
ABSTRACT

Title of dissertation: A FRAMEWORK FOR DETECTING AND

DIAGNOSING CONFIGURATION

FAULTS IN WEB APPLICATIONS

Cyntrica N. Eaton, Doctor of Philosophy, 2007

Dissertation directed by: Professor Atif Memon
Department of Computer Science

Software portability is a key concern when target operational environments

are highly configurable; variations in configuration settings can significantly impact

software correctness. While portability is key for a wide range of software types, it

is a significant challenge in web application development. The client configuration

used to navigate and interact with web content is known to be an important factor

in the subsequent quality of deployed web applications. With the widespread use

of diverse, heterogeneous web client configurations, the results of web application

deployment can vary unpredictably among users. Given existing approaches and

limited development resources, attempting to develop web applications that are

viewable, functional, and portable for the vast web configuration space is a significant

undertaking. As a result, faults that only surface in precise configurations, termed

configuration faults, have the potential to escape detection until web applications

are fielded.

This dissertation presents an automated, model-based framework that uses

static analysis to detect and diagnose web configuration faults. This approach over-

comes the limitations of current techniques by featuring an extensible model of the

configuration space that enables efficient portability analysis across the vast array

of client environments. The basic idea behind this approach is that source code

fragments (i.e., HTML tags and CSS rules) embedded in web application source

code adversely impact portability of web applications when they are unsupported

in target client configurations; without proper support, the source code is either

processed incorrectly or ignored, resulting in configuration faults. Using static anal-

ysis, configuration fault detection is performed by applying a model of the web

application source against knowledge of support criteria; any unsupported source

code detected is considered an index to potential configuration faults. In the effort

to fully exploit this approach, improve practicality, and maximize fault detection

efficiency, manual and automated approaches to knowledge acquisition have been

implemented, variations of web application and client support knowledge models

have been investigated, and visualization of configuration fault detection results

has been explored. To optimize the automated acquisition of support knowledge,

alternate learning strategies have been empirically investigated and provisions for

capturing tag interaction have been integrated into the process.

A FRAMEWORK FOR DETECTING AND DIAGNOSING

CONFIGURATION FAULTS IN WEB APPLICATIONS

by

Cyntrica N. Eaton

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Atif Memon, Chair/Advisor
Professor Rance Cleaveland
Professor William Gasarch
Professor Brian Hunt
Professor Vibha Sazawal

Acknowledgments

I have the utmost appreciation, respect, and admiration for my advisor, Dr.

Atif Memon, and I am truly grateful that I had the opportunity to work with him.

His patience and guidance were key in this experience and I can never thank him

enough for his open door, open ear, and well placed pep talks.

I would like to take this opportunity to thank my preliminary and final exam-

ination committee members, Dr. Atif Memon, Dr. Rance Cleaveland, Dr. William

Gasarch, Dr. Brian Hunt, and Dr. Vibha Sazawal for their feedback and sugges-

tions. I appreciate the time and effort you devoted to reading my drafts and helping

me improve my work.

Where would I be without my Mom, Cynthia Eaton, my Dad, Rickey Eaton,

and my Maternal Grandmother, Blondell Hardie! You guys will never know the

extent of my gratitude for raising me in a loving environment, providing me with

all I need to thrive, and most importantly, for allowing me the freedom to plot my

own path. Thanks for all of your support over the years.

A special thanks goes out to my sister-friends Chakeita Jackson, Tracey Taylor,

Erika Thompson, and Irvinia Jackson. I truly love you all and I really appreciate the

laughter, heart-to-hearts, and support throughout this journey and beyond! To Dr.

Johnetta Davis, Dr. Angela Grant, Hattie Redd, and Tamara Washington, thanks

for being excellent mentors and providing me with a blueprint.

To my STAND (Science and Technology: Addressing the Need for Diversity)

Family, Joelle Davis Carter, Alice Bishop, and Tamara Singleton, you are an amaz-

ii

ing group of women and I feel honored and blessed to work with you. To my

remaining Math SPIRAL (Summer Program in Research and Learning) Family, Dr.

Marshall Cohen and Dr. Leon Woods, I’ve enjoyed working with each of you for the

last two summers and I appreciate the encouragement.

I have to thank my uber-talented sisters in research, Jaymie Strecker, Penelope

Brooks, and Xun Yuan for reading my drafts, sitting through practice talks, and

giving me useful feedback. I’ve enjoyed working with each of you and I wish you all

the best in the future!

In closing, I want to say that there is not enough room to list everyone who

has touched my life and impacted me in a positive way. For everyone who prayed

for me, encouraged me, and supported my endeavors, please accept my sincerest

gratitude.

iii

Table of Contents

List of Tables vii

List of Figures viii

List of Abbreviations 1

1 Introduction 1
1.1 Motivation . 1
1.2 Research Approach . 5
1.3 Framework Design Considerations . 6
1.4 Challenges in Attaining and Applying Source Support Knowledge . . 7
1.5 Thesis Contributions . 10
1.6 Dissertation Structure . 11

2 Background and Related Work 12
2.1 Web Applications and the Browser Wars 12

2.1.1 HTML . 13
2.1.2 CSS . 14
2.1.3 The Browser Wars . 15
2.1.4 Definitions . 16

2.2 Related Work . 19
2.2.1 Web Portability Analysis . 20

2.2.1.1 Manual and Automated Execution-based Approach . 20
2.2.1.2 Lookup-based Approach 24
2.2.1.3 Source Code Standardization Approach 25

2.2.2 Web Testing . 26
2.2.3 Portability . 27
2.2.4 Fault Isolation . 28
2.2.5 Machine Learning in Software Fault Detection 31

3 General Framework Architecture 33
3.1 Framework Overview . 34
3.2 Manual and Automated Execution-based Approach 35
3.3 HTML Lookup Techniques . 36
3.4 Source Code Standardization . 37

4 Initial Implementation 38
4.1 General Framework Instantiation . 38
4.2 Inductive Model . 41

4.2.1 Modeling Client Configurations 41
4.2.2 Modeling the Association Vector 43
4.2.3 Algorithm to Generate/Update the Inductive Model 47
4.2.4 Algorithm to Use the Inductive Model 49

iv

4.3 Empirical Study . 50
4.3.1 Infrastructure . 51
4.3.2 Empirical Method . 51

4.3.2.1 Research Questions and Evaluation Strategy 51
4.3.2.2 Independent and Dependent Variables 54
4.3.2.3 Experimental Procedure 54
4.3.2.4 Step 1: Client Configuration Selection 56
4.3.2.5 Step 2: Training Set Selection 56
4.3.2.6 Step 3: Tag Extraction/Abstraction 59
4.3.2.7 Step 4: Defining the Gold Standard 60
4.3.2.8 Steps 5: Tag Classification and Evaluation 61

4.3.3 Threats to Experimental Validity 61
4.3.3.1 Internal Validity . 61
4.3.3.2 External Validity . 62

4.3.4 Results and Discussion . 63
4.4 Summary . 68

5 Current Framework Implementation 69
5.1 Current Framework Design . 72

5.1.1 Knowledge Base . 73
5.1.1.1 Support Criterion Structure 74
5.1.1.2 Knowledge Consolidation 76

5.1.2 updateKB() . 78
5.1.2.1 Manual Update . 79
5.1.2.2 Automated Update 80
5.1.2.3 Information Solicitation 81

5.1.3 processURL() . 84
5.1.4 query() . 84
5.1.5 generateReport() . 85

5.2 Machine Learning Knowledge Base Updates 87
5.2.1 Data Retrieval . 88
5.2.2 Web Application Model . 90
5.2.3 Learning Strategies . 93
5.2.4 Data Storage . 95

5.3 Research Questions and Metrics . 96
5.3.1 Research Questions . 97
5.3.2 Configuration Subject and Data 98
5.3.3 Evaluation Metrics . 99

5.3.3.1 Actual Support . 100
5.3.3.2 Predicted Support 100
5.3.3.3 Accuracy . 101

5.4 Study Design, Results, and Discussion 102
5.4.1 Q1 Study: The effect of web application model, strategy, and

training set size on learning accuracy 103
5.4.1.1 Experimental Procedure 103

v

5.4.1.2 Results . 104
5.4.2 Q2 Study: How does the web application model affect analysis

costs in terms of tags/rules evaluated and the time needed for
analysis? . 105

5.4.3 Q3 Study: The effect of training set imbalance on false positives.105
5.4.4 Q4 Study: The impact of CSS inclusion during the learning

process . 106
5.4.5 Q5 Study: The impact of Tag Interaction during the learning

process . 106
5.4.6 Threats to Experimental Validity 107

5.4.6.1 Internal Validity . 107
5.4.6.2 External Validity . 108

6 Conclusions and Future Work 108

Bibliography 126

vi

List of Tables

4.1 φ Values for All Tags in the Example of Figure 4.2. 47

4.2 Configuration Point Details. 52

4.3 Part of the Negative Instance Set of the Initial Web Application Pool. 58

4.4 Evaluation Results. 66

5.1 Contingency table illustrating the four possible states of tag/category
co-occurence . 95

vii

List of Figures

1.1 When rendered in (a) Internet Explorer 6.0 and (b) Netscape 4.8,
both on Windows XP, the Scrabble Home Page is significantly different. 2

1.2 A Web Application Created in Word 97 Executed Differently in Dif-
ferent Client Configurations. 10

2.1 Sample HTML/CSS code and the corresponding web page. 13

3.1 General framework architecture for detecting configuration-specific
faults in web applications. 34

4.1 An Example of a Client Configuration Space. 43

4.2 Set of Web Applications Classified as Positive or Negative. 46

4.3 The updateVector() Algorithm. 48

4.4 The queryData() Algorithm. 50

4.5 False Positive Rate with Respect to Training Set Size. 65

4.6 Examples of Configuration-Specific Errors Found in Our Study. . . . 117

4.7 Mozilla is More Forgiving than Netscape when Tags are Misproperly
Placed in Source Documents. 118

5.1 Instantiation of the general framework in the current Approach . . . 118

5.2 A generic representation of the knowledge base. 119

5.3 A practical example of support violation offsets. 119

5.4 Snapshot of the Knowledge Base after a manual update. 119

5.5 Positive and negative web applications in an arbitrary client config-
uration . 120

5.6 Snapshot of the knowledge base after an automated update. 120

5.7 Snapshot of the knowledge base after information solicitation. 121

viii

5.8 The retrieval of data, implemented by processURL(), begins once
the user submits a URL. From there, the corresponding web page is
fetched and, based on the hyperlinks observed, a crawler collects each
of the web pages that are a part of the site. Once the source code is
retrieved, a vector model of the web application is created. 121

5.9 An overview of query() . 122

5.10 Visualization of compliance analysis results 122

5.11 The interaction matrix . 122

5.12 Accuracy Values Defined . 123

5.13 The affect of learning strategy, training set size, and web application
model on learning accuracy. The graph shown in (a) corresponds
with the L1 learning strategy; (b) corresponds with L2. 123

5.14 The affect of web application model on time needed for analysis and
the number of tags/rules analyzed. The graph shown in (a) shows
the time needed(b) shows the number of tags analyzed. 124

5.15 The affect of training set imbalance on false positive rate. The graph
shown in (a) shows what results with an extra negative example (b)
shows the results with an extra positive training example. 125

ix

Chapter 1

Introduction

1.1 Motivation

Establishing a high level of confidence in the quality of an implementation is

essential in software development. Though the process of detecting and correcting

faults in an implemented software system is inherently difficult[21], software quality

assurance (QA) becomes increasingly complex when faults only surface in precise

configurations. In such cases, the number, nature, and interconnection of constituent

parts [45] that define the configuration can significantly impact software quality.

To adequately reduce the number of faults in the delivered product, developers

must evaluate the overall correctness of the implementation in addition to how that

correctness is affected by variation in configurations.

The problem of detecting configuration faults has a trivial solution if the space

(or set) of target configurations is manageably small; namely, evaluating the imple-

mentation in every possible configuration. Yet, as the size and variability of the

configuration space grows, developers are faced with a fundamental QA trade-off

between comprehensive configuration space coverage and limitations in develop-

ment resources [51]. Access to each prospective configuration or the time necessary

to apply an exhaustive, brute force assessment strategy is highly unlikely under

realistic development conditions. Without an effective technique for assessing soft-

1

(a) (b)

Figure 1.1: When rendered in (a) Internet Explorer 6.0 and (b) Netscape 4.8, both

on Windows XP, the Scrabble Home Page is significantly different.

ware portability across the configuration space, quality could degrade as software

is ported and faults have the potential to remain latent until they are encountered

by users in the field. As a result, correcting configuration faults is a crucial step in

establishing portability for a highly varied configuration space.

While configuration faults affect portability for a wide range of software types,

they are a particular challenge in web application development. Defined as soft-

ware accessed via a web browser over a network [50], web applications have become

one of the most widely used class of software to date and critical components of

the global information infrastructure [18]. Given that there are several different

browsers (e.g., Microsoft Internet Explorer (IE), Netscape, AOL Browser, Opera,

Mozilla, Safari for Mac OS X, Konqueror for Linux, Amaya, Lynx, Camino, Java-

based browsers, WebTV), each with different versions (e.g., IE 4.0, IE 5.0, IE 6.0,

2

Netscape 4.0), a number of operating systems on which to run them (e.g., Windows,

Power Macintosh), and dozens of settings (e.g., browser view, security options, script

enabling/disabling) client configurations used to launch and interact with web appli-

cations are highly varied. Though expanded variation and flexibility in web access

options allows for more customized web user experiences, subsequent differences

in configurations present a serious challenge for web developers to ensure univer-

sal quality. Characterized as the software configuration explosion problem [34], this

high degree of flexibility translates into a wide space of potential web client config-

urations and complicates the QA effort by requiring that web developers not only

ensure that the systems they have developed are correct, but that correctness per-

sists as software is ported. Failure to evaluate web application portability across

the configuration space can result in instances where a web page renders correctly

in some client configurations and incorrectly in others (Figure 1.1).

In practice, one of the more popular approaches to web application portability

analysis involves a qualitative comparison between expected and actual execution.

The idea behind this technique is to identify a subspace of popular client configura-

tions and to launch the web application in each. While developers using this strategy

get first-hand exposure to configuration faults, this approach is weakened by limited

scope (because analysis focuses on a small number of target client environments) and

non-diagnostic results (because only the occurrence of an error, not the cause of the

error, is detected). In an effort to address the challenges of web configuration fault

detection and the weaknesses of existing web portability analysis approaches, the

goal of this research is to enable automated detection and diagnosis of web configu-

3

ration faults across a large configuration space in a manner that is comprehensive,

yet efficient. The basic idea behind this approach is that source code fragments (i.e.,

Hypertext Markup Language (HTML) tags and Cascading Style Sheet (CSS) rules)

embedded in web application source code adversely impact portability of web appli-

cations when they are unsupported in target client configurations; without proper

support, the source code is either processed incorrectly or ignored, resulting in con-

figuration faults. Using static analysis, configuration fault detection is performed

by applying a model of the web application source against knowledge of support

criteria; any unsupported source code detected is considered an index to potential

configuration faults. In the effort to fully exploit this approach, improve practical-

ity, and maximize fault detection efficiency, manual and automated approaches to

acquisition of source code support knowledge have been implemented, variations of

web application and client support knowledge models have been investigated, and

visualization of configuration fault detection results has been explored. To optimize

the automated acquisition of support knowledge, alternate machine learning strate-

gies have been empirically investigated and provisions for capturing tag interaction

have been integrated into the process. In the immediate sections that follow, this

chapter continues with an overview of the research approach, insight into design

considerations for practical implementation, a discussion of research contributions,

and finally, closes with an outline of the dissertation structure.

4

1.2 Research Approach

In web application development, HTML tags and CSS rules are the core lan-

guages used. As building blocks of web applications, HTML and CSS directives

indicate how an application should be rendered and how users should be able to in-

teract with various web application widgets. When web applications are launched,

browsers parse the source code and use it as a basis for rendering and functionality.

The ability of a configuration to process these statements correctly provides a criti-

cal link between what the web application should be able to do, as outlined in source

code, and what it actually does once it has been deployed; a client configuration

capable of processing a given tag/rule properly is said to support it. Asymmetric

support for source code across the configuration space greatly complicates develop-

ment of web applications that are portable. Given this concept of asymmetry and

the perspective that the functional and aesthetic properties of web applications are

a function of the underlying source code, it is very difficult for web developers to

know which configurations will support their specification, embodied by the source

code elements, and which ones will not. In light of these factors, the problem of

evaluating the portability of web applications across varied configurations can effec-

tively be recast as identifying known patterns of unsupported source code; this idea

lies at the base of the web portability analysis approach utilized in this research.

In the example shown in Figure 1.1 for instance, the tag

<div style = background-image(hasbro.jpg)> is not supported in client con-

figurations in which Netscape 4.8 is the browser. Because the tag was not supported,

5

it was processed improperly and the image was erroneously repeated throughout; the

result was a confounded web page display and diminished usability. The approach

used in this work considers <div style = background-image(hasbro.jpg)> to

be an index to configuration faults in client environments that have Netscape 4.8 as

the browser and uses static analysis to detect similar issues in source code inclusion.

1.3 Framework Design Considerations

To adequately assess web application portability, an ideal approach would

achieve a high level of configuration coverage in an efficient manner, accurately

detect configuration faults, and effectively present results to enable quick correction

of discovered faults. Since the research approach uses knowledge of source code

support in various configurations as a basis for analysis, it is also important to

thoroughly and accurately represent source code support knowledge and have the

proper analysis techniques to exploit this knowledge [25]. In response to these

requirements, the diagnostic knowledge-based framework developed is automated,

employs static analysis, and maintains an extensible model of source code support.

Being model- and static analysis-based, the framework uses web application source

and a model of code support in varied configurations to facilitate analysis; these

factors enable prediction of behavior/rendering faults without executing the WA

in a given configuration (thus eliminating the need for direct physical access to

target configurations during quality analysis) and, ultimately, provide the basis for

efficient coverage of the configuration space. By automating the analysis process,

6

the effort of the Portability Evaluator1 has been reduced to merely submitting a

Uniform Resource Locator (URL), or web address, to initiate analysis; automation

is especially important in web application development because of short development

cycles. The extensible nature of the source code support model allows portability

assessments for newer configurations as they are developed and evolved; this is

an important attribute in web portability analysis given that client configuration

options continually expand as new browsers are developed and newer versions are

released. The diagnostic capability of the framework addresses the issue of detecting

fault causes quickly by explicitly isolating unsupported source code fragments. Aptly

addresses, these solution requirements contribute to a practical, efficient framework

that support the goals of this work and provide the basis for continuing research.

These factors combined help to define a knowledge-based system that leverages a

static, model-based approach to discovering unsupported web application source

code in an implementation and gains knowledge of support through varied means.

1.4 Challenges in Attaining and Applying Source Support Knowl-

edge

Given the fundamental attributes of the research approach outlined in this

thesis, detection of configuration faults will only be as thorough as the knowledge

of tag/rule support criteria across the configuration space. Several challenges to

1The Portability Evaluator is the person on a web application development team responsible

for conducting portability analysis. In some instances, the developer and the portability evaluator

may be one in the same. The distinction was made here for clarity.

7

gaining knowledge of tag support rules threaten the ability to acquire accurate,

comprehensive compliance information. Firstly, relying on browser documentation

is problematic largely because it can be inaccurate and incomplete. Determining the

tags/rules that are accurately accounted for is cumbersome. To ensure that source

code fragments are actually supported, a page containing the tag and a description of

how the tag should behave or render would need to be launched in the corresponding

environment and, like the execution-based strategy, a comparison between the actual

and expected effects would be necessary. Much like the execution-based approach,

a major problem here is the conflict between the need to evaluate support for the

code in each target configuration and the constraints imposed by limited time and

limited access to client configurations.

A second, more independent source of information comes from websites that

list tag support information 2. These sources generally feature only a subset of

potential environments and a subset of HTML/CSS directives; furthermore, the

support rules featured are not guaranteed to be accurate. These factors combined

directly conflict with the need for complete, comprehensive support data.

An initial approach to the problem of asymmetric tag/element support was the

introduction of coding standards by the World Wide Web Consortium (W3C). In

theory, browsers are supposed to follow W3C standards. Yet, even when an attempt

is made to fully comply with a given standard, separate implementations of the same

standard could differ somewhat in how the HTML/CSS directive is handled causing

a resulting difference in functionality or presentation [37]. Furthermore, while some

2The Advanced HTML Reference is an example (http://www.blooberry.com/indexdot/html/)

8

browsers claim to be standards compliant, there is evidence that most of them

are not, i.e., some tags deemed standard by the W3C remain unsupported or are

supported improperly [12]. In short, using standards will often mean that web pages

will be accessible by more users, though developers still have to do some work to

ensure web application portability[37]. Subsequently, a standards-oriented solution

to evaluating tag support is inadequate.

Even with complete, accurate knowledge of environment-specific unsupported

HTML/CSS, the use of this information would remain an issue. The main challenges

here lie in the qualifications of web application developers and basic human ability.

First, there is an expansive set of HTML tags/CSS elements that web devel-

opers could use to create their pages; recognizing the support available for each in

the large space of possible client environment configurations is far from intuitive.

Although traditional software developers had to be relatively familiar with a lan-

guage before being confident enough to create and distribute products publicly, a

growing number of authoring tools providing a What You See Is What You Get

(WYSIWYG) environment that allows developers to create web pages without be-

ing familiar with HTML. Users can create a document in Microsoft Word, as an

example, and save the document into HTML form [43]; the corresponding HTML

is then automatically generated. Yet, the results, can be highly illegible for users

depending upon the client configuration used to launch the web application. Given

the influence of tag support on end-user accessibility, a deficient grasp of the specific

HTML elements incorporated in a web page and a lack of knowledge of how those

elements function in various web browsing environments can have a negative effect

9

Opera 6.0 Internet Explorer 6.0

http://www.hma-corp.com/Ad RRMC.html

Figure 1.2: A Web Application Created in Word 97 Executed Differently in Different

Client Configurations.

on WA portability (Figure 1.2). Experienced developers would need an efficient

way of ensuring that the tags incorporated in WA source is supported across varied

environments.

Additionally, tag interaction can be a significant factor in web page accessibil-

ity as well. A strategy that merely focuses on the occurrence of unsupported tags

in source HTML may suffer from an illusion of false positives in instances where an

unsupported tag is recognized yet no consideration is given to the complementary

tags that provide back-up in unsupportive environments.

1.5 Thesis Contributions

The primary research contribution of this dissertation is a web portability

analysis framework with supporting models and algorithms for efficient analysis

10

across a vast configuration space. The specific focus of this work is to automate

detection and diagnosis of web configuration faults across a wide configuration space.

The key idea of the approach is to use knowledge of HTML tags and CSS rules as the

basis of analysis and to integrate automated and manual means for accumulating

this knowledge. The research presented in this thesis overcomes the limitations of

existing tools and techniques by making the following contributions:

• A framework that utilizes models of web applications and client configuration

to detect, diagnose, and support correction of configuration faults;

• A formal, inductively generated model of web client configurations;

• A model of web applications that adequately supports knowledge acquisition

of unsupported HTML/CSS directives in varied environments;

• Results of experiments that demonstrate the impact of web configuration

faults in practice and feasibility of applying an automated approach to support

knowledge acquisition, and

• A basis for accumulating a comprehensive, accurate source of HTML/CSS

configuration support criteria.

1.6 Dissertation Structure

In the effort to present the main ideas of this work, survey the state of the art,

and provide a more detailed discussion of research contributions, this dissertation has

been divided into six major sections and is organized as follows: Chapter 2 provides

11

an overview of background information and related work. Chapter 3 introduces

a general framework for web portability analysis and provides a characterization

of current techniques (discussed in Chapter 2) in terms of a general framework.

Chapter 4 reviews the initial framework implementation along with an overview of

the models and metrics used and their evaluation. Chapter 5 discusses the current

implementation in the context of the general framework along with the evaluation

of varied automated acquisition techniques. Chapter 6 concludes with a summary

of lessons learned and a discussion of future work.

Chapter 2

Background and Related Work

2.1 Web Applications and the Browser Wars

The World Wide Web Consortium (W3C), the main international standards

organization [49], lists accessibility as the first of its long term-objectives for the

web. Driven by an aim to make the full potential of the web available to all, the

W3C’s push for universal access primarily focuses on the development and imple-

mentation of technologies that account for vast differences in culture, languages,

education, ability, material resources, access devices, and physical limitations of

users on all continents (www.w3.org/Consortium). The work presented in this

thesis contributes to this effort because it focuses on differences in access devices

(e.g., client configurations), and how they must be accounted for during web de-

velopment to ensure universal access for web users. Recall, the portability analysis

12

approach implemented in this work uses knowledge of source code support in varied

client configurations to predict faulty behavior/rendering of web applications. The

sections that follow provide more insight into the core source code languages used

in web development, namely Hypertext Markup Language (HTML) and Cascading

Style Sheets (CSS); briefly reviews why the aftermath of the Browser Wars make

knowledge of source code support a valid basis for discovery and diagnosis of web

configuration faults; and formalizes notions of tag/rule support and the need for

complete knowledge bases during analysis.

Figure 2.1: Sample HTML/CSS code and the corresponding web page.

2.1.1 HTML

Originally developed as a simple, primitive language for information exchange on

virtually any platform [27], HTML has evolved into an elaborate, varied basis for

developing engaging web applications. In general, HTML tags are used to modify

the appearance of text, link widgets to scripts, incorporate objects, and define the in-

13

ternal structure of web documents. Tags are distinguished in web application source

code by opening and closing angled brackets (i.e., < and >). In Figure 2.1, for ex-

ample, <h1> is an HTML tag placed at the beginning and end of the text Cyntrica

and thus modifies how it renders when the web application is deployed. For even

greater control over the effects of a tag, web developers can specify attributes and

attribute values. In the example shown (Figure 2.1), the tag is modified by

the attribute src and further defined by the attribute value cyntrica.jpg; com-

bined this tag, attribute, and attribute value indicate the relative placement of the

image in the web application and the file location of the bit-mapped image to be

displayed.

Given the examples presented above, it is rather straightforward that HTML

tags are a class of building blocks of web applications. More specifically, they provide

directives that indicate how an application should be executed, where page objects

should be placed, and how users should be able to interact with various widgets.

Subsequently, when support for a given tag is non-existent or insufficient in a given

client configuration, the associated directive is improperly processed, and faults have

the potential to surface in the corresponding configuration. As a result, HTML tags

are important correctness predictors during portability analysis.

2.1.2 CSS

CSS notation was originally introduced by the W3C to promote a cleaner separation

between document structure and appearance than HTML and provide developers

14

greater control over web page appearance [43, 1]. CSS rules are distinguished in

source code by opening and closing braces (i.e., { and }) and consist of selectors,

rules, and values. Selectors specify the HTML tag(s) to which the rule applies,

and declarations specify the stylistic effect. The declaration is a set of rule/value

pairs. Broadly speaking, rules either specify relative position or display attributes.

In Figure 2.1 for example, h1 is the selector in both of the circled CSS rules. In the

first instance, color is the rule and #db70db is the value. This rule indicates that

any text within tag <h1> should be the color #db70db = pink. Much like HTML,

CSS are effective configuration fault indices because, if they are unrecognized in a

given environment, the corresponding effect will not render in the corresponding

web page triggering a configuration fault.

2.1.3 The Browser Wars

The problem of asymmetric tag/rule support and, ultimately, configuration

faults, is largely a residual effect of the 90’s era Browser Wars. During that time, the

popularity of the web was increasing quite rapidly; several browser developers (with

the major players being Internet Explorer and Netscape Navigator) incorporated ex-

tra, proprietary HTML tags that rendered improperly in other environments. Prior

to these extensions, the original version of HTML only defined primitive layouts.

Responding to the demand for a richer selection of markup elements (e.g., nested

lists, images), browser developers sought to gain competitive advantage by support-

ing advanced functionality. To introduce more sophisticated elements to designers

15

and enable them to create pages with more complex designs, browsers were delib-

erately developed with features available in one and not the other. The end result

for users, as we experience today, is variability in HTML/CSS support that surfaces

in improperly rendered media, incorrect display of formatting, forms that are not

seamlessly linked to their scripts, and other faulty behavior and appearance.

2.1.4 Definitions

Lack of universal support for source code elements and an inability to process

source code properly in particular client configurations are a direct result of the

Browser Wars and the underlying basis for configuration faults in web applications.

Having introduced HTML tags, CSS rules, and the concept of the Browser Wars,

this section formalizes the concept of tag/rule support and makes the case for the

importance of thorough support criteria knowledge.

Definition 1: HTML and CSS Tag Support

When support for a given source code fragment (tag/rule) is known to be non-

existent or insufficient, the associated code is improperly processed and faults po-

tentially surface for users in the associated configuration. Let C denote the universal

set of client configurations. Consider T to collectively be the universal set of all pos-

sible HTML document source tags and CSS rules. Consider that:1

∀cj ∈ C ∃I = {i1, i2, ..., i|I|} s.t. (I ⊆ T) ∧ ¬supports(cj, I)

That is, each client configuration supports only a portion of the universal tag/rule

1In the definition that follows, the term support(x, y) indicates that x supports y.

16

space; for all possible client configurations, there is a set of HTML tags and CSS

rules that are unsupported in the given environment. Consequently, the tags/rules

in I could be considered indices to configuration faults when they are included in

the source code of a web page w is launched in c.

Example 1:

The tag <marquee>, though a part of the universal tag set T , was implemented by

Internet Explorer developers and is not properly processed in client configurations

that feature early versions of Netscape as the browser. As a result, the corresponding

client configurations will not process the tag properly and the intended functionality

will be lost.

Definition 2: Necessity for Complete Definitions of I

Adequate detection of unsupported tags in I is largely dependent upon the accuracy

and completeness of its description. Detection of faulty program properties will only

be as strong as the knowledge of such properties. Consider the following:

∀ti ∈ T s.t. ti /∈ I ∧ ¬supports(cj, ti)

This essentially states that, the definition of I must be complete to ensure accurate

analysis results. If, for instance, a tag, ti is actually unsupported in cj but it is

not included in the description of I, the resulting static analysis will be flawed. If

knowledge base is incomplete, only a subset of bugs is recognized. Although a page

containing ti should be flagged as possibly having a configuration fault, the analysis

17

will not return the proper result. Static analysis provides an adequate foundation

for configuration fault detection and diagnosis, but it can be weakened by the qual-

ity and completeness of support criteria used during analysis.

Example 2:

Consider a tag, <blink>, that is unsupported when the browser in the client con-

figuration is Internet Explorer. If <blink> was included in the source code and

the tag was not included in I during analysis, the accuracy of the resulting report

would be compromised. Developers would be subject to latent failures and false

confidence in web page, and ultimately web application portability.

Definition 3: Tag Interaction

As mentioned in the previous definition, completeness of bug patterns is impor-

tant for evaluation. Tag interaction, specifically support violation offset, is another

phenomenon that must be modeled in order to get accurate results. Consider that:

∀(ta ∧ tb) ∈ Ts.t.supports(cj, (ta ∧ tb)) ∧ ¬supports(cj, ta)

This means that the tag ta is not supported in configuration cj and thus, its inclu-

sion in source code could have negative effects. Yet, a web page that contains both

ta and tb behaves/renders properly upon deployment. In this context, tb offsets the

lack of support for tc in cj.

It is important to account for support violation offsets during portability anal-

ysis; a strategy that merely looks for unsupported tags in source HTML produces

18

an illusion of false positives2 when no consideration is given to tag offsets.

Example 3:

A common example of support violation offset is the Javascript versioning tag.

More specifically, Internet Explorer 4.0 does not recognize Javascript 1.3. How-

ever,if a web page had both <script language=javascript1.2> and <script

language=javascript1.3>, the page would work properly because the latter could

be offset by the prior.

2.2 Related Work

The goal of the work presented in this thesis is to effectively detect configu-

ration faults and ensure a consistent level of quality for users as they launch and

interact with web applications. This section outlines related work that addresses

portability analysis (for the web and in general), web quality analysis, and fault

localization. An overview of machine learning applications in software engineering

concludes this section.3

2In this context, a false positive is a web page that passes analysis but contains tags that are

unsupported in a given configuration.
3This area of research is related to this dissertation because machine learning tactics are em-

ployed to assist in the correct, thorough definition of I and avoid the problems formalized in

Definitions 2 and 3.

19

2.2.1 Web Portability Analysis

QA strategies for evaluating web portability include launching web applica-

tions in varied configurations [3, 4, 8, 9, 54], looking for unsupported HTML in

source code [6, 16], and attempting to transform code into a form that is universally

supported [11]. This section outlines existing approaches along with their limitations

and tools that implement them.

2.2.1.1 Manual and Automated Execution-based Approach

Execution-based approaches to web portability analysis primarily involve launch-

ing web applications in target configurations and verifying correctness based on the

qualitative comparison between expected and observed results. In the brute-force

application of this approach, web application deployment and analysis are both car-

ried out manually. One factor that makes this approach particularly problematic is

the requirement that web applications be physically loaded in order to preform qual-

ity assurance. Though exhaustive coverage of the configuration space would allow

thorough portability analysis, physical access to each possible class of environments

is extremely difficult; as a result, there is a notable conflict between the need to test

each potential client configuration and the constraints imposed by limited develop-

ment resources. Even with access to each possible configuration, the time and effort

required to effectively asses web pages using this strategy can also impede the depth

of the web application evaluated. Because this strategy can be weakened by client

configuration availability and limited time, this technique is highly ineffective and

20

impractical for web developers interested in establishing portability across a vast,

richly defined configuration space.

While the brute-force strategy evaluates web application portability post-

implementation, Berghel presented a manual execution-based approach [3, 4] de-

signed for pre-implementation use. The basic idea outlined in [3, 4] is to launch a

suite of test web pages, called Web Test Patterns, and observe the results to be-

come familiar with HTML support criteria in varied configurations. Each web test

pattern in the suite incorporates several HTML tags and descriptions of the impact

they would have if processed correctly. This approach allows web developers to

derive a cognitive model of HTML support criteria across various configurations.

As developers synthesize web application code during development, the idea is that

they will use this model to drive decisions regarding which HTML tags to include

in the implementation. Much like the brute-force strategy, the effectiveness of Web

Test Patterns is mainly restricted by resource limitations. In addition, Berghel’s

approach only allows users to develop a mental model of tag support criteria; effec-

tive application of this model can be severely flawed in practice given the expansive

set of HTML tags that can be included in source code and the intricacy of support

criteria. Retaining this information and attempting to use this strategy effectively

is clearly time-, cognition-, and resource-intensive.

To minimize the effort and, ultimately, the cost of analysis using execution-

based approaches, researchers have proposed reducing the space of test configura-

tions through combinatorial testing approaches. In particular, Xu et al. [54] propose

applying single- factor and pair-wise coverage criteria to systematically reduce the

21

space of distinct configurations evaluated during quality assurance. This process

applies sampling heuristics to select the minimal set of client configurations that

must be assessed to establish confidence in the entire configuration space. While

this approach can make subsequent analysis more cost-effective in terms of resources

and effort, it can also create false confidence in analysis results when the set of test

configurations does not accurately represent the entire space.

Commercial tools designed to make execution-based approaches more cost

effective mainly focus on automating the launch of web applications in varied con-

figurations to mitigate the necessity for in-house access to configurations during

quality assurance [8, 9]. Such tools accomplish this goal by launching a web appli-

cation on the behalf of web developers in a subset of configurations and capturing a

screenshot of the rendered result; the image is then returned to the developer who

analyzes web application correctness by manually examining the screen-shots and

relying on visual cues (i.e., misrendered pages) to discover errors. If visual cues

signal an error, the developer must employ additional methods, such as manually

examining the application code, to identify fault causes. Since the result of this

analysis only provides visual evidence of an error and no indication as to why the

error occurred it is non-diagnostic. In addition, this approach only detects rendered

faults, or faults that are evident based on visual inspection; detection of behavioral

faults is infeasible since a single snapshot cannot capture such defects. Consider for

instance that some browsers allow quick access to page elements through the use of

hot keys or key sequences that activate particular widgets in an interface. Though

configurations that feature Opera as the browser do not support this functionality,

22

this lack of support is not conveyed in the screen shot.

Problems with this approach include a non-diagnostic presentation of results

since users would only have evidence of the fault from visual cues; identifying the

factors that contribute to the anomalous behavior requires more work and effort.

In addition, usefulness of fault detection results are generally constrained by the

small set of client configurations used during analysis and the dimensions of the

screen capture. In other words, this approach only detects rendered faults, or faults

that are evident solely based on visual inspection. Faults triggered by user ac-

tion or those that fall out of the range of the screenshot will remain undetected.

Subsequently, this approach is only relevant to portability analysis when aesthetic,

visually-detectable faults are of interest. Consider, for instance, that some browsers

allow quick access to page elements through the use of hot keys or key sequences

which activate access. None of the Opera browser versions support this feature,

yet, launching web applications that have this feature in Opera and capturing a

screenshot does not provide insight into the existence of such faults.

In general, execution-based approaches are deficient because of limited config-

uration coverage, lack of diagnostic ability, limited applicability of results or some

combination of these. As a result, practical implementation of execution-based

strategies generally involves configuration sampling. Such issues give rise to an

incomplete, resource-intensive analysis of the web application that does not pro-

vide an adequate basis for establishing confidence in web application portability.

The approach outlined in this thesis by-passes execution based analysis altogether

and applies a static analysis approach, the crux of which facilitates more efficient

23

analysis alone. The static, model-based analysis applied reduces the need for config-

uration access and simultaneously provides a more fertile basis for fault diagnosis.

The model-based aspect of this work enables each configuration to be represented

during analysis reducing the threat of inaccurate equivalence assumptions.

2.2.1.2 Lookup-based Approach

Look-up based approaches, like Doctor HTML [16] and Bobby [6], detect config-

uration faults by maintaining an account of unsupported HTML tags in a predefined

subset of web configurations and essentially looking for them in source code. Re-

sults of analysis are returned as a list of the unsupported tags found in a given web

application source code and the configurations with support violations.

One problem of this approach is captured nicely by Figure 1.1. In this example,

quality is clearly diminished for Netscape users of the Scrabble website, however,

Doctor HTML did not include this particular support violation in the analysis re-

port. This factor drives home the point that analysis will only be as thorough as

the knowledge of configuration support criteria. In instances when the incomplete

or inaccurate support criteria is used, configuration faults will continue to remain

latent after analysis. Since the tool approach is proprietary, it is unclear whether

this oversight resulted from a lack of CSS rule analysis or, despite inclusion of CSS

rule support knowledge, the corresponding criteria was simply missing from the

checklist. In either the case, the work presented in this thesis improves upon the

lookup-based approach by using a more inclusive model during analysis, integrating

24

diverse knowledge acquisition strategies to improve analysis accuracy, and incorpo-

rating an extensible knowledge base. In terms of the more inclusive model, CSS rule

support knowledge has been incorporated; support criteria data is accumulated from

diverse sources in the effort to build an accurate, thorough support knowledge; and

the extensible knowledge base model allows support criteria to continually evolve.

2.2.1.3 Source Code Standardization Approach

Though Chen and Shen [11] do not precisely focus on web configuration fault

detection, correcting web portability threats is a key aspect of their work and is

highly applicable to the domain of web portability analysis. In their research, Chen

and Shen base their approach on the assumption that web source code standards,

as defined by the W3C [48], provide the most effective basis for developing web ap-

plications that are portable. The crux of their technique is to transform the source

code of a web application into a standardized form in which all non-standard code

fragments are eliminated from the code and the appearance of an original implemen-

tation is preserved. One problem with this approach stems from the fact that, as

noted by Phillips [37], even if browsers fully comply with published standards, the

code may still be processed differently since standards do not address every detail

of implementation; in addition, there are instances in which browsers claim to be

standards-compliant yet some tags deemed standard by the W3C are unsupported

or supported improperly [12]. In some instances, web developers only get acquainted

with the parts of the standards that work in most browsers through experience [37];

25

subsequently, developers may still have to employ a variant of the execution-based

approach to assess source code support in client configurations. In contrast, one

goal of the work in this thesis is to derive detailed knowledge of source code support

to facilitate analysis as opposed to relying on standards that may or may not be

fully incorporated across the configuration space.

2.2.2 Web Testing

The research presented in this dissertation is one facet of a general endeavor

to support and improve the quality of user experiences on the web. Given increased

interest in the quality and reliability of web applications, several researchers have

proposed and developed web QA techniques. The majority of the research effort

found in the literature has been concentrated in applying traditional QA measures to

web-based software. In particular, several tools and techniques have been developed

to assess the functionality and performance of web applications including general

frameworks [53, 42, 40, 52] and test case generation strategies [2], to the application

of traditional white-box testing techniques [47, 39], object-oriented based strategies

[28], and statistical testing approaches [24]. Although the pursuit of web quality is

a unifying factor between the cited work and the research presented in this thesis,

none of the fore mentioned approaches concentrates on how to detect configuration

faults before web applications are fielded. In terms of the thesis approach, the main

concern is the challenges presented when software configurations are untested and

the environment does not support HTML/CSS directives.

26

2.2.3 Portability

Software portability research considers how software correctness can be com-

promised depending on the configuration used to deploy it. Work addressing soft-

ware portability is relatively scarce in recent literature though the problem of detect-

ing configuration faults with limited resources continues to loom. In one example of

work in this area, Mooney [35] cites portability as a desirable attribute for a wide ma-

jority of software products and proposes guidelines for ensuring probability in each

phase of software development. Bishop [5] discusses how portability affects graphical

user interface (GUI) design and proposes an approach that uses XML to encode soft-

ware specifications and an engine capable of generating environment-specific event

handlers based on the XML. Koltashev [26] addresses the issue of portability in a

mission critical context - communication satellites. In that domain, the satellites

are functionally equivalent, yet the computing hardware varies significantly between

them; this essentially provides the basis for a need to port on-board software to var-

ious computing platforms. Koltashev [26] proposes architectural stratification and

interface standardization as a means of ensuring portability for satellite software.

Cohen et. al [13] look at the effects of the configuration used during testing on code

and fault coverage noting that for individual test cases and certain types of faults,

configuration matters.

In addressing the difficulty of setting up and maintaining large machine test

banks during portability analysis, a commercial tool, IBM’s VMWare [23], was de-

signed to mitigate the effects of limited physical access to test configurations. The

27

basis of this tool is to simplify configuration management and eliminate the need for

access to physical machines to detect configuration faults. This software enables the

use of virtual test environments that simulate multiple operating systems and soft-

ware applications running concurrently in virtual machines on a single Intel-based

computer.

The Skoll system, developed by Memon et al. [34], is based on the idea that

evaluating software quality under varied usage conditions can be greatly improved

by increasing user participation in quality analysis. They accomplish this goal with

a global-oriented QA process that assigns users specific test cases to run in their con-

figurations and accumulates results to derive a model for failure prediction. One QA

task implemented in Skoll was to determine which specific options caused software

failures to manifest; The authors call this process fault characterization.

2.2.4 Fault Isolation

In short, fault isolation is an effort to identify source code statements that

cause anomalous behavior[41]. This field of research is highly applicable to the work

presented in this thesis largely because the endeavor to automated web configura-

tion fault isolation is largely an attempt to isolated unsupported tags/rules using

source code analysis. As mentioned prior, tags/rules have the potential to trigger

anomalous behavior/appearance when they are unsupported in a given configura-

tion. While this dissertation focuses on faults that are activated in precise configu-

rations, this section surveys a more general collection of fault isolation/localization

28

research.

Several techniques have been proposed to address fault localization in more

traditional systems. Li et al. [29], for instance, consider the impact of improperly

copy/pasted code on software errors. Hangal et al. [20] present DIDUCE, a tool

that isolates the root of errors based on system invariants. Engler et al. [19] look

for contradictions in code constructs, provides an alert when contradictions are

detected, and allows users an opportunity to determine which construct is incorrect;

once a contradiction is identified, a template rule, or bug pattern, is devised to

identify other code that may be the root of similar errors. Zeller et al. [56] presents

an approach to fault isolation called the delta debugging algorithm. The idea behind

Zeller et al.’s research is to isolate the difference between a passing test case and

a failing one by simplifying a set of failing test cases to a minimal subset that still

produces the failure. Fault-causing attributes of failing test cases are isolated by

incrementally eliminating attributes that appear to be irrelevant to the failure.

Another body of work uses violation of implicit coding rules as a means of fault

isolation. Implicit coding rules have been defined as key, generally undocumented

rules that affect the correctness of a software system when violated. Lack of doc-

umentation is particularly problematic because developers who initially worked on

the project may be aware of them yet, as new developers join projects or legacy pro-

grammers forget them, defects are introduced. Matsumura et al. [33] use manually

generated bug code patterns to identify violations of implicit coding rules. The idea

is to have an expert maintainer investigate bug reports, identify the code fragments

that caused the bug, and derive a template for a code pattern that can be used to

29

identify similar faults. Li and Zhou [30] address implicit coding rules as well, yet

their work incorporates a data mining approach to automatically extract rules and

employ a technique to automatically detect subsequent violations.

Sterling and Olsson introduce the concept of program chipping [44], a tech-

nique that uses program source code to generate a parse tree, eliminates or changes

nodes of the parse tree, and compiles/runs the code associated with the modified

tree to identify code features that contribute to faulty behavior. This technique

automatically removes of chips away parts of a program so that the part that con-

tributes to some symptomatic output becomes more apparent with each successive

run.

Though similar in spirit, the work discussed in this dissertation diverges from

this body of related work in key areas. Given a web page that does not work, the

conceptual approach is to isolate the cause of the configuration fault by simplifying

the code until the unsupported code fragment can be isolated. Yet instead of actively

modifying or eliminating code fragments to isolate fault-inducing statements, web

pages and whether they are positive or negative examples are used as evidence to the

supported/unsupported nature of each source code fragment; a learning approach

is applied to reconcile support patterns and determine the contribution of a code

fragment to faulty category. Also, instead of using one failing example, several

are collected and compared to successful examples in order to isolate a host of

unsupported features and update knowledge of support criteria based on the results.

The main goal is to generalize support patterns from experience as opposed to

reducing individual source code examples piece by piece. Moreover, in the case of

30

web application development, tag support can be considered implicit coding rules;

the overall goal of this work is to automate the process of investigating causes

and updating support knowledge. Moreover, users are expected to submit web

application source as the bug reports; instead of requiring an expert to investigate

the cause of the bug by opening the source in the corresponding configuration, that

process is automated in this work by applying a learning mechanism to diagnose

the root of the problem. We only use experts when they are directly supplying

knowledge or gathering more evidence of tag/rule support when necessary.

2.2.5 Machine Learning in Software Fault Detection

One of the earlier goals of this research was to identify an inductive mecha-

nism capable of discovering tag support criteria from empirical data. Several other

researchers have applied machine learning solutions to quality assurance tasks. The

discussion that follows highlights work that falls within this category.

To briefly motivate the use of machine learning to predict the behavior of

fielded software, consider that statistical analysis of measurable program features

could be used to automatically extract bug revealing information from source code

and other software development artifacts. Specifically, in the work presented by

Haran et al. [22], the main idea is to support measurement and analysis of fielded

software systems by automatically classifying execution data as a passing or failing

instance of software behavior. The authors use statistical learning algorithms to

isolate revealing predictive factors (i.e., the number of times a method is called,

31

runtime, input size, etc.) and build classification models that can distinguish passing

and failing runs.

In addition, Bowring et al. classify program executions using a technique

based on Markov models [7]. Their model considers program branches as a signifi-

cant quality attribute.4 Podgurski et. al use automated clustering techniques that

group software failure reports and automatically discover which ones are likely to

be manifestations of the same error [38]. Brun and Ernst [10] use machine learning

approaches to identify dynamic invariants that are likely fault indicators. The ap-

proach they present takes a set of program properties for a given program as input

and returns a ranked subset of those properties that are more likely than average

to indicate errors in the program as output. Their experiments indicate that a

machine learning mechanism can identify fault-revealing program properties which

result from erroneous code. Brun and Ernst use support vector machines and deci-

sion tree learning tools to classify these properties. Cubranic and Murphy [14] use

text categorization techniques to assign bug fixes to developers given a plain-text

description of the bug submitted by system users.

The work presented by Liblit et al. [31] is very similar to our research in that

the goal is to recognize bugs in a system based on user experiences with faulty execu-

tions from a large, distributed user community. More specifically, Liblit et al. apply

statistical modeling based on feature selection to the problem of fault localization

in order to identify program behaviors that are strongly correlated with failure and

4Quality attributes are features or attributes inherent in software development that affect qual-

ity.

32

are therefore likely places to look for error. Moreover, the idea is to gather user

execution profiles, identify predicates in the source code, and use logistic regression

to determine the statements most strongly correlated with system failure. Instead

of predicates, the goal of our research is to identify HTML/CSS most strongly cor-

related with system failure. In addition they use dynamic analysis for discovering

the causes of faults; we focus on a static approach.

In this thesis HTML/CSS are the main predictive features and web pages are

modeled as either negative (failing) or positive (passing) examples of web application

behavior. Much like Bowring et al., the goal of this work is to use static analysis

to detect the root cause of bugs experienced during execution. Like Engler et al.

another interest is automatically extracting bug-revealing properties from source

code in order to dramatically reduce the manual effort needed to check a large,

complex systems.

Chapter 3

General Framework Architecture

This section presents a general framework for analyzing web portability across

the configuration space and discusses how it aligns with existing tools and tech-

niques. As mentioned in Section 2.2, there are three main classes of web portability

analysis approaches: execution-based, look-up based, and source code standard-

ization. The discussion that follows covers the components that define the general

framework and provides insight into how each is instantiated for practical approaches

33

to detecting configuration faults for web applications.

Oracle

Technique
Interface

processURL()

query()

generateReport()

Knowledgebase

Analysis
Report

WA
Developer

Update Mechanism 1
UpdateKB()

Update Mechanism 1
UpdateKB()

Update Mechanism 1
UpdateKB()

Update Mechanism 1
UpdateKB()

Figure 3.1: General framework architecture for detecting configuration-specific

faults in web applications.

3.1 Framework Overview

At a very high level, portability analysis can be conceptualized as a function

F that accepts fault-relevant properties as input and returns an account of config-

uration faults detected as output. In this discussion of a generic web portability

approach, the function F is called the oracle. As shown in Figure 3.1, basic configu-

ration fault detection begins once web applications are submitted to the oracle as in-

put and ends when the oracle returns the Analysis Report as output. The interim role

and quantity of knowledge bases along with the implementation of processURL(),

query(), generateReport(), and, updateKB() are a direct result of the fault detec-

tion strategy used. In general, processURL() is responsible for retrieving input and,

if necessary, conditioning it for analysis; query() implements the analysis strategy;

34

and generateReport() returns analysis results to users. Note that the knowledge

base(s) contain(s) data needed to perform analysis and updateKB() is used to im-

port more data into the knowledge base(s) when necessary. As shown in Figure 3.1,

one or more subcases, or instantiations, of updateKB() may co-exist within the

framework.

3.2 Manual and Automated Execution-based Approach

Execution-based techniques require that web applications be launched within

client configurations in order to detect configuration faults and evaluate the sub-

sequent quality (see Section 2.2.1.1). Though details of the manual and execution

based approaches differ, both can be abstracted by the general framework in the

following way with slight variation: In both the manual [3, 4, 54] and automated

[8, 9] execution-based approaches, processURL() respectively returns the deployed

website or an image of the deployed website launched in a set of target configura-

tions. The query() process, in both approaches, is a comparison between expected

and actual observations; in the manual approach, the query() process compares the

deployed web application with a ground truth model1 of presentation and behavior;

in the automated approach, the image of the deployed web application captured as

a result of processURL() is compared with the ground truth of presentation. In

each case, the query() and generateReport() processes are manually executed

by the evaluator; as the evaluator makes the comparison between actual and ex-

1The ground truth is a conceptual model of correct execution/rendering. In most cases, it exists

in the mind of the developer, but it can also exist as a mock-up.

35

pected models (query()) they maintain an account of configuration faults detected

(generateReport()).

Note, for execution-based approaches to web configuration fault detection, the

knowledge base contains a list of configurations that will be evaluated; what dif-

fers, however is the implementation of updateKB(). For Berghel’s approach and

the commercial tools, updateKB() simply adds a new configuration to the list when

necessary; In Xu et al.’s approach, updateKB() adds a new configuration and recal-

culates the equivalence classes. The work outlined in this thesis primarily improves

upon this approach by eliminating the need for access to client configurations during

analysis and diagnosing the causes of detected faults.

3.3 HTML Lookup Techniques

In look-up based approaches (see Section 2.2.1.2), processURL() fetches the

web page source code associated with a submitted Uniform Resource Locator (URL).

The query() process then compares the list of HTML tags contained in the source

code with a list of tags known to be unsupported in various target configura-

tions. The generateReport() interface returns results to the user as an account

of the unsupported tags found in a given web application source code and the cor-

responding configurations for which the tag/rule is unsupported. Note, look-up

based approaches implemented to date differ from this work by excluding CSS-

based configuration fault detection and by, presumably, only supporting an in-

stance of updateKB() that accepts support criteria from the tool development team;

36

the knowledge base, designed as a part of this dissertation, includes knowledge

of cross-configuration CSS support and integrates varied strategies as instances of

updateKB().

3.4 Source Code Standardization

The source code standardization approach presented by Chen and Shen [11]

(see Section 2.2.1.3) instantiates the general framework in the following way: processURL()

launches the URL associated with a webpage in a browser. The query() process

then examines the DOM tree of the web application (generated by the browser) to

identify the layout of the web page. Nodes in the DOM tree represent segments in

the web page and maintain information such as the size, location, and contents of

the corresponding segment. Based on the DOM model recovered, query() generates

a CSS box outline of the web page based on the segments, their size, and their loca-

tion. Next, the method converts the source code associated with each segment/box

to a standardized version. Since this approach is not a fault detection system,

generateReport() is instantiated slightly differently; instead of returning an ac-

count of faults detected, the interface returns a W3C standard version of a web

application. The knowledge base in this approach contains rules for transforming

the code; updateKB() accepts rules, presumably, tool developers and incorporates

them into the knowledge base. The work presented in this thesis improves upon

the code standardization approach by developing a detailed understanding of cross-

configuration source code support and not relying on a standard definition that may

37

or may not be fully implemented.

Chapter 4

Initial Implementation

This chapter discusses the initial work conducted to demonstrate the feasibil-

ity of the research approach and its potential to advance the state-of-the-art in web

portability analysis. Initial work included design and development of the following:

client configuration and web application models, an inductive learning approach,

an algorithm that updates knowledge of configuration-specific tag support criteria,

and an algorithm to query the model during portability analysis. In addition to

details about each of the aforementioned, this chapter provides an introduction and

in-depth analysis of an experiment conducted to evaluate the feasibility of updating

support criteria knowledge (through updateKB()) through inductive learning. Be-

cause this work was conducted at an earlier phase of the project, only HTML tags

were considered as possible configuration fault triggers.

4.1 General Framework Instantiation

In both the initial and current phases of this work, web configuration fault

analysis is performed the source code level and can be divided into three main tasks:

acquisition of code fragment support knowledge, discovery of unsupported source

code fragments in web application source code, and presentation of support viola-

tions detected during analysis. Recall, the generic framework introduced in the pre-

38

vious chapter and its components; namely knowledge base(s) and the processURL(),

query(), generateReport(), and, updateKB() interfaces. In the context of this

work, updateKB() acquires knowledge of source code support; processURL(), query(),

and the knowledge base are key in portability analysis; and generateReport() is

mainly responsible for analysis result presentation.

It is important to note that query() implements the portability analysis strat-

egy and uses the output of processURL() and knowledge base data to drive con-

figuration fault detection. For more detailed insight, the basic instantiation of

query() can be formalized as follows: Given the universal set of client configu-

rations, C, and a universal set of web applications, W , each configuration, ci ∈ C,

used to browse and interact with web applications has a set of source code frag-

ments Uci
= {u(ci,1), u(ci,2), ..., u(ci,a)}1 that are unsupported. Recall, lack of sup-

port signifies an inability of a given configuration to process the code properly and

link the code with its proper aesthetic/functional properties; subsequently, the in-

tended impact of the code is lost and configuration faults may result. The basic

approach defines a web application, wj ∈ W , as a set of source code fragments

SCwj
= {sc(wj ,1), sc(wj ,2), ..., sc(wj ,b)} where set members include HTML tags (in the

initial implementation) and CSS rules (in later work). As shown in Equation 4.1,

Uci
∩ SCwj

=







{f1, f2, ..., fn}, if wj contains source code unsupported in ci

∅, otherwise

(4.1)

1In Section 2.1.4 Definition 1, Uci
was defined as I

39

if the intersection of Uci
and SCwj

yields a non-empty result, the source code for wj

contains code fragments, that are unsupported in ci; code fragments {f1, f2, ..., fn}

that overlap between the sets are likely to reveal configuration faults. The notation

fm indicates an instance where sc(wj ,t) = u(ci,v). In the context of this formalized

view of the query() interface, the goal of our work is to design an effective way to

compute the intersection of Uci
and SCwj

for a web application, wj, with respect to

a wide, diverse set of configurations, C.

To gain more detailed insight into the bridge between the general and initial

frameworks, consider the following instantiation: each configuration has a dedicated

knowledge base that contains an account of unsupported HTML tags. To initiate

analysis, users submit the URL associated with the home page of a web applica-

tion to the processURL() method. Next, processURL() activates a web crawler

to gather web pages that comprise the web application, constructs a model of each

web page by extracting HTML tags from raw source code, and forwards the result-

ing models associated with each to the query() method. For each configuration

represented, query() accesses the corresponding knowledge base, retrieves the list

of unsupported HTML tags, and compares it with the web application source code

to detect matches. If a source code fragment in the web application appeared in

the knowledge base of a given configuration, the name of that configuration would

be appended to a list of potentially faulty configurations. generateReport() re-

turns a flat, text-based list of results indicating the pages with support issues, the

unsupported tags they contain, and the configurations that do not support those

tags. In this phase of the research, there was only one instance of updateKB() and it

40

was defined as a supervised machine learning method. Briefly, updateKB() was de-

signed to accept both faulty (negative) and correct (positive) examples of web page

behavior in a given configuration, monitor source code inclusion patterns (e.g., the

number of times specific HTML tags, attributes, and attribute values were included

in positive vs. negative examples) and to derive support criteria knowledge from

those observations. Tags highly correlated with faulty labels examples were added

to the knowledge base associated with each client configuration.

4.2 Inductive Model

A key contribution of this work is the development of client configuration mod-

els that encapsulate source code support. Given the approach in this dissertation,

the configuration model is used for both accumulation of support criteria knowl-

edge and for use during portability analysis. The initial client configuration model

contained two parts: (1) a graph representation of the entire client configuration

space and (2) an association vector for each client configuration. The association

vector encapsulated knowledge of how HTML tag inclusion web application failures

in specific client configurations. This section provides further details for both parts.

4.2.1 Modeling Client Configurations

In the initial implementation, each client configuration was described in terms

of options such as operating system installed, browser, browser settings, network

speed, geographical location, etc. Each option takes its value from a discrete set

41

of settings. For example, the operating system option (called OS) in the empirical

study outlined in Section 4.3.1 takes values from the set {WinXP, Mac OS X}. A

client’s mapping from options to settings is called a configuration and is represented

as a set { (V1, C1), (V2, C2), . . ., (VN , CN) }, where each Vi is an option variable and

Ci is its constant value, drawn from the allowable settings of Vi.

In practice not all configurations make sense (e.g., feature (Browser = WebTV)&(V ersion

2.0) is not supported when (OS = Linux)). Therefore, the framework will support

inter-option constraints which limit the allowable settings of one option based on

the settings of others. Constraints are represented as follows: (Pi → Pj); this means

“if predicate Pi evaluates to TRUE, then predicate Pj must evaluate to TRUE.” A

predicate Pk can be of the form A, ¬A, A&B, A|B, or simply (Vi = Ci), where A, B

are predicates, Vi is an option and Ci is one of its allowable values. A practical con-

straint example is: (Browser = IE)&(V ersion = 6.0) → (OS = WindowsXP);

this indicates that the operating system must be Windows if the browser is Inter-

net Explorer. This constraint is attributed to the property that version 6.0 is not

available for other operating systems). A valid configuration is a configuration that

violates no inter-option constraints.

Figure 4.1 shows an example of a client configuration space. Each node repre-

sents a valid configuration. Edges connect two nodes that differ by exactly one op-

tion setting. For example, nodes 1 and 2 differ by one option setting (OS=Linux vs.

OS=WinXP); similarly, nodes 1 and 3 differ in one option setting (Browser=Netscape

vs. Browser=Internet Explorer). Nodes 2 and 3 are not connected since they

differ by more than one option setting. These edges are used to traverse the client

42

configuration space (in the algorithm discussed in Section 4.2.3). Without loss of

generality, the client configuration space is assumed to be connected (i.e., it is one

connected graph; “dummy” nodes are used to connect disjoint parts).

22

11 33

Browser=Netscape

OS=WinXP

Browser=Netscape

OS=Linux

Browser=Internet Explorer

OS=Linux

1.45bold

-0.76
java

1.1

1.28table

-0.12
java

1.2

-2.35div

0.12html

ϕ

-0.12
java

1.2

-2.35div

0.12html

ϕ

1.45bold

-0.76
java
1.1

1.28table

-2.70
java

1.2

-2.35div

0.12html

ϕ

-0.12
java

1.2

-2.35div

0.12html

ϕ

1.45bold

-0.76
java
1.1

1.28table

-0.12
java

1.2

-2.35div

0.12html

ϕ

1.45bold

-0.76
java

1.1

1.28table

-2.70
java
1.2

-2.35div

0.12html

ϕ

1.45bold

-0.76
java
1.1

-2.70
java
1.2

-2.35div

0.12html

ϕ

1.45bold

-0.76
java

1.1

1.28table

-2.35div

0.12html

ϕ

1.45bold

-0.76
java
1.1

1.28table

-0.12
java

1.2

-2.35div

0.12html

ϕ

1.28table

-2.70
java
1.2

-2.35div

0.12html

ϕ

-0.12
java
1.2

-2.35div

0.12html

ϕ

-0.12
java

1.2

-2.35div

0.12html

ϕ

Figure 4.1: An Example of a Client Configuration Space.

4.2.2 Modeling the Association Vector

Each point in the configuration space is mapped to an association vector. In-

tuitively, the association vector encodes the likelihood that a given tag is associated

with incorrect execution. For example, results of the empirical study (Section 4.3) in-

dicated that the <blink> tag does not work in Netscape browsers; subsequently, the

association vector for each client configuration with the setting Browser=Netscape

should correlate the <blink> tag with a high probability for failure.

43

In the inductive methodology presented here, web pages that comprise web-

based applications are the raw material for training. HTML tags that structure

each web application and the manual classification of the web application as either

a positive (correctly executing) or negative (incorrectly executing) instance provides

a statistical basis for determining the influence a given tag has on the web appli-

cations’ execution in a client configuration. In the initial implementation, the first

step in deriving tag support knowledge is to evaluate the correlation coefficient, φ,

of each discovered tag [55, 36]. Intuitively, φ observes positive and negative phe-

nomena to estimate the association of an element to one category or another. Note,

the association vector is essentially a collection of φ values for all of the tags in a

client configuration. Since the φ values are unique for each client configuration, one

association vector is mapped to each point in the client configuration space. The

following formula is used to compute φ for tag t and client configuration c:

φ(t, c) =







√
N×(AD−CB)√

(A+C)×(B+D)×(A+B)×(C+D)

0, if A+C=0; B+D=0; A+B=0; C+D=0

(4.2)

where (for a configuration c) N is the number of instances observed, A is the number

of correctly executing instances that contain tag t, B is the number of incorrectly

executing instances that contain tag t, C is the number of correctly executing in-

stances that do not contain tag t, and D is the number of incorrectly executing

instances that do not contain tag t.

Positive instances of web applications can be accessed, read, understood, and inter-

44

acted with as intended by the developer. Negative instances of web applications, on

the other hand, execute incorrectly in a client configuration. Note that since A+C

is the total number of positive instances and B+D is the total number of negative

instances, the denominator goes to zero if there are no positive instances (A+C =

0), no negative instances (B+D = 0). In addition, the denominator for φ evalu-

ates as zero when there are no occurrences of a given tag (A+B=0), all positive

and negative instances contain the tag (C+D=0) or there are no instances at all

(A=B=C=D=0). When the denominator is 0, φ evaluates to 0.

Evaluation of φ: The use of φ as a predictive tool centers around the sign as well

as the magnitude of the value. A negative value indicates that the tag is expected

to be unsupported in the corresponding client configuration while a positive value

indicates that the tag is expected to execute correctly. A value of zero indicates that

the tag is not expected to have any influence on application execution. For example,

this value is assigned to tags such as <HTML> that occur an equal number of times

in both positive and negative instances. The magnitude of φ provides insight into

the strength of association between the tag and the corresponding category (posi-

tive or negative) given the instances examined. The larger the value, the better the

possibility that the tag has been correctly characterized. Subsequently, φ predicts

the risk that an HTML directive is unsupported in a given configuration. Note, the

tags themselves are not faulty, they are either supported or unsupported in a given

environment. The appearance of an unsupported tag in a web application, however,

increases the risk for faults if the application is launched in an incompatible envi-

45

<html>
<..javascript1.1>
<..javascript1.2>
<table>

<html>
<..javascript1.1>
<..javascript1.2>
<table>

<html>
<..javascript1.1>
<table>

<html>
<..javascript1.1>
<table>

<html>
<..javascript1.1>
<..javascript1.2>

<html>
<..javascript1.1>
<..javascript1.2>

<html>
<bold>
<table>

<html>
<bold>
<table>

<html>
<..javascript1.1>

<html>
<..javascript1.1>

Positive Instances

<html>
<div>
<..javascript1.2>
<table>

<html>
<div>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

Negative Instances

Figure 4.2: Set of Web Applications Classified as Positive or Negative.

ronment.

For a concrete example, consider the set of web applications classified as pos-

itive or negative for an arbitrary client configuration shown in Figure 4.2. Note,

there is a combined total of eight applications in the set (i.e., N = 8), five positive

and three negative instances. Also note that the tag names have been modified to

save space and improve presentation. Consider the <div> tag. It does not occur in

any positive instance (A = 0, C = 5) and occurs in one negative instance (B = 1,

D = 2). As a result, the φ value associated with <div> is -1.38. This suggests that

web applications that contain this tag will execute incorrectly in this client configu-

46

Table 4.1: φ Values for All Tags in the Example of Figure 4.2.

0.832.19-1.26-.1.70-1.380.00ϕϕϕϕ
bold

javascript

1.1table

javascript

1.2divhtmlTag

ration. On the other hand, the <bold> tag occurs in one positive instance (A = 1,

C = 4) but never in a negative instance (B = 0, D = 3). Accordingly, its φ value

is 0.83. This suggests that the <bold> tag is supported in the client configuration,

but since its magnitude (0.83) is smaller than that of the <div> tag (1.38), it has

a weaker association with correct execution than the <div> tag has with incorrect

execution. A full list of tags for all the instances is shown in Figure 4.2 and their

corresponding φ values is shown in Table 4.1.

In the next section, the algorithms that accomplish the following tasks are

described: (1) create/update an association vector when new positive/negative in-

stances of web applications are available and (2) use the vector to test a given web

application.

4.2.3 Algorithm to Generate/Update the Inductive Model

The association vector for a given client configuration is updated each time

new information, in the form of positive and negative instances, is available for that

client configuration. The updateVector() algorithm shown in Figure 4.3 is invoked

for each web-page instance submitted.

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Algorithm::updateVector(T /*currentPageTagset*/, Config /*clientConfiguration*/, isFaulty){

associationVector = getVector(Config);

IF (!exists(associationVector)) {associationVector = createVector(Config);}

/*update A and B values for the phi equation*/

FORALL t ∈ T DO {

IF (t ∉ Config.tagsSeen) { /* Have we seen this tag before? */

associationVector.insertElement(t);

insert(t,Config.tagsSeen); }

IF (isFaulty) {t.incrementA()} ELSE {t.incrementB()}

}

/*update unsupported tag list for the current configuration*/

IF (isFaulty) {increment(negativeSeen);} ELSE {increment(positiveSeen);}

FORALL t ∈ T DO {

/*update C and D values for the phi equation*/

t.setC(positiveSeen-t.A);

t.setD(negativeSeen-t.B);

t.calculatePhi();

IF (t.associationStrength < 0){

insert(Config.unsupportedTags, t);

ELSE IF ((t.associationStrength >= 0) && (t ∈Config.tagsSeen)){

delete(Config.unsupportedTags, t);

}}}

Figure 4.3: The updateVector() Algorithm.

As shown in Figure 4.3, updateVector takes three input parameters: (1) T,

the set of tags in the web page, (2) Config, the client configuration encoded as a set

of (option, settings) pairs, and (3) isFaulty, a boolean flag indicating whether the

page executes correctly or incorrectly in Config (Line 1). If an association vector

already exists for Config, then it is updated (Line 2); otherwise a new (empty) vector

is created (Line 3). Each tag in T is processed one by one; a new entry is created

for each new tag (not already in the vector). The A and B values (corresponding

to the φ formula) are updated (Line 9). Recall that A and B correspond to the

number of positive and negative instances respectively that contain the tag. The A

associated with the tag is incremented if this is a positive instance; B is incremented

48

if this is a negative instance. The number of negative/positive instances seen so far

is incremented based on the status of the current instance (Line 12).

Once A and B values have been updated, C and D values can be derived (Lines

15-16) and φ can be recomputed for affected tags (Line 17). More specifically, C

is the number of positive instances seen to date minus A, the number of positive

instances that contain the given tag. Likewise for D and B for negative instances.

Once A, B, C, and D are computed, the φ value is calculated; if it is negative

(Line 18), the tag is inserted into a vector called unsupportedTags (associated with

Config) (Line 19). However, if φ has a positive value and it is currently recognized

as a unsupported tag in Config, it is deleted from the vector unsupportedTags.The

unsupportedTags vector is used in the algorithm described in the next section. Re-

call, in this approach, φ is used as a predictive measure of tag support; as the values

of φ change, the tag can be reclassified as supported/unsupported by the system.

However, whether the tag is truly supported/unsupported in a given environment

does not change. Although an “aggressive” algorithm that updates φ values each

time a new positive/negative instance is available has been described, in practice,

for reasons of efficiency, the update could be performed on demand, i.e., computed

when needed, or periodically after several new instances have been seen.

4.2.4 Algorithm to Use the Inductive Model

As mentioned before, the query() interface uses the inductive model to de-

termine the set of configurations in which a given web application will execute

49

incorrectly. An algorithm of the process is outlined in queryData() as shown in

Figure 4.4. The algorithm takes one parameter: W, a web application which is a

collection of web pages. The set of unsupported tags is retrieved for each client

configuration in the inductive model (Line 3). The tags of each page in the web

application are extracted (Line 5). If the web page contains at least one tag known

to be unsupported in the configuration, the page is marked as faulty (Line 10) and

the algorithm returns a set of <client configuration, unsupported HTML tag, faulty

web page> triples and terminates. Note, in the initial phase of this work, details

that might improve the efficiency of the overall process were not addressed.

Algorithm::queryData(W /*webApplication*/){

FORALL config ∈ clientConfigurations DO {

/*get the list of unsupported tags association with the current configuration*/

unsupportedTags = config.unsupportedTags;

FORALL w ∈ W DO {

/*get the list of tags in the current web page*/

currentTags = getTags(w);

/*check to ensure that the current web page does not include

any of the unsupported tags*/

FORALL f ∈ unsupportedTags DO {

IF (f ∈ currentTags) {

RETURN_FAULTY(config,f, w); break}}}}

1

2

3

4

5

6

7

8

9

10

Figure 4.4: The queryData() Algorithm.

4.3 Empirical Study

In order to evaluate the feasibility and utility of the initial web applica-

tion/client configuration models and the processes/algorithms that create/update

and use the inductive model, an empirical study was conducted. The major research

questions that were addressed center around the ability of the correlation coefficient,

50

φ, to distinguish between supported and unsupported tags and the impact of sample

size on the results.

4.3.1 Infrastructure

In order to conduct the study, the algorithms listed in Figures 5 and 6 were

implemented in Java. Subject usage environments were chosen for the study by

varying several browsers, operating systems, and browser settings. In particular, In-

ternet Explorer 6.0, Mozilla 1.5, Netscape 4.8, and Opera 6.0 were used on WinXP

and Mac OS X platforms. In terms of individual browser settings, Javascipt was

enabled/disabled. Hence the client configuration space contained 4 × 2 × 2 = 16

points. These 16 points will be referred to as c1 through c16. A detailed listing of the

client configurations associated with each point is provided in Table 4.2. This par-

ticular set was selected in order to reflect wide diversity in usage environments. To

analyze the results, the gold standard, or actual knowledge of tag support rules, was

modeled in Microsoft Excel and developed several visual basic scripts to summarize

the data.

4.3.2 Empirical Method

4.3.2.1 Research Questions and Evaluation Strategy

The empirical method utilized was designed to answer the following questions:

1. Do many fielded web applications really have client-configuration-specific prob-

lems?

51

Table 4.2: Configuration Point Details.

Configuration Point Client Configuration

c1 < Netscape 4.8, WinXP, Javascript enabled >

c2 < Netscape 4.8, WinXP, Javascript disabled>

c3 <Netscape 7.01, Mac OS X, Javascript enabled>

c4 <Netscape 7.01, Mac OS X, Javascript disabled>

c5 <Internet Explorer 6.0, WinXP, Javascript enabled>

c6 <Internet Explorer 6.0, WinXP, Javascript disabled>

c7 <Internet Explorer 5.0, Mac OS X, Javascript enabled>

c8 <Internet Explorer 5.0, Mac OS X, Javascript disabled>

c9 <Opera 6.0, WinXP, Javascript enabled>

c10 <Opera 6.0, WinXP, Javascript disabled>

c11 <Opera 6.0, Mac OS X, Javascript enabled>

c12 <Opera 6.0, Mac OS X, Javascript disabled>

c13 <Mozilla 1.5, WinXP, Javascript enabled>

c14 <Mozilla 1.5, WinXP, Javascript disabled>

c15 <Mozilla 1.5, Mac OS X, Javascript enabled>

c16 <Mozilla 1.5, Mac OS X, Javascript disabled>

52

2. How well does the association vector approach help to identify such problems?

3. How much manual effort is involved in identifying and submitting positive/negative

examples of web applications?

4. How much manual work is involved in classifying web applications returned

by the automated acquisition process as negative and positive?

5. Are the results obtained from this technique always accurate? Are there any

false positives?

6. How is the rate of false positives affected by the total number of observed

instances?

The first question is important mainly because it justifies the purpose of this

research. In the same vein, the second question was designed to analyze the utility

of an association vector model for client configurations. The third question was

posed because users play a key role in the application of the proposed approach;

ease of use, therefore, is an important consideration. The fourth question, on the

other hand, addresses the ability to utilize user input to expand and improve the

model. To address the spirit of the fifth question, the misclassification of tags, in

terms of false positives (FP), is expected to have a large impact on feasibility of the

approach. To be clear, negative classification of a tag is indicates that the tag is not

supported in a given environment; positive classification indicates that the tag is

supported. Subsequently, a false positive is an unsupported tag labeled incorrectly

as supported. Since a direct consequence of a false positive is that a faulty page

could unwittingly be released into the field, it is necessary that the measure used to

53

evaluate the approach penalizes techniques that allow for more false positives. The

measure which fits these criteria,FPR, is defined and and calculated as follows:

FPR =
FP

total number of tags
(4.3)

The sixth and final question was posed to observe whether FPR improves as more

information is obtained.

4.3.2.2 Independent and Dependent Variables

The only independent variable in this study is the size of the training set. The

dependent variable is the accuracy of tag classification predictions measured here by

FPR. Because client configurations are simply subjects in the experimental design,

the client configuration is neither an independent or dependent variable.

4.3.2.3 Experimental Procedure

The following process will be used to conduct the study:

Step 1: Select a set of client configurations, C, where cx is the xth configuration in

C and

1 ≤ x ≤ 16.

Step 2: For each cx ∈ C, select an initial pool, Pcx
, of positive and negative web

pages.

54

Step 3: Parse web application source code, extract the HTML tags, and abstract

the tags using conditioning technique, TC. This will produce Pcx,TC , a rep-

resentation of the positive and negative web pages in which tags contained

in the source have been processed to facilitate the inductive process. Tag

conditioning is explained further in Section 5.2.6.

Step 4: Generate the gold standard of tag support rules for later evaluation.

Step 5: Evaluate φ for tags discovered in a set of web pages using the following

sub-steps:

A. Randomly select 50 web pages from cx without replacement.

B. Generate the inductive model by calculating φ for Pcx,TC.

C. Calculate the corresponding FPR value.

D. For five iterations...

i. Randomly select 25 web pages from cx without replacement. (None of

the web pages selected during this step will have been observed in any previous

steps)

ii. Generate the inductive model by calculating φ for Pcx,TC.

iii. Calculate the FPR value for the inductive model.

A detailed account of each step follows in subsequent sections:

55

4.3.2.4 Step 1: Client Configuration Selection

The overall strategy in selecting subject client configurations was to include a

broad range of older and newer browsing environment configurations; this was done

to reflect the widely varied usage profiles in use in the “real world”. The set of 16

configurations we chose with this criteria in mind is shown in Table 4.2.

4.3.2.5 Step 2: Training Set Selection

Each of the 16 configurations listed in Table 4.2 had an initial application pool

of 200 web pages, 100 negative instances and 100 positive instances. Some of the

negative instances are shown in Table 4.3. Retrieval of positive and negative web

pages was guided by the gold standard that provided data on the tag support in

the various environments. The Google search engine was used to locate pages that

incorporated fault-inducing tags. Because Google ignores the brackets (” < ” and

” > ”) that sandwich HTML tags and there was no feasible way to pose queries to

ensure that pages which merely mentioned the tag name and did not actually use

it were not included in the result set, retrieval of web pages with desired tags was a

challenge. More specifically, Google provided a basic mechanism for locating pages,

identifying returns that were actually useful was tedious at best.

Once all the web applications had been identified, submitting them to the

updateKB() component of the framework for automated analysis took a few seconds

per web page. Note, submission to updateKB() only entails saving the source code

of the web page and identifying it as either a positive or negative instance. This

56

is currently implemented with a folder reserved for positive instances and a folder

reserved for positive instances; users save the source code to the appropriate folder

for later analysis.

As expected, some of the tags existed in too few web applications to accurately

predict whether the client environment provided support. For example, for a certain

configuration, the tag <html lang = en> occurred in 13 positive instances and no

negative instances. Similarly, for another configuration, <div align = left> ap-

peared in 5 positive instances and 8 negative instances. The inductive model did

not contain sufficient information about these tags to be useful for analysis; sub-

sequently, the automated acquisition process was initiated using the Google search

engine. More specifically, queries were posed to the Google engine that would re-

trieve web pages with a given tag. An example query that was used to retrieve

web pages containing the <html lang = en> tag is html lang en {href head} . The

latter query elements (shown in curly braces) were issued when the query posed by

the first three terms yielded too many pages which only mentioned the tag. Once

pages which actually used the tag were returned, they were loaded in the associ-

ated client configuration and observed to determine whether they were positive or

negative instances. Negative instances that had visual abnormalities were relatively

easy to identify. Negative instances with non-visual errors (such as non-support for

the accesskey tag had a greater chance of being incorrectly labeled as a positive

instance.

57

Table 4.3: Part of the Negative Instance Set of the Initial Web Application Pool.

URL Configuration Point

www.hasbro.com/scrabble/home.cfm c1

home.netscape.com/ c2

www.nasa.gov/externalflash/exp12 front/index.html c3

www.juiceguys.com/ c4

www.richinstyle.com/bugs/operademo.html c5

www.ameristarcasinos.com/cactus/index.asp c6

www.useractive.com/learning/dhtml/dhtmltut7.php3 c7

www.simonstl.com/dynhtml/update/code/chap5/onbounce.html c8

retreatvillage.com/activities.html c9

www.gsn.com/ c10

www.physics.utah.edu/news/y04m02d26.html c11

www.sinel.com/esp/home.htm c12

58

4.3.2.6 Step 3: Tag Extraction/Abstraction

The updateKB() interface accepts the HTML source code of positive and neg-

ative web pages as raw data and extracts the HTML tags incorporated in the page.

In order to derive tag support knowledge from the submitted instances, however,

tag data must be conditioned. Given the inductive nature of the algorithm, tag

representation has a significant impact on the quality of tag support rules learned.

HTML tags can be represented in raw form during inductive knowledge discov-

ery or they can be conditioned so that certain features are filtered; this results in

folding a series of tags that differ by at least one variable into one representation.

Indeed, such conditioning could drastically reduce the number of tags considered

during induction, while, perhaps, losing important information in the process. To

put it in perspective, this issue is directly aligned with the challenge of modeling

web applications.

More specifically, certain HTML attributes such as width, href, and summary

have numbers, URLs, and strings of text as values. The goal is to avoid discrim-

inating between these tags based on their specific values. To understand how this

problem is handled , consider the following:

<table summary="XYZ"> and

<table summary="ABC">.

In this case, the learning algorithm should only consider the instance of the

tag table and the attribute summary. As a result, both tags are collapsed into one,

and represented as <table summary="#"> in the association vector.

59

On the other hand, there are some instances when knowledge of the attribute

value is key. Such is the case for the following:

<script language="javascript1.3"> and

<script language="javascript1.1">.

Subsequently, abstraction strategy was designed in which a carefully selected

number of predefined attributed values are preserved; attributes with number and

URL values, for example, are collapsed. Once tags are discovered, updateKB()

automatically conditions them.

4.3.2.7 Step 4: Defining the Gold Standard

Generally speaking, the gold standard serves as a ground truth, a way to

compare derived values to known values in order to estimate how well a mechanism

performs its task. In this case, the ground truth is the actual support provided for

a given tag in a particular client browsing environment. The ground truth, in the

current implementation, was modeled with the help of a website that provides tag

support data. The gold standard can be modeled as a function, GS, that accepts a

tag, t and a configuration, cx, as input and returns a boolean value that indicates

support or non-support as output. A more formal definition is provided below in

Equation 4.4.

GS(t, cx) =







yes if tag t is actually supported in configuration cx

no otherwise

(4.4)

60

4.3.2.8 Steps 5: Tag Classification and Evaluation

Recall, the correlation coefficient, φ, is used to predict whether a tag is either

supported or unsupported in a target client configuration. During Step 4 (Section

5.2.7), the φ-based tag classification strategy was applied to the data and the FPR

value was calculated. To determine the number of false positives, the function AR

(actual results), which is analogous to the GS calculation shown in Equation 4.4 was

used. More specifically, AR is a function that accepts a tag, t, and a configuration,

cx, as input and returns a boolean value that indicates support or non-support based

on the inductive model. Like GS, AR is modeled as shown below:

AR(t, cx) =







yes if cx is predicted to support t

no otherwise

(4.5)

Subsequently, a false positive occurs when GS(t, cx) = no and AR(t, cx) = yes.

In this step, the predicted classification of the tag was compared with that of the gold

standard and the FPR equation was used to determine how well the classification

strategy performed.

4.3.3 Threats to Experimental Validity

4.3.3.1 Internal Validity

The internal validity of experimental results is threatened when results of the

dependent variable could be tainted by modeling and measurement errors. In each

of the questions addressed, FPR is the primary dependent variable. Hence threats

61

to internal validity, in this context, include possible errors in measuring/designating

the training set and modeling/executing both the tag abstraction scheme and tag

classification strategy.

Another threat lies in the correctness of the gold standard. The source used

as the basis for the gold standard, in some instances, relies on the documentation

provided from the browser manufacturer. Since this can be erroneous at times, it

can have an undesirable impact on false positive rate evaluations. More specifically,

recall that a false positive occurs when GS(t, cx) = no and AR(t, cx) = yes. If

GS(t, cx) should actually be yes in a given case, but it incorrectly returns a value of

no as a result of incorrect documentation, the FPR will evaluate to a higher value

than it actually should.

4.3.3.2 External Validity

Threats to external validity, on the other hand, limit the generalizability of

results. Several candidates for this constraint apply. For one, only pages in which

there are HTML-induced faults that can be linked to a certain tag and not, perhaps,

Javascript errors that can be linked to a faulty variable are currently considered.

Other threats include possible misclassification of web pages on the part of submit-

ters and low usage of a given client configuration platform (resulting in less training

data for the inductive algorithm). Given an overall expectation that inductive model

accuracy will improve as more examples are submitted, the volume of data provided

is important. This has been acknowledged in the attempt to include an adequate

62

number of pages in the experiment; similar considerations must be made to ensure

the success of the tool in practical settings.

4.3.4 Results and Discussion

Recall, there were six major questions that were to be addressed as a result of

this study. Concerning the first question, quite a few web applications that rendered

and behaved properly in one environment yet were faulty in another (examples

of this follow in Figure 4.6) were observed. In addition, upon discovering the

nature of this work, several individuals who have run across such problems in very

frustrating situations have shared their stories. Subsequently, client-configuration

specific problems are a reality in many fielded web applications.

In the case of the second question, the results of this study showed that even

with a relatively small set of 200 instances, the approach of using the association

vector was successful at detecting client-configuration-specific tag support issues in

fielded web applications. In addressing the third question, which dealt with the

manual effort involved in submitting examples, conducting the experiment revealed

that it takes web application a few seconds to report a problematic web application

and associated client configuration, indicating minimal manual effort. Note end-

users are not responsible for indicating why an error occurred; they merely submit

faulty pages to updateKB(), hence the low amount of manual effort. One key part

of this approach is that it allows end-users using a given configuration who have dis-

covered a problem in their normal web navigation to help improve the knowledge of

63

supported and unsupported tags by merely submitting the raw source code. In re-

gards to the fourth question, classifying web applications returned by the automated

acquisition process as negative or positive took a few seconds. This classification

process mainly entailed loading the page, observing, and interacting with it to en-

sure that it rendered and executed properly. In some cases, an unsupported tag

with non-visual effects could be included in the source code of a page that appeared

to be a positive instance. Such misclassifications served as the root cause for the

appearance of false positives in respective inductive models.

In regards to the fifth question, which addresses the performance of the tech-

nique, the inductive model utilized in this study yielded useful results. Given the

data generated as a result of this study, the preliminary approach rarely labels an

unsupported tag as supported in a given environment. While this model provides a

promising basis, in principle, it is not complete. This is largely because of two issues:

(1) information for every possible tag is not included in the association vector and

(2) the tag information represented is not extensive. Consequently, false positives

were observed during data analysis.

The graph shown in Figure 4.5, which plots the rate of false positives as the

training set size grows, was generated to address the sixth and final questions. As

evident, the false positive rate remains low for each of the environments. This, of

course, is a promising result since this indicates that the approach we use has a

low incidence of labeling an unsupported tag as supported in a given environment.

One issue, however, is what appears to be fluctuating FPR values. Note, however,

that this occurs at alternating points in the graph. Currently, this is attributed

64

to the use of more negative examples for the training sets with 75, 125, and 175

examples. When the training set was 75, as an example, there were 38 negative

examples and 37 positive examples. Taking this into consideration, it appears as if

the FPR trend continues down as the training set grows, for every other data point.

More specifically, the rate of false positives generally decreases from 50 to 100 to

150 and from 75 to 125 to 175. Subsequently, it can be concluded from this data

that the results generally improve as training set grows and that the false positive

rate is best when there is more negative examples than positive examples.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

50 75 100 125 150 175

Number of Web Pages Observed

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

Figure 4.5: False Positive Rate with Respect to Training Set Size.

Web Application Evaluation: Once the inductive model had been derived from

real-world data, it was used to evaluate a new set of web applications. Twelve (12)

popular web applications were selected as subject applications. Note that these

applications were not part of the application pool used to create the model. They

65

Table 4.4: Evaluation Results.

URL Client Problematic Tags

1 www.aidsreagent.org/ c2,4,6,...,16 < script ... = ”JavaScript” >

2 www.radissonedwardian.com/aboutus/home.jsp c1 < ..style = ”height : .. >

3 www.jegsworks.com/demos/DemoDHTML/bghead.htm c5−16 < layer bgcolor = # >

4 students.washington.edu/siutai/index.shtml c2,4,6,...,16 < div onmouseover() = # >

5 members.dcn.org/ez112654/html/h51.html c5−16 < blink >

6 www.musiciansunion.org.uk/html/index.php c1..4,9..16 < a accesskey = # >

7 www.execlangser.com/ c1..4,9..16 < basefont face = # >

8 www.koko.gov.my/CocoaBioTech/Southern.html c1..4,9..16 < marquee >

9 www.sltrib.com/ c5−16 < ilayer bgcolor = # >

are shown in Column 1 of Table 4.4. Several problems with these applications were

discovered. The client configuration in which these applications did not execute

correctly is shown in Column 2 of Table 4.4; Column 3 shows one of the problematic

tags.

Screen-shots of some of these applications are shown in Figure 4.6. Each of the

examples featured in Figure 4.6 have visibly evident errors. Yet, as noted before,

while an image of web applications functioning in varied environments alerts (indi-

cates) the existence of problems, the causes of such problems can only be identified

with deeper analysis. Using the documented technique, however, the missing menu

66

elements in the far left corner of the NIH AIDS Research & Reference Reagent

Program web application can be attributed to lack of support for the javascript tags

which specify properties of the menu items. The ill-formatted Radisson Edwardian

web page can be attributed to the fact that Netscape 4.8 does not properly ren-

der the height value of the style attribute. Moreover, the barely visible text on

the Executive Language Services, Inc. header can be associated with Opera’s

non-support for the face attribute of the basefont tag. One example in the table,

however, namely the Musicians Union website (#6 in the table), highlights the prob-

lem when screen-shots are not enough to recognize errors. More specifically, the web

application features “hotkey” access to various tool components, yet this function-

ality is not available in Opera 6.0. The technique outlined here enabled diagnosis of

the root cause of this problem; namely a lack of support for the accesskey attribute

in client platforms which feature Opera browsers.

As noted in Table 4.4, several tags caused problems in multiple client config-

urations. An example is the <div onmouseover()= #> tag that caused problems

in configurations c2,4,6,...,16. In some specialized instances, a given tag will influence

incorrect effects within client configurations that share an environmental characteris-

tic. In this particular case, each of the environments for which <div onmouseover()=

#> produced faulty results had Javascript disabled. In future work, the nature of

such instances will be explored. Recognizing that such similarities exist can ef-

fectively prune the search space utilized by queryData() (Section 4.2.4) since the

detection of a such a tag would signal failure for all associated browsing environ-

ments.

67

While tag presence alone can influence faulty behavior, the arrangement of

tags and well-formedness of web applications can also have a significant impact on

behavior and appearance. In addition, the degree of impact can be heavily influenced

by the client configuration used to launch the web application. Consider Figure 4.7

as an example. Here the presence of faulty tags is not the issue. In this case, the fact

that a tag was not properly closed affects the ability of site visitors using Netscape

4.8 to utilize the search functionality featured on this page. In a sense, the Mozilla

browser is more forgiving when source code is not well-formed. Indeed, the featured

approach currently does not detect the existence of such errors. In cases such as

these, HTML validators will be useful in diagnosing such issues.

4.4 Summary

As a result of the initial work, several goals were accomplished. In terms

of the smaller picture, an empirical technique based on association vectors, each

mapped to formally defined client configurations was explored. In this phase of

the work, vectors evolve for specific environments as additional empirical data in

the form of correctly/incorrectly (positive/negative) executing web applications on

specific platforms becomes available. Results of an empirical study showed that

the approach is feasible and useful. Several client configuration specific problems in

fielded web applications were discovered. It appears that the modeling choices made

were effective in capturing and detecting client configuration faults, yet changes must

be made to encourage the acquisition of more complex tag support rules such as tag

68

interactions. Also, in the initial work, only HTML support knowledge is learned. In

future endeavors, a richer basis for learning, that includes CSS directives, must also

be considered.

In terms of the bigger picture, the initial work provided a strong basis for

further exploration. Many of the basic back-bone algorithms were implemented

with provisions made to easily substitute different web application and client

configuration models and to utilize different inductive learning approaches. In

addition, quite a few subject applications were collected. Subsequently, much of

the engineering issues were taken care of; slight modifications were expected over

the remainder of this research, but quite a bit of work was accomplished. Future

work builds on this work by allowing more flexibility in web application/client

configuration modeling, exploring varied learning strategies, and accounting for tag

interaction. Chapter 5

Current Framework Implementation

In the initial phase of this work (outlined in the previous chapter), client

configuration and web application models were developed to facilitate portability

analysis, an inductive learning approach to support knowledge acquisition was im-

plemented, algorithms for updating knowledge of tag support criteria and querying

the configuration model during portability analysis were designed, and each of these

69

components were integrated into a prototype framework. In that phase of the work,

the web application model, client configuration model and subsequent analysis were

based on HTML tags1; detection of configuration faults involved identifying unsup-

ported HTML tags in the source; support knowledge was maintained locally for

each client configuration; and fault detection analysis results was presented as a

text-based list. In addition, the primary method for acquiring source code support

knowledge was a machine learning method and the learning mechanism was only

evaluated based on the false positive rate of classification. Though feasible and

effective, as established by an empirical study, the initial approach was weakened

by a few key factors. The attempt to correct key approach deficiencies, build upon

the initial work, make analysis more efficient, and maximize framework practicality

have been addressed as follows:

• Initially, tag support knowledge was solely acquired through machine learning.

To allow for a more comprehensive knowledge store, alternate data acquisi-

tion strategies have been integrated; they include enabling human experts to

update tag/rule support knowledge directly and collecting more information

when confidence in classification is low after machine learning.

• Recognizing that lack of support for CSS rules can have a negative effect

on web application portability, inclusion of CSS rules in web application and

client configuration models has been expanded in addition to the HTML tags

captured in prior work.

1Inclusion of CSS rules was limited to in-line elements

70

• In the previous portability analysis strategy, the mere inclusion of an unsup-

ported tag in source code served as a configuration fault index. For more

precise analysis, the impact of support violation offsets (Section 2.1.4, Defini-

tion 3) has been integrated into the current framework. To account for this

phenomenon, the client configuration model has been converted from a vector

to a matrix in which the intersection of columns and rows account for the

interaction of tags.

• Knowledge base locality was a key deficiencies in the initial work. Since

each configuration accounted for in the framework maintained its own local

knowledge base, query() had to access each individual instance of support

knowledge to achieve full configuration space coverage. To allow for more

efficient analysis, support knowledge is currently maintained in a global loca-

tion. Among other factors, the updated model enables commonalities between

configurations to be accounted for and, consequently, analysis and subsequent

presentation of results is improved.

• Once configuration faults were detected, analysis results were previously re-

turned as a flat list of 〈unsupported HTML tag, web page, configuration〉

triples. When a large number of configuration faults are detected, this list

is long and difficult for humans to process efficiently. In this phase of the

work, visualization techniques were investigated to encode analysis results in

a format that encourages quick, efficient overview of the configuration faults

discovered during analysis.

71

• Finally, in the initial evaluation of the inductive approach to support knowl-

edge acquisition, the effectiveness of the learning technique was measured by

the rate of false positives. Currently, a more holistic measure, accuracy, is

used as the evaluation criterion.

5.1 Current Framework Design

In the effort to enhance key framework components, feature more accurate, effi-

cient portability analysis, and improve presentation of results the previous approach

has been extended in the following ways: CSS rule inclusion has been expanded in

the web application and support criteria models; detection of tag interaction was

implemented in order to account for support violation offsets; support knowledge

was centralized; a minimization algorithm was explored to simplify configuration

support pattern descriptions; and visualization techniques were investigated to en-

code analysis results in a format that encourages quick, effective repair of detected

web configuration faults. In this section, details of these extensions are discussed

and a bridge between the current approach and the general web portability analysis

framework introduced in Section 3.1 is explicitly outlined. The current instantiation

is represented visually in Figure 5.1. Recall, generic framework components include

some number of knowledge bases and the {updateKB(), processURL(), query(),

and generateReport()} interfaces. A discussion of the current instantiation begins

with an overview of how support criterion is modeled (knowledge base, Section 5.1.1)

and accumulated (updateKB(), Section 5.1.2). A discussion of how that knowledge

72

is utilized once web application source code is retrieved (processURL(), Section

5.1.3) to perform web configuration fault detection (query(), Section 5.1.4) follows.

This section concludes with an overview of how analysis results are presented to

users (generateReport(), Section 5.1.5).

5.1.1 Knowledge Base

The knowledge base is a critical component in the outlined approach because

it maintains a predictive model of source code support across the configuration space

and is used during portability analysis to detect support violations in source code

inclusion. While the depth, breadth, and overall quality of support knowledge are

important to analysis accuracy, the locality and structure of knowledge are signifi-

cant factors in analysis efficiency. To optimize the knowledge base design in terms

of locality, domain knowledge is stored in a central, globally accessible location.

With regard to structure, code support knowledge is concisely modeled on two dis-

tinct levels: support criterion is listed at the primary level and the configurations

that lack support are listed on the secondary level. This design (shown in Fig-

ure 5.2) contributes to analysis efficiency because it enables code-centric analysis,

where the number and support of fragments in web application source code drives

analysis instead of the number of configurations represented. The initial approach

featured a more configuration-centric analysis where, for each configuration repre-

sented, query() examined web application source code for inclusion of unsupported

source code patterns. This factor caused the time to complete analysis to rely

73

most heavily on the number of configurations represented in the framework. With

code-centric analysis, the paradigm shifts such that, for each source code element,

query() identifies unsupported environments. This allows more focused analysis

since each query is a direct index to a consolidated list of unsupported configura-

tions; in configuration-centric analysis, configuration support must be accumulated

by checking each individual configuration to discover support issues. The remaining

discussion of the knowledge base begins with the support criteria model on the pri-

mary level and concludes with the configuration subspace model on the secondary

level.

5.1.1.1 Support Criterion Structure

Two source code support issues are considered during web portability anal-

ysis. In the deterministic case, the mere inclusion of an unsupported source code

fragment introduces configuration faults. In the conditional case, source code in-

clusion is not an accurate fault index on its own; the impact of the unsupported

source code fragment is dependent upon the inclusion or absence of a support vi-

olation offset (i.e., a counteractive tag that enables portability when a related tag

is unsupported, [Section 2.1.4, Definition 3]). To get a better understanding of the

conditional case, consider two HTML tags <U> and <S> in client configuration

c. Assume that <U> is unsupported in c (i.e., web applications that contain <U>

have rendering/execution problems). Tag <S> is supported. However, if an appli-

cation contains both <U> and <S>, then it executes/renders correctly in c. Hence

74

<S> is a support violation offset for <U>. As a practical example of this factor,

different versions of a tag or scripting language can be co-included in the source just

in case one or the other is unsupported (Figure 5.3). Since a configuration fault

will only result if the support violation offset is omitted from the source code, it is

important that the offset is accounted for during analysis to improve accuracy of

results. With co-inclusion of a support violation offset, a page should not be flagged

as faulty.

In alignment with the support issues, two types of criteria are represented in

the knowledge base on the primary level depending on whether they denote a lack

of support (deterministic) or the existence of support violation offsets for a source

code fragment in constituent configurations (conditional). In the deterministic case,

a support criterion is represented with a single source code element on the primary

level and the configurations listed on the secondary level lack support. General

templates for HTML tags and CSS rules on the primary level are, respectively, as

follows:

< tag attribute = value >

{property : value}

Note, the selector is not included in the CSS rule to make the criterion general.

On the other hand, support criterion with a conjunction of tags/rules on the

primary level indicates that the initial tag has conditional offsets, listed subsequently,

one of which must be included to avoid support violations in corresponding config-

urations. In other words, unless the offset tag is included in the source code, the

75

listed configurations will lack the proper support. This notation, which joins tag

templates with simple logical connections, allows interaction (read violation offsets)

between source code fragments to be accounted for during analysis and helps to

ensure that configuration fault indices are only reported as such if the offset is not

included in the code. An explicit representation of the conditional case in the knowl-

edge base helps to avoid the problem of false reports in instances when an offset

violation applies.

A general template for conditional support criteria on the primary level follows:

support criterion
︷ ︸︸ ︷

< tag attribute = value >∧!(

support violation offset
︷ ︸︸ ︷

< tag attribute = value >)

where the "support criterion" will trigger a configuration fault unless "support violation offset",

preceded by the "!" symbol, is included in the web application source code as well.

5.1.1.2 Knowledge Consolidation

By design, the configuration subspaces represented on the secondary level of

the knowledge base lack support for the corresponding source code patterns listed

on the primary level. In the knowledge base, the configurations are modeled as

a conjunction of components/settings. Instead of listing each unsupported config-

uration individually, one endeavor is to refine support criteria by simplifying the

representation of the unsupported configuration subspace. This will be particularly

helpful when one configuration characteristic, such as disabled Javascript, can ac-

76

curately summarize the entire subspace. To retain model fidelity, the generalized

result should reliably summarize the description of the configuration subspace with

lacking support for the source code pattern on the primary level.

To address this challenge, the Quine-McCluskey (QM) algorithm is used on

the secondary level to reduce descriptions of configurations so that only critical

component attributes are retained. The QM algorithm is primarily used in mathe-

matics to simplify expressions and improve human-readability. The idea is to reduce

a function to a set of prime implicants from which as many variables are eliminated

as possible.

In the application of QM in this work, configurations are terms and their

components are represented as variables. A configuration that has Internet Explorer

(IE) as its browser and javascript (JS) disabled could be represented as IE∧NS∧JS

where NS is Netscape and the bar over the variable indicates that the entity is

not included in the configuration. Also, consider an environment in which IE is the

browser and javascript is enabled IE∧NS∧JS. If a given tag or rule was unsupported

in both of these environments, QM could be applied to reduce the description of

unsupported environments to simply IE meaning that any client configuration with

Internet Explorer as the browser will lack support. Since the subspace is returned to

users as a part of the analysis report, it is important to consolidate the description of

unsupported configurations into a concise representation to enable a more efficient

result overview and maintain human-readability.

77

5.1.2 updateKB()

While HTML/CSS support knowledge provides a simple, effective basis for

portability analysis in this approach, configuration fault detection will only be as

thorough and accurate as the knowledge of tag and rule support used during analy-

sis. The more support criteria known, the more configuration faults the system can

accurately identify. Given that web technology and access options are constantly

changing, one critical design consideration for a web portability analysis framework

is that it be extensible in the breadth of client configurations covered and the depth

of support knowledge maintained. To the author’s knowledge, there is no compre-

hensive knowledge base that accurately maintains support criteria for the diverse

configuration space or a complete account of support violation offsets, yet both are

necessary to achieve an acceptable level of analysis accuracy. As a result, practical

use of the framework developed poses the challenge of capturing a comprehensive,

accurate support criteria model with reasonably low overheard [32].

This challenge has been addressed by using multiple knowledge acquisition

methods. In the current framework, knowledge of source code support is derived

from a combination of expert knowledge (manual update), a machine learning tech-

nique (automated acquisition), and a mechanism to solicit more data about learned

rules when necessary (information solicitation). Respectively, these processes involve

accepting input directly from domain experts (i.e.web developers familiar with code

support), accumulating knowledge of support indirectly from practical examples,

and gathering more evidence of source code support when there is low confidence

78

in the rules derived from automated acquisition. Each of these strategies have

been implemented as a subcase of updateKB(). In this section, the design of each

updateKB() subcase is surveyed with particular attention to the main contributors

of knowledge in each process, the rationale for including the strategy, and a basic

overview of the process. A sample knowledge base is derived along the way based

on contributions from each strategy.

5.1.2.1 Manual Update

Web developers and domain experts aware of support criteria within and across

web client configurations are the key contributors in manual knowledge base updates.

This subcase was specifically incorporated into the framework to integrate expert

knowledge into the configuration fault detection process and is viable, in part, be-

cause the knowledge base is structured in a simple, human readable form. With the

manual update, domain experts are allowed to modify source code support knowl-

edge directly through an interface called a Criteria Editor. If a given configuration in

which tags/rules are known to be unsupported is missing from the knowledge base,

experts are able to add to it by listing the tag/rule on the primary level and config-

urations with support violations on the corresponding secondary level. Let’s begin

our practical discussion of how support knowledge evolves with a sample knowledge

base that is initially empty. Figure 5.4 results after a domain expert accesses the

knowledge base model through the Criteria Editor and transfered tacit source code

support knowledge.

79

5.1.2.2 Automated Update

Users who encounter faulty web applications during normal web usage are the

key contributors in automated knowledge base updates. The primary focus of this

subcase of updateKB() is to automatically build knowledge of source code support

criteria from user experiences; the idea is to apply a supervised machine learning

technique to a large corpus, or body, of labeled source code examples and to discover

the relationship between inclusion of a tag/rule in source code and configuration

faults.

The automated subcase of updateKB() is designed to observe positive and

negative examples and automatically characterize source code inclusion patterns

that differentiate negative examples from positive ones. Recall that positive web

applications are those that render and function properly in a given configuration;

negative instances have rendering and/or functionality errors. Effective implemen-

tation of this strategy would allow support knowledge to evolve automatically and

incrementally as data in the form of positive and negative examples is submitted by

users.

To get a general idea of how machine learning can be applied to reveal the

basic connection between the inclusion of tag/rules in source code and anomalous

outcomes, consider the eight examples shown in Figure 5.5. Each positive (nega-

tive) example was submitted by a user with a particular client configuration who

was able (unable) to correctly interact and view the corresponding web page. The

depiction of each web application shown in the figure is the model that results once

80

all HTML/CSS has been extracted for each submitted web application.

Once the models have been extracted and grouped according to label, the next

step is to compute the correlation between the inclusion of source code elements

and web applications labeled as negative examples. Assume an abstraction of the

learning mechanism returns the following results:

Tag html div js 1.2 table js 1.1 bold

Supported?
√ × × × √ √

Here a
√

indicates that, based on the evidence provided, the learning algorithm

predicted the tag to be supported in the given environment and an × indicates that

the tag is expected to be unsupported. Given the HTML/CSS labeled unsupported

by the learning mechanism, the results of this learning iteration would update the

criteria by appending the new knowledge as shown in Figure 5.6. Rules derived by

the learner have been appended to the original criteria.

5.1.2.3 Information Solicitation

Information solicitation can be characterized as the middle ground between

the manual and automated update strategies previously discussed. Recall that the

automated update allows for the approximation of support criteria given examples;

meanwhile, the manual approach allows domain experts to update the knowledge

base through direct data access. As a hybrid, information solicitation allows users

to update the knowledge base by investigating whether the expected impact of a

tag/rule was fully realized in a given environment and updating the knowledge base

81

manually if it was not. Unlike web users who contribute to the automated ap-

proach, contributors in information solicitation do not encounter support violations

randomly during normal web usage. Instead, they are given a particular source code

fragment to investigate. On the other hand, unlike domain experts who contribute

through the manual approach, they are not expected to have prior, tacit knowledge

of source code support.

To understand the rationale behind information solicitation (IS) as an updateKB()

subcase, consider the following: assume that after completion of one learning itera-

tion, a given tag is predicted to be unsupported, yet this conclusion was drawn after

observing the tag in only one negative example. In the learning example outlined in

the previous section, this is exactly the case for the <div> tag. Given the design

of the automated approach, instances like these are expected to be quite common.

As users provide positive/negative web application examples to the framework for

analysis, instances when source code inclusion is detected in a low number exam-

ples can cause confidence in subsequent analysis results to be low as well. Note

that learning only allows approximation of support criteria given labeled examples.

Since the learning mechanism relies heavily upon inclusion/absence of source code

patterns, it is important to gather enough evidence for confident prediction of tag

support in a given configuration; otherwise, flawed learning approximations may

lead to flawed support knowledge and inaccurate analysis results. Information so-

licitation was integrated as an update strategy to mitigate the effect of imprecise

support knowledge derived as a result of automated knowledge base updates.

The information solicitation strategy essentially retrieves a set of test cases,

82

called a focus set, each containing a particular HTML tag or CSS rule, and dis-

tributes them to users with specific configuration settings. The basis of this strategy

is retrieving more evidence of tag/rule support (or lack thereof) in a given config-

uration. IS contributors are responsible for investigating the expected contribution

of the tag/rule in the web application2, loading each web page in the focus set,

observing the true impact of the specific tag/rule in an assigned configuration, and

updating the knowledge base accordingly if they experience a lack of support. In

the case of the <div> tag, the IS contributor determines the tag to be supported

in the given configuration. As a result, they use the manual update approach to

eliminate it from the knowledge base as an unsupported tag (Figure 5.7). After

discovering that the <div> tag is actually supported in the corresponding envi-

ronment, the user deletes the erroneous criterion from the knowledge base. Given

the basics of the experience and skill set needed to complete these tasks, IS con-

tributors must be familiar enough with HTML/CSS and browsing configurations to

investigate whether a particular tag is supported/unsupported.

Once the knowledge base has been derived as a result of any combination of

manual, automated, and hybrid approaches, web portability analysis can begin with

processURL().

2This may entail locating a website with an explicit overview of an HTML tag/CSS rule and

how it can be used in web application source code.

83

5.1.3 processURL()

Given the static nature of this approach, web application source code is a

key factor in analysis. The basic role of processURL() is to recover and condition

this data. A schematic of this process is shown in Figure 5.8. It is important to

note that web applications are regarded as a group of interlinked web pages; to

ensure that the full web application is analyzed, a web crawler successively follows

hyperlinks, starting at a root URL provided by the developer, and fetches each web

page contained in the web application. For each web page retrieved, the raw source

code is transformed into a model that the query() interface is capable of analyz-

ing. In this instantiation of the general framework, the web application model is

generated by assigning a vector to each individual web page recovered; each vec-

tor is instantiated by parsing source code, extracting HTML tags and CSS rules,

and storing each unique source code pattern as an entry in the corresponding vector.

5.1.4 query()

The query() interface is most responsible for web configuration fault detec-

tion; in short, it is the analysis engine that implements the portability analysis

strategy. In the current instantiation, this entails using web application and config-

uration support models to preform static analysis. In practice, the query() interface

accepts source code models for a series of web pages as input, sequentially accesses

each vector entry (i.e., HTML tag or CSS rule) in the source code model, and uses

84

each retrieved source code pattern as a query to the knowledge base (Figure 5.9).

To preform analysis, the query() retrieves the vector model of the web application

generated by processURL(). Next, query() steps through each vector entry and

uses it as a query to the knowledge base. If the knowledge base contains the tag, this

signals an overlap between unsupported HTML tags/CSS rules and web application

source code. An account of intersections is then forwarded to generateReport().

5.1.5 generateReport()

As query() performs analysis, three key pieces of information are retained:

web pages that contain unsupported source code fragments, the client configura-

tion(s) that have support violations, and the unsupported HTML/CSS. In the con-

text of generic framework components, web developers gain access to this infor-

mation and insight into configuration faults discovered during analysis by way of

generateReport(). One factor that is expected to have a significant impact on

the usability of analysis results is the presentation; namely, whether the format en-

ables a quick overview of results and helps developers prioritize the correction of

web configuration faults discovered. Depending on the number of support viola-

tions detected, a text-based list (as used in the initial work) could be overwhelming

to process. Recognizing that a purely text-based presentation of this information

does not adequately fulfill these requirements, visualization techniques have been

investigated and a preliminary approach has been derived that provides a concise

85

overview of analysis results and a basis for efficient data interpretation (Figure 5.10).

This instantiation of generateReport() is expected to effectively reduce data anal-

ysis from the fairly taxing cognitive task of processing verbose textual data to the

less intensive task of analyzing visual cues; quick, effective code modifications are

expected to be the ultimate benefit of encoding analysis results in this visualized

format, making it more practical for use in tight web development schedules.

Two coordinated modes of result presentation are featured in the current in-

stantiation of generateReport(). In the right-most pane of the interface (as shown

in Figure 5.10) web pages in a web application are listed hierarchically. In the cor-

responding tree, the web page corresponding to the root URL is listed as the root of

the tree on the first tier; each subsequent page appears in the hierarchy at the level

from which it can be reached from the home page. If it can be reached directly, it

appears on the second level and so on.

The purpose of the left-most presentation mode is to provide a high-level

overview of support violations detected. To accomplish this goal, web pages are

portrayed as points on a two-dimensional plane; the position of the point is a func-

tion of the number of unsupported source code elements in the page and the number

of client configurations in which the page will be faulty. This presentation is ex-

pected to support fault correction prioritization by indicating, for instance, whether

a given page will be diminished in many browsing environments or just one extremely

obscure environment. When data points in the plane are clicked with a mouse, the

corresponding web page is highlighted in the hierarchal web application overview

shown in the upper-right pane and the lower-right pane lists the configurations in

86

which the web page is expected to fail and a more detailed analysis of the particular

tags expected to fail in those configurations.

5.2 Machine Learning Knowledge Base Updates

Knowledge of how software behaves in the field has long been considered a

valuable resource in quality assurance [15, 23, 31, 34]. That principle has been

adopted in this thesis as well. From this perspective, as users navigate the web,

their encounters with faulty web pages are a gateway to the kind of data used in the

outlined approach; their experiences could be used to discover HTML/CSS support

structure in various environments directly from knowledge of web pages that that did

and did not work in the field. With these factors in mind, the automated subcase of

updateKB() is primarily responsible for accepting user-provided examples of positive

and negative web pages and applying a machine learning algorithm to convert the

raw data into knowledge about the influence of individual source code elements

on web application behavior and functionality. Thus, discovering the link between

source code inclusion patterns and configuration faults from real world examples is

a useful way to factor user experiences into the predictive model.

Automated acquisition is expected to be a practical, powerful approach to

accumulating tag support knowledge because the criteria may not be intuitive or

well documented but it becomes evident when when web applications are activated in

the field. In light of these factors, supervised machine learning has been implemented

as a subcase of updateKB(). The basis for this approach was introduced in Section

87

5.1.2.2. In this section a more detailed discussion is provided about how empirical

data is collected, modeled, and used to isolate relevant source code patterns; an

investigation of how variation in each of these aspects of the automated knowledge

acquisition strategy affect the quality of knowledge derived follows in Section 5.3.

5.2.1 Data Retrieval

Ideally, as web users stumble upon anomalous behavior or functionality in the

field, they would be able to manually isolate the cause of faults by accessing the

source, incrementally eliminating suspicious source code statements, and reloading

the web page to observe whether the fault persists. In practice, however, average

web users may not know to access source code, may not be familiar with basic

code constructs, and probably would not know how to update the knowledge base

manually as required. Even when users have the know-how to incrementally narrow

the space of source code fragments to isolate the cause, this process becomes time-

consuming and tedious when the search space is large and complex.

The goal of machine learning, from this vantage point, is to retrieve and ana-

lyze source code from fielded instances and automate the isolation of code patterns

that influence anomalous outcomes; this will essentially minimize human interven-

tion so that no expertise is required, just access to submission engine and examples.

A key issue to consider is how this data will be collected for analysis. In the current

work, users submit examples as a tuple 〈S,c,l〉, where S={s1, s2, s3, ..., sn} is the

source code (which is comprised of HTML/CSS), c ∈ C is the configuration (de-

88

scribed by a conjunction of components/settings), and l={true, false} is a binary

value that indicates whether the user labeled the example as a positive or negative

instance; l is set to true if the user considers it to be a positive example.

The components of this tuple 〈S,c,l〉 are key in the supervised machine learning

approach; Since learning takes place locally in each configuration, c specifies the

configuration node that the source code S should be routed to and whether the

example is a positive or negative instance, l. Given the open-source nature of web

applications, web source code has a relatively high availability, making retrieval of

S straightforward. Yet, as mentioned before, users may not know how to access this

data. In response to this issue, the URL of the faulty example is currently used to

fetch the corresponding source code. Subsequently, the role of the user is to simply

provide the URL of the web page they have observed, specify the make-up of their

client configuration (i.e., the browser and version used, network speed, font size,

screen resolution, etc.)3, and characterize the example as positive or negative, l.

To summarize the machine learning approach in the context of the tuple,

the components of S and the boolean value of l are used to detect fault-relevant

source code inclusion patterns for configuration c given positive and negative web

application models as evidence. In the remainder of this section, more insight into

S is provided, namely how it is retrieved and processed for learning; a discussion of

learning strategy details follows along with and overview of how S updates c given

l.

3One goal would be to retrieve this data through an automated means. This would further

reduce the burden of the users.

89

5.2.2 Web Application Model

In this work, web applications are modeled as a set of interconnected web

pages and the base model for each web page is the set of HTML/CSS source code

fragments. In the context of learning, each individual source code fragment is con-

sidered a feature that influences whether the web page is a positive or negative

example. Much like the model used during portability analysis, the web application

model used during automated knowledge acquisition designates a vector for each

web page and instantiates the vector with conditioned source code. More specifi-

cally, the web application model used for learning is generated by extracting HTML

tags/CSS rules from raw source code, conditioning the data, and storing each atomic

fragment recovered as an entry in the vector. The raw source code used as the basis

of the model is very accessible and inexpensive to retrieve given the open-source

nature of the web.

Once HTML/CSS is extracted from raw source code, data conditioning is per-

formed as a normalizing step before source code fragments become components in

the vector model. This process is necessary mainly because tags/rules are comprised

of various parts and they can be formatted quite differently in practice. Before inves-

tigating the issue of source code representation in web application models, consider

the basic conditioning that must be performed on the data prior to learning. In

terms of HTML tags, one important data conditioning step is condensing tags into

atomic entities. To begin the discussion of the need for this process, consider the

fact that HTML tags are generally comprised of a tag name, attribute, and attribute

90

value. In the example

<

tag
︷︸︸︷

H1 ALIGN
︸ ︷︷ ︸

attribute

=

attribute value
︷ ︸︸ ︷

center >

H1 is the tag name, ALIGN is the attribute, and center is the attribute value. In this

particular instance, there is only one attribute/attribute value pair contained in the

tag; in practice some tags have several attributes. For example, consider the tag:

<body bgcolor=‘‘#FFFFFF" text=‘‘#000000">

In such cases, the tag is tokenized into an atomic entity in which each <tag,

attribute, attribute value> triplet is represented individually. More specifically, the

corresponding tag becomes:

<body bgcolor="#FFFFFF">,

<body text="#000000">.

Once HTML tags are properly atomized, the challenge regarding the extent

to which tag attributes and attribute values are represented in the model must be

addressed. Consider that there are two extremes in addressing this challenge: either

all of the attribute values will be represented or all of the attribute values will

be abstracted. Both approaches have disadvantages; in the prior, the knowledge

base will be quite large if each attribute value is retained (such as cases where

the attribute value is a number) presenting a challenge to maintaining an efficient

analysis. In the latter case, the knowledge base will be much smaller, but the

accuracy of the analysis may be compromised by the loss of precision. Subsequently,

a trade-off exists between the breadth of information considered (perhaps to improve

91

efficiency) and the correctness of the resulting model.

Because the extreme of including all of the attributes is intuitively inefficient,

the three remaining tag abstraction strategies will be evaluated later in the experi-

ments (Section 5.3). Named M1, M2, and M3 the strategies are as follows:

• M1: all attributes and attribute values are filtered.

• M2: all attribute values are filtered.

• M3: only predefined attribute values are filtered4.

The latter abstraction strategy is slightly more intelligent than the others

mainly because it includes attribute values, some of which may have configuration-

dependent constraints, to be represented and analyzed.

In the previous version of the framework, M3 was the only filtering strategy

considered and data extraction/conditioning was only performed on HTML tags.

Since CSS rules must also be processed during learning, however, data conditioning

is also necessary. The discussion of CSS rule conditioning begins with the knowledge

that rules have a selector that specifies the document elements to which the rule

applies, and declarations that specify the stylistic effect of the rule. The declaration

is a set of property/value pairs. In the example

selector
︷︸︸︷

H1 {font− size
︸ ︷︷ ︸

property

:

property value
︷ ︸︸ ︷

13pt}

H1 is the selector, font-size is the property and 13 pt is the value. In con-

ditioning CSS rules, the thesis approach was to disregard the selector and mainly

4

92

concentrate on the property and property values. In this particular phase of the

work, however, only a variant of the M2 scheme to rule abstraction was applied,

where all property values were abstracted.

In summary, the extraction and conditioning of source code elements provide

the basis for learning as input for the learning strategy used. The use of these

strategies with practical examples will be explored in a later section; in the next

section, an overview of the learning strategies employed will be provided.

5.2.3 Learning Strategies

The main foundation of this work is deriving knowledge of tag support from

fielded web applications. In this context, the HTML tags found in both faulty

and correct web pages are the learning units; by noting their membership in posi-

tive/negative examples, the idea is to learn whether they are supported or not. To

address this issue, techniques originally applied to text categorization have been

employed; this is a highly analogous endeavor because in the latter domain, one

train of thought is to analyze text documents and identify keywords that help to

distinguish documents that belong to a category from ones that do not. In this

work, source code inclusion patterns are the features of interest and the categories

are correct or incorrect.

Many techniques have been applied in text categorization such as Bayesian

Networks, decision trees, neural networks, support vector machines, k-nearest neigh-

bor approach, etc. In choosing a learning strategy, one key goal was to recover the

93

learning results in a form that could be easily read and comprehended by a human

observer. An additional criteria was efficient learning phases and a resulting predic-

tive model that could be easily interpreted and tuned by humans. In light of these

requirements, featuring scoring measures used in feature subset selection have been

used to measure influence a tag and elements have on achieving portability.

In each of the measures implemented to date, both use raw counts of source

code inclusion/omission from a positive/negative example of web application func-

tionality/execution. The first one, called the correlation coefficient, L1, is a modified

measure adapted from Yang and Penderson [55] and measures the strength of cor-

relation between a feature and a category. The odds ratio, L2, is used heavily in

etiology to discover risk factors strongly correlated with a condition.

L1(t, c) =

√
N × (AD − CB)

√

(A + C) × (B + D) × (A + B) × (C + D)
(5.1)

L2(t, c) =
B × D

A × C
(5.2)

The raw counts used to compute both L1 and L2 are shown in the 2 × 2

contingency table (Table 5.1). Note, N , is the total number of examples, A is the

number of positive examples that contain a given tag/rule, B is the number of

positive examples that do not contain the source code fragment, C is the number

of negative examples that contain the tag/rule, and D is the number of negative

examples that do not contain the tag/rule.

Since machine learning algorithms do not generate perfect models, L1 and L2

94

Web Application Status

Correct Faulty

Tag Status:
Present A C

Absent B D

Table 5.1: Contingency table illustrating the four possible states of tag/category

co-occurence

will be evaluated in a latter section to measure the accuracy of models derived from

each.

5.2.4 Data Storage

In the current approach, learning takes place locally at each configuration

node. Using the notation presented earlier, the configuration ,c, that users indicate

when submitting an example specifies the configuration node that the source code

S should be routed to and whether the example is a positive or negative instance, l.

The client configuration model in this paper is significantly different from the one

utilized in our previous work largely because of expanded CSS rule inclusion and

consideration toward the effects of tag interaction on configuration faults during

analysis. In this version a matrix maintains an account of tags/rules retrieved from

positive and negative examples as both its rows and columns. As shown in Figure

5.11, the interaction matrix is an n × (n + 1) structure in which the first column

of the matrix represents the strength of association with the tag to negative web

95

applications as indicated by either L1 or L2. The locations where columns and rows

meet contain a value that indicates the affinity of two tags to negative categorization

of web applications. When there are a pair of tags in which (1) one is expected to be

unsupported and the other is expected to be supported and (2) the value associated

with the co-occurrence is within the valid threshold, the supported tag is expected

to be a positive offset of the negative tag in the corresponding configuration. Please

note, as source code models, S, are routed to the corresponding configuration defined

in the tuple, the code fragments they contain and the value of l determine how

A, B, C, and D are updated.

5.3 Research Questions and Metrics

A major goal of the current research is to improve the effectiveness of the

web application portability approach. As mentioned earlier, one key aspect of thus

approach is the distinct relationship between the accuracy of support criteria used

during analysis and the applicability of portability analysis results. If the knowledge

base does not adequately capture the actual support of HTML tags and CSS rules

across the vast configuration space, at worst, configuration faults will remain la-

tent after analysis and web developers will have a false confidence in the portability

of their web applications. To enable a comprehensive knowledge store, three sup-

port criteria acquisition methods have been integrated. In each of the experiments

discussed, the major focus is the automated acquisition strategy applied to this

problem and exploring how aspects such as the modeling of tags and rules during

96

learning, the learning technique applied, and training set size and composition affect

the accuracy of support criteria acquired using this method. Consideration has also

been given to how the web application model affects cost, how well the learning

techniques detect interactions, and how inclusion of CSS in the model can affect

analysis. In the sections that follow, insight is provided into the research questions

posed and the experimental setup. Details of the investigations and the results are

provided as well.

5.3.1 Research Questions

Having outlined the nature and motivation of the experimental goals, the list

of questions that will be addressed, for both clarity and later reference, is as follows:

Q1: What effect does web application model, learning strategy, and training set

size have on whether tags or rules are properly classified as supported or

unsupported?

Q2: How does the web application model affect analysis costs in terms of tags/rules

evaluated and the time needed for analysis?

Q3: How does the ratio of positive examples to negative examples affect classifica-

tion accuracy?

Q4: How does the inclusion of CSS rules in the web application model affect the

learning process?

Q5: How well is tag interaction captured using different learning strategies?

97

5.3.2 Configuration Subject and Data

In a previous study [17] the false positive rate of learning strategy L1 was eval-

uated for 16 different client configurations. In this study, more learning strategies

and web application models are used and, in the presentation of results, the focus

is concentrated on a sample client configuration in which Opera 6.0 is the browser

and browser version that operates on Windows XP with javascript enabled. It is

important to note that results of learning process are more a function of the training

set and less a result of client configuration attributes. In effect, the client configu-

ration and the positive and negative web page instances provide a realistic basis for

evaluating the learning strategy and place a realistic context on how aspects such

as web application modeling and training set affect accuracy.

A driving factor in automated support criteria acquisition is submission of pos-

itive and negative examples. To support the research effort, 100 positive examples

and 100 negative examples were collected for the corresponding client configura-

tion. This data was accumulated in two phases: passive and active. In the passive

phase, random web pages were loaded in the subject client configuration and judged

whether they were a positive or negative example by co-loading it in a more pop-

ular browser. Negative pages went into one folder and positive examples went into

another. For the most part, this phase accumulated more positive examples than

negative ones. In the active phase, the Google search engine was used to locate

pages that incorporated specific fault-inducing tags/rules. Because Google ignores

the brackets and parenthesis inherent in HTML/CSS, retrieval of web pages with

98

desired source code fragments was a challenge. Query returns included web pages

that actually included the tag/rule in source code to those that merely mentioned

the tag/rule or, if the tag/rule was a common name, the return set was even more

inflated; because there was no feasible way to narrow returns to those of interest

when the query was issued, identifying returns that were actually useful was tedious

at best.

5.3.3 Evaluation Metrics

The costs involved in employing a tool or technique can ultimately have a sig-

nificant impact on subsequent feasibility and usefulness. Within the context of this

work, the cost of the learning strategy is influenced by the amount of computational

effort required to label source code fragments as either supported or unsupported

and the penalties resulting from source code fragment (tag/rule) misclassification.

Given the nature of the learning algorithms used, the computational effort required

is expected to be reasonable and to depend largely on the amount and model of

data being processed. On the other hand, misclassification of source code fragments

is expected to have a large impact on the cost model. To get an understanding of

source code misclassification during learning, consider the fact that during exper-

imentation, learning strategies will be applied to positive/negative examples. The

strategies will then predict whether a given tag/rule is supported or unsupported

given inclusion patterns detected in the examples. In the following sections, a dis-

cussion how the actual and predicted support of tags/rules are computed is provided

99

along with how they are used to quantify how well a learning algorithm performs in

terms of accuracy.

5.3.3.1 Actual Support

In this study, the ground truth, or gold standard, maintains an account of

the actual support provided for a particular tag in a given client configuration.

The ground truth was manually defined using a resource that specializes in cross-

configuration tag/rule support data [46]. For the sake of discussion, consider the

gold standard to be a function, GS, that takes a source code fragment, t and a

configuration, c, as input and returns a boolean value that indicates support or lack

thereof as output. A more formal definition is provided below in Equation 5.3.

GS(t, cx) =







yes if cx actually supports t

no otherwise

(5.3)

5.3.3.2 Predicted Support

Support is predicted with the help of the learning mechanism. In this work,

the learning algorithm has been abstracted as a function, AR,that accepts a source

code fragment, t and a configuration, c as input and returns a boolean value that

predicts whether the fragment is supported or unsupported. Like GS, AR can be

modeled as shown below:

100

AR(t, cx) =







yes if cx predicted to support t

no otherwise

(5.4)

5.3.3.3 Accuracy

In this work, accuracy is used to measure how often the learning algorithm

made correct and incorrect predictions of tag/rule support. As it applies to the

learning process, negative classification of a source code fragment is considred to

mean that it is not supported in a given environment and positive classification

indicates that it is supported. Subsequently, a false negative is a supported tag

labeled as unsupported and a false positive is an unsupported tag labeled incorrectly

as supported. To examine how TP, FP, TN, FN values are calculated in terms of

AR and GS, consider Table 5.12 below.

The effects of misclassification on cost, in terms of portability analysis, are

largely a result of false negatives and positives. A direct consequence of a false

positive is that a faulty page could unwittingly be released into the field. On the

other hand, the threat of false negatives lies in the fact that they erroneously signal

a need for manual effort. Consequently, they influence an increase in the cost of

resources devoted to addressing what is, in actuality, a non-issue. With these factors

in mind, accuracy is defined in a way that will penalize processes that allow for more

false positives.

accuracy = A(My, Lz, size) =
TP + TN

TP + FP + TN + (FN ∗ 0.5)
(5.5)

101

As defined here, higher accuracy values mean fewer false positives and false negatives

than those with lower values. The accuracyfunction is paramaterized by the source

code model used My (where y = {1,2,or 3}), the automated acquisition strategy

Lz (where z = {1 or 2}), and the size of the training set, size. Note in the equa-

tion above, false negatives have been weighted. This step was taken because false

negatives do not levy the same costs on the analysis results as do false positives.

The former is a nuisance in that developers may spend time attempting to fix web

configuration faults that do not exist. The latter, on the other hand, could cause

web developers to miss crucial inclusion patterns.

5.4 Study Design, Results, and Discussion

Empirical investigations of Q1 through Q5 were carried out to gain a better

understanding of learning parameters and their impact on the accuracy of support

criteria learned. The results of these studies are expected to improve automated

knowledge acquisition by looking at the individual models and algorithms that will

produce the most accurate results. In the remainder of this section, insight into

the experimental process used to investigate each research question, the results we

observed, and how we interpreted them is provided.

102

5.4.1 Q1 Study: The effect of web application model, strategy, and

training set size on learning accuracy

The goal of this study was to quantify how the learning strategy and attributes

of the training set in terms of quantity and source code model affect the accuracy

of support criteria derived. The overall basis is to ensure that extraction and rep-

resentation of data and learning techniques provide the proper basis for knowledge

discovery. Given the inductive nature of the approach, data representation, namely

how raw source code model is conditioned prior to learning, can have a significant

impact on the quality of knowledge derived.

5.4.1.1 Experimental Procedure

The following process was used to explore Q1:

Step 1: Retrieve an initial pool, Pcx
, of positive and negative web pages for client

configuration cx.

Step 2: Parse HTML/CSS to extract source code using each of three abstraction

techniques (M1,M2, and M3). This will produce Pcx,M1, Pcx,M2, and Pcx,M3.

Step 3: Retrieve the gold standard of tag support rules for later evaluation.

Step 4: For each abstraction strategy (M1,M2, and M3), do the following 100 times:

1. Randomly select 15 positive and 15 negative web pages from Pcx
.

103

(a) Extract source code elements and estimate whether the correspond-

ing tags/rules discovered are strongly correlated with negative exam-

ples by applying learning strategies L1 and L2.

(b) Calculate AMy ,Lz,size where 1 ≤ y ≤ 3, 1 ≤ z ≤ 2, and size =30.

(c) Note the co-occurrence of tags/rules in the sample and estimate in-

teraction factors by calculating the corresponding L1 and L2.

2. For six iterations, without replacement, randomly select 15 positive exam-

ples and 15 negative examples from the pool until it has been exhausted.

(a) Gather new evidence for the tags/rules discovered in step 1(a) and

update estimations of negative example correlations for both L1 and

L2.

(b) Update AMy,Lz,size where 1 ≤ y ≤ 3, 1 ≤ z ≤ 2, and

size =30×iteration.

(c) Note the co-occurrence of tags/rules in the sample and update inter-

action estimation by calculating L1 and L2.

5.4.1.2 Results

It appears in Figure 5.13 that M1 is the best web application model, L1 is the

best learning strategy, and that learning accuracy generally improves as the training

set size increases. While M1 may provide the most accurate model for automated

acquisition, it is important that more information be included in the knowledge

base. Tag support is generally favorable at the tag level alone. As a result, it is very

104

important that details, such as attribute, their values, and subsequent support are

accounted for. In that regard, it may be best to get this data from manual updates

and information solicitation.

5.4.2 Q2 Study: How does the web application model affect analysis

costs in terms of tags/rules evaluated and the time needed for

analysis?

To evaluate the affect of the model on time for analysis and the number of

tags analyzed, we monitored each during the study of Q1. Our results are shown in

Figure 5.14. Since M1 provides the most abstraction, it follows quite naturally that

it requires the least amount of time to evaluate and that less tags are analyzed per

training set size.

5.4.3 Q3 Study: The effect of training set imbalance on false posi-

tives.

In our previous work, we observed that the median false positive rate was much

lower when there was an extra negative example. To observe what happens when an

extra positive example is included, we essentially preformed the same steps carried

out for Q1 with an uneven set of training examples. In this case however, we only

evaluated the false positive rate for M3 in order to maintain the same conditions we

used in our previous study, save the inclusion of an extra positive example instead

of a negative example. The results are shown below in Figure 5.15. As shown, more

105

negative examples provide a basis for lower false positive rates. Recall, each instance

contains a number of tags/rule and serve, as a whole, as evidence of the support or

lack thereof for each source code fragment contained. Subsequently, with an extra

negative example, the corresponding tags get more supporting evidence. As a result,

there is less chance that a truly unsupported tag will be labeled as supported.

5.4.4 Q4 Study: The impact of CSS inclusion during the learning

process

Our evaluation of the impact of CSS inclusion was carried out by determining

the number of unique CSS rules recovered during learning. This is an important

factor because one of our main goals is to include as much support criteria in the

knowledge as possible to increase the accuracy of web configuration fault analysis.

We observed 39 unique CSS elements in the source code; for reasons stated above,

we expect the addition of this information to forge a positive step towards achieving

a comprehensive knowledge base.

5.4.5 Q5 Study: The impact of Tag Interaction during the learning

process

In order to capture tag interaction, we applied L1 and L2 to the data yet,

instead of checking to see whether a single tag or rule appeared in the source, we

checked for the times that tags occurred jointly in positive and negative examples.

To observe how well the learning strategies performed, we had the algorithm return

106

a list of tags expected to have joint impact on the correctness of web pages. In its

current form, correct interactions are detected, however, spurious/non-interacting

returns are provided as well. This, again, speaks to the issue of false positives

discussed earlier.

5.4.6 Threats to Experimental Validity

5.4.6.1 Internal Validity

The internal validity of experimental results are threatened when results of the

dependent variable can be tainted by modeling and measurement errors. In each of

the questions we address, accuracy is the primary dependent variable. Hence threats

to internal validity, in this context, include possible errors in measuring/designating

the training set and modeling/executing both the tag abstraction scheme and tag

classification strategy.

Another threat lies in the correctness of the gold standard. The source used

as the basis for the gold standard, in some instances, relies on the documentation

provided from the browser manufacturer. Since this can be erroneous at times, it

can have an undesirable impact on accuracy evaluations.

One final internal validity threat lies in, what amounts to, equal weighting for

false positives and false negative in our accuracy model. More specifically, in the

case that one is actually more important than the other, the equation should be

weighted accordingly in order to derive correct values.

107

5.4.6.2 External Validity

Threats to external validity, on the other hand, limit ability to generalize

experimental results. Several candidates for this constraint apply. For one, we are

currently only considering pages in which there are source code-induced faults that

can be linked to a certain tag and not, perhaps, Javascript errors that can be linked

to a faulty variable. Other threats include possible misclassification of web pages

on the behalf of submitters and low usage of a given client configuration platform

(resulting in less raw material for the inductive algorithm). We took a great deal

of care to ensure that pages were accurately labeled and included a sizable number

of positive/negative examples during analysis; these factors may or may not be

sustained in the field.

Chapter 6

Conclusions and Future Work

Essentially all deployed software systems have bugs [31]; the extent to which

bugs are detected and corrected has a significant influence on software quality. Al-

though portability assessment is crucial for a wide range of modern software systems,

it is a particular challenge for web application development. The ability to choose

from a varied set of operating systems, browsers, browser versions, hardware, and

customize browser settings provides users with expanded flexibility in how they ac-

cess the web. Yet, from another perspective, this expanded flexibility invokes a need

for web developers to not only ensure they their web applications are correct but

108

that correctness persists as the web application is ported.

This dissertation outlines a model-based framework that enables automated

detection and diagnosis of web configuration faults. The basic idea of this approach

is that unsupported source code patterns (i.e., HTML tags and CSS rules) are indices

to potential configuration faults; when support is lacking, the aesthetic or functional

properties associated with source code may be lost and configuration faults may re-

sult. This approach overcomes the limitations of existing approaches by enabling

efficient coverage of the configuration space and linking the faults discovered to un-

supported source code. In conducting this research, several interesting questions

were discovered. In short discovering effective algorithms and methods and inte-

grating them into the framework is expected to be an continuous process. Tag/rule

representation, learning strategy, and tag interaction can each impact knowledge ac-

quisition as well as subsequent portability analysis. Moreover, client configuration

space representation models and strategies for visualization of portability threat de-

tection results must constantly be refined to improve fault detection efficiency and

to facilitate correction of isolated faults. In the effort to maximize the efficiency

of the framework and make more practical and effective in tight web development

schedules, several immediate and future goals have been established:

1. Learning strategies: As noted earlier, the effectiveness of the configuration

fault analysis developed as a result of this project is heavily reliant upon the

completeness and accuracy of the tag/rule support knowledge used for analy-

sis. Adequate population of the tag support knowledge base is one of the most

109

important aspects of the framework since attempting to detect portability is-

sues with truncated or inaccurate knowledge can severely inhibit accuracy. In

the immediate future, the idea would be to continue the search for other strate-

gies, to modify them (if necessary) to address this particular problem, and to

compare the performance of each in order to determine the most appropriate

approach.

2. Modeling Paradigms: In the short-term future of this research, web appli-

cation and configuration models will be incrementally modified and exercised.

At the beginning of this work, simple web application examples were used. As

the work progresses, the plan is to continue up to the most complex examples,

incrementally improving the models and learning approaches along the way in

order to account for features such as tag interaction and the effect of nesting

on portability.

3. Web user subjectivity: Another issue to explore would be web user subjec-

tivity in distinguishing positive examples from negative ones. The issue here is

that web users with the same configurations can load the same web page and,

in some cases, have different opinions about whether the page is a negative or

positive instance. This is an important issue largely because the way in which

web applications are classified (positive or negative) has a direct influence on

the support knowledge derived. In future work, the goal could be to study

this issue with actual web users and to ensure that the learning strategy used

can recover in the face of noisy, misclassified, input.

110

4. Human-Computer Interaction (HCI) Issues: One key objective is fur-

ther exploration of the HCI aspects of the framework including the usability

of the implemented tool for both users and web developers. In alignment

with this goal, four user studies have been defined to measure tool support

for updating the knowledge base and interpreting analysis results. Further

discussion of each follows including the goal of the study and how it will be

evaluated in terms of a strawman, or alternative, approach:

• Manual Knowledge Base Updates: Recall, support criteria experts manu-

ally update the knowledge base through a Criteria Editor. It is important

to ensure that the Criteria Editor is designed to collect the appropriate

data, does not influence mistakes, and helps to minimize user error. Given

that the alternative to the editor would be direct access to the knowledge

base, one user study would involve comparing error rates when users en-

ter data into the knowledge base directly and when they use the Criteria

Editor. Another would compare manual updates from users with varying

levels of expertise to determine the particular types of errors made so

that the appropriate support mechanisms can be implemented (i.e., con-

straint checkers). Yet another issue with manual knowledge base updates

is that the current design trusts experts to import correct data. Future

research could include assigning security ratings to experts and adjust-

ing them over time and, perhaps, contexts (i.e., experts may be trusted

more when submitting information for one configuration vs. another).

111

Usability is an issue here because the next step would be conveying this

information when analysis results are presented; users should be aware

when there is low confidence that a configuration actually lacks support

based on the source of the data. In this case, the alternative approach

would be that no confidence measure is conveyed to the user; the study

would involve observing how analysis results are interpreted in both cases

and the impact of those interpretations on prioritizing the correction of

configuration faults.

• Automated Knowledge Base Updates: Web users automate knowledge

base updates by submitting positive and negative examples of web pages.

To improve the usability of this update mechanism, it is important to de-

termine the best way to collect this data and to carefully observe how

users distinguish positive examples from negative ones. In terms of iden-

tifying the best data collection method, one early prototype is a web

browser tool bar that has a green and a red icon that allows users to

submit positive examples by clicking on the green icon and to submit

negative examples by clicking on the red icon. A slight alternative to this

approach is only featuring a red icon on the tool bar since the intuition

is that users are more apt to indicate when a page is faulty then when

it is correct. A more drastic alternative is that users would have to sub-

mit an e-mail detailing the configuration they were using and the URL

of the positive/negative web page. The accompanying user study would

112

measure the number of positive and negative web pages submitted with

each strategy; in addition, by allowing users to exercise at least two of

the three strategies, the idea would be to understand user preference.

• Solicited Knowledge Base Updates: In solicited updates, web users with

precise configuration settings help to determine the support for a given

tag/rule by loading web pages that contain the source in their browsing

environments and observing the results. The key factor to measure, from

a usability perspective, is the best way to distribute sample pages to users

and collect the resulting data. Prototype strategies range from manual

acquisition and deployment of the focus set1 in which users access a cen-

tral database that contains sample pages, downloads the corresponding

focus set, and launches the web applications one by one, to fully auto-

mated distribution and deployment in which the tool retrieves the focus

set and automatically launches them in a browser with red and green icons

(as discussed in the manual update). The role of the user in the latter

case would be to simply observe the web page and click the green button

if the tag/rule appeared to be supported and the red button otherwise.

To measure the effect of each strategy, users will have the opportunity

to use at least two alternatives and the number of correctly identified

positives/negatives would be evaluated along with the time necessary to

submit the data and user preference.

1A set of web pages that contain a given tag/rule

113

• Presentation of Analysis Results: Currently, web developers get a post-

analysis view of the results in which each individual web page is repre-

sented as a point in a two-dimensional plane and the placement of the

point is determined by the number of tag/rule support violations dis-

covered (x-axis) and the number of configurations with support issues

(y-axis). Future usability studies may involve varying the values rep-

resented on the x and y axis and employing think aloud techniques to

observe how prioritization of fault detection is modified. More specifi-

cally, given specific instructions to fix a set amount of web pages in a

limited amount of time, the idea would be to observe how developers

chose which web pages to correct first and why. An alternate strategy,

a purely text-based list of results, could be evaluated as well under the

same conditions, to compare how developers prioritized their efforts.

5. Correcting problems detected: Currently, the framework can detect a

fault and alert web developers of the corresponding configuration. A natural

extension of the tool would be to incorporate a mechanism that will provide

web developers with a fix for the problem detected. In the future, the idea

could be to explore how a repository of fixes can be generated and incorporated

into the framework.

6. Automated detection of positive/negative examples: Currently, the

identification of positive/negative examples for learning support knowledge is

a manual process. Identifying automated means for gathering examples and

114

classifying them is expected to improve the quality of knowledge derived by

providing the learning algorithm with more evidence for whether a tag/rule

is supported in a given environment. A future research direction would be to

explore this issue further and develop a method that will automatically gather

and classify examples for the learner.

7. Use of Metadata during Automated Acquisition: During automated

acquisition, the current focus is learning from source code inclusion patterns.

To ultimately achieve more accurate support criteria knowledge, it may be

helpful to include more metadata in the process. In particular, the time spent

on a web page, whether the user simply looked at the page or tried to preform

some action, the actual widgets activated, user explanations of the nature of

the problem (i.e., the page rendered improperly).

From a very high level perspective, this work speaks to the power of commu-

nication between the user and development community in evaluating and improving

software quality. By allowing users to import support criteria, deriving support

criteria from fielded examples, and automating the analysis of an implementation

with respect to each, developers benefit from a wide body of knowledge. Most im-

portantly, they do not have to consult individual users or other developers to gather

the knowledge and they do not have to resort to any manual means of applying this

knowledge during analysis. In addition, deriving knowledge of fault triggers from

fielded instances through artificial intelligence is expected to be an effective method

for gathering information for analysis when there is an ample number of positive and

115

negative examples. Discovering ways of applying similar means in other software

types should provide an effective way for learning how faults in the field can be used

for future analysis.

116

No Javascript With Javascript

http://www.aidsreagent.org/

Internet Explorer 6.0 Netscape 4.8

http://www.radissonedwardian.com/aboutus/home.jsp

117

Netscape 4.8 Mozilla

http://www.fas.org/search

Figure 4.7: Mozilla is More Forgiving than Netscape when Tags are Misproperly

Placed in Source Documents.

Oracle

Technique

Interface

processURL()

query()

generateReport()

Support Rules

Compliance

Report

WA

Developer

Update Mechanism 1
Manual Edit

Rule Expert

Rule

Editor

Update Mechanism 2: Learning-Based

Positive/Negative

Classifier

0.10.10.9Tag D

0.40.40.4Tag C

0.50.1-0.3Tag B

0.10.10.4Tag A

Tag DTag CTag BTag A

Interaction Matrix n0.10.10.9Tag D

0.40.40.4Tag C

0.50.1-0.3Tag B

0.10.10.4Tag A

Tag DTag CTag BTag A

Interaction Matrix 2
0.10.10.9Tag D

0.40.40.4Tag C

0.50.1-0.3Tag B

0.10.10.4Tag A

Tag DTag CTag BTag A

Interaction Matrix 1

Automated
Acquisition

Search

Engine

Positive/Negative

Reporter

Positive/Negative

Instances

Learning
Mechanism

Figure 5.1: Instantiation of the general framework in the current Approach

118

<tag .* attribute=value.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)B

……….
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)T

selector{property:value.*}
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)Q

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)R

……..

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)W

<tag.* attribute=value.*> ⁄ ! <tag.* attribute=value.*>

……….

Figure 5.2: A generic representation of the knowledge base.

<script language="JavaScript1.2">
<!--// will only run on any JavaScript1.2+ enabled browser//-->

</script>
<script language="JavaScript1.3">

<!--// will only run on any JavaScript1.3+ enabled browser//-->

</script>

Figure 5.3: A practical example of support violation offsets.

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)B

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

<script.* javascript=1.4 .*> ⁄ ! <script.* javascript=1.3.*>

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)Q

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)R

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)W

<layer bgcolor=.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

Figure 5.4: Snapshot of the Knowledge Base after a manual update.

119

<html>
<..javascript1.1>
<..javascript1.2>
<table>

<html>
<..javascript1.1>
<..javascript1.2>
<table>

<html>
<..javascript1.1>
<table>

<html>
<..javascript1.1>
<table>

<html>
<..javascript1.1>
<..javascript1.2>

<html>
<..javascript1.1>
<..javascript1.2>

<html>
<bold>
<table>

<html>
<bold>
<table>

<html>
<..javascript1.1>

<html>
<..javascript1.1>

Positive Instances

<html>
<div>
<..javascript1.2>
<table>

<html>
<div>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

Negative Instances

Figure 5.5: Positive and negative web applications in an arbitrary client configura-

tion

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)B

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

<script.* javascript=1.4 .*> ⁄ ! <script.* javascript=1.3.*>

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)Q

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)R

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)W

<layer bgcolor=.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

<div =.*>

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

<script.* javascript=1.2 .*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

<table=.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

Figure 5.6: Snapshot of the knowledge base after an automated update.

120

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)B

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

<script.* javascript=1.4 .*> ⁄ ! <script.* javascript=1.3.*>

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)Q

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)R

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)W

<layer bgcolor=.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)S

<div =.*>

(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

<script.* javascript=1.2 .*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

<table=.*>
(configatt1 ⁄ configatt2 ⁄ configatt3 ⁄ ... ⁄ configattn)A

Figure 5.7: Snapshot of the knowledge base after information solicitation.

www.homepage.com

URL

Web Crawler Result

Web Application Model

<html>
<javascript>
<div>
<…..>
<…..>
<…..>
<…..>
<…..>
<…..>
<table>

Figure 5.8: The retrieval of data, implemented by processURL(), begins once the

user submits a URL. From there, the corresponding web page is fetched and, based

on the hyperlinks observed, a crawler collects each of the web pages that are a part

of the site. Once the source code is retrieved, a vector model of the web application

is created.

121

Web Application Model

<html>
<javascript>
<table>
<…..>
<…..>
<…..>
<…..>
<…..>
<…..>
<div>

Knowledge Base

<html>
…………….
…………….
…………….

<table>
…………….
…………….
…………….

<div>

Match

Figure 5.9: An overview of query()

.UnsupportedClassVersionError:

Figure 5.10: Visualization of compliance analysis results

L1(Tag CSS X)

….

L1(Tag C)

L1(Tag B)

L1(Tag A)

L1

…..

…..

…..

…..

…..

…..

L1(Tag C, CSS X)L1(Tag B, CSS X)L1(Tag A, CSS X)CSS X

…..…..…..…..…..

L1(Tag C, Tag BL1(Tag A, Tag C)Tag C

L1(Tag A, Tag B)Tag B

Tag A

CSS XTag CTag BTag A

Figure 5.11: The interaction matrix

122

Figure 5.12: Accuracy Values Defined

GS(t, cx)

yes no

AR(t, cx)
yes TP FP

no FN TN

Tag/Rule Classification Accuracy per Model:

L1

0.5

0.6

0.7

0.8

0.9

30 60 90 120 150

Traning Set Size

A
c

c
u

ra
c

y M1

M2

M3

Tag/Rule Classification Accuracy per Model:

L2

0.5

0.6

0.7

0.8

0.9

30 60 90 120 150

Training Set Size

A
c

c
u

ra
c

y

M1

M2

M3

(a) (b)

Figure 5.13: The affect of learning strategy, training set size, and web application

model on learning accuracy. The graph shown in (a) corresponds with the L1 learn-

ing strategy; (b) corresponds with L2.

123

Analysis Time Per Model

0

10

20

30

40

50

60

70

80

30 60 90 120 150

Training set size

M
e

d
ia

n
 M

il
li

s
e

c
o

n
d

s
 o

f
A

n
a

ly
s

is M1

M2

M3

Number of Tags/Rules Analyzed per Model

0

200

400

600

800

1000

30 60 90 120 150

Training set size
M

e
d

ia
n

 n
u

m
b

e
r

o
f

T
a

g
s

/R
u

le
s

 A
n

a
ly

z
e

d

M1

M2

M3

(a) (b)

Figure 5.14: The affect of web application model on time needed for analysis and the

number of tags/rules analyzed. The graph shown in (a) shows the time needed(b)

shows the number of tags analyzed.

124

Imbalanced Training Set: 1+ Negative

0.03

0.035

0.04

0.045

0.05

0.055

25 50 75 100 125

Number of Training Examples

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

Imbalanced Training Set: 1+ Positive

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0.058

25 50 75 100 125

Number of Training Examples

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

(a) (b)

Figure 5.15: The affect of training set imbalance on false positive rate. The graph

shown in (a) shows what results with an extra negative example (b) shows the results

with an extra positive training example.

125

Bibliography

[1] Badros, G. J., Borning, A., Marriott, K., and Stuckey, P. Con-
straint cascading style sheets for the web. In UIST ’99: Proceedings of the 12th
annual ACM symposium on User interface software and technology (New York,
NY, USA, 1999), ACM Press, pp. 73–82.

[2] Bellettini, C., Marchetto, A., and Trentini, A. TestUml: user-
metrics driven web applications testing. In SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing (New York, NY, USA, 2005), ACM
Press, pp. 1694–1698.

[3] Berghel, H. Using the www test pattern to check HTML compliance. Com-
puter 28, 9 (1995), 63–65.

[4] Berghel, H. HTML compliance and the return of the test pattern. Commu-
nications of the ACM 39, 2 (1996), 19–22.

[5] Bishop, J. Multi-platform user interface construction: a challenge for software
engineering-in-the-small. In ICSE ’06: Proceeding of the 28th international
conference on Software engineering (New York, NY, USA, 2006), ACM Press,
pp. 751–760.

[6] Bobby. http://www.watchfire.com/products/webxm/bobby.aspx.

[7] Bowring, J. F., Rehg, J. M., and Harrold, M. J. Active learning
for automatic classification of software behavior. In ISSTA ’04: Proceedings
of the 2004 ACM SIGSOFT international symposium on Software testing and
analysis (New York, NY, USA, 2004), ACM Press, pp. 195–205.

[8] Browser photo by netmechanic. http://www.netmechanic.com/browser-
index.htm.

[9] Browsershots. http://browsershots.org/.

[10] Brun, Y., and Ernst, M. D. Finding latent code errors via machine learn-
ing over program executions. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 480–490.

[11] Chen, B., and Shen, V. Y. Transforming web pages to become standard-
compliant through reverse engineering. In W4A: Proceedings of the 2006 inter-
national cross-disciplinary workshop on Web accessibility (W4A) (New York,
NY, USA, 2006), ACM Press, pp. 14–22.

[12] Clark, J. The glorious peoples myth of standards compliance.
http://joeclark.org/glorious.html.

126

[13] Cohen, M. B., Snyder, J., and Rothermel, G. Testing across config-
urations: implications for combinatorial testing. SIGSOFT Softw. Eng. Notes
31, 6 (2006), 1–9.

[14] Cubranic, D., and Murphy, G. C. Automatic bug triage using text cate-
gorization. In SEKE ’04:Proceedings of the Sixteenth International Conference
on Software Engineering & Knowledge Engineering (SEKE’2004) (2004), ACM
Press, pp. 92–97.

[15] Diep, M. Profiling deployed software: Assessing strategies and testing oppor-
tunities. IEEE Trans. Softw. Eng. 31, 4 (2005), 312–327. Member-Sebastian
Elbaum.

[16] Doctor HTML. http://www2.imagiware.com/RxHTML/.

[17] Eaton, C., and Memon, A. M. An empirical approach to testing web appli-
cations across diverse client platform configurations. International Journal on
Web Engineering and Technology (IJWET), Special Issue on Empirical Studies
in Web Engineering (2007).

[18] Elbaum, S., Karre, S., and Rothermel, G. Improving web application
testing with user session data. In ICSE ’03: Proceedings of the 25th Inter-
national Conference on Software Engineering (2003), IEEE Computer Society,
pp. 49–59.

[19] Engler, D., Chen, D. Y., Hallem, S., Chou, A., and Chelf, B. Bugs
as deviant behavior: a general approach to inferring errors in systems code. In
SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems
principles (2001), ACM Press, pp. 57–72.

[20] Hangal, S., and Lam, M. S. Tracking down software bugs using auto-
matic anomaly detection. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering (2002), ACM Press, pp. 291–301.

[21] Hao, D., Zhang, L., Mei, H., and Sun, J. Towards interactive fault
localization using test information. In APSEC ’06: Proceedings of the XIII
Asia Pacific Software Engineering Conference (Washington, DC, USA, 2006),
IEEE Computer Society, pp. 277–284.

[22] Haran, M., Karr, A., Orso, A., Porter, A., and Sanil, A. Apply-
ing classification techniques to remotely-collected program execution data. In
ESEC/FSE-13: Proceedings of the 10th European software engineering con-
ference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering (New York, NY, USA, 2005), ACM Press,
pp. 146–155.

[23] Streamlining software testing with IBM Rational and VMware.
http://www.vmware.com/pdf/rational.pdf.

127

[24] Kallepalli, C., and Tian, J. Measuring and modeling usage and reliability
for statistical web testing. IEEE Trans. Softw. Eng. 27, 11 (2001), 1023–1036.

[25] Khaksari, G. H. Expert diagnostic system. In IEA/AIE ’88: Proceedings
of the 1st international conference on Industrial and engineering applications
of artificial intelligence and expert systems (New York, NY, USA, 1988), ACM
Press, pp. 43–53.

[26] Koltashev, A. A practical approach to software portability based on strong
typing and architectural stratification. In JMLC (2003), L. Böszörményi and
P. Schojer, Eds., vol. 2789 of Lecture Notes in Computer Science, Springer,
pp. 98–101.

[27] Korpela, J. Lurching toward babel: Html, css, and xml. Computer 31, 7
(1998), 103–104,106.

[28] Kung, D., Liu, C.-H., and Hsia, P. An object-oriented web test model
for testing web applications. In Proceedings. First Asia-Pacific Conference on
Quality Software (2000), pp. 111–120.

[29] Li, Z., Lu, S., and Myagmar, S. CP-Miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng. 32, 3 (2006), 176–
192. Member-Yuanyuan Zhou.

[30] Li, Z., and Zhou, Y. Pr-miner: automatically extracting implicit program-
ming rules and detecting violations in large software code. In ESEC/FSE-13:
Proceedings of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of software
engineering (New York, NY, USA, 2005), ACM Press, pp. 306–315.

[31] Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I. Bug isolation
via remote program sampling. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (San Diego,
California, June 9–11 2003).

[32] Mao, Y. Automated computer system diagnosis by machine learning ap-
proaches. Tech. rep., University of Pennsylvania, 2005. Technical Report,
MS-CIS-05-17.

[33] Matsumura, T., Monden, A., and ichi Matsumoto, K. A method for
detecting faulty code violating implicit coding rules. In IWPSE ’02: Proceed-
ings of the International Workshop on Principles of Software Evolution (2002),
ACM Press, pp. 15–21.

[34] Memon, A., Porter, A., Yilmaz, C., Nagarajan, A., Schmidt, D.,

and Natarajan, B. Skoll: Distributed continuous quality assurance. In ICSE
’04: Proceedings of the 26th International Conference on Software Engineering
(2004), IEEE Computer Society, pp. 459–468.

128

[35] Mooney, J. D. Bringing portability to the software process. Tech. rep.,
West Virginia University, Department of Statistics and Computer Science, 1997.
Technical Report TR 97-1.

[36] Ng, H. T., Goh, W. B., and Low, K. L. Feature selection, perception
learning, and a usability case study for text categorization. In SIGIR ’97: Pro-
ceedings of the 20th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (New York, NY, USA, 1997), ACM
Press, pp. 67–73.

[37] Phillips, B. Designers: The browser war casualties. Computer 31, 10 (1998),
14–16,21.

[38] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun,

J., and Wang, B. Automated support for classifying software failure reports.
In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering (Washington, DC, USA, 2003), IEEE Computer Society, pp. 465–
475.

[39] Ricca, F., and Tonella, P. Analysis and testing of web applications.
In ICSE ’01: Proceedings of the 23rd International Conference on Software
Engineering (2001), IEEE Computer Society, pp. 25–34.

[40] Ricca, F., and Tonella, P. Web testing: a roadmap for the empirical
research. In WSE (2005), IEEE Computer Society, pp. 63–70.

[41] Sedlmeyer, R. L., Thompson, W. B., and Johnson, P. E. Knowledge-
based fault localization in debugging: preliminary draft. In SIGSOFT ’83:
Proceedings of the symposium on High-level debugging (New York, NY, USA,
1983), ACM Press, pp. 25–31.

[42] Sneed, H. M. Testing a web application. In In Proceedings of the 6th In-
ternational Workshop on Web Site Evolution (2004), IEEE Computer Society,
pp. 3–10.

[43] Spiesser, J., and Kitchen, L. Optimization of html automatically gen-
erated by wysiwyg programs. In WWW ’04: Proceedings of the 13th inter-
national conference on World Wide Web (New York, NY, USA, 2004), ACM
Press, pp. 355–364.

[44] Sterling, C. D., and Olsson, R. A. Automated bug isolation via program
chipping. In AADEBUG’05: Proceedings of the sixth international symposium
on Automated analysis-driven debugging (New York, NY, USA, 2005), ACM
Press, pp. 23–32.

[45] Software testing glossary. www.chambers.com.au/glossary/configur.htm.

[46] The advanced html/css reference. http://blooberry.com/indexdot/html/index.html.

129

[47] Tonella, P., and Ricca, F. A 2-layer model for the white-box testing of
web applications. In In Proceedings of the 6th International Workshop on Web
Site Evolution (2004), IEEE Computer Society, pp. 11–19.

[48] World wide web consortium. http://www.w3.org/.

[49] Wikipedia - world wide web consortium. http://en.wikipedia.org/wiki/W3c.

[50] Wikipedia. http://en.wikipedia.org/wiki/Web application.

[51] Williams, A., and Probert, R. A practical strategy for testing pair-wise
coverage of network interfaces. issre 00 (1996), 246.

[52] Xu, L., and Xu, B. A framework for web applications testing. In International
Conference on Cyberworlds (2004), pp. 300–305.

[53] Xu, L., Xu, B., and Jiang, J. Testing web applications focusing on their
specialties. SIGSOFT Softw. Eng. Notes 30, 1 (2005), 10.

[54] Xu, L., Xu, B., Nie, C., Chen, H., and Yang, H. A browser compatibility
testing method based on combinatorial testing. In International Conference on
Web Engineering (2003), Springer, pp. 310–313.

[55] Yang, Y., and Pedersen, J. O. A comparative study on feature selection in
text categorization. In ICML ’97: Proceedings of the Fourteenth International
Conference on Machine Learning (San Francisco, CA, USA, 1997), Morgan
Kaufmann Publishers Inc., pp. 412–420.

[56] Zeller, A., and Hildebrandt, R. Simplifying and isolating failure-
inducing input. Software Engineering 28, 2 (2002), 183–200.

130

