
ABSTRACT 

Title of dissertation: UNDERSTANDING ELECTRIC FIELD-ENHANCED 

TRANSPORT FOR THE MEASUREMENT OF 

NANOPARTICLES AND THEIR ASSEMBLY ON 

SURFACES 

 
De-Hao Tsai, Doctor of Philosophy, 2007 

Directed by: Michael R. Zachariah, Professor. 

Departments of Mechanical Engineering and Chemistry 

The goal of this dissertation is to understand the synthesis, characterization, and 

integration of nanoparticles and nanoparticle-based devices by electric field-enhanced 

transport of nanoparticles. Chapter 1 describes the factors used for determining particle 

trajectories and found that electric fields provide the directional electrostatic force to 

overcome other non-directional influences on particle trajectories. This idea is widely 

applied in the nanoparticle classification, characterization, and assembly onto substrate 

surfaces as investigated in the following chapters.  

Chapter 2 presents a new assembly method to position metal nanoparticles 

delivered from the gas phase onto surfaces using the electrostatic force generated by 

biased p-n junction patterned substrates. Aligned deposition patterns of metal 

nanoparticles were observed, and the patterning selectivity quantified. A simple model 

accounting for the generated electric field, and the electrostatic, van der Waals, and 

image forces was used to explain the observed results.  Chapter 2.2 describes a data set 



for particle size resolved deposition, from which a Brownian dynamics model for the 

process can be evaluated. Brownian motion and fluid convection of nanoparticles, as well 

as the interactions between the charged nanoparticles and the patterned substrate, 

including electrostatic force, image force and van der Waals force, are accounted for in 

the simulation. Using both experiment and simulation the effects of the particle size, 

electric field intensity, and the convective flow on coverage selectivity have been 

investigated. Coverage selectivity is most sensitive to electric field, which is controlled 

by the applied reverse bias voltage across the p-n junction. A non-dimensional analysis of 

the competition between the electrostatic and diffusion force is found to provide a means 

to collapse a wide range of process operating conditions and an effective indicator or 

process performance. Directed assembly of size-selected nanoparticles has been applied 

in the study of nanoparticle enhanced fluorescence (NEF) bio-sensing devices.  

Chapter 3 presents results of a systematic examination of functionalized gold 

nanoparticles by electrospray-differential mobility analysis (ES-DMA). Formation of 

selfassembled monolayers (SAMs) of alkylthiol molecules and singly stranded DNA 

(ssDNA) on the Au-NP surface was detected from a change in particle mobility, which 

could be modeled to extract the surface packing density.  A gas-phase temperature-

programmed desorption (TPD) kinetic study of SAMs on the Au-NP found the data to be 

consistent with a second order Arrhenius based rate law, yielding an Arrhenius-factor of 

1×10
11

 s
-1

 and an activation energy ~105 kJ/mol. This study suggests that the ES-DMA 

can be added to the tool set of characterization methods being employed and developed to 

study the structure and properties of coated nanoparticles.  



Chapter 3.2 demonstrates this ES-DMA as a new method to investigate colloidal 

aggregation and the parameters that govern it. Nanoparticle suspensions were 

characterized by sampling a Au nanoparticle (Au-NP) colloidal solution via electrospray 

(ES), followed by differential ion-mobility analysis (DMA) to determine the mobility 

distribution, and thus the aggregate distribution. By sampling at various times, the degree 

of flocculation and the flocculation rate are determined and found to be inversely 

proportional to the ionic strength and proportional to the residence time. A stability ratio 

at different ionic strengths, the critical concentration, and surface potential or surface 

charge density of Au-NPs are obtained from these data. This method should be a 

generically useful tool to probe the early stages of colloidal aggregation.  

Study of ES-DMA is extended to include the characterizations of a variety of 

materials. Biologically interested materials such as viruses and antibodies could also be 

characterized. These results show ES-DMA provides a general way to characterize the 

colloidal materials as well as aerosolized particles. 
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Chapter 1 

Introduction 

1.1 Overview 

Functionalization of nanoparticles (NPs) has become one of the major focus 

areas in the material research society with applications in electronics1,  pharmaceuticals2, 

3, and chemical4/biological sensors2, 5. An example, gold and silver nanoparticles can be 

applied in the diagnostics for bio-molecules because their unique plasmon bands 

effectively enhance the detection limits of the sensing processes2, 5-7.  

To integrate these nanoparticles into future applications, a key is to understand 

their transport properties, which can impact material synthesis, classification, 

characterization and integration processes. 

Brownian motion, particle drag and the external force are the major factors 

affecting nanoparticles’ transports 8-11. Hence the external force includes the net force 

from all external fields acting on the particles, such as electric fields, magnetic fields and 

van der Waals attractions. Particle drag is defined as the particle resistance to momentum 

change caused by external fields, and this resistance is due to directional collisions of the 

surrounding medium molecules to nanoparticles. Brownian motion is induced by non-

directional, random collisions between the particle and molecules in the surrounding 
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medium, which is important especially when the size of materials goes down to the nano-

scale. 

My dissertation is focused on the study of nanoparticle transport properties in the 

gas phase, and the enhanced transport properties by applying an electric field. The 

advantage of transporting nanoparticles in a gas is that it is a clean medium12 and it offers 

minimal resistance to steer/direct the trajectories of charged nanoparticles. By choosing 

polarities of particles and adjusting the intensity of the electric field one can control their 

trajectory, which can be applied to the classification, characterization, and assembly of 

these nano-sized particles. In Chapter 2 and 3 we will discuss further on these 

applications. 

 

1.2  Electric Field Enhanced Transport 

Generally, twokinds of external forces are acting on nanoparticles in an electric 

field 9, 11, 13. One is the van der Waals force, which is attractive, non-directional, and 

always presents between two objects. The other is the electrical force. Generally, the 

electrostatic force is the major electrical force when applying a uniform, time-invariant 

electric field to minimize the effect of nanoparticle polarization; this force is defined as a 

charged object having a coulomb interaction with the surrounding electric field. The 

electrostatic force is a directional, long-range force, can be employed for directing 

particle trajectories. Upon application of a sufficient electric field, the electrostatic force 

can overcome the van der Waals forces in the gas phase, so that particle can be controlled 
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by the applied electric field. Next we discuss the theory for using electric field to measure 

particle size distributions and directed-assembly of particles onto patterned surfaces. 

 

1.3 Differential Mobility Analysis (DMA) 

The idea behind measuring particle sizes with electric fields is based onto 

measuring the electrical mobility of NPs based on their time-of-flight physics14, 15.  

Figure 1.1 shows in-flight particles in a differential mobility analyzer. A convective flow 

(sheath flow) having a constant velocity, U, is used to carry the particle in the X-

direction, which is usually fixed during the mobility analysis. In the vertical (r) direction, 

the particle’s velocity is determined by its electrical velocity, ve, which is a function of 

electrical mobility of the particle, Ze, and the applied voltage in the mobility analyzer, 

VDMA [ve= f(VDMA, Ze)],  

),(, eDMA

DMA

re

DMAs

ZVf

h

v

h

U

L
t ===                              (1.1)  

Here Ls and hDMA are design parameters of the mobility analyzer from the manufacturer 

15. For a constant-time measurement, ve,r, U, Ls and hDMA are all constant, and the only 

variables left in Eq. 1.1 are VDMA and Ze. Hence, the electrical mobility of different sized 

nanoparticles can be measured from a balance of electrical and drag forces by ramping 

through VDMA. 
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Figure 1.1: Description of in-flight particles in a differential mobility analyzer. Fe is the 
electrostatic force, and FD is the drag force, which retards the motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Electrical mobility versus particle size (in the free molecular regime). Particle 
size is expressed as the diameter of particles. 
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1.3.1 Electrical Mobility of Nanoparticles in Gas Phase 

Similar to the electrical mobility of an electron16, the electrical mobility of a 

charged NP, Ze, can also be measured through its electrical drift velocity, 

EvZ ee /= ,                                                     (1.2) 

where E is the applied electric field in the differential mobility analyzer. To determine the 

mobility we balance the electrical and drag forces.  

De FF =                                                           (1.3) 

neEFe =                                                         (1.4) 

c

ep

D
C

vd
F

πµχ3
=       .                                      (1.5)  

Then Ze can be derived from Eq. 1.2 to Eq. 1.5, 

χπµ p

ce

e
d

neC

E

v
Z

3
==   ,                                     (1.6) 

where n is number of unit charges, e is the elementary charges (1.6*10-19 coulombs), µ is 

the viscosity of surrounding medium, dp is the particle size, Cc is the Cunningham slip 

correction factor ( )]39.0exp(05.134.2[1
λ

λ d

d
C c −++= ) 14 and χ is the shape factor used 

for nano-sized materials having different shapes (for a spherical NP, χ=1). An example 

plot for converting particle mobility into particle diameter is shown in Figure 1.2. For 
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nano-sized particles (dp<100 nm), Ze is approximately proportional to dp
-2 because Cc is 

proportional to d-1, approximately. 

 

1.3.2 Electric Field in Gas Phase 

To study how nanoparticle trajectories are affected by the electric field, it is 

necessary to obtain the electric field distribution within the DMA. For simplification, the 

applied electric field directing particle trajectory is assumed to be one-dimensional and 

perpendicular to the direction of convective flow. For a cylindrical electrostatic classifier 

having a central-rod electrode (Figure 1), the electric field attraction is in the axial 

direction (r-direction), 

)/ln( riror

V

dr

dV
E DMA

r

−
==      .                               (1.7) 

Here r is the position of in-flight particle, ro and ri are the outer and inner diameter of the 

DMA, respectively. By getting Er from Eq. 1.7 then Ze can be obtained through Eq. 1.2. 

In addition to the electric field and particle drag, the Brownian motion of a 

particle should also be included in the particle trajectory analysis, as it adds uncertainty to 

the field-directed trajectory. Generally, increasing the applied field in the DMA can 

effectively reduce the importance of Brownian motion because the electrical velocity 

increases without changing the diffusional velocity. A further discussion of electrostatics 

versus diffusion is included in Chapter 2.2. 
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1.3.3 Charge Neutralization of Aerosolized Nanoparticles 

Generally, the size of nanoparticles of interest to us is less than 100 nm. Figure 1.3 

shows15 the ratio of singly and doubly charged particles to all particles versus particle 

diameter under charge equilibrium. Clearly, when particle size is less than 20 nm, the 

probability of forming doubly charged (n=2) particles is negligible. In contrast, when the 

particle size is larger than 150 nm, the probability of forming multiply-charged particle 

becomes significant (>5 %), which is a significant challenge to the size purification 

processes. For spherical-like particles ranging less than 100 nm, we use a factor, β, to 

represent the ratio of singly charged positive particle to the total number of particles in 

the gas phase 15, 17: (the unit of dp is nanometer) 

])log(032.0)log(1553.0)log(0013.0)log(48.0)log(6044.03484.2[ 5432

10 ppppp ddddd +−+++−
=β  (1.8) 

In order to obtain β, it is necessary to bring nano-sized materials to charge 

equilibrium before entering the DMA. An aerosol neutralization process can bring the 

charge distribution of aerosolized particles from a non-equilibrium state (unknown charge 

ratio) to equilibrium with a known Boltzmann charge distribution14, 17. Briefly, the 

radioactive source bi-polarly charges the surrounding gas molecules. Nanoparticles 

passing through this housing collide with these charged gas molecules, and become 

charge-neutralized.  From β the number concentration of all particles can be calculated 

based on the number of singly charged, positive particles measured by DMA after charge 

equilibrium. 
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[Number of particles]= β -1*[Number of singly-charged positive particles]     (1.9) 

 

 

 

 

 

 

 

 
 
Figure 1.3: Ratio of singly and doubly charged particles to all particles versus particle 
diameter in charge equilibrium. Assume particles are positive and spherical. 

 

1.3.3 Differential Ion-mobility spectrum and the Particle Size Distribution 

Ion-mobility spectra of NPs (i.e. their number density versus particle mobility) are 

obtained by using an electrostatic classifier followed by a condensation particle counter 

(CPC). As changing VDMA, particles having a specific Ze are classified under different 

VDMA. Then the number concentration of these mobility-classified NPs, Ng,p, is 

characterized by the CPC and recorded by a personal computer. By knowing β (Eq. 1.8) 

and mobility size (Fig 2), the ion mobility spectrum can be converted into a full particle 

size distribution representing the status before the DMA.   
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This ion-mobility spectrum can be widely applied toward many potential 

applications. For example: the DMA may be used for characterization of the size of 

spherical particles, the length of nanotubes and nanorods, and the coating thickness on 

nanoparticles. Moreover, this ion-mobility spectrum can be applied as an electrostatic 

classification tool to obtain size-selected nano-materials, which can be used in many 

applications requiring high size purity 13. 

 

1.4 Electrostatic Deposition of Nanoparticles 

In addition to being able to characterize functional nanoparticles, integrating these 

particles into the device engineering is important for nanoparticle applications. However, 

fabrication of nanoparticle-based devices requires effective deposition of nanoparticles 

onto a substrate surface and accurate alignment of nanoparticles in specific locations. The 

most obvious and effective method to position particles is through the use of electrostatic 

forces. Compared to micron-sized materials, nanoparticles are difficult to bring from the 

gas phase onto a substrate surface by simple impaction due to their low inertia14.  

Because the Stokes number of nanoparticles is <<1, particles follow the gas streamline if 

there is no external field. In contrast, they have relatively high electrical mobilities due to 

their low drag (Eq. 1.6). Hence, electrostatic deposition is a promising method to 

assemble these nanoparticles onto the substrates.  For example, in commercially-available 

electrostatic deposition systems18, the deposition efficiency is highly dependent on the 

particle size and smaller sized NPs have higher deposition efficiency (100 % when d < 30 

nm). We can estimate the yield of a deposition process as:  
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)(*)( EfficiencyDepositionPhaseGasinionConcentratYield =  .  (1.10) 

In the following chapters we will use these concepts to characterize and deposit 

nanoparticles. 
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Chapter 2  

Directly-Assembly of Functional Nanoparticles on a 

Field Generating Substrate-Applications in 

Nanotechnology 

 

2.1. Electrostatic-Directed Deposition of Nanoparticles on a Field 
Generating Substrate 

 

2.1.1 Introduction 

Functional nanoparticles have been widely considered as the building blocks of 

potential micro- and nano-scale electronic, optoelectronic devices and gas sensors 12, 19. 

Fabrication of nanoparticle based devices would require accurate alignment of 

nanoparticles in specific locations. The most obvious and effective method to position 

particles is through the use of electrostatic forces. For example Jacobs et al. 20-22 

demonstrated that charged carbon nanoparticles could be aligned with an electric field on 

a charge-patterned substrate. Fissan et al. 23-25 also applied a contact charging method by 

employing a metal-coated polymer stamp to form charging patterns on an insulating 

substrate, where the oppositely charged nanoparticles were eventually attracted and 

aligned. For 30 nm-sized particles, the best lateral resolution achieved with this method 

was around ~100 nm. However, the gas-phase patterning of nanoparticles on a charge-

patterned substrate still has many difficulties, including: (i) the charge patterns are 
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relatively unstable, and change during the particle deposition process, (ii) the metal-

coated polymer stamp is easily damaged in the charging process, (iii) the necessity of 

using an insulated surface on the substrate, limits its applications especially on metal-

semiconductor devices.  

We have approached the problem of particle alignment from the point of view of 

developing a substrate that could be easily patterned and fabricated with traditional 

microelectronic process methods as well as possessing thermal and chemical stability. To 

that end we have considered the simplest device structure, a planar p-n junction.  Upon 

bias of the junction, an electric field is established on the charge depletion zone.  We will 

demonstrate the use of this field to direct nanoparticles deposited from the gas-phase. 

 

2.1.2 Directed Assembly Approach 

As is well known, in the region where the P and N type doped regions are in 

contact, electrons from the N-type diffuse toward the P-type region and combine with 

holes to form a charge depletion zone, resulting in a build-up of a net charge in each 

region. Upon reverse bias the width of the charge depletion region is increased, and an 

additional electric field is established on the charge depletion zone 26.  

Our goal is to use the field generated in the depletion zone under various 

conditions of reverse bias to assess the feasibility of directing the motion and deposition 

of charged nanoparticles.  
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We begin with a simple analysis of the expected magnitude of the forces on the 

particles and the deposition selectivity.  The electric field E in the vertical direction of the 

substrate, Y is given by: 

r

Y

r

Q
E

g

×=
2

04 επε
        (2.1) 

Where 22
YXr += , X is the horizontal distance between a particle and the charged 

surface of a substrate, Y is the vertical distance between a particle and the substrate, εg is 

the dielectric constant of the carrier gas N2 (=1.0006), and Q is the net charge in each 

depletion zone. 

Figure 2.1 presents the schematic of a p-n junction patterned substrate, consisting 

of arrays of p-type GaAs stripes (number concentration of acceptors, NA=1019 cm-3; 0.3 

cm in length, 1 µm in width and 30 µm gap between p-stripes) within n-type GaAs 

(number concentration of donors, ND=1018 cm-3). The calculated built-in potential (Vbi) of 

this substrate is 1.45 V, calculated as follows16, 

)ln(
2

i

DA

bi
N

NN

e

kT
V =                                     (2.2) 

Where k is Boltzmann’s constant, T is the temperature, Ni is the intrinsic carrier 

concentration of GaAs (=1.79×106 cm-3) and e is the elementary unit of charge (=1.6×10-

19 C). The total width of the charge depletion zone, dn+p, was estimated to be around 50 

nm27. To simplify the calculation of the electric field generated from the p-n junction, the 

thickness of p-type-doped GaAs layer on this substrate was assumed to be 1µm. With the 
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parameters of NA, ND, and dn+p, we can estimate the net charge in the depletion zone (Q) 

and estimate E, the generated field, using Equation 1. 

The electrostatic force on a charged particle is given by, 

Fe = n e E                                           (2.3) 

Where n is the number of unit charges on an incoming nanoparticle, and E is the net 

electric field generated from the p-n junction patterned substrate, at that location in space.  

Taking into account the van der Waals force (Fvdw) and the image force (Fi) 

between particles and a substrate, we can obtain the net external force (Fext) on a particle 

in the vertical direction as follows 9, 25, 

gs

gs

g

i
Y
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F

εε

εε

επε +

−
−=

2
0

2

)2(4
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                               (2.4) 
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−=                                (2.5) 

 Fext = Fe + Fvdw + Fi                                           (2.6) 

where d is the particle diameter and Ah is the Hamaker constant of metal particles in the 

air (= 4×10-19 J). Note that both Fvdw and Fi are attractive forces.  

The net external force exerting on a spherical particle is a function of the position 

(X, Y) above the substrate. When nanoparticles are initially located far from the substrate 

(Y>>100 nm), the electrostatic force is relatively strong compared with the van der Waals 
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and image forces, so that the trajectory of nanoparticles depends only on Fe. Because of 

the random nature of Brownian motion, a direct calculation including this effect becomes 

computational quite expensive. However, Brownian motion is only important when the 

electric force is weak. Once a particle is close to the surface of the substrate (Y<100 nm), 

the effect of Brownian motion is negligible because Fe, Fvdw, and Fi increase 

significantly.  Figure 2.2 presents the net external force acting on a negatively singly-

charged 50 nm particle at an applied bias of –0.9 V at various heights above the surface. 

Positive and negative values of the net external force represent repulsive and attractive 

forces, respectively. As one can see, the negatively charged particles are repelled by p-

type regions and attracted by n-type regions, particularly at the interface of p-n junctions, 

where the local field is highest. As the negatively charged particles get closer to the 

substrate they experience stronger attracting or repelling forces. If the polarity of the 

particle is changed to positive, the opposite situation is expected, i.e. the particles should 

preferentially array in the P-type regions.   
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Figure 2.1: The schematic of a p-n junction patterned substrate. 
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Figure 2.2: The net external force on an incoming negatively charged nanoparticle across 

a p-n junction-patterned substrate. Three curves express different vertical positions at 

Y=60nm, 80nm and 100nm. (Calculation conditions: dp =50 nm, Vbias = -0.9 V).  
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2.1.3 Experimental 

Figure 2.3 presents a schematic of the experimental system. Nickel nanoparticles 

were generated by pulsed laser ablation (PLA) from a solid nickel target (99.995%, 

Lesker, 1″ O.D. × 0.125″ in thickness), using a 1064 nm Q-switched Nd:YAG laser 

operating at 10 Hz with a pulse duration of 4 ns. The choice of nickel was based on an 

eventual goal of using the particles as catalysts for carbon nanotube growth.  The laser 

beam is focused on the solid nickel target, which leads to vaporization of the target 

material due to local micro-plasma formation on the target surface. The nickel vapor was 

continuously swept by 2 lpm nitrogen carrier gas, and then rapidly quenched and 

nucleated into nickel nanoparticles in the gas phase.  

To measure the particle size distribution of nickel particles generated by PLA, we 

used a differential mobility analyzer (DMA model 3081, TSI, Inc.) for selecting 

monodisperse particles based on their electrical mobility, and a condensation particle 

counter (CPC, model 3025A, TSI, Inc.) for counting the number concentration 28. The 

polydisperse nickel particles were then sent to a tube furnace at 1000oC to sinter the 

particles.  The sintered particles were then passed through a unipolar charger composed 

of six radioactive ionizing Po-210 strips (0.5 mCi) circumferentially placed in the 

entrance of the charger which then flowed into a ±300 V/cm DC field to remove either 

positive or negative ions so that only one polarity of ions remained in the charger 29. 

Inside the unipolar charger, nanoparticles become uni-polarly charged by the charge 

transfer from the gas-ions. 
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The p-n junction-patterned substrate was n-type GaAs (Si doped) coated with 

SiO2.  Photolithography was used to define lines for the p-type doping.  The p-type 

doping was created by ion implantation of Zn+ ions through the SiO2 layer.  The 

photoresist was then removed and the oxide layer stripped before rapid thermal annealing 

for activation of the Zn+ ions. For particle deposition, the p-n junction-patterned substrate 

was connected to a DC power supply and placed in a deposition chamber (9 cm in I.D. 

and 10 cm in height) with an aerosol feed nozzle (2 mm in I.D.) 1 cm above the substrate. 

Reverse bias was applied by connecting the p-type doped contact pad with the cathode of 

the DC power supply, and the n-type doped substrate with the anode of the power supply 

(as shown in Figure 1). The bias across the substrate was varied from 0 to -2.5V, and 

current measured was less than 0.02 mA. The nanoparticle deposition pattern was 

observed with a Hitachi S-4000 field emission scanning electron microscope (SEM) 

operated at 4 kV. 

 



 20

DMA

Neutralizer 

Unipolar 

Charger

Tube 

Furnace

N2

3-ways valve

Laser

CPC

Vacuum

Ni

Stepper 

Motor

P-N Junction

Deposition 

Chamber
Nozzle

V

DC Power 

Supply

Filter

Filter

Vacuum

Sheath 

Gas

Excess 

Vacuum

Nozzle

 
 
Figure 2.3. Schematic diagram of the experimental system. (DMA is the differential 

mobility analyzer and CPC is the condensation particles counter) 
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Figure 2.4.  Particle size distribution of nickel nanoparticles generated by PLA. 
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2.1.4 Results and discussion 

The Ni particle size distribution generated is shown in Figure 2.4, and indicates a 

peak size of ~50 nm, and the total number concentration around ~108 cm-3. The measured 

built-in potential of the p-n junction-patterned substrate was about 1.2-1.5 V, which was 

very close to the calculated result (~1.45 V). This built-in potential was used as the zero-

biased electric field in the following experiments.   

 Figure 2.5 shows SEM images of the p-n junction-patterned substrates, following 

particle deposition for different reverse bias voltages.  When no bias voltage is applied 

(Figure 2.5a), nickel nanoparticles are homogeneously distributed on both p-type and n-

type regions, indicating that the zero-biased electric field generated by the built-in 

potential was not sufficient to affect the trajectory of the charged particles. However, 

beginning with a reverse bias of -0.2 V (Figure 2.5b), a higher number concentration of 

nickel nanoparticles are clearly deposited in the n-type region, indicating that negatively 

charged particles were being repelled by p-type regions and attracted to the n-type 

regions. With increasing reverse bias (as shown in Figure 2.5c, d, e), the negatively 

charged nickel nanoparticles are almost exclusively deposited on the n-type regions and a 

particle-free zone is clearly observed on p-type regions. Comparing our calculation result 

of the peak Fe shown in Figure 5f with those SEM images (Figure 2.5a-2.5e), we can see 

it is sufficient to repel negatively charged particles from the p-type region while the peak 

Fe is more than 8×10-7N. To quantify the difference in particle deposition level between 

the p and n-type regions in Fig. 2.5, we define a coverage selectivity of n-type to p-type 

regions as follows, 
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 Coverage selectivity = %100×
−

N

PN

C

CC
                  (2.7) 

CP and CN are the coverage of particles deposited on the p-type and the n-type regions 

obtained via digital image processing 30 and presented in Figure 2.5g as a function of bias 

voltage.  Apparently, by about -0.5 V selectivity exceeded 99%.   This corroborated with 

the fact that as the reverse bias was increased, the negative electric field generated on the 

p-type regions was also increased to sufficiently repel the incoming negatively charged 

nanoparticles, and resulted in a gradually increase in the coverage selectivity. 

It is expected that changing particle polarity to positive will attract particles to the 

depletion zone of the p-type regions, and repel them from the depletion zones of n-type 

regions. Figure 2.6 presents SEM images of the positively charged particles deposited on 

p-n junction substrates. As seen in Figure 2.6a, there was no obvious difference between 

p- and n-type regions when no bias was applied indicating the built-in potential had no 

effect on particle deposition. However, as the reverse bias was increased, as shown 

Figure 2.6b, c, d and e, one can clearly see that particles were preferentially deposited on 

the negatively charged p-type, and in particular for the higher bias cases (Figure 2.6c, d, 

e) formed dendrite-like structures due to the presumable attraction of the van der Waals 

force between deposited particles and incoming particles from the gas phase 
31.  We can 

expect the calculated peak Fe (shown in Figure 2.6f) is increased up to 1.5×10-6N by 

increasing the reverse bias to –2.5V so that more nanoparticles can be induced to deposit 

on the p-type region. By Eq. 2.7 we defined the coverage selectivity of p-type to n-type 

regions in Fig. 2.6,  
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Coverage selectivity = %100×
−

P

NP

C

CC
            (2.8) 

As shown in Figure 2.6g, the coverage selectivity was similar to that observed for 

the negatively charged particles. However, unlike the formation of the particle-free zone 

on p-type regions for negatively charged particles (see Figure 2.5d), the particle-free zone 

for positive particles on n-type regions was not complete even when –0.9 V was applied. 

Presumably this is because the strength of the positive electric field generated across n-

type regions is weaker (~105 V/m in the middle of the n-type region at Y=100nm) than 

that of p-type regions (>1010 V/m), and results from the broad width of n-type regions 

(~30 µm) compared with the relatively narrow width of p-type regions (~1 µm) used in 

these experiments. The electrostatic force in p-type is more than 1000pN but is only 

0.01pN in n-type. This insufficient force in n-type is unable to repel nanoparticles away 

from that region. Asymmetry of the deposition patterns was observed which we attribute 

to the role of the bulk convection of the carrier gas affecting the trajectory of the 

nanoparticles. We estimate the boundary layer thickness to be less than 2 mm under the 

convective flow conditions of our experiment. As such the gas flow near the substrate is 

essentially flowing parallel to the surface. The electric force however, is acting 

perpendicular to the surface. As a result when a particle enters the region of strong 

attractive field it is also being convected out of that field region by the net gas flow. If the 

flow velocity is sufficiently high the particle may exit the field region without being 

deposited or be deposited in a region farther down stream. Effectively this is what is 

being observed in the asymmetry of our deposits as observed in both Fig 2.5 and 2.6 

where the flow direction is from left to right. We have developed a simulation of this 
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using a full trajectory calculation (Section 2.2). Nevertheless, it is quite clear that by 

appropriate choice of surface patterning using simple device structures, one may be able 

to create nanoparticle deposited patterned surfaces.  One could imagine the design of PN 

junction patterns designed to steer particles in a 2-D plain, and/or coupling the electric 

field effects with thermal fields to have a more precise control of lateral deposition 

patterns. 
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Figure 2.5. SEM images of negatively charged nickel particles deposited on GaAs with 
the p-n junction under different applied bias voltages. The bright stripes are p-type 
regions, and the dark stripes are n-type regions. (a) 0 V, (b) –0.2 V, (c) –0.5 V, (d) –0.9 
V, (e) Lower resolution SEM image for –0.9 V. (f) Calculated peak electrostatic force, 
Fe, in the p-type regions, (g) Coverage selectivity of the samples shown in a-d. 

 

 



 26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6. SEM images of positively charged nickel particles deposited on GaAs with 
the p-n junction under different applied bias voltages. The bright stripes in theses figures 
are p-type regions, and the dark stripes are n-type regions. (a) 0 V, (b) –0.9 V, (c) –1.5 V, 
(d) –2.5 V, (e) Lower resolution SEM image for –2.5 V. (f) Calculated peak electrostatic 
force in the p-type regions,  (f) Coverage selectivity of the samples shown in a-d. 
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2.2. Spatial and Size-Resolved Electrostatic-Directed Deposition of 
Nanoparticles on a Field-Generating Substrate: Theoretical and 
Experimental Analysis 

 

2.2.1. Introduction 

Functional nanoparticles have been widely considered as the building blocks 

of potential electronic, optoelectronic, and sensing devices 12, 32. For many 

applications of nanoparticles, in for example sensors or other electronic devices 

precise positioning for integration into a working device becomes a considerable 

challenge. The production of nanoparticles using gas phase methods has the 

advantage of a clean, continuous process which can be operated at atmospheric 

conditions without requiring any vacuum environment or solvent medium 12.  An 

additional advantage is that charge can be readily placed on nanoparticles, which can 

be used both to conduct size selection or filtration, and to direct deposition through 

the implementation of electric fields. Electrostatic-directed methods have been used 

previously with some success 11, 21, 22, 24 and suggest a good strategy to achieve this 

alignment. In our previous work 11, we directed the deposition of particles using a 

substrate with lateral and vertical tunable fields.  This was achieved by using an array 

of biased p-n junction patterned substrate to generate a pattern of tunable electric 

fields, which enabled us to form stable charge patterns on the substrate. Using 

unipolarly-charged Ni nanoparticles we observed that with sufficient reverse-bias on 

the p-n junction we could achieve selective deposition on the specific positions on the 
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substrate.  Under the right conditions we achieved very high coverage selectivity 

(~100 %), and stripe-like deposition patterns of nanoparticles (~500 nm in width) 

The success of this work suggested further investigation into the particle size 

dependence of coverage selectivity, and some consideration of the ultimate resolution 

that could be achieved in this patterning approach. In this paper we discuss an 

expanded set of experiments using size segregated (monodisperse) particles. This data 

forms the basis for the development of a validated Brownian dynamics model.  

 

2.2.2 Experimental  

To understand the nature of the deposition process we employ an approach to 

prepare unipolarly-charged nanoparticles with a very narrow size distribution (~ 

monodisperse). Figure 2.7a presents a schematic diagram of our experimental system. 

Silver nanoparticles were synthesized by a spray pyrolysis method 33. The choice of 

silver was based on an eventual goal of using these particles for surface plasmon 

resonance (SPR) bio-sensing devices 6, 7. A silver nitrate (99+%, Aldrich)/water 

solution was atomized into droplets (~ 2 µm) and passed to a 850oC flow reactor in 

nitrogen. At this temperature the metal nitrate is converted to pure silver aerosol with 

a rather wide particle size distribution 34. We employ ion-mobility separation of 

charged particles to create a narrow size cut using a differential mobility analyzer 

(DMA) 11, 13, 28. The output of the DMA, which operates like a band-pass filter, 

provides an output of unipolar charged monodisperse aerosol. The number 

concentration of monodisperse particles was ~105-106 cm-3 at a flow rate of 1 lpm. 
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These aerosol particles were then delivered to a second tube-furnace at 600-800 oC for 

the purpose of creating spherical nanoparticles. A unipolar charging process 11, 29 was 

applied to maximize the charges before deposition. These nanoparticles were 

delivered to the deposition chamber. A more detailed description of the nature of the 

PN junction substrate can be found in Section 2.1.  For particle deposition, the PN 

junction-patterned substrate was placed in a deposition chamber (9 cm in I.D. and 10 

cm in height) with an aerosol feed nozzle (2 mm in I.D.) 1 cm above the substrate. 

We prepared three different sized Ag nanoparticles, 30 nm, 50 nm, and 70 nm 

in diameter, for our studies. The deposition process was the same as we described in 

Section 2.1. For this part, we chose to work with negatively charged particles. The 

applied reverse bias voltage across the substrate was varied from 0.1 V to 0.9 V, and 

the current measured was always less than 0.02 mA. A 2-D electric field is generated 

from the depletion regions of the p-n junction and is employed to steer the incoming 

nanoparticles flowing in the boundary layer (details are described in the model 

section). The nanoparticle deposition pattern was observed with a Hitachi S-4000 

field emission scanning electron microscope (SEM) operated at 4-6 kV.   

 

2.2.3 Theoretical model of electrostatic-directed assembly  

We have developed a trajectory model based on the force balance on an 

individual particle approaching the surface of a p-n junction patterned substrate. The 

flow field is illustrated in Figure 2.7b.   For a stagnation point flow, such as we have, 

the flow carrying the nanoparticles will turn parallel to the substrate, to form the 
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boundary layer 9, 35. We analyze the nanoparticle patterns at a location 0.3 cm from 

the stagnant point (xf =0.3 cm), where the flow is essentially parallel to the substrat`e. 

From a mass balance the boundary layer integrated velocity parallel to the substrate 

can be evaluated. 

 

 
 
Figure 2.7. (a) Schematic of the experimental system. (DMA: differential mobility 
analyzer; CPC: condensation particle counter). (b) Flow field above a p-n junction 
patterned surface. δ represents the thickness of boundary layer. 
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UxQ f ××= δπ )(                                  (2.9) 

 Here, Q is the flow rate of carrier gas (~1 Lpm), and U is the free stream velocity.  

For a stagnation point flow the boundary layer thickness δ can be estimated as 35, 

µ

ρ
δ

fg

f

Ux

x5
=

                                      (2.10) 

Here, ρg is the density of N2 carrier gas, and µ is its viscosity. Using typical values 

yields δ ~1 mm. For a stagnation point flow the convective flow velocity parallel to 

the substrate can be expressed as a function of height Yf above the substrate as 

)
2

sin(
δ

π f

g

Y
Uv =         .                         (2.11) 

The deposition process of nanoparticles can be thought to involve two 

limiting regimes 9. In regime 1 the weak interaction between the incoming particle 

and the substrate means that particle motion is governed by convective and Brownian 

motion. In regime 2 the particles are sufficiently close to the substrate, such that the 

interaction between an incoming nanoparticle and the substrate strongly influences the 

particle trajectory 9, 11.  The net external force acting on a particle, 
extF
r

, is given by 

Eq. 2.6. 

For our experimental conditions, nearly all particles are singly charged as they 

exit the mobility classifier, therefore n=1 17, 36. For the electric field, E
r

, we first solve 

the Laplacian equation 02 =∇ V  37 for the electrical potential distribution, V(X,Y), 
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near the substrate.  Due to the linear nature of the substrate patterning, we solve the 

Laplacian equation in 2D, with the following boundary conditions.  
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,where the X-coordinate is the direction parallel to the substrate surface and normal to 

the P-stripes, the Y-coordinate is normal to the substrate surface,  L1 is the special 

period of the pn junction array, i.e. the sum of the widths of the P-type and the width 

of the N-type regions. Vs(X) is the surface potential across the p-n junction, and EH 

the electric field strength at the position H above the substrate. Equation 2.12(a) and 

2.12(b) specify the periodic boundary conditions in the X direction, Equation 2.12(c) 

specifies the potential on the PN substrate, and Equation 2.12(d) specifies that the E-

field beyond a vertical distance H from the substrate be uniform. We employ a 

simplified model for the potential Vs(X) on the substrate surface, assuming the abrupt 

junction model and step-wise charge distributions for the depletion region. Based on 

these assumption, the lateral variation of Vs(X) can be written explicitly as shown in 

Figure 8a, where x2=Lp/2+∆wn, x1=Lp/2-∆wp. (-Vbias) is the reverse bias voltage 

applied across the pn junction. Na is the ionized acceptor concentration in the P-type 
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region (~1019 cm-3), and Nd is the ionized donor concentration in the N-type region 

(~1018 cm-3), ∆wn and ∆wp are the widths of the depletion zone in N-type and P- type 

regions, respectively 11, e is the unit charge (1.6x10-19 C), εs, is the dielectric constant 

of GaAs (13.1), and ε0 is the permittivity of free space. The analytical solution of the 

electrostatic potential distribution for the boundary conditions described above is the 

following.           

Yk

n

n

N

pn

dandna

s

ne
k

XkLk
NNxkNxkN

L

e
KYXV

−

=

∑ +−++=
3

1
21

10
1

)cos(
))

2
sin()()sin()sin((

4
),(

εε
 (2.13) 

)1)((
3

)(

110

33

1
L

L
V

L

wNwNe
K

p

bias

s

ndpa
−−+

∆+∆
=

εε
……………………… (2.14) 

Where, kn = 2Nπ/L1, The corresponding electric field components Ex and Ey are:  

dX

dV
E x −=  ……          (2.15) 

dY

dV
E y −= ……           (2.16) 

which are linear in (-Vbias).  In addition to the applied electrical force, we also consider 

the image and van der Waals forces in Eq. 2.6 as given by Eq 2.4 and 2.5. 9  

By combining the effects of the external forces, drag, convective flow, and 

Brownian motion, we can obtain analytic solutions for the particle trajectories by 

integrating the Langevin equation 8, 10. The analytical solutions of the velocity and the 

displacement of a particle in the X-direction during a characteristic time step, ∆t = tN-

tN-1 are given by  
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We can use similar forms to describe the motion in y and z direction except 

that vg is assumed to be zero in both y and z direction, and Fi and Fvdw, which depend 

only depend on the vertical separation distance, are added to the component of the 

force acting in the y direction.  In Eq’s (2.17) and (2.18) B1 and B2  are random 

functions of time used to express Brownian motion of a particle, both of which follow 

a Gaussian distribution,  with a mean value of zero. The mean-square values of B1 and 

B2 are expressed in the following: 
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Here, k is the Boltzmann constant, T is the temperature, mp is the mass of a particle, ß 

is the friction constant (
cpCm

dπµ
β

3
= ), and ß-1 represents tr, relaxation time of a particle. 

N is the step number, Cc is the slip correction factor of a particle 

( )]39.0exp(05.134.2[1
λ

λ d

d
C c −++= ) 14, λ is the gas mean free path, and d is the 

particle diameter.  For the size range we consider, 1~ −∝ dCc . 
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To describe the effects of diffusion, the diffusion force is also calculated from 

38.  

5.0)
6

(
tC

dkT
F

c

diff
∆

=
πµ

                        (2.21) 
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Figure 2.8: (a) Description of the surface potential, Vs, of a reverse-biased p-n junction. 
(b) Description of our trajectory model. 2 pairs of p-n junctions are located in the specific 
position of a control volume with a periodic boundaries between X=-L1/2 and 
X=+L1/2.The length of N-type region is 30 µm, and the length of P-type region is 1 µm. 
The initial position of particles for initialization of  trajectories is Y<=10 µm, and 
0<X<L1/2. Regime1 is at Y> 200nm, and Regime 2 is at 0.5d<Y<200nm. d= particle 
diameter. 
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2.2.4 Simulation methodology 

In our model, we focus on the incoming particle-substrate interaction, and the 

resulting coverage selectivity of nanoparticles deposited on the patterned substrate. 

Figure 2.8b is a schematic diagram of our trajectory model in a control volume. In the 

X coordinate, a pair of PN junctions bound the P-stripe, and the lateral extent 

corresponds to one period of our PN-array 11. We neglect the movement in the Z 

coordinate because the length of the P-stripe is orders of magnitude larger than the 

width of the charge depletion zone along the X-direction. Along the (vertical) Y 

coordinate, we define the surface of the substrate as Y=0, and set an upper boundary 

limit of 5 mm. For the theoretical analysis, we are interested in the effect of the 

particle size (d), electric field intensity (E), and the convective flow (vg) on coverage 

selectivity. We explored the role of three parameters d, -Vbias, and U, in our 

simulations.  

The boundary between regimes 1 and 2 is selected to be at Y=200 nm, beyond 

this the electrostatic interaction between an incoming particle and the substrate is very 

small, Fext<1 pN. To maintain calculation accuracy, while reducing the required 

calculation time, we chose different simulation time steps, ∆t for regime 1 and 2, and 

for the different particle sizes. In regime 1, ∆t was chosen as less than or equal to the 

time required for a particle to travel one mean free-path.  In regime 2, the particles are 

sufficiently close to the substrate that small effects of the choice of time step can lead 

to changes in the computed lateral location of deposition to the surface, so that much 

smaller time steps were used in this region.   Because the electrostatic force varies 
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significantly with height and lateral location relative to the PN junction, we chose 

time steps in regime 2 such that particles travel a distance no greater than the p-region 

of the depletion zone, ∆wp (~5 nm), in one time step, as calculated using the 

electrophoretic velocity, ve.  For a 30 nm sized particle, the required time to travel 

∆wp is ~10 ns for a field, Es ~106 V/m. The time steps are summarized in Table 1.   

Regime/Diameter <30 nm 30 nm 50 nm 70 nm 

1 2.5 ns 400 ns 400 ns 400 ns 

2 0.25 ns 10 ns 10 ns 10 ns 

Table 2.1:  Simulation time step vs. particle size in the weak interaction regime (1) 

and strong interaction regime (2). 

The starting height of each particle trajectory was at Y<=10 µm, which turned 

out to be a maximum distance over which a particle would ever make it to the surface 

in the simulation volume considered.  We began with randomly distributed particles 

over a region 15.5 µm in length along the X direction, spanning a PN junction. Our 

goal is to produce a one-dimensional simulation of the variation of the coverage 

across both P-type and N-type regions. To reduce the complexity and calculation 

time, we did not evaluate the forces in the Z-direction, i. e. parallel to the P-stripes. In 

the defined control volume with a periodic boundary condition in X-direction, we 

considered particles convected by gas flow in two different directions along X: 

Trajectory L is from the right to the left, and Trajectory R is from the left to the right. 

Each trajectory calculation ends when the particle impacts the substrate.  
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In order to obtain reasonable statistics, we used a large number of trajectories, 

50000 for both the L and R cases. The final positions of the deposited particles were 

recorded as 1-D simulated deposition patterns for trajectories of type L and R.  

 

2.2.4 Comparison of simulation with experimental results 

(1) Effect of the electric field 

Figure 2.9 shows SEM images of PN junction patterned substrates following 

particle deposition for both the smallest and largest diameter particles we investigated, 

under various reverse bias voltages. In our experiments, all Ag particles were 

negatively charged in the gas phase so that we see enhanced deposition in the N-type 

region under the influence of the electric field, as expected. Generally, the Ag 

nanoparticles were homogeneously distributed into both the N-type and P-type 

regions at low bias voltages, (–Vbias) = 0.1V (Fig. 2.9A). With increasing reverse bias 

voltage, Ag particle deposition is enhanced in the N-type region over the P-type 

region (Figure 2.9B-C).  Significant particle-free zones are observed to either side of 

the P-type region (we discuss the asymmetry below) when (-Vbias) = 0.9 V (Figure 

2.9D).  In our previous study 11, we observed analogous effects of the electric field on 

charged Ni nanoparticles. We use SEM images like those of Fig. 2.9 to determine the 

measured coverage selectivity for each particle size as a function of reverse bias 

voltage.   The results are plotted as solid triangles in Figure 2.10. 
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 We next performed simulations, choosing similar parameters of reverse bias 

voltage, particle size, convective flow velocity, temperature and pressure to those 

used in the experiments.   We see that, in qualitative agreement with experiment, the 

simulated coverage selectively (shown by the solid curves marked with squares) 

increases with increasing bias voltage for all three particle sizes, and that coverage 

selectivities very close to 100 % are indeed predicted by the simulation at the highest 

bias voltages.   In the simulation, this trend results from how the dominant forces act 

on the particles, mainly electrostatic, diffusion, and drag forces.  However, our 

simulation predicts a coverage selectivity which initially increases with bias voltage at 

a rate ~ 3 times faster than observed experimentally.   

The discrepancy between experiment and the simulations can be understood, at least 

qualitatively, if the potential drop across the surface of the PN junction is reduced from 

that within the bulk.  In fact, previous direct measurements of the surface potential across 

a Si PN junction using scanning x-ray photoemission microscopy showed just such an 

effect 39. Physically, at least in part of this comes from the effect of electronically active 

surface states, which result in near-surface band bending. In principle the observed 

reduction might be used to calculate the density of surface states.  In practice, however, 

the flux of ions to the surface drives the junction further from equilibrium, making such a 

calculation difficult. To account for this reduction we repeat the simulations, scaling the 

surface potential difference by an empirically determined factor of γ =0.3. This produces 

good agreement between the simulation results (dashed lines marked by diamond points) 

and experimental data, as seen in Fig. 2.10, for all three particle diameters studied.   
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(3) 70 nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: SEM images of Ag nanoparticle deposition patterns. Three different size 
particles, 30 nm 50 nm, and 70 nm, at four different applied bias conditions. A: -0.1 V; 
B:-0.5 V; C: -0.6 V; D: -0.9 V. Scale bar: 6 µm. 
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Figure 2.10: Coverage Selectivity vs. various reverse bias voltages. (A) 30 nm particles; 
(B) 50 nm particles; (C) 70 nm particles. Triangles: experimental data; Squares: 
simulation data; Diamonds: simulation data fitted by a factor, γ; Dash curve: fitted curve 
of the simulation data (diamonds). 
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(2) The effect of the convective flow 

 The SEM images recorded at higher bias, where the selectivity is high also 

show a clear asymmetry in the lateral extent of the particle free zone. This asymmetry 

can be understood as due to the direction of convective flow; in Fig. 2.9d is the flow is 

evidently from right to left.   Figure 2.11 demonstrates this effect, for flows along this 

direction at a series of flow velocities.  Fig. 2.11a shows a simulated trajectory for a 

singly negatively charged 50 nm diameter particle across a P-type region in the 

absence of Brownian motion.  The particle is initially attracted by the N-type 

depletion zone (position 1), but does not quite reach the substrate. Rather it continues 

above the P-type region, where the ionized acceptors electrically repel it, deflecting it 

upward as it crosses out of that region (position 2).  After leaving the P-type region, 

this particle is deflected downward by the attractive force from the ionized donors in 

the N-type depletion zone on the left side of the second junction (position 3). The 

heights of the “lift-up” and “drag-down” parts of the trajectory are determined by the 

flight time of a particle across the P-N junction and are inversely proportional to the 

convective flow velocity. As such the lift-up and drag-down distance increases when 

the convective flow velocity is decreased.  Simulations of single particle trajectories 

for increasing flow velocities are presented in Figure 2.11b. Without convective flow 

(U=0), the particle travels nearly straight downward to the substrate with a slight 

lateral deflection due to the horizontal field component Ex. For the lower flow 

velocities illustrated, U=0.5, 1, 2 m/s, the particle reaches the surface before entering 

the p-n junction; the lateral distance from the starting point to place of deposition is 

1.5 µm, 2.4 µm and 3.6 µm respectively. On the other hand, particle “lift-up” and 
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“drag-down” are observed for the larger two velocities, U=5, 10 m/s.   Decreasing U 

from 10 m/s to 5 m/s, causes the lift-up distance to increased from ~0.2 µm to ~0.5 

µm, and the drag-down distance to increase from ~0.03 µm to ~0.04 µm, i.e. the lift-

up height is at approximately an order of magnitude larger than the drag-down 

distance, resulting in a net lift-up process when a particle crosses a p-n junction. 

Because the dopant concentration in the N-type region is lower than in the P-type 

region, the attractive force is weaker than the repulsive force 11.  As such, particles 

which cross the PN junction are convected farther downstream before they are 

deposited. Due to the Y-directed electric field, and X-directed convective flow, it is 

difficult to avoid asymmetry in the deposition pattern. One possible way to reduce this 

would be to more closely approximate a stagnation point by having multiple particle 

inlet jets (micromachined) to minimize the X-component of the flow and have a flow 

that is more perpendicular to the substrate.  

The convective flow, in addition to creating asymmetry in the deposit as 

discussed above might be expected to affect coverage selectivity. To evaluate its 

effect we carry out simulations at variable gas velocity, vg, while Fdiff and Fe are kept 

constant. Figure 2.12 presents the simulated coverage selectivity as a function of flow 

velocity for three different experimental conditions; 30 nm particles at Vbias= -0.9 V 

and -0.5 V respectively, and coverage selectivity for 70 nm particles at Vbias = -0.5 V. 

The results indicate that reducing the convective flow velocity only slightly enhances 

the coverage selectivity. Given this weak dependence, the convective flow velocity is 

neglected in the non-dimensional analysis to be presented later in the paper. 
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(3) The effect of particle size  

Figure 2.13 compares the measured and simulated coverage selectivity we 

obtain for three different applied reverse biases, as a function of particle diameters. 

The solid symbols show the experimentally determined values and the solid lines are 

the simulation results.  While the simulation predicts that the coverage selectivity 

should decrease with increasing particle size, the experiment shows such a trend only 

for the smallest bias. At Vbias = -0.3 V (circular symbols) and Vbias= -0.5 V (triangular 

symbols), the experiment does show an inverse relationship between coverage 

selectivity and particle size. In contrast, the experiment clearly shows little size 

dependence or if anything a positive dependence on size, with selectivity of almost 

100 % for the 70 nm particle.  The effect of particle size on coverage selectivity 

should reflect the size dependence of the competing forces acting on the particles. We 

note that the electrostatic force is directional and is independent of particle size. The 

diffusion force (Eq. 18) has no preferred direction; due to the size effects on the no-

slip boundary condition correction factor (Cc), the diffusion force over the range off 

particles being considered, will have an approximately d1 dependence. In our model 

these are the dominant forces, and thus the ratio, Fe/Fdiff should physically represent 

the extent of directional motion generated by the electrostatic force over non-

directional Brownian motion, and should dominate the coverage selectivity. Thus in 

our simulations decreasing particle size increases the ratio Fe/Fdiff, (proportional d-1) 

and therefore promotes higher coverage selectivity.  This intuitive interpretation of the 

results clearly does not hold at higher bias voltages, where the simulation predicts the 

same trends to hold as the lower bias cases although with higher selectivity.  We defer 
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the discussion of the discrepancy between simulation and experiment until we develop 

the non-dimension analysis in the next section.  
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Figure 2.11: Analysis of a single particle trajectory without Brownian motion. (a) 
Trajectory of a particle at the p-n junction. Curve label 1: The particle was attracted by 
N-type depletion zone. Curve label 2: If not deposited, the particle is lifted up by the 
repulsive force from the P-type depletion zone. Curve label 3: When the particle was 
convected out of the P-type region, it was draged-down by the attractive force from the 
N-type depletion zone. (b) Particle trajectory at six different convective velocities, U: 0, 
0.5, 1, 2, 5 and 10 m/s. Particle size: 50 nm. Applied bias voltage is -1 V. 
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Figure 2.12: Coverage selectivity vs. the convective flow velocity obtained from 
simulation. U is the free-stream velocity used in the calculation ( 0.5 m/s to 2 m/s).  
 

 
 
 
Figure 2.13: Coverage selectivity vs. particle size under three different reverse bias 
voltages: -0.3 V, –0.5 V, and –0.9 V.  Negatively charged particles. Lines represent the 
simulation of coverage selectivity. The solid points are experimental coverage selectivity:  
Square: Vbias = -0.9 V; Triangle: Vbias = -0.5 V; Sphere: Vbias = -0.3 V. 
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(4) Non-dimensional analysis  

Because of the large number of variables that can affect the coverage 

selectivity, it is useful to employ a non-dimensional analysis. Clearly of central 

importance to coverage selectivity, is the competition between the electrostatic force, 

which is the driving force for a patterned deposit, and the Brownian force, which 

tends to create a random deposit. Based upon our assignment of the dominant 

interactions, discussed in the last section, we now introduce a non-dimensional 

parameter, Ω, which is a ratio of kinetic energy generated by the electrostatic force, 

We, to the diffusion energy, Wdiff.  
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Where, ve is the electrical drift velocity of a particle (ve=Fe*B), 
d

C
B C

πµ3
=  is the 

mobility of a particle ( 2~ −∝ dB ); the factor of 100 is just used for convenience. We 

evaluate Ey at a fixed position, X=Y=100 nm, to have a simple relationship that E is 

linear proportional to (-Vbias).  The dependence of Ω on particle size and applied 

reverse bias given by Eq. 2.22 shows that 1−∝Ω d  and 2)( biasV−∝ .  

We plot our experimental data (triangle symbols) for coverage selectivity as a 

function of Ω, shown in Figure 2.14. Also presented are the results of simulations, 

represented by the solid squares with a logarithmic curve fit (solid line). The clear 

correlation between coverage selectivity and Ω for the range of particle sizes, applied 
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voltage, and conditions studied, does indicate that this parameter provides a 

reasonable non-dimensional parameterization.   

The modeling curve obtained by Eq 2.22 agrees well with the experimental 

data particularly for Ω<5. Hence, one may conclude that the most important factors in 

this system are the electrostatic force and the diffusion force, which is affected 

primarily by the applied reverse bias voltage and particle size respectively. On the 

other hand, when 5<Ω<10, we see a clear deviation between model and experimental 

results. This was observed earlier for 50 nm and 70 nm particles at high reverse bias 

conditions (-Vbias>0.7V, Figure 2.13) where our model under-predicted the 

experimental coverage selectivity by about 10-15 %.  These discrepancies may arise 

from the additional effects that particles that deposit on the surface can alter the 

effective field, through image forces, on subsequent particle deposition. We have 

observed experimentally that at higher deposition conditions that particles on a 

surface act as attractors to subsequent particle deposition relative to a bare surface.    

We begin by evaluating the effect of particles previously deposited to the 

surface on subsequent deposition. It is well know from experiments on electrostatic 

particle precipitators, that particles lose their charge when they deposit on a substrate 

(i.e. no coulomb interaction with the gas-phase particles).  As such particle-particle 

interactions can be calculated from the combination of image and van der Waals 

forces Fi_pp and Fvdw_pp given by: 9, 13 
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 Here, AH is the Hamaker constant (4×10-19 J), and S is the particle-particle distance. 

Fi_pp is negligible (~<10-10 pN when S=90 nm) comparing to the Fe (~0.003 pN when 

S=90 nm, X=2Lp, and Vbias = -0.7 V). Considering Fvdw_pp, Eqn. 2.24 indicates that 

larger sized particles will increase the attractive force to incoming particles. For 

example, when S is 90 nm, Fvdw p_p is 1.5×10-4 pN for a 30 nm particle, but increases 

by a factor of 20 to 3×10-3 pN for a 70 nm particle, which is about equivalent to Fe 

(~0.003 pN). At high coverage selectivity, and high surface coverage the deposited 

particles in the N-type region can assist the incoming particles to be deposited to 

enhance this coverage selectivity. This effect should most affect the larger particles.  

In our studies the discrepancy between experiment and model occurs at the 

intermediate values of Ω.  While we are not in a position to firmly establish this point 

we believe this is likely because at low values of coverage selectivity ( i.e. low Ω the 

low substrate coverage mitigates the effects of particle-particle forces, while at high 

values of Ω the coverage selectivity is already so high so as to mask these effects. 

Thus we only see these effects at the intermediate values of Ω where high coverage 

density effects of particle-particle interaction can impact the overall coverage 

selectivity.   A more thorough analysis would require a detailed analysis and 

correlation of particle deposition vs. particle–particle separation distance for various 

particle sizes, and is beyond the scope of this work.   Generally, the minimum 

coverage selectivity can still be estimated by Ω without taking into account the 

particle-particle interaction.  
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  We have previously demonstrated that we can obtain selective deposition with 

positively charged particles 11.  By changing particle polarity, the N-Type region now 

becomes repulsive. Eqn. 2.22 is still applicable for this case. However to make the 

geometric adjustment (the width of attractive zone is 1 µm and the width of repulsive 

zone is 30 µm), we introduce a new dimensionless parameter, Ω2 (=K2 Ω, K2 is a 

geometry adjusting factor) to evaluate the performance for depositing particles on the 

P-type region. For polydisperse particles (the peak mobility diameter is 50 nm), K2 is 

found to be ~0.4 by fitting the coverage selectivity results 11. The implication is that 

one must increase the reverse bias voltage in order to obtain the same Ω.  

This analysis indicates that Ω is an effective indicator of process performance. 

If one desires greater than 80 % coverage selectivity, then Ω should be least 6. 

However, the use of the present form of Ω implies that inertial effects are relatively 

weak in comparison with electrostatics, drag, and diffusion forces. As such this non-

dimensional analysis is limited to higher pressure situations where ballistic deposition 

is unimportant.  
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Figure 2.14: Non-dimensional analysis. Coverage selectivity vs. Ω. Diamonds:  
experimental coverage selectivity of 30 nm particles; Squares:  experimental coverage 
selectivity of 50 nm particles; Triangles:  experimental coverage selectivity of 70 nm 
particles. The simulation curve, obtained from curve fitting of simulation data (crosses). 
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2.3 Applications in Nanoparticle-Enhanaced Bio-Sensing 

Devices 

2.3.1 Introduction7  

One of the most promising potential applications in nanotechnology is bio-sensing 

based on nanoparticle-enhanced spectroscopies. These include detectors with extreme 

sensitivity for target molecules and biosensor systems having capability to work at very 

low input power. While most of the experimental investigations have centered on surface 

enhanced Raman scattering (SERS)5, there is also considerable interest in understanding 

and employing nanoparticle enhancement of fluorescence spectroscopy 6, 7. Passive 

enhancement of fluorescence, provided by proximity to noble metal nanoparticles is 

expected to allow the development of highly sensitive biomolecule detectors. 

Silver nanoparticles have been considered as a desired component to enhance the 

labeling signal in bio-sensing6, 7, 40, 41, and a schematic of the concept is shown in Figure 

2.15. Compared with Au nanoparticles, Ag particles have a higher-frequency surface 

plasmon band and therefore can be employed for analytes requiring a higher frequency of 

excitation. In addition, the extinction coefficient of the surface plasmon band of Ag 

nanoparticles is ~ 4 times as large as that of Au nanoparticles 40, and a stronger metal-

enhanced fluorescence (MEF) ratio could be expected theoretically.  
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Figure 2.15: Fluorescence-based Bio-sensing. The representative analytes are proteins 
conjugated with fluorophores (dyes). (a) Fluorescence without using Ag nanoparticles 
and having a fluorescence intensity of Isubstrate. (b) Fluorescence with Ag nanoparticles 
and having an enhanced fluorescence intensity of IAg. 

 

To successfully apply Ag nanoparticles in this bio-labeling process, three 

conditions are required: (1) high purity; (2) well-controlled particle size; (3) effectively 

depositing and precisely positioning nanoparticles onto the required region.  

 

The production of silver nanoparticles using the gas phase method has several 

characteristic advantages to achieve the required conditions described above. First, gas 

phase production of Ag nanoparticles is a clean, continuous process which can be 

operated at atmospheric conditions without requiring any vacuum environment or solvent 

medium 12, 13.  Second, charges can be readily placed on nanoparticles in the gas phase, 
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which can be used both to conduct size selection. By a gas-phase electrostatic 

classification, high purity, monodisperse particles with a narrow size distribution can be 

obtained 13. 

 

2.3.2 Experimental 

Figure 2.7 presents a schematic diagram of our experimental system 13. Briefly, 

silver nanoparticles were synthesized by a spray pyrolysis method 33. A silver nitrate 

(99+%, Aldrich)/water solution was atomized into droplets and passed to a 850oC flow 

reactor in nitrogen. At this temperature the metal nitrate is converted to pure silver 

aerosol with a rather wide particle size distribution. We employ ion-mobility separation 

of charged particles to create a narrow size cut using a differential mobility analyzer 

(DMA) 11, 13, 42. The output of the DMA, which operates like a band-pass filter, provides 

an output of unipolarly-charged monodisperse aerosol (dp±0.1dp).  

For the MEF measurement6, 7, 41, we first deposit size-classfied Ag nanoparticles 

on the SiO2/Si substrate and then characterize their bio-sensing performance based on 

fluorescence at the Laboratory for Physical Science, College Park. We coat these 

nanoparticle-covered substrates with a BSA-biotin spacer layer, whose thickness is 3-4 

nm. Next we deposit drops of solution containing both Cy3 and Cy5 fluorophores tagged 

complementary streptavidin protein.  Finally we rinse away fluorophore-tagged protein 

not bound to the underlying BSA-biotin.  Fluorescent images of the sample are collected 

using a confocal laser scanning microscopy (Zeiss model LSM 410).  The samples are 

maintained wet, i.e., under a thin layer of dilute buffer solution (pH 7.5, 5 mmol/L 
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solution of mixture of NaH2PO4·H2O and Na2HPO4·7H2O). For the Cy3 fluorophore the 

wavelength of the incident (excitation) light is 514 nm, produced by an Argon laser, and 

the fluorescent image is collected through a filter which passes wavelengths between 

535nm and 575 nm wavelength. For the Cy5 fluorophore the wavelength of incident light 

is 633nm, produced by a He-Ne laser, and the fluorescent image is collected through a 

filter which passes 660nm wavelength and above. The details about the sample 

preparation are described in ref 6, 7, 41 by Corrigan and Kuo et. al. 

 

2.3.3 MEF of size-selected Ag nanoparticles 

Figure 2.15a shows an SEM image of 100 nm Ag nanoparticles deposit. Particles 

are monodisperse and homogeneously distributed on the substrates with an average 

spacing > 300nm. Figure 2.15b is the MEF image from a sample of Cy5-coated 100 nm 

Ag nanoparticles. The bright spot represents high fluorescence intensity, which is from 

the area covering Ag nanoparticles.  

We investigated the size-dependent MEF behavior, and the details are described 

by Kuo et. al. in ref 41. Quantitative analysis of the fluorescence enhancement for Cy3 and 

Cy5 fluorophores from the silver nanoparticles is shown in Figure 2.16. Here the 

coverage corrected enhancement is defined to be 
Bf

Ba

II

II
MEF

−

−
= , where aI  is the 

average fluorescent intensity corrected for the area fraction of the surface covered by the 

silver nanopartilces43 . fI  is the fluorescent intensity measured from an area covered 

with a fluorophore/spacer layer with no silver nanoparticles, BI  is the “background” 
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intensity, measured from an area where neither fluorophore nor silver nanoparticles are 

present. Figure 2.16 shows the measured nanoparticle diameter dependence. As shown in 

Fig 2.16, the enhancement initially increases with particle diameter, reaching a maximum 

of ~23 fold enhancement at d ~ 80 nm for the 514 nm wavelength (Cy3) excitation.  For 

excitation at a wavelength of 633 nm (Cy5), the maximum enhancement of ~ 22 is 

measured at a slightly larger diameter, ~120 nm, as seen in Figure 2.16. This result 

indicates that the particle size and the type of chosen fluorophores can tune the MEF, and 

a red-shift is expected by choosing larger sized silver nanoparticles. 

 

2.4 Conclusion 

We have demonstrated a new electrostatic-directed method to position metal 

nanoparticles deposited from the gas-phase on a p-n junction-patterned substrate. 

Unipolarly charged nanoparticles are laterally confined on the substrate from a 

balance of electrostatic, van der Waals and image forces. This assembly method has 

an advantage that it employs commonly used substrate architectures for the patterning 

of an electric field.  

A Brownian dynamic simulation has been developed that can semi-

quantitatively explain most of the behavior observed experimentally, and can be 

extended to other geometric and process conditions.   A non-dimensional parameter Ω 

is developed which provides a guide on expected coverage selectivity. The approach 
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offers the opportunity to create a variety of more sophisticated electric field patterns, 

which may be used to direct particles with greater precision. 

Ag nanoparticle with high MEF have been prepared by the electrostatic 

classification of particle size from the gas phase. Well-positioned and aligned size-

selected Ag nanoparticle patterns have also been achieved by the assistance of 

electrostatic force.  The electrostatic force provides a good strategy to control both the 

particle size and the quality of particle deposits required for the nanoparticle-based 

devices. 
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Figure 2.16: (a) SEM images of 100 nm Ag particles. (b) Scanned fluorescence image of 
100 nm particles coated with Cy5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17: MEF v.s Particle Size. Two kinds of fluorophores, Cy3 and Cy5 were used 
for the test.  
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Chapter 3 

Gas-Phase Ion-Mobility Characterization of 

Functional Nano-Materials  
 

3.1 Characterization of SAM Functionalized Au Nanoparticles 

3.1.1 Introduction 

Gold nanoparticles (Au-NP) are widely considered to be useful components in 

many nanobiological applications in part due to their unique and distinctive surface 

plasmon resonance band that enhances the sensitivity of bio-sensing processes 2, 5.  Au-

NPs can also be readily modified with alkanethiol self-assembled monolayers (SAMs) for 

precise control of surface chemical and physical properties of Au NPs 44, 45.  The wide 

range of available terminal functional groups of SAMs enables facile attachment of 

biological molecules such as proteins, nucleic acids, and carbohydrates.  One exemplary 

application of surface-modified Au nanoparticles is for the diagnosis and treatment of 

cancers 2, 46. For such applications, desirable properties of the functional Au nanoparticles 

include: (1) a high purity, (2) a well-controlled particle size, (3) a well-controlled 

adsorption/release of materials on/from the surface/interior of nanoparticles. 

One of the challenges in the reliable use of these materials, particularly as they 

relate to any biomedical application, is characterization. This is a particularly challenging 

problem as it relates both to the physical size of the particle, the size distribution, and the 
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physical and chemical nature of any coating.  Naturally, no individual diagnostic tool can 

answer all these questions. 

In this section we focus on the determination of the surface coverage and strength 

of binding of alkanethiol SAMs on gold nanoparticles. The approach taken is to apply 

electrospray (ES) followed by ion-mobility characterization (gas-phase electrophoresis). 

A gas-phase approach is employed for many of the same reasons that ES-mass 

spectrometry (ES-MS) approaches are used so extensively in the proteomics research 

community. It is a clean, continuous process that readily charges the nanoparticles. These 

charged nanoparticles can in turn be easily size-classified based on their mobility 12, 13. 

We present here an approach to electrospray alkyl-thiolated functionalized gold 

nanoparticles and characterize the size and coating stability of these conjugated Au 

nanoparticles by differential mobility analysis (DMA).  We demonstrate the utility of the 

method to identify the coating thickness and employ a programmed thermal environment 

in the gas-phase to determine the binding energy of the thiol monolayers as a function of 

particle size. 

 

3.1.2. Experimental 

Electrospray (ES) of Au nanoparticles from solution is a promising method for 

generating individual aerosol nanoparticles for DMA. Although the ES of unconjugated 

Au nanoparticles has very recently been demonstrated 47, 48, ES of clean Au nanoparticles 

remains challenging, because the presence of salts or surfactants, typically added to 

stabilize the colloid, can result in the formation of salt particles during ES that interfere 
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with DMA.  Furthermore, for stable cone-jet operation, the solution conductivity must be 

precisely controlled.   

 

3.1.2.1. Materials 

For the preparation of the functionalized Au-NPs, it was necessary to develop 

protocols to remove, or at least assure ourselves that we understood the role of additives 

that serve to stabilize the colloid. Commercially available, monodisperse Au colloids (10 

nm, 20 nm, 30 nm, and 60 nm, citrate stabilized, Ted Pella Inc.) were used in this work, 

and 11-mercaptoundecanoic acid (99+%, MUA) and (1-mercapto-11-

undecyl)tri(ethyleneglycol) (99+%, PEG) were chosen for the either charged or neutral 

self-assembled monolayers (SAMs) on Au nanoparticles. Conjugated Au colloids were 

prepared using 5 times excess the amount of thiol needed to form a full monolayer on the 

Au colloids as approximated using a surface density of 5 x 1014 molecules/cm2 49, and 

total gold colloid surface area based on vendor provided information.  After addition of 

thiol was added to 1 mL aliquots of the as received Au colloids, they were allowed to 

react for 20 hrs. The Au colloid solution was then centrifuged to separate the colloids 

from the supernatant that contains excess stabilizer and thiols. The supernatant was then 

removed, and replaced with an equivalent volume of aqueous ammonia acetate (99.9 %) 

solution (~2.5 mmol/L, 0.03 S/m).  The Au colloids then were easily dispersed by 

mixing. Additional characterization of the SAM/Au colloid conjugates was performed 

using FTIR and XPS analysis.  
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3.1.2.2 FTIR, XPS, and TEM Analysis   

Conjugated Au colloids were concentrated by centrifugation, and then dried on 

commercially available Teflon cards for IR analysis, and indium foil for XPS analysis.  

Transmission FTIR absorption spectra were measured using a commercially available 

spectrometer with a cryogenic mercury cadmium telluride detector.  Presented FTIR 

spectra are the result of averaging 128 scans at 4 cm-1 resolution. XPS measurements 

were made on a commercially available spectrometer with monochromatic Al Kα 

radiation, and an X-ray power of 150 W.  High resolution scans were acquired for Au 4f, 

S 2p and C1s regions in the fixed analyzer transmission mode with pass energy of 40 eV. 

All FTIR and XPS measurements were performed on freshly prepared samples.  

Additionally, Au nanoparticles generated from the ES process were collected on 

TEM grids with an electrostatic precipitator13 to enable TEM characterization. 

Conjugated Au nanoparticles were collected directly from the dried Au colloids onto 

TEM grids.  

 

3.1.2.3 Electrospray Particle Generation and Differential Mobility Analysis 

Figure 3.1 represents a schematic diagram of our experimental system, consisting 

of an electrospray aerosol generator, a differential mobility analyzer, and a condensation 

particle counter (CPC). Conductive solutions of Au colloids were placed in the pressure 

chamber, and then delivered to the nozzle through a capillary (0.025 mm in diameter, 24 

cm in length). The liquid flow rate, Q1, was about 66 nL/min and the flow rate of carrier 
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gas was 1.2 L/min. To achieve better electrical stability in the ES, the filtered air was 

mixed with CO2 (83 % Air and 17 %CO2) 
50. Operating with an applied voltage of 2-3 

kV, the Au colloids were sprayed in a cone-jet mode and converted from highly-charged 

droplets (thousands of elementary charges), to neutralized particles having a known 

Boltzmann charge distribution by passing the aerosol stream through a housing 

containing a α-radioactive Po-210 source.  The “neutralized” particles were directly 

passed to the differential mobility analyzer (DMA) for particle size measurement, and 

counted with the CPC. The diameter of Au particles, dp, was characterized by electrical 

mobility, which is inversely 
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Figure 3.1: Schematic of experimental system, including DMA (differential mobility 
analyzer), (DMA), and condensation particle counter (CPC). 
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proportional to the projected areas of the particle. In order to have sufficient resolution 

and stability in the DMA measurements, its sheath flow of DMA was chosen to be 30 

Lpm for the 10-30 nm sized particles, and 10 Lpm for the 60 nm particles. Based on the 

operating conditions of the DMA, the theoretical FWHM in the size distribution gives us: 

10 ± 0.2 nm for 10 nm particles, 20 ± 0.3 nm for 20 nm particles, 30 ± 0.5 nm for 30 nm 

particles, and 60 ± 3 nm for 60 nm particles. To obtain a precise size distribution, the 

scanning step size was 0.2 nm, with a scanning rate of 0.01 nm/s. The variation in peak 

size for each sample was only ±0.2 nm. Because of the stability of DMA measurements, 

we were able to resolve a change in diameter as small as 0.2 nm 51, 52.   

Because we do not directly evaluate the droplet size generated from the ES source 

we employ a scaling law for estimation purposes. The initial ES droplet size can be 

evaluated by: 

3

1

10

01
0, )(

KQ

KQ
DD dd ×=                                       (3.1) 

where Q0 is the flow rate, K0 is the conductivity of the colloidal solution and Dd 0 is the 

estimated droplet size (~378 nm)50.  In our work the conductivity of Au colloids, K1, was 

0.03 S/m.  Hence, the calculated droplet size using this scaling rule is ~200 nm.  

 

3.1.3. Result and Discussion 

Our objective is to develop a systematic approach for characterizing SAM-

conjugated Au-NPs based on gas-phase mobility classification. We start our work on 
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unconjugated Au-NPs and then proceed to functionalized Au-NPs. From the change in 

particle mobility upon SAM Au-NP functionalization, we estimate the surface packing 

density of SAM molecules on the Au surface. Finally, we estimate the binding energy of 

alkanethiol molecules on Au-NPs by thermally desorbing alkanethiol molecules from Au-

NPs and measuring the corresponding changes in particle mobility. A particular 

advantage of our approach is that these studies can be conducted on size-selected NPs. 

 

3.1.3.1 Unconjugated Au Nanoparticles 

(1) Particle Size Distribution and the Effect of Salt Residues 

Figure 3.2a presents size distributions obtained by electrospraying as-received 

citrate stabilized Au nanoparticle samples of nominal diameters of 10, 30, and 60 nm 

without any additional sample preparation. For nominally 10 nm sized Au particles, an 

individual peak is observed at ~ 14 nm. However, for both of the 30 nm and 60 nm 

samples, two peaks are observed: One close to the expected nominal particle size (29 nm 

or 58 nm respectively) and another peak of much higher intensity centered at ~ 11-12 nm. 

Deposition of the electrosprayed particles on a TEM grid confirmed, as shown in Figure 

3.2b, that they are two distinctly different sizes with different image contrasts. The large 

sized nanoparticles (dark ones) in the TEM images corresponded to the nominal peak size 

of the Au-NPs, and the small sized particles (light ones) corresponded to the “extra” 

much smaller peak seen in the 30 and 60 nm cases.  Furthermore, the smaller particles in 

the TEM are clearly much more numerous, consistent with the DMA/CPC results. 
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Figure 3.2: (a) Particle size distribution with 10 nm particles (spheres ●), 30nm (triangles 
▲), and 60 nm (squares ■). All three sized Au nanoparticles are as-received samples 
(unconjugated and uncleaned). (b) TEM images of samples shown in (a).  
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We attribute the peak observed at ca. 11-12 nm is attributable to salt remnants in 

the Au colloid solution. Commercially available aqueous colloidal gold suspensions, like 

the ones used in the present study, are often stabilized using sodium citrate.  XPS 

characterization of dried films of unconjugated Au colloids confirmed the presence of Na 

(1071.9 eV) and the presence of a C 1s peak at 289.1 eV, shifted 3.9 eV from the main 

elemental hydrocarbon peak at 285.2 eV, that is typically seen in samples containing 

carboxylic acid moieties as would be expected for sodium citrate 53. On the basis of these 

results, we conclude that the peaks seen at < 10 nm in Fig. 3.2 originate from the 

nonvolatile sodium citrate salts in the commercial Au colloid solution.    

Thus, in systems containing a nonvolatile soluble salt and Au-NPs, the ES 

generates two kinds of droplets. One droplet contains a Au-NP and salt, which upon 

solvent evaporation leads to a salt encrusts Au-NP. The other simply contains dissolved 

salt, so that upon solvent evaporation, the remnant becomes a small salt NP. From 

knowledge of the Au-NP concentration in solution, the droplet diameter, and the 

generation rate, we can obtain the ratio of the concentration of the two types of drops. 

From the measured size of the salt remnant particle we can back-out the concentration of 

the nonvolatile component in the Au-NP containing drop. For example, given the salt NP 

was measured to be ~12 nm, the volume fraction of salt on the Au-NP was estimated to 

be ~61 % for 10 nm, ~7 % for 30 nm and ~1 % for 60 nm samples. Thus, size 

measurement of smaller Au-NPs is more severely affected by salt formation than that for 

larger Au-NPs. 
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The relative magnitudes of the smaller peaks in Fig. 2a also comports with the 

foregoing explanation.  For example, the number count of the salt particles should be ~ 

1000 times larger than the 30 and 60 nm particles as determined by the drop size and the 

salt and Au-NP concentrations. Experimental observation, however, shows the ratio to be 

closer to 100, which discrepancy we attribute to transport losses of the smaller particles.  

To unmask the salt shell from very fine particles (i.e. the nominally 10 nm 

diameter particles), a “cleaning” procedure was developed.  Au-NPs were centrifuged 

and the supernatant containing excess salt was removed. The Au-NPs were then re-

suspended with aqueous ammonium acetate solution, a volatile salt, to obtain the 

necessary conductivity. Through this process we effectively dilute the salts without 

diluting the colloids. Figure 3.3 shows the size distribution of Au colloids after 

centrifugation and re-suspension. Now for all three samples, we clearly see two peaks in 

the particle size distribution, corresponding to the Au nanoparticles and salt residues. The 

now distinct salt peak diameter, ds, shrunk from 11-12 nm to 4-5 nm after processing.  

Thus, the volume of the salt particles decreased by ~ 18 times, in reasonably accord with 

the extent of dilution. 

 

(2) Estimation of Mobility Size of Bare Au Nanoparticles 

We obtained a corrected value for the mobility size of bare Au nanoparticles, dp0, 

by taking into account the contribution from the salt residue 54 with the expression:  

3 33
,0 smpp ddd −=                                          (3.2) 
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where dp,m and ds are mobility sizes measured by DMA of the Au-NP encrusted with salts 

and the salt NP, respectively.  Table 3.1 summarizes the results of this formula for spectra 

in Fig. 3.2.  The table highlights the value of Eq. 2 to determine the salt-free value of dp0.  

Indeed, correcting for the volume of the salt crust brings both values of dp0 into 

agreement within the limit of the DMA’s resolving power.  Hence Eq. 2 provides a 

simple way to obtain the size of bare Au-NPs under different salt concentrations (i.e. with 

varying ds).  Correcting for small changes in the net particle diameter is absolutely critical 

to distinguishing the increase in size after functionalization, to be discussed next. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: Particle size distribution with 10 nm particles (spheres ●), 30nm (triangles 
▲), and 60 nm (squares ■). All three sized Au nanoparticles are as-received samples 
(unconjugated) after centrifuge cleaning. 
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As received NPs Processed NPs Nominal 

size (nm) dp,m(nm) ds (nm) dp0 (nm) dp,m (nm) ds (nm) dp0 (nm) 

10 14.2 14.2 N/A 10.8 5.0 10.4 

30 29.8 12.6 29.0 29.0 4.8 29.0 

60 58.4 10.8 58.3 58.2 4.2 58.2 

 
 
 
Table 3.1:  Summary of particle sizes for unconjugated Au nanoparticles. dp,m and ds are 
the particle mobility size of Au and salt-residue particles measured in Fig. 3.2 (as 
received) and Fig. 3.3 (processed). dp0 is the particle size of bare Au after the correction 
of salt residues on Au surface.   
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3.1.3.2 Conjugated Au nanoparticles 

(1) Formation of Self-Assembly Mononlayer  

Before measuring the thickness of SAM with ES/DMA, we confirmed the 

presence of the SAMs on the Au nanoparticles in the colloid phase using FTIR, XPS and 

TEM.  We react two different thiols, 11-mercaptoundecanoic acid (99+%, MUA, 

negatively charged) and (1-mercapto-11-undecyl)tri(ethyleneglycol) (99+%, PEG, 

neutral), to 30 nm Au colloids.  Briefly, FTIR characterization of dried films of SAM 

modified Au-NPs revealed vibrational features consistent with those observed for full 

monolayer coverage molecular layers formed of the same molecules on 2-D planar gold 

surfaces. XPS analysis of dried SAM modified Au-NP films on indium substrates also 

confirmed the presence of chemical functional groups expected after SAM modification.  

The ratio of S/Au peak intensities measured for modified Au-NPs was comparable with 

that measured for SAM films formed on 2-D planar surfaces, suggesting that similar 

molecular coverages are achieved on both substrates. TEM images (Figure 3.4a), reveal 

well-defined spacing between Au nanoparticles, suggesting that both MUA and PEG 

monolayers create a uniform coating on the Au nanoparticles to separated the Au-NPs 55.  

Combined, the FTIR, XPS and TEM characterization data suggest the Au-NPs to be fully 

conjugated by the SAM modifiers.  

This increase in size with the SAM should be observable with the ES/DMA. 

Indeed, the size distribution does shift to larger sizes for both MUA- (~2 nm) and PEG-

coated (~1.7 nm) Au-NPs, as seen in Fig. 3.4b. Thus, we are able to detect the presence 

of SAM conjugation on the Au-NPs based on the difference in electrical mobility 
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between conjugated and bare Au-NPs in support of the FTIR, TEM, and XPS results. We 

now shows this change in size to obtain the surface coverage and binding energy may be 

obtained from ES-DMA as described in the next section.  

 

(2) Evaluation of Surface Packing Density of SAM 

The ability to size coated particles with 2 Å precision allows us to derive a 

reliable correlation between the change in particle size and the surface packing density of 

molecules within the SAM coating. We define a change in particle size as ∆L=dp-dp0 

where dp and dp0 represent the coated and uncoated particle mobility diameter, 

respectively (Fig. 3.4c).   

We now consider a simple core-shell model for the change in particle size (∆L1), 

considering only the molecular dimensions of the close-packed self-assembled monolayer 

normal to the particle surface and neglect any curvature effects. The length of an 

alkanethiol molecule, l, is, 

bNal +=                         (3.3) 
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Figure 3.4: (a) TEM images of conjugated Au-NPs. Particle size was 30 nm. Au-NP were 
conjugated with MUA (left) and PEG (right). (b) Particle size distribution of Au-NPs 
with different kinds of SAM-coatings conditions. Blue spheres (●): bare Au-NPs; Red 
squares (■): MUA-coated Au particles; Green triangles: PEG-coated Au particles. 
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Figure 3.4: (c) Conceptual model of SAM-coated Au-NP. l and w are the length, l and 

diameter of a cylinder-like SAM  molecule. θSAM is the tilt angle of SAM molecule 
normal to the surface. 
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where a is the contribution to the length from the thiol linkage at the Au surface to the 

SAM terminal functional group,  b is the length of repeating methylene (CH2) groups in 

the SAM backbone, and N is the number of CH2 groups. Using previously published 

parameters for MUA 55-57, a = 0.3 nm, b = 0.127 nm, and N =10, the expected length of a 

MUA molecule is 1.57 nm.  ∆L1 is further refined by recognizing that molecules within a 

full covered SAM on a 2-D surface typically exhibit an average tilt angle to the surface 

normal, θSAM, of approximately 30º 57.  The addition to the diameter of the nanoparticle 

due to the SAM then becomes, 

)cos(21 SAMlL θ=∆                                  (2.4)  

For MUA, ∆L1, = 2.72 nm.  Note that this model implies ∆L1 to be independent of the Au-

NP size. 

Comparing theory to experiment, we find ∆L from experiment (~2.0 nm, Fig. 

3.4b) to be ~35 % lower than the predicted value (∆L1, = 2.72 nm), indicating that a 

SAM-coated Au-NP has a lower drag than other rigid (metal or metal oxides, etc) core-

shell particles. The most obvious reason would be that the SAM coating is not really a 

dense material. On average the SAM chains have an interchain spacing ~0.5 nm, about 3-

5 times longer than the length of a chemical bond. As such the surface can be thought of 

as somewhat porous and the energy transfer from gas collision to the work of drag may 

be changed from that of dense core-shell particles. There is some evidence for this. For 

example, Shutler et. al via molecular beam experiments observed that a SAM affected 

gas-surface energy transfer and found that the interaction between SAM chains played a 
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role in the magnitude of the energy transfer. In particular, SAM chains with smaller 

chain-chain interactions (large-spacing) had greater translational-to-vibrational (TV) 

energy transfer 58.  At present there is no obvious way to connect the results of changes in 

TV energy transfer, to changes in drag force, and therefore the mobility of SAM coated 

NP’s. 

To simplify this problem, we introduce an adjustable parameter, α, to incorporate 

the effect of SAM spacing in the calculation, and obtain a modified mobility diameter, 

∆L2 (=α∆L1).  
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where A1 is the projected area of a rigid, solid shell, A2 is the effective projected area of 

SAM, calculated by assuming molecules occupy a cylinder of length, l, and diameter, w, 

along the circumference (A2=Nmwl, where Nm is the total number of SAM molecules 

along the circumference). Nm is related to the surface packing density of the SAM, ρ, by 

Nm = ρ1/2
πdpo. For SAM layers on a flat gold surface, ρ ≈ ~4.6×1014 cm-2 57, and for a 

MUA-coated Au-NP, w was obtained by calculating the width of the COOH group in a 

MUA molecule ( HOOCOC llw −== +×= )sin()(2 θ ), where lC=O is ~1.43 nm, ΘC=O is ~50o 56, 

and lO-H is ~0.1 nm. Hence, the w becomes ~0.23 nm. A1 is the projected area of SAM by 

assuming it to be a rigid shell. Taking the limit of Eq. 3.5 at constant packing density 

finds α→0 as dp0→0, whereas α→ρ0.5
w/cos(θSAM) as dp0→∞.  
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In the following, we compare ∆L2 to our experimental data for MUA-coated 

particles. We choose four different sized nanoparticles, 10 nm, 20 nm, 30 nm, and 60 nm 

with a MUA-coating for the comparison.  Figure 3.5 shows the ES-DMA mobility size 

distributions for each NP size before and after coating. For each size we clearly observe 

an increase in peak size after coating with MUA. After correcting for the residual salt 

crusts, we can determined the increase in the number-averaged particle size 59 to be ~1.2 

± 0.1 nm for 10 nm particles (3.5a), 1.7± 0.1 nm for 20 nm particles (3.5b), ~1.8±0.3 nm 

for 30 nm particles (3.5c), and ~2.0±0.3 nm for 60 nm particles (3.5d). These data are 

plotted in Figure 3.5e, which show that changes in ∆L to be particle size dependent. This 

figure also compares ∆L2 predicted by our modified core-shell model (solid) to the 

experimental measurements (diamonds). ∆L2 does a reasonable job of predicting the size 

dependent trends to changes in mobility size. While the model is clearly simplistic it does 

provide a framework from which to study changes to SAM layers as will be discussed in 

the next section.   It also suggests that greater attention, from a fundamental prospective 

should be paid in the future to the nature of momentum and energy transfer to “soft” 

coated NP’s.  
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Figure 3.5: Particle size 
distributions of bare vs  MUA-
coated Au-NP for (a) 10 nm 
particles (b) 20 nm (c) 30 nm (d) 
and 60 nm.  (e) Comparison of 
predicted ∆L from experiment 
(diamonds) with theory (∆L1 as 
dashed line, and ∆L2 as solid line). 
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(3) Temperature-Programmed Desorption of SAMs 

We now employ the change in thickness to assess the binding of SAMs to Au-

NPs. Prior studies have reported on thermal stability values for SAMs on either 2-D 

planar Au surfaces or large Au clusters. Terrill et. al 60 conducted a thermal gravity 

analysis (TGA) on SAM-coated Au-cluster and observed that SAMs were removed from 

Au clusters at temperatures between 230 - 310 oC. These results are consistent with the 

observations by Schieber 57 and Nishida et. al. 61 who employed temperature-

programmed desorption (TPD) analysis to monitor the extent of desorption on a planar 

Au surface.  To our knowledge, the thermal stability of SAMs on individual Au -NPs 

remains largely unexplored. 

 With the ability to distinguish changes of 0.2 nm, ES-DMA offers the opportunity 

to further monitor the change in diameter from the thermal desorption of SAMs to gain 

insight into thermal stability and binding energy. One major advantage of using a gas-

phase approach for thermal desorption studies is that thermal processing can be done 

rapidly, and in the absence of any complicating substrate effects.  In particular, the 

temperature of the particles is well known (i.e. the temperature of the gas) due to their 

small thermal mass.    

 In this work, we carried out an in-situ temperature-programmed desorption 

(TPD) characterization using our ES-DMA system, as depicted in Figure 3.6a. 

Conjugated nanoparticles generated from the ES process were carried into a flow reactor, 

heated to various temperatures between 20 °C and 400 °C for residence times ~0.3-1.2 s, 

and then sent directly to the DMA for mobility size characterization.   
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Figures 3.6b and 3.6c show the change in ∆L as a function of reactor 

temperature. This figure shows a monotonic decrease in the apparent coating thickness 

with increasing temperature, where T is the temperature of the Au-NP, t is the reaction 

time (the residence time in furnace), and ∆L0 represents ∆L at the initial condition (T = T0 

= 20oC, t = 0). For all particles at the same reaction time (Fig. 3.5b, t ≈ 1.2 s), we 

observed that MUA was effectively fully removed from the gold surface at T=300-350 oC 

independent of particle size.  Considering the effect of reaction time (Fig. 3.6c, 20 nm 

particles), we observed that the required temperature for full desorption (∆L/∆L0 = 0) 

increased from ~300-325 oC to ~375 oC when the residence time decreased from 1.19 s to 

0.3 s, indicating that the desorption temperature was increased when the heating rate was 

increased.  The relative high temperature of desorption confirms that the MUA is 

chemisorbed to the surface rather then physisorbed (T<80 oC) 57. 

From the observed change of ∆L/∆L0 we can back out the change in the surface 

packing density of the SAM on an Au-NP.  We first define 
)(
)(

*
0T

T

ρ

ρ
ρ =  and 

)(
)(

*
0TL

TL
L

∆

∆
=∆ .  For the size range we considered, our model provides a simple 

correlation between ∆L, which we measure, and ρ, which we employ to determine the 

binding energy in normalized terms,  

2*)(* L∆=ρ                (3.6) 

With Eq. 3.6, we evaluate the extent of thermal desorption of the SAM simply from the 

change of ∆L measured by the DMA.  
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Nishida et al describe the desorption rate, Dr, of MUA from a flat gold surface 

as a 2nd order reaction, and we adopt their description here for the gold particle and check 

for consistency 61. The 2nd order desorption involves a dimerization process of SAM 

molecules at higher temperature (T > 200oC), when the surface coverage is high 61, 62.  

2*)(
*

1 ρ
ρ

k
dt

d
Dr =−=                                (3.7) 

Using Eq. 3.7 and the Arrhenius form of k1, we may evaluate of the apparent 

binding energy (E) between MUA and Au from the TPD results. With the initial 

condition ρ= ρ(T0)  at t=0,  

RT

E
At

∆
−=− )ln()1

*
1

ln(
ρ

,                         (3.8) 

where k1 is the rate constant (= Ae
(-E/RT)), A is the Arrhenius-factor and E is the activation 

energy. Fitting our TPD data to Eq. 3.8 in Figure 3.7 shows that a second order Arrhenius 

model fits the data quite well, and yields an Arrhenius-factor of 1.0×1011 s-1 with an 

activation energy E ~105 ± 10 kJ/mol for all three sizes of Au-NPs. Thus, for the range of 

sizes we considered, the curvature effect is negligible as each MUA molecule only has an 

arc of 4o or less on the Au surface. This result implies binding of SAM’s to Au-NP, at 

least for dp0 ≥  10 nm, to be curvature independent. 

Accordingly, the energetics we observed are essentially consistent with the 

work on flat surfaces, where for example, Schreiber 57 observed the activation energy for 

the desorption from a flat Au surface to be ~126 kJ/mol, which is close to the value, 

~115-140 kJ/mol, observed by Nishida et. al 61, 62.  Both these measurements are only 
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slightly higher than our 105 kJ/mol result, indicating that binding on the NP may not be 

significantly different from that observed on a flat surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6: (a) Schematic of the temperature-programmed desorption (TPD) experiment. 
(b) ∆L

* (=∆L/∆L0) vs T for three different sized Au nanoparticles, 20 nm, 30 nm and 60 
nm. t: 1.2 s. (c) ∆L

* vs T for two different residence time, t =0.3 s and 1.2 s.  
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Figure 3.7: Arrhenius plots for three different sizes of Au-MUA particles. T=200-350oC. t 
=0.3 s for 20 nm Au-NPs and t =1.2 s for both 30 nm and 60 nm Au-NPs. Y*

=Ln(ρ
*-1-1)-

Ln(At). The slope = –E/R. R =gas constant (8.314 Jmol-1K-1). 
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3.2 Flocculation Kinetics of Colloidal Nanoparticles Measured by 
Gas-Phase Differential Mobility Analysis 

 

3.2.1 Introduction 

Colloidal dispersions of nanoparticles have attracted attention for their variety of 

uses. For example, medical interest in colloidal gold particles may play a role in the 

diagnosis and treatment of cancers 2, 3, 46. However, aggregation of colloidal nanoparticles 

represents a challenge to the development of nanotechnology and nanotherapeutics 

because aggregation affects the properties of these particles, including the transport, 

accessible surface area, optical and electronic properties 3, 45, 46.  

DLVO theory, named after the seminal contributions of Derjaguin and Laudau, 

and Verwey and Overbeek, provides the foundation for a rigorous understanding of 

colloidal stability and, conversely, colloidal aggregation. This theory balances van der 

Waals attraction against electrostatic repulsion of like charged particles, and has been 

used previously to characterize Au-NP aggregation 63. Thus, consideration of parameters, 

such as the surface potential of the particle, and the Hamaker constant are vitally 

important to enable design of functionalized engineered nanoparticles based colloids 64-73. 

In this paper we present a novel method to determine the flocculation rate of 

colloidal nanoparticles by a gas phase analysis.  Nanoparticle suspensions can be 

monitored by sampling the colloidal solution via electrospray (ES), transforming a 

nanoparticle dispersion to a nanoparticle aerosol, followed by differential ion-mobility 

analysis (DMA) to determine the mobility distribution, and thus the aggregate 
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distribution.  By sampling at various times we determine the flocculation rate from which 

the parameters that control aggregation may be elucidated. In contrast to other 

techniques, such as microscopy 64, 66 and static and dynamic light scattering (LS) 65, 67, 68, 

73, ES-DMA can rapidly and quantitatively identify the concentration of each aggregation 

state (i.e. individual particles, dimers, trimers and tetramers, etc.). Moreover, ES-DMA is 

most effective for small number aggregates and nano-sized particles (diameter<100 nm), 

which pose a significant challenge to other methods, especially in monitoring the 

flocculation of colloidal nanoparticles in the early stage. 

We first present a review of the theoretical underpinnings of colloidal flocculation 

and describe our experimental approach. Next, we present mobility and aggregation 

distributions of colloidal gold nanoparticles (Au-NP), the representative materials, 

determined by ES-DMA. By monitoring the aggregation distribution as a function of 

ionic strength and reaction time, we provide data with which to determine the 

flocculation mechanism (rate constant, stability ratio) and surface potential of colloidal 

nanoparticles. Finally, dimensionless analysis is used to determine values of experimental 

parameters governing the aggregation. 

 

3.2.2 Theory of Brownian Flocculation of Colloidal Nanoparticles 

To place our efforts in context and provide a foundation for our analysis, we 

briefly review the now classic model of Brownian flocculation 70. The model considers 

three influences on the particles.  The first, Brownian motion, is always important in the 

colloidal regime, and so we scale all other energies, Φ, with the thermal energy, kbT, 
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where kb is Boltzmann’s constant.  The second influence is the van der Waals force 

represented by the Hamaker constant, Aeff. The third and final influence, the electrostatic 

force, depends on the surface potential, ψs, modulated by the ionic strength of the 

solution through the Debye-Hückel length, λD ( snnm /305.0≈  with ns as the ionic 

strength in mol/L 74).  Equations 3.9-3.11 balance contribution by the electrostatic (Ee)  

and van der Waals (Evdw) energies between two equally sized spherical particles:  

)(
1Φ

vdwe

bb

EE
TkTk

+=                                   (3.9) 

)exp(1 hBEe κ−=                                           (3.10) 

h

B
Evdw

2−= .                                                  (3.11) 

Here, Ee represents the energy of electrostatic repulsion between two spherical particles 

where )
4

(tanh
8 2

21
Tk

ez

lz

Tak
B

b

s

b

b ψ
=  with constant potential conditions, κ =1/λD, z is the 

charge of the solvated ion, and lb=e
2/4πε0εrkbT is the Bjerrum length.  The shortest 

distance between two spherical particles having a radius of a and a center-to-center 

distance r is h = r-2a.  Evdw is the energy of van der Waals attraction between two 

spherical particles where B2 = aAeff/12  under the Derjaguin approximation in the non-

retarded limit 70 with Aeff of 3.0×10-19 J for Au-NP in water 70. 

Figure 3.8 presents Ф/kbT versus the separation distance, h, between two spherical 

Au-NPs for the reaction-limited (curve 1), intermediate (curve 2), and diffusion-limited 

(curve 3) regimes, respectively. The definitions of reaction-limited and diffusion-limted 
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may be found in ref 70. Irreversible flocculation occurs as two particles approach each 

other and fall into the primary minimum near h = 0.  In the reaction-limited regime, the 

sum of energies possesses both a maximum, Фmax/kbT near r = 2a+λD 70, and a secondary 

minimum, Фsec/kbT at relatively large particle separation, h = rsec.  The difference 

between these two provides an energy barrier to minimize or prevent flocculation.  A 

dimensionless energy barrier to Brownian flocculation, Ea
*, can be defined as, 

)ΦΦ(
1

secmax
*

−=
Tk

E
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a                                  (3.12) 
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−=                               (3.13) 
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−= −κ .                    (3.14) 

For highly stable suspensions (i.e: the reaction-limited regime), maxΦ >> secΦ  

such that TkE ba /max
*

Φ≈ . Conversely in the diffusion-limited regime (curve 3), neither 

Фmax/kbT nor Фsec/kbT  are significant, such that the energy barrier is negligible or non-

existent. In the intermediate regime (curve 2), both Фmax/kbT and Фsec/kbT possess similar 

magnitudes, so, Фsec/kbT cannot be ignored in the evaluation of Ea
* in contrast to the 

reaction-limited regime. Because the intermediate regime is essential to our subsequent 

analysis, we now provide an analytical, approximate expression for Φsec that in turn 

depends on the separation of the particles, rsec, through Eq. 3.14.  Intuitively, we should 

be able to take the first derivative of Eq. 3.9 [i.e.: set d(Ф/kbT)/dh=0], however, this 

results in a transcendental expression for rsec. To circumvent this difficulty, we 
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numerically calculated exp(-h/λD) for the intermediate regime where 2λD < h < 5λD .  In 

this domain, we find that 1.26(h/λD)-3 to be sufficiently precise, enabling an analytical 

solution for rsec.  Thus, Eq. 3.9 becomes  

)26.1(
1Φ 233

1
h

B
hB

TkTk bb

−= −−κ .                      (3.15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8: Interaction potential for two spherical colloidal nanoparticles (Particle 
diameter is 10 nm). Surface potential is 64 mV. Curve 1 represents particles in the 
reaction-limited regime (C = 1 mmol/L), Curve 2 represents particles in the intermediate 
regime (C = 3 mmol/L), and Curve 3 represents particles in the diffusion-limited 
regime(C = 20 mmol/L).  a is the radius of  the particles, r is the center-to-center distance 
between two particles, and h = r-2a. C is the salt concentration.   
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Now setting the first derivative of Eq. 7 to zero gives 
2

3
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 of Eq. 3.12, then becomes 
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in the intermediate regime.  Generally, Ea
* is affected by several variables including ionic 

strength, particle size, and surface potential—each of which can be measured or set in an 

ES-DMA experiment.  The remainder of this paper demonstrates how to obtain 

relationships among these variables in the intermediate regime with DLVO theory 

enabled by ES-DMA for the purpose of predicting the stability of nanoparticle 

suspensions.  

 

3.2.3 Experiment 

3.2.3.1 Materials 

Commercially available monodisperse Au colloids (10 nm, citrate stabilized, Ted 

Pella Inc.) were used in this work. The Au colloid suspension was first centrifuged to 

separate the colloids from the supernatant containing excess citrate ions.  The supernatant 

was removed (typically 950 µL of a 1 mL sample), and replaced with an equivalent 

volume of aqueous ammonium acetate (Sigma, 99.9 %) solution—the volatile salt we 

used to systematically vary the ionic strength. To avoid fast flocculation, the 

concentration of ammonium acetate was varied from 2.12 mmol/L to 9.47 mmol/L.  
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Though this concentration range is rather modest, it spans the intermediate regime and 

dramatically affects the kinetics of flocculation on the time scale of our experiments (≈ 

20 mins). 

 

3.2.3.2 Electrospray Particle Generation and Differential Mobility Analysis 

Figure 3.1 depicts a schematic of our experimental system, consisting of an 

electrospray aerosol generator, a differential mobility analyzer and a condensation 

particle counter. A more complete description of the experimental setup and our 

modifications can be found elsewhere 75, 76.  To achieve better electrical stability in the 

ES, filtered air was mixed with CO2 (83 % Air and 17 %CO2) to increase the dielectric 

breakdown threshold. Operating with an applied voltage of 2-3 kV, the Au colloids were 

sprayed in a cone-jet mode and converted from highly charged droplets to neutralized 

particles having a known Boltzmann charge distribution by passing the aerosol stream 

through a housing containing an α-radioactive Po-210 source.  The “neutralized” particles 

then passed immediately to the differential mobility analyzer (DMA) for particle size 

measurement, and were counted with a condensation particle counter (CPC). The 

diameter of the positively charged Au particles, dp, was characterized by the electrical 

mobility, which is inversely proportional to the projected area of the particle 75-78. In 

order to achieve sufficient resolution and stability from the DMA, the sheath-to-aerosol 

flow of the DMA was set to 30.  Under these conditions we can collect data with a 

scanning step size of 0.2 nm because the uncertainty contributed by the DMA remains 



 94

less than 0.3 nm 52, 75, 76.  Thus, the width of the peaks in the resulting mobility spectra 

results primarily from the distribution in particle sizes. 

The mobility diameter, dp,n, of the Au-NP clusters can be characterized by the ion-

mobility spectrum. Dividing the number of positively charged particle measured in the 

DMA by the fraction of positively charged particles emerging from the electrospray 79, 

converts the mobility size distribution into an equivalent distribution of spherical 

particles.  Hereafter, we define n as the number of primary particles (herein termed 

monomers, i.e. n = 1) contained in an aggregate (n = 2 for a dimer, n = 3 for a trimer, and 

n = 4 for a tetramer).  Transmission electron microscopy (TEM) confirms the equivalent 

mobility diameter of clusters of 10 nm primary Au-NPs to be ≈ 14 nm for dimers, ≈17 

nm for trimer, and ≈20 nm for tetramers. 

By integrating the peaks for each n-mer in the ion-mobility spectrum 14, 80, the 

number of Au particles in different aggregation states Nc,n , can be determined from the 

ES-DMA,  

l
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,
,                                 (3.17) 

where Ng,n. is the measured concentration of Au-NP in gas phase, Ql = 66 nL/min, Qg 

=1.2 L/min, and dp,n,max and dp,n,min are the maxima and minima diameter of n-mer 

particles, respectively.  
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3.2.4 Results and Discussion 

Our objective is to develop a systematic approach to detect liquid-phase aggregation 

using the ES-DMA. One advantage of our approach is that even a small change in Au 

flocculation should be detectable.  We restrict the scope of the homoaggregation studied 

here to the earliest stages of flocculation where single particles form small clusters (<5 

primary particles) prior to significant cluster-cluster aggregation, though ES-DMA can 

examine larger flocs.  To achieve these conditions, we employ very dilute suspensions 

with concentrations of less than 0.1 mg/mL or a volume fraction of ~ 10-6. 

While it is possible for aggregation to occur in the gas phase, the particle 

concentration both within the aerosolized droplet (0.04 particles per droplet), and in the 

gas phase (at most 106 particles/cm3) is sufficiently dilute, and the residence time is 

sufficiently short, to prevent significant aggregation (<10 s in the gas phase). Thus, we 

believe the observed aggregates accurately reflect the aggregation in the liquid phase.  

Unless we intentionally force aggregation by adding salts, the fraction of aggregated 

particles (not monomers) is exceedingly small, and often below our detection limit.  

Upon addition of salts, the solution changes color from a bright red to a purple or blue 

color which is characteristic of aggregated gold clusters 45.  

We begin our work by identifying the peaks in the ion-mobility spectrum, and 

then proceed to the time-dependent kinetic study. From a temporal change in the number 

concentration of each aggregation state, we estimate the flocculation rate of Au-NP. From 

this, we estimate the surface potential between the colloidal Au nanoparticles and 
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compare it to surface potentials measured by other methods to test the validity of our 

results. 

 

(1) Effect of Ionic Strength  

Figure 3.9 presents ion-mobility spectra of gold colloids at various concentrations 

of ammonium acetate, C. Each spectrum presents up to five distinctive peaks representing 

salt residues and clusters containing one to four individual Au particles, which we term 

monomer, dimer, trimer, etc. The ion-mobility of the monomer peak (n = 1) results in a 

diameter of 11.6 nm consistent with the original colloidal sample encrusted with salts 76.  

Further assignment of the dimer peak to 14.8 nm, the trimer peak to 17.4 nm, and the 

tetramer peak to 19.4 nm was confirmed by specifically depositing particles 

corresponding to each peak exiting the DMA on a TEM grid inside an electrostatic 

deposition chamber.  TEM then confirms the identity (i.e the peak labeled as tetramer 

does contain four particles) 77, 81. 

Figure 3.9a shows how the concentration of each cluster or aggregation state varies 

with salt concentration.  As seen in Fig. 3a, the intensity of the monomer  (n = 1) 

decreased, and the intensity of the dimer (n = 2), trimer (n = 3), and tetramer (n = 4) 

increases as C increases, reflecting the decreased electrostatic repulsion between Au-NPs 

due to a decrease in the Debye screening length with added salts.  Importantly, this result 

indicates that one can clearly distinguish the aggregate distribution in solution with ES-

DMA, and clearly identify changes due to solution conditions.  
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Figure 3.9b further quantifies the effect of the ionic strength on the extent of 

aggregation and the normalized monomer concentration Nc,n=1/N0, where N0 is the initial 

monomer concentration (4.6 x 1011 particles/cm3) .   Low ammonium acetate 

concentrations (i.e: C = 2.12 mmol/L) result in stable colloids leaving individual 

monomers (n = 1) to dominate the size distribution. As the salt concentration increases, 

significant quantities of dimers and trimers are observed. Increasing the salt concentration 

further to C = 9.47 mmol/L, left exceedingly few monomers to be observed such that 

Nc,n=1/N0 fell sharply.  Thus, our measurements are in excellent qualitative agreement 

with the predictions of the DLVO theory 64-73 as expected. 

We note in passing the separation between the first few peaks in Figure 3a.  One 

distinct advantage of using ion-mobility spectrometry is the clear differentiation among 

monomer, dimer, trimer, and tetramer species.  Thus, ES-DMA is particularly sensitive 

for nano-sized material (<100 nm) in the early stage of flocculation. Changes in these 

concentrations can be tracked in time—a capability we use to study the flocculation 

kinetics as described in the next section. 
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Figure 3.9: (a) Ion-mobility spectrum of colloidal Au ammonium acetate solution at 
different ionic strength conditions. Mobility size of individual particles is ≈10 nm. (b) 
Nc,n=1/N0 vs different ionic strength conditions listed in (a). Ng,n is the number 
concentration of Au particles measured by DMA-CPC in the gas phase (Ng, n

*= Ng,n/N0), 
N0 is the initial concentration of monomer Au particles, and n is the number of single 
particles in a Au aggregate. Volumetric fraction of Au-NP in solution is ~10-6, and the 
reaction time t of sampled Au-NPs is ≈ 20 mins.    
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(2) Time-Dependent Kinetic Study and Degree of Flocculation 

The results in Figure 3 obviously depend on when the flocculating solution was 

sampled, a fact we now exploit to determine the kinetics of flocculation. To quantify the 

extent of flocculation, we draw an analogy between the flocculation of colloidal 

nanoparticles and a step-growth polymerization process to define the degree of 

flocculation (DF). 

∑

∑
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nc

N

nN

DF                        (3.18) 

In this analogy, the average number of “repeat units” in a Au aggregate “polymer chain” 

corresponds to the average number of particles in an n-mer (where n > 1) aggregate.  Like 

a polymer propagation process (our flocculation), DF increases from unity as a function 

of reaction time, t. 82 

Figure 3.10 characterize the extent of Au-NP flocculation versus time. For C=2.12 

mmol/L (Fig. 3.10a), only monomer particles were observed after 9 days, indicating 

repulsive forces dominate on the experimentally accessible time scale. Hence, the energy 

barrier, characterized in Fig. 1 is high, and flocculation is reaction-limited when C < 2.12 

mmol/L. At C = 4.21 mmol/L (Fig. 3.10b), monomer particles still comprise the major 

species, but the concentration of monomer clearly decreases with time; the concentration 

of dimers and trimers increases with time.  When C increased to 7.89 mmol/L, 



 100

flocculation is very much enhanced as evidenced by both the high concentration of the 

various n-mers relative to the monomer, and the much shorter experimental times (Half-

life time, t1/2, decreased from days to minutes see Table 3.2).  

Table 3.2:  Half-life time of primary particles (n=1) versus salt concentration 

Salt Concentration (mmol/L) t1/2  

2.12 >9 days 

4.21 ~5 days 

6.32 ~17 mins 

7.89 < 17 mins 

9.47 < 17 mins 

Note that the detection limit of t1/2 is 17 mins. 

Figure 3.11a summarizes the temporal changes in the ion mobility size distributions 

in terms of n-mer concentration. In keeping with simple Brownian flocculation, the 

monomer concentration decreases monotonically, with each successive n-mer appearing 

later in time. For this set of experimental conditions, dimers and trimers reached a peak 

concentration at t ~80 min and ~ 200 min, respectively. Note that the defined reaction 

time starts from the moment Au colloids were mixed with ammonia acetate buffer 

solution, to the time we collect the ion-mobility spectrum. 

Fig 3.11b shows DF versus t for various ionic strengths.  Generally a higher DF 

was observed for longer reaction times and higher ionic strengths.  Because of the 

depletion of monomer Au-NP, at C = 9.47 mmol/L, DF approaches a constant when t > 

80 min. This result indicates the flocculation rate is dominated by monomer-n-mer 
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interactions such that when the monomer is depleted the aggregation rate essentially 

stops. This implies that aggregate-aggregate coagulation is too slow to be observed for 

the time scales and concentration ranges considered here.   

 

(3) Determination of the Rate-Determining Step 

Using the curves in Fig. 3.11a we now examine the kinetics of flocculation. 

Although ES-DMA can inform more advanced models of flocculation, our purpose it to 

demonstrate the utility of ES-DMA for studies of colloidal aggregation, we draw upon 

the irreversible population balance equation 83 attributed to Smoluchowski and assume 

the rate constants, kD (or coagulation coefficients) to be particle size independent.  Using 

this assumption we write 

2)]([
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total −= ,                                (3.19) 

where kD is the lumped rate constant, and ∑
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which we use to plot the decay of Ntotal(t) with t as shown in Figure 3.12. Increasing the 

ionic strength causes Ntotal(t) to decay more sharply. This result is consistent with an 

Arrhenius form for the rate constant,  
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TkE

oD
baeAk

*
−= ,                                  (3.21) 

which depends on both a collision frequency, Ao, and an activation barrier, Ea. As 

mentioned in section 3.2.2, the activation barrier for flocculation depends on the energy 

barrier between the secondary minimum (Фsec/kbT) and maximum (Фmax/kbT).  As the salt 

concentration rises, the electrostatic barrier collapses, and the rate constant should 

likewise increase. Fitting the curves in Fig 3.11 (Table 3.3) finds rate constants of kD ≈10-

17 cm3/s for C = 4.21 mmol/L, kD ≈8*10-17 cm3/s for C = 6.32 mmol/L, kD ≈2*10-15 cm3/s 

for C = 7.89 mmol/L, and kD ≈4*10-15 cm3/s for C = 9.47 mmol/L.  Comparing these rate 

constants with a diffusion limited rate constant (kD
fast) value of ~10-11 cm3/s for 10 nm-

sized Au-NP’s 68, 83 indicates that electrostatic repulsion decreases the flocculation rate by 

103-106 within the range investigated.  

C (mmol) kD (cm3/s) 

4.21 10-17 

6.32 8*10-17 

7.89 2*10-15 

9.47 4*10-15 

Table 3.3: flocculation rate constant versus salt concentration. 

 

From the rate constants, we can determine the energy barrier to flocculation in the 

primary minimum. First we cast our experimental results into a dimensionless stability 

ratio,  
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D
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k
W ≡ ,             (3.22) 

as defined by Lin et. al. 68, 70 which compares the flocculation rate driven solely by 

Brownian motion to the experimentally observed flocculation rate.  Larger values of W 

correspond to more stable suspensions.  Plotting W versus the ionic strength in Fig. 3.13, 

clearly shows a monotonic decrease in W with C.  By extrapolation of the data to W = 0, 

we obtain the critical salt concentration, nc, to induce Au-NP flocculation (6.5±1.0 

mmol/L). Notably, nc provides an estimation of the onset of rapid flocculation 70. 
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Figure 3.10: (a) Ion-mobility spectra of unconjugated colloidal Au vs reaction time, t. 
Mobility size of monomer is ~10 nm. a: C=2.12 mmol/L ; b: C=4.21 mmol/L ; c: C=7.89 
mmol/L. 
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Figure 3.11: (a) Number concentration of different Au-aggregates vs reaction time. 
C=7.89 mmol/L. Nc,n is the number concentration of Au-NP in solution, and n is the 
number of individual particles in one aggregate.◆: n = 1; □: n = 2; ▲: n = 3; ×: n = 4. (b) 
Degree of flocculation, DF, vs reaction time. C varies from 4.21 mmol/L to 9.47 mmol/L. 
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Figure 3.12: Total number concentration of Au–NPs in solution, Ntotal, vs. reaction time, 
t.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13: Stability ratio of Au colloids vs ionic strength; the interpolate on the X-axis 
(concentration of ammonium acetate) represents the critical concentration of salt needed 
for flocculation of Au colloids, nc. 
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This value of nc enables determination of the surface potential between two Au-

NPs, ψs, and the surface charge density of individual Au nanoparticles, Qs, through the 

following equations 70: 
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srsQ ψκεε 0=                                           (3.24) 

Applying these relationships finds sψ  to be 64 ± 2 mV.  This magnitude may be 

compared with the linear trend in zeta potential versus diameter of citrate stabilized gold 

measured using a commercial electrophoresis instrument by Kim, et al. 63.  Extrapolating 

their data to 10 nm finds ψs to be -65 mV.  The excellent agreement validates ES-DMA 

as a tool to quantitatively study colloidal stability. 

Further applying equation 3.22, we find Qs to be ≈0.012 C/m2 (= 0.075 e/nm2), 

indicating the average number of elementary charges on the monomer (dp, n=1   = 10.9 nm) 

is ~28.  Substituting ψs  back  into Eqs. 4-6 yields Ea ≈ 1.4 kT for C = 4.21 mmol/L, ≈ 0.4 

kT for C = 6.32 mmol/L, ≈ -0.4 kT for C =7.89 mmol/L, and ≈ -1.0 kT for C = 9.47 

mmol/L. Since the diffusion-limited flocculation is defined as Ea << kT, the boundary 

between diffusion-limited and reaction-limited regimes lies in the salt concentration 

range of ~6-8 mmol/L.  Thus, we conclude that the Au-NPs experience intermediate 

values of the interactive potential as illustrated in Figure 3.9 for the range of ionic 

concentrations employed in these experiments (C = 4.21 mmol/L to 9.47 mmol/L). 
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(4) Dimensionless Analysis  

We now summarize our analysis and characterization by demonstrating how to 

extend our analysis to other cases with the DLVO theory. Having determined the surface 

charges via the critical salt concentration, we now return to Eq. 3.16 to determine the 

height of the energy barrier. Following the analysis by Prieve and Ruckenstein 69, 70, Fig. 

3.14a shows the stability ratio to increase exponentially with the height of the energy 

barrier, consistent with the theory that increasing the energy barrier of flocculation 

improves the stability of primary colloidal monomers. This realization provides a 

convenient means of examining how other parameters such as particle size affect the 

activation energy and, thus, W. As depicted in Fig. 3.13b by assuming a constant surface 

charge density (0.075 e/nm2), Ea
*

 increases linearly with particle size when Ea
* > 0 (C < 5 

mmol/L) and decreases linearly when Ea
* < 0. Hence larger particles should display better 

stability in the reaction-limited regime, and small-sized particles should have better 

stability in the diffusion-limited regime.  

Moreover, from the change in Ea
* we can predict the effect of coatings on NPs. 

Generally, for example, a negatively-charged conjugate attached to the surface of a Au-

NP should increase resistance to flocculation as it increases electrostatic repulsion and 

decreases van der Waals attraction 45. Indeed, the charge density of a conjugated Au-NP 

can be at least 10 times higher (>1 e/nm2 when the surface packing density of singly-

charged molecules reached 5×1014 cm-2) than that of an unconjugated Au-NP (0.075 

e/nm2) 46, 57, 84, 85, contributing a significant increase in electrostatic repulsion. By coating 

the colloids with a covalently bound negatively-charged layer, colloidal stability may be 

improved since Ea
*
 is increased. 
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Figure 3.14: (a) Dimensionless analysis. W vs Ea

*. (b) Ea
* vs dp,n=1 (primary particle 

diameter) obtained by Eq. 3.8 by assuming a constant surface charge density, 0.075 
e/nm2. 
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3.3 Extended Applications 

3.3.1 Quantifying DNAs immobilization on Au Nanoparticles86 

(1) Introduction 

A key problem in nano-science and technology is how to determine the molecular 

surface coverage of nanoparticles derivatives with organic or biological molecules, 

particularly those without a fluorescent tag. Many approaches to functionalize engineered 

particles have been developed, but characterizing the number of moieties dotting the 

surface of a nanoparticle remains a critical technical challenge and a major barrier to 

commercial development.  For example, measuring surface coverage will be key to the 

development, manufacturing, quality control, and regulatory approval of 

nanobiomaterials for therapeutic use.  Additionally, surface coverage measurements will 

aid quantitative understanding of the results from nanoparticle sensors, enable 

engineering of particles for energy applications, and facilitate nanoparticle toxicology 

studies.   

In Sec 3.1 we have demonstrated how to use ES-DMA to characterize Self-

assembled layers on Au-NPs, which have a well-known packing structure and density. In 

this section we will explore more into the DNA immobilization process on Au-NP by 

using ES-DMA. 
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(2) Material and Preparation 

 Commercially available monodisperse Au colloids (20 nm, Ted Pella Inc.) were 

used in this study.  Commercial custom oligonucleotides were synthesized and HPLC-

purified by the vendor and used as-received without further purification.  The 5' thiol-

modified oligonucleotides were used without removing the protective S-(CH2)6OH group 

from the 5' end.  For brevity, these oligonucleotides are referred to as TxSH where x 

represents the number of thymine bases per strand, between 5 and 30.   

Conjugated Au colloids were prepared by adding DNA at 200 µmol/L to the 

particles in the ratio of 50 µL per 850 µL of gold nanoparticles and the solution was 

allowed to react ≥18 h.  Salts were added in two stages.  First, 20 µL of 5 M NaCl and 10 

µL of 1 mol/L K2HPO4 were added per 850 µL of particles.  Second, after ≥3 hours an 

additional 149 µL, 373 µL, or 746 µL of salts was added to achieve the desired ionic 

strength, after which the reaction proceeded for ≥ 48 h. 

 The Au colloid solution was then centrifuged at 13200 rpm for 10 min in order to 

separate the colloids from the supernatant and to reduce the nonvolatile salt 

concentration.  The supernatant was removed, leaving less than 20 µL in the vial, and 

replaced with an equivalent volume of >18.0 MΩ·cm water.  The Au colloids easily 

redispersed by vortex mixing.  Centrifugation followed by replacement of the supernatant 

with water more than one time resulted in flocculation of the bare Au colloids.  

Fortunately, DNA coated colloids displayed greater stability as they required duplicate 

centrifugation for solutions to which a second aliquot of salt was added. This indicates 
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that having DNA coatings effectively decreases van der Waals attraction between Au-

NPs in solution to improve the stability of Au colloids. 

 Following centrifugation, typically 60 µL of a 20 mM ammonium acetate buffer 

(Sigma, 99.9 %, 0.2 S/m, pH 8) was added to 900 µL of solution to provide the requisite 

conductivity for the electrospray system.  The addition proceeded in 10 µL aliquots 

interspersed by vortex mixing for ≥ 5 seconds, since direct addition tended to induce 

particle flocculation particularly for the bare particles. 

 

(3) Results and Discussion 

Figure 3.15 displays two ion mobility spectra: one (red) acquired from a solution 

containing bare Au nanoparticles nominally 20 nm in diameter and the other (blue) from 

a solution of 20 nm Au nanoparticles coated with thiol-modified ssDNA [(dT)20-SH], 

where dT represents deoxythymine and the subscript denotes the number of bases per 

strand.  Similar to the spectrum we observed in Sec 3.1 for SAM-coated Au-NPs, the first 

set of peaks (< 10 nm) corresponds to salt particles that result from the drying of droplets 

not containing Au particles. The second set of peaks (> 15 nm) represent Au particles, 

one bare and the other modified with (dT)20-SH, both encrusted with any nonvolatile 

salts.  Subtraction of the diameter of the bare particle from the DNA coated nanoparticle 

determines the apparent coating thickness, H, presented in Figure 3.16, which is twice the 

thickness of the coating layer on either side of the particle.   
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Using ES-DMA, Pease et. al. 86 investigated the dependence of the coating 

thickness on the number of dT nucleotides within a ssDNA strand, Nb, and the salt 

concentration, ns.  The dependence of the coating thickness on the number of bases per 

strand is related to the spatial configuration of the bases within the strand in the dry state.  

If the strands pack together tightly in a brush structure, similar to alkanethiol self-

assembled monolayers, then the bases will extend into configurations that minimize inter-

strand repulsion.  Accordingly, the coating thickness should scale linearly with the 

contour length (i.e. the length of the ssDNA backbone), such that H~Nb.  However, if 

packing allows for sufficient space between the strands, the bases will adopt a random 

coil configuration to maximize entropy (appropriate for dried strands), and then the 

coating thickness should be proportional to the linear end-to-end distance, <x
2>1/2, of a 

strand.  For freely jointed Gaussian chains, <x
2>1/2=cNb

1/2
Nk

1/2
lb, where Nk represents the 

number of bases per Kuhn length (lk=Nklb), lb describes the length of a base, and c = 0.62 

for end-tethered strands on a hard sphere with minimal surface attraction [appropriate for 

oligo(dT) strands on gold],87 though a variety of prefactors remain available to account 

for surface-strand interactions.88 Accordingly, we expect H~Nb
1/2, and, indeed, Figure 

3.16 shows square root scaling to fit the data well.  We, thus, conclude that the strands 

adopt a random coil configuration on the nanoparticle surface. 88, 89   

Knowing the configuration of the strands enables estimation of the surface 

coverage.  Here we note that while the structure of the strands may change upon drying, 

the surface coverage does not.  The drag force experienced by the coated particle in the 

DMA depends on the diameter of the particle, D, the projected area of the coiled strands 

characterized by <x
2>1/2, and the surface coverage, σ.  Knowing D and <x

2>1/2 allows 
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inference of ρ from the data with a suitable model.  We derive an analytical expression 

for the drag force for a “lumpy sphere” model, in which the ssDNA occupies Nm 

hemispherical caps of radius <x
2>1/2, where Nm represents the number of caps around the 

2-D projection of the particle’s circumference. The apparent coating thickness, H, 

determines, Nm, which gives a measure of a strand’s footprint.  The surface coverage, 

consequently, may be approximated as σ��= [(D + H)2 - D
2]2 / [2πD <x

2>]2.  A detailed 

derivation may be found in ref 86. Using this model, we find ρ ranges between 2.0.1012 

and 6.9.1013 strands/cm2 as displayed in Figure 3.17, assuming lb = 0.59 nm and Nk = 3 (lk 

= 1.8 nm) for Nb = 10 to 30 bases.90, 91  By comparison, “brushes” prepared under similar 

conditions have reported coverages from 1.0.1013 to 2.0.1013 strands/cm2 for 12 mers on 

nanoparticles and 4.0.1012 to 2.5.1013 strands/cm2 for 25 mers on planar substrates in 

reasonable agreement with the values derived from our model.  

The relationship between the surface coverage and the salt concentration, ns, of 

the solutions used for ssDNA adsorption is shown in Figure 3.17.  Because DNA in 

solution is highly charged, strands anchored to the surface repel incoming strands due to 

charge-charge repulsion, i.e. through excluded volume effects.90, 91 Decreasing the Debye 

length, λD, by increasing the ionic strength moderates this repulsion, allowing DNA to 

pack more tightly on the surface.  An increase in the salt concentration accordingly leads 

to higher surface coverages as demonstrated in Figure 3.17.  
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Figure 3.15:  Two typical particle size distributions of nominally 20 nm Au particles, one 
bare (o) and the other coated with (dT)20-SH (x).  The difference between the two particle 
size distributions determines the apparent coating thickness.  
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Figure 3.16: Apparent coating thickness, H, versus number of dT nucleotides per strand, 
Nb, for a variety of salt concentrations, ns.  The dashed and solid lines respectively 
represent fits for a contour length model for fully stretched out DNA versus that of a 
square root dependence [H = 1.1Nb

0.53
ns

0.35 nm L0.35 mol-0.35] characteristic of strands 
coiled into low grafting density layers. The error range in the measurement of coating 
thickness is ± 0.3 nm. 
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Figure 3.17: The surface coverage, σ, versus the salt concentration of the ssDNA solution 
in which the particles were immersed during preparation.  Shorter strands display higher 
surface coverages because each strand occupies a smaller footprint.   
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3.3.2 Characterization of Viruses and Antibodies 

(1) Introduction 

We extend our ion-mobility approach to biologically interesting materials, such as 

antibodies and viruses. These materials are difficult to characterize with current 

instrumental techniques due to their small-size and low density. By ES-DMA we obtain 

the physical size and molecular weight of viruses and antibodies in solutions. From the 

change between ion-mobility spectra we track the stability of viruses, antibodies, and 

proteins in solution.  

 

(2) Materials 

Virus particles used in this study are PP7 and PR772, which are bacteriophages 

purified at FDA using CsCl gradient ultracentrifugation and suspended in a 10 mmol/L 

ammonium acetate buffer solution.  Upon receipt, the solutions were further dialyzed for 

at least 18 hours into a 2 mmol buffer solution using 10 kg/mol molecular weight cut off 

Slide-A-Lyzer cartridges (Pierce) at room temperature.  The purified samples were then 

analyzed by ES-DMA. The detailed information of ES-DMA operation has been 

described in the previous sections. Figure 18c depicts the temporal decomposition of the 

capsid. A sample of PR772 was stored at room temperature for 18 weeks after dialysis.  

Data collect after 18 weeks captures significant changes in the viral structure. Initially the 

size distribution consists of only intact viron and free capsomers as shown in Figure 18b.  
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Antibody samples were prepared as follows 92.  Polyclonal rabbit antibodies 

specific to the bacteriophage MS2 with a concentration of 2.8 mg/mL were obtained from 

Tetracore (Rockville, MD, product #TC-7004).  To remove nonvolatile salts which may 

obscure the true size, 150 µL of as-received antibodies were dialyzed through with a 

slide-a-lyzer cartridge (Pierce) having a 10 kg/mol cut off.   Dialysis proceeded for 18 

hours in a 20 mmol/L ammonium acetate solution at pH 8.  Protein low binding 

microcentrifuge tubes (Eppendorf) were used to prevent antibody adsorption to the 

sidewalls.  Solutions to examine the effect of pH were prepared by adding 25.0 µL or 125 

µL of glacial acetic acid or 50.0 µL of 30% ammonium hydroxide (J. T. Baker) and 

raising the volume to 1.00 mL with ammonium acetate solution of the specified strength.  

The samples were maintained at 4 °C until use. 

 

(3) Results and Discussion 

Figure 3.18 shows the particle size distribution of two different viruses as received 

from the FDA.  Two distinct peaks exist forPP7 and three distinct peaks exist for PR772. 

The first peaks at ~10-20 nm present residue salts and the dissembled capsomeres in both 

PP7 and PR772. The second peaks represent the dried size of virus particles: PP7 is at 

23.2 nm (3.18a) and PR772 at 59.2 nm (3.18b), which are consistent with the result 

reported by FDA (PP7 is 26 nm and PR772 is 55-60 nm) measured by electron 

microscopy93, 94.  The peak shown at ~42 nm represent the doubly-charged PR772, which 

is less than 5% of singly charged PR772 (59.2 nm) and not interested in this size range. 
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This result shows that ES-DMA can effectively detect the presence of viruses and the 

corresponding number concentration measured in the gas phase. 

After 18 weeks, as shown in Figure 18c, the primary peak of intact capsids were 

significantly decreased. In addition, this size distribution contains information regarding 

the structure of degrading products.  The peak observed at 50 nm may be explained by 

partially disintegrated capsids. To confirm this point, we sampled the 50 nm-sized 

particles on a TEM grid by 3-hours of electrostatic deposition. TEM images (Figure 18d) 

clearly show irregularly shaped capsids for 50 nm-sized samples. This contrasts with 

particles collected at the 60 nm-sized, which display the straight sidewalls expected of the 

intact viron. As the multiple facet comprise the icosahedral viron, removal of several of 

these would be necessary to produce the 50 nm sized disintegrated capids.  

Figure 3.19 shows typical ES-DMA spectra of antibody containing solutions92.  

The spectra show two types of peaks.  The first peaks at 8.6 nm for the rabbit IgG in Fig. 

3.19a and 9.4 nm for the human IgG in Fig 3.19b represent individual, intact antibodies.  

These mobility sizes represent the diameter of a sphere sustaining the same aerodynamic 

drag and charge as the antibody and are similar to the 9.3 nm size found for bovine IgG 

by Bacher, et al.95 Variation among the sizes observed may be due to differences in 

molecular weight, glycosylation patterns (rabbit v. human v. bovine),96 or the mechanical 

robustness of the antibody structure.  The other peaks (>1) represent antibodies in 

different aggregation states.  

The mobility size measured with ES-DMA can be compared with sizes obtained 

from protein crystallography, and detailed information is described in the reference 92.  
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We recently demonstrated a method to convert the projected areas, Ai, of DNA coated 

gold particles into the mobility size, d, under conditions of random orientation due to 

Brownian motion.86, 97 We find, 

1
3

1

2/1

6

−

=

−











= ∑

i

iAd
π ,                      (3.25) 

where Ai represents the projected area of the i
th surface.  Calculations of the sizes of 

aggregates were conducted by using the protein databank to obtain each of the three 

projections, Afront, Aside, and Atop
97

 (giving Afront = 85.1 nm2, Aside = 65.8 nm2, Atop = 57.9 

nm2). Then using these Ai in Eq. 3.25, we calculated the mobility size of antibodies in 

different aggregation states. As shown in Table 3.3, our calculated size (by using the 

protein databank) compares well with the experimental observation in ion-mobility 

spectra. 

Bacher, et al.,95 correlated the mobility size (in nm) of a variety of biomolecules 

from antibodies to viruses with their molecular weights, Mw (in kg/mol).  They assert 

proteins to be globular spheres of constant density and develop an empirical correlation,  

Mw = -22.033 + 9.830 d – 1.247 d2 + 0.228 d3,         (3.26) 

which may be inverted to give d = 1.832Mw
0.3256 (Mw for one antibody is 150kg/mol).  

The final column in Table 3.4 shows that this correlation does reasonably well for the 

monomers, dimers and trimers on which it was based. This result offers the opportunity 

to monitor protein aggregation, which is of particular concern in the pharmaceutical 

industry. 



 121

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.18: Ion-mobility spectrum of dialyzed virus particles. (a) PP7 (b) PR772.  
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Figure 3.18: (c) Size distribution of PR772 sample after being dialyzed and stored at 
room temperature for 18 weeks. Samples were 5-times diluted by 2mM ammonium 
acetate solution. (d) TEM images of sized classified (50 nm, 60 nm) PR772 collected 
after 18 weeks.    
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Figure 3.19:  Number density versus the mobility size for various agglomerates of IgG. 
(a) Rabbit IgG at 18 µg/mL (120 nmol/L or 7.3.1013 antibodies/mL) and pH 8 in 20 
mmol/L ammonium acetate.  (b) Human IgG previously lyophilized at approximately 75 
µg/mL (500 nmol/L or 3.0.1014 antibodies/mL) and pH 8 in 2.0 mmol/L ammonium 
acetate. 
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Table 3.4: Comparison of Measured and Calculated Mobility Size 

Number of 

Antibodies 

Measured Mobility 

Size (nm) 

Calculated Size 

(nm) 

M.w correlated 

Size (nm) 

1 9.4 9.3 9.4 

2 11.5 11.7 11.7 

3 12.9 13.3 13.4 

4 13.9 14.4 14.7 
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3.4 Conclusion  

We have demonstrated a systematic approach to characterize functionalized self-

assembled monolayers (SAMs) of alkylthiol molecules on Au nanoparticles with ES-

DMA. The mobility measurement using a DMA has sufficient resolution to track both the 

packing density of SAMs, and the thermally induced desorption kinetics of SAMs from 

Au nanoparticles. For the size range (10-60 nm) of MUA-conjugated Au nanoparticles 

we considered, the curvature effect on SAM binding is evidently negligible, and the 

binding energy is consistent with similar studies of SAMs on flat surfaces.  This study 

suggests the ES-DMA to be a useful tool for the study of packing density and stability of 

coatings on nanoparticles. 

DNA-immobilization on Au nanoparticles has also been studied and an analytical 

model successfully correlated the projected surface area of DNA measured by ES-DMA 

to the surface packing. We estimate the packing density from the change of mobility size 

of Au nanoparticles and found that decreasing the Debye length is a promising way to 

increase the surface packing density. 

We have applied this ES-DMA to characterize the flocculation process of 

nanoparticles in a solution. This instrument has sufficient resolution to identify the 

aggregation state of NPs and to track changes in the number concentration versus various 

ionic strengths and reaction time. For the range of reaction times we considered, we find 

the degree of flocculation to be proportional to the ionic strength and the residence time. 

From these data we determine the surface potential and surface charge density of 

commercial Au-NPs, which are consistent with literature reported values. From the rate 
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constant and energy barrier we can clearly delineate the critical salt concentration, and 

the boundary between the diffusion-limited and reaction-limited interactive potential 

regimes to be ~6.5 mmol/L.  

This kinetic study using ES-DMA provides an opportunity to further characterize 

the size distribution of biological materials. Virus particles show a narrow particle size 

distribution (~±10%), which is contributed by their defined icosahedra structure. 

Antibody proteins (rabbit IgG and human IgG) show distinct peaks in their ion-mobility 

spectrum representing different aggregation states.  These results can be applied to 

further research on antibody-virus reactions, protein aggregation processes, and virus 

degrading processes. 
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Chapter 4 

Conclusion and Future Work 

Electric fields can have a great impact on the nanoparticle transports, improving 

their synthesis, classification, characterization, and device integration. The directional 

forces generated by electric fields effectively minimize the effect of the non-directional 

forces and their random Brownian motion, which is a dominant factor in the trajectory of 

nano-sized materials. 

Because the Coulomb interaction provides a directional force to overcome other 

non-directional external forces, both the deposition efficiency and the coverage 

selectivity of nanoparticles assembly processes can be improved. Using substrates 

patterned with a reverse biased p-n junction is a promising way to guide deposition 

because it provides a charged patterned surface with a strong electric field.  Brownian 

dynamic simulation proves that electric field is the dominant factor in achieving high 

coverage selectivity of this electrostatic-directed particle assembly process. By using this 

model we can estimate the influence of other parameters in the device integration 

process, such as the dopant concentrations, material properties of nanoparticles and 

substrates, and the design of p-n junction patterns in the future research. 

Applying electric fields toward size classification improved the size purity and the 

corresponding device performance of the bio-sensing processes. This promising result 

can be extended to other applications like nano-LED and energy harvesting materials. 



 128

The coupling effect between size-selected nanoparticles and the biological molecules is 

highly interesting, and this approach can be applied extensively in future research. 

By using electric fields we can conduct a systematic time-of–flight measurement, 

namely electrospray-differential ion-mobility analysis (ES-DMA), which can be applied 

toward characterizing particle sizes of a variety of materials (nanoparticles, nanotubes, 

nanorods) and surface coatings. Our results indicate the potential of ES-DMA to quantify 

the coverage and configuration of biological molecules and organic coatings on 

nanoparticles.  We considered the specific example of thiol-modified ssDNA and find it 

adopts a random coil configuration.  We believe the analytical model to be valid 

generally for sufficiently long and flexible molecules. 

With temperature programmed desorption, information regarding the surface 

binding energy of molecules adsorbed on Au nanoparticles can be obtained from the 

change of particle size (particle mobility).  Moreover, the stability of different kinds of 

colloidal nano-materials can also be characterized by the ES-DMA system, and the 

kinetic information regarding solution-phase aggregation can be characterized from the 

change of particle size and the corresponding number concentration.  

Additionally, ES-DMA can be further applied to biological reaction such as, and 

virus degradation, which can contribute to nano-therapeutics and bio-pharmaceuticals. In 

the future work we can apply internal standard materials, such as Au-NP and polystyrene, 

to improve the ES-DMA characterization. We expect to have a high-precision 

measurement on viral concentration in solution by scaling the virus concentration to a 
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known concentration of these standard materials, which may minimize the instrumental 

variation.  

Real-time detection on the viruses-antibodies reaction is one of the most interesting 

projects in therapeutic technology. However, having a simple and precise characterization 

method is a challenge. Electrospray-ionization-masstroscopy (ESI-MS) would be a 

promising way, but the operating range is generally not sufficient (usually <100 Da), 

which limits its application. To solve this problem, ES-DMA seems to be a promising 

way, and the operating range can be achieved from 150 Da up to 1011 Da by choosing a 

suitable electrostatic classifier. The information such as the ratio of bonded antibodies to 

virus, the type of bindings, binding energy and the rate constant may be obtained. 

Moreover, protein flocculation is also highly interesting. My Ph.D. works on the Au-NPs 

and antibodies indicate that ES-DMA can also be used for on-line detecting the early 

stage of protein flocculation. Conclusively, Having a thorough study and a good 

cooperation between biologist, chemists and engineers may expand the capacity of this 

ES-DMA technique.  
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Appendix A 

Data Acquisition and Analysis of ES-DMA 

An Electrospray aerosol generator (TSI 3480) is used to deliver nano-sized 

materials from liquid phase (colloidal dispersion) to gas phase (aerosols). Colloidal 

samples are prepared in a 1.5 ml vial (non-conductive, disposable). To avoid electrical 

instability, the amount of samples required is at least 100 µL, and the position of capillary 

inlet in liquid should be away from the liquid surface. 

To improve the stability of cone-jet at capillary tip, the carrier gas used was 1 

Lpm of air plus 0.2 Lpm of CO2. Particles leaving the TSI 3480 required a second 

neutralizer (Po 210 housing) to avoid the change of charge equilibrium during particle 

transport to DMA. Followed by a 2nd neutralization, particles enter the electrostatic 

classifier (TSI 3080n). Because of the significant loss for nano-sized materials, especially 

when dp <20nm, the residence time for particle transport should be minimized.  

A high Voltage power supply (Bertan 5A) was used with the DMA. The ramp 

voltage is controlled by a home-made program developed using a LabView interface. 

Sheath flow rate for DMA depends on the size range of samples interested in. To avoid 

the electric breakdown at a higher applied voltage (VDMA>3 kV), nitrogen is chosen as the 

carrier gas for DMA. For the unknown range or size larger than 40 nm, we use 10 Lpm 

N2 sheath flow. If the size range is less than 40 nm, we use 30 Lpm N2 as the sheath flow.  
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Sampling flow is fixed at 1 Lpm and connected to CPC. Number concentration of 

particles measured by CPC is also recorded by a personal computer using a home-made 

program. A simple description of this data acquisition program is shown in Figure A1. 

Note that the limit of our measured mobility size is 2.5 nm because of the limit of 

condensation particle counter (CPC). At the end of mobility analysis, particle size, 

applied voltage and number concentration are recorded in an ASCII file and then plotted 

by MS excel or Matlab as the ion-mobility spectra for the data comparison.  

 

 

 

 

 

 

 

 

Figure A1: A simple description of data acquisition program of DMA.  
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Converting ion-mobility spectra measured after DMA into particle size 

distributions before DMA requires the following two steps: 

1. Covert number concentration of singly-charged particle to the total number 

concentration of particles by considering the charge efficiency, β. (Eq. 1.9) 

2. Considering the transfer function of DMA: 

The number concentration detected by CPC represents the average concentration 

of the particles going through the collection slit of DMA. Hence the measured particle 

size, dp, represents the average size for particles having a size ranging from dp-∆dp to 

dp+∆dp. A representative size distribution is shown in Figure A2a, where a concentration 

gradient, dNg,p/ddp is an average value. The half-width of the size distribution, ∆dp, 

depends on the aerosol-to-sheath flow ratio (Qaerosol/Qsheath). 

The resolution of particle mobility measured by DMA is define as follows, 

e

sheath

aerosol
e Z

Q

Q
∆Z )(=                              (A.1) 

Converting into the resolution of particle mobility in free molecular regime into 

the resolution of particle size, 

p

sheath

aerosol
p d

Q

Q
∆d ])1(1[ 5.0−+−=                    (A.2) 

Next we consider the size distribution of these size-selected particles. Using a 

normal size distribution, Figure A2a can be converted into Figure A2b, which a 
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concentration gradient of specific sized particles can be obtained. Combining all the data 

points of dNg,p/ddp the ion-mobility spectrum can be converted into a full size distribution 

similar to Figure 3.8 and 3.9, and the integration of peak represents the total number 

concentration of particles detected in the gas phase, which can be used to track the 

concentration change in liquid phase extensively.   

This data analysis can be further improved by considering the diffusion loss. 

Generally, a standard calibration method is a promising to improve our concentration 

analysis. Considering the transfer function and the charge efficiency, a suggested 

detection limit is ~1010 particles/cm-3. Because of the diffusion loss, a higher 

concentration was needed for the particles less than 20 nm. 
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Figure A2: Transfer Function of DMA. (a) Determine the size range based on the 
resolution of DMA. (b) Use normal distribution to obtain the right number concentration 
gradient, dNg,p(dp)/ddp. 
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Appendix B   

Operations and Maintenance of ES-DMA 

This appendix is referred from TSI 3480 manual98 plus my personal operation 

experience.  

 B1. Preparing a Buffer Solution for Electrospray Ionization 

A buffer solution is intended for the uses of: 

(1) Rinse the capillary before, after, or between sample uses. 

(2) Aconductive solvent for electrospray. 

A 20 mM ammonium acetate buffer solution is prepared for these two reasons. The 

procedure for making this buffer solution (subsequently referred to as the standard buffer 

solution) is outlined here: 

(1) Dissolve 0.77 grams of ammonium acetate in 500 milliliters of de-ionized water 

(18 MΩ.cm). 

(2) Assuming the solution has an initial pH of ~7 (conductivity is 0.2 S/m), add 0.02 

mL of 1 mol/L ammonium hydroxide to adjust the buffer solution pH to be 8. 

For rinsing the capillary, we use this 20 mM buffer solution. For adjusting the 

conductivity of colloidal samples, 2-3 mM of ammonium acetate aqueous solution will be 
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preferred, which is prepared by mixing 100 mL of 20 mM ammonia acetate solutiomn 

with 850 mL of DI water.  

 

B2.  Operation of Electrospray Aerosol Generator  

1. Following the operation procedures in TSI menu, check the viewing window to make 

sure the capillary tip is near the center of the viewing window. 

2. Insert and open the sample vial into the chamber. To avoid contamination, platinum 

wire and the capillary should be rinsed by a clean DI water or clean buffer solution 

before inserting samples into the chamber. Note that the high voltage should be turned 

off if the bottom half of the pressure chamber is removed. 

3. Turn the pressure regulator knob clockwise until the pressure gauge reads ~3.7 psi. 

4. Turn the air to reach 1.0 Lpm and CO2 to reach 0.2 Lpm. 

5. The liquid should drip out of the 25 µm capillary about 2 minutes. For 40 µm capillary 

it takes less than one minute. If not, start doing trouble-shooting. 

6. After seeing the dripping mode, turn on the voltage to reach the stable cone-jet mode.  

Notes that do not increase the voltage exceeding ~10V while reaching stable otherwise 

a corona discharging effect could be occurred and the capillary tip will get clogged.  

 

B3. Maintenance of Electrospray Aerosol Generator 
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(1) Periodic Maintenance 

Periodic cleaning of several parts of the Electrospray is necessary to ensure proper 

performance. The service intervals depend on the type and concentration of aerosols 

generated with the Electrospray. The following maintenance schedule is suggested for the 

Electrospray: 

(1.1) Purging the capillary Daily 

1. Use 20 mM ammonia acetate buffer solution (volatile solution preferred) to run a 

pulsing/stable cone-jet mode, about 15-30 mins to flush away the sample residues. 

2. Remove the buffer vial from the change and use only CLEAN Aair to PURGE the 

whole system. Overnight preferred. 

3. If the capillary tip looks dirty, rinse it with ethanol. 

(1.2) Clean the orifice at least once for two days. If the volumetric ratio of sample is 

high, clean it up once or twice a day. Use ethanol to rinse the orifice plate at first 

and then use DI water, repeating this process for 3 times. Then Use air to dry the 

orifice. Notes that the capillary should be removed from the orifice before 

cleaning the orifice. 

The rest of system will also need maintenance, see the details in TSI menu. 
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B3.2. Special Maintenance 

(1) Removing the Capillary 

The capillary needs to be removed when cleaning any part of the Electrospray 

chamber or if the capillary becomes damaged or the capillary tip becomes dirty.  

1. Remove power from the instrument and turn off all flows. 

2. Remove the cover of Electrospray particle generator. 

3. Loosen the hex nut on the inlet fitting but do not remove it. 

4. Carefully pull the capillary from the capillary guide leaving the guide behind. If having 

difficulty to pull the capillary, it indicates that either the capillary guide or capillary 

outer wall is dirty. Use ethanol to clean it after pulling off the capillary. 

5. Remove the high-voltage shield by loosening the mounting screw and pulling the high-

voltage shield upward until it clears the capillary. 

6. Loosen the hex nut on the high-voltage fitting but do not remove it. 

7. Pull the capillary straight up until it clears the high-voltage fitting. 

8. If the capillary tip appears dirty, rinse or soak the capillary tip in alcohol or a mild 

detergent.  

 

(2) Installing the Capillary 
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1. Remove power from the instrument and turn off all flows. 

2. Remove the cover. 

3. Loosen the hex nut on the inlet fitting but do not remove it. 

4. Remove the high-voltage shield by loosening the mounting screw and pulling the 

high-voltage shield upward. 

5. Loosen the hex nut on the high-voltage capillary guide but do not remove it. 

6. Insert the long end of the capillary into the high-voltage capillary guide until the 

end of the capillary reaches the end of the platinum wire. Twist the capillary until 

it becomes retained by the corkscrew of the platinum wire, and then tighten the hex 

nut on the high-voltage fitting.  

7. Attach the high-voltage shield to the cabinet by sliding the capillary through the 

high-voltage shield, routing the high voltage wire through the groove in the bottom 

edge of the high voltage shield, and tightening the mounting screw. 

8. Turn on the power to the instrument. If the cover is removed, high voltage will not 

be supplied to the instrument, but the capillary viewing window LED will turn on. 

9. Carefully insert the capillary tip into the capillary guide. While looking through the 

viewing window, continue pushing the capillary into the capillary guide until the 

tip of the capillary first appears, then tighten the hex nut on the inlet fitting. If 

having difficulty to put in the capillary, it indicates the capillary guide is dirty. 



 140

Rinse the capillary guide and dry it before putting capillary. Do not force it 

otherwise the capillary will be stuck. 

10. If the capillary is centered in the viewing window, installation is complete. If not, 

loosen the hex nut on the inlet fitting and adjust the position of tip. 

 

B4. Selection of Differential Mobility Analyzer 

Description of differential mobility analyzer (named as electrostatic classifier) is 

described in TSI menu15. For the size range larger than 50 nm. We use L-DMA (model 

3080L). For the size range smaller than 50 nm, we used nano-DMA (model 3080N). In 

order to have a high resolution of ion-mobility, we used 10 Lpm for L-DMA. For Nano-

DMA we use 10LPM for the sample size larger than 45 nm and 30 Lpm for the size less 

than 45 nm. 

For the reason of achieving the maximum intensity of signal, we used all l.2 Lpm 

aerosol flow from electrospray and 1 Lpm signal (size-selected) flow. Note that avoiding 

the fluctuation of flow rates is the most important thing in order to have a precise 

mobility size comparison.  
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