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Hysteresis is a natural phenomenon existing in many systems. Binary hystere-

sis is the simplest yet important model to study electronically generated hysteresis.

Binary hysteresis circuits, the Schmitt trigger being an example, are widely used in

reducing noise sensitivity, designing oscillators, generating chaotic signals, etc. A

new concept, n-dimensional m-level multi-cell hysteresis is presented. A group of

CMOS binary hysteresis circuits with full control which operate in all four quadrants

is introduced. CMOS circuits, that give various one-dimensional multi-level hystere-

sis, in both current mode and voltage mode, are presented. Various combinations of

adding forward and reverse binary hysteresis are demonstrated. CMOS circuits, in

both current mode and voltage mode, that give two-dimensional multi-level multi-

cell hysteresis, are designed. Further discussion is given on how to extend the results

to more dimensions. Two-dimensional hysteresis is used to generate chaotic signals.

A couple of areas where multi-cell hysteresis can be useful are suggested.
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Chapter 1

Introduction

According to wikipedia [67], the name of hysteresis has the meaning of “defi-

ciency”, or “lagging behind”, which was used by Sir James Alfred Ewing, a Scottish

physicist and engineer, to described the characteristic hysteresis curve of magnets.

The output at one moment of a deterministic system with no hysteresis can be

predicted with only the input to the system at that moment and the initial state.

Yet for a system with hysteresis characteristics, the output of the system does not

only depend on the input to the system at the moment, but also the history of the

system. A system with hysteresis is a system with memory. Another important

characteristic of hysteresis phenomenon is branching; the definition of hysteresis is

given by I. D. Mayergoyz [32] as following: “Consider a transducer that can be

characterized by an input u(t) and an output f(t). This transducer is called a hys-

teresis transducer if its input-output relationship is a multi-branch nonlinearity for

which branch-to-branch transitions occur after input extrema.” A hysteresis system

must be multistable for branching to happen, meaning the system must have mul-

tiple equilibrium points for a constant input value. The output while the input is

increasing may be different than the output while the input is decreasing [3].

Hysteresis phenomenon was first discovered in magnetics, then later discov-

ered in mechanical hysteresis, ferroelectric hysteresis, and superconductor hysteresis.
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Hysteresis phenomena not only exist in physics but many disciplines of science: eco-

nomic systems show signs of hysteresis; cells undergoing cell division have hysteresis

behavior in changing states; some neurons do not return to the original state after

the removal of stimulus. Hysteresis has been widely studied and mathematical tools

and models have been developed to study real life hysteresis systems [10] [32].

In I. Mayergoyz’s book [32], hysteresis was categorized into two groups, the

rate-independent and rate-dependent. For rate-independent hysteresis output de-

pends on the past value of the input but not the speed of the input. Then rate-

independent hysteresis was further divided into two groups, hysteresis with local

memories and hysteresis with non local memories. The future output of hysteresis

with local memory is uniquely determined by the current output and input. Yet, for

hysteresis with non-local memories, the future output not only relies on the current

input and output, but also the past extremum values of the input. In I. Mayer-

goyz’s book, extensive studies on the mathematical models of hysteresis and their

application are given.

A new concept, n-dimensional m-level multi-cell hysteresis is presented here.

This new concept which is the main contribution of this dissertation has not been

found in the survey of literatures. Additionally, a significant part of the research

work is the CMOS implementation of the n-dimensional m-level multi-celled hystere-

sis. There are five chapters in the dissertation: Chapter one: Introduction. Chapter

two: Binary Hysteresis Circuits, which gives a review on the past job trying to have

some control on the binary hysteresis. Chapter three: CMOS Binary Hysteresis

Circuits with Full Control. Chapter four: Circuits for Handling Sweeping Signals,
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that include analogue adders, multipliers, current voltage converters, and voltage

current converters. Chapter five: CMOS Multi-Cell Hysteresis Circuit, explains the

construction of multi-cell hysteresis.

1.1 Multi-Celled Hysteresis

In this section, the new concept of multi-celled hysteresis is explained. We

start with the more familiar concept of binary hysteresis, then proceed to construct

multi-level hysteresis using binary hysteresis, and finally reach the construction of

multi-celled hysteresis.

1.1.1 Binary Hysteresis

A system is said to exhibit binary hysteresis if it has different switching levels

in its input-output transfer characteristics, which make the output signal snap al-

ternately between two stable states (logic low and high). This is illustrated in the

hysteresis curves shown in Figure 3.1. For different switching characteristics, binary

hysteresis is categorized in two groups, forward binary hysteresis and its reverse, as

shown in Figure 3.1, with u as the input and y as the output.

The mathematical description of forward binary hysteresis is contained in

Equation (3.1). Here H+, H−, uH2L, and uL2H are real parameters characteriz-

ing the hysteresis, where H− < H+ and uH2L < uL2H are assumed, and y0 is the

previous value of y. The presence of y0 in Equation (3.1) ensures that the hysteresis

is not multi-valued.
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Figure 1.1: Binary hysteresis, (a) forward and (b) reverse.

y(u, y0) =



H+ u > uL2H , for any y0

H+ uH2L ≤ u ≤ uL2H , if y0 = H+

H− uH2L ≤ u ≤ uL2H , if y0 = H−

H− u < uH2L, for any y0

(1.1)

Reverse hysteresis can be described in a very similar way in Equation (3.2),

where H− < H+ still holds as in the forward hysteresis case, yet uL2H < uH2L.

y(u, y0) =



H+ u < uL2H , for any y0

H+ uL2H ≤ u ≤ uH2L, if y0 = H+

H− uL2H ≤ u ≤ uH2L, if y0 = H−

H− u > uL2H

(1.2)

Alternate to using H−, H+, uH2L, and uL2H , both forward and reverse hys-

teresis can be characterized by their height HH , width uW , center position vertically
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Figure 1.2: Generation of 4-level hysteresis by adding 3 binary hysteresis. (a)

Schematic. (b) 4-level hysteresis

with HC , and horizontally with uC , as shown in Equations (3.3).

HH = H+ −H−

uW = |uH2L − uL2H |

HC = (H+ + H−) /2

uC = (uH2L + uL2H) /2

(1.3)

1.1.2 Multi-Level Hysteresis

Multi-level hysteresis can be achieved by adding several binary hysteresis

curves centered at different positions. In the case where three reverse binary hystere-

sis curves are added together, they generate 4-level hysteresis, as shown in Figure

1.2, where there are six switching points. The output can take four values, which is

why it is referred to as 4-level hysteresis. In the general case, adding (m− 1) binary
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hysteresis generates m-level hysteresis.

1.1.3 Multi-Celled Hysteresis

Before embarking on a discussion of the more complicated cases, we start

by generating two-dimensional three-level hysteresis cubes. A circuit to generate

two-dimensional three-level hysteresis cubes takes two of the three-level hysteresis

circuits, as shown in Figure 5.12. The two inputs to the multiplier, HX and HY ,

are both three-level hysteresis signals. The output Z is the product of HX and HY .

A three-dimensional plot of the two-dimensional three-level hysteresis cells is shown

in Figure 5.12 (b). A total of four hysteresis cells are generated in the two input

case. This can be generalized in two different ways, both by adding more levels of

hysteresis or by increasing the dimensions of the hysteresis. If n 3-level hysteresis

signals are used as inputs, then 2n hysteresis cubes can be generated. It is not

difficult to see that (m − 1)n hysteresis cubes can be generated by multiplying n

m-level hysteresis signals.

1.2 Contributions of the dissertation

The main contributions of the dissertation are in the following areas.

• First, the new concept of multi-dimensional multi-level hysteresis is intro-

duced.

• Second, a group of CMOS binary hysteresis circuits with full control which

operate in all four quadrants is introduced. These CMOS binary hysteresis cir-
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Figure 1.3: Generation of 2-dimensional 3-level hysteresis cubes. (a) Schematic. (b)

3-D plot of the hysteresis cubes

cuits include the following four kinds: current-input current-output, voltage-

input voltage-output, current-input voltage out, and voltage-input current-

output. For each kind of binary hysteresis circuit, both forward and reverse

hysteresis can be achieved. The position (uC , HC), the width uW , and the

height HH of each hysteresis can be adjusted independently by external cur-

rent sources and/or voltage sources. Also, the hysteresis can be put in any of

the four quadrants. The detailed discussions on these CMOS binary hystere-

sis circuits are given in Chapter three. Before that, the historical review of

the past means of designing and controlling hysteresis externally are given in

Chapter two.

• Thirdly, CMOS circuits, to be combined with the CMOS binary hysteresis cir-

cuits, that are also building blocks for multi-dimensional multi-level hysteresis
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are designed. These circuits include analogue four-quadrant adders, analogue

four-quadrant multipliers, in both current and voltage mode, current voltage

converters, and voltage current converters. The detailed discussions on the

above circuits are given in Chapter four.

• Fourthly, CMOS circuits are designed to give various one-dimensional multi-

level hysteresis, in both current mode and voltage mode. Various combinations

of adding forward and reverse binary hysteresis are demonstrated. Further-

more, CMOS circuits, in both current mode and voltage mode, that give two-

dimensional multi-level multi-cell hysteresis are designed. Further discussion

on how to extend the results to more dimensions, n-D, is given. These are

covered in Chapter five.

• Finally, multi-cell hysteresis is suggested to be used in chaotic signal genera-

tion, as is covered in section 5.6 of Chapter five. We suggest a couple of areas

that multi-cell hysteresis can be useful in Chapter six which gives summaries.
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Chapter 2

Binary Hysteresis Circuits

To construct multi-cell hysteresis, binary hysteresis circuits are the most im-

portant building blocks. In order to place hysteresis cubes at any location in the

input-output space, we would like binary hysteresis circuits to possess fully con-

trollable width, height, horizontal and vertical position of the hysteresis. In this

chapter, a review of the known binary hysteresis are given.

Binary hysteresis circuits have the feature that the output transfer charac-

teristics have different input thresholds for positive-going and negative-going input

signals. The circuits also respond to a slowly changing input waveform with a fast

transition time at the output. Former work on binary hysteresis circuits is pre-

sented in this Chapter in four Sections: voltage-input voltage-output, current-input

voltage-output, voltage-input current-output, and current-input current-output.

If CMOS schematics of the circuits are available in any of the former works in

the discussion, similar results are generated by running PSpice simulations with the

schematic. MOSIS 1.2 µm transistor models (BSIM1, Level 4, and Run n7ab) [37]

are used in all the simulations. Also, since some of the names and symbols appear

many times in many places, I would like to clarify the definitions and expressions of

these names before further discussion. The common names and symbols used often

are listed in Table 2.1.
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Table 2.1: The definitions and expressions of the common names and symbols.

∗ Fabrication process dependant, only valid for BSIM1, Level 4, and Run n7ab.

Symbol Definition Expression/Value

εOX Dielectric constant of silicon dioxide 35.1× 10−18F/µm

TOX Gate-oxide Thickness 30.6nm ∗

COX Gate capacitance per unit area COX = εOX/TOX

µn Electron mobility 688.4 cm2/V s ∗

µp Hole mobility 167.4 cm2/V s ∗

KN NMOS transconductance parameter KN = µnCOX

KP PMOS transconductance parameter KP = µpCOX

WN & WP NMOS & PMOS channel widths

LN & LP NMOS & PMOS channel lengths

βN,P βN,P =
KN,P

2

WN,P

LN,P

VTHN & VTHP NMOS & PMOS threshold voltages 0.5666V &−0.7996V

Since the only large signal current that can run through MOS transistors is

either from drain to source for NMOS transistor, or source to drain for PMOS

transistors, instead of using either IDS or ISD, the symbol I will be used, with

substrate normally referring to the name of the transistor that the current is flowing

through. For a NMOS transistor, the current can be expressed in Equation (2.1),

with βN = (KNWN/2LN). The source to drain current of a PMOS transistor can

be described in very similar way, in Equation (2.2), βP = (KP WP /2LP ).
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I =



βN [2(VGS − VTHN)VDS − V 2
DS] if VGS ≥ VTHN and 0 ≤ VDS < VGS − VTHN

βN(VGS − VTHN)2 if VGS ≥ VTHN and VDS ≥ VGS − VTHN

0 VGS < VTHN

(2.1)

I =



βP [2(VSG + VTHP )VSD − V 2
SD] if VSG ≥ −VTHP and 0 ≤ VSD < VSG + VTHP

βP (VSG + VTHP )2 if VSG ≥ −VTHP and VSD ≥ VSG − VTHP

0 VSG < −VTHP

(2.2)

2.1 Voltage-Input Voltage-Output Hysteresis Circuits

2.1.1 CMOS Schmitt Trigger

The most well known voltage-input voltage-output hysteresis circuit is proba-

bly the Schmitt trigger. The Schmitt trigger was invented in the early 20th century

by O. H. Schmitt [49] using vacuum tubes for modeling neurons. The basic schematic

and the transfer characteristics of a CMOS Schmitt trigger [21] are shown in Figure

2.1.

As the input increases from low to high, the output switches from high to low

when the input exceeds VH2L. As the input decreases, the output can switch back

to high again only when the input goes below VL2H . The circuit can be divided into

two parts, depending on whether the output is high or low. If the output is low,

then MP3 is on while MN3 is off. At this time, only the p-channel portions are
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Figure 2.1: CMOS Schmitt trigger, a voltage-input voltage-output hysteresis circuit.

(a) Schematic used in PSpice simulation. (b) Simulated transfer characteristics,

reverse hysteresis. VDD = 5V and VSS = 0V .

considered in calculating the switching point voltage. If the output is high, then

MN3 is on and MP3 is off and only the n-channel portions are considered. With

the given VH2L and VL2H , the transistor sizes of MN1, MN3, MP1 and MP3 can be

decided by Equations (2.3) and (2.4), if VSS is grounded [2].

βMN1

βMN2

=
[

VDD − VH2L

VH2L − VTHN

]2
(2.3)

βMP1

βMP2

=
[

VL2H

VDD − VL2H − VTHP

]2
(2.4)

Therefore, we can rearrange Equations (2.3) and (2.4) to solve for switching voltage

VH2L and VL2H in term of the transistor parameters, as shown in Equations (2.5)

and (2.6).

VH2L =
VDD +

√
βMN1

βMN2
· VTHN

1 +
√

βMN1

βMN2

=
VDD − VTHN

1 +
√

βMN1

βMN2

+ VTHN (2.5)
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VL2H =
VDD − VTHP

1 +
√

βMP1

βMP2

(2.6)

Equations (2.5) and (2.6) describe the instantaneous switching points of the

Schmitt trigger. Detailed study of the transient behavior from one stable state to

another can be found in I. M. Filanovsky and H. Baltes’s discussions on Schmitt

trigger design [14]. For the Schmitt trigger circuit shown in Figure 2.1, the switching

voltages and the 2-level output voltages are decided by the transistor parameters

and the bias voltages VDD and VSS. In other words, the parameters of the hysteresis

can not be adjusted externally, except by power supply adjustment, after the design

of the circuit is finished.

2.1.2 Pfister’s Schmitt Trigger

There is a slight variation of the Schmitt trigger, due to A. Pfister [41], shown

in Figure 2.2. With an additional pair of transistors, MN4 and MP4, at the output

stage, the switching voltages of the hysteresis can be adjusted externally by the

control voltage,VCT , although the variation is not over a very wide range. One

can also notice that the switching from low to high and high to low can not be

adjusted independently. There is no control on the output high and output low.

The simulation results of Pfister’s Schmitt trigger are shown in Figure 2.3.
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Figure 2.2: Pfister’s CMOS adjustable Schmitt trigger [41], with external voltage

control.
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Figure 2.3: Pfister’s CMOS adjustable Schmitt trigger [41], with external voltage

control simulation results. VDD = 5V and VSS = 0V . (a)VCT = 0V . (b)VCT = 5V .

2.1.3 Kim’s Adjustable Hysteresis Using Operational Transconduc-

tance Amplifier

A Schmitt trigger claimed to have fully adjustable hysteresis was implemented

using an operational transconductance amplifier (OTA) by K. Kim [23] to give

reversed hysteresis. The circuit configuration and the transfer characteristics of

Kim’s Schmitt trigger are shown in Figure 2.4. The transfer characteristics are

directly grabbed from Kim’s paper. The two-level output voltages V+ and V− are

linearly controlled by the bias current IB1 simultaneously. The switching threshold

voltages VH2L and VL2H are linearly controlled by a different bias current, IB2, also

simultaneously. For this hysteresis circuit, the height and width of the hysteresis

can be adjusted but the position of the hysteresis is fixed, to be symmetric about

15



+
-OTA2

-
+OTA1

R2 R1

VIN

VOUTVT

IB1

IB2

VIN

VOUT

decreasing VIN

increasing VIN

(b)(a)

Figure 2.4: Kim’s adjustable hysteresis using operational transconductance amplifier

[23]. (a)Circuit configuration. (b)Transfer characteristic.

the origin. Therefore, Kim’s Schmitt trigger is not really fully adjustable.

2.1.4 Adjustable Hysteresis Using Operational Amplifier

Semistate design theory has been used in the design of hysteresis by R. W.

Newcomb [36] to achieve swept binary hysteresis by using operational amplifiers, as

shown in Figure 2.5. The hysteresis parameter can be adjusted by the bias voltages

VS and VB. One example of Newcomb’s experimental swept hysteresis results are

shown in Figure 2.6.

Newcomb’s hysteresis has partial tunability, but it is not in CMOS VLSI de-

sign.
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Figure 2.5: Newcomb’s swept hysteresis hysteresis realization circuits [36].

(a) (b)

Figure 2.6: Newcomb’s experimental swept hysteresis results [36]. (a) VS is a square

wave. (b) VS is a sine wave.
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2.1.5 Summary

A comparison of the above voltage-input voltage-output hysteresis circuits is

given in Table 2.2. None of the listed circuits give complete control of the hysteresis

height, width, and position.

Table 2.2: Comparison of the voltage-input voltage-output binary hysteresis circuits.

Hysteresis Horizontal Vertical

CMOS Schmitt [21] Reverse None None

Pfister’s [41] Reverse Limited None

Kim’s OTA-R [23] Reverse Limited Limited

Newcomb Swept [36] Reverse Limited Limited

2.2 Current-Input Voltage-Output Hysteresis Circuits

Current-input voltage-output hysteresis circuits take currents as inputs and

produce voltage as outputs. Often current-input voltage-output hysteresis circuits

are referred to as current Schmitt triggers in the literature ([29], [59], and [60]),

although they do not operate completely in the current domain. Current-input

Schmitt triggers are particularly useful in photodetectors, barcode readers, and op-

tical remote controls.
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Figure 2.7: Liao’s CMOS current-input voltage-output hysteresis circuit. [29]. (a)

Schematic used in PSpice simulation. (b) Simulated transfer characteristic, forward

hysteresis. VDD = 5V and VSS = 0V .

2.2.1 Liao’s CMOS Current-Input Voltage-Output Hysteresis Circuit

Liao [29] has achieved a current-input voltage-output Schmitt trigger using

only 6 transistors. The schematic and the transfer characteristics of this 6-transistor

current-mode Schmitt trigger are shown in Figure 2.7. The feedback is established

through MP1 by comparing IIN and the current flowing through MP4.

For this circuit, the switching current IH2L is determined by the parameters

of transistor MN1. The width of the hysteresis IW = IL2H − IH2L is decided by

the parameters of transistor MP1. This is an impressive circuit made up of only

6 transistors but it has the disadvantage that the hysteresis parameters cannot

be controlled externally. However, some minor variations could be made to this

circuit to achieve certain external control. For example, the transistor MN1 could
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be replaced by a current source in which one of the threshold currents IH2L could

be controlled by this current source. If βP3 � βN1, βP1 and VTHN
∼= VTHP , the two

switching points IH2L and IL2H are given in Equations (2.7).

IH2L = βN1(VDD − VSS − VTHN)2

IL2H = βN1(VDD − VSS − VTHN)2 + βP1(VDD − VSS − 2VTHP )2

(2.7)

2.2.2 Z. Wang’s CMOS Current-Input Voltage-Output Hysteresis Cir-

cuit with One Control

A current-input voltage-output Schmitt trigger with one controllable threshold

current was achieved by using only 7 transistors by Z. Wang and W. Guggenbuhl [59].

The schematic of the circuit is shown in Figure 2.8 (a), and the simulations results

are shown in Figure 2.8 (b). The transistor pair MN2 and MP1 compares I0 and the

current though MP1. The comparison result switches the feedback transistor MP4

on or off. This Schmitt trigger generates a reverse hysteresis. The only controllable

threshold current IL2H is given by I0. The hysteresis width IW = IH2L − IL2H

is decided by the dimensions of transistor MP4. With fixed voltage supply, the

hysteresis generated by the circuit in Figure 2.8 has fixed width and height but

externally controllable position along the horizontal axis. The two switching points

IL2H and IH2L are given by Equations (2.8).

IL2H = I0

IH2L = I0 + βP4

[
2
(
VDD − VSS −

√
I0

βN2
− VTHP

) (√
I0

βP1
+ VTHP

)
−
(√

I0
βP1

+ VTHP

)2
]

(2.8)
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Figure 2.8: Z. Wang’s CMOS 7-transistor current-input voltage-output hysteresis

circuit [59]. (a) Schematic used in PSpice simulation. (b) Simulated transfer char-

acteristic, reverse hysteresis. VDD = 5V , VSS = 0V and I0 = 2µA.

2.2.3 Z. Wang’s CMOS Current-Input Voltage-Output Hysteresis Cir-

cuit with Full Control Horizontally

Z. Wang and W. Guggenbuhl [60] furthered their study and achieved an 8 tran-

sistor CMOS current-input voltage-output hysteresis circuit with adjustable hystere-

sis, as shown in Figure 2.9. MP1 and MP2, MN3 and MN4 are matching pairs that

compare the currents ISD of MP1 and IIN . The output of the comparator controls

the switching of MN1 and MN2, which creates a regenerative feedback. The thresh-

old currents are exclusively determined by the current ISD of MP1. The current

ISD of MP1 is controlled by VOUT through switching MN1 on or off. It is not diffi-

cult to see that the lower switching current IH2L has the same value as I1 and the

hysteresis width IW = IL2H − IH2L is I0. The two switching currents IH2L and IL2H
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Figure 2.9: Z. Wang’s CMOS 8-transistor current-input voltage-output hysteresis

circuit [60]. (a) Schematic used in PSpice simulation. (b) Simulated transfer char-

acteristic, forward hysteresis. VDD = 5V , VSS = 0V , I0 = 6µA, and I1 = 2µA.

are given by Equations (2.9). The simulation results are given in Figure 2.9 (b).

The horizontal position and the width of the hysteresis are completely externally

adjustable by two current sources I1 and I0, but the output high and low are fixed

by VDD and VSS.

IH2L = I1

IL2H = I1 + I0

(2.9)

2.2.4 Z. Wang’s CMOS Two Input Current-Input Voltage-Output

Hysteresis Circuit with Full Control Horizontally

The circuit in Figure 2.9 was further extended to a two-input current com-

parator with variable hysteresis, as shown in Figure 2.10. The current comparing
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pair MN5 and MP5 switches MN1 on or off as MN6 and MP6 control MN2. At any

moment except the transition time, one and only one of MN1 and MN2 is on, which

leads the current to feed back to either MP1 or MP2. This ensures the hysteresis

characteristic of the circuit. It is obvious that the hysteresis width IW is twice the

value of the bias current IHY . Since the circuit is symmetric with respect to I1 and

I2, it can be used to generate either forward or reverse hysteresis. If I1 is the input

and I2 is the control, forward hysteresis is obtained. If I2 is the input and I1 is the

control, reverse hysteresis is obtained. For the reverse hysteresis, the two switching

currents IH2L and IL2H are shown in Equations (2.10). A simulation example is

shown in Figure 2.10 (b).

IH2L = I1 + IHY

IL2H = I1 − IHY

(2.10)

2.2.5 Summary

In Table 2.3, a comparison is given of the four CMOS current-input voltage-

output hysteresis circuits discussed here. For all four of the current-input voltage-

output binary hysteresis circuits discussed in this section, the output voltage switches

between VDD and VSS and can not be adjusted externally.

One can notice that for all the listed circuits in Table 2.3, passing the output

through an inverter can change the forward hysteresis to reverse hysteresis, or vice

versa.
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Figure 2.10: CMOS two-input current comparator with hysteresis [60]. (a)

Schematic used in PSpice simulation. (b)Simulated transfer characteristic, reverse

hysteresis. This circuit gives reverse hysteresis; I2 is the input and I1 is the control.

VDD = 5V , VSS = 0V , and I1 = 2µA.
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Table 2.3: Comparison of the current-input voltage-output binary hysteresis circuits.

Hysteresis Horizontal Vertical

Liao’s 6 MOSs [29] Forward None None

Z. Wang’s 7 MOSs [59] Reverse Limited None

Z. Wang’s 8 MOSs [60] Forward Complete None

Z. Wang’s Two Input [60] Forward & reverse Complete None

2.3 Voltage-Input Current-Output Hysteresis Circuits

2.3.1 Linares-Barronco’s CMOS Transconductance Hysteresis Cir-

cuit

A Transconductance-mode (T-mode) hysteresis amplifier has been achieved to

give voltage-input current-output reverse hysteresis characteristic [31]. The schematic

of the T-mode hysteresis is shown in Figure 2.11. In this T-mode hysteresis ampli-

fier, the threshold voltages, VL2H and VH2L, can be adjusted externally and indepen-

dently by VE+ and VE−. The simulation results are shown in Figure 2.12. Figure

2.12(a) shows the simulation results of adjusting VL2H by varying VE+ with fixed

VE−. Figure 18 (b) shows the simulation results of adjusting VH2L by varying VE−

with fixed VE+. This CMOS circuit has full external control horizontally but no

control in the vertical direction. Also, The horizontal control has limited range, as

shown in Figure 2.12, since the two control voltages VE+ and VE− are limited by

VSS ≤ VE− < VE+ ≤ VDD
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Figure 2.11: Schematic of the T-mode hysteresis amplifier [31].
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Figure 2.12: Simulated transfer characteristics for T-mode hysteresis amplifier.

VDD = 5V and VSS = −5V . (a) For VE− = 1V , the solid line, dashed line with

centered circles, and dashed line with crossed squares are the output curve when

VE+ = 5V , 3V , and 1V , respectively. (b) For VE+ = 5V , the solid line, dashed

line with centered circles, and dashed line with crossed squares are the output curve

when VE− = 3V , 1V , and −1V , respectively.
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Figure 2.13: Schematic of the step-linear voltage-input current-output hysteresis

circuit [61].

2.3.2 L. Wang’s Voltage-Input Current-Output Hysteresis Circuit

Another approach to realize voltage-input current-output hysteresis is the step-

linear hysteresis circuit [61], as suggested by M. Kataoka and T. Saito [22]. Semistate

design theory for binary and swept hysteresis [36] was applied in the design of the

voltage-input current-output hysteresis circuit, as shown in Figure 2.13. Differential

pairs have been chosen to realize both linear and step functions.

After finishing the design of the differential pairs, the hysteresis output has a

fixed height and width. The vertical position of the hysteresis is controlled by the

bias current IB. The horizontal position of the hysteresis is controlled by the bias

voltage VB, which is used to bias one input of the linear differential pair. Simulation

results of the CMOS realization of Figure 2.13 are shown in Figure 2.14. The

hysteresis output curves are obtained with different bias current IB and voltage VB.
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2.3.3 Summary

In Table 2.4, a comparison of the two CMOS voltage-input current-output

hysteresis circuits discussed here is given.

Table 2.4: Comparison of the voltage-input current-output binary hysteresis circuits.

Hysteresis Horizontal Vertical

Linares-Barronco’s [31] Reverse Limited Range None

L. Wang’s [61] Forward Limited Limited

2.4 Current-Input Current-Output Hysteresis Circuits

The least amount of study has been done in this category. There are not many

current-input current-output hysteresis circuits in the literature search. One is the

winner-take-all (WTA) circuit, which has the function of choosing a winner from a

group of signals. Based on Starzyk and Fang’s current-mode winner-take-all (WTA)

circuit [53], hysteresis was added by adding local feedback to the winning node of

the array [13]. One element of DeWeerth’s WTA circuit with distributed hysteresis

is shown in Figure 2.15 (a). The experimental results of S. P. DeWeerth and T. G.

Moris [13], as shown in Figure 2.15 (b), did show hysteresis characteristics, but the

operation of the circuit was not well explained. Further investigation is needed for

generating current-input, current-output binary hysteresis with full control.
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Figure 2.14: One simulation example of the voltage-input current-output Hysteresis

for the circuit in Figure 2.13. The solid line with circles is the output when VB = 0V

and IB = 0µA. The solid line with squares is the output when VB = 0.38V and

IB = 12µA
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Figure 2.15: DeWeerth’s winner-take-all(WTA) circuit with distributed hysteresis

[13]. (a)Schematic of one element in WTA circuit. (b)Experimental data showing

variable hysteretic circuit behavior.

2.5 Summary of Known Binary Hysteresis Circuits

For all the previous studies on binary hysteresis circuits, none of them has

full external control of the hysteresis width, height, horizontal and vertical position.

Some of them are not CMOS circuits. Therefore, our study is focused on building

CMOS binary hysteresis circuits with full external control. We would also like to

extend the operating range of the binary hysteresis circuits into all four quadrants.
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Chapter 3

CMOS Binary Hysteresis Circuits with Full Control

3.1 Overview

In order to put hysteresis cubes in any place in the input-output space, we

need to have binary hysteresis circuits with full control and with operating range in

all four quadrants; such circuits will be discussed in this chapter.

Binary hysteresis can be categorized in two groups, forward and reverse, based

on the switching characteristics, as shown in Figure 3.1.

The mathematical description of forward binary hysteresis is contained in

Equation (3.1), with u the input and y the output. H+, H−, uH2L, and uL2H

are real parameters characterizing the hysteresis, where H− < H+ and uH2L < uL2H

are assumed, and y0 is the previous value of y. The presence of y0 in Equation (3.1)

ensures that the hysteresis is not multi-valued.

y(u, y0) =



H+ u > uL2H , for any y0

H+ uH2L ≤ u ≤ uL2H , if y0 = H+

H− uH2L ≤ u ≤ uL2H , if y0 = H−

H− u < uH2L, for any y0

(3.1)

Reverse hysteresis can be described in a very similar way in Equation (3.2),
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Figure 3.1: Binary hysteresis (a) Forward and (b) Reverse [36].

where H− < H+ still holds as in the forward hysteresis case, yet uL2H < uH2L.

y(u, y0) =



H+ u < uL2H , for any y0

H+ uL2H ≤ u ≤ uH2L, if y0 = H+

H− uL2H ≤ u ≤ uH2L, if y0 = H−

H− u > uL2H

(3.2)

Alternate to using H−, H+, uH2L, and uL2H , both forward and reverse hystere-

sis can be characterized by there height HH , width uW , center position vertically

with HC , and horizontally with uC , as shown in Equations (3.3).

HH = H+ −H−

uW = |uH2L − uL2H |

HC = (H+ + H−) /2

uC = (uH2L + uL2H) /2

(3.3)
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In this chapter, binary hysteresis circuits with full control in four input-output vari-

able categories are discussed in the following four sections. The four categories are

current-input current-output, voltage-input voltage-output, current-input voltage-

output, current-output voltage-output. Full control means that each of the four

parameters of the hysteresis H+, H−, uH2L, and uL2H can be adjusted indepen-

dently, subject to H+ > H−, uH2L < uL2H for forward hysteresis, and uL2H < uH2L

for reverse hysteresis. In each of the sections, the schematics of the circuit, the

operation principle, and the control on the switching characteristics are presented.

Simulation results demonstrate the switching characteristics.

For all the simulations in this chapter, MOSIS 1.2 µm transistor models

(BSIM1, Level 4, and Run n7ab) are used [37].

3.2 CMOS Current-Input Current-Output Binary Hysteresis Circuits

with Full Control

Based on the current mirror and current comparator schematic in Z. Wang and

W. Guggenbhl’s circuit [60], a new current-input current-output binary hysteresis

circuit with full adjustment is designed. The first edition shown in Figure 3.2 only

works in the fourth quadrant of IOUT vs IIN . By using the bidirectional current

mirrors, the operating range of the binary hysteresis circuit is extended to all four

quadrants, as shown in Figure 3.5.
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3.2.1 CMOS Current-Input Current-Output Binary Hysteresis Cir-

cuit in the Fourth Quadrant

The schematic of the current-input current-output binary hysteresis circuit is

shown in Figure 3.2. IIL, IIW , IOH , and IOW are the four bias currents, seen at the

bottom of the circuit schematic. While in the top of the middle, IIN is the input

current. Transistor pairs MP1 and MP2, MN3 and MN4 form current mirrors.

Transistors MP2 and MN3 form a current comparator. The current comparison

result is fed back to the gate of transistor MN1, at the very left, to control MN1

to be on or off. Inversion of the comparison vs MN7 and MP7 is fed back to the

gate of transistor MN2 to control MN2 to be off or on. It is important to point

out that one and only one of MN1 and MN2 is switched on through the feedback

mechanism. Therefore, the current flowing through MP1 is either IIL (the current

controlling for IH2L) or the sum of IIL and IIW (the width control current). The

two current sources IIL and IIW control the two switching currents IL2H and IH2L.

Transistors MP3 and MP4, MN5 and MN6, with two current sources IOH and IOW ,

form the output end of this circuit. These four transistors work in a similar way as

MP1 and MP2, MN1 and MN2. Therefore, the output (vertical height and width)

is controlled by the two current sources IOH and IOW .

When the input current IIN = 0, the gate voltage of transistor MP7 and MN7

is high, the transistors MN1 and MN6 are on, and the transistors MN2 and MN5

are off. Therefore the current in MP1 is IIL +IIW , which is compared with the input

current IIN . At the same time the output current IOUT = −(IOH + IOW ). When
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Figure 3.2: Schematic of the CMOS current-input current-output hysteresis circuit

in fourth quadrant.

IIN sweeps from 0 to high, the switching occurs at IIN = IIL + IIW , MN2 and MN5

are turned on and MN1 and MN6 are turned off. The output current jumps from

−(IOH + IOW ) to −IOH and the current through MP1 switches from IIL + IIW to

IIL. When IIN sweeps from high to zero, the switching occurs at IIN = IIL, and

the output IOUT jumps from −IOH to −(IOH + IOW ).

The assumed positive directions of the input and output currents are shown

by the arrows in Figure 3.2; note that IOUT < 0. The switching currents, IH2L and

IL2H are given in terms of current source values by Equations (3.4). Similarly the

output high and output low, I+ and I−, are given in Equations (3.5). The center

location of the hysteresis (IIC , IOC) is given in Equations (3.6), and the width IW
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and height IH are given in Equations (3.7).

IH2L = IIL

IL2H = IIL + IIW

(3.4)

I+ = −IOH

I− = − (IOH + IOW )

(3.5)

IIC = (IL2H + IH2L)/2 = (2IIL + IIW )/2

IOC = (I+ + I−)/2 = −(2IOH + IOW )/2

(3.6)

IW = IL2H − IH2L = IIW

IH = I+ − I− = IOW

(3.7)

PSpice simulation results are shown in Figure 3.3. For all PMOS transistors,

the width to length ratio is (W/L) = (4µm/12µm). And for all NMOS transistors,

(W/L) = (4µm/12µm). VDD = 3V and VSS = −3V . The top plot of Figure 3.3 is

IOUT vs IIN when IIN sweeps from low to high, the middle one is IOUT vs IIN when

IIN sweeps from high to low, and the bottom plot is overlaying the above two on

top of each other.

PSpice simulation results with different biasing currents are shown in Figure

3.4. For each set of biasing currents, the plot is IOUT vs IIN with the input current

IIN sweeping in both directions.

We have achieved complete control on the hysteresis, position, width and

height, but there are limitations to the circuit shown in Figure 3.2. Although it

has full adjustment of the four binary hysteresis parameters, the adjustment range

is limited. It is clear that the bias currents IIL and IOH can not be negative numbers.
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Figure 3.3: PSpice simulation results for the current-input current-output hysteresis

circuit in the 4th quadrant, shown in Figure 3.2.
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Figure 3.4: PSpice simulation results for the current-input current-output hysteresis

circuit in the 4th quadrant, shown in Figure 3.2. The solid line with circles is IOUT

vs IIN when IIL = 1µA, IIW = 3µA, IOH = 0µA, and IOW = 3µA. The dashed

line with squares is IOUT vs IIN when IIL = 3µA, IIW = 3µA, IOH = 2µA, and

IOW = 3µA.
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Figure 3.5: Schematic of the current-input current-output forward binary hysteresis

circuit working in the full input and output range, all four quadrants.

Therefore, since IOUT < 0, the operational range of this current-input current-output

hysteresis circuit lies in the 4th quadrant of the input-output plane.

3.2.2 CMOS Current-Input Current-Output Binary Hysteresis Cir-

cuit in All Four Quadrants

3.2.2.1 Schematic and Operation Principle

To overcome the quadrant shortcoming of the circuit in Figure 3.2, bi-directional

current mirrors are used to replace all the current mirrors and current sinks. The

current-input current-output binary hysteresis circuit working with both positive

and negative values is achieved by the schematic shown in Figure 3.5.

The arrows in Figure 3.5 show the assumed positive directions of the input

and output currents. When the input current IIN is negative and very low and is
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overpowering the effects of both IIL and IIW , IS is negative in the direction defined in

Figure 3.5 and consequently charges up the gates of transistor MPF1 and MNF1 to

be high, and VM is high. On the input end, transistor MNON1 is on and MNOFF1

is off, therefore, IS = IIN + (IIL − IIW ) = IIN − (−IIL + IIW ). On the output

end, transistor MNON2 is on and MNOFF2 is off, and the output current IOUT =

IOH − IOW . In the case of IIN sweeping from low to high, negative to positive,

the switching happens when IIN = (−IIL + IIW ), then IS becomes positive and

discharges the gates of transistors MPF1 and MNF1, turning MNON1 and MNON2

off, and turning MNOFF1 and MNOFF2 on, IS becomes IIN − (−IIL) and IOUT

jumps to IOH . When the input current IIN is positive and very high, IS is positive,

the gates of transistor MPF1 and MNF1 are low, and VM is low. At the input end,

transistor MNON1 is off and MNOFF1 is on, IS = IIN +IIL = IIN − (−IIL). At the

output end, transistor MNON2 is on and MNOFF2 is off, and the output current

IOUT = IOH . In the case of IIN sweeping from high to low, the switching happens

when IIN = (−IIL), then IS becomes negative and charges the gates of transistors

MPF1 and MNF1, turning MNON1 and MNON2 on, and turning MNOFF1 and

MNOFF2 off, IS switches to IIN − (−IIL + IIW ) and IOUT switches to IOH − IOW .

The hysteresis curve is a forward one, with IH2L < IL2H .

The switching currents, IH2L and IL2H are given in terms of current source

values by Equations (3.8). The output high and output low, I+ and I−, are given

in Equations (3.9). The center (IIC , IOC), the width IW , and the height IH of the
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forward hysteresis are given in Equations (3.10) and Equations (3.11).

IH2L = −IIL

IL2H = −IIL + IIW

(3.8)

I+ = IOH

I− = IOH − IOW

(3.9)

IIC = (IL2H + IH2L)/2 = (−2IIL + IIW )/2

IOC = (I+ + I−)/2 = (2IOH − IOW )/2

(3.10)

IW = IH2L − IL2H = IIW

IH = I+ − I− = IOW

(3.11)

3.2.2.2 PSpice Simulations

The simulation results are shown in Figure 3.6. For all PMOS transistors,

the width to length ratio is (W/L) = (12µm/8µm). And for all NMOS transistors,

(W/L) = (4µm/8µm). VDD = 3.0V and VSS = −3.0V . For all the plots, IIN is the

x-axis and IOUT is the y-axis in the units of µA.

The operational range of the binary current-input current-output circuit in

Figure 3.5 is determined by the operational range of the bi-directional current mir-

rors and the maximum currents that can be carried by MNON1, MNOFF1, MNON2,

and MNOFF2. For the bi-directional current mirrors to work properly, for exam-

ple, the one formed by transistors MN1, MN2, MP1, and MP2, all the transistors

are in saturation. The maximum currents through transistors MNON1, MN1, and

MP1 are given by Equations (3.12). For the chosen transistor width to length ratio,
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Figure 3.6: PSpice simulation results for the current-input current-output forward

hysteresis circuit with full operating range, shown in Figure 3.5.

43



the bidirectional current mirror works in the range of about −200µA to +200µA,

and the maximum current that can flow through MNON1 (or MNOFF1, MNON2,

MNOFF2) is 200µA. Therefore, the operational range of the hysteresis is given by

Equations (3.13).

INMON1(MAX) = βMNON1 (VDD − VSS − VTHN)2

IMN1(MAX) = βMN1 (VDD − VSS − VTHN − VTHP )2

IMP1(MAX) = βMP1 (VDD − VSS − VTHN − VTHP )2

(3.12)

−200µA < IH2L < IL2H < 200µA

IL2H − IH2L < 200µA

−200µA < I− < I+ < 200µA

I+ − I− < 200µA

(3.13)

Simulation results of the frequency response of the current-input current-

output binary hysteresis circuit, shown in Figure 3.5, are shown in Figure 3.7. The

input current source IIN is a triangular wave with the magnitude of 80µA, and

the frequencies of 10KHz, 100KHz, 1MHz, and 2MHz. The hysteresis has sharp

transition when frequency is up to 100KHz. With the increasing of frequency, the

hysteresis starts to lose the sharp shape and becomes wider due to the parasitic

capacitance effects.
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Figure 3.7: Frequency response of the current-input current-output forward binary

hysteresis circuit shown in Figure 3.5. IIL = 40µA, IIW = 80µA, IOH = 40µA, and

IOW = 80µA.
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Figure 3.8: Schematic of the current-input current-output reverse binary hysteresis

circuit working in the full input and output range, all four quadrants.

3.2.2.3 CMOS Current-Input Current-Output Reverse Binary Hys-

teresis Circuit

The current-input current-output hysteresis circuit, shown in Figure 3.5, only

gives forward binary hysteresis. A little variation on the circuit design can yield

reverse binary hysteresis. The gate of transistor MNOFF2 is connected to the drains

of MNF2 and MPF2, instead of the gates of MNF2 and MNF2, as in Figure 3.5,

and the gate of transistor MNON2 is connected to the gates of MNF2 and MPF2,

instead of the drains of MNF2 and MPF2, as in Figure 3.5. The schematic of the

binary hysteresis circuit that gives reverse binary hysteresis is shown in Figure 3.8.

The simulation results are shown in Figure 3.9.
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Figure 3.9: PSpice simulation results for the current-input current-output reverse

binary hysteresis circuit with full operating range, shown in Figure 3.8.

3.2.3 Summary

CMOS current-input current-output forward and reverse binary circuits with

full level and jump point adjustment via external current sources have been achieved.

The operating range of the binary hysteresis is extended to all four quadrants. The

PSpice simulation results demonstrate its full adjustment function.
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3.3 CMOS Voltage-Input Voltage-Output Binary Hysteresis Circuits

with Full Control in All Four Quadrants

3.3.1 Schematic and Operation Principle

The schematic of the voltage-input voltage-output reverse binary hysteresis

circuit is shown in Figure 3.10. Notice that all the bodies of PMOS transistors are

biased to VDD and all the bodies of NMOS transistors are biased to VSS, as were

automatically the cases for Figure 3.5 and Figure 3.8. A differential amplifier was

used as a voltage comparator. Transistor pairs MP1 and MP3, MP2 and MP4, and

MN3 and MN4 are matching pairs that form current mirrors. If the gate voltage of

transistor MN1 is higher than the gate voltage of MN2, the current IS is positive with

the direction indicated in Figure 3.10, therefore, the gate voltages of the inverter

formed by transistor pair MPF and MNF are discharged and VM will reach VDD.

Similarly, if the gate voltage of MN1 is lower than the gate voltage of MN2, IS is

negative and the gate voltages of MPF and MNF are charged and VM will reach

VSS. The feedback is set up by using the inverter formed by transistor pair MPI

and MNI, with the source of PMOS MPI biased to a voltage source VIH and the

source of MNOS MNI biased to a voltage source VIL. With VM being VDD or VSS,

the gate voltage of MN2 is biased to VIL or VIH . The output end is formed by the

inverter MPO and MNO, with the source of PMOS MPO biased to VOH and the

source of NMOS MNO biased to VOL, therefore, the output voltage will be either

VOH or VOL.
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Figure 3.10: Schematic of the voltage-input voltage-output reverse binary hysteresis

circuit working in all four quadrants, with full control.

In the case of VIN sweeping from VSS to VDD, initially, VIN is low, IS is

negative, VM = VSS, VS = VIH , and VOUT = VOH . The switching occurs when VIN

is higher than VS = VIH , then IS becomes positive, VM switches from VSS to VDD,

and VOUT from VOH to VOL. Also, at the same time, VS switches from VIH to VIL.

In the case of VIN sweeping from VDD to VSS, initially, VIN is high, IS is

positive, VM = VDD, VS = VIL, and VOUT = VOL. The switching occurs when VIN is

lower than VS = VIL, then IS becomes negative, VM switches from VDD to VSS, and

VOUT from VOL to VOH , and VS switches from VIL to VIH .

The voltage-input and voltage-output hysteresis circuit, shown in Figure 3.10,

gives reverse hysteresis curve, with VL2H < VH2L. The switching voltages, VH2L

and VL2H are given in terms of bias voltage source values by Equations (3.14). The

output high and output low, V+ and V−, are given in Equations (3.15). The center
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position (VIC , VOC), width VW and height VH of the hysteresis are given in Equations

(3.16) and Equations (3.17).

VH2L = VIH

VL2H = VIL

(3.14)

V+ = VOH

V− = VOL

(3.15)

VIC = (VIH + VIL)/2

VOC = (VOH + VOL)/2

(3.16)

VW = VIH − VIL

VH = VOH − VOL

(3.17)

3.3.2 PSpice Simulations

PSpice simulation results for the circuit in Figure 3.10 are shown in Figure

3.11. VIN is the x-axis and VOUT is the y-axis in the units of Volts for all the plots.

VDD = 3.0V , VSS = −3.0V , and the tail voltage VT = −2.0V . For NMOS transistors

MN1 and MN2, (W/L) = (8µm/4µm), for all the other NMOS transistors, (W/L) =

(4µm/4µm), for all the PMOS transistors, (W/L) = (12µm/4µm).

The operational range of the binary voltage-input voltage-output circuit in

Figure 3.10 is given by Equation (3.18).

−3V ≤ VL2H < VH2L ≤ 3V

−3V ≤ V− < V+ ≤ 3V

(3.18)

Simulation results of the frequency response of the binary voltage-input voltage-

output, shown in Figure 3.10, are shown in Figure 3.12. The input voltage source
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Figure 3.11: PSpice simulation results for the voltage-input voltage-output reverse

binary hysteresis circuit with full control, shown in Figure 3.10.
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Figure 3.12: Frequency response of the voltage-input voltage-output reverse binary

hysteresis circuit shown in Figure 3.10. VIH = 2V , VIL = −2V , VOH = 2V , and

VOL = −2V .

VIN is a triangular wave with the magnitude of 4V , and the frequencies of 10KHz,

100KHz, 500KHz, and 1MHz. The hysteresis has sharp transition when frequency

is up to 100KHz. With the increasing of frequency, the hysteresis starts to lose the

sharp shape and becomes wider.

3.3.3 CMOS Voltage-Input Voltage-Output Forward Binary Hystere-

sis Circuit

The voltage-input voltage-output hysteresis circuit, shown in Figure 3.10, only

gives reverse binary hysteresis. A little variation on the circuit design can yield
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Figure 3.13: Schematic of the voltage-input voltage-output forward binary hysteresis

circuit working in the full input and output range, all four quadrants.

forward binary hysteresis. The gates of transistors MNO and MPO are connected

to the gates of MNF and MPF, instead of the drains of MNF and MPF, as in

Figure 3.10. The schematic of the binary hysteresis circuit that gives forward binary

hysteresis is shown in Figure 3.13. The simulation results are shown in Figure 3.14.

3.3.4 Summary

The simulation results demonstrate that both reverse and forward binary hys-

teresis can be achieved by the CMOS voltage-input voltage-output binary hysteresis

circuits, in Figure 3.10 and Figure 3.13. There is full control on the output levels

and the jump points via external voltage sources. Both circuits operate in all four

quadrants.
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Figure 3.14: PSpice simulation results for the voltage-input voltage-output forward

binary hysteresis circuit with full operating range, shown in Figure 3.13.

3.4 CMOS Voltage-Input Current-Output Binary Hysteresis Circuits

with Full Control in All Four Quadrants

By combining the design and switching techniques used in the current-input

current-output hysteresis circuit, shown in Figure 3.2, and the voltage-input voltage-

output hysteresis circuit, shown in Figure 3.10, a voltage-input current-output hys-

teresis circuit, as well as a current-input voltage-output hysteresis circuit can be

achieved. The discussion on the voltage-input current-output hysteresis circuit is

given in this section and the current-input voltage-input hysteresis circuit will be

discussed in the following Section.
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Figure 3.15: Schematic of the voltage-input current-output forward binary hysteresis

circuit working in all four quadrants, with full control.

3.4.1 Schematic and Operation Principle

We can take the input part of the voltage-input voltage-output hysteresis cir-

cuit, shown in Figure 3.10, and the output part of the current-input current-output

hysteresis circuit, shown in Figure 3.5, and combine them to achieve a voltage-input

current-output binary hysteresis circuit with full control. The schematic is shown

in Figure 3.15.

When VIN is low, VM = VSS, VS = VIH , transistor MNOFF is off and MNON

is on, and the output current IOUT = IOH−IOW . While VIN is sweeping from VSS to

VDD, the switching occurs when VIN is higher than VS = VIH , VM switches from VSS

to VDD, VS switches from VIH to VIL, transistor MNOFF is turned on and transistor

MNON is turned off and IOUT switches from IOH − IOW to IOH . Also, at the same

time, VS switches from VIH to VIL. Similarly, while VIN is sweeping from VDD to

VSS, the switching voltage is at VIN = VS = VIL, the output IOUT switches from
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IOH to IOH − IOW . The switching curve is a forward hysteresis, with VH2L < VL2H .

The switching voltages and the output currents are given in Equations (3.19)

and Equations (3.20). The center (VIC , IOC), the width VW and the height IH of

the hysteresis are given in Equations (3.21) and Equations (3.22).

VL2H = VIH

VH2L = VIL

(3.19)

I+ = IOH

I− = IOH − IOW

(3.20)

VIC = (VIH + VIL)/2

IOC = (2IOH − IOW )/2

(3.21)

VW = VIH − VIL

IH = IOW

(3.22)

The operational range of the forward hysteresis generated by the voltage-input

current-output circuit in Figure 3.15 is given by Equations (3.23).

−3V ≤ VH2L < VL2H ≤ 3V

−200µA < I− < I+ < 200µA

I+ − I− < 200µA

(3.23)

3.4.2 PSpice Simulations

PSpice simulation results for the circuit in Figure 3.15 are shown in Figure 3.16.

VIN is the x-axis with the unit of Volts and IOUT is the y-axis in the units of µA for

all the plots. VDD = 3.0V , VSS = −3.0V and VT = −2.0V . For NMOS transistors
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MN1 and MN2, (W/L) = (8µm/4µm), for all the other NMOS transistors, (W/L) =

(4µm/4µm), for all the PMOS transistors, (W/L) = (12µm/4µm).

3.4.3 CMOS Voltage-Input Current-Output Reverse Binary Hystere-

sis Circuit

The voltage-input current-output hysteresis circuit, shown in Figure 3.15, only

gives forward binary hysteresis. A little change on the circuit design can yield reverse

binary hysteresis. The gate of transistor MNOFF is connected to the gates of MNF

and MPF, instead of the drains of MNF and MPF, as in Figure 3.15, and the gate

of transistor MNON is connected to the drains of MNF and MPF, instead of the

gates of MNF and MPF, as in Figure 3.15. The schematic of the binary hysteresis

circuit that gives forward binary hysteresis is shown in Figure 3.17. The simulation

results are shown in Figure 3.18.

3.4.4 Summary

The simulation results, shown in Figure 3.16 and Figure 3.18, demonstrate

that the CMOS voltage-input voltage-output binary hysteresis circuits, in Figure

3.15 and Figure 3.17 achieve full control on output levels and jump points, via

external current and voltage sources. They give both forward and reverse hysteresis

in all four quadrants.
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Figure 3.16: PSpice simulation results for the voltage-input current-output forward

binary hysteresis circuit with full control, shown in Figure 3.15.
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Figure 3.17: Schematic of the voltage-input current-output reverse binary hysteresis

circuit working in the full input and output range, all four quadrants.
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Figure 3.18: PSpice simulation results for the voltage-input current-output reverse

binary hysteresis circuit with full operating range, shown in Figure 3.17.
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Figure 3.19: Schematic of the current-input voltage-output forward binary hysteresis

circuit working in all four quadrants, with full control.

3.5 CMOS Current-Input Voltage-Output Binary Hysteresis Circuits

with Full Control in All Four Quadrants

3.5.1 Schematic and Operation Principle

We can take the input part of the current-input current-output hysteresis

circuit, shown in Figure 3.5, and the output part of the voltage-input voltage-output

hysteresis circuit, shown in Figure 3.10 and combine them to achieve a current-input

voltage-output forward binary hysteresis circuit with full control. The schematic is

shown in Figure 3.19.

The arrows in Figure 3.19 show the assumed positive directions of the IIN and

IS. When the input current IIN is negative and very low and is overpowering the

effects of both IIL and IIW , IS is negative, which charges up the gates of transistors
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MPF1 and MNF1 to be high, and VM is high, transistor MNON is on and MNOFF is

off. Therefore IS = IIN +(IIL− IIW ) = IIN − (−IIL + IIW ), and the output voltage

VOUT = VOL. In the case of IIN sweeping from low to high, the switching happens

when IIN = (−IIL + IIW ). Then IS becomes positive and discharges the gates of

transistors MPF1 and MNF1, turning MNON off, and MNOFF on, IS switches to

IIN − (−IIL) and VOUT switches to VOH . When the input current IIN is positive

and very high, IS is positive, the gates of transistor MPF1 and MNF1 are low, VM

is low, transistor MNON is off, and MNOFF is on, IS = IIN + IIL = IIN − (−IIL),

and the output voltage VOUT = VOH . In the case of IIN sweeping from high to low,

the switching happens when IIN = (−IIL). Then IS becomes negative and charges

the gates of transistors MPF1 and MNF1, turning MNON on, and MNOFF off, IS

switches to IIN − (−IIL + IIW ) and VOUT switches to VOL. The hysteresis curve is

a forward one, with IH2L < IL2H .

The switching currents and the output voltages are given in Equations 3.24

and 3.25. The center (IIC , VOC), the width IW and the height VH of the forward

hysteresis are given in Equations (3.26) and (3.27).

IL2H = −IIL + IIW

IH2L = −IIL

(3.24)

V+ = VOH

V− = VOL

(3.25)
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IIC = (−2IIL + IIW )/2

VOC = (VOH + VOL)/2

(3.26)

IW = IIW

VH = VOH − VOL

(3.27)

The operational range of the forward hysteresis generated by the current-input

voltage output circuit in Figure 3.19 is given by Equations (3.28).

−200µA < IH2L < IL2H < 200µA

IL2H − IH2L < 200µA

−3V < V− < V+ < 3V

(3.28)

3.5.2 PSpice Simulation

PSpice simulation results for the circuit in Figure 3.19 are shown in Figure

3.20. IIN is the x-axis with the unit of µA and VOUT is the y-axis in the units

of Volts for all the plots. VDD = 3.0V and VSS = −3.0V . For NMOS transis-

tors MN1∼MN4, MNON, and MNOFF (W/L) = (4µm/8µm), for NMOS tran-

sistors, MNF1, MNF2 ,and MNO, (W/L) = (4µm/4µm). For PMOS transistors

MP1∼MP4, (W/L) = (12µm/8µm), for PMOS transistors, MPF1, MPF2 ,and

MPO, (W/L) = (12µm/4µm).

3.5.3 CMOS Current-Input Voltage-Output Reverse Binary Hystere-

sis Circuit

The current-input voltage-output hysteresis circuit, shown in Figure 3.19, only

gives forward binary hysteresis. A little change in the circuit design can yield reverse
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Figure 3.20: PSpice simulation results for the current-input voltage-output forward

binary hysteresis circuit with full control, shown in Figure 3.19.
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Figure 3.21: Schematic of the current-input voltage-output reverse binary hysteresis

circuit working in the full input and output range, all four quadrants.

binary hysteresis. The gates of transistor MPO and MNO are connected to the gates

of MNF2 and MPF2, instead of the drains of MNF2 and MPF2, as in Figure 3.19.

The schematic of the binary hysteresis circuit that gives forward binary hysteresis

is shown in Figure 3.21. The simulation results are shown in Figure 3.22.

3.5.4 Summary

The simulation results demonstrate that the CMOS current-input voltage-

output binary hysteresis circuits, in Figure 3.19 and Figure 3.21 achieve full control

on the output levels and jump points, via external current and voltage sources. Both

circuits operate in all four quadrants.
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Figure 3.22: PSpice simulation results for the current-input voltage-output reverse

binary hysteresis circuit with full operating range, shown in Figure 3.21.
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3.6 Summary

CMOS binary forward and reverse hysteresis circuits, with current or voltage

input, and current or voltage output have been achieved. Each of the eight hysteresis

circuits has full control on the hysteresis and operates in all four quadrants.
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Chapter 4

Circuits for Handling Sweeping Signals

4.1 Overview

We have simulated binary hysteresis circuits with full control in all four quad-

rants, as discussed in Chapter three. To build multi-level and multi-dimensional

hysteresis, analogue adders and multipliers that operate in all four quadrants are

needed. Also, we would like to have the freedom to convert voltage signals to current

signals and current signals to voltage signals linearly. Therefore, in this chapter, ana-

logue adders, multipliers, a linear current voltage converter, and a voltage current

converter that can handle sweeping signals are discussed.

For all the simulations in this chapter, MOSIS 1.2 µm transistor models

(BSIM1, Level 4, and Run n7ab) are used [37].

4.2 Analogue Adders

4.2.1 Overview

A voltage adder/subtractor is an important element not only in the construc-

tion of multi-level and multi-dimensional hysteresis, but also in the construction

of multipliers. Adding current signals could be just as simple as tying the nodes

together; adding voltage signals is not so trivial. In the past literature, search
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shows that there were not many CMOS voltage adders and subtractors. R. Fried

and C. C. Enz [15] proposed an accurate voltage adder/subtractor which used the

exponential characteristic of MOS transistors biased in weak inversion. Fried’s

adder/subtractor has low power consumption but limited input range. H. Chaoui

[9] proposed an adder that used the characteristic of MOS transistors biased in the

triode region, which again, has limited operational range. With ±5V voltage supply,

Chaoui’s adder gave only a positive output range. A. Monpapassorn [34] proposed a

wide range voltage adder/subtractor, which used three current conveyors and three

current-voltage convertors, with all the transistors biased in saturation region. Mon-

papassorn’s adder had wide positive and negative, input and output ranges, but to

serve the programmable purpose, it had many transistors, 13 transistors for each

current conveyor. M. Al-Nsour and H. S. Abdel-Aty-Zohdy [1] proposed a MOS volt-

age adder which had balanced differential inputs and also gave differential output.

S. W. Tsay and R. W. Newcomb [55] proposed an adder/subtractor/sign inverter

circuit. Although Tsay’s adder has both positive and negative voltage supply, it

only gave a positive output range.

In this Section, a new voltage adder with single end input and single end

output is presented with wide voltage operation range that covers both positive and

negative values.
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Figure 4.1: Schematics of a current sign inverter, a current adder, and a current

subtractor. (a) Sign inverter. (b) Adder. (c) Subtractor.

4.2.2 Analogue Current Adder/Subtractor/Sign Inverter Schematics

and Simulation Results

Current domain sign inverting, addition, subtraction are really straight for-

ward; bi-directional current mirrors are used to achieve four quadrant operations

of the above calculation. The schematics of a current sign inverter, an adder and

a subtractor are shown in Figure 4.1. Using the sign invert, adder, and subtractor

circuit shown in Figure 4.1, a two port current mode adder/subtractor is designed.

The schematic is shown in Figure 4.2.

Simulation results are shown in Figure 4.3, with VDD = 3.0V and VSS =

−3.0V . For all PMOS transistors, the width to length ratio is (W/L) = (4µm/5.6µm).

And for all NMOS transistors, (W/L) = (4.8µm/4µm). The adder works well in

the range of −20µA to +20µA for the two inputs IX and IY .
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Figure 4.2: Schematics of a current a current adder/subtractor with ISI = IX + IY

and IDI = IX − IY .
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Figure 4.3: Simulation results for the CMOS current adder/subtractor shown in

Figure 4.2. IX sweeps from −40µA to 40µA, and IY steps from −40µA to 40µA

with 20µA step. The solid line is ISI , and the dashed line is IX + IY .
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4.2.3 Analysis of Tsay’s Voltage Adder/Subtractor/Sign Inverter and

Torrance’s Common Mode Rejector

The new voltage adder presented in this section is based on two previous works,

S. W. Tsay’s [55] adder and R. R. Torrance’s common mode rejection circuit [54].

The schematic of Tsay’s adder/subtractor/sign inverter is shown in Figure

4.4. Two identical differential pairs’ output ends are tied together, which forces

I1 = I2. Tsay argued that since I1 = K(VA−VB) and I2 = −K(VC −VD), therefore

VA−VB = −(VC −VD). For an adder, VD is grounded, and then VB = VA +VC . For

a subtractor, VC is grounded, and then VB = VA − VD. For a sign inverter, both VA

and VC are grounded, and then VB = −VD. The key idea in Tsay’s circuit is to force

I1 = I2, which actually is IMN1 − IMN2 = −(IMN3 − IMN4). The same result could

be achieved by forcing IMN1 = IMN4 and IMN2 = IMN3, which leads to a simpler

circuit.

R. R. Torrance, T. R. Viswanathan, and J. V. Hanson [54] proposed a common

mode rejection circuit, as shown in Figure 4.5, which also used two differential

pairs, as in Tsay’s adder [55]. Through the current mirror formed by transistor pair

MP1 and MP2, IMN1 = IMN4. Transistors MN1∼MN4 are identical and biased in

saturation. To eliminate the body effect on the threshold voltage, all four transistors’

bodies are tied to their sources, not the lowest voltage VSS. The sources of MN1

and MN2 are tied together and biased with a current source I, and the sources of

MN3 and MN4 are tied together and biased with the same value of current I. Since

IMN1 = IMN4 and IMN1 + IMN2 = IMN3 + IMN4 = I, IMN2 = IMN3 is also true.
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Figure 4.4: Schematic of S. W. Tsay and R. W. Newcomb’s [55]

adder/subtractor/sign invertor.

VDD

VSS

V+ V- VO GND

I I

ψФ Фψ
+

- ---

+ + +

Figure 4.5: Schematic of R. R. Torrance’s [54] common mode rejection circuit.
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For a transistor in saturation, the drain to source current is given by Equation

(4.1), with VTH the threshold voltage. KN is the transconductance parameter, the

same name used in Baker [2], and β = KN

2
W
L

. Since IMN1 = IMN4, the gate to

source voltage drops VGS are the same for MN1 and MN4, which are labeled as Φ

in Figure 4.5. Similarly, the gate to source voltage of MN2 and MN3 are the same,

Ψ. Apply Kirchhoff voltage law, V+−V− = Φ−Ψ and VOUT = Φ−Ψ, therefore the

output VOUT = V+ − V−. The voltage difference Φ − Ψ is given by Equation (4.2),

which does not need to be linear for this scheme to work. Similar analysis can be

applied on Tsay’s adder [55].

I = β (VGS − VTH)2 (4.1)

Φ−Ψ =

√
1

β

(√
IMN1 −

√
IMN2

)
=

√
1

β

(√
IMN4 −

√
IMN3

)
(4.2)

4.2.4 Analogue Voltage Adder/Subtractor/Sign Inverter Schematic

and Operation Principles

By using the ideas presented in S. W. Tsay’s [55] adder and R. R. Torrance’s

common mode rejection circuit [54], a new voltage adder/subtractor/inverter circuit

is designed with wide positive and negative, input and output ranges. The schematic

of the adder/subtractor/inverter circuit is shown in Figure 4.6. Since the linearity of

the circuit is extremely sensitive to the precision of the current source I, transistors

MNT1∼MNT4 are used to form cascade mirrors to improve linearity. The bodies

of transistors MN1∼MN4 are tied to their sources, not VSS, to eliminate the body

effect on the threshold voltage VTH . Therefore, a Pwell is needed in the fabrication,
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Figure 4.6: Schematic of a new CMOS voltage adder/subtractor/sign invertor.

which requires larger fabrication area than the ones without Pwell.

The voltage difference Φ − Ψ, in Figure 4.6 is given by Equation (4.3), and

the output voltage VOUT is given by Equation (4.4). The circuit in Figure 4.6 is an

adder if VX2 is grounded, a subtractor if VX1 is grounded, and a sign inverter if both

VX1 and VY are grounded. The output voltage VOUT is given by Equation (4.4).

Φ−Ψ = VX1 − VX2 = VOUT − VY (4.3)

VOUT = VY + VX1 − VX2 (4.4)
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4.2.5 Analogue Voltage Adder/Subtractor/Sign Inverter Simulation

Results

For all the simulations, VDD = 3.0V and VSS = −3.0V . Transistor sizes used

in the simulations are listed in Table 4.1. When VX2 is grounded, the circuit in

Table 4.1: Transistor sizes used in the simulations of the CMOS analogue voltage

adder/subtractor/sign inverter in Figure 4.6.

W/L

NMOS MNT1∼MNT4 32µm/4µm

MN1∼MN4 4µm/8µm

PMOS MP1 & MP2 12µm/8µm

Figure 4.6 is an adder, with VOUT = VX1 + VY . The simulation results are shown in

Figure 4.7 and Figure 4.8. In Figure 4.7, VX1 sweeps from −1.5V to 1.5V , and VY

steps from −1.5V to 1.5V with 0.5V step. The solid line is the output VOUT and

the dashed line is the theoretical result of VX1 + VY .

In Figure 4.8, VY sweeps from −1.5V to 1.5V , and VX1 steps from −1.5V to

1.5V with 0.5V step. The solid line is the output VOUT and the dashed line is the

theoretical result of VX1 + VY .

The simulation results in Figures 4.7 and 4.8 have shown that the voltage

adder works well in the range of −1V to 1V for both VX1 and VY .

When VX1 is grounded, the circuit in Figure 4.6 is a subtracter, with VOUT =
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Figure 4.7: Simulation results for the voltage adder/subtractor/sign inverter, shown

in Figure 4.6, used as a voltage adder, with VOUT = VX1 + VY . VX1 sweeps from

−1.5V to 1.5V and VY steps from −1.5V to 1.5V with 0.5V step.
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Figure 4.8: Simulation results for the voltage adder/subtractor/sign inverter, shown

in Figure 4.6, used as a voltage adder, with VOUT = VX1 + VY . VY sweeps from

−1.5V to 1.5V , and VX1 steps from −1.5V to 1.5V with 0.5V step.
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Figure 4.9: Simulation results for the voltage adder/subtractor/sign inverter, shown

in Figure 4.6, used as a voltage subtracter, with VOUT = VY − VX2.

VY − VX2. The simulation results are shown in Figure 4.9. VY is a linear function,

which sweeps from −1V to 1V , a dot-dash line with circles, VX2 is a sinusoidal

function, a dashed line with crossed squares, and the output VOUT is the solid line.

When both VX1 and VY are grounded, the circuit in Figure 4.6 is a sign inverter,

with VOUT = −VX2. The simulation results are shown in Figure 4.10. VX2 is a

sinusoidal function sweeps from −1V to 1V , a dot-dash line, and the output VOUT

is the solid line.

4.2.6 Summary

A CMOS analogue voltage adder/subtracter/sign inverter is presented. The

simulation results demonstrate that the voltage adder/subtracter/sign inverter works
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Figure 4.10: Simulation results for the voltage adder/subtractor/sign inverter,

shown in Figure 4.6, used as a voltage sign inverter, with VOUT = −VX2.

in wide ranges of inputs, −1V to +1V .

4.3 Analogue Four-Quadrant Multipliers

4.3.1 Literature Review on Four-Quadrant Multipliers

Analog multiplication of two signals is one of the most important operations in

analog signal processing, as it is used not only for computation purposes but also in

filters, mixers, modulators, and in neural networks. An ideal analog multiplier yields

a linear production z = Mxy of two inputs x and y, with M being the multiplication

constant. There are single-quadrant (x and y both unipolar), double-quadrant (one

of x and y being bipolar), and four-quadrant multipliers (x and y both bipolar). For
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the purpose of building multi-celled hysteresis, and being able to put hysteresis in

any place in the input-output space, four-quadrant multipliers are required.

There are a number of analog multipliers available from previous studies, with

both voltage and current as the input and output. In this subsection, multipli-

ers using the Gilbert-cell, quarter square technique, and quadritail categories are

discussed.

4.3.1.1 Gilbert-Cell Based Four Quadrant Multipliers

In 1968, B. Gilbert proposed a four-quadrant multiplier using BJTs (bipolar

junction transistors) [17]. The basic scheme of the multiplication core of a Gilbert

cell is shown in Figure 4.11 (a), (In Gilbert’s original paper, Q3 and Q4 were PNP

type BJTs [17]), that has two doubly balanced, cross-coupled differential amplifiers.

A differential voltage to current converter is needed to linearly convert the input

voltage VY to current IY for voltage input VY if the BJT Gilbert cell is used. A

Gilbert cell can also be realized by MOS technology, as shown in Figure 4.11 (b),

first reported by D. C. Soo [52].

The analysis of the operation of a MOS version of the Gilbert cell is given as

follows: KN = µoCox is the transconductance parameter with the effective mobility

µo and unit gate capacitance Cox, and β = KN

2
W
L

. All transistors are biased in

saturation. The drain to source currents of the four transistors M1∼M4 are given

in Equations 4.5. Since IOUT can be written as Equation (4.6), the output current

IOUT is given by Equation (4.7), to achieve multiplication of VX and VY , notice that
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Figure 4.11: Quadritail-Gilbert Cell like Multipliers. (a) BJT Gilbert Cell. (b)

CMOS Gilbert cell.

the bodies of the four transistors M1∼M4 are tied to their sources to eliminate the

body effect on the threshold voltage VTH .

I1 = β (VX+ − VY + − VTH)2

I2 = β (VX− − VY + − VTH)2

I3 = β (VX− − VY− − VTH)2

I4 = β (VX+ − VY− − VTH)2

(4.5)

IOUT = IR − IL = (I2 + I4)− (I1 + I3) = (I4 − I1)− (I2 − I3) (4.6)

IOUT = β (VY + − VY−) [2VX+ − (VY + + VY−)− 2VTH ]

−β (VY + − VY−) [2VX− − (VY + + VY−)− 2VTH ]

= 2β (VX+ − VX−) (VY + − VY−)

= 2βVXVY

(4.7)

The Gilbert-cell scheme has been widely used in composing analog multipliers.

The BJT based Gilbert-cell was used by C. F. Chan , H. -S. Ling, and O. Choy [8]
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in their current-input and current-output analog multiplier. By adding another pair

of BJTs, the differential input current IX was converted into differential voltages

applied to the basis of the Gilbert-cell BJTs, Q1, Q2, Q3, and Q4. The output

current IOUT is given by IOUT = (IXIY ) /IS, with IS as a bias current in Chan’s

multiplier [8]. Differential input of IX and IY were used in Chan’s multiplier [8] to

give four quadrant performance.

D. C. Soo [52] and Z. Wang [63] used MOS based Gilbert-cell in their voltage-

input current-output multipliers. The core of the multiplier is exactly as in Figure

4.11 (b). By adding a pair of load resistors on top of the drain end of the 4 MOSs

of the Gilbert-cell to get the difference of the voltage at the drain end, Z. Wang [63]

constructed his 4-transistor multiplier, which is the same technique D. C. Soo [52]

used in his test circuit to take the voltage reading. Notice that Soo’s circuit [52]

and Wang’s circuit [63] used differential inputs.

4.3.1.2 Four Quadrant Multipliers Using Quarter Square Technique

Another four-quadrant multiplier scheme is known as quarter-square tech-

nique; the multiplication is achieved by Equation (4.8).

1

4

{
(X + Y )2 − (X − Y )2

}
= XY (4.8)

In general, the multiplication is achieved in three steps: the first is to find the sum

and difference of the two input signals, then these results are squared, the last is

to get the difference of the squares [40], [5], [28], [66], and [25]. Sometimes, the

first two steps are combined into one, as in Song [51]. When biased in saturation,
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Figure 4.12: Squaring circuits. (a)Voltage input [40]. (b) Current input [6], which

was further discussed by D. M. W. Leenaerts [28].

the drain to source current I can be expressed by Equation (4.1). For MOS-based

square circuits, the property that the drain to source current is proportional to the

square of the gate to source voltage when biased in saturation was used in many of

the design of multipliers, as in Song’s [51] (further discussed in [24]), in Bult’s [5],

and in Wiegerink’s [66]. Other schemes had more than one transistor to calculate

the square. The core squaring circuits of J. S. Pena-Ñinol [40] and K. Bult [6] are

shown in Figure 4.12. The output voltage VOUT of J. S. Pena-Ñinol’s and output

current IOUT of K. Bult’s squaring circuits are given in Equations 4.9 and 4.10, with

βn = KN

2
W
L

and VDCSQ a common constant which could be canceled in the last step

of taking the difference of the squares. The Bult’s squaring core [5] of Figure 4.12

(b)was also used in Leenaerts’s [28] multiplier.

VOUT = −1

4
KN

(
W

L

)
RLV 2

I + VDCSQ (4.9)

83



IOUT =
1

2
β (VB − 2VTHN)2 +

I2
IN

2β (VB − 2VTH)2 (4.10)

The above two circuits in Figure 4.12 used MOS transistors as the core for

squaring. K. Kimura [25] proposed a BJT four-quadrant quarter-square multiplier

that operates on low supply voltage. It used unbalanced emitter coupled pairs, Q1-

Q3 and Q2-Q4 which have emitter area ratios of K. To the third order approximation

for small input VIN , the differential output current IOUT can be expressed in terms

of the square of VIN plus a common term, which cancels in the last step of taking

the difference of the squares. This circuit was further discussed in [27], although the

summing and differential circuits were not mentioned in either [25] or [27].

For all the above circuits, the inputs were always differential inputs, and the

outputs were always currents for the core squaring circuits, load resistor or resistors

were added to take the voltage outputs (see Figure 4.12). The circuits of J. S. Pena-

Ñinol’s [40], H.-J. Song’s [51], K. Bult’s voltage-input multiplier [5] and K. Kimura’s

[25] have voltage inputs. Both K. Bult’s multiplier [6] and R. J. Wiegerink’s [66]

multiplier have current inputs.

Class AB multipliers [39] [65] also used the quarter-squared technique. Current

mode class AB cell was used to square the input current. The problem of a class

AB type of cell is that it has both PMOS and NMOS transistors in the squaring

circuit and the parameters βP and βN of the PMOS and NMOS are assumed to be

equal, which is more difficult to achieve than matching two NMOS transistors.
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Figure 4.13: Schematic of quadritail multiplication core.

4.3.1.3 Quadritail Four Quadrant Multipliers

There also are four-quadrant analog multipliers based on the mixed configu-

ration of Gilbert-cell and the quarter-squared technique, which includes K. Bult’s

[7], Z. Wang’s [62], and K. Kimura’s [26]. K. Kimura used quadritail to describe the

multiplication core [26]. A quadritail circuit is shown in Figure 4.13. Notice that

the sources of all four transistors are tied together and biased by a current source.

For all four transistors M1∼M4, although the source voltages may vary during the

operation, the body effect (the effect of VBS on the threshold Voltage VTH) has

the same influence on the threshold voltage VTH . Therefore, the bodies of the four

transistors M1∼M4 can go to VSS as they need not be tied to their sources.

There are various combinations of biasing the four gate voltages of V1∼V4. The

gate voltages in Wang’s multiplier [62] are given by Equation (4.11), and the gate
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voltages in Kimura’s [26] are given by Equation (4.12), with VR being a DC reference

voltage. The differential output current IOUT = IL− IR is given by Equation (4.13)

for both sets of biasing voltages, with β = KN

2
W
L

.

V1 = VX+

V2 = VX+ − VY

V3 = VX−

V4 = VX− − VY

(4.11)

V1 = VX + VY + VR

V2 = VY + VR

V3 = VX + VR

V4 = VR

(4.12)

IOUT = IL − IR = 2βVXVY (4.13)

For the quadritail multipliers, additional summing and subtracting circuits are

needed.

There are also various other techniques to make four-quadrant analog multi-

pliers, including four terminal devices [33], [57], and [12], BiCMOS multiplier [30]

(with both BJT and MOS), and multiplication in digital domain with A/D and D/A

converters [42].

We stay in CMOS technology in designing four-quadrant analog multipliers,

with non differential current-input and voltage-input, and single end output. Bult’s

squaring circuit [6] for current-input multiplier and quadritail for voltage-input mul-

tiplier are in our main considerations.
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4.3.2 Current-Input Four-Quadrant Multiplier

Since the summation and subtraction of currents are fairly easy to realize, the

well known quarter-squared principle is used in designing the current-input four-

quadrant multiplier. The principle is given in current form in Equation (4.14).

(IX + IY )2 − (IX − IY )2 = 4IXIY (4.14)

4.3.2.1 Current-Input Four-Quadrant Multiplier Schematics and Op-

eration Principles

In order to calculate the multiplication of two input currents IX and IY , by

Equation (4.14), the squares of the sum and difference of IX and IY are calculated,

and then the difference of the two squares are taken. Only three NMOS transistors

were used in Bult’s squaring circuit[6], which is shown in Figure 4.14.

All three NMOS transistors, M1, M2, and M3 are biased in saturation. To

eliminate body effect on threshold voltage VTH , the bodies of all three transistors

are tied to their sources. Also, the three transistors have the same sizes W and L,

with β = KN

2
W
L

; the drain to source currents I1, I2, and I3 of M1, M2, and M3 are

given by Equations (4.15).

I1 = β (VB − VSS − VTH)2

I2 = β (VA − VB − VTH)2 = β [(VA − VSS − 2VTH)− (VB − VSS − VTH)]2

I3 = β (VB − VSS − VTH)2

(4.15)

From Kirchhoff current law, Equations (4.16) and (4.17) can be obtained.

IIN = I1 − I2 (4.16)
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Figure 4.14: The schematic of Bult’s current squaring circuit [6].

IOUT = I2 + I3 = I1 + I2 (4.17)

Therefore, the input current IIN can be expressed in the form of VA and VB by

Equation (4.18). Solving VB − VSS − VTH in terms of IIN and VA gives Equation

(4.19).

IIN = β
[
2(VA − VSS − 2VTH)(VB − VSS − VTH)− (VA − VSS − 2VTH)2

]
(4.18)

VB − VSS − VTH =
IIN

2β(VA − VSS − VTH)
+

(VA − VSS − VTH)

2
(4.19)

Plug VB − VSS − VTH , represented in Equation (4.19), into Equation (4.15) and use

Equation (4.17) to get IOUT expressed in terms of IIN and VA by Equation (4.20).

IOUT =
I2
IN

2β (VA − VSS − 2VTH)2 +
β (VA − VSS − 2VTH)2

2
(4.20)

The core part of the four-quadrant current-input multiplier is shown in Figure

4.15. Transistors MPS2 and MPD2 are mirrors of of MPS1 and MPD2, and MNO2
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Figure 4.15: The schematic of the multiplication core of the current-input multiplier.

is a mirror for MNO1. Therefore, the output current is the difference of ISO and

IDO, and is given in Equation (4.21). When ISI = IX + IY and IDI = IX − IY , the

output current IOUT is given in Equation (4.22).

IOUT =
I2
SI − I2

DI

2β (VA − VSS − 2VTH)2 (4.21)

IOUT =
2

β (VA − VSS − 2VTH)2 IXIY (4.22)

The complete CMOS four-quadrant current-input current-output multiplier is

constructed with two parts, the current adder/subtractor, shown in Figure 4.2, and

the multiplication core, shown in Figure 4.15. The schematic of the complete circuit

is shown in Figure 4.16.

4.3.2.2 Current-Input Four-Quadrant Multiplier Simulation Results

PSpice simulation results are shown in Figure 4.17 and Figure 4.18. IX is the

x-axis and IOUT the y-axis with the unit of µA. The circuit is biased at VDD = 3.0V ,
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Figure 4.16: The schematic of the CMOS complete four-quadrant current-input

multiplier.

VSS = −3.0V , and VA = 1.0V . The transistor sizes used in the simulations are listed

in Table 4.2

As shown in Figure 4.17, the CMOS current-input current-output multiplier

losses its linearity when IX and IY are outside of the ranges of −20µA ∼ +20µA.

The simulation results for IX and IY in the ranges of −20µA ∼ +20µA are shown

in Figure 4.18. The multiplication factor M in IOUT = MIXIY is 1.88× 10−2/µA/

in the simulation results. Using transistor parameters, we find the theoretical value

for M = 2/β(VA − VSS − 2VTH)2 is 2.38 × 10−2/µA. This CMOS current-input

four-quadrant multiplier has the input range of −20µA to +20µA.
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Figure 4.17: Simulation results for the CMOS four quadrant current-input current-

output multiplier in Figure 4.16. IX sweeps from −40µA to +40µA, and IY steps

from −40µA to +40µA with +20µA step.
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Figure 4.18: Simulation results for the CMOS four quadrant current-input current-

output multiplier in Figure 4.16. IX sweeps from −20µA to +20µA, and IY steps

from −20µA to +20µA with +10µA step.
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Table 4.2: Transistor sizes used in the simulations of the CMOS four-quadrant

current-input multiplier in Figure 4.16.

W/L

NMOS MMNI1∼MMNI8 4.8µm/4µm

MNS1∼MNS3 & MND1∼MND3 4µm/8µm

MNO1 & MNO2 4µm/10.4µm

PMOS MPNI1∼MPNI8 4µm/5.6µm

MPD1, MPD2, MPS1, & MPS2 12µm/4µm

4.3.3 Voltage-Input Four-Quadrant Multiplier

4.3.3.1 Voltage-Input Four-Quadrant Multiplier Schematics and Op-

eration Principles

We used the quadritail cell named by K. Kimura [26] as the multiplication core

of the voltage input multiplier. One big advantage of this quadritail is that there is

no need for a separated Pwell for the four transistors and all the bodies are biased

with the lowest voltage VSS, since the sources of all four transistors are tied together

so the body effect would have the same influence on their threshold voltages VTH .

The schematic of the multiplication core is shown in Figure 4.19, which is Figure

4.13 with the gate voltages of M1∼M4 biased to VX , VX + VY , GND, and VY .

All four transistors M1∼M4 are biased in saturation, therefore, the drain to

source currents of each transistor are given in Equations (4.23), with VC the common
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Figure 4.19: The schematic of the multiplication core of the voltage-input multiplier–

quadritail.

source voltage and β = KN

2
W
L

. The two currents IL and IR are given by Equations

(4.24). If we take the difference between IR and IL, Equation (4.25) can be obtained,

and the multiplication of VX and VY is achieved.

I1 = β (VX − VC − VTH)2

I2 = β (VX + VY − VC − VTH)2

I3 = β (0− VC − VTH)2

I4 = β (VY − VC − VTH)2

(4.23)

IL = I1 + I4

IR = I2 + I3

(4.24)

IR − IL = 2βVXVY (4.25)

The complete schematic of the voltage-input multiplier is shown in Figure

4.20, where an adder is used to calculate the sum of VX and VY to bias the gate
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Figure 4.20: The schematic of the complete CMOS four quadrant voltage-input

multiplier.

of transistor MN2. A linear current voltage converter is used to convert IOUT into

VOUT if a voltage output is desired.

4.3.3.2 Voltage-Input Four-Quadrant Multiplier Simulation Results

PSpice simulation results of IOUT are shown in Figure 4.21 and Figure 4.22.

For both plots, VX is the x-axis with the unit of Volts, and IOUT is the y-axis with the

unit of µA. The circuit is biased at VDD = 3.0V , VSS = −3.0V , and VT = −2.0V .

The transistor sizes used in the simulations are listed in Table 4.3.

As shown in Figure 4.21, the CMOS voltage-input multiplier losses its linearity

when VX and VY are outside of the ranges of −0.75V ∼ 0.75V . The simulation

results for VX and VY in the ranges of −0.75V ∼ 0.75V are shown in Figure 4.22.
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Figure 4.21: Simulation results for the CMOS four-quadrant voltage-input multiplier

in Figure4.20, with the current output IOUT . VX sweeps from −1V to +1V , and VY

steps from −1V to +1V with +0.25V step.
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Table 4.3: Transistor sizes used in the simulations of the CMOS four-quadrant

voltage-input multiplier in Figure 4.20.

W/L

NMOS MNT1∼MNT4 32µm/4µm

MN5∼MN8 4µm/8µm

MN1∼MN4 4µm/8µm

MNT 16µm/4µm

MNO1 & MNO2 16µm/8µm

MNIV1 & MNIV2 4µm/24µm

PMOS MP1 & MP2 12µm/8µm

MPL, MPR, MPO1, & MPO2 12µm/8µm

The multiplication factor M in VOUT = MIXIY is 19.9µA/V 2 in the simulation

results. For the chosen transistor parameters, the theoretical value for M = 2β is

18.6µA/V 2.

If voltage output is desired, a linear current voltage converter is added to the

right end of the circuit, as shown in Figure 4.20. The simulation results of the

voltage output VOUT are shown in Figure 4.23. The multiplication factor M in

VOUT = MVXVY is 0.676/V in the simulation results. For the chosen transistor

parameters, the theoretical value is 0.597/V .

This voltage-input multiplier has the input range of −0.75V to +0.75V .
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Figure 4.22: Simulation results for the CMOS four-quadrant voltage-input multiplier

in Figure4.20, with the current output IOUT . VX sweeps from −0.75V to +0.75V ,

and VY steps from −0.75V to +0.75V with +0.25V step.
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Figure 4.23: Simulation results for the CMOS four quadrant voltage-input multiplier

in Figure4.20, with the voltage output VOUT . VX sweeps from −0.75V to +0.75V ,

and VY steps from −0.75V to +0.75V with +0.25V step.
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Figure 4.24: Schematic of the linear current-voltage converter [6].

4.4 Linear Voltage-Current Converter and Current-Voltage Converter

4.4.1 Linear Current-Voltage Converter

K. Bult and H. Wallinga [6] proposed an linear current-voltage converter, which

had only two transistors, as shown in Figure 4.24. Both NMOS transistors, M1 and

M2 are biased in saturation. To eliminate body effect on threshold voltage VTH , the

bodies of both three transistors are tied to their sources. Also,they have the same

sizes W and L, with β = KN

2
W
L

, the drain to source currents I1 and I2 of M1 and

M2 are given by Equations (4.26).

I1 = β (VOUT − VSS − VTH)2

I2 = β (VA − VOUT − VTH)2

(4.26)

From Kirchhoff’s current law, we know that IIN = I1 − I2, therefore IIN can
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be written as in Equation (4.27). By choosing VA = VDD = −VSS, VOUT is given in

Equation (4.28).

IIN = β (VA − VSS − 2VTH) (2VOUT − VSS − VA) (4.27)

VOUT =
IIN

2β (VDD − VSS − 2VTH)
(4.28)

PSpice simulation results are shown in Figure 4.25. IIN is the x-axis with the

unit of µA and VOUT the y-axis with the unit of Volts. IIN sweeps from−200µA

to +200µA. The circuit is biased at VA = VDD = 3.0V , and VSS = −3.0V .

The four curves are for four different transistor width to length ratios (W/L) =

(4µm/4µm)–solid line with circles, = (4µm/8µm)–dashed line with crossed squares,

= (4µm/12µm)–dashed line with circles, and (W/L) = (4µm/24µm)–solid line with

squares. The ratios of VOUT /IIN in the simulation results and theoretical calculation

of VOUT /IIN = 1/[2β (VDD − VSS − 2VTH)] are listed in Table 4.4.

Table 4.4: VOUT /IIN in the unit of KΩ for different (W/L) ratios used in CMOS

linear current voltage converter, shown in Figure 4.24.

W/L 4µ/4µ 4µ/8µ 4µ/12µ 4µ/24µ

Simulation 5.86 11.48 17.36 34.29

Theoretical 5.49 10.75 16.07 32.09
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Figure 4.25: Simulation results for the linear current voltage converter in Figure

4.24.

4.4.2 Linear Differential Voltage-Current Converter

Linear differential voltage-current converter can be achieved by using differen-

tial amplifiers, as shown in Figure 4.26. Transistors MN1 and MN2 form the differ-

ential pair, with the sources tied together and biased with a current source formed

by transistor MN5. MP1∼MP4 and MN3 and MN4 form the current mirrors to give

the output current IOUT = I1 − I2. All transistors are biased in saturation. With

β = KN

2
W
L

, the drain to source currents I1 and I2 of MN1 and MN2 are given by

Equations (4.29). For VIN = VIN1 − VIN2, the input voltage VIN can be expressed

via I1 and I2 by Equation (4.30).

I1 = β (VIN1 − VC − VTH)2

I2 = β (VIN2 − VC − VTH)2

(4.29)
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Figure 4.26: Schematic of the CMOS linear differential voltage-current converter–

differential pair.

VIN =

√
I1

β
−
√

I2

β
(4.30)

Also notice that IC = I1 + I2, with IOUT = I1 − I2, we can have I1 = (IC + IOUT )/2

and I2 = (IC − IOUT )/2, therefore, VIN can be rewritten in terms of IC and IOUT ,

in Equation (4.31). If IOUT << IC , since
√

1 + t = 1 + 1
2
t− 1

8
t2 + 1

16
t3.... for small t,

the second degree approximation of VIN can be expressed in Equation (4.32). The

output current IOUT is linearly proportional to input differential voltage VIN , as

shown in Equation (4.33).

VIN =

√
IC

2β

(√
1 +

IOUT

IC

−
√

1− IOUT

IC

)
(4.31)

VIN =

√
IC

2β

(
IOUT

IC

)
(4.32)

IOUT =
√

2βICVIN (4.33)

PSpice simulation results are shown in Figure 4.27. VIN is the x-axis with the
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unit of volt and IOUT the y-axis with the unit of µA. VIN sweeps from−1V to +1V .

The circuit is biased at VDD = 3.0V , VSS = −3.0V and VT = −2.0V . Transistor

sizes except MN1 and MN2 are listed in Table 4.5. The four curves are for three

different transistor width to length ratios of MN1 and MN2: (W/L) = (4µm/8µm)–

solid line with circle, = (4µm/4µm)–dash line with crossed squares, and (W/L) =

(8µm/4µm)–dashed line with diamonds. The ratios of IOUT /VIN in the simulation

results and theoretical calculations of IOUT /VIN =
√

2βIC , with IC = 25µA, are

listed in Table 4.6.

Table 4.5: Transistor sizes used in the simulations of the CMOS linear voltage-

current converter in Figure 4.26.

W/L

NMOS MN3 & MN4 4µm/4µm

MN5 16µm/4µm

PMOS MP1∼MP4 12µm/4µm

Table 4.6: IOUT /VIN in the unit of µA/V for different (W/L) ratios used in CMOS

linear differential voltage-current converter, shown in Figure 4.26.

W/L 4µ/8µ 4µ/4µ 8µ/4µ

Simulation 22.92 32.42 45.66

Theoretical 21.56 29.76 43.93
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Figure 4.27: Simulation results for the CMOS linear differential voltage-current

converter in Figure 4.26.

4.5 Summary

In this chapter, various circuits needed in building multi-level and multi-

dimensional hysteresis are covered. These circuits include: voltage adder, current-

input multiplier, voltage-input multiplier, linear current to voltage converter, and

voltage to current converter. With these circuits and binary hysteresis circuits,

multi-level and multi-dimensional hysteresis can be built, as will be seen in Chapter

five.
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Chapter 5

CMOS Multi-Cell Hysteresis Circuit and Possible Application on

Chaos Generation

5.1 Introduction

In the previous chapters, CMOS binary hysteresis circuits with full control and

operating in all four quadrants, analogue adders, four-quadrant analogue multipliers,

linear current voltage converters, and linear voltage current converts have been

discussed in detail. In this chapter, construction of multi-level hysteresis and multi-

dimensional hysteresis is discussed. First, a brief review of the CMOS circuits

as the building blocks for the multi-cell hysteresis is given. Then the discussion

moves on to the construction of multi-level hysteresis using CMOS circuits, then

the construction of multi-cell hysteresis. Finally, we suggest possible application of

multi-cell hysteresis on chaos generation.

For all the simulations in this chapter, the same MOSIS 1.2 µm transistor

models (BSIM1, Level 4, and Run n7ab) are used [37], as in the previous chapters.

Since all the circuits discussed in this chapter are constructed with binary hysteresis

circuits in Chapter three, and adders and multipliers in Chapter four, all the tran-

sistor parameters, and biasing voltages VDD and VSS are the same as in the previous

chapters.

106



(a) Forward (b) Reverse

Figure 5.1: Block diagrams of binary hysteresis circuits. (a)Forward binary hystere-

sis. (b) Reverse binary hysteresis.

5.2 CMOS Circuits as Building Blocks of Multi-Level Hysteresis and

Multi-Cell Hysteresis

There are four types of binary hysteresis circuits with full control in all four

quadrants, current-input current-output, voltage-input voltage-output, current-input

voltage-output, and voltage-input current output. With slight alternations on cir-

cuits, each of them can give both forward and reverse binary hysteresis curves. For

all the binary hysteresis circuits, complete control has been achieved on the hystere-

sis position, height, and width, in all four quadrants. All CMOS binary hysteresis

circuits are represented by the block diagrams, shown in Figure 5.1.

For the construction of multi-level hysteresis and multi-cell hysteresis, we also

need analogue adders and multipliers. The detailed discussions of adders and mul-

tipliers are given in Chapter four. All the adders and multipliers work in all four

quadrants. For current-input adder, it is easy to add another input port by tying

an extra node. The CMOS adders and multipliers are represented by the block

diagrams, shown in Figure 5.2.
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+ X+

(a) Adders (b) Multiplier

Figure 5.2: Block diagrams of adders and multiplier. (a)Two input port adder and

three input port adder. (b) Two input port multiplier.

5.3 CMOS Multi-Level Hysteresis Circuits

Multi-level hysteresis can be achieved by adding several binary hysteresis

curves. When three forward hystereses are added, a 4-level forward hysteresis can be

generated, as shown in Figure 5.3. This particular case can be generalized to make

m-level forward hysteresis by adding (m − 1) forward binary hysteresis, or m-level

reverse hysteresis by adding (m− 1) reverse binary hysteresis. This particular type

of multi-level hysteresis was used in building high dimension chaotic oscillators, first

proposed by J. E. Varrientos and E. Sánchez-Sinencio [56], later extend to 9-scrolls

using 9-level hysteresis by F. Han [20].

5.3.1 CMOS Voltage Mode Multi-Level Hysteresis

With the available CMOS voltage mode binary hysteresis circuits and analogue

adders, CMOS voltage mode multi-level hysteresis can be achieved. Two CMOS

voltage-input voltage-output binary hysteresis and one two port voltage adder are

used to construct the CMOS voltage mode multi-level hysteresis circuits, as shown

in Figure 5.4.
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Figure 5.3: Generation of 4-level hysteresis by adding 3 forward binary hysteresis.

(a) Schematic. (b) 4-level hysteresis.
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Figure 5.4: Schematic of a CMOS voltage mode multi-level hysteresis circuits, with

two voltage-input voltage-output binary hysteresis circuits on the left and one ana-

logue voltage adder on the right.
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One example of PSpice simulation results is shown in Figure 5.5. The output

voltage VOUT has two sections of hysteresis. There is complete control on the hori-

zontal position, width, and the height of each section of the hysteresis by the eight

external voltage sources VIL1, VIH1, VOL1, VOH1, VIL2, VIH2, VOL2, and VOH2.

We can also add forward hysteresis with the reverse one. One example is shown

in Figure 5.6. The reverse binary hysteresis has VL2H = −2V and VH2L = −0.4V ,

and the forward binary hysteresis has VH2L = 0.4V and VL2H = 2V . While the

input voltage VIN is increasing, the output voltage VOUT jumps from −0.5V to

−1.5V when VIN passes −0.4V , and then to 0V when VIN passes 2V . While the

input voltage VIN is decreasing, the output voltage VOUT jumps from 0V to −1.5V

when VIN passes 0.4V , and then to −0.5V when VIN passes −2V .

5.3.2 CMOS Current Mode Multi-Level Hysteresis

Multi-level hysteresis can also be achieved in current mode. Three CMOS

current-input current-output binary hystereses are used to construct the CMOS

current mode multi-level hysteresis circuits. The output nodes of the three binary

hysteresis are tied together to give the sum.

PSpice simulation results to generate 4-level hysteresis is shown in Figure

5.8. The three binary hysteresis are centered at (−5µA, 0µA), (0µA, 0µA), and

(5µA, 0µA), with the same height 4µA, and the same width 4µA. The output

current IOUT has three sections of hysteresis. Since complete control on the hori-

zontal position, width, and the height of the each of the binary hysteresis has been
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Figure 5.5: PSpice simulation results for the generation of a voltage mode 3-

level hysteresis. (a) Two reverse binary hysteresis centered (−0.25V, −0.55V ) and

(0.25V, 0.55V ), with the same height of 0.5V and width of 0.5V . (b) Output voltage

VOUT in the unit of Volts. Both plots have VIN in the unit of Volts as x-axis.
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Figure 5.6: PSpice simulation results for the generation of a voltage mode 3-level

hysteresis. (a) One forward hysteresis centered at (1.2V, 0.25V ) with height of 1.5V

and width of 1.6V , and one reverse binary hysteresis centered (−1.2V, −0) with the

height of 1V and width of 1.6V . (b) Output voltage VOUT in the unit of Volts. Both

plots have VIN in the unit of Volt as x-axis.
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Figure 5.7: Schematic of a CMOS current mode multi-level hysteresis circuit, with

three current-input current-output binary hysteresis circuits.
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achieved by external current sources, there is complete control on the horizontal

position, width, and the height each section of the hysteresis.

Another example is to add binary hysteresis with different height and width

and centered at the same horizontal location. Pspice simulations results are shown

in Figure 5.9. The three binary hysteresis are centered at 0µA horizontally. They

are have the width of 2µA, 4µA, and 8µA, and the height of 2µA, 4µA, and 8µA.

This type of multi-level hysteresis was used by M. J. Smith and C. L. Portmann

in their neural optimization circuit as an A/D converter [50]. For this hysteresis in

Figure 5.9 (b), if the input current IIN does not sweep all the way past ±4µA, the

hysteresis would have various paths, shown as the dart lines.

Figure 5.10 is one Pspice simulation example of adding one forward hysteresis

with one reverse hysteresis. Two hystereses with the same height of 8µA and width

of 8µA, centered at different positions are added. The output current IOUT is shown

in Figure 5.10 (b). While the input current IIN is sweeping from low to high, the

output current IOUT jumps from 0µA to 8µA when input current IIN passes −2µA

and then jumps back to 0µA when IIN passes 6µA. While the input current IIN is

sweeping from high to low, the output current IOUT jumps from 0µA to 8µA when

input current IIN passes 2µA and then jumps back to 0µA when IIN passes −6µA.

Depending on the sweeping direction of the input current, the rectangular waveform

is positioned at different locations. There is no overlapping of the switching points

of the two binary hysteresis, yet the two rectangular waveforms for the two input

sweeping directions overlap.

In order to separate the two rectangular waveforms for the two input sweeping
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Figure 5.8: PSpice simulation results for the generation of a current mode 4-level

hysteresis by adding 3 forward binary hystereses. (a) Three binary hystereses are

positioned at different locations horizontally without overlapping of the switching

points, in the unit of µA. (b) Output current IOUT in the unit of µA. Both plots

have IIN in the unit of µA as x-axis.
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Figure 5.9: PSpice simulation results for the generation of a current mode 8-level

hysteresis by adding 3 forward binary hysteresis. (a) Three binary hysteresis posi-

tioned at same horizontal position with different height and width, in the unit of

µA. (b) Output current IOUT in the unit of µA. Both plots have IIN in the unit of

µA as x-axis.
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Figure 5.10: PSpice simulation results for the generation of a current mode 2-level

hysteresis by adding one forward and one reverse binary hysteresis. (a) Two binary

hysteresis, one forward, centered at (−4µA, 4µA), and one reverse, centered at

(4µA, −4µA). (b) Output current IOUT in the unit of µA. Both plots have IIN in

the unit of µA as x-axis.
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directions, we need to make the switching current IL2H(F ) of the forward hysteresis

higher than the switching current IL2H(R) of the reverse one. One example is shown

in Figure 5.11. In this case, the output current IOUT jumps up when input current

IIN passes 2µA, and down when IIN passes 6µA, while IIN is increasing. the output

current IOUT jumps up when input current IIN passes −2µA, and down when IIN

passes −6µA, while IIN is decreasing.

5.3.3 Summary

We have demonstrated with PSpice simulations that with the binary hys-

teresis with full control and analogue adders, various multi-level hystereses can be

constructed, with both current mode and voltage mode operation. When n number

of binary hysteresis are added, the switching points of each binary hysteresis ui
H2L

and ui
L2H (for i = 1, 2....n) are preserved in the output of multi-level hysteresis. The

height H i
H = H i

+ − H i
− of each binary hysteresis is also preserved in the output,

as the difference between hysteresis levels. Also notice that adding current signals

is much simpler than adding voltage signals. Therefore, current mode operation is

more suitable for addition than voltage mode.

5.4 CMOS Multi-Cell Hysteresis Circuits

After the construction of the multi-level hysteresis, we are moving on to build

multi-cell hysteresis. The idea of how to construct a multi-cell hysteresis is shown

in Figure 5.12, by multiplying two multi-level hysteresis HX and HY to generate the
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Figure 5.11: PSpice simulation results for the generation of a current mode 2-level

hysteresis by adding one forward and one reverse binary hysteresis. (a) Two binary

hysteresis, one forward, centered at (−2µA, 4µA), and one reverse, centered at

(2µA, −4µA). (b) Output current IOUT in the unit of µA. Both plots have IIN in

the unit of µA as x-axis.
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Figure 5.12: Generation of 2-dimensional 3-level hysteresis cubes. (a) Schematic.

(b) 3-D plot of the hysteresis cubes

output Z. A 3-dimensional plot of 2-dimensional 3-level hysteresis cubes is shown

in Figure 5.12 (b). A total of four hysteresis cubes are generated in this case.

5.4.1 CMOS Voltage Mode Multi-Cell Hysteresis

The schematic of a CMOS voltage mode circuit to generate multi-cell hysteresis

is shown in Figure 5.13, with four binary voltage-input voltage-output hysteresis

circuits, two analogue voltage adders and one analogue voltage multiplier. The top

two binary hysteresis circuits and the top voltage adder form one multi-level voltage

mode multi-level hysteresis, which is tuned to generate the three-level hysteresis

signal as shown in Figure 5.5 (b). The left bottom part of the circuit are identical

to the left top part, that gives the same three-level hysteresis.

Figure 5.14 shows the PSpice simulation results of the CMOS voltage mode

multi-cell circuit, as shown in Figure 5.13. Input VINX is triangular wave with the
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Figure 5.13: Schematic of a CMOS voltage mode multi-cell hysteresis circuit, with 4

binary voltage-input voltage-output hysteresis circuits on the left, 2 analogue voltage

adders in the middle, and one analogue voltage multiplier on the right.
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period of 2S, and VINY is a slower triangular wave with the period of 80S. The

multi-level hysteresis signals VX and VY are shown in Figure 5.14 (b). Notice that

there are some spikes on the signal VX . Those spikes are due to the simulation

error, not the real circuit response, since the time scales of VINX and VINY are very

different. The output voltage VOUT is shown in Figure 5.14 (c).

To get a better look at the response of the output signal VOUT to the two

inputs VINX and VINY , the two multi-level hysteresis signal VX and VY are fed to

the multiplier. Then a MATLAB program is used to sample the output VOUT and

to give three dimensional plots. The three dimensional plots of VOUT , as the z-axis,

with respect to VINX and VINY are shown in Figure 5.15.

All four plots in Figure 5.15 can be overlaid on top of each other, as shown in

Figure 5.16. Clearly, there are 4 hysteresis cells in this case.

5.4.2 CMOS Current Mode Multi-Cell Hysteresis

The schematic of a CMOS current mode circuit to generate multi-cell hysteresis

is shown in Figure 5.17, with four binary current-input current-output hysteresis

circuits and one analogue voltage multiplier. The top left two binary hysteresis

circuits form one multi-level current mode multi-level hysteresis. The top right

part of the circuit are identical to the top left part, that gives the same multi-level

hysteresis.

Two identical multi-level hysteresis signals IX and IY are fed to a current

multiplier to give the output IOUT . Then a MATLAB program is used to sample
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Figure 5.14: PSpice simulation results for the CMOS voltage mode multi-cell hys-

teresis circuits in Figure 5.13. (a) Two triangular wave inputs: VINX with period of

2S, and VINY with period of 80S. (b) Two 3-level hysteresis, VX the thin solid line,

and VY the thick dart line with circles. (c) Output voltage VOUT . All three plots

have time as the x-axis with the unit of second.
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Figure 5.15: Voltage mode multi-cell hysteresis, three dimensional plot of VOUT with

respect to VINX and VINY . (a) Both VINX and VINY sweep from low to high. (b)

VINX sweeps from high to low, and VINY sweeps from low to high. (c) VINX sweeps

from low to high, and VINY sweeps from high to low. (d) Both VINX and VINY

sweep from high to low.
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current multiplier on the bottom.
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Figure 5.18: Multi-level hysteresis signals VX and VY , that is fed to current multiplier

to generate current mode multi-cell hysteresis.

the output IOUT and give three dimensional plots. IX and IY are shown in Figure

5.18. The arrows in the plots indicate the sweeping directions of the input current

IINX and IINY , increasing on the top plot and decreasing on the bottom plot.

The three dimensional plots of IOUT , as the z-axis, with respect to IINX and

IINY are shown in Figure 5.19.

Another example is shown in Figure 5.20, where all four plots are overlaid for

IINX and IINY sweeping both directions. IX and IY are fed to a current multiplier.

IX and IY are shown in Figure 5.20 (a), only the right rectangular wave can be seen

when IINX or IINY increases, and only the left rectangular wave can be seen when

IINX or IINY decreases.
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Figure 5.19: Current mode multi-cell hysteresis, three dimensional plot of IOUT with

respect to IINX and IINY . (a) Both IINX and IINY sweep from low to high. (b)

IINX sweeps from high to low, and IINY sweeps from low to high. (c) IINX sweeps

from low to high, and IINY sweeps from high to low. (d) Both IINX and IINY sweep

from high to low.
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Figure 5.20: Current mode multi-cell hysteresis. (a) IX or IY , with the right rectan-

gular waveform when IINX or IINY sweeping from low to high, and the left rectan-

gular wave when IINX or IINY sweeping from high to low. (b)IOUT , top most lobe

for both IINX and IINY increasing, right most lobe for IINX increasing and IINY

decreasing, left most lobe for IINX decreasing and IINY increasing, and bottom most

lobe for both IINX and IINY decreasing.
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5.4.3 Summary

With the binary hysteresis circuits, analogue adders and multipliers, we are

able to build CMOS circuits to generate multi-cell hysteresis in both voltage and cur-

rent mode. In this section, we have demonstrated how to generate various hysteresis

cubes the two-dimensional domain.

5.5 More Discussions on Multi-Cell Hysteresis

We have generated hysteresis cubes in the two dimensional domain. In this

section, we are suggesting two ways of generalizing the results into higher dimensions.

Multiplying several arbitrary multi-level hystereses could get really compli-

cated. Let us take one of the simplest cases as an example, that of multiplying two

binary hysteresis. Two binary hysteresis HX and HY , as shown in Figure 5.21 (a),

both have H− not zero but the value of 1. The two signals, HX and HY , do not

have the same value of H+, for signal HX , H+ = 2, and for HY , H+ = 3. HX is

a forward binary hysteresis with XL2H = 0.5 and XH2L = −0.5. HY is a forward

binary hysteresis with YL2H = 0.4 and YH2L = −0.4. The three dimensional plots of

the product of HX and HY with different sweeping direction of input signal X and

Y are shown in Figure 5.21 (b1)∼(b4). Notice that the output Z = HXHY has 4

values in the region of −0.5 < X < 0.5 and −0.4 < Y < 0.4. By setting H− or H+

to zero can simplify the situation.

One method for achieving multi-cell hysteresis is using a certain type of multi-

level hysteresis. As an example the hysteresis shown in the simulation results in
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Figure 5.21: Multiplication of two binary hysteresis HX and HY . (a)HX and HY

with respect to X and Y . (b1)∼(b2) Z = HXHY with respect to X and Y .

130



Figure 5.10 (b), and in Figure 5.11 (b), the hysteresis has limited width and its value

is always zero outside the width. For this kind of hysteresis, more hysteresis can be

added to form a chain. Each hysteresis section on the chain has adjustable input

location, width, and output height. Then various numbers of such hysteresis chains

can be multiplied to give multi-dimensional hysteresis cells. Figure 5.22 illustrate

such a case in two dimension. Two chains of hysteresis are shown in Figure 5.22

(a), the output Z is shown in Figure 5.22 (b). With three hysteresis sections in HX

and two hysteresis sections in HY , the output Z = HXHY has six hysteresis cells.

It is not difficult to picture this kind of multi-cell hysteresis, for which, we can

increase the number of hysteresis sections on each chain, and we can also increase

the number of chains. If there are n chains of hysteresis, and each chain has mi (for

i = 1, 2, ......, n) hysteresis sections, the total number of cells N can be generated is

given by Equation (5.1).

N =
n∏

i=1

mi (5.1)

Another way of making multi-cell hysteresis is to make a single multi-dimensional

hysteresis cell then add which together. For example, we can take n forward binary

hysteresis, each described by Equation (5.2), with i = 1, 2, ......, n. All H i
− are tuned

to be zero. All H i
+ are tuned to be one except H1

+ = H+. Then the output Z

of the multiplication is given by Equation (5.3), where U = [u1, u2, u3, ...un] is the

n-dimensional input. This single multi-dimensional hysteresis cell has tunable input

widths, position, and output height H+. Changing any or all of the forward binary

hystereses would give similar results. If number m of such n-dimensional single cell
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hystereses are added together, n-dimensional n-level hysteresis can be generated.

For example, the multi-cell hysteresis shown in Figure 5.16 can be generated this

way.

yi(ui, yi
0) =



H i
+ ui > ui

L2H

H i
+ ui

H2L ≤ ui ≤ ui
L2H if yi

0 = H i
+

H i
− ui

H2L ≤ ui ≤ ui
L2H if yi

0 = H i
−

H i
− ui < ui

H2L

(5.2)

Z(ui, yi
0) =

n∏
i=1

yi(ui, yi
0) (5.3)

The above two methods are certainly not the only two ways of making multi-

level multi-dimensional hysteresis. One can multiply any number of multi-level

hysteresis to get multi-cell hysteresis, but describing such multi-cell hysteresis might

be complicated.

5.6 Possible Application of Multi-Dimensional Hysteresis Cell on Chaos

Generation

Due to the interest of studying nonlinear phenomena, simple chaotic oscillators

have been studied extensively, the idea of using hysteresis as the nonlinear element

for generating chaotic signals was suggested by O. E. Rössler [45]. Then many of

the hysteresis chaos generators have been published [35] [61] [22]. Following later,

different approaches for higher orders of chaotic systems were proposed, that includes

adding additional story elements by T. Saito [46], and using multi-level hysteresis
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by J. E. Varrientos and E. Sánchez-Sinencio [56]. Recently, F. Han [20] extended

the result into 9-scrolls by using 9-level hysteresis.

A general continuous time second-order linear system can be described by the

state equation shown in Equation (5.4), with x1 and x2 the two state variables.

The general solution of the state equation is a set of spirals, given in Equation

(5.5), with ω =
√

1− σ2 and θ = angle of (−σ + jω). When binary hysteresis

is introduced in the system, then the input space is separated in two half planes,

for each half plane, the two sets of spirals have different equilibrium points. The

system starts with staying on one plane and evolves along one spiral and when it

hits the boundary, it jumps to the other plane. Then it evolves along the spiral

with a different equilibrium point until it hits the boundary and jumps again, and

so on so forth. When multi-level hysteresis is adding to the system, the input space

is separated in many strip planes, on each one of the planes, each set of spirals has

a different center. That system similarly evolves along the spiral until it hits the

boundary and jumps to a different plane and evolves along a different spiral. Multi-

level hysteresis introduces more planes and boundaries into the system and thus,

increases the complexity of the system. Since both binary hysteresis and multi-level

hysteresis have one dimensional input functions, the boundaries are only along one

of the input.

dx1

dt
= x2

dx2

dt
= −x1 − 2σx2

(5.4)
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x1(t) = Ke−σtcos(ωt + φ)

x2(t) = Ke−σtcos(ωt + φ + θ)

(5.5)

Our effort is to introduce more planes and boundaries by using two-dimensional

hysteresis cell. When a two-dimensional hysteresis cell is brought into the system,

the second-order system can be described by semistate equations, as Equations

(5.6), with a1 and a2 as constants. h1(x1) and h2(x2) are both binary hysteresis.

The multiplication of h1(x1) and h2(x2) gives two-dimensional multi-level hysteresis

cell(s).

dx1

dt
= x2 + a1h1(x1)h2(x2)

dx2

dt
= −x1 − 2σx2 + a2h1(x1)h2(x2)

(5.6)

Equations (5.6) are suitable for electronic realization. The schematic of the

electronic circuits using mainly voltage control current sources as building parts is

shown in Figure 5.23. The binary hysteresis parts of the circuit for both h1 and h2

are outlined by dot-dash lines and marked with ‘Hysteresis’. The multiplier gives

the product of h1 and h2, which is a two-dimensional multi-level hysteresis.

One example of PSpice simulation results for Equations (5.6) is shown in Figure

5.25 and Figure 5.26. h1 is a reverse hysteresis with h+ = 1, h− = 0, uH2L = 1,

and uL2L = 0, and h2 is also a reverse one with h+ = 1, h− = 0, uH2L = 0, and

uL2H = −1. Therefore, the product of h1 and h2 creates two values 1 and 0, and

four boundaries, x1 = 0, x1 = 1, x2 = −1, and x2 = 0. The three-dimensional

plot of h1(x1)h2(x2) vs x1 and x2 is shown in Figure 5.24. Figure 5.25 is the time

evolution of V1 and V2. Figure 5.26 gives the phase trajectory. Since there are two

planes, there are two sets of spirals, centered (0, 0) and (−1, 0.3). When the spiral
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Multiplier

V1

V2

Figure 5.23: Schematic for generating chaotic signal using two dimensional hysteresis

cell.

hit one of the four boundaries in the right direction, (the h1h2 value changes), the

system jumps to a different spiral. For this simulation, there is only one jump at

x2 = −1 which is bit hard to see, yet the jumps happening at x1 = 0, x1 = 1, and

x2 = 0 are quite obvious.

Another example of the same hysteresis cell but different constants a1, a2

and σ is shown in Figure 5.27 for time evolution, and in Figure 5.28 for the phase

trajectory. For this one, there is no jumping at x1 = 1 but the jumps at x1 = 0,

x2 = −1, and x2 = 0 are obvious.

To make it more interesting, we change the value of h+ and h− to 0.7 and

−0.3 for both h1 and h2. The product of h1 and h2 has three values 0.49, 0.09

and −0.21, therefore, we should have three sets of spirals with three centers. The

three-dimensional plot of h1(x1)h2(x2) vs x1 and x2 is shown in Figure 5.29. The
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x1x2 x1x2

x1x2x1x2

Figure 5.24: Two-dimensional hysteresis h1(x1)h2(x2) vs x1 and x2. With different

sweeping directions of x1 and x2, the boundaries are at different locations.
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Figure 5.25: Time evolution of V1 and V2, for a1 = 1, a2 = 0.41, σ = −0.1 with

initial condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 1, h− = 0,

uH2L = 1, and uL2H = 0, and h2 is also a reverse one with h+ = 1, h− = 0, uH2L = 0,

and uL2H = −1.
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Figure 5.26: Phase trajectories of V1 and V2, for a1 = 1, a2 = 0.41, σ = −0.1 with

initial condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 1, h− = 0,

uH2L = 1, and uL2H = 0, and h2 is also a reverse one with h+ = 1, h− = 0, uH2L = 0,

and uL2H = −1.
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Figure 5.27: Time evolution of V1 and V2, for a1 = 1, a2 = 2, σ = −0.2 with initial

condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 1, h− = 0,

uH2L = 1, and uL2L = 0, and h2 is also a reverse one with h+ = 1, h− = 0, uH2L = 0,

and uL2H = −1.
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Figure 5.28: Phase trajectory of V1 and V2, for a1 = 1, a2 = 2, σ = −0.2 with initial

condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 1, h− = 0,

uH2L = 1, and uL2L = 0, and h2 is also a reverse one with h+ = 1, h− = 0, uH2L = 0,

and uL2H = −1.
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Figure 5.29: Two-dimensional hysteresis h1(x1)h2(x2) vs x1 and x2. With different

sweeping directions of x1 and x2, the boundaries are at different locations.

simulation results are shown in Figure 5.30 for time evolution, and in Figure 5.31

for the phase trajectory. The jumps on the four boundaries are obvious and clearly,

there are three sets of spirals with three centers.

The above are just very primitive demonstrations that it is quite possible to

use multi-cell hysteresis to generate chaotic signals.
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Figure 5.30: Time evolution of V1 and V2, for a1 = 1, a2 = 2, σ = −0.1 with initial

condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 0.7, h− = −0.3,

uH2L = 1, and uL2L = 0, and h2 is also a reverse one with h+ = 0.7, h− = 0.3,

uH2L = 0, and uL2H = −1.
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Figure 5.31: Phase trajectory of V1 and V2, for a1 = 1, a2 = 2, σ = −0.1 with initial

condition V1 = 0.1 and V2 = 0. h1 is a reverse hysteresis with h+ = 0.7, h− = −0.3,

uH2L = 1, and uL2L = 0, and h2 is also a reverse one with h+ = 0.7, h− = 0.3,

uH2L = 0, and uL2H = −1.
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5.7 Summary

In this chapter, we have demonstrated how to generate various multi-level

hystereses using CMOS circuits. We have also achieved two-dimensional multi-

level hysteresis with CMOS circuit realizations. We pointed out two methods to

generalize the results into multi-dimensional, multi-level hysteresis cells. In the end,

we suggested the possible application of multi-cell hysteresis on the generation of

chaotic signals.
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Chapter 6

Summary and Open Values

6.1 Summary

Here is the summary of what has been achieved in this dissertation:

First, the new concept of multi-cell hysteresis is introduced the first time in

Chapter one.

Second, in Chapter three, a group of CMOS binary hysteresis circuits with full

control which operate in all four quadrants have been achieved in simulations. These

CMOS binary hysteresis circuits include the following four kinds: current-input

current-output in section 3.2, voltage-input voltage-output in section 3.3, current-

input voltage out in section 3.4, and voltage-input current-output in section 3.5. For

each kind of binary hysteresis circuit, both forward and reverse hysteresis have been

achieved. The complete independant control on the position (uC , HC), the width

uW , and the height HH of each hysteresis was realized by either external current

sources or external voltage sources. All eight CMOS binary hysteresis circuit operate

in all four quadrants. The detailed discussions on these CMOS binary hysteresis

circuits are given in Chapter three.

Thirdly, in Chapter four, CMOS circuits, to be combined with the CMOS

binary hysteresis circuits, that are also building blocks for multi-cell hysteresis are

designed. These circuits include analogue four-quadrant adders in section 4.2, ana-
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logue four-quadrant multipliers in section 4.3, in both current and voltage mode,

current-voltage converters in section 4.4, and voltage-current converters in section

4.4. The detailed discussions on the above circuits are given in Chapter four.

Fourthly, in Chapter five, CMOS circuits to give various multi-level hysteresis,

in both current mode and voltage mode, have been achieved in section 5.3. Further-

more, CMOS circuits to give multi-level multi-cell hysteresis, in both current mode

and voltage mode, have been achieved, in section 5.4. Further discussion on how to

extend the results to higher dimensions was also given in section 5.5.

Finally, multi-cell hysteresis was suggested to be used in chaotic signal gener-

ation, as is covered in section 5.6 of Chapter five.

6.2 Open Problems

6.2.1 More on Binary Hysteresis

Looking back at binary hysteresis, in all the early discussions, we categorized

them in two groups, based on the switching characteristics, as shown in Figure 6.1

(a) and Figure 6.1 (b), notice that here we rename the forward hysteresis described

in the previous chapters to forward DU (down up) with uH2L < uL2H , and reverse

one to reverse UD (up down) with uL2H < uH2L. Mathematically speaking, the

limits on uH2L and uL2H need not be there. The other cases, as shown in Figure 6.1

(c) and Figure 6.1 (d), are also mathematically valid. The question is can we build

CMOS circuits to realize them? This would also be for the future interest.
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Figure 6.1: Binary hysteresis (a) Forward DU (down up). (b) Reverse UD (up

down). (c) Forward UD (up down). (d) Reverse DU (down up).
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6.2.2 Multi-Cell Hysteresis In Neural Networks

The key features of neural networks, that include asynchronous parallel pro-

cessing, continuous-time dynamics and global interaction of network elements excite

great interest and lead to a number of open problems.

6.2.2.1 CNN: Cellular Neural Network

A new circuit architecture for a type of neural network was proposed by L. O.

Chua and L. Yang [11]. The new architecture was given the name of cellular neural

network (CNN). The basic unit of a cellular network, a cell, contains some linear

and nonlinear circuit elements. In a cellular neural network, a cell is only connected

with its neighbors. A two-dimensional cellular neural network is shown in Figure

6.2.

The state equation for a typical M ×N cellular network is given in Equation

(6.1), for 1 ≤ i ≤ M, 1 ≤ j ≤ N . xij is the state, uij is the input, A(i, j, k, l) is

the feedback operator taking output from nearby cells, B(i, j, k, l) the input control

operator, and I the threshold value, all with the defining neighbors, Nr(i, j). The

output yij(t) is given by Equation (6.2), with f(x) normally a single input single

output nonlinear function. Multi-level hysteresis was proposed to be the nonlinear

function f(x) in gray scale image-processing for its robustness to noise [68].

dxij(t)

dt
= −τijxij(t) +

∑
C(k,l)∈Nr(i,j)

A(i, j, k, l)ykl(t) +
∑

C(k,l)∈Nr(i,j)

B(i, j, k, l)ukl + I

(6.1)

yij(t) = f (xij(t)) (6.2)
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C(i-1,j) C(i-1,j+1)
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Figure 6.2: A two-dimensional cellular neural network. The links between cells rep-

resent the interaction between cells. The links are different in each case of definition

of neighbors.
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Since a cellular neural network is a multi-dimensional neural network, it is

natural to consider using vectors as state variables to each cell, instead of a scalar

xij(t). Using the M×N two-dimensional cellular neural network as an example, the

state variable for cell C(i, j) can be defined as [x1
ij(t), x

2
ij(t)] and the state equations

of such a neural network are given by Equations (6.3) and (6.4), for 1 ≤ i ≤

M, 1 ≤ j ≤ N . The output of cell C(i, j), yij, is given by Equation (6.5), with

H
(
x1

ij(t), x
2
ij(t)

)
being the two-dimensional hysteresis function.

dx1
ij(t)

dt
= −τijx

1
ij(t) +

∑
C(k,l)∈Nr(i,j)

A(i, j, k, l)ykl(t) +
∑

C(k,l)∈Nr(i,j)

B(i, j, k, l)ukl + I

(6.3)

dx2
ij(t)

dt
= −τijx

2
ij(t) +

∑
C(k,l)∈Nr(i,j)

A(i, j, k, l)ykl(t) +
∑

C(k,l)∈Nr(i,j)

B(i, j, k, l)ukl + I

(6.4)

yij(t) = H
(
x1

ij(t), x
2
ij(t)

)
(6.5)

Another way to apply multi-cell hysteresis is that instead of using a one-

dimensional nonlinear function f(x), in Equation (6.2), multi-dimensional multi-

level hysteresis is used here, as shown in Equation (6.6). H is a multi-dimensional

hysteresis function with the states of cell C(i, j) and its neighboring cells as the

multi-dimensional input. This new cellular neural network can be described by

state equation, as shown in Equation (6.7).

yij(t) = H(xkl(t)), with x(k, l) the states of C(i, j) and its neighbors (6.6)

dxij(t)

dt
= −τijxij(t) + yij(t) +

∑
C(k,l)∈Nr(i,j)

B(i, j, k, l)ukl + I (6.7)

This is still in the very early stage of consideration of applying multi-dimensional

hysteresis to cellular neural networks and is a topic worthy of future consideration.
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6.2.2.2 Radial Basis Function Neural Network

Radial basis function (RBF) neural networks also have our eyes for applying

multi-dimensional hysteresis cells also. RBF neural networks were developed by D.

S. Broomhead and D. Lowe [4] and T. Poggio and G. Girosi [43]. A radial basis

function (RBF) neural network can be described by Equation (6.8), with N as the

number of neurons. Si(Xi) is a radial based function.

fnn(X) =
N∑

i=1

wiSi(Xi) (6.8)

Radial basis functions have their origins in the study of multivariable approximation

theory. It was proven [44] [47] that a RBF neural network, with sufficiently large

number of nodes and appropriately placed node center and variances, can approx-

imate any continuous function. A Gaussian radial basis function is expressed by

Equation (6.9), with X = [x1, x2, ..., xQ] the Q-dimensional input, ξ = [ξ1, ξ2, ..., ξQ]

the center, and η the width.

S(X) = exp

(
−‖X − ξ‖

η2

)
(6.9)

Three dimensional plots of two-dimensional input radial basis functions are shown

in Figure 6.9.

Gaussian radial basis functions are localized basis function, meaning that each

function can only affect the network output locally. This property, with the function

approximation ability, was used in localized representation, storage and learning [58].

The question is that “can we replace the radial basis function in RBF neu-

ral network by multi-dimensional hysteresis function to approximate any multi-
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(a) (b)

Figure 6.3: Radial basis functions with different width η. (a) η = 0.1. (b) η = 0.5.

dimensional hysteresis function? ” How can we do it? This is also worthy of

consideration of future work.

Since multi-dimensional multi-level hysteresis is a new concept, applying it

to neural networks is in the early stage of consideration. Further investigation on

applying multi-cell hysteresis is encouraged.
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