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  Pseudo-nitzschia is a diatom genus known to produce the neurotoxin, 

domoic acid (DA), which causes Amnesic Shellfish Poisoning (ASP) and Domoic 

Acid Poisoning (DAP).  Field studies were conducted in the Chesapeake Bay to 

determine which species were present, their toxicity and their spatial and temporal 

distribution.  Strains were isolated from the Chesapeake Bay region and growth 

and toxin content were studied.  The effect of rapid increases in light at low 

temperatures on toxin production physiology was investigated.  

Toxic Pseudo-nitzschia is present in the Chesapeake Bay; however, 

abundance and toxin production are highly variable.  Six species of Pseudo-

nitzschia were identified: P. pungens, P. calliantha, P. subpacifica, P. cuspidata, 

P. fraudulenta and P. multiseries.  The most abundant species was P. calliantha.  

Pseudo-nitzschia abundances were associated with low temperature (2-21°C) and 

high salinity (6-32) and were highest in winter and spring.  Compared to other 

diatom species, Pseudo-nitzschia abundances were low, rarely present above 1000 

cells mL-1 and they did not occur as monospecific blooms.  Low Pseudo-nitzschia 

abundances and low, irregular domoic acid concentrations may partially explain 

the lack of documented toxic events in the Chesapeake Bay. 

 



Growth rate and toxin content of strains of Pseudo-nitzschia exposed to 

different nitrogen sources and irradiances varied significantly, even among strains 

of the same species isolated from the same water sample.  Strain-level differences 

were responsible for most of the variability in growth rate and toxin content.  

Sequences of the internal transcribed spacer (ITS) and large subunit (LSU) rRNA 

matched morphological species definitions, but offered no explanation for the 

physiological variability.  Populations of Pseudo-nitzschia in the mid-Atlantic 

coastal zone appear to be comprised of numerous ecotypes that require sorting in 

the future.  

The hypothesis that DA is produced as an energy modulation strategy 

when the light and dark reactions of photosynthesis are decoupled was tested by 

exposing exponentially growing P. multiseries to a rapid increase in irradiance at 

a low temperature.   High light and low temperature conditions increased nitrate 

(NO3⎯) uptake, nitrite (NO2⎯) and ammonia (NH4
+) release and decreased DA 

production by the cells.  These results could have important implications for 

natural populations of Pseudo-nitzschia at times of low temperature and high light 

fluctuations, such as during spring blooms and upwelling events.   

This thesis answered several questions about Pseudo-nitzschia populations 

in the Chesapeake Bay area and their ecophysiology, but raised many more.  

Physiological adaptations and biogeography of Pseudo-nitzschia and DA content 

of Chesapeake bivalves should be studied further to contribute to the development 

of predictive models for Pseudo-nitzschia bloom formation and toxin production. 
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CHAPTER 1: Introduction 
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Since the first incident of Amnesic Shellfish Poisoning (ASP) in Prince 

Edward Island, Canada in 1987 (Bates et al. 1989, Perl et al. 1990), Pseudo-

nitzschia and domoic acid (DA) have been the subject of intense research by 

ecologists, physiologists and chemists.  Pseudo-nitzschia is a pennate diatom of 

global importance; it has been recorded from nearly every major marine and 

estuarine environment and DA has been found in the tissue or feces of organisms 

in multiple trophic levels in the oceans.  Despite twenty years of study and the 

relatively simple taxonomy, life cycle (when compared to other species of 

harmful algae) and structure of DA, there is still much to learn about the 

taxonomic relationships, toxin production and food web interactions within the 

genus Pseudo-nitzschia.  The following is a summary of Pseudo-nitzschia 

taxonomy, physiology, ecology and DA chemistry from the initial description of 

the genus to the present. 

 

Taxonomy, Biogeography and Natural History 

Taxonomy 

The genus Pseudo-nitzschia was originally defined by Peragallo and 

Peragallo (1900) from the genus Nitzschia and has been subjected to many 

taxonomic changes over the last century based on frustule morphology (Fig. 1.1).  

Fifty years after being defined, Pseudo-nitzschia was reduced to a section of the 

genus Nitzschia on the basis of its raphe and motility (Hustedt 1958).  By 1965 

there were 18 species and two subspecies in the Pseudo-nitzschia group: seriata, 

seriata f. obtusa, pseudoseriata, pungens, pungens f. multiseries, fraudulenta, 
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subfraudulenta, subpacifica, heimii, turgidula, prolongatoides, turgiduloides, 

lineola, barkleyi, inflatula, cuspidata, actydrophila, granii, subcurvata and 

delicatula (Hasle 1964, 1965).  Nitzschia lineola and N. barkleyi were combined 

into N. lineola (Hasle 1965).  In 1971, a new species, N. pungiformis, was 

described (Hasle 1971).  Nitzschia delicatula became N. pseudodelicatissima in 

1976 (Hasle 1976) and N. actydrophila reverted back to the older name N. 

delicatissima (Heiden & Kolbe 1928, Hasle 1965).  Eventually, Pseudo-nitzschia 

was again separated from Nitzschia as a distinct genus by Hasle (1994) based on 

morphological characters and later supported by analysis of the 18S ribosomal 

RNA (rRNA; Douglas et al. 1994).  The basic features of Pseudo-nitzschia spp. as 

defined by Hasle (1994) are as follows: 1) weakly silicified, 2) shallow, flattened 

or smoothly curved valve, 3) extremely eccentric raphe not elevated above valve, 

4) no poroids on raphe canal walls, 5) no conopea and 6) presence of non-poroid 

silica strip at junction between valve face and distal mantle.   

 Shortly after Pseudo-nitzschia was reinstated as a genus, pungens f. 

multiseries was raised in rank, creating the species P. multiseries (Hasle 1995).  

Nitzschia pseudoseriata became P. australis, using an older species name and the 

new genus name (Frenguelli 1939, Hasle 1965, Rivera 1985).  Many more new 

species have since been defined: P. sinica (Qi et al. 1994), P. multistriata (Takano 

1995), P. micropora (Priisholm et al. 2002), P. americana, P. brasiliana, P. linea 

(Lundholm et al. 2002b) and P. galaxiae (Lundholm & Moestrup 2002).  

Lundholm et al. (2003) redefined P. pseudodelicatissima into three species: P. 

calliantha, P. pseudodelicatissima and P. caciantha and redefined P. cuspidata.  
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P. delicatissima was redefined and split into two additional species: P. dolorosa 

and P. decipiens (Lundholm et al. 2006).  Currently, there are 31 species of 

Pseudo-nitzschia.   

Not all of these species produce the toxin DA, which makes species 

identification very important.  This is typically done via electron microscopy. 

Individual species of Pseudo-nitzschia can be identified on the basis of striae and 

fibulae density, poroid structure, presence or absence of a central interspace and 

valve shape, length and width (Hasle & Syvertsen 1997).  The genus can be 

identified with light microscopy by the characteristic step chain pattern.  Cell 

length and width can also be measured via light microscopy.   Pseudo-nitzschia is 

divided into two groups based on valve width: the seriata group (> 3μm) and the 

delicatissima group (< 3μm) (Hasle 1965, Hasle & Syvertsen 1997). 

Traditional microalgal taxonomy has been heavily reliant on microscopy 

and has been revised as improvements in technology have enabled researchers to 

resolve increasingly smaller detail.  In diatoms, this microscope-based taxonomy 

has meant that species were defined based on details in the frustule (Fig. 1.1).  

More recently, molecular techniques are adding to morphological species 

definitions, being used to confirm existing species and defining new species 

(Lundholm et al. 2002a, Lundholm & Moestrup 2002, Lundholm et al. 2003, 

Lundholm et al. 2006).  The focus of most molecular work in Pseudo-nitzschia 

has been the ribosomal RNA.  Sequence data can be used to construct a 

phylogeny or parsimony tree to describe relatedness between species or between 

strains (Orsini et al. 2002, Orsini et al. 2004, Cerino et al. 2005).    
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Analysis of molecular data reveals another level of diversity in natural 

populations not detectable through morphological methods alone and could reveal 

ecotypes or cryptic species.  Using microsatellite markers, Evans et al. (2005) 

found 98% clonal diversity in isolates from the North Sea.  Orsini et al. (2004) 

found 5 distinct lineages within P. delicatissima in the Gulf of Naples before a 

bloom, while during a bloom all strains collected belonged to the same clade.  

These dynamics could be evidence of cryptic species or ecotypes in P. 

delicatissima.  Genetic analysis of laboratory cultures show strains of P. 

delicatissima belong to two different clades (Lundholm et al. 2006).  Molecular 

data, in combination with mating experiments, shows the presence of 

reproductively isolated groups within P. delicatissima and P. pseudodelicatissima 

(Amato et al. 2007).  Molecular methods are a new way to investigate evolution 

and ecology in natural Pseudo-nitzschia populations. 

 

Biogeography 

 Pseudo-nitzschia is a cosmopolitan genus; however, some tropical and 

polar species exist as well as coastal and oceanic species (Hasle 1965, Skov et al. 

1999, Hasle 2002; Fig. 1.2).  Many species of Pseudo-nitzschia are found over a 

wide range of salinity and temperature (P. pungens) while other species are 

restricted to a narrow environmental regime (P. prolongatoides and P. 

turgiduloides).  Pseudo-nitzschia pungens, P. heimii, P. inflatula, P. 

pseudodelicatissima and P. fraudulenta can be found in coastal and oceanic, 

tropical and temperate waters while P. brasiliana, P. caciantha, P. decipiens, P. 
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micropora and P. sinica have only thus far been found in tropical waters.  

Pseudo-nitzschia obtusa can be found primarily in arctic coastal regions and P. 

turgiduloides and P. prolongatoides are restricted to the Antarctic region alone.  

Pseudo-nitzschia turgidula and P. granii are limited to cold waters.  There has 

been no report of P. seriata from the southern hemisphere while P. subcurvata 

has only been reported in the southern hemisphere (Skov et al. 1999).  Pseudo-

nitzschia americana, P. calliantha, P. cuspidata, P. delicatissima and P. linea are 

found in tropical and temperate coastal waters.  Pseudo-nitzschia australis, P. 

galaxiae, and P. multiseries are found in coastal temperate regions.  Pseudo-

nitzschia subfraudulenta is a coastal warm water species while P. subpacifica is 

an oceanic warm water species.  Pseudo-nitzschia dolorosa has been found only 

in upwelling regions.  Pseudo-nitzschia lineola has been reported in the open 

ocean and coastal regions in temperate and polar areas.  Pseudo-nitzschia 

multistriata has been reported mostly in the tropical and temperate Pacific.  The 

accuracy of a map showing Pseudo-nitzschia biogeography depends on correct 

species identification and thorough examination of global waters.  Some of the 

rarer species could actually be more common or have a wider range than currently 

believed.   

 Approximately 12 Pseudo-nitzschia species are documented DA 

producers (Table 1.1).  On the west coast of the United States, the major DA 

producers are P. australis, P. multiseries and P. cf. pseudodelicatissima (could be 

P. cuspidata; Adams et al. 2000, Stehr et al. 2002, Lundholm et al. 2003, Bates & 

Trainer 2006).  Pseudo-nitzschia pseudodelicatissima, P. seriata and P. calliantha 

 6



have caused DA contamination in shellfish in Atlantic Canada (Bates et al. 1998, 

Bates & Trainer 2006).  In Europe, the toxigenic species are P. seriata, P. 

australis and P. multiseries (Bates & Trainer 2006).   In New Zealand P. australis 

is the main source of DA (Rhodes et al. 1998b). 

 Molecular studies of microsatellite markers reveal few differences 

between P. pungens isolates from the North Sea and Atlantic Canada, suggesting 

minimal barriers to gene flow (Evans et al. 2005, Lundholm & Moestrup 2006).  

Microsatellite markers in P. multiseries from Pacific and Canadian Atlantic 

isolates show substantial differences and hence barriers to gene flow between the 

two regions (Evans et al. 2004, Lundholm & Moestrup 2006).  Molecular 

methods of examining diversity should be applied to a larger investigation of 

Pseudo-nitzschia biogeography in order to describe global population dynamics 

and genetic relatedness between populations in different regions.  

 

Life History 

Pseudo-nitzschia, like many pennate diatoms, can reproduce sexually 

(Geitler 1935).  Clonal cultures of Pseudo-nitzschia will gradually decrease in cell 

size over time and eventually die if they do not undergo sexual reproduction.  

This is due to vegetative cell division and splitting of the frustule between two 

daughter cells.  The halves of the frustule fit together like a glass Petri dish, with 

one side slightly smaller than the other.  The daughter cell that receives the 

smaller of the two frustules will grow a new second frustule inside the first.  This 

cell will be smaller than the initial parent cell.  In this way, the average 
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dimensions of the cell gradually decrease until they become so small the culture 

can no longer survive.  However, if cells undergo sexual reproduction, cell size is 

restored.   

A Pseudo-nitzschia cell will become sexualized when cell length has 

decreased below a threshold size, known as the first cardinal point, which in P. 

multiseries, is approximately 63% of the length of largest cells (Bates & 

Davidovich 2002).  Sexual reproduction must occur before the cells reach a 

minimum length, which in P. multiseries, is approximately 30 μm (Bates & 

Davidovich 2002).  In P. delicatissima, this size range is from 19-80 μm (Amato 

et al. 2005).  During this size window, cultures of Pseudo-nitzschia can be mixed 

together to stimulate sexual reproduction.  Pseudo-nitzschia is dioecious, meaning 

that male and female gametes are produced by separate clones and intraclonal 

mating is rare or absent.  These “sexes” are referred to as “+” and “-“ in Pseudo-

nitzschia.  While no monoecious clones of Pseudo-nitzschia have been reported, 

mating between two clones of the same sex has been observed, suggesting that a 

single culture could switch sex under some conditions which have not yet been 

investigated, or more than one mating type exists (Davidovich & Bates 1998).   

The sexual cycle differs between pennate and centric diatoms (Drebes 

1977, Round et al. 1990).  Centrics are characterized by oogamous reproduction 

involving the formation of flagellated male gametes and non-motile female 

gametes.  The first paper reporting sexual reproduction in P. multiseries caused 

considerable debate and criticism for claiming that Pseudo-nitzschia, a pennate 

diatom, had oogamous reproduction (Subba Rao et al. 1991).  Observation of 
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flagellated gametes in cultures of P. multiseries was consistent with fungal 

contamination and was considered anomalous (Rosowski et al. 1992).   

Mating in Pseudo-nitzschia can be achieved simply by mixing clones of 

the same species, but opposite sex.  Clones must be in good physiological 

condition to undergo sexual reproduction.  This means that clones must be mixed 

during exponential growth phase, which can be anywhere from 3-6 d after 

inoculation of a batch culture.  Clones must receive a sufficient amount of light 

during a 24 h period.  A photoperiod length up to 16:8 L:D, the maximum studied, 

will increase gamete and auxospore production (Davidovich & Bates 1998, Hiltz 

et al. 2000).  These results suggest that parent cells must be healthy and 

photosynthesizing to produce energy for sexual reproduction. 

Sexual reproduction has been described in P. multiseries, P. 

pseudodelicatissima, P. calliantha (Davidovich & Bates 1998), P. subcurvata 

(Fryxell et al. 1991) and P. delicatissima (Amato et al. 2005).  Despite some 

differences in the amount of time necessary to complete sexual reproduction, the 

mating process is similar in all Pseudo-nitzschia species tested.  The first step in 

sexual reproduction is parental pairing between cells of the opposite sex.  Two 

cells will pair valve to valve, lying parallel with close alignment of the cells.  The 

next stage is gametogenesis.  The paired cells divide meiotically and the cell 

contents divide along the apical plane to form spherical gametes, two per cell.  

These gametes are identical in appearance and non-flagellated, but the behavior of 

the gametes differs between sexes.  One cell produces two active gametes (- male) 

and the other two passive gametes (+ female).  The frustules of both cells open, 
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permitting the active gametes to enter and fuse with the passive gametes.  This is 

not always successful in both pairs of gametes or in all pairing of parent cells.  

When it is successful, this fusion takes only 1-2 min.  After gamete fusion, the 

resulting zygote expands to form larger auxospores inside which the initial cell is 

formed.  The entire process, from gamete production to formation of initial cells 

takes 2-4 d. 

This process has not been documented in nature for several reasons.  

Calculations suggest that three years may pass before a cell becomes sexualized 

(Davidovich & Bates 1998).  The entire mating process itself only takes 2-4 d and 

when mating occurs in the laboratory there are few auxospores compared to 

vegetative cells.  Thus, paired cells and auxospores would be rare in natural 

populations.  Furthermore, it is likely that the coupling between parent cells is 

weak enough that sampling and preservation techniques can disrupt them: placing 

mixtures of clonal cultures on an orbital shaker at 170 rpm prevented or reduced 

sexual reproduction (Gordon 2001, Bates & Davidovich 2002).  It is unknown 

how well gametes and auxospores survive sampling and preservation, if at all.   

Preliminary work has shown an interesting relationship between epibiont 

bacteria and Pseudo-nitzschia sexual reproduction.  Some axenic clones of P. 

multiseries would not undergo sexual reproduction until bacteria were 

reintroduced (Thompson 2000).  Other mixtures of axenic clones did undergo 

sexual reproduction; however, it is possible that there was bacterial 

contamination.  Further work must be done to determine the role of bacteria in 

sexual reproduction in this species.   
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There is also some evidence that a type of “pheromone” or other chemical 

is being produced by sexually active Pseudo-nitzschia.  Filtrates of sexually 

reproducing clones induce higher gamete production in other clones (Haché 

2000).  These results suggest that a chemical is produced that improves gamete 

production and thus would synchronize gamete production in already sexualized 

cells, but not necessarily aid in location of other sexualized cells. 

Sexual reproduction in Pseudo-nitzschia is important for DA production.  

Clonal cultures of Pseudo-nitzschia decrease in size over time, as described 

previously, and also lose their ability to produce DA (Bates 1998).  Offspring of 

P. multiseries clones that lose their ability to produce DA can be toxic, sometimes 

even more toxic than their parents were initially (Bates et al. 1999).  Sibling 

clones can have significant variability in DA production, which could be 

accounted for by genetics or by the presence of different types and numbers of 

epibiont bacteria.  

Timing and frequency of sexual reproduction in Pseudo-nitzschia has 

important implications for the genetic structure of populations.  Sexual 

reproduction is an important source of genetic variability.  While direct evidence 

of this effect has not been documented in natural populations, cell size has been 

found to abruptly increase seasonally (D'Alelio et al. 2006).  Understanding 

sexual reproduction in the field is an essential part of describing Pseudo-nitzschia 

population dynamics.  
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Ecology and Bloom Dynamics 

 Blooms of Pseudo-nitzschia happen relatively frequently, in some regions 

seasonally, and in a wide variety of locations.  In culture, Pseudo-nitzschia spp. 

can grow in salinities as low as 6 and as high as 48 and at temperatures as low as 

5°C and as high as 30°C with a broad range for optimum growth (Miller & 

Kamykowski 1986, Jackson et al. 1992, Lundholm et al. 1997, Cho et al. 2001, 

Thessen et al. 2005).  However, different species in natural populations can 

demonstrate distinct correlations with environmental characteristics, which 

suggests seasonal succession of species or regional specificity (Fryxell et al. 

1997).  In the South China Sea, P. pungens peaks in April, May and June, P. 

multistriata is present only in spring and P. sinica and P. subpacifica are found in 

late fall and early winter (Qi et al. 1994).  In addition, P. pungens in the colder (1-

10°C) waters of the North China Sea is present only in winter and spring while P. 

pungens in the warmer (21-29°C) East and South China Seas is present year 

round revealing two ecotypes (Zou et al. 1993).  On the west coast of the United 

States, P. pungens is abundant in the summer and autumn as well as P. 

fraudulenta, P. subpacifica and P. heimii.  Pseudo-nitzschia multiseries is 

abundant in the autumn and winter while P. delicatissima is abundant in the 

spring and summer.  Pseudo-nitzschia pseudodelicatissima, P. seriata and P. 

australis are common in the autumn (Fryxell et al. 1997).  Many species may 

coexist, but different growth and loss rates can lead to complex bloom dynamics 

and seasonal succession. 
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 Pseudo-nitzschia blooms can be stimulated by nutrients from two sources: 

upwelling or mixing events and riverine inputs.  Both sources stimulate Pseudo-

nitzschia blooms at concentrations of 8 – 22 μM NO3⎯, 2.4 – 35 μM Si, 0.2 – 2 

μM PO4
3⎯ (Dortch et al. 1997, Scholin et al. 2000, Trainer et al. 2000, Loureiro et 

al. 2005), but in different temperature and salinity regimes.  Pseudo-nitzschia 

abundances and domoic acid concentrations on the west coast of the United States 

are associated with low temperature, high salinity and high nutrient conditions 

typical of upwelling (Villac 1996, Trainer et al. 2000, Trainer et al. 2002).  

Similarly, upwelling regions off the coast of Portugal contain high concentrations 

of Pseudo-nitzschia, which are used as upwelling indicators during spring and 

summer (Moita 2001, Loureiro et al. 2005).   

Riverine inputs have stimulated toxic Pseudo-nitzschia blooms in many 

regions and are characterized by lower salinities and higher temperatures than 

upwelling zones (Bird & Wright 1989, Smith et al. 1990, Horner & Postel 1993, 

Dortch et al. 1997, Trainer et al. 1998, Scholin et al. 2000, Spatharis et al. 2007).  

A distinction between nutrients in upwelling and river plumes is that riverine 

inputs are likely the result of anthropogenic nutrient loading.  Sedimentological 

data show an increase in Pseudo-nitzschia abundance in the Mississippi River 

plume since 1950 suggesting a response to eutrophication (Parsons et al. 2002).  

However, in addition to an increase in nitrogen and phosphorus, nutrient ratios in 

Mississippi River water have also changed, i.e., a decreasing Si:N ratio which is 

favorable for Pseudo-nitzschia in culture (Turner & Rabalais 1991, Sommer 

1994).  Other river systems have also affected Pseudo-nitzschia abundances.   
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When the mouth of the Yellow River in China was artificially redirected in 1976, 

the location of the Pseudo-nitzschia bloom abruptly changed location to follow 

the river plume (Zou et al. 1993).  Pseudo-nitzschia abundance in the plume of the 

Yangtze River is positively correlated to NO3⎯ and PO4
3⎯ concentrations (Zou et 

al. 1993).  In the South China Sea, Pseudo-nitzschia abundances respond to 

increased land runoff after rainfall (Qi et al. 1994).  An analysis of P. 

delicatissima and P. pseudodelicatissima dynamics and environmental parameters 

in the Bay of Fundy, Canada show the importance of NO3⎯ and NO2⎯ 

concentrations to abundance of these species (Kaczmarska et al. 2007).  These 

coastal studies show a response to riverine nutrients, changing nutrient ratios and 

eutrophication. 

 Much of the seasonal variability in Pseudo-nitzschia abundance can be 

explained by regular shifts in wind, light, temperature and river flow.  In the 

northern Gulf of Mexico, Pseudo-nitzschia abundance peaks in spring, 

corresponding to the average maximum in river flow with another small peak in 

fall during wind events that mix the stratified water column (Dortch et al. 1997).  

Many Pseudo-nitzschia blooms occur in the spring and fall, when irradiance is 

relatively low (Parsons et al. 1998, Mercado et al. 2005).  In culture, P. 

multiseries can out compete other phytoplankton species at low irradiance with a 

short photoperiod (Sommer 1994).  However, low light may contribute to the 

demise of autumn blooms (Bates et al. 1998).  Day length can affect growth rates, 

cell yield, toxin production and influence which species of Pseudo-nitzschia 

becomes dominant (Fehling et al. 2005). 
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Local meteorological phenomenon, such as winds and heavy rainfall 

events, can stimulate Pseudo-nitzschia blooms.  Wind events can be especially 

important for transporting toxic blooms inland from upwelling sites offshore 

(Trainer et al. 2000, Trainer et al. 2002) or providing mixing necessary to bring 

nutrients into the photic zone (Lund-Hansen & Vang 2004).  Heavy rainfall after a 

drought can cause a dramatic increase in Pseudo-nitzschia abundances in the river 

outflow, such as in Eastern Canada in 1987 (Bates et al. 1998).   

Larger scale changes in weather such as the El Niño Southern Oscillation 

can affect Pseudo-nitzschia abundances by controlling upwelling near the west 

coast of the United States.  During weak ENSO years, upwelling is high and 

therefore so are Pseudo-nitzschia abundances (Fryxell et al. 1997).  However, 

Pseudo-nitzschia can still take advantage of other favorable events, such as 

increased runoff after rainfall, during strong ENSO years and bloom.  Both 1991 

and 1998, years with large toxic events on the west coast of the United States, 

were strong ENSO years. 

 The decline of Pseudo-nitzschia blooms is less studied than initiation.  

Parasitic fungi may play an important role in the demise of Pseudo-nitzschia 

blooms (Bates et al. 1998).  Parasitic oomycetes and chytrids have infected P. 

multiseries and P. pungens in eastern Prince Edward Island, Canada.  

Additionally, fungal parasites have been observed in cells during bloom decline in 

coastal Washington, USA (Horner et al. 1996) and an unexpected decrease in P. 

multiseries abundance in the Skagerrak between 1991 and 1993 was suspected to 

be caused by parasitic fungi (Hasle et al. 1996).  Viruses are known to infect 
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marine diatoms (Nagasaki et al. 2004, Nagasaki et al. 2005), but no studies exist 

on viral infections in Pseudo-nitzschia and the genus may be immune (Caron 

pers. comm.; Coats pers. comm.).  High pH resulting from dense blooms could 

also lead to bloom decline.  Laboratory cultures of several Pseudo-nitzschia 

species could not continue exponential growth at pH from 8.7 to 9.3 (Lundholm et 

al. 2004).  The exact mechanisms of Pseudo-nitzschia bloom decline are uncertain 

and could be caused by multiple factors. 

 

Domoic Acid Production as an Adaptation 

The reason Pseudo-nitzschia produces toxin is largely unknown, as is true 

for toxin production by most harmful algal bloom (HAB) species.  An obvious 

hypothesis for the production of a potentially toxic, energy-demanding secondary 

metabolite is grazer deterrence (Turner et al. 1998).  Harmful algal species and 

their toxins have a varied effect on metazoan and protistan grazers (Turner & 

Tester 1997, Turner et al. 1998).  DA has anti-helminthic and insecticidal 

properties (Takemoto & Daigo 1958, Maeda et al. 1984) but, at levels found in 

nature, does not seem to affect crustacean zooplankton or other marine 

invertebrates that feed on Pseudo-nitzschia.  Krill, Euphausia pacifica, feed on 

toxic and non-toxic Pseudo-nitzschia in the laboratory and in the field (Bargu et 

al. 2003, Bargu & Silver 2003); however, grazing on non-toxic P. pungens 

decreased in the presence of added dissolved DA suggesting a direct affect on the 

filtering appendages (Bargu et al. 2006).  Toxic Pseudo-nitzschia has no 

detrimental effect on ingestion rates or egg hatching success in the copepods 
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Calanus glacialis, Temora longicornis and Acartia clausi (Windust 1992, 

Maneiro et al. 2005).  DA does not slow grazing, reduce egg hatching success and 

production or increase mortality in Acartia tonsa or T. longicornis (Lincoln et al. 

2001).  Sea scallops, (Placopecten magellanicus), California mussels (Mytilus 

californianus) and blue mussels (Mytilus edulis) can feed on toxic Pseudo-

nitzschia with no sign of illness (Wohlgeschaffen et al. 1992, Jones et al. 1995b, 

Douglas et al. 1997) but the Pacific oyster (Crassostrea gigas) had an immune 

response to toxic P. multiseries and experienced respiratory acidosis from shell 

closure (Jones et al. 1995a,b).  Mytilus edulis injected with 1 – 500 ng DA g-1 

body weight exhibited no neurotoxic, immunotoxic or genotoxic effects (Dizer et 

al. 2001).  These studies, with the exception of the C. gigas study, argue against 

DA as a feeding deterrent: neither crustacean zooplankton nor bivalve molluscs 

decrease their grazing in the presence of DA.   

Some organisms stop or reduce their grazing on Pseudo-nitzschia because 

of the size and/or shape of the cells, such as the appendicularian Oikopleura 

dioica (Tonnesson et al. 2005).  The eastern oyster Crassostrea virginica will feed 

on toxic cells at the same rate as non-toxic cells, but grazes other types of diatoms 

at higher rates (Roelke 1993, Thessen et al. 2002).  Smaller C. virginica (~40 

mm) were completely unable to graze on Pseudo-nitzschia suggesting a size 

and/or shape effect (Thessen et al. in prep). Mesozooplankton grazers, such as 

copepods, require an increased handling time for large, chain-forming diatoms, 

and may not graze on Pseudo-nitzschia especially if a preferred prey type is also 

available (Smetacek et al. 2002, Olson et al. 2006).   
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A second hypothesis is that DA is produced to act as an allelopathic agent, 

increasing the ability of Pseudo-nitzschia to compete for light or nutrients by 

killing or inhibiting its microbial competitors (Bates 1998).  This is a possibility 

during large monospecific Pseudo-nitzschia blooms if high levels of DA are 

released into the surrounding medium.  Bio-assays showed inhibited growth in 

some bacterial species, but not others.  One study found inhibition of all bacterial 

growth (Stewart et al. 1998) while the other found no inhibition (Windust 1992) 

despite using the same species, E. coli, as a reference.  Algal assays testing 

growth with and without DA exposure showed that DA had no effect on the 

diatoms Skeletonema costatum and Chaetoceros gracilis (Windust 1992).  A toxic 

culture of P. multiseries had no allelopathic effects on Chrysochromulina ericina, 

Heterocapsa triquetra, Eutreptiella gymnastica and Rhodomonas marina 

(Lundholm et al. 2005).  Additions of DA alone caused no allelopathic effect on 

C. ericina, E. gymnastica, Karenia mikimotoi, H. triquetra, Heterosigma 

akashiwo, Prorocentrum minimum, P. micans, Pyramimonas propulsa and R. 

marina (Lundholm et al. 2005).  The lack of detrimental effects of DA on the 

growth of many species of bacteria and microalgae argues against the evolution of 

DA as an allelopathic chemical. 

A third hypothesis is that DA protects Pseudo-nitzschia cells from ultraviolet 

light.  DA absorbs in the UV range and photodegrades (Bates et al. 2003, Bouillon 

et al. 2006).  Its ring structure is similar to, albeit much smaller than, microsporin-

like amino acids (MPAA) used in many marine organisms to protect cells from UV 

light (e.g., Karentz et al. 1991).  Toxic P. multiseries is resistant to the effects of 
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UV light while non-toxic P. fraudulenta and P. pungens show decreased growth in 

UV treatments (Hargraves et al. 1993).  Further, cellular DA concentrations were 

lower in the UV treatments.  However, rather than suggesting that the DA was 

photodegrading and protecting the cell, lower DA levels were interpreted as a shift 

of energy away from DA production and toward the production of a UV 

protectant.  DA has also been suggested as important in increasing photosynthetic 

potential through the use of UV.  A field study found that a planktonic community 

dominated by Pseudo-nitzschia spp. was able to use the entire UVA spectrum to 

enhance carbon fixation suggesting that DA could aid in photosynthesis by capture 

of additional wavelengths; however, the UVB spectrum inhibited carbon fixation 

(Mengelt & Prézelin 2005).  Pseudo-nitzschia multiseries cells have been found to 

fluoresce blue when excited by UV light, a response typical of some proteins; 

however, MPAAs are not known to fluoresce.  There are 4 photoisomers of DA, 

but their spectral properties are unknown (Wright et al. 1990).   

A fourth hypothesis is that DA is produced as a means of modulating energy 

flow within the cell (Pan et al. 1998).  DA production begins when cell division 

stops and primary metabolism slows, such as during stationary phase of growth in 

a batch culture.  Under these conditions, the photosynthetic apparatus is still 

harvesting light energy, which now must be consumed by secondary metabolism, 

like DA synthesis.  Another way to disrupt energy flow in the cell is to decouple 

the light and dark reactions of photosynthesis by exposing cells to rapid increases 

in light under low temperatures (Lomas et al. 2000).  Cells harvest more light 

energy than can be immediately consumed by the dark reactions.  Low temperature 
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and fluctuating light conditions often occur in nature during the spring and fall and 

during upwelling events, which are also times of high Pseudo-nitzschia abundance 

and toxicity (Dortch et al. 1997, Trainer et al. 2000).  If DA is produced to balance 

energy flow during times of decoupled photosynthesis and growth during 

stationary phase in culture, then a similar decoupling in nature could result in 

excess DA production. 

Other hypotheses have not been investigated as thoroughly.  The low N 

content of DA argues against its use as a nitrogen storage molecule (Bates et al. 

1991), but the possibility has not been investigated.  While salinity has an effect on 

DA production, there is no evidence that DA is produced to cope with osmotic 

stress (Jackson et al. 1992, Doucette et al. in press).  The most recent hypothesis 

states that domoic acid is produced under low iron stress or high copper stress to 

chelate those metals (Rue & Bruland 2001, Maldonado et al. 2002, Wells et al. 

2005). 

Production of a glutamate-derived neurotoxin is common among plants, 

especially the algae (Laycock et al. 1989).  Molecules like L-glutamic and L-

aspartic acid are ubiquitous among algae while γ-amino-n-butyric acid and β-

alanine are common in algae and higher plants (Curtis & Watkins 1961).  DA is 

unique in that it is the most potent of the algal derived neurotoxins (Laycock et al. 

1989).  Another potent neurotoxin produced by a plant is β-methylamino-L-alanine 

or BMAA (Vega & Bell 1967).  It is found in the seeds of the cycad, the oldest 

living seed plant and the evolutionary link between angiosperms and gymnosperms 

(Brenner et al. 2003).  Much like DA, BMAA is a non-protein amino acid that acts 
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as an agonist of glutamate receptors (Copani et al. 1990, Manzoni et al. 1991) and 

causes convulsions and neural damage in primates (Spencer et al. 1987).  BMAA 

is suspected of causing Guam’s dementia, a neurological disorder similar to 

Parkinson’s and Alzheimer’s disease, which affected the Chamorro people of 

Guam who consumed both the seeds of the cycad and flying foxes (bats) that 

consumed cycad seeds (Whiting 1963, Banack & Cox 2003).  However, this link 

between cycads and Guam’s dementia is still controversial.  Physiological 

experiments demonstrate a similarity between effects of the algal toxin DA and the 

cycad toxin BMAA (Spencer et al. 1987, Jeffery et al. 2004).  These studies do not 

explain why either are produced.  One could argue that BMAAs are produced for 

protection of the seeds.  Many seeds have germination inhibitors that must leach 

away before germination, as after an intense rain (Partridge & Wilson 1990).  

Studies show that BMAA affects hypocotyl shortening, cotyledon expansion and 

root and shoot growth in Arabidopsis seedlings (Brenner et al. 2000).  All of this 

suggests that glutamate receptors and glutamate agonists, besides any possible 

defensive role, could be an important family of cell signal molecules in plants. 

 

Iron hypothesis 

Recent work has shown DA production in response to Fe limitation, 

supporting a new hypothesis that Pseudo-nitzschia produces DA to act as a 

chelator under Fe limitation or Cu toxicity (Maldonado et al. 2002, Wells et al. 

2005).  However, there is no conclusive evidence to show DA production during 

Fe limitation is different from DA production during P or Si limitation.   
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Work by Bates et al. (2000) showed that a strain of P. multiseries (CLN-1) 

in batch culture produced less DA when grown in low concentrations of Fe.  Their 

conclusion states that it is unlikely DA is produced as an Fe acquisition strategy 

used under Fe-limiting conditions because the cell needs Fe to produce DA.  Fe is 

a key component in multiple enzymes for DA synthesis (nitrate reductase, 

glutamine synthetase and aconitase) as well as the photosynthetic apparatus.  

Cells grown in low Fe medium showed decreased chlorophyll content.  In their 

experiments, Fe limitation inhibits DA production.  However, DA does bind Fe 

and Cu and structurally resembles a siderophore, a chemical used by terrestrial 

plants to bind Fe in the soil (Rue & Bruland 2001).  Studies show that DA can 

bind Fe and Cu sufficiently to affect their bioavailability in the ocean; however, 

other acidic cellular components can also bind Fe, like citrate and glucuronate 

(Bates et al. 2000, Rue & Bruland 2001).   

Another study by Maldonado et al. (2002) seems to show the opposite 

pattern, with low Fe cultures producing more DA than high Fe cultures.  How can 

these two experiments be reconciled?  One major difference is that the Bates et al. 

(2000) study used higher Fe concentrations in their media.  There was no effect of 

Fe on specific growth rate, whereas in the Maldonado et al. (2002) study, low Fe 

cultures grew slower than high Fe cultures.  Since growth rate has been shown to 

affect DA production (Pan et al. 1996a), the increased DA in the low Fe treatment 

could be the result of the low growth rate instead of a direct Fe effect.  Another 

difference between the two studies is time scale.  The Bates et al. (2000) study 

looked at the effect of Fe in a batch culture over several days whereas the 
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Maldonado et al. (2002) study looked at the effect of Fe in exponentially growing 

cultures over 12 h.  Maldonado et al. (2002) also use a voltammetric method to 

measure the concentration and stability of Fe complexes, rather than directly 

measuring DA, to increase sensitivity.  Their claim, that actively growing Pseudo-

nitzschia immediately release DA into the medium to chelate Fe, would have been 

more definitive if they had also checked DA release in silicate- or phosphate-

limited cultures with the very sensitive voltammetric method.   

The Maldonado et al. (2002) study proposes that DA is produced in 

actively growing cells and immediately released by active transport under low Fe 

conditions to compete for Fe in coastal environments, whereas macronutrient 

limitation causes an increase in intracellular DA when the cells stop dividing 

which is released when cell membrane integrity is compromised.   Interactions 

between Fe and macronutrient limitation could explain the variability in coastal 

Pseudo-nitzschia blooms.  When macronutrients become limiting before Fe, the 

result may be high intracellular concentrations of DA and thus highly toxic 

blooms.  When Fe limitation occurs before macronutrient limitation, low or non-

toxic blooms may occur since the DA that is produced is excreted.  DA-enhanced 

Fe uptake was much slower than Fe uptake in other coastal diatoms when 

corrected for surface area, arguing against the ability of DA to make Pseudo-

nitzschia a more efficient Fe competitor (Maldonado & Price 1996, Maldonado et 

al. 2002).  However, specific growth rates of Fe-deficient cultures were higher 

than reported specific growth rates for other diatom species at similar Fe 

concentrations (Sunda & Huntsman 1995, Maldonado & Price 1996, Maldonado 
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et al. 2002).  In another study, Fe uptake in Pseudo-nitzschia was higher than in 

other coastal diatoms, but was not corrected for surface area (Wells et al. 2005).  

In bioassay experiments, low Fe treatments had enhanced DA production (Wells 

et al. 2005). 

Cu also has an effect on DA production and growth rate (Maldonado et al. 

2002, Rhodes et al. 2004).  Maldonado et al. (2002) hypothesize that DA is 

produced to bind Cu to reduce toxic effects on the cell.  However, it has also been 

shown that some diatoms need Cu for Fe uptake (Peers et al. 2005).  Some 

eukaryotes that possess a high-affinity Fe III uptake system use a Cu-containing 

oxidase (MCO) to oxidize Fe II (Stearman et al. 1996).  Sequence analysis of the 

Thalassiosira pseudonana genome reveals a gene with homology to MCO genes 

of other known MCO users (Armbrust et al. 2004).  Culture experiments show 

that oceanic diatoms have low growth rates in low Cu concentrations even if 

given sufficient Fe.  In bioassay experiments, the addition of Cu resulted in a 

higher biomass than in unamended controls and in treatments amended with Fe 

alone (Peers et al. 2005).  Further, DA production is stimulated under Cu-limiting 

and Cu-toxic concentrations (Maldonado et al. 2002, Rhodes et al. 2004, Peers et 

al. 2005). 

Fe addition experiments in High Nutrient Low Chlorophyll (HNLC) 

regions of the ocean stimulate growth of diatoms, primarily Pseudo-nitzschia spp. 

(De Baar et al. 2005, Leblanc et al. 2005, Tsuda et al. 2005).  Pseudo-nitzschia 

can survive at low abundances in these regions and are therefore able to respond 

to an artificial enrichment.  However, the Pseudo-nitzschia responding to Fe 
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enrichment in these experiments has been either non-toxic or untested (A. 

Marchetti pers. comm.)  The Fe III binding constant of DA is much too low to 

compete with other potential chelators in the water column unless DA is present 

at very high concentrations, which have not been documented in these areas (Rue 

& Bruland 2001, Wells et al. 2005).   

While the culture experiments on Fe-limitation and DA production are 

compelling, most studies to date have used only one strain of each species tested 

(Bates et al. 2000, Maldonado et al. 2002, Wells et al. 2005).  Multiple strains 

could reveal a highly variable DA response similar to other studies looking at the 

affects of bacteria, pH or nitrogen source on DA production (Bates et al. 1995, 

Lundholm et al. 2004, Kaczmarska et al. 2005, Chapter 3 of this thesis).  

 

Domoic Acid 

Domoic Acid Chemistry and Detection 

The chemistry and toxicology of DA has recently been reviewed (Jeffery 

et al. 2004).  Domoic acid (MW 311) is a water-soluble, heat stable analogue of 

the amino acid glutamate (Hatfield et al. 1995, Leira et al. 1998).  It was first 

isolated from Chondria armata and named after the Japanese word for seaweed – 

domoi (Mos 2001).  DA is toxic to vertebrates because it binds to neurons twenty 

times more powerfully than ordinary neurotransmitters (Teitelbaum et al. 1990), 

resulting in a massive depolarization of the neuron.  The subsequent increase of 

intracellular Ca2+ causes swelling and cell death.  This happens in the 

hippocampus, the part of the brain associated with memory.   
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There are many methods of detection of DA, which are described in detail in 

Quilliam (2003).  The current global standard for detection of many algal toxins in 

shellfish is the mouse bioassay (Fernandez et al. 2003, Todd 2003).  This involves 

preparing an extract of the tissue to be tested and injecting it into a test mouse.  If 

the mouse exhibits symptoms, a toxin is considered present.  However, the limit of 

detection of the mouse bioassay for ASP toxin is 40 mg DA kg-1 shellfish, above 

the regulatory limit of 20 mg DA kg-1 shellfish.  High Performance Liquid 

Chromatography (HPLC) with UV detection is the most commonly used chemical 

analytical method for DA detection due to its simplicity, speed and reproducibility.  

However, while the limit of detection is low enough to be used for routine 

monitoring of shellfish, it is not low enough for work with seawater and plankton.  

Thus, HPLC methods based on derivatization of fluorescence reagents were 

developed (Pocklington et al. 1990).  Other chromatographic-based assays for DA 

include thin-layer chromatography (TLC), capillary electrophoresis (CE) and 

liquid chromatography with detection by mass spectroscopy (LC-MS).  When 

establishing the presence of DA in a new area or in a new species, comparing 

chromatographic peaks to a DA standard is not conclusive.  Spectroscopic data 

such as ultra-violet or mass spectra are necessary to confirm identification.   

Receptor based assays and immunoassays are relatively new.  Receptor 

based assays utilize the specificity of a toxin for a particular action site and 

measure activity of the toxin rather than discrete structural components.  The 

receptor binding assay for DA involves measuring the competition between a 

known amount of labeled kainic acid and DA in the sample to be tested for 

 26



glutamate receptors in brain tissue (VanDolah et al. 1997).  The newest detection 

method is an immunoassay or ELISA, which is based on competition of DA in the 

sample with a DA-conjugated protein for anti-DA antibodies (Garthwaite et al. 

1998).  Receptor-based assays and immunoassays have the advantage of giving 

low limits of detection, but can be costly. 

In many early studies on DA and Pseudo-nitzschia, samples were taken 

quickly and stored frozen until analysis within two weeks because of potential DA 

degradation (e.g., Bates et al. 1991).  Light, temperature and pH were all factors 

believed to affect DA stability.  Over time, studies have shown that DA is not as 

unstable as first thought.  Ambient temperatures, artificial light and repeated 

chilling and warming do not degrade DA in saline solution (Johannessen 2000); 

however, DA does degrade under acidic conditions (Quilliam et al. 1989).   

Once DA is released from the cell, as with any other molecule, it can be 

degraded or remain intact.  Intact adsorption onto suspended particles removes 

only a minor fraction of dissolved DA from the water column (Lail et al. 2007).  

Bacterial degradation is a logical pathway, but the ability to grow on or degrade 

DA is rare among marine sediment and water bacteria (Stewart et al. 1998).  DA is 

inhibitory to resting cells and growing cultures of some bacteria (Stewart et al. 

1998).  However, bacteria isolated from molluscs (M. edulis and M. arenaria) that 

depurate DA very quickly have the ability to grow on and degrade DA (Stewart et 

al. 1998).  It is currently unknown if DA can serve as an energy or carbon source 

for eukaryotes known to use dissolved free amino acids.   
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Another degradation pathway is photolysis.  DA can be transformed into 

non-toxic isomers and degraded by exposure to light in the UV range (Wright et al. 

1990, Bates et al. 2003, Bouillon et al. 2006).  The rate of degradation of DA 

exposed to sunlight in natural seawater is 0.017 to 0.035 d-1, enough to be a 

significant sink (Bouillon et al. 2006).  However, light penetration in seawater can 

be limited, especially in turbid coastal areas.  Low light might increase the 

possibility that dissolved DA could remain in the water column after a bloom has 

dissipated.  Particulate DA could also become buried in sediments.   

 

Domoic Acid Biosynthesis 

The DA molecule is created from glutamate and an isoprenoid 

pyrophosphate both originating from acetate, but derived by different pathways 

(Fig. 1.3; Laycock et al. 1989, Douglas et al. 1992, Pan et al. 1998, Ramsey et al. 

1998).  Research suggests the origin of the isoprenoid pyrophosphate is through 

the glyceraldehyde 3-phosphate (GAP) -pyruvate pathway while glutamate is a 

product of the Citric Acid cycle (Lichtenthaler et al. 1997, Ramsey et al. 1998).  

DA synthesis requires a substantial amount of energy and therefore competes with 

primary metabolism.  Therefore, less ATP is available for DA biosynthesis during 

nutrient uptake and growth.  Conversely, during Si limitation in P. multiseries, 

cellular levels of ATP increase and can then be used for DA synthesis (Pan et al. 

1996 a,b).   

Identifying and characterizing genes that control DA biosynthesis is an 

active research topic.  Results from phylogenetic studies comparing different 
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species of Pseudo-nitzschia, Nitzschia navis-varingica and Amphora 

coffeaeformis (two DA-producing species that do not belong to Pseudo-nitzschia) 

suggest that either the ability to produce DA evolved independently several times, 

genes have been laterally transferred or multiple losses of species have occurred 

(Janson & Hayes 2006).  Two approaches are being used to find DA genes (Bates 

& Trainer 2006).  The first approach involves using a cDNA microarray to screen 

for genes with expression patterns that correlate with DA production 

(Boissonneault 2004).  This method revealed 12 transcripts that were upregulated 

during DA production.  The second approach is using subtraction techniques 

when comparing Si replete and Si deplete cultures to identify genes involved in 

DA production.  No definitive DA production genes have been discovered, but the 

current whole genome sequencing of P. multiseries (by E. V. Armbrust, B. 

Jenkins and S. Bates) will greatly assist in this search. 

 

Toxin Production Physiology 

The physiology of DA production has been reviewed elsewhere (Bates 

1998).  It is commonly known that growth phase, nutrients, temperature, 

irradiance and bacteria play a role in DA production.  Many studies show Pseudo-

nitzschia cultures produce little DA until cell division has stopped.  In batch 

cultures, DA production often starts at the onset of stationary phase and DA 

content of the cells peaks about one week later.  Some cultures produce DA 

during late exponential phase, possibly because this is a period of transition when 

some cells have stopped growing and are producing DA while other cells are still 
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dividing.  However, one culture of P. cf. pseudodelicatissima from the Northern 

Gulf of Mexico produced the highest levels of DA during early exponential 

growth (Pan et al. 2001).   

In continuous culture, toxin content increases when growth is slowed by 

decreasing the dilution rate (Pan et al. 1996a).  This growth effect means that 

many factors that slow growth would also indirectly increase toxin production.  

Studies showing that an increased pH will increase toxin production also show 

that growth rate decreases under these circumstances, making it difficult to know 

the effect of pH alone (Lundholm et al. 2004).  Cultures grown on urea have 

higher DA production, but also have a slower growth rate (Armstrong Howard et 

al. 2006).  The increase in toxin production when growth slows must be taken into 

account when investigating factors that affect DA production.  

Nutrient limitation is widely used to induce DA production in culture, with 

Si and P limitation commonly used.  Initially, it was hypothesized that DA 

production was specifically linked to Si limitation in P. multiseries, but Pseudo-

nitzschia cultures will produce toxin when growth is limited by Si or other factors 

in the presence of replete nitrogen and light.  Cells do not produce DA under 

nitrogen limitation (Bates et al. 1991).  Toxic levels of NH4
+ and Cu also limit 

growth and subsequently increase DA production (Bates et al. 1993a).   

Low temperature has been found to have a negative affect on cell division 

and DA production in some strains (Lewis et al. 1993); however, toxic mussels 

have been harvested from ice-covered water, implying that Pseudo-nitzschia can 

produce DA at near 0°C (Smith et al. 1993).  A culture of P. seriata produced 
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more DA at 4°C than 15°C which could reflect cold water adaptation (Lundholm 

et al. 1994).  Metabolism typically decreases with lower temperatures, but many 

enzymes involved in the production of DA have differing temperature optima.  

For example, RUBISCO, the enzyme that fixes atmospheric carbon, operates 

optimally at a higher temperature (Li et al. 1984, Smith & Platt 1985, Descolas-

Gros & de Billy 1987) than nitrate reductase, which transforms NO3⎯ into NO2⎯ 

(Packard et al. 1971, Kristiansen 1983, Dohler 1991, Lomas & Glibert 2000).  

Both fixed carbon and reduced nitrogen are required for DA synthesis.  

Temperature has an obvious effect on DA production by regulating the speed of 

multiple enzyme reactions within the cell.  No studies have examined the effects 

of rapid changes in temperature on DA production, although rapid temperature 

changes can uncouple the light and dark reactions of photosynthesis. 

Irradiance is, of course, a very important control on DA production since it 

provides the energy necessary for biosynthesis.  Irradiances below 100 μmol 

photons m-2sec-1 can lead to decreased DA production, a trait that has 

consequences for mass culture of toxic Pseudo-nitzschia (Whyte et al. 1995).  

Self-shading in large culture vessels can reduce DA production compared to small 

cultures in which self-shading is less important (Whyte et al. 1995).  P. 

multiseries can produce DA under constant light (Villac et al. 1993a), but no 

experiments have been performed to examine the effect of extremely short 

photoperiods on DA production (Bates 1998).  In P. seriata, cultures exposed to a 

long photoperiod (18:8 L:D) had higher total toxin production than those exposed 

to a short photoperiod (9:15 L:D) (Fehling et al. 2005).  The effects of rapid 
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changes in irradiance on DA production have not been studied, although rapid 

shifts may temporarily uncouple the light and dark reactions of photosynthesis 

(Lomas & Glibert 1999). 

As noted previously, bacteria play a role in DA production, with the exact 

mechanisms unknown.  Thus far there is no evidence that bacteria can produce 

DA autonomously (Bates et al. 2004).  Axenic cultures of P. multiseries can 

produce DA but at much lower levels than non-axenic cultures.  The variability 

between DA production in different cultures of the same strain may be partially 

explained by differences in bacterial flora (Kaczmarska et al. 2005).  Bacteria 

have been observed on the frustule and free-living in culture media.  It has been 

suggested that the bacteria are using organic matter released from the diatom 

(because their location on the frustule, the raphe and cingulum, are locations 

where organic matter could be released) while providing the diatom with a co-

factor, such as a precursor that enables DA production under physiologically 

stressful conditions.  Addition of amino acids, like proline, stimulated growth in 

axenic Pseudo-nitzschia cultures (Stewart et al. 1997), which supported 

suggestions that bacteria may produce specific amino acids that stimulate growth 

of the diatom, i.e., Pseudo-nitzschia and its attached bacteria live symbiotically 

(Stewart et al. 1997).  However, another hypothesis states that DA is produced to 

chelate trace metals in competition with bacteria that produce their own chelator, 

gluconic acid, as the addition of gluconic acid to a Pseudo-nitzschia culture will 

increase DA production (Osada & Stewart 1997).   
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Toxicology, Food Webs and Monitoring 

Domoic Acid Toxicology 

Tests in animal models have repeatedly documented DA effects in adults 

and developing animals.  Intraperitoneal injections up to 1.25 mg DA kg-1d-1 

cause no signs of toxicity in adult female rats, but doses of 1.75 mg DA kg-1d-1 

induced abortions (Khera et al. 1994).  Doses of 2 mg DA kg-1d-1 can cause death 

in pregnant rats.  Lactating females given doses of 1 mg DA kg-1d-1 transferred 

the toxin to their young up to 24 h after exposure, but not enough to cause acute 

symptoms (Maucher & Ramsdell 2005).  Research shows that DA lingers in 

breast milk longer than in blood plasma and that neonatal rats are much more 

susceptible to DA than adults (Xi et al. 1997, Doucette et al. 2000, Maucher & 

Ramsdell 2005).  This is probably because in adults, DA poorly penetrates the 

blood-brain barrier, but in fetuses and newborns, this barrier is incomplete (Mayer 

2000).  A study comparing the effects of DA on young adult versus old adult rat 

brains shows equal sensitivity to initial exposure and reduced sensitivity to a 

second exposure in the younger brains (Kerr et al. 2002).  Oral doses have less 

effect than injection of DA in animals and almost all DA ingested is excreted in 

feces.  This suggests that DA is poorly absorbed from the gut (Iverson et al. 

1989).  Other studies with rats and cynomolgus monkeys show that DA is well 

distributed in body water and rapidly excreted, as expected for a hydrophilic 

compound, and implies that renal function is important for DA removal (Truelove 

& Iverson 1994).  Numerous studies show death, brain damage, reduced learning 
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and memory ability in rats and primates exposed to DA in the laboratory (Jeffery 

et al. 2004).   

Fish have long been considered immune to the effects of DA.  However, 

injections of DA can produce neurological symptoms suggesting that fish are 

susceptible to DA at doses similar to rats and monkeys (Lefebvre et al. 2001).  

Fish exposed to DA in the field showed high levels of DA in their gut, but DA 

levels were 1000 X lower in the brain tissue, suggesting that DA uptake from the 

gut is low.  The complete absence of neurological symptoms in fish given oral 

doses of DA provides more evidence that little DA is taken up through the gut and 

even less passes the blood-brain barrier.  Despite proven susceptibility to 

injections of DA, fish exposed to DA in the field may not display symptoms.   

A study of toxicity in fish eggs injected with DA showed effects even at 

small doses (Tiedeken et al. 2005).  Injections of 0.4 mg DA kg-1 reduced 

hatching success by 40% and injections of 1.2 mg DA kg-1 reduced hatching 

success by 50%.  In the eggs that lived, embryos convulsed at 2 days post 

fertilization.  All surviving eggs injected with 4 mg DA kg-1 had no response to 

touch at 4 days post fertilization and at 5 days post fertilization had constant rapid 

pectoral fin movements possibly analogous to the scratching observed in 

laboratory rodents exposed to DA.  Not only are fish susceptible to DA at similar 

doses as mammals, they are also susceptible to developmental toxicity. 
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Amnesic Shellfish Poisoning 

Pseudo-nitzschia was not recognized as a toxic diatom until the first 

documented incident of ASP occurred in Prince Edward Island, Canada in 1987 

when residents ate DA contaminated mussels (Mytilus edulis) from Cardigan Bay 

estuaries (Bates et al. 1989, Wright et al. 1989).  Out of 250 reported illnesses, 

107 met the case definition for ASP (Perl et al. 1990).  Common symptoms were 

vomiting, abdominal cramps, diarrhea, incapacitating headache and loss of short-

term memory (Perl et al. 1990).  Nineteen people were hospitalized, twelve 

requiring intensive care because of seizures, coma, severe lung congestion, and 

unstable blood pressure (Perl et al. 1990).  Some of the twelve intensive care 

patients showed additional serious neurological problems including inability to 

speak, irritability and uncontrollable facial movements (Perl et al. 1990).  Four 

people died, three in the hospital and one three months after apparent recovery 

(Perl et al. 1990, Teitelbaum et al. 1990).  Brain tissue from three of the four dead 

patients revealed severe cell damage, especially in the hippocampus and 

amygdala (Perl et al. 1990, Teitelbaum et al. 1990).  Of those patients that lived, 

the more severely affected experienced memory deficits as much as five years 

after DA consumption (Todd 1993).  One patient who suffered short term 

memory loss also developed epilepsy one year after exposure (Cendes et al. 

1995).  

 The causative organism was found to be P. multiseries, which was 

blooming in Cardigan Bay at the time of the outbreak (November to December) 

and declined shortly thereafter (Subba Rao et al. 1988, Bates et al. 1989).  The 
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identity of the toxin as DA was confirmed by proton nuclear magnetic resonance 

spectra in mussel tissue, cultured P. multiseries and plankton samples from 

Cardigan Bay (Bates et al. 1989, Wright et al. 1989).  A positive correlation was 

found between the concentrations of P. multiseries and DA in plankton samples 

(Bates et al. 1989).  No DA was found in cultures of other diatom species, 10 

isolated from Cardigan Bay and 12 obtained from a culture collection.  Small 

amounts of DA were found in a local macroalga, Chondria baileyana (Bates et al. 

1989).   

Prior to the 1987 ASP event, DA had not been detected in shellfish 

(Wright et al. 1989).  Mussels from Cardigan Bay and patients’ uneaten mussels 

were initially tested for PSP toxins using the mouse bioassay; however, the test 

mice exhibited involuntary scratching of their shoulders with their hind legs, a 

symptom atypical of PSP (Perl et al. 1990).  Mussels were also tested for 

dangerous bacteria, viruses and chemical residues; none were found.  Metabolites, 

including DA, were extracted from whole mussels and DA was identified using 

HPLC, high-voltage paper electrophoresis, ion-exchange chromatography and 

ultraviolet, infrared and mass spectroscopy (Wright et al. 1989).  Dissected 

mussels contained the most toxin in the digestive gland (Wright et al. 1989). 

No new cases of ASP have been reported since 1987.  However, DA has 

been detected in shellfish (Villac et al. 1993b, Wekell et al. 1994, Rhodes et al. 

1998a, Vale & Sampayo 2001) and a small outbreak of “food poisoning” in 

Oregon in 1992 possibly could have been the result of DA in razor clams 

consumed by locals (Todd 1993, Wright 1998).  Effects of single or multiple 
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exposures to levels of DA too low to cause outward symptoms are unknown; low 

levels of DA could have negative effects without causing an obvious toxic event.  

Preliminary work shows a possible risk to mental development of infants whose 

breastfeeding mothers eat contaminated shellfish and children who eat 

contaminated shellfish themselves (Grattan et al. 2002).   

Only DA levels above 40 μg g-1 wet weight of mussel meat will show 

symptoms in test mice (Todd 1993).  During the 1987 event, seemingly 

unaffected individuals consumed 0.2-0.3 mg kg-1, persons with mild symptoms 

had consumed 0.9-2.0 mg kg-1 and the most serious cases had consumed 1.9-4.2 

mg kg-1.  After the 1987 ASP event, the Canadian government enacted a 20 μg 

DA g-1 mussel flesh action limit, which when exceeded, would authorize closure 

of the shellfish bed (Waldichuk 1989).  This action limit has also been adopted by 

the European Union, New Zealand, United States and Australia. 

 

Domoic Acid Poisoning 

The first documented case of domoic acid poisoning (DAP) involved 

brown pelicans Pelicanus occidentalis and Brandt’s cormorants Phalacrocorax 

penicillatus in 1991 in Monterey Bay (Fritz et al. 1992, Work et al. 1993a,b).  The 

birds exhibited strange behaviors indicative of central nervous system disorder, 

such as scratching, head weaving, wryneck, clenched toes and loss of righting 

reflex.  Histological examination of brain tissue from dead birds revealed lesions 

similar to those found in the human brains during the 1987 Canadian ASP event 

(Scholin et al. 2000).  Plankton samples collected in Monterey Bay at the time of 
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the incident showed phytoplankton assemblages to be almost unialgal P. australis 

at 4 X 104 cells L-1 maximum concentration.  Pseudo-nitzschia australis frustules 

were found in the birds’ stomachs at 1.5 X 106 recognizable P. australis 

fragments g-1 wet w and in the stomachs of the birds’ prey, the northern anchovy 

Engraulis mordax (Fritz et al. 1992).  This incident showed that a second species 

of Pseudo-nitzschia could produce DA at sufficient levels to cause a toxic event 

and that planktivorous fin fish can be vectors of DA to higher trophic levels 

(Garrison et al. 1992).   

In 1996, 150 brown pelicans Pelecanus occidentalis died at the tip of the 

Baja Peninsula, Mexico from feeding on mackerel Scomber japonicus 

contaminated with DA from an unknown Pseudo-nitzschia sp. (Sierra-Beltran et 

al. 1997).  The birds’ stomachs were empty, indicating recent vomiting, but 

smears from the digestive tract revealed Pseudo-nitzschia frustules.  Viscera from 

pelicans and mackerel tested positive for DA by HPLC.  Another incident in the 

Gulf of California in 1997 killed 766 common loons Gavia immer and 182 sea 

mammals belonging to 4 different species including the common dolphin (Sierra-

Beltran et al. 1998).  Microscopic analysis found P. australis frustules in the 

stomachs of the common dolphin Delphinus capensis and the sardine Sardinops 

sagax found inside the dolphin stomachs.  Histological examination of dolphin 

brain tissue showed distinct lesions. 

Another DAP event occurred in Monterey Bay in 1998, this time affecting 

over 400 California sea lions Zalophus californianus in addition to marine birds 

(Scholin et al. 2000, Gulland et al. 2002).  Again E. mordax was acting as a 
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vector, delivering DA from a local P. australis bloom (maximum concentration 

~1.3 X 105 cells L-1) that had responded to high Si levels, indicative of terrestrial 

run-off (Scholin et al. 2000).  DA was found in E. mordax, sea lion body fluids 

and plankton samples, but not in mussels, Mytilus edulis.  Of the 400 sea lions 

affected, only 81 were found alive and transported to The Marine Mammal Center 

where 48 died despite treatment (Scholin et al. 2000, Gulland et al. 2002).  All 

affected animals displayed neurological symptoms: seizures, head weaving, 

ataxia, unresponsiveness and abnormal scratching.  Five females had fetuses 

detectable by ultrasound, but no detectable fetal heartbeats (Gulland et al. 2002).  

Histological examination of brain tissue from the 48 dead sea lions revealed 

lesions in the hippocampus. This event recurred in 2000, with 184 sea lion 

strandings (Gulland et al. 2002). Between the two events, 129 animals recovered 

and were released.  Eleven re-stranded within four months giving a re-stranding 

rate of 9%, 0.5% higher than re-stranding rates for sea lions rehabilitated for other 

reasons (Gulland et al. 2002).  Two of these animals had an atrophied 

hippocampus and were euthanized.  Eight animals appeared normal after a week 

of treatment and re-released (Gulland et al. 2002). 

Symptoms of ASP and DAP have many similarities consistent with the 

pharmacology of DA and the effects of its biochemical analog kainic acid and 

glutamic acid in animal models (Perl et al. 1990, Hampson & Manalo 1998, 

Schrader & Langlois 2001).  The distinctive characteristic of DA poisoning 

appears to be permanent damage to the hippocampus, which can be detected even 

after DA has been eliminated from the body (Cendes et al. 1995, Gulland et al. 
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2002).  Long term memory effects and/or chronic siezures have been documented 

in affected humans (Cendes et al. 1995), but only seizures have been documented 

in animals (Gulland et al. 2002).   

 

Food Web Interactions 

As a diatom, Pseudo-nitzschia is an important primary producer at the 

base of the food web.  It is consumed directly by a wide variety of organisms 

from heterotrophic dinoflagellates to planktivorous fish (Table 1.2).  It can form 

dense blooms and be an important source of food for these primary consumers, 

thereby introducing DA into higher trophic levels.  As a hydrophilic molecule, it 

does not bioaccumulate.  Instead, DA is concentrated in the digestive system with 

little transfer to surrounding tissues and can be quickly eliminated from the body.  

The toxin is moved through the food chain during blooms when primary 

consumers with guts full of Pseudo-nitzschia are eaten by secondary consumers.  

Eventually DA is depurated, but depuration rates can vary, from hours in the blue 

mussel (M. edulis), Mediterranean cockle (Acanthocardia tuberculatum), and 

greenshell mussel (Perna canaliculus), to several days in the mussel M. 

galloprovincialis (Novaczek et al. 1992, Wohlgeschaffen et al. 1992, Mackenzie 

et al. 1993, Vale & Sampayo 2002).  Three bivalves that are very slow to depurate 

are the razor clam Siliqua patula (> 86 days), the scallop Placopecten 

magellanicus (> 14 days) and the scallop Pecten maximus (~ 416 days; 

Wohlgeschaffen et al. 1992, Horner et al. 1993, Douglas et al. 1997, Blanco et al. 

2002).     
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Differential DA accumulation is an important factor in commercial species 

which are often not eaten whole.  Most scallops, for example, are dissected and 

only the adductor muscle is eaten, which is the tissue containing the least amount 

of DA (Douglas et al. 1997, Blanco et al. 2002).  Many commercially harvested 

animals, such as crabs, fish and cephalopods, retain most of the DA in their 

viscera, not typically consumed by humans (Horner & Postel 1993, Costa et al. 

2003, Costa & Garrido 2004, Costa et al. 2004, Costa et al. 2005).  However, 

studies do show trace amounts of DA in consumable tissues.  Animal feeds that 

consist of whole fish captured during Pseudo-nitzschia blooms can be 

contaminated and sicken animals far from coasts or toxic blooms (Naar et al. 

2002).  However, DA in rainbow trout (Oncorhynchus mykiss) feed containing 

fish meal made from contaminated anchovies did not affect fish health nor lead to 

contaminated trout (Hardy et al. 1995).  Hence, differential distribution of DA in 

vector tissues can be important for processing of commercially harvested species. 

Packaging and handling procedures have an effect on which tissues are 

toxic.  During storage, for example, DA can transfer from the digestive system 

into surrounding tissues (Smith et al. 2006).  Freezing and thawing can affect 

distribution of DA within crab tissues (Hatfield et al. 1995, Costa et al. 2003).  

Storage in pickling brine or frozen storage can cause DA to leach into the 

surrounding medium (Leira et al. 1998).  Removal or flushing of the digestive 

tract or hepatopancreas can decrease DA in bivalves (Leira et al. 1998, Campbell 

et al. 2003).  Boiling of toxic animals before ingestion can also reduce DA body 

burdens by causing the toxin to leach into the boiling media (Costa et al. 2003).  
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Many different types of organisms can have DA in their tissues; however, 

not all of these organisms are filter feeders or their predators.  Scavengers and 

deposit feeders have also been found to contain DA (Goldberg 2003).  Scavengers 

could become contaminated by eating DA contaminated remains.  Deposit feeders 

could become contaminated by consuming flocs of Pseudo-nitzschia that sink to 

the benthos at the end of a bloom (Goldberg 2003).  Some carnivores, like the 

swimming crab Polybius henslowii, can contain high levels of DA but there have 

been no recorded incidents of poisoning in their predator, the yellow-legged gull 

(Larus cachinnans) that feeds on them almost exclusively (Alvarez 1968, Munilla 

1997, Costa et al. 2003).  There may be a limit in the number of trophic transfers 

over which DA can still be present at high enough concentration to cause a toxic 

event: to date all recorded DAP and ASP events involved only three trophic 

levels, Pseudo-nitzschia, a bivalve or a planktivorous fish and a bivalve or fish 

predator.   

 

Monitoring 

 Due to its variable toxicity and cosmopolitan distribution, Pseudo-

nitzschia poses a unique management challenge worldwide.  Monitoring via 

traditional microscopic (generally light) techniques for cell enumeration and 

identification can be too time consuming for regions with immediate ASP or DAP 

threats.  Since the presence of Pseudo-nitzschia does not guarantee the presence 

of DA, abundance data alone are rarely a sufficient basis for management 

decisions.  In addition, consumer illness is not from DA in plankton or in water; a 
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seafood vector must be involved.  This means that an effective monitoring 

program will include Pseudo-nitzschia identification and enumeration, DA 

quantification and testing of potential vectors.   

 Traditional plankton sampling techniques are typically useful for Pseudo-

nitzschia monitoring; however, there are situations when this sampling method 

may be inadequate.  Physical and biological processes are known to concentrate 

Pseudo-nitzschia into subsurface layers from several meters (Ryan et al. 2005) to 

less than a meter thick (Rines et al. 2002).  These cells can be transported long 

distances and inoculate unexpected blooms at the surface (Bates & Trainer 2006).  

Pseudo-nitzschia can also be missed when intermingled in colonies of 

Chaetoceros socialis (Rines et al. 2002) instead of free in the water column.  

Oceanographic characteristics of a region should be taken into account when 

developing a sampling program so that any heterogenous distributions of Pseudo-

nitzschia in the water column can be defined.  

  Several days may pass from the time a water sample is collected to 

identification of Pseudo-nitzschia species via electron microscopy (generally not 

available to most routine monitoring programs).  This can be too long and 

inadequate to separate toxic from non-toxic strains.  Molecular probes have come 

into use to increase speed of identification and resolution between genetically 

distinct strains.  Molecular probes are designed to adhere to a specific set of 

molecules associated with a particular algal group and can be used as a basis for 

detecting these groups in natural samples.  There are three types of molecular 

probes: lectin-binding, antibodies or nucleic acid.   
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Lectin-binding probes have been used to discriminate between species of 

Pseudo-nitzschia with limited success.  Trials with New Zealand derived cultures 

were able to discriminate between 6 of 7 Pseudo-nitzschia species tested; P. 

delicatissima and P. pseudodelicatissima could not be distinguished (Rhodes 

1998a).  All 7 species tested from Spain and all 3 species tested from Korea were 

successfully identified using lectin binding patterns, but there were differences 

among strains of the same species (Fraga et al. 1998, Cho et al. 1999).  Lectin 

binding patterns can differ between strains of the same species depending on 

origin and possibly physiological condition and therefore are not broadly useful as 

a monitoring tool.   

Antibodies can be designed to bind to molecules (antigens) like 

glycoproteins, peptides, N-containing carbohydrates or toxins.  Antibodies have 

been developed and used for identification of P. pungens and P. multiseries, but 

immunoassays are much more commonly used to detect DA in shellfish and water 

samples (Bates et al. 1993b, Vrieling et al. 1996, Rhodes et al. 1998a).   

DNA probes for detecting species have been targeted at small subunit (SSU), 

large subunit (LSU) and internal transcribed spacer (ITS) regions of rRNA.  There 

are several types of rRNA targeted probes: whole-cell hybridization (labeling of 

intact cells), fluorescent in-situ hybridization (FISH), sandwich hybridization 

(measuring DNA in cell homogenate) and PCR methods (PCR replication of 

targeted genome).  New Zealand is the first country to use molecular probes for 

routine harmful algal bloom (HAB) monitoring and risk assessment (Rhodes et al. 

1998a).  Design of these probes depends on obtaining rRNA sequences with 
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desired specificity.  This can be a challenge for Pseudo-nitzschia, a group with 

high intra- and interspecific variability.  Whole cell fluorescent LSU targeted 

probes have been developed for identifying P. australis, P. pungens, P. 

multiseries, P. heimii, P. fraudulenta, P. delicatissima, P. pseudodelicatissima 

and P. americana in cultures originating from the west coast of the United States 

(Miller & Scholin 1996).  These probes were then used to develop whole cell and 

sandwich hybridization methods for detection of species in natural samples at 

near real-time (Scholin et al. 1997, Miller & Scholin 1998).  Probes for P. 

multiseries, P. pungens, P. fraudulenta and P. delicatissima have been used 

successfully in the Gulf of Mexico, US west coast, the Wadden Sea and Korean 

waters (Miller & Scholin 1996, Vrieling et al. 1996, Miller & Scholin 1998, 

Parsons et al. 1999, Cho et al. 2002).  However, not all rRNA probes work in all 

regions.  The probe designed to work on P. pseudodelicatissima from the west 

coast of the United States did not work on P. pseudodelicatissima in samples from 

the Gulf of Mexico (Parsons et al. 1999).  This could be because of high genetic 

variability within the P. pseudodelicatissima group, which was later divided into 

additional species based on morphological and molecular analysis (Lundholm et 

al. 2003).  Designing Pseudo-nitzschia species-specific probes in some regions, 

like the Chesapeake Bay, are particularly challenging because of high variability 

within morphologically defined species (H. Bowers pers. comm).  In some 

regions, like the Gulf of Naples, genus-specific probes based on clone libraries 

have been used to successfully separate species, with multiple probes used to 

identify P. delicatissima and P. pseudodelicatissima, two morphologically 
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defined species that probably include cryptic species (McDonald et al. 2007).  

RNA-based detection methods are particularly useful when strain differences and 

cryptic species are important. 

 After determining the abundance and species of Pseudo-nitzschia present, 

further management decisions can be made.  Some countries use “trigger levels” 

of abundance to initiate shellfish sampling.  In New Zealand, when Pseudo-

nitzschia is > 50% of total phytoplankton, a concentration of 5 X 104 cells L-1 will 

trigger shellfish sampling.  When Pseudo-nitzschia is < 50% of total 

phytoplankton, a concentration of 105 cell L-1 will trigger shellfish sampling.  DA 

is quantified by HPLC and UV detection.  If shellfish contain more than 20 mg 

kg-1 DA, harvesting is stopped until three consecutive samples spaced out over at 

least 2 weeks have < 20 mg DA kg-1 (Todd 2003).  Countries with limits for DA 

in shellfish are Canada, USA, New Zealand, Chile, Peru and EU member states.  

The limit is 20 mg kg-1 edible meat.  A limit of 30 mg DA kg-1 in cooked viscera 

of Dungeness crab has been set by the FDA in the United States.  In order to 

minimize economic impact of DA contamination, the EU allows harvest of 

scallops with whole body burdens of DA between 20 and 250 mg kg-1 if they are 

sold after total removal of the hepatopancreas (Fernandez et al. 2003). 

 

Summary 

 Twenty years ago, an outbreak of food poisoning in Canada made Pseudo-

nitzschia the first known toxic diatom.   Since that time, our increased 

 46



understanding of DA and Pseudo-nitzschia has prevented additional ASP 

outbreaks and led to new ideas about diatom physiology.  Molecular methods are 

promising new innovations in Pseudo-nitzschia taxonomy, biogeography and 

functional diversity.  New DA quantification methods are decreasing analytical 

limits of detection and enabling detailed physiological studies.  Management 

plans have been developed using these technologies to prevent ASP outbreaks 

with minimal economic loss.  However, DAP events have occurred multiple times 

and show no sign of being controlled.  Despite 20 years of research, further work 

is needed to fully understand Pseudo-nitzschia taxonomy, ecology and 

physiology. 

 

Research Questions and Approaches 

 Detailed regional studies are an important source of information on 

Pseudo-nitzschia ecology and distribution.  The Chesapeake Bay is one of the 

largest estuaries in the United States, which hosts a large human and water fowl 

population and multiple fisheries.  Many types of harmful algae can be found in 

the Chesapeake, including Pseudo-nitzschia.  Very little research has been 

conducted on mid-Atlantic estuarine Pseudo-nitzschia despite evidence of toxicity 

in regional isolates.  Monitoring of potentially harmful algae by Maryland state 

government does not include examination by electron microscopy or toxin 

analysis.  The first objective of this thesis was a regional survey of Pseudo-

nitzschia species and DA in the Chesapeake Bay to fill a gap in knowledge and 

improve harmful algae monitoring in the area (Chapter 2). 
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 Physiological studies testing many strains are important for assessing 

intra- and interspecies variation, genetic variation and functional diversity.  Many 

Pseudo-nitzschia studies test only one strain and extrapolate results to all species 

and strains.  Functional diversity between strains in growth rate, nutrient uptake 

and toxin production can vary widely.  This functional diversity could indicate the 

presence of cryptic species or ecotypes within a regional population.  

Understanding this variability is an important part of applying culture studies to 

natural populations and describing Pseudo-nitzschia ecology.  Thus the second 

objective was characterization of inter- and intraspecies (strain) differences in 

growth rate and toxicity of Pseudo-nitzschia (Chapter 3). 

  An important, yet poorly understood part of Pseudo-nitzschia physiology 

is DA production.  Pseudo-nitzschia is found globally, but is common and toxic 

during periods of low temperature and fluctuating irradiance such as spring, fall 

and in upwelling zones.  Could Pseudo-nitzschia reduce nitrate as an adaptation to 

cold water environments similar to other diatoms found under similar conditions?  

How would this increase in NO3⎯ reduction and change in photosynthetic energy 

flow affect DA production?  An increased understanding of toxin production 

physiology would not only aid in the prediction and mitigation of toxic blooms, 

but add to knowledge of diatom biology and cellular processes.  The third 

objective of this thesis was to test two hypotheses: that nitrogen metabolism in 

Pseudo-nitzschia can be used as an adaptation to rapid light fluctuations in a cold 

environment and that this adaptation affects DA production (Chapter 4). 
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A survey of Pseudo-nitzschia species and DA in the field, an assessment 

of intra- and interspecies differences and an investigation of DA production 

during periods of decoupled photosynthesis and growth are an important part of 

understanding the taxonomy and ecophysiology of Pseudo-nitzschia in an 

estuarine environment such as the Chesapeake Bay. 
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Table 1.1  Diatoms with documented domoic acid production 

Species Reference
Amphora coffeaeformis Shimizu et al. 1989
Nitzschia navis-varingica Kotaki et al. 2000
Pseudo-nitzschia australis Fritz et al. 1992
P. calliantha Martin et al. 1990
P. cuspidata Bill et al. 2005
P. delicatissima Smith et al. 1991
P. fraudulenta Rhodes et al. 1998b
P. galaxiae Cerino et al. 2005
P. multiseries Bates et al. 1989
P. multistriata Rhodes et al. 2000
P. psuedodelicatissima Lundholm et al. 1997
P. pungens Rhodes et al. 1996
P. seriata Lundholm et al. 1994
P. turgidula Rhodes et al. 1996
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Figure 1.1  Diagram showing diatom frustule morphology: A) Broad girdle view 
and valve view. B) Cross-sectional view of Pseudo-nitzschia spp. and Nitzschia 
spp. for comparison.  Note the differences in the raphe.  Created using 
information from Hasle and Syvertsen (1996). 
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Figure 1.2  World map showing the global distribution of Pseudo-nitzschia spp.  
Symbols outlined in blue indicate the report was made before a major taxonomic 
revision of the species.  References used to create map are listed in Appendix A. 
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Figure 1.3  Diagram showing DA biosynthesis inside the cell.  Enzymes are in 
red.  Products are in blue.  The * indicates the enzyme contains Fe.  Created using 
information from Pillay (2006), Douglas et al. (1994), Laycock et al. (1989), 
Ramsey et al. (1998) and Stryer (1995). 
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Chapter 2: Distribution, abundance and domoic acid 

analysis of the toxic diatom genus Pseudo-nitzschia 

from the Chesapeake Bay 
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Abstract 

Very little research has been conducted on mid-Atlantic estuarine 

populations of the diatom Pseudo-nitzschia despite recent evidence of toxicity in 

regional isolates.  We collected field samples from the Chesapeake Bay region 

from 2002 to 2006 for Pseudo-nitzschia enumeration and toxin analyses.  

Abundances of Pseudo-nitzschia were highest in the winter and spring at ~103 

cells mL-1.  Domoic acid was detectable in 46% of samples tested, but 

concentrations were generally low, ranging from 4 to 1037 pg DA mL-1.  

Although Pseudo-nitzschia populations were observed year round when salinity 

was ≥ 5, populations were highest from February to May when temperatures were 

low (2-15°C) and salinity relatively high (≥ 10).  Six species of Pseudo-nitzschia 

were identified via transmission electron microscopy of the samples: P. pungens 

(Grunow ex P. T. Cleve) Hasle, P. calliantha, P. subpacifica (Hasle) Hasle, P. 

cuspidata (Hasle) Hasle emend. Lundholm, Moestrup et Hasle, P. fraudulenta and 

P. multiseries.  P. calliantha was the most common and not previously reported 

from the Chesapeake Bay.  Of these species, P. pungens, P. calliantha, P. 

cuspidata, P. fraudulenta and P. multiseries are known to produce DA. 

 

Introduction 

Pseudo-nitzschia is a diatom genus known to produce the excitatory 

neurotoxin, domoic acid (DA), causing Amnesic Shellfish Poisoning (ASP) in 

humans and Domoic Acid Poisoning (DAP) in marine mammals and birds.  

Pseudo-nitzschia blooms are common in coastal waters, but were recognized as 
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being potentially toxic only 20 years ago (Bates et al. 1989).  Although Pseudo-

nitzschia is found world-wide, toxic events have been reported from only a few 

geographic regions, specifically: Atlantic Canada and the west coast of North 

America (Perl et al. 1990, Fritz et al. 1992, Sierra-Beltrán et al. 1998, Scholin et 

al. 2000).  There have been numerous reports of domoic acid (DA) in shellfish 

above the regulatory limit of 20 μg g-1 from the Atlantic and the Pacific since 

1987.  It is not known if this is because toxic Pseudo-nitzschia are becoming more 

abundant, conditions are becoming more conducive to DA production, or if DA 

was previously unrecognized or underreported in some regions. 

Eight species of Pseudo-nitzschia have previously been identified in the 

Chesapeake Bay by light and electron microscopy (Hasle 1965, Marshall 1980, 

1994, Marshall et al. 2005).  In reports and databases from the Maryland 

Department of Natural Resources (MD DNR) phytoplankton monitoring program 

(where samples are analyzed by light microscopy only), Pseudo-nitzschia species 

are reported as either P. seriata or P. pungens (W. Butler, pers. comm.).  Pseudo-

nitzschia species in the Chesapeake were generally assumed to be non-toxic, and 

as a result there has been relatively little research on this genus in this region.  

However, data now demonstrate that regional isolates do produce domoic acid 

(Thessen et al. 2003).     

Potentially toxic algae should be monitored in estuaries which have 

complex plankton dynamics and are subject to long term change and episodic 

events, even if these species have not previously caused a toxic event in the area.  

Seasonal variation in Chesapeake Bay planktonic communities is driven by 
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salinity, nutrients and light availability (Fisher et al. 1999, Roman et al. 2005).  

Interannual variation is in part a result of changes in freshwater discharge (Roman 

et al. 2005, Zhang et al. 2006).  Both time scales of variation can be affected in 

the long term by eutrophication (Kemp et al. 2005) and climate change (Najjar et 

al. 2000) and by episodic events like hurricanes (Miller et al. 2006a).   

Under the current climate regime and eutrophic conditions the chlorophyll 

a maximum in the Chesapeake occurs in spring (Harding 1994, Zhang et al. 

2006).  In the mesohaline and oligohaline region of the Bay this spring 

chlorophyll a peak represents an increase in diatoms, particularly Skeletonema 

potamos, S. costatum, Cerataulina pelagica and Dactyliosolen fragilissimus 

(Marshall et al. 2005).  The spring diatom bloom can start as early as mid winter 

and continue into late spring with chlorophytes, cyanobacteria and cryptomonads 

increasing in abundance as the diatoms decline (Marshall et al. 2005).  

Eutrophication and climate forcing can change the spring bloom in the 

Chesapeake (Harding 1994, Miller & Harding 2007).  

The Chesapeake Bay region’s large human population, multiple fisheries 

and aquatic bird populations (Robbins & Bystrak 1977, Houde et al. 1999, Kemp 

et al. 2005) make it potentially vulnerable to ASP and DAP.  It is important to 

document the occurrence of Pseudo-nitzschia, its spatial and temporal distribution 

and toxicity in order to assess the potential for toxic events in the region and 

where or when they might occur.  We determined Pseudo-nitzschia species 

distribution, abundance, toxicity and relationship to season, salinity and 

temperature.  These data are used to assess the potential for a toxic event in the 
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Chesapeake Bay area, to present a better understanding of the ecology of Pseudo-

nitzschia species in the Chesapeake Bay region and contribute to the knowledge 

of Pseudo-nitzschia biogeography.   

 

Materials and Methods 

Water samples were collected throughout the Chesapeake Bay and 

selected locations along the Delmarva Atlantic Coast during the fall, winter and 

spring from 2002 to 2007 for Pseudo-nitzschia enumeration, species identification 

and toxin analysis (Fig. 2.1).  Samples were collected from the surface and below 

the pycnocline, if present.  Most samples were collected by MD DNR as part of 

their routine monitoring program.  Additional samples were collected by A. E. T. 

or D. K. S. (HPL; Table 2.1).  Average freshwater flow per month was calculated 

from data collected by the United States Geological Survey at the Connewingo 

Dam on the Susquehanna River, a large tributary to the Chesapeake Bay 

(www.usgs.gov). 

MD DNR routinely monitors water quality and phytoplankton throughout 

the year (www.chesapeakebay.net).  During fall, winter and spring (2004-2007) 

additional samples were collected specifically for Pseudo-nitzschia enumeration, 

species identification and DA analysis.  During summer, when historical MD 

DNR data has shown Pseudo-nitzschia species to be low in abundance, specific 

samples for Pseudo-nitzschia analyses were not collected.  We relied on data from 

the MD DNR database for summer Pseudo-nitzschia abundance.  MD DNR 

collected water samples from all depths by pump for preservation in acid Lugol’s 
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and enumeration with the Utermohl method (Hasle 1978).  Salinity and 

temperature were measured with a Hydrolab sonde (Hach Company, Loveland, 

Colorado).  Our laboratory collected surface samples with a bucket and samples at 

depth with a 10 L Niskin bottle either from a dock or small boat.  Salinity and 

temperature data were collected with a CTD or a YSI 63.   

The samples collected specifically for Pseudo-nitzschia analysis (100 mL; 

collected by MD DNR or the authors) were fixed with 0.5% gluteraldehyde (final 

concentration) for enumeration to genera via epifluorescence microscopy (Nikon 

Eclipse E800, excitation 450-490 nm, dichromatic beam splitter 500 nm, barrier 

filter 515 nm, Nikon filter set EF-4 B-2A; Guillard & Sieracki 2005) and 

morphological identification to species via transmission electron microscopy 

(TEM).  Our limit of detection with epifluorescence was 4 cells mL-1.   

In 2003-2007, samples for DA analysis (300 mL) were collected and 

filtered through Whatman GF/F filters within a few hours.  Both filter and filtrate 

were stored at -80°C in the dark.  Only samples that were found to contain 

Pseudo-nitzschia spp. via epifluorescent microscopy were processed for domoic 

acid via ELISA.  Only samples that were shown to contain particulate DA were 

processed for dissolved DA.  DA was quantified via an ASP cELISA test kit from 

Biosense Laboratories capable of processing a maximum of 36 samples per kit 

(Bergen, Norway; Garthwaite et al. 1998).  Each assay has a limit of quantitation 

(LOQ) and a limit of detection (LOD = 1/3 LOQ).  Values below the LOQ and 

above the LOD are considered positive for DA, but semi-quantitative.  

 66



Samples with Pseudo-nitzschia abundances above 100 cells mL-1 were 

processed for TEM.  Frustules were too sparse for identification at lower 

abundances.  For morphological identification, we used the following method 

from Lundholm et al. (2002a).  A 10 mL aliquot was removed from the preserved 

sample and digested using 2 mL of 30% H2SO4 and 10 mL of a saturated KMnO4 

solution in a 100 mL Erlenmeyer flask.  The flask was covered with parafilm and 

swirled periodically throughout the digestion.  After 24 hours, a saturated oxalic 

acid solution was added until the sample became transparent.  Samples were 

rinsed 3-4 times with distilled, deionized water and pelleted via centrifugation.  

The pellet was resuspended in 1 mL of water.  One drop was placed on a 200 μm 

mesh Copper grid with a formvar film.  TEM was used to identify species of 

Pseudo-nitzschia based on frustule morphology by taking measurements of 

images on photographic negatives (Skov et al. 1999; Lundholm et al. 2002a,b; 

Lundholm & Moestrup 2002; Hasle & Lundholm 2005).   

Temperature, salinity, freshwater flow and Pseudo-nitzschia abundance 

data from 2002 to 2006 were analyzed by Spearman’s rank correlation at the 5% 

level (SPLUS®, version 6, Insightful Corporation, Seattle, WA, USA).  Data was 

analyzed by season and year. 

 

Results 

We identified six species of Pseudo-nitzschia via TEM in field samples 

collected from 31 stations in Maryland, Virginia and Delaware waters: P. 

calliantha, P. fraudulenta, P. pungens, P. subpacifica, P. cuspidata and P. 
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multiseries (Table 2.1).  The most common was P. calliantha which occurred at 

15 out of 31 stations ranging in salinity from 32 on the Atlantic coast of Maryland 

(Station 29) to ~10 in the upstream portion of the Choptank River (Station 15; 

Table 2.1).  The second most abundant taxon was P. fraudulenta which occurred 

at five out of 31 stations from the Atlantic coast of Maryland (Station 30, salinity 

32) to the mesohaline Bay (Station 2, salinity 15; Table 2.1).  Pseudo-nitzschia 

pungens was also detected on the Atlantic Coast of Maryland and Delaware 

(Stations 25 and 29, salinity 32) and in the mesohaline portion of the Chesapeake 

Bay (Station 3, salinity 15; Table 2.1).  Pseudo-nitzschia multiseries was detected 

on the Atlantic Coast of Maryland (Station 30, salinity 32) and in the Choptank 

River (Station 16, salinity 20; Table 2.1).  Pseudo-nitzschia cuspidata and P. 

subpacifica were both found near Tangier Sound in the mesohaline portion of the 

Chesapeake Bay (Stations 9 and 10, salinity 15-20; Table 2.1).   

Samples were collected during fall, winter and spring from 31 stations in 

three states and found Pseudo-nitzschia spp. present at all but three stations 

however, not in a dense, monospecific bloom.  In general, abundances were 

highest in early to mid-spring, corresponding to the annual diatom bloom (Malone 

et al. 1988).  Maximum Pseudo-nitzschia abundance was 6254 cells mL-1 in the 

Pocomoke Sound in April of 2004 (Fig. 2.2; Station 20).  Pseudo-nitzschia 

abundances and species varied among stations (Table 2.1).  Some stations (e.g. 5) 

had detectable Pseudo-nitzschia via epifluorescence microscopy, but had less than 

the 100 cells mL-1 needed for morphological identification via TEM.  The 

routinely sampled stations where Pseudo-nitzschia was present most frequently 

 68



were 14 (63%) at the mouth of the Patuxent River, 9 (56%) in Tangier Sound, 17 

(55%) at the mouth of the Choptank River, 4 (32%) in the middle of the 

Chesapeake Bay and 7 (30%) near the mouth of the Potomac River (Table 2.1; 

Figure 2.1).   

Although many of our samples contained Pseudo-nitzschia, most did not 

contain detectable and quantifiable DA (Fig. 2.3).  DA concentrations in field 

samples that tested positive ranged from 3.9 pg DA mL-1 in a Maryland coastal 

bay in November of 2004 (station 31) to 1037.2 pg DA mL-1 on the Atlantic Coast 

of Maryland in March of 2004 (station 29).  Sixty-two percent of the toxin 

samples processed from station 4 in mid-Chesapeake Bay were positive for DA as 

were 41% of the samples processed from station 9 in Tangier Sound and 17% of 

the samples processed from station 3 in the upper Chesapeake Bay (Table 2.1; Fig 

2.1).  Species present in samples with detectable DA were P. calliantha, P. 

fraudulenta, P. subpacifica and P. pungens. 

Salinity and temperature varied seasonally at all stations except 1, where 

salinity was 0 year round (Figs. 2.4, 2.5, 2.6, 2.7, 2.8). Temperature dipped below 

5°C in winter with a minimum in January or February and surpassed 25°C in 

summer with a peak in July or August.  Salinity varied widely between stations 

from station 1 with a salinity of 0 to station 23 with salinity above 30.  Winter was 

characterized by a period of relatively low temperature (≤ 5°C) and relatively high 

salinity (> 10) at stations where percent frequency of Pseudo-nitzschia was 

highest.  
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According to data collected by MD DNR, summer months had the lowest 

Pseudo-nitzschia abundances.  Only 25% of samples collected by MD DNR 

during summer months from 1984 to 1994 contained any Pseudo-nitzschia and 

only 3% of those samples had concentrations ≥ 1000 cells mL-1.  From September 

to January, Pseudo-nitzschia abundances gradually increased (Fig. 2.9).  

Abundances were highest from February to May (≥ 1000 cells mL-1) with the 

highest value recorded in April.  DA concentrations were highest from December 

to March with the highest value recorded in March (Fig. 2.9). 

Spearman’s rank correlation shows a statistically significant association of 

Pseudo-nitzschia abundances with lower temperature and higher salinity during 

spring and fall and during the years 2002, 2004 and 2006.  High Pseudo-nitzschia 

abundances were correlated with higher salinity in winter and lower temperatures 

in 2005.  Pseudo-nitzschia abundances were not significantly correlated with 

salinity or temperature in 2003 or 2007 (Table 2.2).  Seasonally, flow did not 

significantly correlate with Pseudo-nitzschia abundance.  In 2002 and 2007 flow 

was negatively correlated with abundance while in 2004 and 2005 the opposite 

was true.  In 2003 and 2006 there was no significant relationship (Table 2.2).   

 

Discussion 

Pseudo-nitzschia is a potentially toxic diatom that occurs in the 

Chesapeake Bay and its abundance responds to temperature and salinity.  These 

results are quite similar to previous distributions noted in other systems.  The 

association of high Pseudo-nitzschia abundances with low temperatures and high 
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salinity is similar to the pattern for P. calliantha in the Adriatic Sea (Caroppo et 

al. 2005) and Pseudo-nitzschia spp. on the West Coast of the United States 

(Trainer et al. 2000).  Pseudo-nitzschia spp. in our study area were not found at 

salinity below 5 and temperature above 21°C (Fig. 2.10).  This is consistent with 

laboratory growth experiments showing a lower salinity at ~6 (Thessen et al. 

2005).  Out of 533 samples collected, 132 (25%) fell outside these salinity (5) and 

temperature (21°C) limits.  None of these samples contained Pseudo-nitzschia 

spp.  However, out of the other 401 samples collected above 5 salinity and below 

21°C, only 32% contained Pseudo-nitzschia spp.  These results argue for a 

relatively broad tolerance of both salinity and temperature for Pseudo-nitzschia in 

the field.  The statistical data (Table 2.2) indicate that low temperature and high 

salinity will favor high Pseudo-nitzschia abundances, but the generally low (<0.5 

or >-0.5) correlation coefficients (ρ) suggest a weak dependence on these 

environmental variables.   

The temperature and salinity limits on Pseudo-nitzschia presence can be 

seen geographically in Chesapeake Bay circulation patterns.  The percent 

frequency of Pseudo-nitzschia occurrence at regularly sampled stations along the 

mainstem of the Chesapeake Bay increased with salinity toward the mouth of the 

estuary (Table 2.1; Figure 2.1).  Pseudo-nitzschia abundances are higher on the 

saltier eastern shore of the Chesapeake than the western shore (Boicourt et al. 

1999; Fig. 2.2).  Annual variation in Pseudo-nitzschia abundance can partially be 

explained by temperature and salinity dynamics at the individual stations (Figs. 
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2.4, 2.5, 2.6, 2.7, 2.8) with high abundances occurring when and where 

temperatures are relatively low and salinity is relatively high.   

The statistical relationships between flow and Pseudo-nitzschia abundance 

indicate a more complicated relationship between these two factors than between 

abundance and temperature or salinity.  The negative correlation in 2002 reflects 

the correlation between abundance and salinity, since lower freshwater flow 

means higher salinity in the Chesapeake.  The positive correlations in 2004 and 

2005 suggest a relationship between abundance and nutrient loading from the 

Susquehanna River since Pseudo-nitzschia is known to respond to increased 

nutrients (Dortch et al. 1997).  There is no significant relationship between flow 

and abundance in 2003 or 2006 (Table 2.2).  Those are also years in which the 

range of flow did not exceed 1700 m3sec-1 in consecutive months unlike the other 

years when the range of flow was as much as 2100 to 3100 m3sec-1 (Fig. 2.11).   

In general, Pseudo-nitzschia abundance is greater near the mouth of a 

tributary and declines upriver (Fig. 2.2).  However, this relationship was not 

observed in the Choptank River (Stations 15, 6, 16 and 17) where the maximum 

Pseudo-nitzschia abundance at station 15 (intuitively, the station with lower 

salinity because it is farther upriver) is higher than the next downstream station 6 

(Fig. 2.2).  Since station 15 was sampled from 2002 to 2004 and station 6 was 

sampled from 2004 to 2007 we believe the data reflect salinity differences 

between the two sampling periods.  A severe drought occurred during the 2002-

2004 sampling period, so freshwater flow was less and therefore salinity was 

higher at station 15 from 2002-2004 than at station 6 from 2004-2007 (Reaugh et 
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al. 2007; Figs. 2.6 and 2.11).  These data demonstrate the high potential for 

variability in the Chesapeake Pseudo-nitzschia population from one year to the 

next and the effect of precipitation and thus salinity on natural Pseudo-nitzschia 

populations.   

Our survey found P. calliantha, a new species previously unreported in 

the Chesapeake Bay since its description from a redefinition of P. 

pseudodelicatissima (Lundholm et al. 2003).  Therefore, reports of P. 

pseudodelicatissima in the Chesapeake Bay before 2003 could have been P. 

calliantha (Marshall 1994).  Unfortunately, there are no micrographs available to 

support this hypothesis.  Other previously reported species include P. 

delicatissima, P. pungens, P. seriata, P. fraudulenta, P. subpacifica, P. cuspidata 

and P. multiseries (Hasle 1965, Marshall 1980, 1994, Marshall et al. 2005).  

DA detection in field water samples throughout the Chesapeake Bay was 

generally low; however, some of the same species reported here contain higher 

DA elsewhere (Bates et al. 1989, Martin et al. 1990, Rhodes et al. 1998b).  

Reasons for these differences include genetic differences (strain differences) and 

differing environmental controls.  A comprehensive genetic characterization of 

populations in regions that frequently have high DA producing Pseudo-nitzschia 

and regions that have low or non-toxic Pseudo-nitzschia would provide a valuable 

comparison.  Further, once elucidated genetically, laboratory experiments with 

varying environmental conditions on these genotypes might provide insights into 

functional differences in the strains (Chapter 3, this thesis). 
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Environmental control of DA content in the Chesapeake has several 

possibilities.  The turbid waters of the Chesapeake Bay could block sufficient 

light energy for DA synthesis or the salinity regime in the Chesapeake could 

affect DA production.  During spring and winter, when Pseudo-nitzschia are most 

likely to be abundant, irradiances in the mixed layer are below 100 μmol photons 

m-2 sec-1 necessary for maximum DA production (Bates 1998, Chapter 5 this 

thesis).  Laboratory cultures of one strain of P. multiseries produced maximum 

levels of DA in salinities above 20 (Doucette et al. in press) which, in our study, 

are present only near the mouth of the Chesapeake.  It is noteworthy that most 

ASP or DAP episodes have occurred in oceanic or near-oceanic environments 

(i.e., Prince Edward Island, California coast) and the highest DA levels per mL 

observed in our study occurred in higher salinity areas.  These data suggest that 

Pseudo-nitzschia abundances and toxicity could increase in the Chesapeake Bay 

during periods of low rainfall and increased salinity.   

Climate change projections for the mid-Atlantic include an increase in 

temperature and freshwater discharge (Najjar 1999, Najjar et al. 2000).  The 

increased freshwater flow is predicted to decrease salinity by as much as 27.5% 

near the mouth of the Susquehanna River and shift the current isohalines down 

bay by as much as 55 km (Gibson & Najjar 2000).  While diatoms are favored 

during periods of high flow and low residence times (Paerl et al. 2006), a decrease 

in salinity and increase in temperature could reduce Pseudo-nitzschia abundances 

in the Chesapeake.  However, due to gravitational circulation (Boicourt et al. 

1999), an increase in freshwater flow on the surface would cause saltier oceanic 
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water, and presumably Pseudo-nitzschia, to be transported farther up estuary at 

depth.   

The lack of a documented toxic event in the Chesapeake argues against 

making Pseudo-nitzschia a monitoring priority; however, having historical data 

on abundance and toxicity could prove valuable in the future.  Current 

environmental conditions in the Chesapeake Bay area appear to be unfavorable to 

toxic Pseudo-nitzschia blooms, but these conditions may not remain constant due 

to cultural eutrophication and climate change.  In addition, there is a possibility 

that toxic events or sublethal effects have occurred but are undocumented.  

Preliminary work suggests that subacute doses of domoic acid in infants and 

children have an adverse affect on mental development and memory, suggesting 

that doses too low to cause acute symptoms can still have an effect (Grattan et al. 

2002).  In addition, many of the over-wintering water fowl in the Chesapeake are 

seaducks, which are known to consume marine invertebrates, potential DA 

vectors (Perry et al. 2004).  A rare or small toxic event involving these birds could 

be easily missed and go unreported (Shumway et al. 2003). 

Our study did not include an assessment of DA accumulation and 

persistence in shellfish exposed to Pseudo-nitzschia blooms (in field or 

laboratory), but that would be a logical next step since humans and animals have 

not become ill from DA in water or algae but are intoxicated through a shellfish 

or fish vector (Perl et al. 1990, Fritz et al. 1992, Scholin et al. 2000).  

Additionally, our data suggest that more saline coastal bay environments, like the 

Maryland, Virginia and Delaware coastal bays, a series of coastal lagoons 
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between the Chesapeake and the Atlantic, may be at greater risk for DA-

producing Pseudo-nitzschia blooms and potential shellfish contamination.   

Chesapeake Bay Pseudo-nitzschia populations are dynamic, consisting of 

several species and exhibiting seasonal patterns and variation in their abundance 

from year to year that can be partially explained by changes in temperature and 

salinity.  Some of this Pseudo-nitzschia produces DA although not at levels high 

enough to cause a toxic event.  There have been no documented ASP or DAP 

events in the Chesapeake to date, but because of the dependence of Pseudo-

nitzschia abundances and toxicity on changing environmental conditions, current 

monitoring data could be useful in the future. 
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Table 2.2  Spearman’s rank coefficient (ρ) for Pseudo-nitzschia species 
abundance and temperature (temp, °C), salinity or flow (m3s).  Data were 
grouped and analyzed by season and year.  

 

 

 

 

 

 

 

ρ p value ρ p value ρ p value
winter -0.0045 0.9554 0.4108* 0.0000  0.0683 0.4032
spring -0.1743* 0.0067 0.2692* 0.0000 -0.0766 0.2343
fall -0.1864* 0.0309 0.1787* 0.0386  0.1284 0.2310

2002 -0.6094* 0.0002 0.3601* 0.0265 -0.4312* 0.0078
2003 -0.0733 0.6385 0.2446 0.1175  0.2548 0.1029
2004 -0.2309* 0.0401 0.3194* 0.0045  0.2432* 0.0306
2005 -0.2640* 0.0019 0.1586 0.0625  0.3215* 0.0002
2006 -0.2951* 0.0002 0.3077* 0.0001  0.0644 0.5048
2007 -0.1855 0.1081 0.1875 0.1045 -0.2470* 0.0348

temp salinity flow

* Indicates significance at 0.05 level.  
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 Figure 2.1  Map of the Chesapeake Bay region showing the 31 sampling 
stations. 
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Figure 2.2  Maximum abundances (cells mL-1) of Pseudo-nitzschia species from 
2002-2007 in the Chesapeake Bay region. 
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Figure 2.3  Maximum total concentrations of domoic acid in the particulate and 
dissolved fraction (pg DA mL-1) from 2003-2007 in the Chesapeake Bay region. 
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Figure 2.4  Monthly surface temperature (open circles, °C) and salinity (closed 
squares) data for stations in the northern and mainstem Chesapeake Bay.  Shaded 
areas indicate months when water samples were specifically collected for Pseudo-
nitzschia enumeration and identification.  Arrows indicate when samples 
contained >100 cells mL-1 Pseudo-nitzschia.  Station numbers are given in upper 
right corner and correspond to Figure 2.1. 
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Figure 2.5  Monthly surface temperature (open circles, °C) and salinity (closed 
squares) data for stations in tributaries of the Chesapeake Bay other than the 
Choptank and Patuxent Rivers.  Shaded areas indicate months when water 
samples were collected for Pseudo-nitzschia enumeration and identification.  
Arrows indicate when samples contained >100 cells mL-1 Pseudo-nitzschia.  
Station numbers are given in upper right corner and correspond to Figure 2.1.
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Figure 2.6  Monthly surface temperature (open circles, °C) and salinity (closed 
squares) data for stations in the Choptank River.  Shaded areas indicate months 
when water samples were collected for Pseudo-nitzschia enumeration and 
identification.  Arrows indicate when samples contained >100 cells mL-1 Pseudo-
nitzschia.  Station numbers are given in upper right corner and correspond to 
Figure 2.1. 
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Figure 2.7  Monthly surface temperature (open circles, °C) and salinity (closed 
squares) data for stations in the Patuxent River.  Shaded areas indicate months 
when water samples were collected for Pseudo-nitzschia enumeration and 
identification.  Arrows indicate when samples contained >100 cells mL-1 Pseudo-
nitzschia.  Station numbers are given in upper right corner and correspond to 
Figure 2.1. 
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Figure 2.8  Monthly surface temperature (open circles, °C) and salinity (closed 
squares) data for stations in the Atlantic coast and coastal bays.  Shaded areas 
indicate months when water samples were collected for Pseudo-nitzschia 
enumeration and identification.  Arrows indicate when samples contained >100 
cells mL-1 Pseudo-nitzschia.  Station numbers are given in upper right corner and 
correspond to Figure 2.1. 
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 Figure 2.9  (A) Abundances (cells mL-1) of Pseudo-nitzschia spp. at all stations 
year-round.  Data from September to May 2002-2007 are from our collections.  
Data in June, July and August were taken from MD DNR 
(www.chesapeakebay.net).  (B) DA concentrations (pg mL-1) at all stations year-
round.  In both panels, each filled circle represents one sample.   
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Figure 2.10  Plot of temperature (°C) and salinity data collected from 2002 to 
2007 during fall, winter and spring at stations throughout the Chesapeake Bay 
area.  Size of filled diamond indicates abundance of Pseudo-nitzschia spp. in 
orders of magnitude.  Lines indicate minimum salinity limit and maximum 
temperature limit beyond which Pseudo-nitzschia do not occur in this study.   
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Figure 2.11  Plot of average monthly flow from the Susquehanna River through 
the Connewingo Dam (m3sec-1) during the sampling period (January 2002 to May 
2007).  Vertical lines separate years. 
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Chapter 3: Intra- and interspecies differences in 

Pseudo-nitzschia growth and toxicity while utilizing 

different nitrogen sources 



 

Abstract 

Clonal cultures of plankton are widely used in laboratory experiments and 

have contributed greatly to knowledge of microbial systems.  However, many 

physiological characteristics vary drastically between strains of the same species, 

calling into question our ability to make ecologically relevant inferences about 

populations based on studying one or a few strains.  This study included nineteen 

strains of three species of the diatom Pseudo-nitzschia isolated primarily from the 

mid-Atlantic coastal region of the United States.  Toxin (domoic acid) production 

and growth rates were measured in cultures using different nitrogen sources 

(NH4
+, NO3⎯ and urea) and growth irradiances.  The strains exhibited broad 

differences in growth rate and toxin content even between strains isolated from 

the same water sample.  Both P. multiseries clones produced toxin, yet 

preferentially utilize different nitrogen sources.  Only some of the P. calliantha 

and P. fraudulenta isolates were toxic and domoic acid content varied by orders 

of magnitude.  All three species had variable intraspecies growth rates on each 

nitrogen source, but P. fraudulenta strains had the broadest range.  Light-limited 

growth rate and maximum growth rate in P. fraudulenta and P. multiseries varied 

with species.  These findings show the importance of defining intra- and 

interspecies variability in ecophysiology and toxicity.  Ecologically relevant 

functional diversity in the form of ecotypes or cryptic species appears to be 

present in the genus Pseudo-nitzschia. 
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Introduction 

Much of what we know about plankton physiology comes from 

experiments using laboratory cultures.  Most Pseudo-nitzschia culture studies 

focus on P. multiseries with the results extrapolated to other species and strains 

(Bates 1998).  However, broad species and strain differences have been well 

documented (Gallagher 1980, 1982, Elrifi & Turpin 1985, Goldman & Dennett 

1985, Holmes et al. 1991, Wood & Leatham 1992, Larsen & Bryant 1998) and 

draw into question the validity of making conclusions about microalgal species 

physiology based on one or a few strains.   

Such high variability between strains casts doubt on the species concept in 

microalgae in general.  While the creation of a species is the result of a biological 

reality, secondary characteristics are used (frustule morphology, ribosomal genes) 

to detect and define them.  Manhart and McCourt (1992) stated that:  

“Practicing phycologists often seem to strive to delineate 

biological species while basing descriptions solely upon 

morphological data.  The assumption is that morphological species 

closely approximate biological species of algae, but only rarely is 

this hypothesis tested.  If species assignment is a hypothesis of 

relationship, then many (perhaps most) implicitly described 

biological species of algae represent untested hypotheses.” 

This implies a basic fault in microalgal species definitions which could explain 

high strain variability.  However, Wood and Leatham (1992) argue that 

difficulties arise when culture studies involving only a few clones attempt to 
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define interspecies differences without assessing within species variation, not 

necessarily as the result of a fault in the species definition.  The seemingly 

enormous number of isolates necessary to accurately define within species 

variation restricts the number of studies able to include such an analysis.   

The alternative, making conclusions about a species based on one strain, 

would likely lead to erroneous results.  Toxin production in 17 strains of 

Alexandrium tamarense showed broad differences in toxin production, the lowest 

approximating zero mouse units (MU) per 104 cells and the highest at 1.1 MU per 

104 cells (Ogata et al. 1987).  No one strain was representative of the species.  

Taking the analysis one step further, 15 sub-strains taken from one strain had a 

0.6 MU per 104 cells range in toxin production. An analysis of PSP toxin 

composition in two strains of A. tamarense showed one strain, SB31, produced 

mostly a sulfocarbamoyl derivative C2 while the other strain, SB32, produced 

mostly GTX3 and GTX4 (Cembella et al. 2002).   Studies such as these show 

broad differences among strains and argue that finding one “representative” strain 

is highly unlikely if not impossible.  Yet, an analysis of recent publications shows 

only 40% of studies that use culture experiments consider the possibility of 

significant strain differences when making conclusions (Burkholder & Glibert 

2006).  

Genetic variability in field populations and strains of Pseudo-nitzschia has 

been widely documented; however, physiological variability has not been as 

thoroughly investigated (Evans et al. 2004, Orsini et al. 2004).  Many Pseudo-

nitzschia culture studies present results from one strain (Bates et al. 1991, 
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Douglas & Bates 1992, Hillebrand & Sommer 1996, Pan et al. 1996a,b, Fehling et 

al. 2004, Armstrong Howard et al. 2007).  Others compare one strain of multiple 

species (Jackson et al. 1992, Hargraves et al. 1993, Wang et al. 1993, Maldonado 

et al. 2002, Fehling et al. 2005).  Most studies comparing multiple cultures of one 

species have focused on toxin production in P. australis, P. seriata or P. 

multiseries (Bates et al. 1989, Garrison et al. 1992, Douglas et al. 1993, Villac et 

al. 1993a, Lundholm et al. 1994, Bates et al. 1999) with one study investigating 

toxicity in P. pseudodelicatissima (Pan et al. 2001).  Only four studies used 

multiple strains of the same species to investigate other physiological processes in 

addition to toxicity.  With four strains of P. multiseries and two strains of P. 

pungens, Bates et al. (1993) analyzed the effect of NO3⎯ and NH4
+ on growth and 

toxin production.  Lundholm et al. (2004) employed two strains of P. multiseries 

to study the effect of pH on growth and toxin production.  Bates et al. (1995) used 

three strains of P. multiseries to examine the role of bacteria in domoic acid (DA) 

production.  Thessen et al. (2005) studied two strains of P. delicatissima, two 

strains of P. multiseries and three strains of P. pseudodelicatissima to assess the 

effect of salinity on growth rate.   

The meaning of high intraspecific genetic diversity in natural populations 

is controversial (Fenchel 2005, Foissner 2006).  High genetic diversity in some 

protist taxa has been considered an indicator of cryptic species and functional 

diversity (Dolan 2005, Foissner 2006, Scheckenbach et al. 2006).  Others argue 

that variation in rRNA is an accumulation of neutral mutations that does not 

correlate with physiology or show biogeographic patterns (Fenchel 2005).  

 95



 

However, there have been populations of microalgae comprised of distinct 

physiological or genetic groupings which showed dynamic seasonal abundances.  

The presence of multiple ecotypes has been demonstrated in populations of 

Skeletonema costatum in Narragansett Bay (Gallagher 1980, 1982).  These 

ecotypes have different physiological characters, making them better adapted to 

different environmental conditions resulting in a succession of ecotypes 

throughout the year.  Similar results have been found with Ditylum brightwellii in 

Puget Sound  (Rynearson et al. 2006).  Reproductively isolated cryptic variants 

within P. delicatissima and P. pseudodelicatissima have been identified using 

morphology, genetic sequences and mating experiments (Amato et al. 2007).  The 

ecological significance of this diversity is not well understood.     

This paper is a presentation of strain differences between three species of 

Pseudo-nitzschia: P. multiseries, P. fraudulenta and P. calliantha for growth rate, 

toxin production, nitrogen use and saturating growth irradiance.  It is also the first 

presentation of genetic and toxin data from Chesapeake Bay area Pseudo-

nitzschia strains. 

 

Materials and Methods 

Culture isolation, identification and maintenance 

Pseudo-nitzschia were isolated from field samples via micropipetting 

(Andersen & Kawachi 2005) and incubated as separate cultures in an inorganic 

nutrient enriched seawater medium for diatoms, f/2* (Andersen et al. 1997), at a 

temperature and salinity close to ambient conditions at the time and place of 
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collection and a 14:10 L:D cycle (Table 3.1).  Morphological identification was 

performed using a derivation of methods in Lundholm et al. (2002a).  A 10 mL 

aliquot of culture was preserved in 1% gluteraldehyde and digested using 2 mL of 

30% H2SO4 and 10 mL of a saturated KMnO4 solution in a 100 mL Erlenmeyer 

flask.  The flask was covered with parafilm and swirled periodically throughout 

the digestion.  After 24 h, a saturated oxalic acid solution was added until the 

sample became transparent.  Samples were rinsed 3-4 times with distilled, 

deionized water and pelleted via centrifugation.  The pellet was resuspended in 

approximately 1 mL of water.  One drop was placed on a 200 μm mesh copper 

grid with a formvar film. Transmission Electron Microscopy (TEM) was used to 

identify species of Pseudo-nitzschia based on frustule morphology from 

measurements of cell properties in photographic negatives (Skov et al. 1999, 

Lundholm et al. 2002a,b, Lundholm & Moestrup 2002, Hasle & Lundholm 2005).   

 

Genetic and phylogenetic analysis 

DNA extractions from cultures were performed using the Puregene® DNA 

Isolation Kit (Gentra Systems, Minneapolis, MN).  Samples were centrifuged at 

4000 g and the supernatants decanted.  Pellets were resuspended in 300 µl of cell 

lysis buffer supplied with the kit and the manufacturer’s protocol was followed 

for the remainder of the extraction procedure.  Eluted DNA was stored at -20o C 

until analyzed by polymerase chain reaction (PCR).   

The nuclear encoded large subunit (D1-D3 region of the LSU; 28S) locus 

was amplified from Pseudo-nitzschia cultures using two primer sets.  Primers 
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D1R forward (Scholin et al. 1994; 5’-ACCCGCTGAATTTAAGCATA-3’) and 

LSUSeqRev (5’-AGTGCTAGCAACAGACATCAACT-3’) resulted in a 517 base 

pair amplicon, and D3Ca reverse (Scholin et al. 1994; 5’- 

ACGAACGATTTGCACGTCAG -3’) and LSUSeqFor (5’-

CTGAAACGGAAGCGAAGGAAA-3’) resulted in a 434 base pair amplicon.  

The two amplicons overlapped by 144 base pairs. 

The nuclear encoded internal transcribed region (ITS1-5.8S-ITS2) was 

amplified using two primer sets. Primers 1815F (Bowers et al. 2006; 5’-

GGAAGTTGGGGGCAATAACAGG-3’) and ITS Rev (Bowers et al. 2006; 5’-

CATCGTTGTGGGAACCWAGACAT-3’) were used to generate an amplicon 

from the first half of the ITS region, while ITS For (reverse complement of ITS 

Rev) and D1R Rev (reverse complement of D1R For mentioned above) were used 

to generate the second half.  Amplicon sizes varied based on the species 

amplified.  These two amplicons did not overlap, so species-specific primers were 

designed upstream of the ITSFor/Rev primer region to be used in conjunction 

with D1R Rev in order to generate overlapping sequences: P. fraudulenta For (5’ 

– CGTTTGCCTCAAAAGTCAACTTG – 3’); P. calliantha For (5’ – 

TTTGGCTCGTGACTTTTGTTGC – 3’); and P. multiseries For (5’ –

TTGCCCGCCACTCTTTACGA – 3’).  

Each 50 µl PCR reaction contained 1.5 U of MegaFrag™ Taq polymerase 

(Denville Scientific, Metuchen, NJ); 10X PCR buffer and 4 mM MgCl2 supplied 

with Taq polymerase; 2 mM each dNTP (Invitrogen, Alameda, CA),  
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0.25 mg mL-1 bovine serum albumin (Idaho Technology, Idaho Falls, ID), 0.8 µM 

each primer (Qiagen/Operon, Alameda, CA), 1 µl DNA template and molecular 

biology grade water to a final volume of 50 µl.  Cycling was performed on the 

DNA Engine Dyad Peltier Thermocycler (Bio-Rad Laboratories, Inc., Waltham, 

MA) as follows: initial denaturation at 94oC for 2 min, followed by 45 cycles of 

94oC for 10 s, annealing temperature ranging from 56oC to 60oC (based on primer 

pair used) for 30 s, extension step of 68oC for 30 s to 40 s (depending on amplicon 

size), and a final extension at 68oC for 6 min 20 s.  PCR products were examined 

on a 1% ethidium bromide-stained agarose gel, and bands were extracted from the 

gel following the procedure supplied with the MinElute kit (Qiagen, Alameda, 

CA). 

All primers outlined above were used for sequencing amplicons.  Gel-

extracted bands were sequenced using the DYEnamic™ ET Terminator Cycle 

Sequencing kit (Amersham Biosciences, Piscataway, NJ).  The sequencing 

reactions contained the following: 2 µl dye (diluted 1:5), 1 µl of desired primer 

(0.4 μM final concentration), 0.5 - 1 µl of gel purified product, and sterile H2O to 

5 µl.  Cycling parameters were as follows: 25 cycles of 95oC for 20 s, 55oC for 15 

s and 60oC for 1 min.  After cycling, sequencing reactions were centrifuged 

through Sephadex G50 to remove unincorporated dye (Amersham Biosciences, 

Uppsala, Sweden). Sequencing was performed on the 3100 capillary sequencer 

(Applied Biosystems, Foster City, CA).   Sequences were aligned and inspected 

for nucleotide ambiguities using Sequencher (version 4.1.2, Gene Codes 

Corporation, Ann Arbor, MI) and then aligned to other Pseudo-nitzschia species 
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available from GenBank utilizing the software MacClade (version 4.04; Maddison 

& Maddison; Sinauer Associates, Inc., Sunderland, MA).  The BLAST search 

program available through the National Center for Biotechnology Information 

website (www.ncbi.nih.gov/) was used to determine the closest sequence matches 

available in GenBank (Altschul et al. 1997).  Parsimony analysis was performed 

using PAUP* 4.0b10 (Swofford 2002). 

 

Toxin Content of Cultures 

Potential toxicity of each culture was tested in f/2* medium with 53 μM Si 

(to induce Si limitation during stationary phase of growth; Bates et al. 1991, Pan 

et al. 1991) with bubbling at an irradiance approximating 150 μmol photons m-2 

sec-1 and a 14:10 L:D cycle in 15°C (Bates 1998).  In vivo fluorescence of a 

subsample was measured at the same time daily to monitor growth phase and 

timing of toxin sample collection.  An emphasis was placed on documenting DA 

concentrations in exponential and stationary phases at least one week after peak 

fluorescence to capture maximum intracellular toxin (Bates 1998).  For the toxin 

sample, 50 mL of culture was removed and filtered through a Whatman GF/F 

filter.  Both the filter and filtrate were stored at -80°C in the dark for 

determination of particulate (DA in the cell) and dissolved (DA in the filtrate) 

toxin by high performance liquid chromatography (HPLC; Quilliam 2003) or the 

ELISA method (Garthwaite et al. 1998) using the ASP direct cELISA test kit 

(Biosense, Bergen, Norway).  HPLC analysis was used to quantify particulate DA 

initially, but the limit of detection (375 pg DA mL-1) was too high for many 
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samples.  The ELISA method has lower limits of detection (9.5-388 pg mL-1) and 

provided results for more samples.  A preserved sample (1 % gluteraldehyde final 

concentration) for cell counts was taken with the toxin sample.  An aliquot of 

each preserved sample was stained with 0.03% proflavin hemisulfate, filtered 

onto a 2 μm polycarbonate filter, and mounted on a glass slide with immersion oil 

for enumeration via epifluorescent microscopy (excitation 450-490 nm, 

dichromatic beam splitter 500 nm, barrier filter 515 nm; Nikon filter set EF-4 B-

2A) at 400X magnification. 

 

Varying Nitrogen Source 

To test the effect of nitrogen on growth rate and toxin production, each 

strain was adapted to grow in f/2* with NO3⎯, NH4
+, urea and Si at f/20 (88 μmol 

N, 11 μmol Si ) concentrations at 15°C with 150 – 200 μmol photons m-2 sec-1 

(14:10 L:D cycle) through two batch culture generations.  When the cultures were 

adapted, 5 replicate 125 mL flasks were inoculated.  Chlorophyll a was measured 

at the same time daily by in vivo fluorescence of a subsample of the flasks and 

used to calculate specific growth rates (Wood et al. 2005).  Toxin and preserved 

samples were taken one week after the beginning of stationary phase to compare 

toxin production and cell abundance.  Dissolved DA cell-1 was calculated by 

dividing dissolved DA by cell abundance.   

Differences in growth rates on each nitrogen source were determined for 

each strain by one-way ANOVA using Tukey’s studentized range test (SAS®, 

version 9.1, SAS Institute, Inc., Cary, NC, USA) at the 5% level.  Overall 

 101



 

differences among all treatments were analyzed with a model I one-way nested 

ANOVA with a type III sums of squares where replication was uneven (SPLUS®, 

version 6, Insightful Corporation, Seattle, WA, USA).  Variation was determined 

within nitrogen source, species, strain and error by parsing the sum of squares.  

Identical statistical analysis was performed on the toxin data.  Correlation 

between growth rate and toxin content was analyzed using Spearman’s correlation 

coefficient (SPLUS®, version 6). 

 

Growth versus Irradiance 

Three strains of two species were adapted through two batch culture 

generations to the experimental temperature and irradiance.  The experiment was 

performed in f/2* media at a salinity of 32 in five replicate 10 mL glass tubes at 

each discrete irradiance.  Treatments started at 20 μmol photons m-2 sec-1 with a 

14:10 L:D cycle and increased at approximately 50 μmol photons m-2 sec-1 

intervals until growth rate saturation.  Cultures were monitored daily using in vivo 

fluorescence.  Growth rates were calculated as described above.  Replicates were 

averaged and a standard deviation was calculated.  The data were fitted to a non-

linear least squares regression using an equation initially derived for 

photosynthesis (Platt et al. 1980) and modified to describe growth:  

μ = μo + μmax(1 – e((-Eα)/μmax))e((-Eβ)/μmax)  

where μo is the y intercept, μmax is the maximum potential growth rate, α is the 

initial light-limited slope, E is the irradiance and β is the slope of the 

photoinhibited part of the curve.  Ek, the irradiance saturating for growth, was 
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calculated for each temperature treatment by dividing μmax by α.  Significant 

difference between treatments for each regression parameter was calculated using 

a Gabriel Approximation (Sokal & Rohlf 1995). 

 

Results 

Identification of Cultures 

All fifteen cultures were identified as one of three species: P. multiseries, 

P. calliantha or P. fraudulenta (Fig. 3.1; Table 3.1).  Morphometric 

measurements of the frustules fall within previously reported values for each 

species (Table 3.2).  ITS and LSU rRNA sequences of the cultures show identical 

or close relationships to sequences deposited on GenBank from strains of the 

same morphological species isolated globally.  The P. multiseries culture Pn-1 

had 100% LSU sequence similarity to three strains (NWFSC005 and NWFSC011 

from Washington and OFPm984 from Japan) and had two base pairs difference 

from a California isolate CV19 (Fig. 3.2A).  Pn-1 had 100% ITS sequence 

similarity to California strain mu3 and was two base pairs different from the 

Japanese strain OFPm984 (Fig. 3.2B).  Table 3.1 provides GenBank accession 

numbers for LSU and ITS sequences derived from Chesapeake Bay isolate Pn-1. 

 

Sequences for P. fraudulenta cultures Pn-9, Pn-10, Pn-11, Pn-12 and Pn-15 were 

identical for both the ITS and LSU loci.  LSU sequences were identical to a strain 

from Spain, Limens1, and less than ten base pairs different from three strains 

(SZN-B21, SZN-B40 AND SZN-B22) from Italy (Fig. 3.2A).  The ITS sequence 
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data revealed two base pairs difference from the Spain Limens1 isolate (Fig. 

3.2B).  Table 3.1 provides GenBank accession numbers for LSU and ITS 

sequences derived from Chesapeake Bay isolates Pn-9, Pn-10, Pn-11, Pn-12 and 

Pn-15.   

LSU sequences for P. calliantha cultures Pn-2, Pn-3, Pn-4, Pn-6, Pn-7, 

Pn-8 and Pn-13 were identical to each other, while the ITS sequences exhibited 

polymorphisms at two positions.  Although there were no P. calliantha sequence 

data available for the LSU locus on GenBank, BLAST results showed that the 

LSU sequence was closest to thirteen P. pseudodelicatissima isolates (P-11 from 

Portugal, NWFSC047, NWFSC040 and NWFSC006 from Washington and the 

remaining isolates from Italy).  There was high genetic variability between all of 

these isolates, and our sequence showed approximately 0.7 - 5% divergence from 

those sequences (Fig. 3.2A).  Our ITS sequences shared 99% sequence similarity 

to three P. calliantha isolates from Vietnam (Fig. 3.2B).  Table 3.1 provides 

GenBank accession numbers for LSU and ITS sequences derived from 

Chesapeake Bay isolates Pn-2, Pn-3, Pn-4, Pn-6, Pn-7, Pn-8 and Pn-13.   

 

Toxicity of Cultures 

All batch cultures increased their abundance by at least one order of 

magnitude during this experiment.  Lag phase, growth rate and time to onset of 

stationary phase varied.  Out of 16 strains tested, seven produced domoic acid 

(Table 3.3).  All three species cultured had at least two toxic isolates.  The P. 

multiseries isolates had the two highest DA concentrations, per mL and per cell 
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(Figs. 3.3, 3.4).  P. calliantha and P. fraudulenta isolates produced between 103 

and 102 pg DA mL-1 (between 1 and 10-4 pg DA cell-1) with P. calliantha 

producing the least (Pn-3) and the most (Pn-8) toxin per mL (Fig. 3.3).  Per cell, 

P. fraudulenta (Pn-12) produced the most (0.16 pg DA cell-1) and P. calliantha 

(Pn-3) produced the least (2.62X10-4 pg DA cell-1) amount of toxin (Fig. 3.4).  

Growth rates and maximum abundances of strains that did not produce DA are 

not different from isolates that did produce DA (Table 3.3).  Two of the three 

species cultured, P. calliantha and P. fraudulenta, had non-toxic isolates (Table 

3.3).  Three strains of P. calliantha (Pn-2, Pn-5 and Pn-18) died within months of 

isolation, before toxin content was investigated. 

The highest total DA levels occurred during stationary phase in all strains.  

However, in P. multiseries and one P. fraudulenta strain (Pn-12), some DA was 

also present before stationary phase while the culture was still growing (Figs. 3.3, 

3.4).  The two P. multiseries strains (Pn-1, CLN47) show similar DA production 

patterns, with DA present throughout the entire growth cycle, gradually increasing 

as cell division slowed and reaching a maximum in stationary phase.  The two P. 

calliantha strains (Pn-3, Pn-8) also show similar DA production patterns with DA 

produced only once the cultures had stopped growing.  The two P. fraudulenta 

strains (Pn-12, Pn-9) show different DA production patterns.  One strain (Pn-12) 

produces DA during late exponential phase while the other (Pn-9) does not 

produce toxin until stationary phase.  High DA content of the first sample in some 

strains (Pn-1, CLN47 and Pn-12) is probably from the inoculum used to start the 
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culture and does not signify any real production of DA in those cultures at the 

beginning of growth. 

 

Varying Nitrogen Source and Growth Rate 

Nitrogen source (NH4
+, NO3⎯ and urea) affected growth rates in Pseudo-

nitzschia cultures, but not in a way that could be predicted based on nitrogen 

source and species (Fig. 3.5; Table 3.3).  Statistical analysis revealed significant 

growth rate differences between nitrogen source, species and strain with strain 

being the highest source and replication the lowest source of variability (Table 

3.4).  The two P. multiseries strains had different nitrogen responses, with Pn-1 

growing fastest on NO3⎯ and NH4
+ (0.75 d-1) while CLN47 grew equally well (0.6 

d-1) on all sources.  The five P. fraudulenta strains showed three different growth 

responses with Pn-10 and Pn-12 growing fastest on NO3⎯ and NH4
+ (0.74-0.88 d-

1), while Pn-11 and Pn-15 grew fastest on NH4
+ (1.21 d-1 and 1.16 d-1 

respectively) and Pn-9 grew fastest on urea (1.02 d-1).  The two P. calliantha 

strains had different growth responses, but similar growth rates.  Pn-13 grew 

fastest on NO3⎯ and NH4
+ (0.7 d-1).  Pn-8 grew fastest on NO3⎯ (0.86 d-1).  

Nitrogen was an important source of variation in growth rate, but growth was also 

significantly affected by strain. 

Strains of P. multiseries (Pn-1), P. fraudulenta (Pn-10) and P. calliantha 

(Pn-13), despite being different species, showed similar relative growth responses 

and growth rates.  P. fraudulenta strains isolated from the same water sample (Pn-

9, Pn-10, Pn-11 and Pn-12) have the largest differences in relative growth 
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response and growth rate.  The only trend in all of these data is higher growth 

rates on NH4
+ and lower growth rates on urea, with the exception of one P. 

fraudulenta culture (Pn-9).   

 

Varying Nitrogen Source and Toxicity 

DA concentrations were affected by nitrogen source just as unpredictably 

as growth rate (Figs. 3.6, 3.7; Table 3.3).  Statistical analysis revealed significance 

in toxin content between nitrogen source, species and strain with strain being the 

highest source of variability in DA content cell-1 and mL-1, while for particulate 

DA mL-1 the highest source of variability is species (Table 3.4).  The only 

insignificant effect was that of nitrogen on total DA cell-1.  Two strains of P. 

multiseries produced the most DA while growing on NH4
+ (Pn-1, 3984 fg cell-1) 

and NO3⎯ (CLN47, 369 fg cell-1; Tables 3.3, 3.5; Figs. 3.6, 3.7) and contained the 

highest total toxin of all strains tested.  DA concentration in one strain of P. 

calliantha (Pn-8) and one strain of P. fraudulenta (Pn-9) did not vary significantly 

with nitrogen source.  One strain of P. fraudulenta (Pn-12) contained more DA 

while growing on NH4
+ (23.7 fg cell-1) and urea (43.3 fg cell-1) than NO3⎯ (3.1 fg 

cell-1).  The other P. fraudulenta strain (Pn-9) contained more particulate toxin 

when growing on NO3⎯ (0.29 fg cell-1).  Only the two P. multiseries (Pn-1 and 

CLN47) strains always produced detectable DA.  This is probably due to the P. 

calliantha and P. fraudulenta strains having low toxin content, near the detection 

limit of the assay, leading to a high error term in the results.  Growth rates and 

toxin production did not track each other except in P. multiseries (Pn-1), where 
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the highest growth rate (0.75 d-1) accompanied the highest toxin content (3984 fg 

cell-1).  Statistical analysis reveals no significant correlation between growth rate 

and toxin content for CLN47, Pn-8 and Pn-12 (Table 3.6).  Growth rate is 

correlated with dissolved DA normalized to cell number and volume and total DA 

normalized to cell number in strain Pn-9.  Growth rate in Pn-1 is strongly 

correlated with particulate, dissolved and total DA normalized to both cell number 

and volume.   

Toxin content normalized to cell number and volume were nearly 

identical.  CLN47, Pn-1 and Pn-8 show the same pattern in DA content per cell 

and per mL.  One P. fraudulenta strain (Pn-12) contained more particulate DA per 

mL while growing in NH4
+ and urea with no significant difference in dissolved 

DA (0.06-1.18 ng mL-1).  Per cell, there was no significant difference in 

particulate DA (0-0.78 fg cell-1).   

 

Growth versus Irradiance 

Growth versus irradiance experiments were performed on three strains of 

two species at three temperatures (Fig. 3.8).  P. fraudulenta (Pn-15) would not 

grow at all light levels at all temperatures; therefore the curve at 20°C is 

incomplete.  Curve parameters α (d-1[μmol photons m-2 sec-1]-1)† and μmax (d-1) 

showed significant differences between species at the same temperature (Table 

3.7).  At 10°C, α (0.0263 d-1[μmol photons m-2 sec-1]-1) in P. fraudulenta was 

different from α in the P. multiseries strains (Pn-1 and CLN47) which were not 
                                                 
† Unit for α reduces to µmol photons m-2*86400.  While conceptually correct, this method uses 
unusual units because α is typically used to describe P vs. E curves instead of µ vs. E curves. 

 108



 

different from each other (0.0067, 0.0127 d-1[μmol photons m-2 sec-1]-1 

respectively).  At 15°C, α in P. fraudulenta (0.0239 d-1[μmol photons m-2 sec-1]-1) 

was different from only one of the P. multiseries strains (0.0047 d-1[μmol photons 

m-2 sec-1]-1, Pn-1) which were not different from each other (0.0109 d-1[μmol 

photons m-2 sec-1]-1, CLN47).  At 20°, α was not significantly different between 

strains of P. multiseries (0.0094 - 0.0098 d-1[μmol photons m-2 sec-1]-1; Table 3.7).  

Alpha was not significantly different between temperatures within the same 

strain.  At 10°C, μmax (d-1) did not show any difference between strains.  At 15°C, 

however there was a difference in μmax between P. fraudulenta (0.68) and one of 

the P. multiseries strains (0.33, CLN47).  There was no statistically significant 

difference between μmax at 20°C (0.78-2.0), probably due to the high variability in 

P. multiseries (Pn-1).  None of the strains showed significant changes with 

temperature.  Comparisons of β were not possible because not all strains were 

photoinhibited.  Saturating irradiance (Ek) was calculated for each treatment 

where possible, but had such high variability that none of the data were significant 

(Table 3.7).   

 

Discussion 

Sequences for the LSU (large subunit of the ribosome) and ITS (internal 

transcribed spacer) regions were successfully combined with morphology to 

identify Pseudo-nitzschia strains to the species level.  Both morphological and 

genetic data were conclusive and consistent for identification of P. multiseries, P. 

fraudulenta and P. calliantha, indicating an absence of cryptic species within 
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those groups.  However, these isolates are probably only a small representation of 

a more genetically diverse Pseudo-nitzschia population in the Chesapeake Bay.  

In fact, real-time molecular assays designed against the three species isolated 

from the Bay only identified these species in a small percentage of environmental 

water samples where Pseudo-nitzschia had been identified using light microscopy 

(data not shown).  Field studies using rRNA sequences and microsatellite markers 

have found high genetic diversity in Pseudo-nitzschia populations (Orsini et al. 

2004, Evans et al. 2005).  The lack of such variability in Pseudo-nitzschia cultures 

world-wide could be an artifact of the culturing process favoring strains with 

similar genetics.  Alternate locus sequencing or microsatellite analysis could 

reveal more diversity in cultures.  Physiological parameters tested in this study 

were not consistently related to species, suggesting the presence of ecotypes and 

high functional diversity in the species tested.  Genetic and functional diversity 

among and within Pseudo-nitzschia species needs to be explored further in order 

to gain a better understanding of the strains present and how they are related to 

natural populations.   

In batch culture, Pseudo-nitzschia typically produces DA when in 

stationary phase, once cell division has stopped and the culture is limited by P or 

Si, for example, with replete N and light (Bates 1998).  This is seen in Pn-1, Pn-3, 

Pn-8 and Pn-9 as well as in other studies with P. multiseries (Subba Rao et al. 

1990, Bates et al. 1991, 1993a, 1995, Douglas & Bates 1992; Wohlgeschaffen et 

al. 1992, Douglas et al. 1993, Whyte et al. 1995, Kotaki et al. 1999, Lundholm et 

al. 2004), P. seriata (Lundholm et al. 1994, Fehling et al. 2004) and P. australis 
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(Cusack et al. 2002).  In CLN47 and Pn-12, there is evidence of toxin production 

during late exponential phase, similar to results for P. pseudodelicatissima (Pan et 

al. 2001), P. australis (Garrison et al. 1992) and for P. multiseries (Pan et al. 

1996a).  A possible explanation for DA production in late exponential phase, 

before the culture has stopped growing, is that this phase may be a period of 

transition, when some cells have stopped dividing and are producing DA while 

others are still growing (Pan et al. 1996a, Bates 1998).  High DA content during 

lag phase is probably from the inoculum used to start the culture; however, it is 

possible that the shock of being transferred led to DA production in lag phase 

cultures (Bates 1998).  It is also generally assumed that particulate DA peaks 

about one week after the beginning of stationary phase, then decreases as 

dissolved DA increases (Bates 1998).  Total DA content did not peak in any of 

our cultures within the 26 d duration of the experiment, with the exception of Pn-

12. 

Initially, samples were analyzed via HPLC.  Toxin content in one strain of 

P. multiseries (Pn-1) and four strains of P. calliantha (Pn-4, Pn-6, Pn-7 and Pn-8) 

was determined with this method.  After testing these cultures, it was determined 

that the limit of detection of the HPLC was too high for these studies and the 

ELISA method was subsequently employed.  ELISA has a lower, but variable, 

limit of detection.  Individual kits have their own quantitation limit (LOQ) and 

detection limit (LOD = 1/3 of LOQ) which, in the kits used in this study, varied 

from 28.4 to 1165 pg mL-1 and 9.5 to 388 pg mL-1, respectively.  Concentrations 

that are below the LOQ, but above the LOD are considered semi-quantitative.  
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The test is positive for DA, but the accuracy is less than if the concentration had 

been above the LOQ.  Since each test kit can process a maximum of 36 samples, 

not all samples from the same culture could always be processed on the same 

plate and therefore have the same LOD and LOQ.  Working with very low 

amounts of DA on multiple plates could explain the unusual zero values in P. 

fraudulenta (Pn-12) and P. calliantha (Pn-8). Some P. calliantha strains (Pn-3, 

Pn-13 and Pn-14), all P. fraudulenta strains (Pn-9, Pn-10, Pn-11, Pn-12, Pn-15) 

and one P. multiseries strain (CLN47) were tested using ELISA.  The possibility 

exists that some P. calliantha strains (Pn-4, Pn-6 and Pn-7) produced DA, but not 

enough to detect with HPLC. 

It is generally thought that NH4
+ is more readily taken up by 

phytoplankton than NO3⎯ due to its inhibition of nitrate reductase and lower 

energy requirement for use (McCarthy et al. 1977, Losada & Guerrero 1979, 

Syrett 1981).  However, studies have shown that inhibition of NO3⎯ uptake is 

rarely as complete or as common as sometimes believed (reviewed in Dortch 

1990).  Uptake and reduction of NO3⎯ can be uncoupled and diatoms in particular 

take up large amounts of NO3⎯ especially under high light, low temperature 

conditions (DeManche et al. 1979, Dortch et al. 1979, Collos 1982, Lomas & 

Glibert 1999, 2000).  Diatoms are known to grow equally well on NH4
+ and NO3⎯ 

(Eppley & Renger 1974) and studies on phytoplankton assemblages show 

utilization of whatever nitrogen source is readily available (McCarthy et al. 1977, 

Dortch 1990).  Uptake rates of NO3⎯, NH4
+ and urea by diatoms vary considerably 

and depend on the physiological state of the cell, but uptake of all three nitrogen 
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species in diatoms has been documented (Eppley et al. 1969, McCarthy 1972).  

All of these findings are reflected in the current data by the ability of all strains to 

grow on all nitrogen sources given.   

These results demonstrate the ability of Pseudo-nitzschia to grow and 

become toxic on multiple nitrogen sources.  P. multiseries can grow on NH4
+, 

NO3⎯, urea, glutamine and NO2⎯ with NH4
+ supporting the slowest growth 

(Hillebrand & Sommer 1996).  NH4
+ concentrations above 200 μM do not support 

growth due to NH4
+ toxicity (Hillebrand & Sommer 1996), and only at NH4

+ 

concentrations of 55 - 110 μM were growth rates comparable to those in NO3⎯ 

(Bates et al. 1993a).  The present study used 88 μM nitrogen.  Growth rates (d-1) 

for P. multiseries were slightly less (0.36 - 0.33 for NH4
+, 0.42 – 0.55 for NO3⎯ 

and 0.38 – 0.60 for urea) than those in our experiments (0.61 – 0.76 for NH4
+, 

0.45 – 0.8 for NO3⎯ and 0.3 – 0.68 for urea; Hillebrand & Sommer 1996).  A 

study of cultured P. australis showed equal growth on NO3⎯ and NH4
+, but 

reduced growth on urea, with the latter culture containing the highest DA 

(Armstrong Howard et al. 2007).   This is unlike any of the present cultures, 

except Pn-12 (P. fraudulenta).  Another study showed higher DA content in P. 

multiseries treated with NH4
+ than NO3⎯ (4.2 pg cell-1 in NH4

+ and ~1.6 pg cell-1 

in NO3⎯ ; Bates et al. 1993a) which is comparable to the DA content in P. 

multiseries  (Pn-1) in our study (4.0 pg cell-1 when grown in NH4
+ and 1.9 pg  

cell-1 when grown in NO3⎯).  These data show that specific growth rate and toxin 

content of Pseudo-nitzschia can be affected by nitrogen source, but cannot be 

predicted based on nitrogen and species.  There is clearly no strain in this study 
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that is representative of the growth response or toxin content of the genus or any 

of the three species.   

There are two important concerns with the toxin samples for the nitrogen 

experiments.  First, even though all cultures were sampled at the same time 

relative to their growth phase, one week after the fluorescence peak is not enough 

time for these strains to reach maximum DA content (Fig. 3.3).  Some of the 

variation between treatment, species and/or strain could be due instead to time of 

sample collection relative to DA production cycle in batch culture.  Second, the 

dissolved DA fraction could have been artificially increased by the filtering 

process.  While the vacuum pressure used to filter samples was low (<130 mm 

Hg), weakened cells in stationary phase could have been lysed, artificially 

increasing the dissolved fraction.  Future experiments might investigate gentler 

separation techniques such as use of dialysis tubing or gravity filtration. 

Statistical analysis (ANOVA) revealed that most variation in toxin content 

and growth rate is due to strain (except particulate DA mL-1) arguing that strain is 

more important than species in defining the physiology of Pseudo-nitzschia.  

However, species was the second most important source of variation.  If more 

species were included in this study, especially more toxic species, this relative 

importance could shift so that species is more important than strain.  The actual 

treatment, nitrogen source, resulted in the lowest source of variation in toxin 

content and growth rate, sometimes lower than the replicate cultures (particulate 

DA and total DA cell-1), but it was responsible for a higher proportion of variation 

in growth rate than in toxin content.  Nitrogen source had more of an effect on 
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particulate and total DA mL-1 than DA cell-1, suggesting that the affect of nitrogen 

source on toxin content is an indirect effect of growth rate on cell abundance.  

Most of the variation in toxin content between the set of strains used in this study 

can be attributed to strain differences, indicating that intraspecies variation is 

larger than interspecies variation especially among low toxin-producing species. 

Toxin content of the present strains was just as variable as growth rate, but 

the fastest growing cultures were not necessarily the most toxic or vice versa 

(Figs. 3.9, 3.10).  Total DA, particulate DA and dissolved DA varied with 

nitrogen source in both of the P. multiseries strains (CLN47, Pn-1) and one of the 

P. fraudulenta strains (Pn-12), with no real pattern or relationship to growth rate.  

For example, the highest DA content in CLN47 (371 fg cell-1) occurred in the 

NO3⎯ treatment, but growth rate was neither the highest nor the lowest on this 

nitrogen source.  This suggests that nitrogen source has an affect on DA 

production besides the direct effect on growth rate.  Previous studies showed a 

relationship between growth rate and DA content using one strain of P. 

multiseries in continuous and batch culture (Pan et al. 1996a,b).  As growth rate 

increased in continuous cultures, DA content decreased.  This study found an 

inverse relationship between growth rate and toxin content only in Pn-9 (Table 

3.6).  Growth rate and toxin content in Pn-1 was found to be positively correlated 

and no relationship was found in the other strains.  However, these experiments 

were performed on stationary phase batch cultures, which are different from 

slowly growing continuous cultures. 
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The growth versus irradiance curves seem to show differences in α and 

μmax among temperature treatments (Fig. 3.8).  However, high variability 

associated with the 20°C treatments render these differences statistically 

insignificant (Table 3.7).  Using a turbidostat to calculate a growth vs. irradiance 

curve (Falkowski et al. 1985) instead of using replicate batch cultures at discrete 

irradiances could result in less error.  Replication could be achieved by collecting 

data for multiple curves instead of replicates of points on a single curve.  Only 

one other study contains μ vs. E data for Pseudo-nitzschia (Pan et al. 1996b), 

where an α of 0.0027 d-1 [μmol photons m-2 sec-1]-1 was observed at 10°C in the 

P. multiseries culture NPBIO, but the curve is not very well described below 200 

μmol photons m-2 sec-1, the light-limiting part of the curve in that study (Fig. 3.8).  

Nevertheless, the α is within the range observed for P. multiseries in the present 

experiments (Table 3.7).  The incomplete curve at 20°C for Pn-15 (Fig. 3.8) can 

be explained by intolerance of this strain to higher temperatures; this strain would 

not adapt to 20°C at low irradiance.  Pn-15 was isolated from cold waters (Table 

3.1) and could represent an ecotype that is adapted to survive at low temperatures.  

Pn-15 had its highest growth rates at 10°C (Fig. 3.8).  A cold-water strain of P. 

granii also did not grow below 100 μmol photons m-2sec-1 at 20°C.  Chlorophyll 

in these P. granii cells decreased above 14°C suggesting that the decline in 

growth rate at lower irradiance may have been due to an inability to capture 

adequate light to support increased enzyme activity associated with higher 

temperatures (El-Sabaawi & Harrison 2006).   
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Both bacteria and culture age can influence toxicity of cultures. We did 

not address variation in epibiotic bacteria, a potential source of variation in toxin 

levels.  For example, two cultures of the same strain (CLN-1 and CLN-1 NRC) of 

P. multiseries that had been maintained in separate laboratories for 2 years 

differed in their epibiotic bacteria and toxin production (Kaczmarska et al. 2005).  

The culture with more diverse bacterial flora produced the most DA (CLN-1).  

Therefore, it is possible that bacteria play an important role in DA content 

variation between strains.  There was also concern that results might be affected 

by differences over time in culture as many physiological properties have been 

known to change with culture age, especially Pseudo-nitzschia toxin production 

(Bates et al. 1999).  However, most of the cultures were approximately the same 

age (one year) during this study (Table 3.9).   

Results do support the following: Defining diatom species based on 

morphology alone can be inadequate.  A more thorough approach is required 

which includes morphological investigations, genetic sequencing, mating 

experiments and physiological experiments (Mann 1999).  Numerous Pseudo-

nitzschia spp. have been described by combinations of morphology and gene 

sequences (Lundholm et al. 2002a,b, 2003, 2006, Lundholm & Moestrup 2002).  

Only one Pseudo-nitzschia study combines morphology, genetic sequencing and 

mating experiments (Amato et al. 2007).  As the impact of strain differences is 

recognized, diatom studies should include an investigation of the biological and 

phylogenetic species concepts in addition to the more traditional morphological 

species concept (e.g., Behnke et al. 2004, Mann et al. 2004). 
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The ability of Pseudo-nitzschia to grow under multiple nitrogen, light and 

temperature conditions indicates a broad ecological niche.  Not all strains were 

able to grow optimally under all treatments, but at least one strain did grow 

optimally under all conditions tested.  This, in combination with high genetic 

variability in natural populations (Evans et al. 2005), suggests that Pseudo-

nitzschia is able to take advantage of multiple regimes in a changing environment.  

These data suggest the existence of multiple ecotypes in natural populations of 

Pseudo-nitzschia, similar to Skeletonema costatum and Ditylum brightwellii 

(Gallagher 1982, Rynearson et al. 2006).  These ecotypes could undergo 

population succession throughout the year.  Since all of the strains tested in this 

study came from the same region, nothing can be concluded about biogeography; 

however, it would be reasonable to investigate strains from multiple regions as 

Pseudo-nitzschia is a cosmopolitan diatom genus (Hasle 2002).  
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 Table 3.1  Cultures of Pseudo-nitzschia spp. used in the present study.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ITS LSU Station Date Temp (°C) Salinity

Pn-1 Pseudo-nitzschia 
multiseries DQ445651 DQ445638 Choptank River 11/18/2002 11 17

Pn-2 Pseudo-nitzschia 
calliantha DQ445652 DQ445639 Choptank River 4/28/2003 15 9

Pn-3 Pseudo-nitzschia 
calliantha DQ445653 DQ445640 Choptank River 4/14/2003 10 11

Pn-4 Pseudo-nitzschia 
calliantha DQ445654 DQ445641 Chesapeake Bay 10/3/2003 21 17

Pn-5 ? Chesapeake Bay 10/3/2003 21 17

Pn-6 Pseudo-nitzschia 
calliantha DQ445655 DQ445642 Chesapeake Bay 10/4/2003 20 12

Pn-7 Pseudo-nitzschia 
calliantha DQ445656 DQ445643 Patuxent River 10/13/2003 20 11

Pn-8 Pseudo-nitzschia 
calliantha DQ445657 DQ445644 Choptank River 10/20/2003 17 10

Pn-9 Pseudo-nitzschia 
fraudulenta DQ445659 DQ445645 Assateague Island 3/28/2004 6 32

Pn-10 Pseudo-nitzschia 
fraudulenta DQ445660 DQ445646 Assateague Island 3/28/2004 6 32

Pn-11 Pseudo-nitzschia 
fraudulenta DQ445661 DQ445647 Assateague Island 3/28/2004 6 32

Pn-12 Pseudo-nitzschia 
fraudulenta DQ445662 DQ445648 Assateague Island 3/28/2004 6 32

Pn-13 Pseudo-nitzschia 
calliantha DQ445658 DQ445649 Choptank River 5/17/2004 23 9

Pn-14 Pseudo-nitzschia 
calliantha Kiptopeke Virginia 11/11/2004 14 30

Pn-15 Pseudo-nitzschia 
fraudulenta DQ445663 DQ445650 Asilomar California 10/7/2005 11 32

CLN47 Pseudo-nitzschia 
multiseries CL147 X CL191b 6/16/2005

Pn-16 Pseudo-nitzschia 
calliantha EF621757 EF621754 Tangier Sound 11/14/2006 13 15

Pn-17 Pseudo-nitzschia 
calliantha EF621758 EF621755 Tangier Sound 11/14/2006 13 15

Pn-18 Pseudo-nitzschia 
calliantha EF621759 EF621756 Tangier Sound 11/14/2006 13 15

GenBank Accession # Collection Site Informationa
Clone Species

aCollection site information column contains data on water samples from which 
cultures were isolated. 
bStrain CLN47 was isolated after sexual reproduction between strains CL147 
and CL191. 
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 Table 3.4  Nested ANOVA tables for growth and toxicity experiments using 
different nitrogen sources.   
Growth (Fig. 3.5) df SS MS F P
nitrogen 2 1.22 0.611 77.1 <0.001
species nested in nitrogen 6 1.79 0.298 37.6 <0.001
strain nested in species nested in nitrogen 18 3.39 0.188 23.7 <0.001
replicate cultures 106 0.84 0.008

Dissolved DA cell-1 (Fig. 3.7) df SS MS F P
nitrogen 2 1751435 875717 216.7 <0.001
species nested in nitrogen 6 6875495 1145916 283.5 <0.001
strain nested in species nested in nitrogen 6 12139455 2023243 500.6 <0.001
replicate cultures 56 226342 4042

Dissolved DA mL-1 (Fig. 3.6) df SS MS F P
nitrogen 2 4038 2019 180.5 <0.001
species nested in nitrogen 6 16393 2732 244.3 <0.001
strain nested in species nested in nitrogen 6 28338 4723 422.3 <0.001
replicate cultures 56 626 11

Particulate DA cell-1 (Fig. 3.7) df SS MS F P
nitrogen 2 935125 467562 13.8 <0.001
species nested in nitrogen 6 8974923 1495821 44.3 <0.001
strain nested in species nested in nitrogen 6 10097263 1682877 49.8 <0.001
replicate cultures 58 1958029 33759

Particulate DA mL-1 (Fig. 3.6) df SS MS F P
nitrogen 2 3522 1761 15.5 <0.001
species nested in nitrogen 6 31698 5283 46.5 <0.001
strain nested in species nested in nitrogen 6 18149 3025 26.6 <0.001
replicate cultures 58 6595 114

Total DA cell-1 (Fig. 3.7) df SS MS F P
nitrogen 2 136266 68133 1.7 0.200
species nested in nitrogen 6 21394034 3565672 87.8 <0.001
strain nested in species nested in nitrogen 6 28286001 4714333 116.1 <0.001
replicate cultures 60 2436325 40605

Total DA mL-1 (Fig. 3.6) df SS MS F P
nitrogen 2 11648 5824 67.3 <0.001
species nested in nitrogen 6 85654 14276 165.0 <0.001
strain nested in species nested in nitrogen 6 90050 15008 173.5 <0.001
replicate cultures 56 4845 87
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Table 3.8  Replicates (n) for experiments testing growth and 
toxin production in cultures grown on different nitrogen sources.  
Data is in Figures 3.5, 3.6 and 3.7. 

areplicates for the particulate fraction  
breplicates for the dissolved fraction 
 

NO3⎯ NH4
+ urea NO3⎯ NH4

+ urea
Pn-1 P. multiseries 5a/5b 5/5 5/5 5 5 5
Pn-3 P. calliantha 4 5 5
Pn-8 P. calliantha 5/5 5/5 5/5
Pn-9 P. fraudulenta 5/5 3/5 4/4 5 5 5
Pn-10 P. fraudulenta 5 5 4
Pn-11 P. fraudulenta 5 5 5
Pn-12 P. fraudulenta 5/5 5/4 5/5 5 5 5
Pn-13 P. calliantha 5 5 5
Pn-15 P. fraudulenta 5 5 5

CLN47 P. multiseries 5/5 5/5 5/5 5 5 5

toxin growth
Strain Species
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Table 3.9  Age of cultures in years at the time of 
experimentation.   

aResults in Figures 3.3 and 3.4  
bResults in Figures 3.5, 3.6 and 3.7 
cResults in Figure 3.8.  

Toxina Nitrogenb Irradiancec

Pn-1 P. multiseries 1.5 2.5 2.2
Pn-3 P. calliantha 1
Pn-4 P. calliantha 0.3
Pn-6 P. calliantha 0.3
Pn-7 P. calliantha 0.5
Pn-8 P. calliantha 0.5 1.5
Pn-9 P. fraudulenta 0.25 1.2
Pn-10 P. fraudulenta 0.75 1.2
Pn-11 P. fraudulenta 0.75 1.2
Pn-12 P. fraudulenta 0.75 1.3
Pn-13 P. calliantha 0.6 1
Pn-15 P. fraudulenta 0.25 0.2 0.5

CLN47 P. multiseries 1.2 1.3 1.5
Pn-16 P. calliantha 0.2
Pn-17 P.calliantha 0.2

Strain Species
Culture Age (year)
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LOQ LOD LOQ LOD
A 1 375 345 115
B 1 163.2 54.4 1020 340

2 28.8 9.6 1020 340
3 792 264 1020 340
4 792 264 396 132

C 1 375 420 140
2 375 1020 340
3 375 1165 388.3

D 1 111.2 37 1165 388.3
2 28.4 9.47 420 140

E 1 55.2 18.4 345 115
2 44.8 14.9 345 115
3 55.2 18.4 1020 340
4 28.8 9.6 1020 340

F 1 111.2 37 420 140
2 34 11.3 420 140

particulate dissolvedPanel Number

Table 3.10  Limit of quantitation and limit of detection for 
ELISA method used to analyze data presented in Figs. 3.3 and 
3.4.  Particulate DA for Panel A and Panel C were obtained via 
HPLC, thus no LOD is presented. 



 

 Fig. 3.1  TEM micrographs of digested frustules of Pseudo-nitzschia cultures.  A, 
B and C (scale bar = 1 μm) show arrangement of poroids.  D, E and F (scale bar = 
5μm) show presence or absence of central interspace and transapical axis.  A and 
F are P. fraudulenta (Pn-12), B and E are P. calliantha (Pn-13) and C and D are 
P. multiseries (Pn-1).   
 
 
 
 
 
 

F 

E 

D 

CA B
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Fig. 3.2  Parsimony tree inferred for the D1-D3 variable region of LSU (A; 720 
positions included) and for the ITS1-5.8S-ITS2 region (B; approx. 990 positions 
included) from Chesapeake Bay isolates of Pseudo-nitzschia (in bold) and 
sequence data available on GenBank.  Analysis was performed using heuristic 
searches (25X random addition of sequences) with TBR (tree bisection and 
reconnection) branch swapping.  Gaps were treated as a fifth character state in 
figure 3.2A, and the approximate number of character changes are shown on 
branches.  Each species includes culture identification, location and GenBank 
accession number.  
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Fig. 3.3  Abundance (open squares) and DA concentration normalized to culture 
volume (diamonds) over time in six Pseudo-nitzschia strains of three species 
grown in silicate-limited medium with NO3⎯ as a nitrogen source.  DA 
concentrations represent the sum of particulate and dissolved fractions.  Open 
diamonds represent semi-quantitative data (<LOQ, but >LOD).  Closed diamonds 
represent quantitative values (>LOQ). Numbers shown within diamonds indicate 
LOD and LOQ for each sample in pg mL-1 which can be found in Table 3.10.  
Zero values were plotted as values of one.  (A) Pn-1, P. multiseries.  (B) CLN47, 
P. multiseries.  (C) Pn-8, P. calliantha.    (D) Pn-3, P. calliantha.  (E) Pn-12, P. 
fraudulenta.  (F) Pn-9, P. fraudulenta.   
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Fig. 3.4  Abundance (open squares) and DA concentration normalized to cell 
number (diamonds) over time in six Pseudo-nitzschia strains of three species.  DA 
concentrations represent the sum of particulate and dissolved fractions.  Closed 
diamonds represent quantitative values (definitions as in Fig. 3.3). LOD and LOQ 
for each sample are given in Table 3.10.  Zero values were plotted as values of 1.  
(A) Pn-1, P. multiseries.  (B) CLN47, P. multiseries.  Open diamonds indicate 
samples where dissolved fraction was below LOQ.  (C) Pn-8, P. calliantha.  (D) 
Pn-3, P. calliantha.  (E) Pn-12, P. fraudulenta.  (F) Pn-9, P. fraudulenta.   
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Fig. 3.5  Specific growth rates (μ) for strains of Pseudo-nitzschia grown on NO3⎯, 
NH4

+ and urea.  Error bars represent one SD.  Means with identical letters above 
bars are not significantly different at 0.05 using Tukey’s studentized range test for 
each strain.  Strain designations are given along the x axis and species names are 
given at the top of the figure.  Replication is shown in Table 3.8. 
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Fig. 3.6  DA content (ng mL-1) one week after fluorescence peak in strains of 
Pseudo-nitzschia grown on NO3⎯, NH4

+ and urea in silicate-limited media.  Filled 
bars show particulate DA and open bars show dissolved DA.  Error bars represent 
one SD.  Letters showing significant difference are in Table 3.5.  Replication is 
shown in Table 3.8. Note the differences in scale.  (A) Pn-1, P. multiseries (B) 
CLN47, P. multiseries. Mean dissolved DA in NH4

+ and urea treatments contain 
semi-quantitative data (<LOQ, but >LOD). (C) Pn-8, P. calliantha.  Mean 
dissolved DA in the NH4

+ treatment contains semi-quantitative data. (D) Pn-12, P. 
fraudulenta.  Mean dissolved DA in the NH4

+ and NO3⎯ treatments and particulate 
DA in the NO3⎯ and urea treatments contain semi-quantitative data. (E) Pn-9, P. 
fraudulenta.  Mean dissolved DA in all treatments and particulate DA in the NO3⎯ 
treatment contain semi-quantitative data. 
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Fig. 3.7  DA content (fg cell-1) one week after fluorescence peak for strains of 
Pseudo-nitzschia grown on NO3⎯, NH4

+ and urea in silicate limited media.  Filled 
bars show particulate DA and open bars show dissolved DA.  Error bars represent 
one SD.  Letters showing significant difference are in Table 3.5.  Replication is 
shown in Table 3.8. Note the difference in scale.  (A) Pn-1, P. multiseries (B) 
CLN47, P. multiseries. Mean dissolved DA in NH4

+ and urea treatments contain 
semi-quantitative data (<LOQ, but >LOD). (C) Pn-8, P. calliantha. Mean 
dissolved DA in the NH4

+ treatment contains semi-quantitative data. (D) Pn-12, P. 
fraudulenta. Mean dissolved DA in the NH4

+ and NO3⎯ treatments and particulate 
DA in the NO3⎯ and urea treatments contain semi-quantitative data. (E) Pn-9, P. 
fraudulenta. Mean dissolved DA in all treatments and particulate DA in the NO3⎯ 
treatment contain semi-quantitative data. 
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Fig. 3.8  Growth vs. irradiance curves for three strains of two species of Pseudo-
nitzschia at three temperatures (10°, 15°, 20°C) in nutrient replete medium. (A) 
Pn-1, P. multiseries (B) CLN47, P. multiseries (C) Pn-15, P. fraudulenta.  
Photosynthetic parameters derived from curves are summarized in Table 3.7. 
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Figure 3.9  Growth rates in exponential phase (shaded bars) and total DA content 
(ng mL-1; open bars) one week after fluorescence peak in strains of Pseudo-
nitzschia grown in batch culture on NO3⎯, NH4

+ and urea in silicate-limited media.  
Error bars represent one SD.  Spearman’s correlation coefficients are in Table 3.6.  
Replication is shown in Table 3.8.  Note the difference in scale.  (A) Pn-1, P. 
multiseries (B) CLN47, P. multiseries. (C) Pn-8, P. calliantha. (D) Pn-12, P. 
fraudulenta. (E) Pn-9, P. fraudulenta.  
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Figure 3.10  Growth rates in exponential phase (shaded bars) and total DA 
content (fg cell-1; open bars) one week after fluorescence peak in strains of 
Pseudo-nitzschia grown in batch culture on NO3⎯, NH4

+ and urea in silicate-
limited media.  Error bars represent one SD.  Spearman’s correlation coefficients 
are in Table 3.6.  Replication is shown in Table 3.8.  Note the difference in scale.  
(A) Pn-1, P. multiseries (B) CLN47, P. multiseries. (C) Pn-8, P. calliantha. (D) 
Pn-12, P. fraudulenta. (E) Pn-9, P. fraudulenta. 
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Chapter 4: The effect of a rapid increase in irradiance 

on domoic acid production and nitrate uptake by 
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Abstract 

  Pseudo-nitzschia are diatoms that can be found worldwide, but are 

common and often toxic during periods of low temperature and rapid fluctuations 

in irradiance such as spring and fall and in upwelling zones.  It has previously 

been shown that diatoms differ from flagellates and green algae in their carbon 

and nutrient assimilation and their ability to cope with rapid increases in 

irradiance.  These differences could explain the dominance of diatoms in cool, 

high nutrient, well-mixed environments.  A batch culture of Pseudo-nitzschia 

multiseries was exposed to a 10-fold increase in light (from 20 to 200 μmol 

photons m-2sec-1) at 15°C during exponential and stationary growth phase to 

investigate the relationship between high light stress, NO3⎯ reduction and DA 

production.  Of the nitrogen taken up as NO3⎯ from the surrounding media, 3.3% 

was released as NO2⎯ and 4.8% was released as NH4
+.  There was no change in 

cellular carbon or nitrogen.  DA was not produced in the high light treatment, but 

was produced at a rate of 1.18 X 10-4 pg DA cell-1hr-1 in the low light controls.  

Stationary phase cultures did not take up NO3⎯ or release NO2⎯ and NH4
+.  

Pseudo-nitzschia does increase NO3⎯ uptake during periods of low temperature 

and high irradiance, but subsequent NH4
+ release and electron consumption is 

very low.  These results may be due to xanthophyll cycling preventing a rapid 

increase in light harvesting.  
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Introduction 

Marine diatoms often form large blooms during periods of low 

temperature, turbulent mixing and high, pulsed NO3⎯ delivery, such as spring, fall 

turnover and in upwelling zones.  Often under these conditions, the mixed layer 

depth exceeds the depth of the euphotic zone, exposing these diatom-dominated 

populations to rapidly and widely changing irradiance levels from darkness to full 

sunlight.  The dominance of diatoms under these conditions has been explained 

ecologically as the result of high growth rates or ability to compete for pulsed 

nutrients (Margalef 1978).  Physiological adaptations allowing for diatom 

dominance under these conditions have been investigated but are not well 

understood.  For example, field studies show diatoms have a higher 

photosynthetic efficiency than green algae under fluctuating light conditions 

(Wagner et al. 2006).  Laboratory studies of the xanthophyll cycle in diatoms 

show that a rapid increase in light intensity can be dissipated quickly by non-

photochemical quenching (Lavaud et al. 2004).  Some studies propose a 

physiological model linking NO3⎯ uptake in excess of growth, light fluctuation 

and low temperature (Lomas & Glibert 1999, Lomas et al. 2000).   

Cells exposed to rapid and wide fluctuations in light can experience 

transient energy stress due to imbalances between light harvesting and energy 

utilization.  This stress can be increased by temperature limitation of metabolic 

enzymes such as RUBISCO (Lomas & Glibert 1999).  In order to be successful in 

these cool, well mixed environments, cells would need a strategy to cope with 

irradiance widely fluctuating on short time scales.  One possible means of coping 
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with such stress is luxury uptake and subsequent reduction of NO3⎯.  Previous 

studies found a negative relationship between NO3⎯ uptake and temperature in 

natural assemblages dominated by diatoms during short-term periods of rapid 

light increase (Lomas & Glibert 1999).  Laboratory experiments also showed 

NO3⎯ uptake in diatom cultures exposed to a rapid increase in irradiance (from 40-

120 μmol photons m-2sec-1 to 300-750 μmol photons m-2sec-1) at low temperature 

(Lomas et al. 2000).  If diatoms are reducing NO3⎯ to modulate electron flow 

during periods of rapid irradiance shifts that could explain the dominance of 

diatoms in regions of cool temperatures, high NO3⎯ and turbulent mixing.  In fact, 

experimentally derived temperature optima for nitrate reductase in diatoms ranged 

from 10-22.2°C (Kristiansen 1983, Lomas & Glibert 2000) and diatom cultures 

that took up NO3 under low temperature high light conditions also released NO2⎯ 

and NH4
+ (Lomas et al. 2000). 

Flagellates exhibit a different nitrogen uptake and release pattern under 

similar low temperature high light conditions.  While cultured diatoms take up 

large amounts of NO3⎯ and subsequently release NO2⎯ and NH4
+, cultured 

flagellates took up NO3⎯ and NH4
+ without release of NO2⎯ or NH4

+ (Lomas & 

Glibert 2000, Lomas et al. 2000).  The experimentally derived temperature 

optimum for nitrate reductase in flagellates is 19.9-30.1°C (Lomas & Glibert 

2000), higher than nitrate reductase in diatoms.  These results show a difference 

in nitrogen uptake between flagellates and diatoms that could explain diatom 

dominance of cool, high NO3⎯ and turbulent waters such as during seasonal 

turnover and upwelling events.  
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Pseudo-nitzschia is one of the diatom genera that often blooms during the 

spring and fall and in upwelling zones, suggesting that this genus also has a cold-

water adaptation.  Since Pseudo-nitzschia is known to produce the amino acid-

based neurotoxin, domoic acid (DA), changes in nitrogen metabolism such as 

those described above could play an important role in DA production.  If Pseudo-

nitzschia reduces NO3⎯ as a cold water adaptation, could the reduced form of 

nitrogen later released be DA instead of NH4
+?  DA concentrations in natural 

samples can be higher under low temperature, turbulent conditions, suggesting 

such an effect on toxin production (Trainer et al. 2000).  In addition, DA 

production is a very energy intensive process that could be used to consume 

electrons.   

Some of the direct effects of light and temperature on DA production have 

already been investigated.  Cells need at least 100 μmol photons m-2 sec-1 to 

produce maximal amounts of DA (Bates 1998).  Laboratory studies have shown 

that DA production slows at lower temperatures, but P. multiseries can still 

produce DA at 0°C (Bates et al. 1991, Smith et al. 1993).  Previous studies on the 

effects of light and temperature on DA production allow time for adaptation 

before sampling, thereby missing any potential stress response.   The effect of 

rapid increases in irradiance at low temperatures on DA production has not been 

investigated.    
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Materials and Methods 

Growth vs. Irradiance Parameters 

Before experimental irradiances could be chosen, growth versus irradiance 

parameters had to be determined.  The experimental strain (P. multiseries, 

CLN47) was adapted through two batch culture generations to the experimental 

temperature and irradiance.  The experiment was performed in f/2* (Andersen et 

al. 1997) media at a salinity of 32 in five replicate 10 mL glass tubes at each 

discreet irradiance.  Treatments started at 20 μmol photons m-2 sec-1 and increased 

at approximately 50 μmol photons m-2 sec-1 intervals until growth rate saturation.  

Chlorophyll a was monitored at the same time daily by in vivo fluorescence and 

used to calculate specific growth rates (Wood et al. 2005).  Replicates were 

averaged and a standard deviation was calculated.  The data were fitted to a non-

linear least squares regression using an equation initially derived for 

photosynthesis (Platt et al. 1980) and modified to describe growth: 

μ = μo + μmax(1 – e((-Eα)/μmax))e((-Eβ)/μmax)  

where μo is the y intercept, μmax is the maximum potential growth rate (d-1), α is 

the initial light-limited slope (d-1 [μmol photons m-2 sec-1]-1), E is the irradiance 

(μmol photons m-2 sec-1) and β (d-1 [μmol photons m-2 sec-1]-1) is the slope of the 

photoinhibited part of the curve.  Ek, the irradiance saturating for growth, was 

calculated for each temperature treatment by dividing μmax by α (Fig. 4.1; Table 

4.1). 
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Culture Maintenance 

One strain of P. multiseries, CLN47, was maintained in natural seawater 

media amended with f/2* at 15°C at the irradiance which was half saturation for 

growth, 20 μmol photons m-2 sec-1 (Fig. 4.1; Table 4.1) set to a 14:10 L:D cycle 

for several months.  Cells were grown in batch culture and growth phase was 

monitored at the same time daily via in vivo fluorescence of a subsample.  Culture 

volumes were increased for experimentation by adding a volume of stationary 

phase inoculum that was 7-8% of the volume of the fresh media at each transfer 

(30 mL to 50 mL to 700 mL to 10 L).  Media for the 10 L experimental culture 

was supplemented with f/2* levels of all nutrients except NO3⎯, which was added 

to the medium to obtain 88 μM total NO3⎯ concentration.  The flask was air 

bubbled and growth was monitored at the same time daily via in vivo fluorescence 

of a subsample.  All glassware used in culturing was acid washed in 10% HCl 

overnight and rinsed with distilled deionized water before use. 

 

Experimental Procedure 

Two experimental 10 L cultures were used sequentially, one during 

exponential phase and another during stationary phase of growth.  All glassware, 

graduated cylinders, sample collection vials and the sample collection apparatus 

were acid washed in 10% HCl and rinsed with distilled deionized water prior to 

the experiment and then rinsed with culture just before use.  For the exponential 

phase experiment, when there was approximately 20 μM NO3⎯ left in the growth 

media, 600 mL was removed using a graduated cylinder, poured into a 1 L glass 
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Erlenmeyer flask and kept in 20 μmol photons m-2 sec-1.  This was repeated for 6 

replicate flasks.  Preserved samples (15 mL, 1% gluteraldehyde) were collected 

from each flask by pipette before the start of the experiment.  At t = 0, all flasks 

were spiked with NO3⎯ to bring concentrations to 75 μM (exponential) or 35 μM 

(stationary).  Three control flasks were left in low irradiance while three treatment 

flasks were immediately placed in 200 μmol photons m-2 sec-1 irradiance, which is 

higher than Ek and a ten-fold increase above the adapted, half-saturation 

irradiance (Fig. 4.1; Table 4.1).  All flasks were sampled for NO3⎯, NO2⎯, NH4
+, 

CHN (to quantify particulate carbon and nitrogen) and DA analysis at t = 0.  

Dissolved and particulate nitrogen samples were filtered using a light vacuum 

(<100 mm Hg) and precombusted (450°C for 1 h) Whatman GF/F glass fiber 

filters.  DA samples were gravity filtered onto Whatman GF/F filters.  Both the 

filter and the filtrate were frozen.  Samples for NO2⎯, NH4
+ and DA were 

collected at t = 30 min and t = 60 min and at time t = 180 min, the NO3⎯ and CHN 

samples were again collected.  Another preserved sample was removed from each 

flask after the t = 180 min sampling.  An additional DA sample was taken at t = 

390 min.  The procedure was repeated in its entirety for the culture in stationary 

phase of growth. 

 

Sample Analysis 

Samples were analyzed for inorganic nitrogen (NO3⎯, NO2⎯ and NH4
+) 

using a Technicon AutoAnalyzer II (USEPA 1979, Lane et al. 2000).  Particulate 

carbon and nitrogen were quantified using a CE-440 Elemental Analyzer (Exeter 
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Analytical Inc. Chelmsford, Massachusetts).  Analytical resolution and limit of 

detection for each analysis can be found in Table 3.2.  DA samples were analyzed 

using an ELISA ASP test kit (Biosense, Norway) for particulate (DA within the 

cell and therefore on the filter) and dissolved (DA released from the cell and 

therefore in the media) fractions.  Particulate and dissolved DA were summed to 

get total DA.  Preserved samples were filtered onto a 2 μm polycarbonate filter 

and placed onto a glass microscope slide with immersion oil and cover slip for 

enumeration of Pseudo-nitzschia using an epifluorescence microscope (excitation 

450-490 nm, dichromatic beam splitter 500 nm, barrier filter 515nm; Nikon filter 

set EF-4 B-2A). 

 

Statistical Analysis 

Differences between treatments and controls and changes over time were 

determined by one way ANOVA using Fisher’s LSD test for multiple 

comparisons at the 5% level (SigmaStat ver. 3.1, Systat Inc., San Diego, CA, 

USA).  Separate one way ANOVAs were performed on the DA data, testing 

differences in the treatment and control flasks at t = 0, treatment flasks at t = 0 

and t = 390 min and control flasks at t = 0 and t = 390 min.  When data were not 

normally distributed a Kruskal-Wallis ANOVA on ranks was performed.   
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Results 

Exponential Phase 

After the 180 min exposure to higher irradiance, NO3⎯ concentrations in 

treatment flasks were reduced by 14 ± 8 μM and increased by 10 ± 4 μM in the 

control (Fig. 4.2).  NO2⎯ concentrations increased by 0.6 ± 0.3 μM in the 

experimental media while NO2⎯ in the control flasks remained unchanged over 

180 min (Fig. 4.3).  NH4
+ concentrations in treatment flasks increased by 0.7 ± 

0.3 μM after 30 minutes and decreased by 0.5 ± 0.3 μM in control flasks after 180 

min (Fig. 4.4).  Carbon and nitrogen within the cells were the same in treatments 

and controls and remained unchanged throughout the course of the experiment 

(Figs. 4.5, 4.6) 

DA was present in the culture before initiation of the experiment.  The 

cells were in late exponential phase, a time when this culture can produce DA 

(Chapter 3, this thesis).  Particulate, dissolved and total DA were not different in 

treatment and control flasks at t = 0 (p > 0.05).  Particulate and total DA increased 

over the course of the experiment in control flasks only; dissolved DA did not (p 

= 0.013, 0.014 and 0.450, respectively).  At the end of the experiment, cells in the 

control flasks increased particulate DA by 0.05 ± 0.003 pg cell-1 with a production 

rate of 1.18 X 10-4 pg DA cell-1hr-1 (Fig. 4.7). 

 

Stationary Phase 

During stationary phase, treatment flasks did not have different NO3⎯ 

concentrations after 180 min of exposure to high light (Fig. 4.2).  NO2⎯and NH4
+ 
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concentrations did not increase in treatment flasks (Figs. 4.3 and 4.4).  Carbon 

and nitrogen within the cells also did not change over time (Figs. 4.5 and 4.6).  

Since this experiment was conducted during stationary phase of growth, DA 

levels were higher than in the exponential phase experiment (p = 0.002) and 

increased in the dissolved fraction. At the end of the experiment, particulate and 

total DA had not changed in the treatments nor the controls (p > 0.05) and 

dissolved DA had increased in the treatment flasks (p = 0.008; Fig. 4.7). 

 

Discussion 

Dissolved Inorganic Nitrogen Release 

Exponentially growing cells in the treatment flasks reduced the NO3⎯ in 

the media by 20%.  Release of NO2⎯ as a percentage of NO3⎯ uptake was 3.3% 

and release of NH4
+ as a percentage of NO3⎯ uptake was 4.8%.  More than 90% of 

the nitrogen taken up as NO3⎯ in the treatment flasks was unaccounted for by the 

NO2⎯, NH4
+, CHN and DA samples collected.  Lack of a statistically significant 

increase in nitrogen within the cell suggests that the nitrogen was released, but not 

as NO3⎯, NO2⎯, NH4
+ or DA.  However, if the statistical result is ignored and an 

increase in particulate nitrogen is calculated using the average nitrogen content of 

the cells at t = 0 and t = 180 min (Fig. 4.6), the result is an increase in cellular 

nitrogen by ~3 pg N cell-1.  This could account for the 90% of the nitrogen taken 

up as NO3⎯, but not released as NO2⎯, NH4
+ or DA, if the increase in cellular 

nitrogen is real.   
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This experiment was designed to be comparable to the irradiance shift 

experiments in Lomas et al. (2000).  Both studies exposed diatoms adapted to an 

irradiance that is half-saturation for growth of the specific strain to an immediate 

10 fold increase in irradiance at 15°C.  The diatoms used in Lomas et al. (2000) 

were Thalassiosira weissflogii (CCMP1047), Skeletonema costatum (CCMP1332) 

and a Chaetoceros sp. with half-saturating irradiances from 40-120 μmol photons 

m-2 sec-1, which is higher than the half-saturating irradiance for the P. multiseries 

strain used in this experiment, CLN47.  The Lomas et al. (2000) study used 50-70 

μmol photons m-2 sec-1 in the control and 500-700 μmol photons m-2 sec-1 in the 

treatment, which is much higher than the treatment irradiances used in this study 

(200 μmol photons m-2 sec-1).  However, PAR (photosynthetically available 

radiation) in the Chesapeake Bay in winter and spring can be > 1000 μmol 

photons m-2 sec-1 at the surface (www.chesapeakebay.net) which is much higher 

than the light levels used in either experiment. 

All diatom strains used in this study and the Lomas et al. (2000) study 

took up NO3⎯ after the irradiance shift up.  The important difference between the 

Lomas et al. (2000) study and these results is the NH4
+ release.  Release of NO2⎯ 

as a percentage of NO3⎯ uptake is slightly higher in this study (3.3%) than for 

Chaetoceros sp. (2.2%), the same as release in T. weissflogii and slightly less than 

for S. costatum (3.9%).  Release of NH4
+ as a percentage of NO3⎯ uptake is much 

lower in this study (4.8%) than for T. weissflogii (76.8%) and S. costatum (49.6%) 

but higher than for Chaetoceros sp. which did not release NH4
+.  These 

differences have important consequences energetically.  Lomas et al. (2000) 
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calculated that 1-62% of the electrons harvested in the experimental irradiance 

were consumed to support the observed increase in NO2⎯ and NH4
+.  The strains 

that released the most NH4
+ consumed the most electrons.   A similar calculation 

was performed for P. multiseries in this study using the equation:  

Electrons produced = ETa*0.5 

Where E is the irradiance (mol photons m-2 sec-1), T is time (s), a* is the 

chlorophyll-specific absorption (m2 mg-1 Chl a) and 0.5 is a constant (Falkowski 

& Raven 1997).  Chlorophyll-specific absorption has not been measured for 

Pseudo-nitzschia, so a high (0.028) and a low (0.004) a* value for other diatoms 

in the literature were used (Falkowski et al. 1985, Sakshaug et al. 1991).  

Electrons consumed were calculated by multiplying the cell specific NO2⎯ and 

NH4
+ release by 4 and 10, respectively (Lomas et al. 2000), representing the 

relative number of electrons needed for transport and reduction.  Electrons 

consumed to reduce NO3⎯ to NO2⎯ and NO2⎯ to NH4
+, to produce the 

concentrations found in the media at t = 180 min, were a negligible fraction 

(<<1%) of the electrons harvested in 200 μmol photons m-2sec-1 irradiance over 3 

h.  While P. multseries took up NO3⎯ and released NO2⎯ and NH4
+, the amount of 

NH4
+ released and the amount of electrons consumed were much less than the 

diatoms in Lomas et al. (2000).  This argues against the reduction of NO3⎯ into 

NO2⎯ and NO2⎯ into NH4
+ as an adaptive energy dissipation pathway in P. 

multiseries strain CLN47 under these experimental conditions. 

When grown in a specific irradiance for long periods of time, 

photosynthetic cells have the capability to photoacclimate to the given light 

 153



regime.  This means changing either the size or number of photosynthetic units 

(Falkowski & Raven 1997).  In microalgae, chlorophyll per cell can increase 5 – 

10 fold in low irradiance (Falkowski 1980, Richardson et al. 1983).  An increase 

in pigments could have enabled the cells in this study to dissipate excess light 

energy via the xanthophyll cycle instead of via nitrate reduction (Hagar & 

Stransky 1970).  This process, whereby accessory carotenoid pigments absorb 

energy (specifically diadinoxanthin), effectively reduces the size of the 

photosynthetic unit at high light, i.e., Ek increases (Falkowski & Raven 1997).  

Specifically, photons are absorbed by the pigment diadinoxanthin and used to 

convert to diatoxanthin instead of participating in photosystem II.  This type of 

photoprotective mechanism has been documented in laboratory cultures and 

natural populations of diatoms.  For example, field studies in Baffin Bay show 

that at low temperatures, phytoplankton in the high light surface waters had 

increased pools of diadinoxanthin cycle pigments and higher nonphotochemical 

quenching than phytoplankton at depth (Kashino et al. 2002).   

The amount of xanthophyll cycle pigments available for use can depend 

on the light regime to which a cell is acclimated.  Diatoms grown in the laboratory 

in a high irradiance (100 μmol photons m-2 sec-1) have larger pools of 

diadinoxanthin cycle pigments than diatoms grown in low irradiance (7 μmol 

photons m-2 sec-1; Schumann et al. 2007) and diatoms acclimated to multiple light 

cycles in a 24 h period have larger pools of diadinoxanthin cycle pigments than 

diatoms acclimated to a single diel light cycle (40 μmol photons m-2 sec-1; Lavaud 

et al. 2002).  This suggests that a cell acclimated to constant low light would 

 154



contain lower quantities of diadinoxanthin cycle pigments and would be less able 

to dissipate electrons via this mechanism.  However, a study of five species of 

diatoms acclimated to 40 μmol photons m-2 sec-1 showed de-epoxidation of 

diadinoxanthin within minutes of being exposed to 2000 μmol photons m-2 sec-1 

(Lavaud et al. 2004).  This suggests that diatoms acclimated to constant low light 

can dissipate excess energy via the xanthophyll cycle.  It is unclear if the low light 

acclimated cells in this study contained enough diadinoxanthin to dissipate a rapid 

10 fold increase in irradiance.  Xanthophyll cycling could have been occurring in 

the treatments, which would confound measurement of nitrate reduction as an 

energy dissipation pathway.  Pigments in the low light adapted Pseudo-nitzschia 

in this experiment were not analyzed. 

Increased dissolved inorganic nitrogen release by diatoms during periods 

of cool temperatures, high NO3⎯ availability and high water column turbulence 

can have important ecological implications.  Diatoms have been observed to 

release nitrogen both as NO2⎯ (Collos 1998, Lomas et al. 2000, Singler & 

Villareal 2005) and NH4
+ (Lomas et al. 2000, Singler & Villareal 2005) in 

laboratory experiments and in natural populations.  NO2⎯ excretion by 

phytoplankton in the field is important for the creation of the primary NO2⎯ 

maximum (Al-Qutob et al. 2002, Lomas & Lipschultz 2006) and supporting new 

production in some areas (Singler & Villareal 2005).  In the field, NO2⎯ excretion 

can vary from 4% to 63% of NO3⎯ uptake (Miyazaki et al. 1975, Olson et al. 

1980) and depends on NO3⎯ concentration (Wada & Hattori 1971, Collos & 

Slawyk 1983) and light (Wada & Hattori 1971, Miyazaki et al. 1973, Miyazaki et 
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al. 1975, Olson et al. 1980, Losada et al. 1981).  NO2⎯ release can also be 

stimulated by Fe limitation due to the need for ferrodoxin in nitrite reductase 

(Milligan & Harrison 2000, Singler & Villareal 2005).  In laboratory cultures, 

NO2⎯ release varies from 0 to 50% of NO3⎯ uptake in the light and 0 to 96% in the 

dark (Collos 1998).  Greater NO2⎯ excretion in the dark can be explained by the 

light requirement for ferrodoxin synthesis (Losada et al. 1981).  NO2⎯ release in 

this study was a small fraction of NO3⎯ uptake (3.3%) which is consistent with 

increased light promoting nitrite reductase activity.   

 

Domoic Acid Production 

In these experiments, the production of DA was lower in the treatments 

than in the controls.  This suggests that a high light pulse in combination with low 

temperature can reduce DA production by affecting at least one of the following 

necessary processes: Citric Acid Cycle reactions in the mitochondria, Calvin 

Cycle reactions in the chloroplast and/or NO3⎯ reduction.  The 15 carbon DA 

molecule is synthesized from a 5 carbon glutamate and a 10 carbon geranyl 

phosphate with the help of several enzymes (Laycock et al. 1989, Douglas et al. 

1992, Pan et al. 1998, Ramsey et al. 1998).  One of those enzymes, nitrate 

reductase, in diatoms operates optimally at 10-22°C, which is lower than the 

temperature optimum for another enzyme, RUBISCO (Packard et al. 1971, 

Kristiansen 1983, Dohler 1991, Lomas et al. 2000).  At cool temperatures this 

would provide plenty of NO2⎯ for subsequent reduction by nitrite reductase to 

form NH4
+ which could then be used in glutamate synthesis.  However, 
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RUBISCO drives the Calvin Cycle and, in diatoms, operates optimally at >30°C 

(Li et al. 1984, Smith & Platt 1985, Descolas-Gros & de Billy 1987, Lomas et al. 

2000).  This would limit DA biosynthesis in cool temperatures by reducing 

available geranyl phosphate, which is synthesized via the GAP/pyruvate pathway 

and requires glyceraldehyde 3-phosphate, a product of the Calvin cycle.  In 

addition, a release of NH4
+ into the media (as seen in the Lomas et al. 2000 

experiments) could reduce the glutamate available within the cell for DA 

synthesis.   

In the exponential phase experiments, the DA production rate was lower 

than those reported for other strains of P. multiseries in the laboratory under low 

Fe stress (1.25 X 10-2 pg DA cell-1h-1), toxic Cu stress (3.27 X 10-2 pg DA cell-1 

h-1) and Si stress in continuous culture (0.13 pg DA cell-1h-1; Pan et al. 1996b, 

Maldonado et al. 2002).  Reported production rates of P. multiseries strain 

NPBIO in batch culture under Si limitation (1.26 X 10-3 – 4.0 X 10-5 pg DA  

cell-1h-1) approximate the production rate in this study (Pan et al. 1996a).  In 

stationary phase, DA concentrations were higher and increased in the dissolved 

fraction over time, which is similar to previous batch culture studies showing 

higher DA concentrations in stationary phase and release of DA into the media as 

cell membranes begin to fail (Bates 1998).   

These experiments are a preliminary investigation into an adaptive 

mechanism for coping with high light pulses and low temperature in Pseudo-

nitzschia and the relationship to DA production.   The results show that 

uncoupling growth and photosynthesis via high light pulses suppresses DA 
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production unlike uncoupling growth and photosynthesis through nutrient 

limitation in the laboratory.  This could have important ecological implications for 

natural populations of Pseudo-nitzschia.  Further work is necessary to confirm 

these results.     
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Table 4.2  Analytical resolution and limit of detection for dissolved in
nitrogen. 

Table 4.1  Growth vs. Irradiance curve (Fig. 4.1) parameters for P. 
multiseries strain CLN47 grown at 15°C.  Parameter values are given 
with standard error in parentheses. 

Parameter Value Unit
α 0.0109 (0.0025) d-1[μmol photons m-2 sec-1]-1

β 0 d-1[μmol photons m-2 sec-1]-1

μmax 0.33 (0.057) d-1

Ek 30 (12.0) μmol photons m-2 sec-1
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Table 4.2  Analytical resolution and limit of detection for dissolved inorganic 
nitrogen. 

Analysis
Analytical 
resolutiona Limit of detectionb Unit

Dissolved ammonium 0.06 0.21 μM
Dissolved nitrite and nitrate <0.01 0.01 μM
Dissolved nitrite 0.01 0.03 μM
Particulate carbon 0.02 0.06 pg cell-1

Particulate nitrogen <0.01 0.003 pg cell-1

aAnalytical resolution calculated as the standard deviation of seven replicates 
collected from one container 
bLimit of detection calculated as the standard deviation*3 
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Figure 4.1  Growth (μ) versus Irradiance (μmol photons m-2 sec-1) curve 
for P. multiseries strain (CLN47) used in this experiment at 15°C. 
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Figure 4.2  Concentrations (μM) of NO3⎯ in (A) exponential and (B) stationary 
phase experiments in treatment (open bar) and control (closed bar) flasks after 
180 minutes.  * Indicates significant difference between treatment and controls (p 
< 0.05).  Error bars represent one standard deviation.  
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Figure 4.3  Concentrations (μM) of NO2⎯ in (A) exponential and (B) stationary 
phase experiments in treatment (open bar) and control (closed bar) flasks after 
180 minutes.  * Indicates significant difference between treatment and controls (p 
< 0.05).  Error bars represent one standard deviation.  
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Figure 4.4  Concentrations (μM) of NH4
+ in (A) exponential and (B) stationary 

phase experiments in treatment (open bar) and control (closed bar) flasks after 
180 minutes.  * Indicates significant difference between treatment and controls (p 
< 0.05).  Error bars represent one standard deviation.   
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Figure 4.5  Carbon (pg cell-1) within the cell in (A) exponential and (B) stationary 
phase experiments in treatment (open bar) and control (closed bar) flasks after 
180 minutes.  * Indicates significant difference between treatment and controls (p 
< 0.05).  Error bars represent one standard deviation. The ANOVA p value for A 
is 0.125 and B is 0.734. 
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Figure 4.6  Nitrogen (pg cell-1) within the cell in (A) exponential and (B) 
stationary phase experiments in treatment (open bar) and control (closed bar) 
flasks after 180 minutes.  * Indicates significant difference between treatment and 
controls (p < 0.05).  Error bars represent one standard deviation. The ANOVA p 
value for A is 0.125 and B is 0.583. 
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Figure 4.7  Domoic acid (pg cell-1) in exponential (A, C, E) and stationary (B, D, 
F) phase experiments in treatment (open bar) and control (closed bar) flasks after 
390 min.  Panels A and B give total DA.  Panels C and D give particulate DA.  
Panels E and F give dissolved DA.  ٭Indicates significant difference between the 
marked bars at t = 0 and t = 390 (p < 0.05).  Error bars represent one standard 
deviation. 
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Summary: Chapter 5 

 



General Findings and Expansion of Previous Knowledge 

The research conducted for this dissertation was designed to permit 

explorations of Pseudo-nitzschia ecology in a dynamic estuary, the Chesapeake 

Bay.  Preliminary work identifying species and toxicity of strains isolated from 

the Chesapeake (A. Thessen, unpubl.) was contrary to what state environmental 

agencies commonly believed about the genus.  This led to field studies conducted 

to determine spatial and temporal dynamics of species and toxin production, 

which were highly variable and generally low (Chapter 2).  This led to the 

following questions: What is the intra- and interspecies variability of this genus?  

Could the light regime in the Chesapeake affect DA production? 

 

Pseudo-nitzschia in the Chesapeake Bay can be toxic; however, domoic acid 

in field samples was relatively low and uncommon.  Pseudo-nitzschia is a 

cosmopolitan genus (Hasle 2002, Chapter 1, this thesis) often reported to produce 

DA in many environments.  To date, the highest toxin concentrations in nature 

have been reported from high salinity, upwelling zones and coastal embayments 

(Bates et al. 1989, Scholin et al. 2000, Trainer et al. 2000, Vale et al. 2007).  

Toxin concentrations in the Chesapeake Bay, a low salinity, estuarine 

environment, have been generally low to date and prior to this study were thought 

non-existent.  However, many of the species present in the Chesapeake are toxic 

elsewhere (Bates et al. 1989, Martin et al. 1990, Rhodes et al. 1998b).  Nutrients 

in the Chesapeake are rarely limiting at the times Pseudo-nitzschia is most 

abundant (winter-spring; Fig. 5.1), which could partially explain the low DA.  
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Cells in the field are rarely exposed to the nutrient-limiting conditions in the field 

that stimulate DA production in the laboratory.  The presence of low levels of DA 

in the Chesapeake has raised the following questions: What are the effects of 

repeated, subacute doses of toxin on humans and animals?  How widespread is 

DA in Chesapeake food webs?  Why are Chesapeake Pseudo-nitzschia low toxin 

producers?   

 

The most common species is P. calliantha.  Pseudo-nitzschia calliantha is a 

relatively new species, described in 2003 using a combination of morphological 

and molecular evidence (Lundholm et al. 2003).  It is difficult to be sure about the 

historic range and toxicity of this species due to the absence of micrographs in 

many historical reports.  Current reports are of P. calliantha in Europe, North 

America and Australia with little to no toxicity (Martin et al. 1990, Lundholm et 

al. 1994, 1997, Lundholm et al. 2003, Chapter 1).  Since the most common 

species of Pseudo-nitzschia in the Chesapeake produces little to no DA, the lack 

of toxin in the field is not unusual.  Pseudo-nitzschia calliantha has not been 

previously reported from the Chesapeake Bay (Marshall et al. 2005); however, it 

could have been present prior to 2003 as Marshall (1994) reported P. 

pseudodelicatissima (the species which was split to form P. calliantha) in samples 

collected from 1963-1993.  The phytoplankton monitoring database by the 

Maryland Department of Natural Resources lists all Pseudo-nitzschia as either P. 

pungens or P. seriata without confirmation via electron microscopy.  It is not 
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clear if this represents a species shift or limited taxonomic resolution for the 

Chesapeake populations.   

 

Pseudo-nitzschia abundances in the Chesapeake are related to low 

temperatures and high salinities.  Abundances of Pseudo-nitzschia are highest 

in winter and early spring in saltier water, but broad tolerances in this genus 

prevent complete exclusion from warmer, fresher areas.  Similar patterns have 

been documented in the Adriatic (Caroppo et al. 2005) and the Gulf of Mexico 

(Dortch et al. 1997).  Fluctuations in temperature and precipitation in the 

Chesapeake Bay area can influence Pseudo-nitzschia abundances annually, 

through the thermal limits identified here and freshwater discharge which governs 

salinity, clarity and nutrient distributions (e.g., Malone et al. 1988, Harding 1994, 

Fisher et al. 1999, Roman et al. 2005).  Overall phytoplankton dynamics in the 

Chesapeake are related to the effect of winter climate variability on river 

discharge and nutrient loads (Miller et al. 2006b, Miller & Harding 2007).  These 

temperature and salinity effects likely influence where and when Pseudo-nitzschia 

occur in the Chesapeake (Chapter 2) and results in seasonal and annual fluctuation 

in abundances. 

 

Intra- and interspecies variation in physiological responses in culture 

experiments was wide; there was no characteristic response from the genus 

or from any species. Species could be easily and consistently resolved using 

morphological and molecular data; however, species, defined in this way, was not 
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a good predictor of physiology (Chapter 3).  Within species variation in growth 

rate and DA production shows the inadequacy of traditional morphological 

species definitions in describing physiology and emphasizes the importance of 

working with multiple strains.  Furthermore, many physiological characters that 

are commonly applied to the genus Pseudo-nitzschia from mostly single strain 

experiments may not be as widely applicable as first thought.  High functional 

diversity within species of Chesapeake Pseudo-nitzschia (Chapter 3) suggests the 

presence of multiple ecotypes as in Narragansett Bay populations of Skeletonema 

costatum (Gallagher 1982, Gallagher et al. 1984) and Puget Sound populations of 

Ditylum brightwellii (Rynearson et al. 2006) or cryptic species as proposed in 

European populations of P. delicatissima and P. pseudodelicatissima (Amato et 

al. 2007). 

 

Pseudo-nitzschia grew and produced DA on all nitrogen sources tested.  

Previous research on diatoms shows many species have the ability to utilize 

multiple nitrogen sources (Eppley et al. 1969, McCarthy 1972), typically, the 

nitrogen source that is most readily available (McCarthy et al. 1977, Dortch 

1990).  Pseudo-nitzschia is not unique in this regard (Chapter 3).  Previous studies 

have shown growth and toxicity on multiple nitrogen sources (Bates et al. 1993a, 

Hillebrand & Sommer 1996, Armstrong Howard et al. 2007), but these studies do 

not compare strains.  These results (Chapter 3) show that intraspecies variation in 

growth rates and toxin production on a given nitrogen source can be high.  At 

least one strain grew optimally and produced toxin on all nitrogen sources tested 
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(Chapter 3).  The high intra- and interspecies variability noted for Pseudo-

nitzschia suggests that no detectable difference in abundance or toxin should 

result from change in relative abundance of nitrogen species in the Chesapeake, 

such as through increased use of urea fertilizer (Glibert et al. 2006).      

 

Pseudo-nitzschia multiseries took up 20% of available dissolved nitrate and 

released only 10% of this as nitrite or ammonia during a high light pulse at 

low temperature.  As a temperate estuary, cool springs and seasonal turnover 

typify the Chesapeake.  A model has been proposed to explain the dominance of 

diatoms in cool environments with high nutrients and high water column 

turbulence in reference to nitrate reduction (Lomas & Glibert 1999).  Hence, the 

effective use of nitrate by Pseudo-nitzschia (Chapter 4) might prove beneficial in 

cool well-mixed environments where this genus is often found.  Slight differences 

between Pseudo-nitzschia and other diatoms exposed to a high light pulse in low 

temperatures exist (Lomas et al. 2000), e.g., that Pseudo-nitzschia takes up large 

quantities of nitrate, but does not release very much nitrite or ammonia, as 

suggested by the aforementioned model.  Either Pseudo-nitzschia does not 

possess the same cold water adaptation or is using a different mechanism to 

protect itself from high irradiance pulses in low temperatures. 

 

A rapid increase in irradiance in combination with other factors, likely 

including temperature limitation of enzymes, reduces DA production in the 

laboratory.  Previous studies on the effects of temperature and light on DA 
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production do not focus on parameter shifts or periods of adaptation.  Typically 

higher irradiances will result in higher DA production (Bates et al. 1991); 

however, in this experiment, a rapid increase in light actually decreased DA 

production.  The exact mechanisms for this decrease are unknown and require 

further experimentation.   

 

Domoic Acid in Chesapeake Bay Food Webs and Potential Impacts 

Why are there no documented incidents of ASP or DAP in the Chesapeake 

Bay region despite the large human and waterfowl populations and multiple 

fisheries?  From previous work (Perl et al. 1990, Work et al. 1993a,b, Scholin et 

al. 2000), three simultaneous requisite conditions for a toxic event must be in 

place: abundant toxic Pseudo-nitzschia, a planktivorous vector feeding on the 

Pseudo-nitzschia, and a higher trophic level feeding on the vector.  Due to the 

water soluble nature of DA, unless all three circumstances occur at the same time, 

a toxic event will not occur.  In addition, appropriate conditions must be met for 

maximum DA production by the cell.  These situations rarely occur globally, but 

have become common in areas such as the west coast of North America. 

Abundances of Pseudo-nitzschia can fluctuate widely seasonally and 

annually depending on factors such as nutrients, salinity and temperature.  

Potentially toxic species are present in the Chesapeake Bay, but field samples 

from the area do not contain high levels of domoic acid.  Pseudo-nitzschia can 

grow at the low salinities found in the Chesapeake and can produce toxin at 

salinities as low as 10 (Thessen et al. 2005, Doucette et al. in press).  However, 
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maximum toxin production occurs at salinities above 20 due to the cell’s inability 

to provide energy for DA production while maintaining a high growth rate under 

osmotic stress, even when adapted to low salinities (Doucette et al. in press).   

In addition to salinity effects, available light in the turbid waters of the 

Chesapeake Bay is often below the 100 μmol photons m-2 sec-1 required to 

saturate DA production (Bates 1998; Table 5.1).  Calculation of mean PAR in the 

mixed layer by month for the Chesapeake Bay using published values of modal 

surface PAR on sunny days, mixed layer depth (Fisher et al. 2003) and diffuse 

attenuation coefficients (Harding et al. 1985) show that late spring and summer 

(April through August) is the only time when irradiances exceed 100 μmol 

photons m-2 sec-1 in the water column.  Most of that time, during the summer, 

Pseudo-nitzschia is less abundant or absent.  The month with the highest 

percentage of samples positive for DA in our study is April (Table 5.1), which is 

the month where temperatures are likely to be cool and irradiances are likely to be 

above 100 μmol photons m-2 sec-1.  It is important to note, that the modal PAR 

represents the irradiance that cells are most often exposed to, not necessarily the 

highest irradiance.  Instantaneous surface measurements of PAR in the 

Chesapeake can exceed 1000 μmol photons m-2 sec-1 (www.chesapeakebay.net).  

In the Chesapeake, when temperature is optimal for Pseudo-nitzschia abundance, 

irradiance would be limiting to DA production.  Light and salinity are two highly 

variable factors in the Chesapeake that can have an impact on DA production and 

provide a partial explanation for low DA in field samples. 
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One of the factors necessary for an intoxication event was not investigated 

in the current study: there was no assessment of DA content in potential vectors 

such as bivalves or planktivorous fish and this remains a potential focus for future 

research.  There are several types of bivalves in the Chesapeake either harvested 

for human consumption or prey for system predators.  The eastern oyster 

Crassostrea virginica has been the primary suspension feeding bivalve since 

colonial times (Kennedy 1996) and is harvested for human consumption.  This 

species is known to feed on a wide range of plankton, including diatoms.  Due to 

disease and over harvesting most C. virginica are located in the mesohaline 

(salinities of 10-20) portions of the Chesapeake and are therefore less likely to be 

exposed to maximal concentrations of DA.  Laboratory feeding experiments show 

C. virginica grazing does not differ between toxic and nontoxic strains of Pseudo-

nitzschia, but grazing is less and pseudofeces production is higher when given 

Pseudo-nitzschia than other diatoms.  Smaller oysters show a reduced capability 

for grazing on Pseudo-nitzschia by producing large amounts of pseudofeces and 

no feces (Thessen et al. in prep).  Possibly cell size and shape, rather than the DA, 

make Pseudo-nitzschia less palatable than many other diatoms (Tenore & 

Dunstan 1973).   

Hard clams (Mercenaria mercenaria) are produced in aquaculture 

operations in upper mesohaline and polyhaline areas of the Chesapeake for human 

consumption (Roegner & Mann 1991).  Since higher salinity favors maximum 

toxin production (Doucette et al. in press), DA contamination in these clams is 

possible because of their location, but not documented.  To date, no experiments 
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have been published investigating hard clam grazing on Pseudo-nitzschia.  

However, hard clams decrease their grazing when given other types of toxic algae 

(Pate et al. 2006, Shumway et al. 2006).   

In addition to bivalves, planktivorous fish are potential vectors of DA and 

plentiful in the Chesapeake.  In other areas, many small, schooling fish like 

sardines and anchovies have caused DAP events or had DA in their tissues, but 

this has not happened in the Chesapeake despite the presence of many similar 

types of fish.  Atlantic menhaden (Brevoortia tyrannus) are an abundant fish 

species that feed primarily on phytoplankton as an adult (Durbin & Durbin 1983) 

and in turn are an important food source for predatory fish and birds (Hartman & 

Brandt 1995).  Most of the menhaden in the Chesapeake are juveniles that feed on 

zooplankton; adults remain in saltier waters near the Atlantic coast.  They are 

harvested commercially for their oil, a major ingredient in many pet and human 

food products.  Since DA is a water soluble molecule, the likelihood of the toxin 

being transferred to these products in the oil is low.  However, eating menhaden 

whole (including the digestive tract) would pose a DAP risk to animals on the 

Atlantic coast.  Other small fish such as the bay anchovy (Anchoa mitchilli) and 

the Atlantic silverside (Menidia menidia) are an important food source in the 

Chesapeake, but are secondary consumers themselves.  This does not mean they 

cannot contain DA passed to them by their zooplankton prey, but it does decrease 

the likelihood of subsequent passage of DA to the next trophic level.  Anchovies 

in other areas (Engraulis mordax) that have caused DAP events directly feed on 

large diatoms in addition to zooplankton, unlike the bay anchovy or the atlantic 
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silverside which feed on zooplankton exclusively (www.fishbase.org; Robins & 

Ray 1986, Whitehead et al. 1988).  Other herbivorous fish such as the eastern 

silvery minnow (Hybognathus regius), the gizzard shad (Dorosoma cepedianum) 

and the spot tail shiner (Notropis hudsonius) are present in the Chesapeake, but 

only in low salinity waters, which decreases the likelihood of exposure to DA-

producing Pseudo-nitzschia (www.fishbase.org).   

Hence, the overall DAP and ASP risk in the Chesapeake is low.  The 

“ideal vector” species would live in a high salinity part of the Chesapeake during 

the winter and early spring, eat primarily phytoplankton and serve as a primary 

food source for another consumer.  Of the species discussed above, Mercenaria 

mercenaria is a possible candidate for causing ASP in humans, but data are sparse 

on M. mercenaria grazing on Pseudo-nitzschia and DA content.  The hooked 

mussel (Ischadium recurvum) is a possible vector of DA to the seaducks that feed 

on them while over wintering in the Chesapeake (Perry et al. 2004).  Hooked 

mussels can survive over a wide range of salinities and are typically found living 

on oyster reefs in the region; however, their grazing and toxin accumulation is not 

known.  The only fish species that could act as a vector is atlantic menhaden, but 

only the adults, and primarily to animals that would eat the entire fish.  The 

restricted number of potential vectors combined with environmental conditions 

that restrict DA production make the risk of DAP or ASP in the Chesapeake Bay 

low. 
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Ecological Meaning of Intra- and Interspecies Differences 

In the rapidly and widely changing environment of the coastal ocean, 

maintaining a functionally diverse population (whether phytoplankton or other) 

would be advantageous, allowing at least some individuals to do well under 

nearly any given set of conditions.  Instead of multiple narrow niches and diatom 

evolution proceeding toward more species, the niche is wide and diatom evolution 

would proceed toward fewer species with high functional diversity, or 

intraspecies variation.  Laboratory studies conducted as a part of this thesis and 

field studies support this idea (Gallagher 1982, Evans et al. 2005, Chapter 3).  

Variation of this sort will thwart attempts to characterize a diatom species by a 

strict set of physiological responses, especially when only one strain is 

considered.  Variation previously attributed to differences in species or genera 

could actually represent differences between strains.  However, some of this 

variation could represent differences between reproductively isolated cryptic 

species resulting from sympatric speciation (Beszteri et al. 2005).  Comprehensive 

studies comparing morphology, phylogeny, physiology and mating compatibility 

are necessary to characterize diatom species. 

Until relatively recently, diatom taxonomy has remained linked to the 

study of the silica frustule.  Many frustule characteristics are used in taxonomy 

without any insight into their adaptive significance or how they may have 

evolved.  Evolutionary pressures that change physiology may or may not also 

affect frustule morphology and vice versa.  However, since diatoms are sexually 

reproducing organisms, there should be a reliable species-level taxonomy based 
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on variation in phenotype. Now, genetic sequencing is being used in conjunction 

with frustule morphology to evaluate species (Lundholm et al. 2003, Lundholm et 

al. 2006).  Molecular data can give new insights into morphologically based 

taxonomic characters, but are particularly useful when related to biological 

processes.   

Recent studies examining molecular and morphological characters to 

better describe diatom taxonomy have made significant headway; however, a 

truly exhaustive study should include mating and physiological experiments to 

look for cryptic species and functional diversity.  ITS (internal transcribed spacer) 

and LSU (large subunit) rRNA sequences did not provide insight into functional 

diversity in this study, but sequencing more physiologically relevant genes may 

prove useful.  The whole genome sequencing of Pseudo-nitzschia multiseries 

currently underway (DOE Joint Genome Institute 

http://www.jgi.doe.gov/sequencing/DOEmicrobes2006.html) will be an asset to 

investigations of functional diversity by enabling researchers to measure 

regulation of genes for specific cellular processes and to develop an EST 

(expressed sequence tag) library.  Microsatellites have been used to describe 

variation in natural populations of Pseudo-nitzschia (Evans et al. 2005) and could 

be useful in describing functional diversity and biogeography on a more detailed 

level than ribosomal RNA.   

This thesis provides information on Chesapeake Bay Pseudo-nitzschia 

populations, strain variability and toxin production physiology.  Many questions 

about taxonomy, toxin production and ecophysiology were answered, yet many 
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more questions concerning the effect of high light pulses on DA production, the 

prevalence of DA in Chesapeake food webs and the ecological meaning of 

intraspecies differences remain unanswered.  Future research on Chesapeake 

Pseudo-nitzschia should focus on assessing the extent of DA in primary 

consumers, comparing mid-Atlantic strains of Pseudo-nitzschia using mating 

experiments and further probing the effects of decoupling photosynthesis and 

growth on DA production.
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Table 5.1  Average PAR in the mixed layer, modal surface PAR and the 
percentage of samples positive for DA by month.  Average PAR was 
calculated using modal PAR values on a sunny day for each month found 
in Fisher et al. (2003), a value of 5 m for mixed layer depth, 1 m-1 for 
diffuse attenuation coefficient and an equation that can be used to express 
the mean water column PAR for any aquatic system (Phlips et al. 1995).   

Month
average water 
column PAR

modal surface 
PAR

% samples 
positive for DA n

January 42.4 224 33 6
February 59.1 314 68 19
March 84.1 446 40 20
April 111 589 78 9
May 126 671 46 13
June 126 670 ND
July 124 654 ND
August 113 596 ND
September 94.1 499 0 0
October 68.2 361 17 6
November 48.4 257 57 7
December 43.1 228 75 4
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Figure 5.1  Dissolved nutrient concentrations in the Chesapeake Bay.  Data were 
taken from the Maryland DNR database at www.chesapeakebay.net from 2002-
2007, September through May. 
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Aconitase iron-containing enzyme involved in the Krebs Cycle; transforms citrate into 
isocitrate 
See Chapter 1 Figure 3 
 
Adductor muscle muscle present in bivalves that controls opening and closing of the 
shell 
 
Agarose gel made from the polysaccharide agarose and used as a separation medium 
during electrophoresis  
 
Amygdala part of the brain involved with fear and aggression 
 
Amplicon small replicating DNA fragment 
 
Annealing as used in PCR means the recombination of the two halves of DNA after 
temperature dissociation 
 
Antihelminthic used to kill worms or removed internal parasites in animals or humans 
 
Apical Plane Cross-sectional view of a cell showing the slice through the middle of the 
top and bottom valve faces 
 
Appendicularan filter feeder with a primitive notochord; often found in the surface 
layers of the open ocean 
 
Ataxia loss of muscle coordination 
 
Auxospore Enlarged diatom cell that forms after sexual reproduction 
 
Axenic without bacteria or other microorganisms besides the species being studied 
 
Biogeography geographical distribution of living things 
 
Blood-brain barrier a layer of tightly-packed cells in the walls of brain capillaries which 
prevent molecules from freely diffusing into the brain 
 
cDNA microarray collection of single stranded DNA molecules synthesized in the 
laboratory using messenger RNA as a template and the enzyme reverse transcriptase 
which are then attached to a solid surface that will react with a known sequence; a tool to 
probe for up to thousands of genetic markers at a time 
 
Central interspace interruption in the pattern of fibulae along the raphe canal near the 
midpoint of the length of a pennate diatom; also called a central nodule 
See Chapter 1 Figure 2 
 
Cephalopod division of phylum Mollusca that contains octopuses and squids 
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Chronic of long duration; continuing 
 
Chytrid algae-like fungus that infects microbes 
 
Cingulum girdle bands associated with a single valve 
 
Clade A group of organisms that share a common ancestor 
 
Clonal Culture created by a single cell isolation in which all cells are a descendant or 
clone of one cell and no sexual reproduction has occurred  
 
Coastal bay body of water located between a coastline and a barrier island; characterized 
by shallow depth, high salinity and little exchange 
 
Conopea Fine silica structure spanning from the keel to the valve walls along both sides 
of the entire length of the raphe canal 
See Chapter 1 Figure 2 
 
Cotyledon leaf of an embryonic plant 
 
Cryptic species species that are reproductively isolated yet identical in appearance 
 
Culture growth resulting from cultivation of microorganisms 
 
Denaturation as used in PCR means the “unzipping” of the DNA strand into two halves 
comprised of the sugar/phosphate backbone and attached nucleotides 
 
Deposit feeder organism that feeds on organic matter on the surface of the sediment 
 
Digestive gland a gland that secrets digestive enzymes 
See Hepatopancreas 
 
Ecotype subdivision beneath species in which cells are morphologically similar, but 
functionally different 
 
ENSO acronym for El Nino Southern Oscillation; warming of the Pacific Ocean near the 
equator that occurs every 5-7 years and is associated with poor fisheries and unusual 
weather patterns 
 
Enumerate to count 
 
Epibiont cell that lives on the surface of another cell; a bacteria living on the surface of a 
diatom 
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EST acronym for expressed sequence tag; short sequence of DNA used to determine 
gene expression 
 
Exponential Growth period of growth in a batch culture when cell numbers are 
increasing exponentially; characterized by balanced growth, replete nutrients in growth 
media and sufficient light 
Also referred to as exponential phase 
 
Fibula (pl. fibulae) silica structure spanning the raphe canal inside the valve 
See Chapter 1 Figure 2 
 
Formvar resin used to coat grids and provide support for samples to be viewed by 
electron microscopy 
 
Frustule whole diatom box composed of two valves 
 
Genotoxic chemical or other agent that damages DNA, resulting in mutations 
 
Gluconic acid acid formed by the oxidation of glucose 
 
Gluconolactone cyclic form of gluconic acid; forms equilibrium mixture with gluconic 
acid in water 
 
Glucuronate a derivative of glucuronic acid 
 
Glucuronic acid acid of glucose found in the liver; used to detoxify compounds 
 
Glutamate agonist a chemical that binds to a glutamate receptor to illicit a physiological 
response 
 
Glutamate receptor a receptor located on neuron membranes that binds with glutamate 
and can cause a neuron to depolarize 
 
Glutamic acid nonessential amino acid commonly occurring in plant and animal cells; 
important for nitrogen metabolism in plants; neurotransmitter 
 
Glutamine synthetase enzyme used to add ammonium to α-ketoglutarate and make 
glutamate 
See Chapter 1 Figure 3 
 
Glutaraldehyde colorless chemical used as a biological fixative 
 
Glycoprotein a protein with a carbohydrate component 
 
Hepatopancreas gland that functions as a liver and a pancreas in crustaceans and 
mollusks 
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See Digestive gland 
 
High voltage paper electrophoresis analytical method used to identify and quantify 
amino acids using an electrified paper strip 
 
HNLC acronym for High Nutrient Low Chlorophyll;describes regions in the ocean 
characterized by high nitrogen and low chlorophyll where autotrophic growth is limited 
by iron 
 
Hypocotyl part of an embryonic plant that pushes the cotyledons above ground and 
eventually becomes part of the stem 
 
Intraperitoneal within the body cavity that contains the organs 
 
Ion exchange chromatography analytical method allowing separation of molecules 
based on their charge 
 
IR spectroscopy analytical method based on detection of a chemical by its absorption of 
infrared light 
 
ITS acronym for internal transcribed spacer; sequence of ribosomal RNA that is present 
in the initial transcript from DNA, but is removed when the strand is processed into an 
actual ribosome 
 
Kainic acid glutamate derived amino acid that can be extracted from macroalgae and has 
excitotoxic potential; similar to domoic acid 
 
Lag phase period of time in batch culture, typically immediately after the start of a new 
culture and before exponential growth, in which little to no growth occurs 
 
Lectin proteins on a cell surface that are not antibodies, but bind specifically 
 
Limit of detection lowest amount of test substance that can be detected in an analytical 
sample below which it is considered absent 
 
Limit of quantitation lowest amount of test substance that can be detected in an 
analytical sample where the accuracy is within acceptable levels; below this point data is 
semiquantitative 
 
LSU acronym for large subunit; sequence that makes up the large subunit of the 
ribosomal RNA 
 
Lugols iodine solution used as a preservative and stain for protists in water samples 
 
Mantle part of the valve at the margin of the valve face which is set off at an angle 
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Mass spectroscopy analytical method using magnetic and/or electrical fields to identify 
molecules based on their charge 
 
Mesohaline water of medium salinity; approximately 5 to 18 salinity  
 
Metazoan animal comprised of many cells organized into tissues and organs 
 
Micrograph photograph taken using a microscope 
 
Microsatellite markers short segments of non-coding DNA that have a repeated 
sequence 
 
Monospecific consisting of one species 
 
Nitrate reductase enzyme used to reduce nitrate to nitrite 
See Chapter 1 Figure 3 
 
Nucleotide any of a group of organic molecules used as building blocks of DNA and 
RNA, they are made of a sugar, phosphate group and nitrogenous base 
 
Oomycete fungus-like protist that can infect microbes 
 
Parsimony tree phylogenetic tree diagram structured so that species with similar 
sequences are closer together 
 
PCR anacronym for polymerase chain reaction; process for replicating DNA fragments 
for analysis 
 
Phylogeny evolutionary history of a taxonomic group of organisms 
 
Poroid regularly repeated perforation in the valve wall; patterns formed by poroids are 
using to aid identification of species 
See Chapter 1 Figure 2 
 
Primer a sequence of DNA that is complementary to DNA sequence to be analyzed and 
is needed to start a PCR reaction 
 
Principle Components Analysis technique used to reduce multidimensional data sets 
into lower dimensions for analysis; data is reduced to the principle components 
 
Proton nuclear magnetic resonance spectra analytical method based on the magnetic 
qualities of a nucleus that can identify individual atoms in a molecule 
 
PSP acronym for Paralytic Shellfish Poisoning; food poisoning resulting from eating 
shellfish contaminated with algal toxins, characterized by paralysis which can lead to 
respiratory failure 
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Raphe canal feature of a diatom frustule that runs the length of a pennate cell 
See Chapter 1 Figure 2 
 
rRNA ribosomal ribonucleic acid; a type of RNA functioning in protein synthesis as a 
ribosome 
 
RUBISCO acronym for ribulose bisphosphate carboxylase/oxygenase; plant enzyme that 
fixes carbon during photosynthesis 
 
Secondary metabolite product of cell machinery that is not directly related to cell 
growth or nutrient uptake 
 
SSU acronym for small subunit; sequence that makes up the small subunit structure of the 
ribosomal RNA 
 
Stationary growth period of growth in batch culture in which nutrients and/or light are 
not enough to sustain growth; characterized by high biomass and no cell division 
Also referred to as stationary phase 
 
Strain all descendants of one cell 
 
Stria (pl. striae) one or many rows of poroids 
See Chapter 1 Figure 2 
 
Sublethal less than lethal 
 
Upregulate process by which a pathway or product is increased in use or abundance; an 
increase in expression of a gene resulting in more of a product; increase in a 
physiological process either to preserve homeostatis or take advantage of beneficial 
conditions 
 
Upwelling a coastal and oceanographic phenomenon where cold, nutrient-rich water 
from depth is brought to the surface often by wind moving surface water away from a 
coast line 
 
Utermohl method used for counting cells that have been allowed to settle in a chamber 
 
UV spectroscopy analytical method that detects chemicals based on absorption of UV 
light 
 
Valve one half of the two-part silica frustule surrounding a diatom cell  
 
Vector organism that transmits a pathogen or chemical 
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Voltammetric technique electroanalytical method where an analyte is observed by 
measuring changes in current while the electrical potential is varied 
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