. Each engine has a 

valve that opens and closes when the engine is turned on and off respectively. 

Standby assemblies and ion engines remain in standby until they are needed to 

replace a failed unit. In this example, there is also the assumption of Common Cause 

Failure (CCF) among assemblies and elements that are left to the designer’s 

discretion. The goal of the study was to quantify the time-dependent reliability of the 

propulsion system over the planned mission considering the mission and design 

descriptions. For more information about this problem please refer to Appendix B: 

PSAM8 benchmark problem. 

6.1.1 Comparison 

Eight groups of researchers worked on the proposed problem and reported the 

results of their activities in the form of research papers to the PSAM8 conference in 

2006. Table 4 lists the papers, their authors and the method used for solving the 

problem. For more information about the approaches and results please refer to the 

PSAM8 conference proceedings. It should be noted that some of the approaches, 

specifically the simulation ones, do not necessarily represent a tool. This makes the 

capabilities of these approaches limited to what has been done for the benchmark 

problem and doesn’t necessarily show anything in particular about the approach itself.  

To compare the suggested approaches to solving the benchmark problem in a 

more objective way, the following criteria are selected: 

1. Exact/ Approximate solution: Is the solution to the problem found by an exact 

approach or an approximate approach? (Not considering the other 

approximations made) 
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Table 4: Papers submitted to PSAM8 conference on the benchmark problem and their authors 

Paper 
# Title Authors Name 

67 
Direct Monte Carlo Simulation for the 
Reliability Assessment of a Space 
Propulsion System Phased Mission 

(Zio and Librizzi, 
2006) 

 

Direct Monte 
Carlo Simulation 

(MC) 

111 
Advanced PRA Tool Benchmark for 
Space System Risk Using the Dynamic 
Flowgraph Methodology 

(Olivia and Yau, 
2006) 

Dynamic 
Flowgraph 

Methodology 
(DFM) 

188 A Dynamic Fault Tree of a Propulsion 
System (Xu et al., 2006) Dynamic Fault 

Tree (DFT) 

202 

An Intelligent Agent-Oriented Approach to 
Risk Analysis of Complex Dynamic 
Systems with Applications in Planetary 
Missions 

(Azarkhail and 
Modarres, 2006) 

Agent-Oriented 
Monte Carlo 

Simulation (AO-
MC) 

252 
Space Propulsion System Phased-
Mission Probability Analysis Using 
Conventional PRA Methods 

(Knudsen and 
Smith, 2006) SAPHIRE 

318 

An Event Tree/ Fault Tree/ Embedded 
Markov Model Approach for the PSAM-8 
Benchmark Problem Concerning a 
Phased Mission Space Propulsion 
System 

(Mandelli et al., 
2006) FT/ET/Markov 

345 
Solution of Phased-Mission Benchmark 
Problem Using the SimPRA DPRA 
Methodology 

(Hu et al., 2006) SimPRA 

425 
Mission Reliability Evaluation for a Space 
Propulsion System Phased-Mission 
Benchmark Problem 

(Clark et al., 
2006) 

Discrete Event 
Simulation (DES 

TIGER) 

 

2. Binary/multi state: Is the end-state binary or is the consequence multi-stated? 

3. Expandable: Is it easy to expand the model or hard? 

4. Low Probability High Consequence Scenarios: Does the model consider the 

low probability high consequence scenarios? 

5. Applicable to large systems: Is it feasible to apply the model to large and 

complex systems or is it only appropriate for small and simple ones? 

6. Common Cause: Is it easy to consider common cause in the model or not? 

7. Demand/life: Are failures only demand based, time based or both? 
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8. Model Complexity: Are there any assumptions in the modeling that will affect 

the outcome of the risk assessment? 

9. Problem solved: Was the benchmark problem solved with this approach? 

6.1.1.1 Exact /approximate solution 

Simulation approaches are nondeterministic and therefore provide 

approximate solutions whose accuracy and precision increase with increased numbers 

of simulation runs.  Truly exact solutions can usually only be found for simple 

problems.  The complicated math associated with complex problems generally takes 

too much time or is simply impossible to address without resorting to the use of 

simulation methods at some level of the solution.   

As a simulation-based approach, SimPRA provided an approximate solution 

to the PSAM8 benchmark problem.  Based upon this criterion, SimPRA ranks 

similarly to other simulation-based approaches. 

6.1.1.2 Binary /multi-state outcome 

The analysis provided by some risk assessment tools are limited in that they 

only consider two possible end-states—success and failure—depending upon whether 

the nominal path is taken.   In contrast, SimPRA and other multi-state solutions 

consider a variety of outcomes, different levels of degradation, and different levels of 

severity.  Clearly, multi-state solutions are preferable in that they are more realistic 

and allow for the consideration of a range of outcomes. 

6.1.1.3 Expandability 

Expandability refers to the ease with which additional information can be 

incorporated into the model of the system.  Horizontal expandability allows for the 

addition of elements to the system.  Vertical expandability allows for the addition of 
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information about those elements.  This allows the model to very easily become 

richer in detail and fidelity to the real world as information becomes available and/or 

the design process progresses. 

One of the greatest advantages of the SimPRA approach stems from the 

hierarchical nature of its structure which allows for expandability in both directions in 

a manner that is easy and intuitive for the user due to its similarity to common 

engineering approaches to design and modeling. 

6.1.1.4 Low probability/high consequence scenarios 

The risk associated with an event is a combination of its probability of 

occurrence and the consequences stemming from its occurrence.  One very important 

but often overlooked class of scenarios is those that have a very low likelihood of 

occurrence but extremely serious consequences.  Many risk assessment approaches 

basically ignore this class of scenarios because they generate and screen scenarios 

based only on their probability of occurrence.   

SimPRA’s planner provides guidance on the evolution of scenarios in a way 

that brings attention to the existence of a high-consequence event on a low-

probability branch of events.  As such, SimPRA will continue generating scenarios 

along that branch to identify and explicitly consider the high-risk scenarios it 

contains. 

6.1.1.5 Complex systems 

Two different factors contribute to the complexity of a system.  The first is the 

size of the system or the number of different components within it.  The second is the 

dynamics of the system meaning the extent to which behavior changes over time.  

SimPRA is designed to handle both aspects of complexity.  Its hierarchical structure 
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allows it to easily organize and incorporate a large number of components into the 

model.  The use of rules on transitions, timing conditions, and conditionality on the 

states of other systems and components allows it to capture the dynamics of a system 

with high fidelity to the real world. 

6.1.1.6 Common cause failures 

Common cause failures are those simultaneous failures of a number of 

different components due to a single cause.  Modeling common cause failures can be 

extremely complicated because of the difficulty of tracking scenarios and identifying 

their consequences when several events are occurring at the same time.  SimPRA 

simplifies this process by providing predefined block sets that allow users to easily 

model common cause failures.  Please refer to Hu 2005 for additional information on 

how SimPRA can be used to model common cause failures. 

6.1.1.7 Demand/life 

In risk assessment studies, failure events that occur when a component’s 

operation is demanded are inherently different from those that occur during the time 

that the component is in operation.  Indeed, demand failures are usually due to 

entirely different physical processes and mechanisms than life failures.  Incorporating 

and differentiating between these two different types of events is a challenge to risk 

assessment approaches insofar as they can not be addressed with the same 

mathematical model.  In order to be able to handle both types of events more 

sophisticated approaches utilize two mathematical models.  SimPRA and other 

approaches that can handle both types of events are preferable in that they generate 

higher fidelity scenarios.  
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6.1.1.8 Model complexity 

The assumptions driving some risk assessment approaches limit the ability of 

the user to model certain relationships between risk elements such as dependent 

events, latent failures, redundancies, etc.  As such, in these approaches, scenario 

generation is based on models that are overly simplified.  This is another area in 

which SimPRA stands out as there are almost no limitations on modeling the 

relationships between risk elements. 

6.1.1.9 Problem solved 

Of the eight risk assessment approaches applied to the PSAM8 problem, six 

arrived at a solution.  Of these six, four, including SimPRA, arrived at answers that 

were within the order of E-1, strongly implying that the correct solution should be 

around this magnitude. It is interesting to note that the two approaches that could not 

provide any solution at all were those that attempted to provide an exact solution. 

6.1.2 Summary of comparison 

This comparison shows that, in general, only the simulation approaches were 

able to solve the benchmark problem within the provided time frame and with the full 

range of assumptions in the problem definition. Among the simulation approaches, 

SimPRA stands out for its expandability (both horizontally and vertically) and its 

ability to consider the low probability-high consequence scenarios. Table 5 

summarizes the results of this comparison. 
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Table 5: Comparison between different approaches to the benchmark problem 

Name 
Exact/  

Approx. 
solution 

Binary/ 
Multi state Expandable 

Low Prob. 
High Cons. 
Scenarios 

Complex 
Systems 

Common 
Cause 

Demand-
Based/ 

Time-Based 
Model 

Complexity 
Problem  
Solved 

MC Approximate 
Binary but 

multi-state is 
also possible 

Not known No Yes Yes Both High Yes [E-1] 

DFM Analytical Binary Yes Yes No Not shown Both Can’t get too 
complex No 

DFT Exact Binary Yes Yes No Not shown Time based 
only 

Not easy to 
develop 

Yes but way 
too far from 

other solutions 
(E-13) 

AO-MC Approximate Multi state Yes but only 
horizontally No Yes Yes Both Complex Yes[E-1] 

SAPHIRE Exact Multi state In some cases 
in a static form Yes No Yes Both Very hard to 

model No 

FT/ET/Markov 

Analytical 
approach, 

approximate 
solutions 

Multi state No Yes No Yes Both Not easy to 
develop 

Yes but out of 
range of other 
solutions [E-3] 

SimPRA Approximate Multi state 

Yes, both 
horizontally 

and vertically 
(Hierarchical) 

Yes Yes Yes Both Complex Yes [E-1] 

DES (TIGER) Approximate Multi state Not known Not known Yes Yes with 
difficulty 

Time based. 
Demand 

based with 
difficulty 

Not too 
complex Yes [E-1] 
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6.2 Holdup tank control system example 

Variations of the holdup tank example are commonly used in the PRA 

literature to demonstrate and compare the capabilities of different methods suggested 

for the field (Figure 35). Aldemir 1987, Deoss and Siu 1989, Siu 1994, Cojazzi 1996, 

and Hu 2005 are examples of studies that use a holdup tank as the case for the study. 

There are different variations of the problem but in general the holdup tank 

control system consists of two pumps, a valve and a number of sensors and actuators 

that keep the level of liquid chemical of the tank within a predefined range. The first 

pump has the same capacity for pumping liquid that the valve has for dispensing and 

the second pump has half the capacity of the first pump. At time = t0, the level of 

liquid in the tank is somewhere between the High and Low levels (acceptable range). 

If for any reason (such as a hole in the tank or a change in the balance of in-flow and 

out-flow of the tank) the level of liquid in the tank goes out of the acceptable range, 

the control system will intervene. If the tank level (L) rises much higher than the high 

level of acceptable range and reaches the overflow level, or falls much lower than the 

low level of acceptable range to dry-out level, a system failure has occurred. The goal 

of the studies cited above was to identify the time-dependent probability of system 

failure and present the type of scenarios considered.  

Hu, 2005, used the holdup tank example to show how SimPRA’s risk 

assessment results compare with other approaches mentioned in the literature. He 

found that the SimPRA approach generates the same numerical results when there are 

only a few dynamic elements in the model.  In more complicated cases, however, 
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SimPRA was able to generate scenarios that were not observed by other methods.  Hu 

also determined that SimPRA’s use of a combination of discrete and continuous time 

models make it more suitable for studying systems that are usually fairly stable before 

a deviation from the normal path by, for example, a component failure, at which point 

the system evolution becomes very fast. 
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Figure 35: Schematic diagram of the holdup tank example 

More important to the purposes of this section, Hu found that the planner had 

a critical role to play in ensuring the exploration of high-consequence / low-

probability events.  More specifically, when the planner gave a scenario with a fairly 

low probability, the scheduler was able to generate detailed scenarios based on those 

cases.  Some of the low probability scenarios were cases in which a component 
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failure had to happen after a number of successful uses of that component and a 

simple increase of the failure probability could not generate those scenarios 

frequently enough. 

 
Figure 36: An example of the change of the end-state probabilities by increase in the number of 

realizations 
 

As another test of the critical role of the planner in guiding the simulation, 

SimPRA was run three times with and without the planner component for 500 

realizations (Figure 36 shows an example).  The results of these simulations are given 

in Table 6.  As can be seen, those simulations that included the planner component 

resulted in higher instances of scenarios with lower probabilities.  This suggests that 

the presence of the plan helped the SimPRA scheduler better guide the simulation to 

generate low-probability scenarios. Another important conclusion can be made by 

comparing the standard deviations of the probabilities of the end-states in each group.  

The smaller standard deviations (in the order of magnitudes) for those simulations 
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that included the plan suggest that the planner caused the scheduler to get on a faster 

track of convergence. 

 

Table 6: Comparison between the final probability and standard deviation of 3 different 
simulation runs with and without having a plan 

 
   Probability # Sequences 
  case 1 case 2 case 3 

SD 
case 1 case 2 case 3 

Success 9.90E-01 9.88E-01 9.92E-01 2.00E-03 103 97 73 

Dry-out 9.73E-03 1.18E-02 7.88E-03 1.96E-03 350 353 371 
With 
Plan 

Overflow 9.02E-05 1.64E-04 1.39E-04 3.75E-05 47 50 56 

Success 9.44E-01 9.53E-01 8.89E-01 3.46E-02 448 441 453 

Dry-out 5.57E-02 3.63E-02 9.87E-02 3.19E-02 27 35 26 
Without 

Plan 
Overflow 4.88E-06 1.05E-02 1.25E-02 6.71E-03 25 24 21 

 

6.3 LRO satellite example 

In a recent study by Haghani (Haghani 2007), the risk scenario generation 

capability of the SimPRA planner was evaluated. NASA’s Lunar Reconnaissance 

Orbiter (LRO) satellite was used as an example of a complex system.  The SimPRA 

planning approach was applied to the LRO and the risk scenarios generated were 

compared with a focus on the Command and Data Handling Subsystem (C&DH).  

Given the relevance and significance of its findings, a fairly extensive summary of the 

Haghani study follows. 

6.3.1 Mission overview 

The Lunar Reconnaissance Orbiter is a very high-profile mission within the 

Robotic Lunar Exploration Program (RLEP).  LRO is the first in a series of missions 

for robotic lunar exploration which plans to develop new approaches and 

technologies to support human life on Mars and other destinations.  Proof of water 

will establish NASA’s primary goal to first determine whether life can be sustained 
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on the moon for long periods of time.  On the moon, man can “practice living, 

working and doing science” in order to prepare for longer and more dangerous 

missions (Opperhauser 2006). LRO supports a number of instruments that will allow 

it to achieve its primary mission objectives including: characterizing the moon’s 

radiation environment to evaluate biological impacts and their possible mitigation; 

determining the moon’s topography through a high resolution 3-D geodetic grid in 

order to identify landing sites and determine the availability of resources (such as 

water); mapping temperature, lighting and surface imaging, etc.  

The LRO and subsequent missions are scheduled to launch on a yearly basis 

starting no later than 2008.  With a mission life of 14 months, the LRO and its seven 

instruments will transmit data to Earth that will allow scientists to determine the best 

approach to supporting life on the moon.  An extended human life venture to the 

moon is scheduled as early as 2015 (Opperhauser, 2006). 

6.3.2 LRO subsystems 

The LRO has several subsystems and components that must be integrated 

together for a successful mission.  Figure 37 is a block diagram view of the entire 

spacecraft. 

For the purposes of evaluating SimPRA, some of these subsystems are treated 

as a high-level structure while other subsystems are explored more deeply (i.e. 

C&DH).  A brief description of each subsystem is provided below. 

• Attitude Control Subsystem (ACS) – Responsible for controlling the 

movement and location of the spacecraft in orbit for all three axes. 
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Figure 37: LRO system overview (Houghton, 2006) 

• Power Supply Electronics (PSE) – Responsible for converting power from 

the solar arrays and supplying the primary bus voltage to the other 

subsystems and their hardware. 

• Radio Frequency (RF) Comm – Responsible for the hardware that provides 

communication link between the ground and the spacecraft 

• Propulsion – Contains the tanks of fuel, oxygen, and hydrogen used in 

spacecraft maneuvering 

• Propulsion Deployment Electronics (PDE) – Responsible for controlling 

and monitoring the Propulsion subsystem 

• Command and Data Handling (C&DH) – Sole communication between the 

satellite and the ground station on Earth (see below for additional details) 

6.3.3 C&DH subsystem 

The Command and Data Handling (C&DH) subsystem plays a pivotal role in 

any spacecraft developments.  The C&DH is the sole communication between the 
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satellite and the ground station on Earth.  The C&DH box is responsible for down-

linking science and housekeeping data as well as receiving commands (uplink) from 

the ground and transmitting them to other subsystems on the spacecraft.  The C&DH 

is comprised of a number of electrical circuit boards that communicate with one other 

and interface with key elements outside of the subsystem.  At a bare minimum, this 

subsystem contains some type of a processor, and source of power for the box, as 

well as a communication interface for the radio frequency (RF) antenna.  More 

sophisticated versions may contain a form of memory for data storage and/or an 

interface for specific instruments.  

Because of the significance of the C&DH box to the spacecraft, engineers 

must carefully consider the overall system architecture of this subsystem.  A 

redundant box is often built and placed on the spacecraft in standby mode to increase 

the reliability of the overall mission.  Due to the limited resources as well as the tight 

schedule of LRO, however, the decision was made to make the C&DH box in this 

spacecraft single string.  In other words, the loss of any functionality in the C&DH 

box will lead to mission degradation and quite possibly mission failure. 

6.3.4 SimPRA application to LRO 

 
As discussed above, SimPRA’s planner component develops high-level 

scenarios which are later used by the scheduler for simulation.  To generate scenarios, 

the SimPRA planner requires that several stages of modeling be completed.  These 

include developing the Functionality Tree, Structure Tree, Functionality-Structure 

Map, State Transition Diagrams, and Functionality Details List.  Upon the completion 

of these phases, scenarios can be generated in the Plan Generation phase.   
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In order to generate risk scenarios for the LRO project, the hierarchical 

structure of the system was designed with additional detail given to specific lower 

level subsystems.  Functionalities were identified for all components defined and 

mapped to these structures.  State diagrams were generated for each subsystem and 

component in the design.  Finally, the higher level subsystems’ transitions were 

linked to their lower level component states.  With this complete, the end-state 

scenarios for the top level LRO system were generated.  Those scenarios that result in 

the ‘Failed’ or ‘Degraded’ state of each subsystem were then available for use in 

developing a thorough risk assessment of the system.   

6.3.5 LRO PRA approach 

NASA Headquarters Office of Safety and Mission Assurance (OSMA) 

defines risk as a concept which includes consequences that are undesirable (i.e. 

harmful) in addition to the probability of the occurrence of such consequences.  Risks 

are determined by first defining the initial event that could upset the system.  Then the 

consequences of such an event are investigated along with the frequency of 

occurrence.  Once all the risks are determined, they are integrated into the system risk 

profile.  

As applied to the LRO example, NASA’s current practice of PRA would 

employ a combination of classical reliability techniques such as Reliability Block 

Diagrams (RBDs), Fault Trees (FTs), and Failure Modes and Effects Analysis 

(FMEA). In the case of the C&DH subsystem, a Fault Tree Analysis was employed as 

shown in Figure 38.  Individual card-level fault trees were not, however, developed 

because reliability engineers were not necessarily familiar with the details of each 

particular design (Haghani, 2007).  To develop a fault tree at the card level would, 
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therefore, have required increases in financial and manpower resources that were not 

available. 

6.3.6 Comparison 

The SimPRA results compares favorably with current PRA practices on at 

least three counts (Haghani, 2007):  

First, FT/ET is unable to explore scenarios that unfold at a lower, component 

level of the system. Card-level fault trees are, however, very significant in 

determining the critical causes of failure per board and thus the subsystem.  The fault 

tree approach is unable to produce fault trees at this level without prohibitively 

expensive inputs of money and manpower.  In contrast, the SimPRA planner 

generates scenarios that unfold at all levels of the C&DH subsystem (Figure 39). As 

such, even if the quantification of probabilities still require data that is not available, 

the scenarios generated by the SimPRA planner will ensure that the risk analyst at 

least qualitatively considers more possible (and unanticipated) risks to the subsystem. 

Second, SimPRA automatically generates a considerable (779 in this example) 

number of risk scenarios most of which are not even identified by the FT/ET 

approach.  As shown in Figure 38, by restricting the analysis to the subsystem level, 

LRO PRA considered only seven risk scenarios. 

Third, the SimPRA planner provides very dynamic scenarios. A comparison 

of Figure 38 and Figure 39 reveals this difference.  Every one of the seven 

subcomponent failure scenarios considered by FT/ET approach and presented in 

Figure 38 is comprised of the failure of one and only one component.  By way of 

contrast, the SimPRA planner can generate rich and dynamic scenarios like the one in 

Figure 39 that presents the evolution of component state changes based on 
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component-level events and the subsequent consequences for subsystem failure.  The 

advantage is that the SimPRA planner can identify scenarios under which the failure 

of a component leads to the degradation but not necessarily failure of the subsystem.  

FT/ET is limited and pessimistic in its simplified assumption—due to a lack of 

information—that all component failures automatically result in subsystem failure. 

Given the sensitivity of LRO’s mission, one might expect risk analysis to be 

conducted at a more detailed level that explicitly considers a greater number of risk 

scenarios.  The problem, however, is that classical PRA methods are not well-suited 

for capturing the dynamic elements of complex systems like LRO.  Even attempting 

to model the failure scenarios that the SimPRA planner generates automatically 

proves to be a tedious and grueling process for FT/ET approaches because they 

require the analyst to consider events occurring at all levels of the system 

simultaneously.  In contrast, SimPRA allows the analyst to model the behavior of 

sub-systems in isolation and then link the changes in behavior to the states of its sub-

elements.  The planning algorithm then uses these inputs to automatically generate all 

of the scenarios. 

 

 

 

 

 



111 

 
Figure 38: C&DH top-level fault tree 

 
Figure 39: A C&DH failure scenario 
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7 Application: Risk based design 

In this chapter, the application of SimPRA and the planner in Risk-Based 

design is explained.  Within the SimPRA framework, this method is particularly 

useful for addressing concerns that arise during the design of highly sensitive and 

complex systems whose failure may lead to serious consequences that put financial 

resources, the environment, and human lives at risk.  The remainder of this chapter 

highlights the utility of SimPRA to the field of risk based design. 

7.1 Background 

The classical approach to design is based on a deterministic perspective where 

the assumption is that the system and its environment are fully predictable and their 

behavior is completely known to the designer. Input variables are assumed to be fixed 

and safety factors are applied to ensure the reliability and robustness of the design 

(Mahadevan and Smith, 2003). Although this approach may work fairly well for 

regular design problems—given, of course, the possible extra costs of over-designing 

for the sake of safety and reliability—it is not satisfactory for the design of highly 

sensitive and complex systems where significant resources and even lives are at risk.  

Defining ‘Design’ as “the interplay between what we want to achieve and how 

we want to achieve it” (Suh, 2001) and ‘Risk’ as the probability and consequences of 

something happening that will have an adverse impact upon objectives, ‘Risk-Based 

Design’ can be defined as an interactive process by which the repeated assessment of 

risk within a system is used to inform modifications that ultimately lead to a more 

mature and refined system design.  It has also been defined as a process whereby the 

analysis of uncertainties within the system and its environment as well as their impact 
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upon the system’s performance is incorporated directly into the design process 

(Crowe, 2001; Priest, 1988; and Cruse and Mahadevan, 1997).   

7.2 Review of SimPRA 

In practice, risk assessment is performed by first identifying how a system 

might deviate from its intended performance, second deciding how probable these 

deviations are and third determining what the consequences of these deviations might 

be (Kaplan, Haimes and Garrick, 2001). SimPRA allows the designer to use the 

knowledge that can be expected to exist at the design stage—which is based on the 

mapping of functional requirements in the functional domain to the design parameters 

in the physical domain (Suh, 2001)—to: a) generate high level risk scenarios, that is, 

to identify how deviations can occur; and then b) apply these high level scenarios to a 

rich simulation model of the system to generate detailed scenarios and identify the 

probability and consequences of these scenarios. 

As discussed in chapter 2, Dynamic Probabilistic Risk Assessment (DPRA) is 

usually interpreted as an exploration of the space of possible event sequences to gain 

risk information. A number of simulation methods have been used in DPRA to help 

the analyst understand the behavior of the system under a variety of conditions 

(Mahadevan and Raghothamachar, 2000; Marsequerra et. al., 2000) especially those 

leading to risky outcomes. However, the SimPRA approach is much more efficient in 

covering the large space of possible scenarios as compared with, for example, biased 

Monte Carlo simulations because of the planner element which uses engineering 

knowledge to guide the simulation process.  This allows SimPRA to avoid the slow 

convergence of most biased Monte Carlo methods which aim at finding an optimal 
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sampling function while disregarding the structure of the system under investigation. 

The planner uses engineering knowledge to generate high level scenarios.  

The SimPRA framework may be used for the risk assessment of a design to 

identify the worst case scenarios and the probability of their occurrence as well as the 

total risk of the system’s behavior under uncertain conditions. The value-added of this 

approach is that it enables the designer to observe system behavior under many 

different conditions. The designer can also modify the design to compare the results 

of the risk assessment under different design specifications. This process will lead to 

a risk-informed design in which the risk of negative consequences are either 

eliminated entirely or reduced to an acceptable range. 

The overall structure of the SimPRA approach to Risk-Based Design is 

illustrated in Figure 40. The first step—System Modeling—is to create a virtual 

model of the system with the appropriate level of detail.  The second step—

Knowledge Acquisition for Scenario Generation—is to acquire additional information 

about the system and its environment that will be used to automatically generate risk 

scenarios in the third step—Risk Scenario Generation.  The fourth step—

Simulation—consists of the actual running of the simulation, the results of which are 

reported as the probabilities of the end-states as well as the worst case scenarios in the 

fifth step—Risk Assessment.  In the sixth step—Risk Acceptable—the designer or 

risk analyst makes a determination as to whether or not the risks associated with the 

scenarios and end-states are acceptable. If the risks are not acceptable and must be 

reduced through changes in the design of the system, those changes are applied to the 

simulation model (and to the planner model if necessary) in the seventh step—Design 
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Risk Management.  The risk assessment process is repeated as many times as 

necessary and ends only when the designer is satisfied with the level of risk in the 

system or has found an acceptable range of behavior for each component of the 

system that does not jeopardize the robustness of the overall system’s behavior. 

 

 
Figure 40: Overall structure of SimPRA approach to risk-based design 

 

7.3 Risk acceptance and risk management 

The level of acceptable risk is usually defined by the requirements. Any 

deviation from the expected functionality and behavior of a system can lead to an 

unwanted consequence and needs to be considered in the risk assessment process. 

Safety, robustness, dependability and reliability are all some of the characteristics that 
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can be affected by changes in the behavior of a system and can be evaluated through 

the simulation process. 

When studying the life-cycle of a component in a system that has triggered an 

accident, it is usually possible to distinguish four time intervals: 

1. Assuming that the component was not defective when it was initially put into 

the system, there is a time frame in which the component does its job properly 

and within the range of expectations. This time frame can be named the 

“productive time”. 

2. The second time frame is that in which the component has not yet failed to 

perform its function but is pushing toward the edges of acceptable 

performance range. This is usually accompanied by some sorts of changes in 

the system behavior that can signal an observer that something has changed in 

the system. This time frame is called the “degradation time” 

3. The third time frame is when the component finally fails to perform its job 

and the system starts moving towards a failure. This is called the “failure 

time”. 

4. Finally, most failures can become triggering events for additional series of 

failures if their damage is not properly controlled. The time it takes to control 

the effects of a failure on its environment is called the “failure recovery and 

management time”. 

A familiar example of the failure life-cycle can be seen in the performance of 

automobile brakes. When a car’s brake pads are new, they usually work very well for 

a long time. When they begin to wear out, they make a squeaking noise when the 
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driver tries to stop the car. This is the degradation time during which the brakes are 

still working but are pushing toward the edges of acceptable performance range. If 

not soon replaced, the brakes will soon stop working altogether and may cause a 

serious accident. In the event that a car accident does occur, the recovery and 

management time may be devoted to ensuring the safety of other cars in the area. 

Different risk management tools are designed to work within different time 

frames of the failure life cycle and help to prevent or at least minimize the 

consequences of the failure or the recovery effort that follows. These risk 

management tools can be divided into 7 categories: 

1. Life design: This is the most common approach to risk management. If the 

“productive time” of a component is short, the component can be replaced 

with a more reliable one.  Alternatively, the conditions under which the 

component is performing may be improved so that it experiences less stress 

while performing its job. 

2. Maintenance: Maintenance can significantly increase the “productive time” of 

a system’s lifecycle by replacing components or increasing components’ lives 

by eliminating/decreasing the environmental stressors that affect it. One of the 

potential issues with this approach to risk management, however, is that it 

usually inserts a human into the loop, thereby making the system more 

susceptible to negligence or other human errors in the maintenance process. 

3. Alarms: Alarms act during the “degradation time” of a system’s lifecycle and 

are useful when the system can tolerate a little bit of change while an 

intervention is made to impede progress toward an actual failure. Like 
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maintenance, this approach to risk management is also susceptible to human 

mistakes. 

4. Mitigations: These processes lengthen the “degradation time” without having 

an effect on the consequences of a failure.  

5. Controls: Controls act like a safety net. They do not affect the life of a 

component or the duration of a failure, but minimize the consequences of 

failures. 

6. Containments: Containments do not prevent a failure from occurring but can 

minimize or eliminate a chain reaction in which one failure causes additional 

accidents. An example is the containment structure on top of nuclear power 

plants  

7. Design Change: Change is another tool in risk management by which the 

designer completely changes his or her approach to a problem. Of course, 

such a step will change the failure scenario and may require a whole new set 

of risk modeling. 

7.4 Satellite example 

For illustrative purposes, we return to the satellite example first introduced in 

chapter 5. The goal now is to consider the early stages of the satellite’s design as an 

example of how the proposed methodology improves the design by making it risk-

informed.  This example highlights the flexibility of the risk scenario planning 

process in adapting itself to the new system settings after applying design risk 

management tools. 
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Let us assume that the risk assessment of the satellite design shows that the 

probability of the system going into the degraded state is higher than the risk 

acceptability level. At this point the designer studies the scenarios leading to this state 

and finds out that the actual reason behind this problem is the interaction between 

software and hardware in the downlink process. The designer determines that one 

way to solve this problem is to detect the problem early in the downlink process and 

send the satellite into safe mode for a short period of time to restart the process. Two 

alternatives for the early detection process are: 1) to use an alarm mechanism on the 

ground, or 2) to use a control mechanism on the satellite. The design of the system 

can then be altered to accommodate these changes: 

Option I: An alarm mechanism is designed to check the quality of the data 

automatically and warn users of possible problems with the data before it is too late to 

ask the satellite to resend it. The alarm system that is modeled here has three states, 

DETECT, ACTIVATED and NOT_ACTIVATED. There is also a human decision 

model added with three states, OBSERVE, SEND_TO_SM and NO_SM. Figure 41 

illustrates the changes made in the model to accommodate for applying the alarm 

system. 

Since Alarm and Human are not on the control variable list, their effect is only 

modeled by detecting their presence. This means that the planner will only generate 

these scenarios if it detects the presence of these signals in the simulation.  

Option II: The same problem is addressed with a control rather than with an 

alarm. A quality control unit independently checks the downlink data on the satellite.  

If it detects a problem with the quality of data, it will presume that the Txmitter is 
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degraded so that the system will go to safe mode for repair. Figure 42 illustrates this 

process. 

 

 
Figure 41: The alarm system added to the satellite system 

New risk scenarios are generated based on these new designs. After running 

the risk simulation for each alternative, it is observed that although both options can 

reduce the probability of the degrade state, the use of an alarm on the ground is 

preferable because of the higher accuracy achieved by having a human checking the 

quality of transferred data as well.  

As the above examples indicate, the risk scenario planning model can 

accommodate these design risk management changes with a few relatively minor 

changes. However, these two scenarios have very different effects on the system. One 

will send the system to Safe Mode with some delay and only after alarming a human, 

while the other one automatically sends the system to Safe Mode without involving 

the ground station. One of the major factors for deciding between these risk 

management tools is how they affect the accuracy of the system as reflected in the 
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results of the simulation itself. The analyst will apply these changes one by one and 

compare the results of the risk analysis for each of these designs and choose the one 

that best suits the needs of the system.  

 

 
Figure 42: A quality control unit added to the satellite system 

7.5 SimPRA application in RBD conclusion  

Guided simulation is a very effective tool for risk-assessment in the design of 

large and complex systems. This chapter detailed how SimPRA’s planner component 

can automatically generate a large number of scenarios that guide the simulation 

toward different states of the system and automatically explore unplanned scenarios 

to find new vulnerabilities in the design of the system. Risk assessment of the system 

generates probabilities of the end-states and scenarios that lead to those end-states. 

The system designer will then decide if the risks are acceptable or not. Because of the 

hierarchical structure of the planner in the case that risks are still not acceptable, the 

designer can easily change the planner and simulation model to manage the risk and 

enhance the design. 
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8 Conclusion 

The primary contribution of this dissertation is in offering a new method for 

capturing different types of engineering knowledge which are used to automatically 

generate dynamic risk scenarios that are presented as generalized event sequence 

diagrams. As an integral element within the SimPRA framework, the planner has 

been shown to be an important innovation in the field of dynamic probabilistic risk 

assessment methods.  Comparisons at three different levels showed that: the SimPRA 

approach is superior to other DPRA methods of solving a propulsion system 

benchmark problem; the planner element significantly improves convergence and 

coverage of risk scenarios; and the planner itself compares favorably with other PRA 

methods in generating risk scenarios.  A software code designed to implement the 

planner has been developed and refined based upon the results of its application to 

several problems. 

The utility of the SimPRA framework was also highlighted in its application 

to the field of risk-based design.  The planner’s automatic generation of a large 

number of scenarios that guide the simulation toward different states of the system 

and automatically explore unplanned scenarios was found to be particularly useful in 

identifying new vulnerabilities in the design of the system.  The hierarchical structure 

of the planner was also shown to be useful in allowing for the accommodation of 

design risk management changes with relatively few minor changes. 

The next step in continuing this research can be the development of a more 

active planner and scheduler that can guide the simulation in real time and use the 

captured engineering knowledge to schedule the timing of the events in a more 
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effective way.  The ability of the planner to summarize simulation results can also be 

explored for applications in risk management. Although the contribution of this 

dissertation is in generating risk scenarios for dynamic systems and guiding the 

simulation by providing it with the knowledge of what to bias, not how to bias, a 

comparison between the SimPRA framework as a DPRA method and other biased 

Monte Carlo approaches in terms of their ability to generate low probability high 

consequence scenarios would be of interest. 
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Appendix A: Software implementation of the SimPRA 
multi-state planner 

The primary contribution of this thesis is in offering a new method (called the 

planner) for capturing different types of engineering knowledge and using them to 

automatically generate risk scenarios for dynamic systems that are presented as 

generalized event sequence diagrams.  A software code designed to implement the 

planner has been developed in JAVA programming language and used for several 

projects including the Lunar Reconnaissance Orbiter (LRO) project discussed in 

section 6.3 and the hold-up tank example discussed in section 6.2.  (The code for the 

scheduler was also developed in JAVA while the simulation model was developed in 

the Simulink® environment which is fully compatible with JAVA). 

 

Figure 43: Functionality tree 
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In this section, screenshots of the software’s user interface at different stages 

of soliciting engineering knowledge for the hold up tank project are shown and 

discussed.  The purpose is to give the reader a practical and step-by-step sense of how 

the method outlined in this thesis has been operationalized. 

 

 

Figure 44: Structure tree 
 

Engineering knowledge is solicited from the operator in six steps, each of 

which is handled by a separate tab in the user interface.  As shown at the bottom of 

Figure 43, these six steps/tabs are for capturing the: 1) Functionality tree; 2) Structure 
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tree; 3) Functionality-structure map; 4) State transition diagrams; 5) Functionality 

details list; and 6) QR influence diagram. 

Figure 43 displays a screenshot of Tab 1.  In this step, the program solicits 

information from the user about the hierarchy of the system’s functionalities and 

incorporates this information into a functionality tree.  The user can add, delete, and 

modify functionalities (and sub-functionalities), actions and/or events as the 

requirements of the system are defined. 

 

 

Figure 45: Functionality-structure map 
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A screenshot of the Structure Tree tab is presented in Figure 44.  In this step, 

the user defines the hierarchical structure of the system along with the states of each 

element.  This hierarchy can have as many levels as necessary to adequately reflect 

the complexity of the system. 

Figure 45 displays the functionality-structure map that is used to solicit 

information from the user about the functionalities that are provided by each structure 

element.  A ‘+’ sign in the map indicates that the functionality described in the left-

most column is provided by the structure described in the top row. As mentioned 

earlier, events only map to components while actions and functionalities map to 

subsystems. A gray cell in the cross section means that because of the difference 

between the levels of component in its hierarchy with the level of functionality in its 

own hierarchy, there is no chance of a mapping between them. 

 

 

Figure 46: State transition diagrams 
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Figure 47: State transition diagrams for other elements of the holdup tank example 
 
 
Tab 4, the state transition diagrams presented in Figure 46 and Figure 47, is 

where the relationships between different states of the elements and the 

functionalities provided by them are defined.  System elements change the 

functionalities that they provide in response to changes in the states of the system.  

This knowledge provides insight into the behavior of the components of the system 

elements regardless of their interactions with the rest of the system. 

Figure 48 presents the step in which the details of the functionalities including 

time, landmark, and state conditions, duration, and sub-goals (actions) are defined.  

These details link the elements’ functionalities together and provide the main thrust of 

the planning process. 
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Figure 48: Functionality details list 
 

Figure 49 shows a screenshot of a qualitative reasoning influence diagram.  

The risk knowledge captured in this diagram is used to identify the risky or important 

scenarios from the field of all possible system behaviors. Please refer to section 5.4.3 

for more detail. 

Based upon the engineering knowledge solicited in these six steps (tabs) the 

planner automatically generates risk scenarios.  As shown in Figure 50, these risk 

scenarios are output as a list of high-level scenarios which are also grouped together 

as a Generalized Event Sequence Diagram.  
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Figure 49: QR influence diagram for the tank example 
 

 

Figure 50: Planner output in the format of GESD and list of scenarios 
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After generating the risk scenarios, the plan file (an example is shown in 

Figure 51) is passed to the scheduler for running the simulation.  

 

 

Figure 51: An example of a plan file 
 

Figure 52 shows the screen used to run the simulation. Figure 53 shows the 

simulation runs and outputs. Updating algorithms are applied on the simulation log to 

update the plan. Figure 54 shows the potential functionality details suggested by the 

updating algorithm for updating the plan. 
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Figure 52: Simulation run command screen 

 

 
Figure 53: Simulation runs and results 
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Figure 54: Simulation updating screen 
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Appendix B: PSAM8 benchmark problem 

The PSAM8 benchmark problem (discussed in section 6.1) has been proposed 

by NASA and worked on by a number of research teams using different risk 

assessment approaches and techniques.  In this appendix, the details of this problem 

are presented. 

Mission profile 

An ion propulsion system is needed for a science mission to the outer solar 

system. Figure 55 depicts the mission phases, along with the propulsion system 

operating time during each phase in hours of Mission Elapsed Time (MET). Table 7 

conveys the same information in tabular form. For those phases where the propulsion 

system only operates during part of the phase (e.g. Phases 4 & 5), thrust is continually 

provided from the beginning of the phase until the specified operating time expires. 

Phase No. 1 2 3 6 7

ON

Thrusters

OFF

MET [hour] 0 5520 14899 28039 41179 66180 68038 78039
5856 68538

4 5

 
Figure 55: Propulsion system mission profile 

Design description 

The propulsion system consists of 5 thruster assemblies and a single 

propellant supply. Each assembly has: 
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1 propulsion power unit (PPU), and 

2 ion engines 

When an assembly is operating, the PPU provides power to just one ion 

engine. The other engine will be in a standby mode, unless failed. 

During Phase 1 the success criterion is propulsion from 2 assemblies. In all 

subsequent phases where the propulsion system is operating, the success criterion is 

propulsion from 3 assemblies. 

Table 7: Mission profile 

Mission Phase No. Duration (Hours) Propulsion System Operating 
Time (Hours) 

1 5520.0 5520.0 
2 336.0 0 
3 9043.2 9043.2 
4 26280.0 13140.0 
5 26858.5 25001.0 
6 500.0 0 
7 9501.5 9501.5 

 

Relative to the assembly operation, the strategy is to use Assemblies 1 through 

2 during the first phase. During subsequent phases, Assemblies 1 through 3 will 

furnish propulsion, if available. 

Failure of an assembly causes it to be replaced by the lowest numbered 

standby assembly. For example, if assembly 1 fails in Phase 1, the strategy is to 

actuate Assembly 3.  If no further failures occur during Phase 1, assemblies 2, 3 & 4 

will furnish propulsion at the beginning of Phase 3. 

Basically, standby assemblies remain in standby until they are needed to 

replace a failed assembly, and they are actuated in series (i.e., the lowest numbered 

assembly is first selected). 



136 

Figure 56 is a schematic of a thruster assembly.  In assessing the mission risk 

input power failures are modeled separately, so the propulsion system model can 

ignore a loss of power from that support system. 

The strategy for thruster assembly operation is to begin with power from the 

PPU going to Ion Engine A.  Ion Engine A will continue to be the operating engine of 

the assembly until the engine fails.  At that time the strategy is to: 

Shutdown the PPU; 

Switch the PPU to Ion Engine B; then 

Reenergize the PPU and operate with Ion Engine B. 

There are no intermediate switches between a PPU and the ion engines.  All 

switches are integral to the PPU. 

Figure 56 also depicts a propellant supply to each engine.  The propellant is a 

noble gas from a common storage tank.  The engine ionizes and accelerates the 

propellant to produce thrust.  Since the propellant supply is part of the propulsion 

system, it must be included in the system model. 

PPU 

Ion A

Ion B

Input Power 

Propellant (to A) 

Propellant (to B) 

 
Figure 56: Thruster assembly schematic 
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Common cause failures (CCF) should be assessed using the conditional 

probability values from Table 8 by the CCF model of choice. No specific CCF model 

is endorsed, but any simplification or approximation of CCF probabilities must be 

based on calculations using the values below. 

Table 8: Common cause failure modeling values 

Group 
Size  

Group Conditional 
Failure Probability [%] 

2 8.0 
3 4.0 
4 2.0 
5 1.0 

 

Table 9 is a failure mode and effects analysis for the propulsion system.  

Reliability data are listed in Table 10. 

Table 9: Failure mode and effects analysis 

Component Failure Mode Effect 
PPU Fails to start on demand Assembly failure 
 Failure to operate  
 Failure to shutdown on 

demand 
 

Ion Engine A Fails to start on demand Loss of redundancy 
 Failure to operate  
Ion Engine B Fails to start on demand Assembly failure 
 Failure to operate  
Propellant Valve A Failure to open on demand Loss of Ion Engine A 
 Failure to close on demand System failure 
 External leakage  
Propellant Valve B Failure to open on demand Loss of Ion Engine B 
 Failure to close on demand System failure 
 External leakage  
Propellant tank External leakage System failure 
Propellant distribution 
lines 

External leakage System failure 
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Table 10: Reliability data 

Component Type Failure Mode Value 
PPU Fails to start on demand 1×10-4 (per demand) 
 Failure to operate 1×10-6 (per hour) 
 Failure to shutdown on 

demand 
1×10-5 (per demand) 

 Fails to switch to Ion 
Engine B 

2×10-6 (per demand) 

Ion Engine Fails to start on demand 3×10-5 (per demand) 
 Failure to operate 2×10-5 (per hour) 
 Failure to shutdown on 

demand 
3×10-6 (per demand) 

Propellant Valve Failure to open on demand 3×10-4 (per demand) 
 Failure to close on demand 3×10-4 (per demand) 
 External leakage 5×10-5 (per hour) 
Propellant tank External leakage 1×10-6 (per hour) 
Propellant distribution 
lines 

External leakage 1×10-6 (per hour) 

 

Predicated upon the above mission and design descriptions, the time-

dependent reliability of the propulsion system over the planned mission should be 

quantified. 
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Glossary of terms 

***Please note that the following list of terms is ordered such that each new concept 

relies upon previously defined concepts.  It is therefore, highly recommended that the 

list is read in order.*** 

• System: The Encarta dictionary defines a system as a combination of related 

elements organized into a complex whole. In the engineering field, a system 

usually means an assembly of mechanical and/or electronic components that 

function together as a unit. A system can be comprised of subsystems and/or 

components. Components are the smallest elements of a system. 

• Functionality: Use, action or purpose. Considered with an object, a normative 

relation of object to its use. 

• Parameter: A quantity that defines a relatively constant characteristic of a system 

or function. 

• Model: An abstraction of a system. Models are used to obtain predictions of the 

behavior of systems, especially how one or more changes in various aspects of the 

modeled system would affect the other aspects of the system.  

• State: The condition that a system or component is in at a particular time. A 

system provides or denies its functionalities by remaining in or transitioning from 

one state to another. The state of a system can be defined by an optimal ensemble 

of system parameters which characterize it independent of its history and 

surroundings. When a system is in a state, its history of arriving at that state is 

irrelevant to the future of its behavior. Systems or components are always in one 
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and only one state and the number of states of a system is finite. A state can be 

presented by a set of conditions. 

• End-state: A state of the system that can be entered but either cannot be exited or 

for which the observation of subsequent system behavior holds no interest. A 

system must have at least one but may have several end-states. It is important to 

emphasize that in the context of this thesis an end-state is only defined for the 

system as a whole and not for its elements. Within the context of PRA and DPRA, 

end-states are normally specified as one of the discrete end-state types, which 

typically indicate the severity of the condition.  

• Init-state: The initial state of a system/subsystem or component. Each system or 

its element is supposed to be in an init-state at 0tT = . 

• System Configuration: This is defined here as a combination of the states of a 

system’s components and it is indexed by a positive integer Nc ∈ . 

• System Status: System status includes continuous process variables, (a real 

number vector X ) and a discrete system configuration (a positive integer c). It is 

defined on NS n ×ℜ= . The process variables are governed by a set of 

deterministic equations ( ) ( ) N
i xxxxf

dt
xd ℜ∈== ,0, 0 . These equations are implied 

by the model. The explicit expression of the equations may not be available for all 

aspects of the system behavior.  

• Event: This term is used in two different contexts. An event can occur at the 

system level and at the component level. At the system level, following the 

convention of discrete event simulation, an event is defined as an instantaneous 



141 

occurrence that changes the system configuration ji cc →:δ . When used in the 

context of the component level, an event refers to the simple transition of a 

component from one state to another.  In general, there are two kinds of events 

that can occur at either the system or the component level:  

1. Random Events: The events whose occurrences are depicted by a stochastic 

model and can be controlled by the simulation environment. Such events are 

not necessarily induced by the behavioral rules of the simulation model. An 

example of a random event is a time-distributed component failure modeled 

by a Weibull distribution.  

2. Deterministic Events: Those events that are induced by the deterministic 

rules. An example of a deterministic event is that the threshold pressure or 

temperature is reached. 

• Action: The transition of a system/subsystem from one state to another. Unlike an 

event at the system level, an action is defined by the transition of a system state 

instead of the system configuration. 

• Scenario: There are high-level scenarios and low-level (also called detailed) 

scenarios: 

1. High-level Scenarios are the sequences of actions and events with the 

conditions that need to be met—such as reaching a particular state or passing 

a landmark—in between to take the system and its elements from one state to 

another. High-level scenarios act as a guide for what needs to be done under 

what circumstances to take the system from one state (usually the initial-state) 

to another (usually an end-state).  
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2. Low-level (also called detailed) scenarios are the list of actions and events 

with the exact time of their occurrence along with the changes in the 

system/subsystems/components states and observation of landmarks. Low-

level scenarios are the real simulation instances recorded for future 

observations. 

• Plan: A plan is defined in this paper as a collection of high level scenarios.  

• Planning: The process of modeling and automatically generating the plan.  

• Event Sequence: A system trajectory generated by the simulation model that 

consists of sequences of events along with the deterministic behavior of the 

system and its elements. Every event sequence should be unique. It is an instance 

of the system status evolution through the time line. TES ×= δ  

• Event Sequence Space: the set of all possible event sequences. The definition of 

the event sequence space is implicit, i.e. follows from the definition of the 

simulation model. Event sequences in an event sequence space are considered to 

be mutually exclusive, even though they may partially overlap, since they are 

assumed to originate from a single initial state of the system. }{ iESSP =  

• Sequence Generation: the process of simulating one or more event sequences, 

equivalent to the random drawing of realizations of event sequences from the 

event sequence space. 

• Scheduling: the process of controlling the generation of event sequences. This is 

accomplished by deciding on the occurrence and timing of the random events in 

the model. 
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• Branch Point: a point in the simulation of the system at which the occurrence of a 

random event is considered by the algorithm controlling the simulation. Each 

branch point will have two or more branches, corresponding to the occurrence of 

possible events.  

Some of these concepts are illustrated in Figure 57 and Figure 58.  

 
Figure 57: Illustration of DPRA terminology 

 
Figure 58: Illustration of planner terminology 
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