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The abstract algebra course is an important point in the education of 

undergraduate mathematics majors and secondary mathematics teachers.  Abstract 

algebra teachers have multiple goals for student learning, and the literature suggests 

that students have difficulty meeting these goals.  Advisory reports have called for a 

move away from lecture toward investigation-based class sessions as a means of 

improving student understanding.  Thus, it is appropriate to understand what is 

happening in the current teaching and associated learning of abstract algebra. 

The present study examined teaching and learning in two abstract algebra 

classrooms, one consciously using a lecture-based (i.e., deduction-theory-proof, or 

DTP) mode of instruction and the other an investigative approach.  Instructional data 

was collected in classroom observations, and multiple written instruments and a set of 

interviews were used to evaluate student learning.  



  

 Each instructor hoped students would develop a deep and connected 

knowledge base and attempted to create classroom environments where students were 

constantly engaged as a means of doing so.  In the lecture class, writing proofs was 

the central activity of class meetings; nearly every class period included at least one 

proof.  In the investigative class, the processes of computing and searching for 

patterns in various structures were emphasized.   

 At the end of the semester, students demonstrated mixed levels of proficiency.  

Generally, students did well on items that were relatively familiar, and poorly when 

the content or context was unfamiliar.  In the DTP course, two students demonstrated 

significant proficiency with analytical argument; the remainder demonstrated mixed 

proficiency with proof and very little proficiency with other content.  The students in 

the investigative class all seemed to develop similar levels of proficiency with the 

content, and demonstrated more willingness to explore unknown structures. 

 This study may prompt discussions about the relative importance of 

developing proof-proficiency, students’ ability to formulate and investigate 

hypotheses, developing students’ content knowledge, and students’ ability to operate 

in and analyze novel structures.   
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CHAPTER 1: RATIONALE AND SIGNIFICANCE 

Rationale 
The upper-division abstract algebra course is an important point in the 

undergraduate education of mathematics majors and pre-service high school 

mathematics teachers (Committee on the Undergraduate Program in Mathematics 

(CUPM), 1971; Mathematical Association of America (MAA), 1990; Conference 

Board of the Mathematical Sciences (CBMS), 2001).  The course aims to develop 

student understanding and skill in work with mathematical structures such as groups, 

rings, and fields.  But it is also expected to develop students’ ability to analyze and 

construct mathematical proofs, to develop general habits of algebraic thinking, and to 

illuminate structures that underlie algebra in the school curriculum. 

Unfortunately, while the abstract algebra course is one of great possibility, the 

literature suggests that many students are not meeting many of these goals (Findell, 

2000; Hazzan & Leron, 1996; Leron & Dubinsky, 1995).  Evidence from anecdotal 

reports and exploratory studies of student learning documents the gap between goals 

and results and suggests some explanatory factors (Edwards & Brenton, 1999; 

Findell, 2000; Larsen, 2004; Leron, Hazzan & Zazkis, 1995; Weber, 2001).  But there 

has been little empirical research addressing the connections between instructional 

approaches implemented in abstract algebra courses and what students learn in those 

courses. 

Abstract Algebra and the Undergraduate Mathematics Curriculum 
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  Algebra is one of the preeminent disciplines in the mathematical sciences.  

Almost every undergraduate mathematics major is required to complete at least one 

semester of abstract algebra, and mathematicians and mathematics educators believe 

the course to be so important that the recent CBMS report on the Mathematical 

Education of Teachers (MET) explicitly argued for keeping the course in the pre-

service teacher curriculum (2001). 

In its current incarnation, “most such courses at the undergraduate level have 

a dual objective.  Besides mastering the course content, students are expected to learn 

to write proofs that they have devised for themselves” (Edwards & Brenton, 1999, p. 

122).  Many researchers would argue that there is a third (often implicit) learning goal 

associated with abstract algebra courses—that the students should be improving their 

algebraic thinking skills (Cuoco, Goldenberg, & Mark, 1996; Smith, 2003).  Others 

have suggested that the abstract algebra course is the “place where students might 

extract common features from the many mathematical systems that they have used in 

previous mathematics courses” (Findell, 2000, p. 12).  In short, the abstract algebra 

course carries substantial expectations for student learning.    

While an abstract algebra course may be associated with multiple learning 

goals, the literature suggests that students have difficulty meeting the goals their 

instructors may hold.  The CBMS (2001) reported that most students fail to make 

effective connections between abstract algebra and other mathematics.  Hypothesized 

explanations for student failure in abstract algebra focus attention on two main 

conjectures: instruction and student effort.  In 1995, Leron and Dubinsky claimed, 

“The teaching of abstract algebra is a disaster, and this remains true almost 



 

 3 
 

independently of the quality of the lectures” (p. 227).  Advisory reports issued by the 

National Science Foundation (NSF, 1992) and the Mathematical Sciences Education 

Board  (MSEB, 1991) have called upon faculty to move away from the lecture format 

and towards investigation-based class sessions in undergraduate mathematics courses 

as a means of improving student understanding.  The appropriateness of these 

recommendations for abstract algebra in particular have been echoed by others 

writing on the topic (Burton, 1999; Edwards & Brenton, 1999; Hibbard & Maycock, 

2001).  However, in defense of the lecture method Wu (1999) carefully laid out his 

assumptions about collegiate education and used those to extrapolate some basic 

goals for his abstract algebra course.  For example, he stated that it is critical to 

introduce students to all those topics in abstract algebra that are prerequisites for 

graduate study. 

Not all faculty would lay the blame for students’ perceived failures at the feet 

of the instructors.  For example, Wu (1999) has argued that students often fail 

because they have either an “unwillingness or inability to work on their own…” (p. 

13) and that students are often “coming to class unprepared, or for that matter, leaving 

it without making an effort to understand it later” (p. 8).     

Whatever the reason, students find abstract algebra very difficult and often fail 

to meet many of the important goals for the course (Dreyfus, 1999; Dubinsky, et. al, 

1994; Hart, 1986; Hazzan, 1994; Hazzan, 1999; Hazzan & Leron, 1996; Leron, 

Hazzan, & Zazkis, 1995; Weber, 2001).  Yet, there are also those who suggest that 

instructors’ beliefs about student failures are themselves contributors to student 

failure, and these beliefs certainly have an effect on what an instructor believes to be 
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reasonable goals for the course.  “This conspiracy of expectations may lead to 

lowered goals and student achievement, and may be a contributing factor in the 

discrepancy between the “intended” and the “implemented” curriculum” (Francis, 

1992, pp. 27-28). 

Mathematicians and educators have long questioned whether the traditional 

abstract algebra course was meeting the needs of all of their students. For example, 

since 1964, the University of Maryland has taught a separate section of abstract 

algebra designed to meet the needs of pre-service teachers and mathematics majors 

not heading to graduate school in mathematics.  In an abstract algebra textbook 

designed for that course, Davidson and Gulick  (1976) wrote, “This book has grown 

out of our concern over the traditional method of teaching, accompanied all too 

frequently by passive learning for the student” (p. ix).  Unfortunately, traditional 

teaching methods and concerns about their efficacy persist, as do concerns about 

student learning.   

It is important to note that although the literature is filled with discussion of 

student difficulties, it is also filled with affirmations of the importance of the course.  

Recommendations call for the course to be improved rather than eliminated (Burton, 

1999; Cuoco, 2001; CUPM, 1971; MAA, 1990).  Increasingly these papers and 

presentations at professional meetings related to the teaching and learning of abstract 

algebra are exploring the understandings of abstract algebra that students do acquire, 

rather than describing how student understanding falls short of the ideal (Dubinsky, 

Dautermann, Leron, & Zazkis, 1994; Edwards & Brenton, 1999; Leron & 

Hazzan,1999; Iannone & Nardi, 2002). 
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Teaching and Learning Advanced Mathematics 
 

There are few studies that describe traditional (lecture-based) teaching of 

abstract algebra.  The most thorough of such descriptions characterize traditional 

teaching as primarily a recitation of content presented in a “definition-theorem-proof-

corollary-example-application format” (Edwards & Brenton, 1999, p. 122).  Much of 

the teaching based upon this format involves the instructor writing mathematical 

definitions, theorems, proofs, and step-by-step solutions to exemplar exercises on the 

board, with the instructor reciting what is being written.  The instructor is also 

responsible for assigning homework problems from a text, creating exams, and 

grading homework.  During classes with this format, the student’s responsibility is to 

copy everything written on the board as coherently and completely as possible and to 

spend time outside of the class working to understand material in the notes and the 

text. 

William Thurston (1986), winner of the Fields medal in mathematics, gave a 

more thorough (if cynical) description of what such an undergraduate mathematics 

classroom might look like: 

…we go through the motions of saying for the record what we think 
the students “ought” to learn, while the students are trying to grapple 
with the more fundamental issues of learning our language and 
guessing at our mental models.  Books compensate by giving samples 
of how to solve every type of homework problem.  Professors 
compensate by giving homework and tests that are much easier than 
the material “covered” in the course, and then grading the homework 
and tests on a scale that requires little understanding.  (p. 343) 

Weber (2004) noted his dissatisfaction with Thurston’s description when he stated, “It 

is widely accepted that advanced mathematics courses are frequently taught in what is 

colloquially referred to as a “definition-theorem-proof” (DTP) format... I am not 
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aware of a precise set of criteria that one can use to define DTP instruction” (p. 116).  

He continued by stating that he was unaware of any studies that actually described 

such teaching in an advanced mathematics class. 

Although DTP is seen as the dominant mode of teaching in upper division 

undergraduate mathematics, it is also critiqued as intimidating and as misleading 

students about the nature of mathematics (Thurston, 1986; Cuoco, Goldenberg, & 

Mark, 1996), hiding much of the process used in mathematical thinking (Dreyfus, 

1991), and ignoring the important role that mathematicians ascribe to ideas such as 

elegance, intuition, and cooperation (Burton, 1999; Dreyfus, 1991; Fischbein, 1987).  

The most fundamental critique that has been leveled against DTP is that it is not an 

effective way to promote student learning of the mathematics content (Leron & 

Dubinsky, 1995; MSEB, 1991; NSF, 1992).  However, none of those making this last 

critique provide student data to substantiate their claims.  Moreover, the same people 

who claim DTP is not an effective method do not describe their goals for student 

learning and the relative importance of those goals. 

The critiques of DTP and the strength of faculty beliefs about students’ 

corresponding lack of success have given rise to a variety of class-level and program-

level restructurings of the abstract algebra curriculum—each intended to improve 

student learning.  In 2001, Hibbard and Maycock collected a large number of essays 

describing strategies for classroom change that had been tested at a variety of colleges 

and universities.  There have been contributed paper sessions on classroom change 

strategies for abstract algebra at many recent Joint Mathematics Meetings.  As an 

example of such a programmatic change, the University of Northern Colorado has 
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restructured its entire algebra experience for undergraduates with significant 

emphasis on student interaction as the focal point of the experience (Mingus, 2001).  

At the University of Northern Colorado, as described by Mingus, class meetings are 

problem-driven and feature students spending much of their time working 

collaboratively rather than taking notes. Another important feature of the approach at 

the University of Northern Colorado is the structure of out-of-class meetings. 

Tutoring  for abstract and linear algebra is done at the same time and place in hopes 

of increasing students’ awareness of the connections between their classes.    

Changes like those at the University of Northern Colorado are based upon 

beliefs about student learning, not empirical research literature.  In general, the 

changes involve transition from a teaching method that everyone can recognize (i.e., 

traditional lecture format) towards a type of teaching suggested by the MSEB (1991) 

and NSF (1992) advisory reports.  Francis (1992) raised concerns about instructional 

change without evidence with an analogy to medicine:  

The diagnosis of a problem must precede the prescriptions for its cure, and the 
thoroughness of the diagnosis and the quality of the information gathered 
prior to analyzing and subsequently forming conclusions leads to a more 
effective prescription in most cases.  (p. 38)   

The state of the field can be summarized as follows: Problems with the teaching and 

learning of abstract algebra have been identified and the field is proposing cures 

without agreement on the cause of the problem or even an accurate description of 

current practice.  Before restructuring the teaching of abstract algebra in order to 

support student learning, it is necessary to understand what is happening with respect 

to current practices for teaching and learning abstract algebra.   
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Teaching and Learning Algebra 
 

There have been a number of studies that describe individual students’ 

learning and understanding of abstract algebra concepts (Asiala, Brown, DeVries, 

Dubinsky, Mathews, & Thomas, 1996; Asiala, Dubinsky, Mathews, Morics, & Oktac, 

1997; Brown, DeVries, Dubinsky, & Thomas, 1997; Dubinsky, Dautermann, Leron, 

& Zazkis, 1994).  There are studies that provide suggestions for classroom 

pedagogical improvement (Hibbard & Maycock, 2001; Leron & Dubinsky, 1995), 

and some describe formative assessments of these new pedagogies (Edwards & 

Brenton, 1999; Mingus, 2001), detailing programmatic changes undertaken to 

improve student retention and understanding (Mingus, 2001).   

Descriptions of student learning and understanding of concepts  
 

Studies that examine students’ understandings of important ideas in abstract 

algebra and their abilities to make use of that content are the most common.  For 

example, Dubinsky, and his colleagues (1994), offered a stage-theory perspective of 

student learning of group theory based upon the Piagetian process/object duality. 

Based upon  student responses to various assessments, the authors articulated a 

genetic epistemology based upon the Action-Process-Object-Schema (APOS) model 

for the learning of the concept of group.  This learning model was then refined and 

expanded by Brown, et al. (1997) and Asiala, et al. (1997).   

The studies investigating student understanding of abstract algebra have 

focused solely on students, not on the instruction.  For example, Dubinsky, et al. 

(1994) offer only a single paragraph descriptor of the classroom experiences of the 

students in this study.  
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Classroom strategies 
 

Suggestions for innovative classroom and curricular strategies are delineated 

within the MAA volume, Teaching Innovations in Abstract Algebra (Hibbard & 

Maycock, 2001).  Several papers in this collection offer (a) suggestions for 

assignments that will engage students more fully in investigating content, (b) new 

ways of structuring class time, and  (c) problems that require more active thinking on 

the part of students.  Other papers in this text describe technological innovations that 

are designed to assist with both student engagement and lowered computational 

barriers, thus allowing more time to be spent studying algebraic structure.  However, 

authors of these papers generally presented only anecdotal data describing incidents 

of increased student learning.  

Linking pedagogy and student outcomes 
 

Studies that link the teaching and the learning of abstract algebra are rare in 

the literature.  Moreover, located papers typically employ only rudimentary measures 

for student success.  For example, one study’s measure for success was to indicate the 

number of students earning a passing grade out of the total number of enrolled 

students.  The authors then claimed, without support, that the passing ratio was higher 

than in more traditionally taught courses.  Few of the papers include a description of 

the knowledge that students gained, a comparison with a traditional course on any but 

the most cursory of measures, or a thorough description of classroom interaction.  

 When writing about the reform initiative underway in calculus, Ganter (2001) 

noted: 
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…there is a great need for information on various instructional formats and 
their subsequent effects on learning…. Concrete information about what and 
how students learn, as well as decisions about program improvements, cannot 
be reasonably made with only anecdotes and success stories.  The value of 
changes made to a course is very difficult to quantify; such decisions cannot 
be made without an enormous amount of data collected over a long period of 
time that include information on students before, during and after the 
course…. It is imperative to understand not only how student learn, but also 
the actual impact of different environments on their ability to learn.   (p. 6) 

Instructors are making changes in their abstract algebra courses; universities and 

colleges are making changes in their undergraduate mathematics programs based 

upon a set of beliefs about teaching and learning abstract algebra.  But, instructors are 

making these changes in absence of a  point of comparison for either traditional 

teaching or student learning, as they continue to publish success stories (Asia, et. al, 

1997; Brown, et. al; 1997; Dubinsky, et. al, 1994; Edwards & Brenton, 1999; Hibbard 

& Maycock, 2001, Mingus, 2001).  A needed study is one that describes the teaching 

of a DTP abstract algebra course and a reform-influenced abstract algebra course as 

well as the subsequent student learning in those courses.  

Research Questions and Overall Study Design 
 

The purpose of the study is to describe and analyze instances of different 

pedagogies used within abstract algebra courses.  I offer a description of some of the 

different types of understandings and beliefs that students may develop while 

studying abstract algebra, and I attempt to describe some possible means of 

understanding the confluence of instruction and student development of 

understandings.  As such, this study informs the conversation about pedagogy its 

alignment with goals for an abstract algebra course and students’ mathematical 

development. 
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This study examined teaching and learning in two sections of an upper-

division abstract algebra course—one using a lecture-based definition-theorem-proof 

style of instruction and the other using a more investigative approach to instruction.  

A variety of observation, interview, and student performance data was collected in 

order to address the following questions: 

Teaching and Learning in the DTP Class 
 
1. What are the defining characteristics of the teaching scripts collected in a DTP 

abstract algebra class?  

a.  What are the salient characteristics of teacher talk in the teaching scripts?   

i.  What types of declarative statements do teachers make? 

ii. What types of questions (including rhetorical questions) do the teachers 

pose to the students? 

iii. To whom do the teachers pose the questions (to the whole class, a group 

of students, or an individual student)? 

b.  What are students expected to do during the DTP class meetings? 

i.  What types of student action are encouraged by the instructor? 

ii. What activities are the students engaged in during class? 

Teaching and Learning in the Investigative Class 
 

2.  What are the defining characteristics of the teaching scripts collected in an 

investigative abstract algebra class?  
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a.  What are the salient characteristics of teacher talk in the teaching scripts?   

i.  What types of declarative statements do teachers make? 

ii. What types of questions (including rhetorical questions) do the teachers 

pose to the students? 

iii. How do the teachers pose the questions (to the whole class, a group of 

students, or an individual student)?   

b.  What are students expected to do during the investigative class meetings? 

i.  What types of student action are encouraged by the instructor? 

ii. What activities are the students engaged in during class? 

Comparison of DTP and Investigative Class Teaching and Learning 
 
3. Which, if any, of the characteristics in the collected teaching scripts seem to best 

differentiate an investigative abstract algebra class from a DTP abstract algebra 

class? 

4. Which, if any, of the characteristics in the collected teaching scripts do DTP and 

investigative abstract algebra classes have in common? 

Developed Mathematical Proficiency in DTP and Investigative Abstract Algebra 
Classes 

 
5. What mathematical proficiency with the material of an introductory abstract 

algebra course is evidenced by students who voluntarily complete additional 

assessments during the DTP course? 
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6.  What mathematical proficiency with the material of an introductory abstract 

algebra course is evidenced by students who voluntarily complete additional 

assessments during the investigative course? 

7. What are the similarities and differences in mathematical proficiency developed 

by the students in the DTP class and the investigative class? 

Limitations of the Study 
 
 There are no accepted theoretical principles or frameworks for teaching 

abstract algebra in either the traditional or reform models.  While CBMS (1999) 

posited abstract algebra’s importance in the mathematical education of secondary 

mathematics teachers, there was no published theoretical lens that highlighted 

connections between abstract algebra content, the knowledge of secondary 

mathematics teachers and the instruction offered by those teachers.  Similarly, there is 

no theory or framework that specifies the generalized knowledge of mathematical 

structures or the reasoning underlying mathematical proof that are posited as key 

characteristics of an abstract algebra course.  Thus, the defining characteristics of the 

teaching scripts in this study are not drawn from an a priori theoretical model.  This is 

a recognized limitation of this study. 

 The methodology of the current study was also limited.  First, because the two 

course sections were small, taught by autonomous faculty members, and peopled by 

different collections of students, each of the course offerings were unique.  Due to the 

uniqueness of each context, the curricular pacing and the emphasis of the two course 

offerings were distinct.  For example, one section spent considerably more time 
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studying the algebraic construction of roots of irreducible polynomials, whereas the 

other section spent almost 3 weeks more studying group-theoretic material.  Time on 

task is an important predictor of student learning both at the macro and micro levels 

(Porter & Brophy, 1988).  Reported differences in student understanding between the 

two course offerings are confounded by the amount of instructional time spent on a 

topic.   

 An additional methodological limitation of this study relates to the measure of 

participating student’s mathematical proficiency.  Each of the written assessments 

were taken home by students and completed with use of students’ text and notes.  As 

such, these measures did not directly assess the students’ knowledge of definitions 

and typical examples of abstract algebra content.   

  This was a small-scale, exploratory study addressing the teaching of abstract 

algebra and the resulting mathematical proficiency of students as exemplified in 

single sections of an investigative and DTP style of teaching.  Any conclusions are 

preliminary.  
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CHAPTER 2: LITERATURE REVIEW 

 The purpose of this study was to examine the characteristics of two 

instructors’ abstract algebra courses that employed differing instructional 

methodologies, and to describe the mathematical proficiencies that students 

developed as a result of such experiences.  Specifically, the study seeks to describe 

and characterize DTP and investigative teaching of abstract algebra.  This literature 

review describes research on teaching and is organized into two sections, one that 

examines research on teaching and the other research on student understanding of 

abstract algebra.   

The first section examines research on teaching with an emphasis on teaching 

undergraduate mathematics.  Because there was little located research that focuses on 

teaching abstract algebra, the chapter will also review those papers that principally 

offer pedagogical suggestions.  By far, most of the published papers about teaching 

abstract algebra describe pedagogical techniques.  The dearth of located research 

about the teaching of abstract algebra indicates the importance of the current study.  

The section devoted to research on teaching has been further sub-divided into three 

subsections.  The first subsection is focused on DTP teaching, first describing a 

learning theory which supports that type of instruction and then surveying the 

previous research on DTP teaching.  The second subsection is focused on 

investigative teaching and is similarly organized.  The third and final subsection is 

focused on the manner in which an instructor would decide upon pedagogical style.   
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 A second purpose of this study was to describe the mathematical proficiencies 

that students developed while taking an abstract algebra course.  As such, the second 

section of the chapter summarizes previous research on student understanding of 

abstract algebra topics and proof in abstract algebra.   

Teaching Advanced Mathematics 

The present study seeks to characterize two different instructional approaches 

to teaching abstract algebra.  Before embarking on such an undertaking it is prudent 

to examine what literature exists that describes the two approaches to teaching as well 

as any literature that describes how instructors chose which style to implement.  

Because this section of the literature review examines previous work describing the 

two approaches to teaching, it will also include a survey of pedagogical suggestions 

made by abstract algebra instructors and any recorded research results.   

The two most commonly caricatured teaching styles are lecture and something 

that might be referred to as ‘investigative,’ each of which can be seen as being 

supported by different learning theories.  I will begin this examination with a 

summary of the theory underlying the two pedagogical approaches and then turn to 

studies and suggestions of class activities aligned with and investigative pedagogy. 

DTP Teaching 

The lecture style is commonly described as Definition-Theorem-Proof (DTP), 

although the actual order of presentation of the mathematics may vary, and the 

instructor may include lecture features that might be described as motivational or 

process-oriented (Edwards & Brenton, 1999; Thurston, 1994).  In this case, students 
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are being asked to learn mathematics in a top-down manner or from the general case 

to the concrete example.  That is, students are introduced to the abstract mathematical 

definitions and general theorems and then shown examples of those concepts and 

principles. 

The belief in the ability to learn from general to concrete might be seen as 

aligned with the learning theory proposed by Lev Vygotsky (Kozulin, 1998).  

Vygotsky argued that schooling is not a time for direct application of cognitive 

resources, but rather, school “aims for a deliberate “denaturalization” of the students’ 

position, so that children can make their own actions a subject of their own deliberate 

analysis and control” (Kozulin, 1998, p. 47).  Moreover, the idealized classroom 

based upon Vygotsky’s theory is one in which “instead of learning a particular task or 

operation the child acquires a more general principle applicable to different tasks” 

(Kozulin, 1998, p. 47).  That is, the learner should be given a theory or general model 

and then learn to apply it in a variety of more concrete situations.  While Vygotsky’s 

view provides some psychological support for a general to specific developmental 

approach, it is unlikely that most of the algebra instructors deciding to lecture and 

present a theoretical description first have read Vygotsky and taken the time to 

understand his positions.  It seems more likely that the decision to lecture is not based 

in educational theory, but rather more aligned with the other concerns described 

below.  

Instructors who hold the belief that students learn in a Vygotskian manner are 

probably strongly influenced by their own experiences (or the idealized recollection 

of their experience) as a mathematics learner.  That is, instructors teaching abstract 
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algebra were generally very successful learners of both mathematics generally and 

algebra in particular.  Thus, they have direct evidence that the traditional form of 

instruction (i.e., the one that they experienced as students) is effective.  Additionally, 

they typically have no evidence (other than educational research, which is not widely 

read in the community of mathematicians) that any other style of teaching is effective. 

An example of an analysis of lecture-style teaching of a real analysis class is 

seen in Weber’s (2004) work.  This analysis served to suggest some possible 

categorizations of lectures that may be found in an abstract algebra course. 

Weber (2004) examined the instruction in an introductory real analysis course 

and identified three basic styles of teaching proof: logico-structural, procedural, and 

semantic.  He characterized the logico-structural approach by its reliance on formal 

mathematical statement, the conspicuous lack of diagrams, lack of any semantic 

meaning for the concepts or the proof, and emphasis on careful use of definitions to 

both start and conclude a proof.  Weber characterized the procedural style of teaching 

proof by its complete lack of semantic meaning; students were supposed to learn the 

structure of the argument and no more.  The instructor (Dr. T in this study) would 

write the beginning and conclusion to the proof and “He [the instructor] would often 

remark about how one should always start the type of proof in the way he did” 

(Weber, 2004, p. 125).  Then, given the incomplete proof, Dr. T. would demonstrate 

how to complete it.  Lastly, the semantic teaching style is characterized by the 

instructor’s use of intuitive descriptions of concepts and relationships.  In each case, 

the instructor’s teaching style was chosen to help students acquire some specific type 
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of knowledge or ability to construct proof (as well as demonstrate a large number of 

similar proofs).   

What the faculty may likely believe, and what Weber’s (2004) Dr. T stated, is 

that, “in the beginning of the course, students could only understand the topics as a 

string of words” (p. 128).  In fact, Dr. T’s teaching seemed particularly aligned with 

such a belief.  His first two lecture styles made no effort to help students understand 

the ideas, the relationships between them, or the semantic meaning of the proofs.  

Instead, the students were supposed to be mimicking the actions they observed in 

class, a fact that Dr. T acknowledged by saying, “early in the course, you could get by 

with certain tricks and skills” (Weber, 2004, p.128).  That is, Dr. T acknowledged that 

early in the semester, his students could complete nearly all of their work without any 

understanding.  Yet, he continued by suggesting that at the end of the course students 

could not succeed without understanding the meaning of the ideas and semantic 

structure of the required proofs.  In fact, Dr. T. believed that it is only after being able 

to perform the necessary symbolic manipulations that, “They can begin to understand 

what these words really mean” (Weber, 2004, p. 128).   

Throughout the piece, Weber emphasizes the power that the instructor has in 

the situation: Dr. T. possesses the knowledge and hands it down to the students using 

different techniques of teaching, which center around exposition and giving 

examples.  Exercises are performed to reinforce knowledge and practice its 

application; students first mimic the instructor and are eventually given additional 

tools to gain a better understanding of the meaning behind the examples.  

Throughout, all knowledge is provided to the students in the lecture-style classroom, 
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beginning with the general case and moving to the specific examples.  This is in 

contrast with investigative teaching methods, which I will describe next. 

Investigative Teaching 

The ideal investigative teaching style likely includes a markedly increased 

amount of student conversation and interaction during class, with a corresponding 

decrease in the amount of time that the instructor spends making expository remarks 

(Davidson & Gulick, 196?).  In investigative classes, students typically spend their 

class time working on mathematical tasks and sharing their findings in some way.  

Again, the way in which such teaching is enacted probably varies quite widely in the 

undergraduate classroom.   

A second major theory of teaching advanced mathematics is defined by 

Freudenthal (1973) as moving from the particular to the general in a way that appears 

to be aligned with the historical development of mathematics.  Freudenthal noted that, 

historically, formal definitions only appeared at the end of a long period of 

mathematical exploration with specific examples.  He argued that mathematical 

instruction should mirror this process.  Thus, the order of introduction is example-

definition.  Freudenthal’s work is almost certainly informed by Piagetian stage 

theory.  Piaget believed that students progress from “action to thought” (Kozulin, 

1998, p. 52).  The ideal Piagetian classroom is a rich environment for students where 

they come into contact and experiment with a variety of concrete expressions of an 

idea.  It is through the students’ interaction with these ideas (action) that they 

gradually acquire abstract understanding (thought).  Piaget’s work has been expanded 

upon by a variety of theorists, as will be described below.  At the moment, it is 
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sufficient to show that Freudenthal’s work, which Larsen (2004) argues is the basis 

for much of the reform effort in the teaching of abstract algebra, is aligned with that 

of Piaget. 

 Freudenthal’s (1973) theory grew out of his beliefs about learning.  

Specifically, he claimed that mathematics moves from the particular to the general in 

both historical development as well as in individuals’ minds.  Freudenthal was even 

more specific regarding the teaching of group theory, writing that groups should be 

introduced through exploration of concrete examples of systems of automorphisms on 

structures.  He felt that this approach has two major benefits.  The first is that 

exploration of the collection of automorphisms is an activity similar to others that 

students had undertaken when exploring functions in previous classes.  The second 

major benefit is that when introduced in this way, all such collections exhibit the 

group properties.  Other theorists (e.g., Burn 1996; Dubinsky & Leron, 1994) have 

postulated similar theories of teaching that begin with asking students to explore 

concrete examples.  Burn wrote that he began his course on algebra by having 

students engage with a multitude of tasks on geometric symmetry before even 

introducing the group axioms.  He claimed that these axioms “were then immediately 

valued by the students” (p. Burn, 1996, p. 377).  This view is mirrored by a passage in 

Dubinsky and Leron’s statement to instructors on the proper way to use their text: 

It should be noted that although it is assumed that each learning cycle 
begins with activities, the students are not expected to discover all the 
mathematics for themselves.  In fact, since the main purpose of the activities 
is to establish an experimental basis for subsequent learning, anyone who 
spends a considerable time and effort working on them, will reap the benefits 
whether they have discovered the “right” answers or not.” (1994, p. xvii) 
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The expository pages in Dubinsky and Leron’s (1994) investigation-based 

abstract algebra text have the same mathematical statements of definitions, theorems 

and proofs, in the same order, as texts designed for use in a DTP class.  The 

difference for students in a DTP class as compared with a class based upon a 

“constructivist approach to teaching” (Dubinsky & Leron, 1994, p. xvii) arises from 

the students’ experience of the process of mathematics, by which authors commonly 

refer to the student’s exploration of structures and the implication of a variety of rule-

systems imposed upon those structures.  Teaching aligned with Freudenthal’s (1978) 

position requires that students engage in the process of attempting to make meaning 

from mathematical exploration and use that process to imbue the subsequent 

statement of definitions with meaning.  This is contrasted with the DTP mode of 

teaching which insists that students, when presented with an abstract definition, can 

derive or make meaning from the subsequent exploration of examples, properties and 

logically derivable statements based upon that definition. 

A case study in investigative teaching 

One of the principle purposes of the current study is to describe what happens 

in an investigative abstract algebra class.  In order to situate the current study in the 

research literature, it is appropriate to survey the previous work that has described 

investigative teaching.  As noted with DTP teaching, not much research literature 

describes what actually happens in classrooms was located.  This section details a 

description of an entire programmatic change at the University of Northern Colorado.  

The section that follows this one will provide a summary of other studies that address 

issues of teaching in abstract algebra, but none are as comprehensive in both 
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describing what happens in classroom and providing a description of the student 

learning outcomes. 

The University of Northern Colorado study (Mingus, 2001) was based upon 

efforts to link a trio of courses (including abstract algebra) and to reform the 

pedagogy in those courses in order to bring it into greater alignment with what is 

known about the learning of advanced mathematics.  She described their reform 

efforts as an attempt to create a curriculum that would: 

i) Inspire students to think abstractly and appreciate the need for abstraction. 
ii) Foster independence in the learning of abstract mathematics. 
iii) Enable understanding and value the need for mathematical proof. 
iv) Facilitate communication of student understanding to other people. 

(Mingus, 2001, p. 28) 

The faculty employed a variety of pedagogical approaches, including the use of small 

group work and, in the abstract algebra course, the software package Exploring Small 

Groups, which is specifically designed to help students develop understanding of 

group theoretic examples without heavy amounts of computation.  The faculty also 

offered extended study sessions in which students from all three courses came 

together for 3 hours.  Each class was allotted a single hour to ask questions for 

presentation at the board and the rest of the time was to be spent engaged in small 

group work or interacting with students in the other two classes.  The faculty believed 

that this would help students see the mathematical connections between the courses as 

well as solidify prior knowledge.   

Mingus (2001) continued, “another innovation used in abstract algebra was to 

take the chalkboard and overhead away from the instructors (and students).  Students 

were asked to talk about normality and to describe quotient groups” (Mingus, 2001, p. 
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29).  She asserted that these chalk-less talks often yielded insights about student 

misconceptions that would never have been apparent from more traditional modes of 

interaction.  In order to make students more responsible for the production of original 

proofs and contributions to the class knowledge base, index cards were passed around 

at the beginning of the semester, each with a single theorem written on it.  Students 

were expected to create a proof for the theorem on the card they received and present 

it to the class at an appropriate time during the semester.  The students were expected 

to work closely with the instructor outside of class to develop this proof, an 

instructional strategy which had the added benefit of helping the students and 

instructor to develop a bond and to interact in a mathematically meaningful manner.  

Students’ class work often involved working in small groups on problems that were 

of great importance for the continued mathematical development of the class.  That is, 

the students were engaged in meaningful work, and the results they produced were, as 

Mingus describes them, “structural rather than pedantic, as the subsequent 

disciplinary development depended upon those results” (Mingus, 2001, p. 30). 

 The faculty believed that these pedagogical practices would help students to 

see and appreciate the connections between courses and concepts.  Mingus (2001) 

stated,  

The strength and depth of these connections can serve as a means for 
anchoring a student’s understanding and enhancing their ability to 
recall that knowledge in problem solving situations.  Students typically 
fail to make such connections on their own…as a consequence of their 
attitudes and beliefs about mathematics.  Students develop negative 
attitudes and beliefs, including the view that it [mathematics] is an 
unchanging, disconnected discipline, as a result of the curricula to 
which they are exposed and the continued use of an absorption model 
of teaching. (p. 30) 
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Mingus’ (2001) evaluation of the course sequence involved interviews with 12 

students.  She presented the students’ comments about group work and technology as 

overwhelmingly positive and as enhancing their learning experiences.  She argued 

that the use of technology enabled the students to develop a “conceptual 

understanding” rather than procedural fluency with co-sets and quotient groups 

(Mingus, 2001, p. 34).  Should these courses have enabled students to develop a 

conceptual understanding (a working description of “conceptual understanding” is, in 

the language of Vinner (1991), to hold a concept image that is well correlated with a 

mathematically correct concept definition and be able to operate on both the image 

and the definition), they should be considered successful.   

 The description that Mingus (2001) offered, when coupled with the 

assessment that Grassl and Mingus (2004) provide, give a reasonably thorough 

description of students’ reactions to the class.  Grassl and Mingus (2004, ¶ 6) stated: 

 We observed together how students, once provided the assurance that 
their ideas would be listened to, can make great progress on resolving 
background deficiencies and moving forward.  Half of the 25 students were 
women; evaluations and general discussion indicated that the presence of a 
female co-instructor tended to ‘soften’ classroom tone, creating a friendlier 
learning environment for them.  The students reported experiencing a family-
like atmosphere and its positive impact on their attitudes about the class and 
the subject.  These improved attitudes translated into increased participation, 
willingness to take risks, decreased attrition (only one of 25 dropped), and 
increased attendance (On the average, only one person per week was absent).  

 
Grassl and Mingus also claim that their pedagogical style improved students’ senses 

of self-efficacy and responsibility for learning the class materials (something which 

Wu (1999) would clearly applaud).  They stated, “the majority of the students took 

fuller responsibility for their own learning” (Grassl & Mingus, 2004, ¶ 6).  Moreover, 

Grassl and Mingus claimed that this sense of responsibility had consequences for 



 

 26 
 

student learning of the material as well as the students’ sense of self-efficacy.  They 

stated, “As a result of taking responsibility for their own learning, they were able to 

take responsibility for their success in the course; this increased their self-

confidence…” (Grassl & Mingus , 2004, ¶ 5).  Grassl and Mingus did not offer their 

findings as a contrast with a traditional abstract algebra class, but rather wrote about 

the effects of the modified class in isolation.  Thus, their claims about increases in 

self-efficacy and responsibility on the part of the students should be viewed as 

statements about absolutes rather than as a comparison between two distinct courses.   

Other studies that describe investigative teaching 

What follows is a summary of a series of papers that offer pedagogical 

suggestions about teaching abstract algebra in an investigative style.  The majority of 

the articles on teaching abstract algebra (i.e., Edwards & Brenson, 1999; Dechéne, 

2001; Larsen, 2004; and Grassl & Mingus, 2004) describe pedagogical suggestions 

and then give some brief descriptor of the outcome.  Additionally, there is a growing 

body of literature that looks specifically at student understanding of proof, including 

Dean (1996) and Weber (2004), which is not a principle focus of this study, but still 

merits inclusion.  While none of these are as comprehensive as the Mingus study 

above, they provide insight that informs this paper.   

 Edwards and Brenton (1999) wrote about a teaching experiment in abstract 

algebra in which they engaged.  Following the suggestions of Vinner (1991), they 

sought to structure their classroom in a manner that would help students to develop a 

concept image before acquiring a concept definition.  In order to do so, they wrote 

that they made an effort to engage “students in activities with concrete examples” 
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(Edwards & Brenton, 1999, p. 123) and to generate conjectures and proto-definitions 

based upon their work with these examples.  They continue, “we actively engaged 

students not only in the concrete activities themselves, but also in reflective 

discussion which followed those activities… By focusing discussion on the 

regularities or properties which they observed… students themselves were able to 

abstract the defining properties of group” (Edwards & Brenton, 1999, p. 123).  

Moreover, the reflective discussions were an attempt to help students understand 

ways of thinking mathematically, that is, to help students learn to think in ways that 

would advance their understanding of mathematics.   

Edwards and Brenton (1999) described their work on an innovative course 

and then described the student-outcomes.  The authors found that the experimental 

course resulted in greater levels of persistence; 24 of the initial 28 students persisted 

(87.5%), as compared with a 57% level of persistence over the prior 3 years in 

traditional abstract algebra courses.  They also stated that, “students were able to form 

most of the constructions we intended, and active engagement in such constructions 

of knowledge apparently increased their confidence in their own ability to master the 

material” (Edwards & Brenton, 1999, p. 125).  Here, they argued that they achieved 

good levels of student understanding, and that the course had a positive effect on 

student beliefs about self-efficacy. 

Dechéne (2001) is one of a number of published studies that takes the position 

that students should first experience a structure via an accessible example, in this case 

the concrete and aural example of the British sport of change ringing (ringing all 

possible permutations of n bells) as a motivator for teaching students about the 
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permutation group in particular, and algebra in general.  Dechéne described the 

context of change ringing, then gave a description of the mathematics that could be 

directly observed or quickly abstracted, explained how the mathematics could be 

connected to the Cayley graph, and explored the existence of a Hamiltonian cycle.  

Dechéne finished her piece by suggesting a variety of ways that the mathematics she 

described could be brought into the classroom both in an active manner (e.g., 

(actually ringing bells or moving in the order of ringing) or a more passive manner 

(e.g., using a collection of Java applets that demonstrated change ringing).  There are 

a number of other such suggestions that were collected in Hibbard and Maycock’s 

(2001) edited volume, a text that grew out of two sessions at a Joint Mathematics 

Meeting in which a series of reports were offered about innovative teaching (i.e., 

strategies that were primarily student-oriented rather than lecture) in abstract algebra 

classes.  Additionally, others are using structures that might come from a computer 

program such as ISETL (Leron & Dubinsky, 1994) or ESG (Mingus, 2001) but more 

common are suggestions to use some physical manipulative or pictorial 

representations, as was the case in Dechéne’s work.   

Larsen (2004) provided significant detail in his description of pedagogical 

activities but he began with a similar goal content-goal; to help students learn algebra 

content without lecture.  He gave the following prompt shown in Figure 1 to students. 
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 Figure 1.  (Larsen, 2004, p. 267) 

Larsen, as did all the other authors noted above, asked the students to look across the 

different explorations that they had undertaken to look for commonalities and thereby 

create a definition of a group.  The goal of these suggestions was to develop “an 

approach to the instruction of elementary group theory that supports the guided 

reinvention of the concepts of group and isomorphism as a result of the students’ own 

mathematical activity and informal knowledge” (Larsen, 2004, p. 252).  Other 

curricular efforts have been designed with the goal that students develop an 

understanding of quotient groups, but the overall approach is the same: asking 

students to explore different situations to develop their understanding of the 

mathematical concepts. 

 Larsen (2004) continued by describing the class discussion that resulted as a 

means of providing other teachers with suggestions for eliciting important 

mathematical ideas such as asking students structured questions about their work.  He 

noted that even after these explorations students do not identify the importance of an 

operation without prompting.  He stated that he had to “elicit this observation by 

asking students what was needed before the concepts of identity elements, inverses, 
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and associativity made sense” (2004, p. 284) and even after this prompt, the students 

did not use the term operation but rather described “actions you can perform on those 

things” (p. 285).  Moreover, he also noted that the students were likely to list 

properties that were not necessary into their definitions of groups.  Larsen did not 

evaluate the student’s abilities to make use of the definitions in proof. 

In a follow-up to the Mingus (2001) study, Grassl and Mingus (2004) evaluate 

their reformed abstract algebra course.  Grassl and Mingus (2004, ¶ 6) stated: 

We observed together how students, once provided the assurance that 
their ideas would be listened to, can make great progress on resolving 
background deficiencies and moving forward.  Half of the 25 students were 
women; evaluations and general discussion indicated that the presence of a 
female co-instructor tended to ‘soften’ classroom tone, creating a friendlier 
learning environment for them.  The students reported experiencing a family-
like atmosphere and its positive impact on their attitudes about the class and 
the subject.  These improved attitudes translated into increased participation, 
willingness to take risks, decreased attrition (only one of 25 dropped), and 
increased attendance (On the average, only one person per week was absent).  

 
Grassl and Mingus also claim that their pedagogical style improved students’ sense of 

self-efficacy and responsibility for learning the class materials (something which Wu 

(1999) would clearly applaud).  They stated, “the majority of the students took fuller 

responsibility for their own learning” (Grassl & Mingus, 2004, ¶ 6).  Moreover, 

Grassl and Mingus claimed that this sense of responsibility had consequences for 

student learning of the material as well as the students’ sense of self-efficacy.  They 

stated, “As a result of taking responsibility for their own learning, they were able to 

take responsibility for their success in the course; this increased their self-

confidence…” (Grassl & Mingus , 2004, ¶ 5).   

 The set of papers that relates to the teaching of proof with a focus on the 

content of abstract algebra are often similar to those suggesting new ways to teach 
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abstract algebra content in that they will describe a pedagogical approach or give 

suggestions and then offer very little in the way of evaluation of the approach.  For 

example, Dean (1996) wrote a piece describing the pedagogical practices that she 

employed to help her students learn how to prove mathematics theorems.  She 

articulated a six-phase model, which she claimed would assist students in developing 

proof competencies.  The evidence that she offers to attest for the success of her 

model is anecdotal; she claimed that she expected students to complete novel proofs 

on exams and stated that they were able to do so; she also related a story of a student 

who employed the model in a later course.   

There is also an ongoing set of work done by Weber (2004) designed to help 

students make proof-related decisions in an accurate manner; such decisions might 

include choosing the proof structure or the most appropriate knowledge to draw upon 

to craft the proof.  Thus far, there have been three reported iterations of this project.  

In the first iteration, a computer was programmed to execute proofs using a heuristic 

and entering a set of facts that he claimed would be reasonable for undergraduates to 

know based upon his previous research.  The computer was able to successfully 

create 13 of 16 direct proofs (ones which proceed as a set of linked logical statements 

from start to finish) but was unable to complete any of the indirect proofs (which 

require assuming a contradiction).  In the second iteration, the researcher performed a 

similar experiment with undergraduate students by teaching them how to apply the 

heuristic and giving them a sheet of facts that they could use to write proofs.  He 

noted that he made no efforts to teach meaning, but rather attempted to teach students 

to apply the procedure in a mechanistic manner.  That is, he asked students to 
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construct a set of logically coherent and complete statements that demonstrated the 

truth-value of the proposition.  The students were highly successful writing direct 

proofs, but did not develop any conceptual understanding in the form of definition 

(either concept image or concept definition).  In the third iteration, there was an 

attempt to teach both proof-process and conceptual understanding.  This last iteration 

again saw high rates of student success with proof (Weber, 2004).  But, the students 

who had learned to apply his heuristic with meaning actually demonstrated lower 

rates of success with proof than either the computer or the students who were 

mechanistically applying the routine. 

While there is a growing body of literature suggesting novel approaches to 

teaching abstract algebra content and proof-proficiency, the current literature does not 

adequately describe the mathematical proficiency that students will develop after 

completing an introductory abstract algebra course.  Much of the current literature 

includes only cursory evaluations of student success, such as completion rates, or 

affective descriptions, rather than describing what content students know and how 

they are able to use their content knowledge in mathematical activity in areas 

including writing proofs.  Moreover, those studies that do offer more description 

about the mathematical proficiency that students developed are small-scale teaching 

experiments that lasted a relatively brief amount of time and focused on teaching a 

specific set of knowledge or proof-writing skill rather than the entire body of material 

from an introductory abstract algebra course.  The present study is an attempt to 

enrich the existing research literature by describing the mathematical proficiency that 
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students in an investigative introductory abstract algebra course develop and are able 

to demonstrate.   

Teachers’ pedagogical decisions 
 
 Abstract algebra instructors, prior to their course, must make a decision about 

whether to employ a DTP or reform pedagogical style.  The research literature 

indicates that the choice of pedagogical style is most influenced by (i) beliefs about 

how students learn mathematics, (ii) beliefs relating to the goals for the class 

(including issues related to breadth of coverage versus depth of understanding), (iii) 

beliefs about the mathematical content to be covered (e.g., what are the most 

important topics to teach), and (iv) beliefs about evidence of student proficiency 

(Schoenfeld, 1998; Weber, 2001; Wu, 1999).   

 Time is viewed as an important constraint in advanced undergraduate 

mathematics courses, especially so in introductory abstract algebra classes. Wu 

(1999) captures this theme, writing, “I find the obstacle of the time-constraint almost 

impossible to overcome, and this constraint will be a recurring theme of this article” 

(p. 3).  Similarly, Grassl and Mingus (2004, ¶ 5) wrote “the timetable in abstract 

algebra is ferocious” (emphasis in original) clearly communicating their frustration 

with the constraint of time.  The introduction to an algebra text stated: 

The book contains the material on groups, rings and fields usually 
covered in a one-semester course, though we would be happier if we could 
stretch it over 1.5 or 2 semesters.  We feel that for many students, going 
beyond the material on group theory in one semester interferes with their 
ability to advance beyond a superficial understanding of abstract algebra 
(Dubinsky & Leron, 1994, p. xix). 
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Authors (Wu, 1999; Grassl & Mingus, 2004) included examples of major topics in 

abstract algebra (Euclidean Division and cosets, respectively) that they perceive as 

forced into a single class period by the constraints of time even though the concepts 

may have taken decades to evolve mathematically or, as Wu (1999) acknowledged, 

cannot be learned in such a brief time period.  Wu conceded that learning the 

Euclidean division algorithm is difficult, and, after describing a “torturous” two-hour 

tutoring session with a student, he admitted that “it is likely that for most students this 

is the only way to learn [the topic]” (p. 3).  Wu defended his decision to only spend 

half of a lecture (25 minutes) on Euclidean Division even if more time was warranted 

educationally by stating, “If I spent two hours to teach it, I would be fired for 

pedagogical turpitude, and rightly so” (p. 3).  Therein lies the fundamental problem 

that Wu admits: It seems to be common belief that many students cannot learn the 

material in the time allotted and require substantial help from the teacher, but at the 

same time, the current structure of the abstract algebra class and university system 

does not allow for such flexibility.   

Moreover, Wu (1999) is also making an assertion about the amount of content 

that can be covered via the different pedagogies.  He argues that if he chose to engage 

in guided-discovery or an investigative teaching approach instead of a lecture-based 

pedagogy, “then the amount of materials that [could] be covered in each course would 

be reduced by half if not more.”  He clearly believes that this outcome is incompatible 

with his stated goal of preparing students for graduate study (Wu, p. 6, 1999).  It is 

likely that other authors would agree with Wu’s assertion. 
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All of these authors seem to be suggesting that they view the content of the 

abstract algebra course to be fixed – that there is a body of material that they must 

present to students.  For example, Wu states, “after four years of college, students 

should be competent enough to start graduate work in their chosen disciplines” (Wu, 

1999, p. 4) and that in a “junior level algebra course” students should have achieved 

mastery of the “most basic techniques and ideas in algebra: the concepts of generality 

and abstraction, the concept of mathematical structure, and certainly the basic 

vocabulary of groups, rings and fields” (Wu, p. 4, 1999).  Grassl and Mingus (2004) 

argued that students would expect to see groups, subgroups, cosets and quotient 

groups in a typical first semester course.  Each of the authors seems to be 

acknowledging that there is a tension between what they perceive to be the amount of 

material that an introductory course must cover and the amount of time it takes 

students to actually develop proficiency with material.   

The authors cited above seem to be making an assertion about student 

learning.  In particular, they are asserting that it is better to expose students to the 

entire scope of introductory algebra in order give students some opportunity to learn 

the material rather than spend more time on certain areas, to the exclusion of some 

topics.  The instructor’s beliefs are somewhat supported by literature; specifically, the 

NRC (2001) discussed the importance of students’ opportunity to learn a concept and 

suggested that it was the most powerful predictor of student performance.  It seems 

that most authors believe that students’ opportunity to learn a concept is directly tied 

to their exposure to the concept in a mathematics course.  Moreover, there seems to 

be a belief among instructors that in order to prepare students for possible graduate 
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study in algebra (which in other venues authors claim caters to a dangerously small 

minority), it is more important to cover a great volume of material than to ensure any 

depth of student understanding (Dubinsky and Leron, 1994; Wu, 1999; Grassl & 

Mingus, 2004).  It is possible to find writers taking well-argued positions on both 

sides of the issue.  For example, Cnop and Grandsard (1998) are among many who 

have argued that it is preferable to present less material if it is better understood than 

to present more material that is poorly understood. 

Lastly, there is also a set of beliefs about students’ abilities to learn from 

different types of pedagogies that needs to be taken into account when teachers 

decide on their teaching styles.  For example, in a DTP class, the order of introduction 

of new material is from the general to the particular, from abstract definition to 

concrete example.  As suggested above, this time of learning in the DTP classroom is 

derived from Vygotsky’s work.  In the case of investigative teaching, the guiding 

theory is that students begin by investigating a series of discrete situations and 

abstracting and generalizing from those situations to the appropriate definitions and 

understandings, and is based on Piaget’s theories on learning.  While many 

mathematicians and mathematics teachers know about alternative pedagogies, they 

are less likely to know the learning theories that support those pedagogies; learning 

theory is not part of the typical preparation of a mathematician.  As such, 

mathematicians are likely to make their decisions based upon implicit beliefs about 

teaching and learning mathematics rather than theoretical support. 

 These two theories of learning (i.e., Vygotsky and Piaget) seem to interact in 

complex ways within undergraduate mathematics faculty’s perceptions of time 
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constraints and goals for their abstract algebra courses.  Wu (1999) seems to be one of 

the most prominent and articulate defenders of the lecture style of teaching, yet even 

he admitted that it is likely not the most effective method for the promotion of 

learning.   

Those who engage in a more investigative pedagogy, such as that which 

Dubinsky and Leron (1994) described in their curriculum, do not generally discuss 

their disciplinary beliefs in such an explicit fashion.  Although to be fair, most of 

these studies take as their goal the description of student understandings of algebra 

concepts, and should not be faulted for failing to include a fuller description of 

instructor belief.  Grassl and Mingus (2004) have offered one example of a course 

that was more investigative, and they clearly perceived the same time constraints as 

Wu.  Grassl and Mingus (2004) seemed reasonably ambitious in their goals for the 

mathematical content of the course as they reported student discussion of quotient 

groups.  Similarly, Findell (2000) reported that students had some experience with 

quotient groups (one question, out of 33, on the final examination required students to 

make use of the concept).  Asiala, et al. (1997) also reported on student understanding 

of quotient groups, although again, it seemed to be the final concept covered in the 

course and lightly examined on assessments.  As such, it is plausible to suggest that 

the authors cited above made a decision to cover less material than a typical one-

semester course on group theory in an effort to increase student understanding.  I 

might suggest that belief in the importance of student understanding might be more 

privileged in these authors’ regard than the goal of complete coverage of the 

important mathematical content. 
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Summary  

The literature on teaching cited above contains significant works on learning 

theory as well as a growing number of pieces which offer suggestions about teaching 

abstract algebra.  Yet, there are very few located studies that offer a complete 

description of what happens in an undergraduate mathematics class, the most detailed 

of which is focused on analysis (Weber, 1999).  As such, there is significant need in 

the field for a study that describes the teaching of undergraduate abstract algebra.   

Studies that link teaching and learning are relatively rare in the research 

literature and those that do include some summary evaluation of the pedagogy 

generally only include measures such as course completion rate or satisfaction 

surveys.  Two notable exceptions to this rule existed in the research literature.  The 

first was a study in which the author was creating a pedagogy that would build 

student understanding of groups and group isomorphism (Larsen, 2004).  Yet, this 

study was limited in scope both in terms of the content (only working through group 

isomorphism, not the entirety of a semester-long course) and only included two 

students in each iteration of the content.  As such, it cannot be thought (nor was it 

intended to be) an evaluation of student learning in an introductory abstract algebra 

course.  Similarly, there was a study on teaching student proof proficiency (Weber, 

2001) that also included evaluation of learning.  In that study, the students were able 

to make good use of a heuristic to produce proofs when making use of a list of 

definitions and results. However, the author noted that when he attempted to teach for 

conceptual understanding while also teaching proof proficiency, the students 

demonstrated less growth.  Again, this study was focused on only one aspect of 
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mathematical proficiency and covered a limited set of content.  As such, there is still 

significant question concerning how undergraduate mathematics courses are taught.  

Student learning 

 The second major goal of the present research study is to describe the 

knowledge that students derive from an introductory semester of abstract algebra and 

what they are able to do with that content knowledge.  There are a multitude of pieces 

of content knowledge and ways in which students are expected to make use of that 

knowledge during their abstract algebra course. In seeking to craft a readable yet also 

reasonably comprehensive description of students’ abilities, it was necessary to make 

a number of choices that focused the study both in terms of the content of abstract 

algebra and also the manner in which students’ abilities to make use of the content 

was studied and described.  “No term captures completely all aspects of expertise, 

competence, knowledge, and facility in mathematics” (NRC, 2001, p. 5), but as with 

the NRC’s Mathematics Learning Study, I have chosen the term proficiency to 

describe how I will analyze the knowledge and abilities that the students 

demonstrated during the study.   

 The NRC Mathematics Learning Study report (2001) suggested five strands of 

mathematical proficiency as a means for organizing the understanding of 

mathematical learning of elementary students.  These strands are as follows: 

1. Conceptual understanding – comprehension of mathematical concepts, 
operations and relations. 

2. Procedural fluency – skill in carrying out procedures flexibly, accurately, 
efficiently, and appropriately. 

3. Strategic competence – ability to formulate, represent, and solve mathematical 
problems. 
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4. Adaptive reasoning – capacity for logical thought, reflection, explanation, and 
justification. 

5. Productive disposition – habitual inclination to see mathematics as sensible, 
useful, and worthwhile, coupled with a belief in diligence and one’s own 
efficacy. (NRC, 2001, p. 5) 

 
Although these strands were meant to describe the mathematical proficiency of 

elementary students, the writing of researchers in undergraduate mathematics 

education, and specifically, those working in the fields of abstract algebra and proof, 

suggest that there are analogous strands of mathematical proficiency for 

undergraduates.  In undergraduate abstract algebra classes, students are expected to 

develop: 

1. Conceptual understanding – comprehension of the concepts of set and 
operation form the basis for more advanced understanding of groups, rings, 
fields and the different relations between them. 

2. Procedural fluency – skill in carrying out algebraic operations such as 
function composition and object permutation flexibly, accurately, efficiently, 
and appropriately. 

3. Strategic competence – the ability to explore new mathematical contexts and 
categorize them into known examples.   

4. Adaptive reasoning – the ability to create mathematical proof. 
5. Productive disposition – a habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence and one’s own 
efficacy. 

 
The pages that follow review the located research on each of these five strands of 

undergraduate mathematical proficiency.   

Conceptual Understanding   

In undergraduate mathematics study, the objects under study are given by 

definitions.  As a result, in abstract algebra, and advanced mathematics generally, 

conceptual understanding is best understood in terms of students’ knowledge of 

definitions and examples (Tall & Vinner, 1985; Vinner, 1991; Hershkowitz, Schwarz, 
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& Dreyfus, 2001).  As described above, a formal mathematical definition serves as 

the basis for much work in mathematics, and thus, the mechanism by which students 

learn mathematical definitions is of great interest.  Vinner (1991) described two 

distinct structures that are necessary for advanced mathematical understanding: the 

concept definition and the concept image.   

He claimed that a student’s concept definition was the formal algebraic 

statement that the student associated with the term and that which the student can 

articulate in an (approximately) axiomatic manner.  If a student only has a concept 

definition, but has no concept image, the student can do some work in mathematics 

and appear successful.  A concept definition allows students to perform appropriate 

symbolic manipulations, but the student would be operating by moving symbols 

across a page following a set of rules without a deep understanding of why the 

manipulations are appropriate or what the manipulations show about the structures.   

A concept image is “something non-verbal associated in our mind with the 

concept name” (Vinner, 1991, p. 68).  This image often takes a visual or verbal form, 

although Vinner cautions that the verbal form was often acquired only after the 

learner had significant interaction with the idea.  Thus, students who hold a correct 

concept image that is well-correlated with the concept definition, meaning that 

students can flexibly operate with both, are described as having successfully acquired 

conceptual understanding (Vinner, 1991). 

Students in an introductory abstract algebra course are expected to develop a 

conceptual understanding of groups, rings, fields and isomorphisms as the primary 

structures.  There are also a number of variants and sub-structures that students are 
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expected to understand.  There is a large body of research into the manner in which 

students develop their understanding of groups, subgroups and quotient groups.  

There is very little work on student understanding of other topics.   

A theoretical perspective for describing student understanding  

In their first study of student learning of group theory, Dubinsky, et al. (1994) 

presented a theoretical perspective characterizing student understanding, based on the 

work of a class of 24 in-service teachers enrolled in an abstract algebra class.  The 

investigators drew their conclusions from student responses on a paper-and-pencil 

instrument and a collection of interviews with 10 of the students whom the 

researchers believed to be students in the process of learning the concepts.  This 

theoretical perspective is termed Action-Process-Object-Schema (APOS).  The APOS 

theory expands the Piagetian constructs of process and object into a four-stage theory 

that may then be used to create a genetic epistemology or learning trajectory for the 

major concepts in group theory and other mathematics.  APOS is defined: 

An action is any repeatable physical or mental manipulation that 
transforms objects in some way.  When the total action can take place entirely 
in the mind of an individual, or just be imagined as taking place, without 
necessarily running through all of the specific steps, we say that the action has 
been interiorized to become a process.  It is then possible for the students to 
use the process to obtain new processes, for example by coordinating it with 
other processes; that is, to combine two or more processes, connecting 
“inputs” and “outputs” appropriately so that another process is formed.  Also, 
a process may be reversed to obtain a new process.  When it becomes possible 
for a process to be transformed by some action, then we say that it has been 
encapsulated to become an object.  (Dubinsky, et al., 1994, p. 270) 

 
Since then, many studies relating to the teaching or learning of group theory have 

been written in response to or have built upon that work.  While Dubinsky, et al. 

(1994) employed this theoretical perspective to explain how students learned the 
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concepts of groups, subgroups, cosets, and normality, the researchers did not consider 

how student understanding developed from one stage to the next. 

Student understanding of groups   

To better understand the type of work that the research program is attempting, 

Figure 2 presents the genetic epistemologies for group and subgroup that Brown, et 

al. (1997) described.   

 
 Figure 2.  (Brown, et al., 1997) 

There are three important features of Brown, et al.’s (1997) analysis of students’ 

understanding of groups according to Larsen (2004).  The first important feature 

according to Larsen was that “students had the tendency to assume that features that 

hold in one part of an environment hold for the entire environment” (p. 23).  Within 

the realm of algebra this is a belief that can cause significant problems for students.  

Group: is a schema that consists of three schemas: set, binary operation and 
axiom.  The schemas of set and binary operation are coordinated through the schema of 
axiom.  Axiom includes the notion that binary operations on a set may or may not satisfy 
a property, which is essentially the process of checking that property.  It also includes 
four specific objects obtained by encapsulating the four processes corresponding to the 
four group axioms (Closure, Associativity, Existence of Identity Element, Existence of 
inverse element for each member of the set).  Checking an axiom consists of coordinating 
the general notion of satisfying a property with the specific process for the axiom and 
applying it to a particular set. 
 The Group schema is thematized to form an object to which actions can be applied 
such as checking for isomorphisims.  An important component of the group schema is the 
ability to consider a generic group as well as particular examples of groups.   

Subgroup: Can be understood as a coordination of three schemas; group, subset 
and function.  The function and subset schemas are coordinated to obtain the process of 
restriction of a function to a subset of its domain.  This process is the coordinated with the 
binary operation in the group schema to obtain the restriction of the binary object to a 
subset.  Finally the axiom schema in the group schema is applied to the pair consisting of 
the subset and the restriction of the binary operation to that subset.  In general, this 
articulation requires that the group concept be already established in the students’ mind 
before they are able to understand subgroups.     
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MacLane and Birkhoff (1999) laid out the normal progression of algebra as defining a 

category, morphisms and then a subcategory.  That means that the great majority of 

algebra requires the coordination of the notions of sets and subsets and their 

properties.  This difficulty is probably one of the reasons for the prevalence of 

questions such as “Find a cyclic subgroup of order 4 in U(40)” and “Find a non-cylic 

subgroup of order 4 in U(40)” (Gallian, 1994, p. 63).   

The second feature of Brown, et al.’s (1997) analysis that Larsen (2004) 

identified as a particular barrier in learning abstract algebra was students’ limited 

understanding of sets and element inclusion relationships.  Specifically, Larsen 

(2004) suggested that Brown, et al.’s (1997) analysis revealed that students are 

generally able to recognize that if an element satisfies all of the conditions for set 

membership then the element is a member of the set.  However, students have great 

difficulty recognizing that membership in a set implies that the element satisfies all of 

the defining conditions of membership.  This paired set of abilities is particularly 

important in advanced mathematics courses because, as Vinner (1991) described, 

mathematics textbooks and classroom practices (especially in DTP courses) are partly 

based upon several related assumptions: 

1. Concepts are mainly acquired by means of their definitions. 
2. Students will use definitions to solve problems and prove theorems. 
3. Definitions should be minimal. 
4. It is desirable that definitions be elegant. 
5. Definitions are arbitrary.  (pp. 65-66) 

 
That is, to succeed in mathematics classes, students need to be able to reason from 

definitions.  
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A number of researchers have examined undergraduates’ misconceptions of 

concepts about groups.  For example, students frequently considered a “group as a 

special set” without recognizing the need to specify an operation with that set as they 

reviewed the properties of the operation as properties of the set of numbers.  In 

addition, students frequently failed to verify that the operation defined on the set was 

associative (Iannone & Nardi, 2002).  In short, for students to demonstrate conceptual 

understanding of the group structure it requires that they coordinate, and understand 

the importance of the linkages between the set, operation and properties schema.  

Hazzan (1999) considered Piaget’s process-object duality and looked for a 

mechanism (to give more detail to the APOS work) by which students understanding 

develops.  She suggested that students typically use unfamiliar concepts as processes 

and, as the students becomes more familiar, the conception shifts to object status.  

She then supported her claims by showing student thinking about the relationship 

between groups, subgroups and cosets.  In each case, the students focused upon a 

process before moving to more general thinking (e.g., the process of finding inverses 

or the process of coset creation). 

Students also have difficulty in understanding the structure of cyclic groups.  

This difficulty may result from non-mathematical generalization with the term 

‘cycle,’ as well as the belief that all cyclic groups are finite because most of the 

examples that they see are finite (Lajoie & Mura, 2000). 

The third major contribution of Brown, et. al (1997) as identified by Larsen 

(2004) demonstrated that for students to perform certain tasks relating to groups, 

students must have constructed the notion of a generic group (i.e., an abstract 
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understanding of groups).  Given that the concept of group is taken as a starting point 

for abstract algebra and the study of groups builds to the notion of quotient group it is 

vitally important that students develop this type of abstract understanding of groups.  

Although Burn (1996) claimed that students can quite easily understand the idea of 

quotient groups, many researchers have found that students have great difficulty with 

the concept of quotient group (Asiala, et al., 1997; Brown, et al., 1997; Dubinsky, et 

al., 1994; Findell, 2000; Grassl & Mingus, 2004; Larsen, 2004; Weber, 2001).  The 

concept of quotient group requires students to have the concepts of group and 

subgroup while also having the ability to consider, simultaneously, two different 

operations.  For many students, the “crucial idea in calculating a quotient group may 

be constructing the binary operation, the importance of being able to chose 

appropriately between two binary operations defined on a set …, and specific 

misconceptions such as the fact that some students believe Zn is a subgroup of Z” 

(Findell, 2000, p. 21).  

Student understanding of other structures    

Hazzan, Leron, and Zazkis (1995) published a landmark study that explored 

student understanding of isomorphism, as well as their ability to prove or disprove 

whether two groups are isomorphic.  Assessing students enrolled in an ISTEL-based 

abstract algebra course, their commentary on student understanding which was not as 

focused on creating an APOS decomposition, was the initial investigation of student 

understanding of isomorphism.  Hazzan, Leron and Zazkis concluded that 

isomorphism is a difficult concept for students because it makes use of the constructs 

of group, function and quantifier.  Further, students struggle to relate their intuitive 
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notions about equality and the formal definition of isomorphism as a correspondence.  

Research suggested that the concept of isomorphism is particularly difficult for 

students because it requires coordination of the concepts of group and function while 

also working with quantification, a difficult concept for students (Dubinsky, E., 

Elterman, F. & Gonc, C., 1998). 

Procedural fluency   

The research evidence for student proficiency with calculations is somewhat 

mixed and rather slim.  Students seem to like to perform calculations on elements of 

sets, especially when compared to more abstract general calculations required for 

proof.  For example, when confronted with a prompt asking if two rings are 

isomorphic, students can state that the commutative property is a more important 

characteristic in terms of isomorphism than orders of elements, but student will prefer 

to check orders of elements due to their local nature (Hazzan, Leron, & Zazkis, 1995).  

In a similar vein, when students are asked to prove the non-existence of an 

isomorphism, they will often point to a characteristic that precludes the existence of 

an isomorphism. 

This tendency of students to think more frequently about operations on 

specific elements may indicate that they commonly hold a set of misconceptions 

related to the underlying concept of group and ring.  Students often attribute 

properties of the operation to the elements (Ionne & Nardi, 1999).  Additionally, 

when confronted with Cayley tables, students struggled to create strategies that would 

allow them to verify that all group properties hold.  Generally, they preferred to 

operate on two elements and because of that never formally checked that the 
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operation was associative.  Because of this tendency to generalize after checking a 

few discrete calculations, many students will accept that a given subset is a subgroup 

even if there are still unverified properties (Ionne & Nardi, 1999). 

 There are a number of possibilities that suggest themselves as a result of this 

research, but the most striking feature is how little research has been done.  Searches 

for research literature on composition of functions, permutations, and factoring 

polynomials at the undergraduate level did not return any results.   

Strategic competence   

This strand might also be described as being about problem solving.  There is 

a reasonable amount of literature about problem-solving, even at the undergraduate 

level, but none of it is specific to the types of questions that students confront in 

abstract algebra.  Polya is the figure most connected to discussions of problem 

solving with his description of a problem solving heuristic and repeated arguments 

that problem solving should be an important part of the mathematical education of 

students.   

Schoenfeld (1992) carried out a long program of research about problem 

solving that included exploring whether students can be taught problem solving, what 

the mental habits that contribute to successful problem solving and the types of habits 

that students acquire in “well taught” classes.  While Schoenfeld did much of his 

work with undergraduate students, his emphasis was on non-routine problems that 

could be solved with relatively low-level mathematics (arithmetic, trigonometry, 

basic calculus).  Thus, none of his work examined the types of explorations and habits 
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that lead to successful problem solving at the advanced undergraduate level inclusive 

of abstract algebra.   

In abstract algebra, students are expected to explore new situations in a 

number of ways.  There are multiple problem-archetypes in abstract algebra.  When 

students are learning new concepts, such as rings, the text has an archetypical 

problem; the students are given an example and they need to determine whether the 

example satisfies the definition of a particular type of structure.  For example, 

“Define * such that a*b = (2a+b)/2 where a and b are integers.  Determine whether 

(Z, +, *) forms a ring.”  Similarly, students might be asked to verify that a group 

satisfies certain elementary properties such as, “If a and b are elements of group G, 

then  (ab)-1 = b-1a-1.”   

The research that does exist focuses primarily on students’ mechanisms for 

exploring unfamiliar situations.  The research shows that when students are 

confronted with highly abstract concepts, they often revert to a canonical example 

that embodies the necessary qualities.  For example, a set is replaced with one of its 

(familiar to the student) elements (Hazzan, 1999).  This habit manifests itself in 

multiple situations.  For example, students know (or can state) that the commutative 

property is a more important characteristic in terms of isomorphism than orders of 

elements, but students, instead of checking commutivity generally, will instead check 

orders of elements due to their local nature (Hazzan, Leron & Zazkis, 1995).   

In instances where there is no canonical or immediately evident isomorphism, 

students struggle significantly more.  When asked to prove the non-existence of an 

isomorphism, students would point to a characteristic that precluded the existence of 
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an isomorphism.  If their strategy with the order of elements is unsuccessful they then 

start searching for some other property or local characteristic that precludes an 

isomorphism, such as the fact that one group is commutative and the other is not, 

rather than attempting a non-existence proof (Hazzan, Leron & Zazkis, 1995).   

It is interesting that Weber (2001) saw students’ identification of 

isomorphism-precluding properties differently.  Rather than calling the student 

behaviors attempts to minimize work with abstraction, Weber described students 

using such strategies as exhibiting increased mathematical knowledge and 

understanding and as illustrating more strategic knowledge than students who 

attempted to disprove the existence of an isomorphism based upon more direct 

means. 

Adaptive reasoning  

The principal area in which students make use of their content knowledge 

within abstract algebra is in crafting proofs.  Thus, helping students acquire the skills 

to create proofs is an important part of the training that is expected in undergraduate 

education (Wu, 1999).  Content knowledge is not enough to enable students to write 

proofs; students must have and coordinate a variety of other types of proficiencies in 

order to make use of their content knowledge in crafting proof (Weber, 2001).   

Dreyfus (1999) argues that teaching “mathematical justification conflicts with 

the pursuit of learning and teaching mathematical relationships, concepts and 

procedures in a flexible manner” (p. 104).  Given the way in which mathematics is 

taught now, he continues, students have “few if any means to distinguish between 

different forms of reasoning and to appreciate the consequences for the resulting 
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knowledge; nor can they be expected to distinguish between explanation, argument, 

and proof” (Dreyfus, 1999, p. 104).  Taking this assertion as true, it becomes 

unsurprising that so many researchers have written that students have little 

understanding of what constitutes mathematical proof.   

 With respect to improving the teaching of proof and student outcomes, 

Dreyfus (1999) suggested that it is not a question that can be fully addressed until 

mathematicians and mathematics educators can create a definition that characterizes 

what they wish students to do in their work with proof.  It is in this tradition that 

Weber (2004) reported on the results of an iterative teaching experiment.  Weber’s 

goal was to improve student proof abilities in abstract algebra classes.  He 

schematized the structure of a collection of proofs and created a heuristic that could 

be flexibly applied and lead to proofs.  He was building on his earlier work (Weber, 

2001), where he reported that frequently students, even those with access to all of the 

knowledge needed to write the proof, were unable to do so.   

Dreyfus (1999) continued, “Much of our students’ mathematical knowledge is 

tacit; and while tacit knowledge is likely to be used correctly in applications, it cannot 

be used explicitly in reasoning” (p. 104).  One of the goals of mathematics textbooks 

(and instruction) is to help students acquire knowledge in a variety of forms, and to 

establish connections between and across forms.  That is, students need some method 

for calling into their active memory the knowledge that will be appropriate in a given 

situation, and then sorting it based upon likely relevance.  Weber (2001) termed this 

method strategic knowledge.  He claimed that strategic knowledge would enable 

students to decide upon a proof structure and select the types of knowledge most 
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useful for writing the proof.  For example, in abstract algebra, one canonical proof is 

to show that the ring of integers cannot be isomorphic to the ring of rational numbers.  

Weber noted that students with strategic knowledge would cite structural reasons that 

preclude the existence of an isomorphism between the two rings rather than 

attempting a non-existence proof while very novice students might propose possible 

functions and show that they are not isomorphisms.   

Examinations of students’ proof proficiency in group theory have found that 

students exhibited multiple proof-production strategies and that there were frequently 

occurring error types.  One proof-production strategy that students make use of to 

lessen the need for strategic knowledge is to locate a worked example similar to the 

proof they are expected to write and change symbols as appropriate (Weber, 2004; 

Fukawa-Connelly, 2005).  Other prominent proof-production strategies were guess-

and-check, working backwards, and working forwards.  Typically, guess-and-check 

was unsuccessful for students with low-levels of content knowledge and more 

successful for students with high levels of content knowledge.  Working backwards 

was the primary success strategy of students with low levels of content knowledge, 

and working forwards was the primary strategy of students with high levels of content 

knowledge.  One habit that separated expert proof-writers from novice proof-writers 

was the creation of new notation to assist in the work.  Experts are very willing to 

create new, and appropriate, notation to help in a proof-attempt, whereas novices are 

not likely to create new notation.   

Similarly, there are persistent error-types that have been noted in multiple 

studies.  The two most fundamental mistakes that students make are incorrectly 
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determining what is to be proven or simply assuming that the desired result is true 

(Selden & Selden, 1987; Hart, 1994).  In the domain of abstract algebra, students also 

habitually assume that inappropriate properties hold in abstract groups, especially the 

commutative property (Hart, 1994).  It is also relatively common for students to fail 

to verify that the operation as defined on the set is associative (Iannone & Nardi, 

2002).   

Students are prompted to invoke a theorem (or its converse) on all 

examination problems by their naïve understanding of the subject (Hazzan & Leron, 

1996; Weber, 2001).  Named theorems or those that have a simple formulation are the 

most likely to be misapplied because they can be sloganized for easy recall and use 

(Hazzan & Leron, 1996).  In abstract algebra, research has shown that these 

tendencies are especially pronounced in the case of Lagrange’s Theorem.  With that 

theorem, students often do one of three things: i) behave as if the converse is true, ii) 

use an incorrect converse, or iii) apply the theorem or its converse in an inappropriate 

manner (Hazzan & Leron, 1996).  

The last major type of mistake the students make in proof-production happens 

after they have correctly identified relevant theorems.  Students will apply the 

theorem without verifying that the hypotheses of the theorem have been satisfied 

(Selden & Selden, 1987; Hart, 1994).   

Besides writing proofs, students are expected to read the proofs they write for 

correctness, that is, to check their work.  In this context, this means that they are 

expected to verify the correctness of their proofs.  To that end, a number of 

researchers have explored the proof-verification process.  Research has shown that 
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proof-verification is a task that draws upon different types of knowledge than proof-

creation and that it is a non-trivial task for students (Selden & Selden, 2003).  There is 

some debate about whether proof-validation requires a subset of the knowledge 

required for proof-creation (Selden and Selden’s position) or that it draws upon a 

different, but overlapping, set of knowledge (Weber’s position).  There is agreement 

that proof-verification tasks can provide teachers and researchers alike with a useful 

window into student understanding (Selden & Selden, 2003; Weber, 2001). 

Knuth (2002) used proof verification tasks in interviews with in-service 

secondary teachers, and the teachers principally evaluated the proofs on the basis of 

methodology and mathematics (specifically, that each statement logically followed 

from the previous statement) (Knuth, 2002).  Undergraduate students have exhibited 

many of the same habits in other studies (Selden & Selden, 2003; Weber, 2001; 

Weber, in press).  The teachers distinguished among good and bad proofs by 

evaluating level of detail and knowledge dependent ideas (that is, quality).  The 

teachers seemed to base their distinctions on knowing that a method is valid, without 

actually evaluating whether the method was used in a valid way in the supplied proof; 

that is, they decided based upon form (Knuth, 2002).  Moreover, many of the 

teachers, even after seeing a proof, wanted to manipulate some of the figures to 

convince themselves of the validity of the statement, and that they were willing to 

believe that there might be a counter-example waiting to be found (Knuth, 2002).   

Productive disposition  

The importance of a productive disposition in mathematics education is 

relatively well documented at the macro-level.  Undergraduate mathematics majors, 
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especially women, earn better grades and are more likely to complete the major when 

they feel connected to their classmates and teachers (Linn & Kessel, 1996).  In this 

regard, students who feel a sense of belonging are more likely to persist and thus 

learn more mathematics. 

There is some specific research on student dispositions in the case of abstract 

algebra, but there was no located research linking student achievement with 

disposition, nor with persistence in the course.  What did exist in the research 

literature was a set of studies that examined how student dispositions related to their 

behavior in terms of computation and proof.  The literature suggests that students 

prefer to work in less abstract settings and to employ a variety of strategies to do so 

(Hazzan, Leron & Zazkis, 1995; Hazzan, 1999).  Hazzan articulated the definitions of 

levels of abstraction to describe “the quality of the relationships between the object of 

thought and the thinking person, abstract level as a reflection of the process-object 

duality, and abstraction level as the degree of complexity of the concept of thought” 

(Hazzan, 1999, p. 75).  She noted that students find concepts less abstract when they 

have personal connections to the topic, and then suggested that the different 

documented methods of reducing abstraction are mental coping techniques that allow 

students to survive in a traditional course, but do not produce optimal levels of 

learning or understanding and are indicative of a level of discomfort with abstraction. 

When confronted with highly abstract concepts, students often revert to a 

canonical example that embodies the necessary qualities (Hazzan, 1999).  For 

example, a set is replaced with one of its (familiar to the student) elements.  While 

this process is not problematic if students employ it in an exploratory fashion, 
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students often fail to return to the original level of complexity, instead believing that 

the specific example is a complete formulation of the original idea (Hazzan, 1999).  

For example, students might be asked to consider a universally quantified statement 

such as the non-existence of an isomorphism.  Instead of crafting an argument that 

shows that an isomorphism cannot exist, the students would point to a characteristic 

that precluded the existence of an isomorphism, such as the fact that one group is 

commutative and the other is not.  The same study also suggested that students 

become frustrated and experience difficulties deciding how to proceed when there is 

not a canonical (and fairly obvious) isomorphism, especially if they are forced to 

chose between a variety of non-canonical options (Hazzan, Leron & Zazkis, 1995).   

Similarly, students prefer to do local calculations rather than global 

calculations.  The authors state that this as a general coping mechanism, but suggest 

that it may be particularly endemic for proofs of statements regarding isomorphism.  

For example, students know (or can state) that the commutative property is a more 

important characteristic in terms of isomorphism than orders of elements, but students 

will prefer to check orders of elements due to their local nature (Hazzan, Leron and 

Zazkis, 1995).   

Another example of the phenomenon of reducing abstraction is focusing upon 

surface features of a problem, such as in elementary school when students seize upon 

numbers in a story problem, or use a word to clue an operation.  This strategy might 

manifest itself in multiple ways in abstract algebra.  One way is a common 

misappropriation of Lagrange’s theorem when students suggest that 3Z  is a subgroup 

of 6Z  because 3 divides 6 (Hazzan, 1999).  Research also suggests that students first 
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think about the relationship between groups, subgroups and cosets by focusing on a 

process (e.g., the process of finding inverses or the process of coset creation) rather 

than the more general relationship that their teachers hope for (Hazzan, 1999).   

Summary 

There is much more literature exploring student learning of abstract algebra 

topics than there is describing the teaching of abstract algebra, but this literature is 

generally devoid of insight regarding how the students developed their understanding.  

Similarly, the literature is very focused upon student conceptual understanding of 

groups and quotient groups with some work also done on isomorphism.  While these 

are important topics in an introductory course, they are hardly the only important 

mathematical concepts in an introductory course, and conceptual understanding is not 

the only important facet of mathematical proficiency.  The other area in which there 

is a reasonably large and growing body of work is on students’ proof creation and 

validation abilities, but again, these studies are almost entirely concentrated on 

students’ work on groups and group isomorphism.  The current study will 

significantly expand the research literature by offering a description of students’ 

mathematical proficiency with rings, with a special emphasis on polynomial rings, a 

topic which seems untouched by other researchers even though it motivates the study 

of much of abstract algebra content.  Moreover, the current study will also offer an 

initial description of the different types of mathematical proficiency that students 

might develop as the result of different pedagogical styles; that is, linking what 

happened in students’ classes with what mathematical proficiency they developed.  

Thus, the aims of the present study, to describe what happens in an introductory 
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abstract algebra class and to describe what mathematical proficiency students develop 

after a semester of study, will make an important contribution to the research 

literature. 
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CHAPTER 3: CONTEXT AND METHODOLOGY 

Introduction 

The purpose of the study was to examine the characteristics of two sections of 

abstract algebra that each employed a distinct instructional methodology and the 

student learning that resulted from each. Initially, this chapter presents the context for 

the study describing the institution and mathematics department where the classes 

were taught.  Subsequently, there is a detailed description of the two classes, 

including details regarding the student population, a few key volunteer student 

participants, and the faculty members responsible for each of the sections.  This 

chapter also outlines the data sources accessed as well as the data analysis strategies 

employed. 

Context 

Midwestern State University (MSU) is a Doctoral I university in the Carnegie 

Classification system.  It has been ranked consistently in the top 100 public colleges 

and universities by U.S. News and World Report.  MSU is a large institution with 

approximately 20,000 undergraduate students and 5,000 graduate students that prides 

itself on the fine quality of the undergraduate education that it provides, and it is 

working to strengthen its graduate programs and research focus.  It offers over 140 

undergraduate majors and over 80 graduate degrees.  There are nearly 1000 full-time 

members on the university faculty. 
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The Mathematics Department 

Degree Programs   

The mathematics department offers undergraduate majors in pure and applied 

mathematics as well as secondary mathematics teacher education and typically 

awards between 20 and 50 bachelor’s degrees per year.  The department awards 

master’s degrees in applied mathematics and both masters and doctoral degrees in 

pure mathematics and mathematics education, including undergraduate mathematics 

education.   

Faculty and Graduate Students  

The mathematics department is made up of 31 tenure-line faculty members 

with a number of full- and part-time associated faculty.  Faculty research areas 

include graph theory, algebra, analysis, applied mathematics, and mathematics 

education.  Within the field of mathematics education there is ongoing faculty 

research in undergraduate mathematics education that supports departmental 

curriculum reform initiatives.  For example, the mathematics department has recently 

finished a substantial change to their Introduction to Proof course which culminated 

in two members of the faculty writing a new textbook for the course.  This 

introductory course in proof is a pre-requisite for the abstract algebra course under 

study. 

 During the time of the study the department supported 36 full-time, graduate 

students.  Almost all of these full-time graduate students were pursuing doctoral 

degrees and most taught lower-level undergraduate courses, while a few were 

supported by research grants.  During the course of this study, only one of the full-
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time graduate students was pursuing a doctorate in undergraduate mathematics 

education.    

The Abstract Algebra Course 

The online catalogue of Midwestern State University gives the following 

description for Modern Algebra I:  

This course introduces the abstract algebraic concepts of groups, rings, and 
fields, and shows how they relate to the problem of finding roots of 
polynomials. Topics include: Properties of the integers, congruences, the 
Euclidean algorithm, groups, subgroups, cosets, Lagrange's theorem, direct 
product, isomorphism, symmetric groups, rings, integral domains, polynomial 
rings, fields, field extensions, quotients of polynomial rings. Prerequisite: 
Mathematical Proofs.  (“MSU Catalogue,” 2004) 
 

The course is offered each semester, often with multiple sections in the spring 

semester.  Typically, the students in the spring semester course are juniors who have 

completed the calculus sequence and an introductory course on mathematical proof.  

The course is always taught by members of the tenure-line faculty.  In this study all 

but one of the students had completed the introduction to proof course. The one 

student who had previously failed the proof course was concurrently retaking it with 

permission of the department.   

Faculty Participants 

The faculty participants were women in tenure-line positions at the time of the 

study, and both had previously taught introductory abstract algebra.  The instructor 

teaching the investigative version of the course had an earned doctorate in 

mathematics education where her dissertation had focused on the reform of linear and 

abstract algebra courses, and she had already earned tenure.  The instructor teaching 

the DTP course had an earned doctorate in mathematics with a dissertation in 
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representation theory, and she was granted tenure during the course of the study.  

Both faculty were mentoring doctoral students in their respective fields and had other 

departmental responsibilities.  They were first approached about possible 

participation in the research project during the fall of 2004.  They gave preliminary 

approval at that time, and the Human Subjects Review Board process was begun.  

The instructors were formally offered the opportunity to participate in March 2005, 

and both agreed.   

Student Participants 

All students enrolled in either section of Modern Algebra I at MSU were 

informed of the opportunity to participate in the study during the first course meeting 

of the semester.  The students were formally informed of the benefits and 

requirements of participation and offered the opportunity to participate during the 

week of March 15.  Of the 36 students across the two sections, 12 students (5 from 

the DTP class and 7 from the investigative class) agreed to participate fully, and all 

but one student in each section agreed to let their class activities be described.  The 

students who chose to participate fully were asked to complete a written survey 

describing their educational background, as well as a brief mid-semester content 

assessment and lengthier end-of-the–semester measure.  Each of those students was 

also asked to participate in an interview after submission of their final written 

assessment.  Of the 12 participants, 10 were Caucasian.  This ratio was reflective of 

the investigative class’ apparent demographics.  Of the 24 students in the 

investigative class, 22 were apparently Caucasian.   Of the 12 students in the DTP 
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class, 3 were students of color (apparently, Black, Indian and Asian).  Many of the 

participating students chose their own pseudonyms.   

The students of the investigative class   

There were seven students from the investigative class who agreed to 

participate in the study.  Those students are: 

Rebekah (AS) was a junior majoring in secondary mathematics education and 

secondary history education.  Her overall GPA was 3.9, and she had earned an 

A in all previous advanced mathematics courses.    During the study she was 

working on a secondary mathematics curriculum project as a student worker 

and the following year she was asked to be an Undergraduate Teaching 

Assistant. 

 

Ned (JJ) was a junior secondary mathematics education major.  His overall 

GPA was a 3.1, and he had earned a C/B in both of his previous advanced 

mathematics classes.  He noted that he did not study much outside of class and 

generally did not work with other students. 

 

James (CO) was a junior secondary mathematics education major.  His overall 

GPA was a 3.2, and he had earned a B in the proof course and differential 

equations as well as a B+ in linear algebra.  He claimed to not study much 

outside of class but was friends with Mark.  He also professed interest in the 

carpenter and automotive trades.  James was one of the two students of color; 

his background was Asian/Pacific Islander. 
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Mark (BSP) was a junior mathematics major.  His overall GPA was 3.6, and 

he had earned an A in all previous upper-division math courses including 

Introduction to Proof, Linear Algebra, and Probability Theory.  He reported 

that he typically spent an hour each week reviewing notes and practice 

problems.  He was friends with James as they both lived on the same 

residence hall floor freshman year.  He stated, “I hate theory, but love 

computation.”  By the end of the study, he believed that he would earn a B in 

abstract algebra, his first B in a mathematics course. 

 

Johnny (PG) was a senior secondary mathematics education major who 

indicated that he aspired to earning a masters degree in mathematics 

education.  Johnny indicated that he spent 2 hours a day studying 

mathematics, generally by reviewing his notes and working assigned 

problems. 

 

Stephanie (NC) was a senior mathematics and English double major.  She had 

a 3.3 GPA, and her mathematics grades were a mix of C’s and B’s.  She was 

concurrently taking a geometry class.  She indicated that she spent “multiple 

hours” each day studying mathematics, mostly with other students.  She 

aspired to earning a master’s degree, but had not yet decided on a field of 

study. 
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Kenny (VM) was a senior mathematics and history double major.  His overall 

GPA was a 3.4 ,and he earned a B in Linear Algebra and A grades in his other 

previous mathematics classes.  He intended to pursue graduate study in 

mathematics and was waiting on admission decisions at the start of the study.  

Eventually, he decided to continue his education at MSU.  Kenny’s class 

comments and questions indicated that he worked problems from the text that 

were not assigned. 

 

The students of the DTP class 

There were five students from the DTP class who agreed to participate in the 

study.  

Jeff (DH) was a junior mathematics major with a 3.8 GPA.  Jeff earned an A 

in all previous mathematics classes and indicated that he studied very little 

and never with other students.   

 

Aurora (JA) was a junior mathematics major who had recently transferred to 

MSU.  She had earned a 3.6 overall GPA.  In her previous mathematics 

courses she had earned all A grades except in Introduction to Proofs in which 

she earned grade of B. 

 

Steven (DS) was a junior secondary mathematics education and secondary 

history education major.  He had earned a 3.8 overall GPA.  His previous 

mathematics grades included a C in Linear Algebra, a B in differential 
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equations, and an A in Introduction to Proofs.  He too indicated that he spent 

very little time outside of class studying. 

 

Nathan (MC) was a senior secondary mathematics education major.  His 

overall GPA was a 3.4, but his mathematics grades were very mixed.  He had 

previously taken both Introduction to Proofs and abstract algebra and was 

retaking both classes because he did not pass.  Nathan also earned a DC in 

geometry (passing).  Nathan indicated that his racial ethnicity was “half-

black/half-white.” 

 

Lynn (MR) was a sophomore mathematics and Spanish double major.  Her 

overall GPA was 3.9.  The only class in which she had not earned an A was 

Graphs on Groups of Surfaces, an advanced course on graph theory.  While 

enrolled in abstract algebra she was also doing independent research in graph 

theory with another professor in the department.  She indicated that in the 

hour per week of study that she did for the abstract algebra course, she 

generally completed her homework and also did a number of unassigned 

problems.  She had also won the departmental Freshman/Sophomore prize in 

mathematics as both a freshman and a sophomore.   

 

The Role of the Researcher 

 I was introduced to students in each of the classes during the first course 

meeting as someone who was studying the teaching and learning of abstract algebra.  
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At this time I explained my goals, the purposes of the study and what participation in 

the study entailed.  Over the course of the semester, I often observed the students in 

class as I made video recordings and took notes.  I answered questions about my work 

as well as mathematical questions that the students posed.  A few times throughout 

the semester during particular classes, the instructors encouraged me to interact with 

the students to better understand what was happening.   

Data Sources 

 The first purpose of the study was to offer some characterizations of the 

teaching in two different types of abstract algebra courses.  As such, the first primary 

data source was observations of abstract algebra course meetings.  During the 

observations, particular attention was paid to: (i) what was written on the board; (ii) 

the manner in which the instructor presented the content; (iii) the motivation the 

instructor offered for the content; (iv) the type of tasks that the instructor posed for 

the students; either implicitly or explicitly; and (v) the explanation (or motivation) the 

instructor offered for proofs of theorems at two distinct grain sizes. These grain sizes 

were: global, noting the overall structure of a proof;  and local, noting the purpose 

and justification of each statement in the proof.  In addition, notes of student 

discourse were taken during the course meetings.   

As argued in Chapter 2, faculty beliefs and goals have a strong and predictive 

relationship to their actions and decisions in the class.  While classroom observation 

offered some opportunity to infer faculty beliefs, I conducted three interviews with 

each of the instructors, one prior to the start of the semester and again twice during 

the semester.  The goal of each of these interviews was to elicit each instructor’s 
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beliefs related to both content and pedagogy and to discern how those beliefs shaped 

the course.  Topics included addressing course decisions (lecture or investigative 

approach; outline of course content) as well as class-level decisions (presentation of 

the proof of a particular theorem in a particular manner).   

The second purpose of the study was to characterize understandings that 

students developed within an abstract algebra course offered under two differing 

instructional designs.  In order to assess these understandings, I developed and 

administered two pencil-and-paper assessments, one delivered at mid semester and 

one at the end of the course.  I also designed and conducted student interviews at the 

end of the course, after the students had completed the final written assessment.  

These two types of measures were employed with the intention of describing the 

depth and breadth of student understanding at a relatively fine grain.   

The diversity of assessment instruments in this study allowed for triangulation 

when the data were analyzed.  A summary of the data sources, timing and intent of 

the data collection in this study is presented in Table 1. 

Paper-and-pencil instruments 

Student Background Survey   

Research suggested that prior achievement was the best indicator of students’ 

future success in mathematics classes and that student feelings of inclusion within the 

major, as measured by perceptions of relationships with faculty and other students, 

predicted persistence and retention (Linn & Kessel, 1996).  As such, the student 

background assessment presented prompts designed to access each of these constructs 

(see Appendix A).   
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Mathematics Content Assessments  

These instruments were developed by the researcher and a mathematician in 

order to ensure mathematical relevance and accuracy.  The purpose of the instruments 

was to measure students’ group and ring theoretic proficiency, developing as a result 

of their introductory abstract algebra course. 

Mid-Semester Assessment.  This instrument presented a single task that 

assessed whether the participating students were able to determine if a proposed set 

with associated operations was a ring.  This is a typical exercise within an 

introductory algebra course.  While this task requires the students to write a proof, it 

was a proof whose structure should have been quite familiar.  Verifying a structure is 

Table 1:  Data sources  
Data Source When Collected/Implemented  Purpose 
Faculty 
Interviews 

Before study of class began , 
multiple points during 
semester, at end of semester 

Infer faculty beliefs, goals and 
knowledge 

Student 
Background 
Survey 

Beginning of semester Describe students’ prior 
knowledge and personal 
characteristics 

Class observation Periodically during the 
semester  

Primary data source for 
characterization of a lecture-
based and investigative 
approach in an abstract algebra 
course 

Mid-Semester 
Instrument  

During the semester, as soon as 
the students had  seen the 
covered content 

Measure student’s developing 
understanding 

End-of-semester 
content exam 

Very near to final exams Measure student understanding 
of mathematical content 

Student 
Interviews 

After exams Examine of a select group of 
students’ mathematical content 
knowledge in detail 
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a ring with all of the required properties is traditionally viewed as an important skill 

in algebra. 

 

Figure 3:  Mid-Semester Assessment 

This prompt assessed each student’s ability to state and verify each of the ring 

axioms.  All of the students were given this assessment on March 31, 2005, and they 

submitted their responses by April 5, 2005.  The proposed structure’s multiplication 

operation fails to distribute over the structure’s additive operation.  Checking all of 

the other properties required the students to write short proofs similar to those 

demonstrated in their text and class meetings.  The only aspect of this task that 

required some innovation was supplying a counter-example that demonstrated the 

failure of multiplication to distribute over addition.  Identifying a counter-example 

was a straight-forward task, as long as the students chose different-sized values to 

attempt.   

End-of-Semester Written Instrument.  This instrument (see Appendix B) was 

designed with one goal in mind: to describe the students’ proficiency with group and 

ring theoretic ideas.  Because of the difficulty scheduling a time and place for 
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administration, this instrument was completed by student on their own without 

proctoring.  Three important constraints were considered:  

1) the students would be completing the instrument during their final exam 

week and thus would not be able to devote more than a few hours to the 

task;  

2) the students were enrolled in class sections that had spent quite different 

times studying rings; and  

3) the students would have access to their text and notes when completing the 

instrument.   

The participants were each given the instrument on April 8, 2005, and submitted a 

completed instrument by April 17, 2005. Upon completion of the three assessment 

instruments, each student was paid $100.   

The intent of the tasks on the end-of-semester instrument was to require the 

students to perform standard tasks in new settings.  Each of the items on this exam 

asked the students to perform what should have been a familiar skill.  These included 

deciding if a structure is a group; making a set equality argument; finding units and 

inverses; writing proofs; and working with polynomial rings and quotient fields.  

These items presented non-standard settings because students were allowed to access 

their text and notes when completing the exam.  Use of a standard setting would have 

allowed the students simply to search through those materials until they located a 

similar example and then adapt the work (see Fukawa-Connelly, 2005). 

Recall that the instructional goals of an abstract algebra class include teaching 

students the concepts of algebra, helping students to become proficient at writing 
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proofs (which includes understanding and making use of definitions), and developing 

increased understanding of school mathematics.  This instrument was designed to 

assess the students’ proficiency to do each of those things. 

The end-of-semester instrument consists of two sections labeled Problem Set 

A and Problem Set B.  The first section assesses proficiency with the concepts and 

structures of group theory, the ability to abstract and generalize, and proficiency with 

a variety of important proof-types.  Much of the first section revolves around the 

important ideas of unit and inverse, among the most fundamental in algebra.  Each of 

the five questions in the first section required the students to grapple with one of 

those concepts.   

 The proof-types that the students were asked to demonstrate in the first section 

include a proof that a proposed structure is a group, a completeness proof, and a set-

equality proof.  These three proof-types are some of the most common and important 

in group theoretic mathematics. Item One asked the students to write a proof of two 

of these types. First the students were asked to understand the definition of a new 

structure and to demonstrate that the set of units of the structure is a group.  Then they 

were asked to perform a set-equality argument.  Item Two required students to list all 

of the units in the Gaussian Integers (an important structure in number theory) and to 

demonstrate that the list is complete.  Completeness arguments are important in 

algebra when attempting classification, such as with the Fundamental Theorem of 

Finite Abelian Groups. 

 Wu (1995) claimed that the ability to abstract and generalize is one of the 

hallmarks of modern mathematics.  Item Three asked the students to examine an 
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unfamiliar structure and to describe the elements which have inverses.  Item Four 

asked the students to abstract from that situation and to propose and prove a 

generalization of their results from Item Three.  Item Five asked the students to 

demonstrate that their generalization has limits, as well as to propose and demonstrate 

the correctness of a set of qualifiers to generalize further the results from Item Four.   

The second section of the end-of-semester assessment (Problem Set B) was 

designed to elicit information about student’s proficiency with the ideas of ring and 

field theory and to relate those ideas more directly to school mathematics.  In this 

section students were asked to consider the domain in which a polynomial is 

factorable, to offer a conjecture and proof about the greatest degree of an irreducible 

polynomial with real coefficients, and to work with elements from a quotient ring and 

to describe the multiplicative identity in that ring.  The polynomial they were asked to 

consider was one that would be familiar to any high school student. Factoring 

polynomials is one of the roots of algebra (Kleiner, 1986), and the fact that all 

polynomials can be completely factored in the complex number system is known as 

the Fundamental Theorem of Algebra.  This line of questions and the mathematical 

proficiencies were mathematically relevant and also important to pre-college 

mathematics.   

The first item in this section asked students to grapple with polynomial 

factorization in the complex, real, and rational number fields.  This required students 

to use the definitions of irreducible and reducible elements. Since the later concept is 

somewhat dependent on quantification, it can cause problems for students who want 

to equate it with having a root.  The most direct means of solving this item required 
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the students to make use of the fact that the 2  is an irrational number.  This is one 

of the most elementary facts of algebra and number theory (often it is one of the first 

proofs that undergraduate students are asked to complete).  The second item required 

the undergraduates understand the quotient field structure and manipulation of 

elements in a quotient field.  This item also asked students to demonstrate the 

completeness of a list of elements, an important recurring theme in algebra.   The 

third and last item required students to create and prove a conjecture about irreducible 

polynomials with real coefficients. They were asked to formulate a conjecture about 

the largest degree polynomial that is irreducible in the field of real numbers (or, the 

ring of polynomials with real coefficients).  This question directly relates to the 

algebra of school mathematics as it touches upon irreducibility (factorability) of 

higher degree polynomials, and it asked the students to generalize the results of the 

first item in the second section.  These items assessed ideas, procedures, and skills 

within the range of expectations for students in their class.  As such, this end-of-

semester instrument was a reasonable test of students’ understanding of the content 

and procedures of abstract algebra.   

The Interview Protocol.  Students were given the opportunity to participate in 

an interview at the end of the semester (after submission of the end-of-semester 

assessment).  The student interview protocol was designed with two distinct purposes 

in mind.  First, the interview protocol encouraged students to talk freely about 

mathematics in a format that had no correct response, and it gauged the student’s 

ability to speak globally about abstract algebra.  The interview questions addressing 

this purpose were: 
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1) What does it mean to study abstract algebra? 
2) What do you think the ‘big’ ideas of abstract algebra are? 
3) What might you suggest is the reason that both the stuff you did in high 

school and this is called algebra? 
4) What about this class was most helpful to your learning? 
5) What did you enjoy least/most? 

 

Ideally, the first two of those questions elicited themes of algebra (such as exploring 

sets with operations and investigating implications constraints) rather than a laundry 

list of seemingly discrete topics (rings, field, groups and quotient structures).  The 

third question intended to explore CBMS’ (2001) unsupported statement that most 

students fail to make a connection between abstract algebra and school algebra.  The 

last pair of questions in the first section of the interview was intended to elicit 

description of the types of class activities the students engaged in which were helpful 

or enjoyable, as well as statements describing class experiences.   

 The second purpose for the interview protocol was to assess the student’s 

mathematical proficiency.  Given a written definition of a ring, the students were 

asked: 

1) What is an example of a ring? 
a. Does your example have any other, more specific properties? 

2) What other types of rings do you know? 
a. Give a brief description of what needs to be ‘added’ to the definition 

of a ring to get one of these new types.   
3) Give me an example of each of these types. 
4) What is a homomorphism? 
5) Can R be a homorphic image of C?  By that I mean, is there a homomorphism 

from C to R which gives all of R as the image?   
6) In general, if F and F’ are fields, is there a homomorphism from F to F’?   
7) Is Z3 a subgroup of Z6? 
8) If a group has an element of order 2 and an element of order 3 does the group 

have an element of order 6? 
9) More generally, if a group has an element of order n and another of order m, 

what is true? 
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The first four questions required the students to give either a definition or an example 

of an algebraic structure.  Given approximately 3 months of class time addressing 

rings and fields, these prompts were intended to be accessible to all the students and 

answered quickly.  The fifth question was designed to access student’s understanding 

of and ability to make use of the definitions and properties of fields and 

homomorphism.  The sixth question asked students to generalize their work from 

Question 5 in order to evaluate the student’s ability to generalize and abstract from 

more concrete activities.  

Item 7 “Is Z3 a subgroup of Z6?”  (Dubinsky, et al. (1994); Findell, 2000; 

Hazzan & Leron, 1996; Hazzan, 1999) is particularly interesting because the 

statement is purposefully ill-formed and requires students to make a variety of mental 

accommodations in order to approach it (Dubinsky, et al., 1994).  Findell (2000) 

described this task as having the operation purposely omitted due to the belief that 

students struggle to see groups as sets requiring an operation and subgroups as 

subsets of the original that are closed under the operation inherited from the original 

group.  The difficulty of the problem results from students not understanding that the 

operation of the original group must be restricted to a subset of the original set, but at 

the same time must remain invariant.     

 There is also difficulty coordinating an understanding of the elements of the 

sets associated with Z3 and Z6 (Burn, 1996).  One way of conceptualizing the 

elements of Z3 is as equivalence classes that have as members the integers 0, 1 and 2 

(integers that are also used to denote those equivalence classes).  This 

conceptualization requires understanding and managing multiple levels of abstraction; 
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another way of conceptualizing the elements of Z3 , that also requires multiple levels 

of abstraction is as the elements of a cyclic group of order three, commonly denoted 

with the integers 0, 1, and 2.  Providing a complete and mathematically correct 

answer to this question requires a simultaneous balancing of both conceptualizations 

of the elements of Z3 as well as the relationship between groups and subgroups with 

respect to the group operation.  As such, the question evaluated a student’s 

understanding of the relationship between groups and subgroups with a relatively low 

threshold of technical knowledge.   

Items 8 and 9 in the interview assessed student thinking about an abstract 

group structure (Brown, et al., 1997)  as students’ responses to these problems 

indicated the level of student understanding about groups in general and student 

understanding of order in particular.   

Data Analysis 

To explore the central research questions of the study, I began by analyzing 

the body of data from each data source separately in order to generate initial 

hypotheses. Then I undertook a global analysis of the data to confirm, refute or refine 

the initial hypotheses.  This type of analysis is commonly called grounded theory 

(Glasser, 1992; Glasser & Strauss, 1967; Strauss & Corbin, 1990, 1998) and has been 

used when describing student understanding of abstract algebra (Findell, 2000).   

The two principal goals of the study were to offer preliminary 

characterizations of teachers’ and students’ actions (interactions) within two different 

types of instructional approaches within an abstract algebra course and to describe the 

mathematical proficiencies of volunteer students enrolled in those sections.  The ideal 
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method of data collection and analysis within grounded theory is an iterative process 

in which initial data collection is followed by analysis, and the emergent theory is 

allowed to inform and guide subsequent data collection (Glasser, 1992).  Given that 

both of the principal research questions were approached via the collection of 

longitudinal data, analysis was ongoing and early stages informed the later stages of 

data collection.   

Analysis of abstract algebra instruction   

In the investigation of the teaching of DTP and investigative abstract algebra 

classes, I observed 16 hours of the DTP class meetings and 13 hours of investigative 

class meetings.  While observing classes, I began to formulate some descriptions or 

categorizations of the types of lecture or investigative instruction that I observed.  My 

observations of classes led to some initial hypothesis that were later examined by 

thorough reviews of the class transcripts and my notes.  Each of these initial 

descriptions or categorizations served as data for an analysis of slightly larger grain-

size.  I frequently returned to the data and initial analyses to judge the faithfulness of 

the emerging findings and the accompanying explanation.  In this manner, I strived to 

arrive at an empirically grounded analysis. 

Findell (2000) argued that such a method of analysis was well aligned with 

Glaser and Strauss’ (1967) description of grounded theory.  He stated: 

I realized that the detailed summaries functioned as codes, the preliminary 

observations served as initial categories and hypotheses, and the synthesis of 

the working hypotheses formed the core of an emergent theory.  It is now 
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apparent that … the method is consistent with the constant comparative 

method of Glaser and Strauss (1967) (Findell, 2000, p. 122). 

Schoenfeld (1998) gave a detailed description of how to analyze a single 

class, which I believe is also aligned with the proposed interpretative framework.  

Schoenfeld called his method of analysis “lesson parsing” and described it as an 

iterative process.  He stated, “the parsing, which proceeds in stages, consists of the 

iterative decomposition of a body of instruction, which we shall refer to generically as 

a chunk, into smaller chunks, each of which coheres on phenomenological grounds” 

(Schoenfeld, 1998, Lesson Parsing and Model Building, ¶ 2).  Schoenfeld described 

this decomposition as goal based.  By that, he meant that each chunk would have at 

least one highly activated goal.  He asserted that there are often always-activated 

goals, but for the purposes of analysis, those might be omitted as background.  To 

create a decomposition, Schoenfeld suggested that the first step is to search for break 

points.  He wrote:  

A break point represents a change in the character of the instruction that is 

significant at the current level of grain size—that is, a change in focus, 

direction, emphasis, etc., that is notable with respect to the chunk of 

instruction being parsed.  (Break points might correspond to the end of the 

discussion of a particular topic and the introduction of a new one, to the 

discussion of a problem, to a shift in classroom organization from whole-

group to small-group, etc.) (Schoenfeld, 1998, Lesson Parsing and Model 

Building, ¶ 2) 
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This type of analysis allowed a variety of characterizations of class types to surface in 

my study.  That is, the categories of the data arose from a close reading of 

appropriately-sized chunks of data.  Then, reading across the class meetings and 

globally reading the types of categories that emerge from the data gave rise to some 

broad descriptions that define a small number of types of classes.   

Prior research has characterized categories of lecture as formalist and intuitive 

(Weber, 2004).  A formalist lecture offers no discussion of meaning, but presents 

logical listings of symbolic manipulation according to a specified set of rules to arrive 

at a specified set of ends.  This type of mathematical activity is aligned with Hilbert’s 

school of formal mathematics.  Weber described a real analysis instructor who 

engaged in this form of teaching because he believed that proficiency with symbolic 

manipulation had to precede a more intuitive understanding of either the 

mathematical concepts or the structure of the proof.  An intuitive lecture focuses upon 

the meaning of the mathematical concepts and how those meanings are used to shape 

arguments.  The technical aspects of the proof are seen as secondary to (or perhaps 

deriving from) understanding.  No preliminary schemes for describing and 

categorizing types of investigative teaching at the collegiate level were located.   

Analysis of student learning   

A similar iterative process was used to analyze the student proficiency data.  

Initial analysis of each data source (e.g., mid-semester assessment) began soon after 

the data was collected.  As such, interpretation of student responses to individual 

assessments lead to initial hypotheses that were revised after analysis of later data 

sources.  Descriptive characterization or analysis that derived from individual data 
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sources were re-examined to yield a broad narrative addressing student understanding 

and proficiency with the content of an introductory abstract algebra course.  

This analysis was distinct from that proposed by Glaser (1992) in that it 

addressed research literature and utilized conceptual categories within the discipline 

of abstract algebra (e.g., group, ring and field concepts).  In addition, this analysis 

focused on the teaching that occurred within the DTP and investigative classes, and 

the kinds of understandings that students derived from the DTP and investigative 

abstract algebra classes.  Thus, the focus was on the breadth and depth of instruction 

and students’ understandings compared to mathematical ideals.  This is contrary to 

Glasser’s (1992) perspective that the meaning and seeds of research subjects is the 

primary lens for analysis. 
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CHAPTER 4: LEARNING ABOUT TEACHING 

 A number of studies have attempted to better document how student 

understanding of specific content in abstract algebra develops (Asiala, Brown, 

DeVries, Dubinsky, Mathews, & Thomas, 1996; Asiala, Dubinsky, Mathews, Morics, 

& Oktac, 1997; Brown, DeVries, Dubinsky, & Thomas, 1997; Dubinsky, 

Dautermann, Leron, & Zazkis, 1994; Findell, 2000).  Similarly, a number of papers 

have been written and conference presentations given that provide suggestions for 

pedagogical changes to the course (Edwards & Brenton, 1999; Hibbard & Maycock, 

2001; Mingus, 2001).  Together these works indicate that there is a general unease 

within the field about the teaching and learning of abstract algebra.  While these are 

not new concerns, recent work has targeted the teaching of abstract algebra as a focal 

point for change much more frequently than in the past.  Yet, while the field may 

have diagnosed teaching as a potential problem source, the diagnosis was based upon 

anecdote and, while instructional solutions are being proposed, there is no agreement 

on the cause of the problem or even an accurate description of current practice with 

respect to the teaching and learning of abstract algebra.  As a step towards developing 

a better understanding of abstract algebra instruction, this chapter describes the 

classroom activities of one traditional DTP course and one investigative course as 

offered during a single semester.  This description is meant as a description of one 

such instructional offering of each approach to an introductory undergraduate course 

in abstract algebra, not a thorough description of DTP or investigative teaching.  It is 

meant to be read as a description of what is possible in such a class.   



 

 83 
 

Methodology 

 These data were primarily collected through classroom observation.  As noted 

in Chapter 3, I observed 16 meetings of the DTP course and 15 meetings of the 

investigative course, always taking field notes and making a video recording.  

Because each of the classes was generally teacher-centered, the video captured the 

image at the front of the room.  All of the classroom dialogue was later transcribed.   

Review of the video data and transcripts revealed that break points 

(Schoenfeld, 1998) sometimes existed within class meetings but very often there were 

multiple classes that were better understood as a single “chunk” and to that end I have 

referred to a teaching episode to describe the large “chunks” of data which stretch 

across multiple classes.  In my analysis I have used the term teaching script to refer to 

smaller “chunk” contained in a single class.  Teaching scripts were generally repeated 

in multiple class sessions with similar purpose and methods.  After identifying 

teaching scripts associated with each of the two instructors, I focused on describing 

the important characteristics of these scripts including: the type of questions that the 

instructor asked; the kinds of statements that she made; and the expected and actual 

behaviors of the students during each of these scripts.  All of this was done through 

the repeated reading of transcripts and descriptions, as suggested by Glasser (1992).   

 Due to the importance of proof in the DTP class, this chapter begins with a 

description and analysis of the ways that Dr. Hedge used and created proofs in class. 

Then, this chapter presents and characterizes three different teaching scripts that Dr. 

Hedge was observed enacting in the DTP class.  Dr. Hedge’s scripts were primarily 

focused on proof-writing.  Similarly, this chapter offers a description and 
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characterization of the teaching scripts that Dr. Parker used during her investigative 

class.  Lastly, I will offer a comparison of the teaching scripts used in the two classes 

in order to describe similarities and differences, both within and across teaching 

scripts.   

Proof in the DTP class 

  There were three principal styles in which proofs were presented during the 

class meetings of the DTP abstract algebra course.  During the time that I observed 

the class, either the students or the teacher wrote 29 analytical verifications of 

properties or other types of results.  Seven of these proofs were given entirely by 

students, and each of these was a property-verification argument.  The other 25 proofs 

included verification that particular properties of a ring held for a set and operations, 

that a function preserved an operation, or that a function was injective, surjective, or 

well-defined.  In order of frequency, the three styles of proof writing I observed Dr. 

Hedge use during the class were participatory, student-authored, and teacher-

authored.   

Participatory proof 

 The first style of proof, participatory proof, was the most common, 

representing 21 of the 29 observed proofs.  In each case where Dr. Hedge used a 

participatory proof strategy, she took responsibility for the overall structure of the 

proof, but she asked the students a number of questions whose answers were integral 

to completing the proof.  None of these proofs involved maneuvers that the students 

would not have seen and practiced before.  As such, Dr. Hedge was likely requiring 

student participation as a way to check for understanding about various topics and 
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proof structure and using the questions to model good mathematical thinking. 

Consider the following complete example of the participatory-style of proof which 

Dr. Hedge enacted in her class.   

A proof that the kernel of a ring homomorphism is an ideal. 

Dr. Hedge:  Let’s see why the thing called K, which has a name, it’s the 
kernel, is an ideal all the time.  So, we need to get back to this ring 
homomorphism.  If we have any ring hom f from R to S, let’s show K is 
an ideal.  What do we have to do to show it’s an ideal?  [pause] You 
have to show it’s closed under addition, closed under multiplication, it’s 
non-empty, every element has an additive inverse.  What do those four 
things tell us? 

S:  Subring. 
Dr. Hedge:  Subring.  And then, I need what?  I multiply an element in R, I 

take anything in K and I multiply by any element in R, and that product 
comes back into K.  That’s the ideal condition.  That last condition 
actually includes, like we said, that multiplication is closed.  So, then we 
just need to check addition, that it’s non-empty, that additive inverses 
work out, and the ideal condition.  So, let’s do that. 

S:  [inaudible] 
Dr. Hedge:  That would tell me?   
S:  [inaudible] 
Dr. Hedge: Yes.  But, I want to stick with this for just a minute because I want 

to emphasize something about homomorphisms, so this is not the 
shortest thing we could do.  How could I show it’s non-empty?  How do 
I show that there’s something that goes to zero? 

S:  [Inaudible] 
Dr. Hedge:  Yeah.  So, we know that f(0r) equals 0s, so there’s something 

there.  So, 0r is in K.  So, it’s got something in it.  That may be all that’s 
in it, and if so, that tells us something very special about that map.  
Okay, let’s take two things, not r and s, how about a and b.  If a and b 
are in K, I want to show their sum is in K.  How do I show their sum is 
in K?  You have to use the definition of big K.  The only thing you know 
about big K is, well, it consists of stuff that gets mapped to zero.  So, 
what do I have to show about a + b to show it’s in K? 

S:  It gets mapped to zero. 
Dr. Hedge:  Ok, so, let’s look at what f does to a + b.  So, Tr, what can I say 

about f(a + b)? 
S2:  It equals f(a) plus f(b). 
Dr. Hedge:  Is there anything I know about f(a) now? 
S2:  It equals zero. 
Dr. Hedge:  Great, and f(b)?  And what do I know about zero plus zero?  

That’s zero.  Great.  So, a + b meets the condition it needs to be in K.  
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[pause]  So, that’s the property of f preserving addition that we just used, 
and that gives us that the kernel is closed under addition.  In a little bit 
we’ll be moving to groups and we won’t have two operations, we’ll just 
have one, so it’s nice to see what you can get with just that one 
operation.  What about f(ab)?  C?  What can you say? 

S3:  f(a) times f(b). 
Dr. Hedge:  Great, if it’s a ring homorphism, you can split it up.  So, what can 

you say about f(a)?  It’s zero.  So, I actually have zero times, and, does it 
matter what f(b) is?  [students shaking head].  And, let me change 
something…  Also, how about we make this for any a in K, well, we 
already said a was in K, and how about for any r in R?  Well, if I change 
b to be r, actually we could have just left this as b, but then we’d get 
zero.  And that includes a and b being in K, as we were just talking 
about.  Likewise, f(ra), what is that going to equal? 

S:  f(r) times f(a). 
Dr. Hedge:  Great.  And what is that going to equal? 
S:  f(r) times 0, zero. 
Dr. Hedge:  So in other words, it doesn’t matter, they’re both the same.  So, ra 

and ar are in K.  So, what do I need left to check that this is an ideal? 
S:  Inverses 
Dr. Hedge:  Good, additive inverses.  And otherwise the things we’ve already 

checked.  [erases board]  So, again, we had to use that f preserved 
multiplication.  Finally, let’s look at what f does to negative a.  For all a 
in K, f(-a), what can I say about that?  What does f do to negative a? 

S:  [inaudible] 
Dr. Hedge:  Yeah, this is another one of our properties of homomorphisms.  f 

carries an additive inverse to the additive inverse of the image, to 
negative f(a), and that equals, negative zero!  Yeah!  And what’s the 
additive inverse of zero?  Zero, so we get zero.  So, K is an ideal.  
[Underlines:  K is an ideal.]  So as a consequence, any time you have a 
homomorphism of rings, you get an ideal. 

 
Consider a second, partial example of a participatory proof.  This is the 

beginning of a proof that a function f-tilde is an isomorphism.  Dr. Hedge had begun 

the proof the previous day but ran out of time in the class period before proving the 

homomorphism property.  This is a fairly unique set of questions in that Dr. Hedge 

prompted students by name to participate in the proof writing.  Note how she began 

by stating the fact to be proved and then asking the students questions to advance the 

proof: 
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A proof that the function f-tilde is a preserves addition. 

Dr. Hedge:  So, if it’s a bijection and a homomorphism, then it’s an 
isomorphism.  So, how should I show that it’s a homomorphism?  Lynn, 
let’s start with you.  How should I show that it’s a homorphism? 

Lynn:  Show that it preserves operations. 
Dr. Hedge:  Okay, let’s take a couple of cosets…  Okay, so we can do that.  

So, our two cosets are r plus the ker of f and t plus the kernel of f.  We’re 
not saying these are the same coset, they were a minute ago, but now 
they’re just two cosets.  What two operations do I have to check S? 

S:  Addition and multiplication. 
Dr. Hedge:  So, what’s it going to look like when I check addition? 
S:  f r plus kernel of f plus t plus the kernel of f. 
 
In both of these proofs the dialogue is always a teacher-initiated question and 

a student response that is relatively short and can quickly be judged to be either 

appropriate or inappropriate.  In the first participatory proof shown above, Dr. Hedge 

asks a question of the class as a whole, but she expects some individual student to 

respond: “f(ra), what is that going to equal?”  This question has multiple correct 

responses, but, in the context of the proof, there is only one appropriate response, and 

that is given by the student, “f(r) times f(a).”  The appropriateness of this response is 

determined by the context.  In this case, the proof is about a function that is a 

homomorphism.  Dr. Hedge uses the circumlocution when she wants the student(s) to 

give a response making use of the homomorphism property, and, it is clear which 

operation the proof is currently describing.  Consider the similar question and answer 

pattern from the second of the proofs exhibited above: 

Dr. Hedge:  So, what’s it going to look like when I check addition? 

S:  f r plus kernel of f plus t plus the kernel of f. 

Similarly, Dr. Hedge also asked students to derive results via questioning.  

Returning to the first proof, note how she immediately followed the student’s 
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response with the question, “And what is that going to equal?”  This question also had 

a response that was clearly appropriate.  The classroom norms regarding proof 

required that each utterance comprise only one logical step. Thus, the student was 

expected to determine that a is a member of the kernel so f(a) is zero.  She correctly 

did so and gave the response, “f(r) times 0, zero.”   

The last type of question that Dr. Hedge repeatedly asked students to respond 

to might can be characterized as asking about the status of the proof.  For example, 

she asked, “So, what do I need left to check that this is an ideal?”  All of the students 

were supposed to know what had been verified and what was left to verify. In this 

situation there was only one property left to verify, and the student correctly 

identified it, “inverses.” 

 In some way, each of these questions may be thought of as requiring some 

strategic knowledge about proof archetypes to articulate a correct response (Weber, 

2001).  The student must have the ability to read the proof and also have a structure 

and logical framework in mind.  But, these questions were generally only factual 

questions.  Dr. Hedge used very similar phrasing each time she wanted the students to 

make use of the homomorphism property in their response, and she gave other similar 

verbal cues when asking about proofs of other properties.  The remainder of Dr. 

Hedge’s questions were quite clearly simple factual questions, such as “Why do I 

know that f splits things up like that?” with a correct response, of “Because it’s a 

homomorphism.”  Thus, while I have labeled these participatory proofs because they 

include a large amount of dialogue, Dr. Hedge was the principal author of the proofs, 

and her questions could be seen as ways of checking for understanding and modeling 



 

 89 
 

the type of questioning that an expert-proof writer uses (such as she did when writing 

a teacher-authored proof).  The students were not responsible for knowing the type of 

proof (direct, indirect, contraposition), the properties to be verified, or the structure of 

the argument, but rather were required to answer factual prompts.  Thus, while 

participatory, the level of student intellectual engagement with the proof tasks 

required was still rather low.   

 During participatory proofs student participation was varied.  There were two 

students, Lynn and BS who were, by far, the most vocal during proof writing.  

Typically each would contribute one or more responses during each proof.  On the 

other extreme, there were also multiple students who never contributed to 

participatory proofs.  It is unclear whether Dr. Hedge considered or presumed that an 

appropriate response from one student, even when repeatedly from the same pair, 

indicated that the majority of the class understood the situation or could have offered 

the same correct response.  Dr. Hedge’s commentary during other class meetings, 

such as when she was responding to questions about the homework or addressing the 

student’s exams, indicated a realization that not all of the students were developing 

the type of knowledge that she hoped in terms of proof proficiency, but her on-line 

commentary did not allow for such inference. 

Student authored proof 

The student-authored proofs were interesting in that, although a student was 

presenting a proof, there was minimal dialogue. The proof presentation was generally 

either a monologue on the part of the student author, or did not involve any talking at 

all (in the case of one of Jeff’s proofs).  During the 16 class meetings that I observed, 
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8 different students came to the board or overhead projector to either give a complete 

proof of a theorem or to give a proof that a property held in a given situation (a partial 

proof of a theorem).  These eight students only proved seven different results because 

two students came to the board to give a proof of one result.   

For four of these proofs, the students wrote proofs on transparencies and 

presented them via the overhead projector as they read through their work.  In 

general, each of these proofs was an adaptation of the proof of an earlier result that 

generally only required a change in notation.  The in-text directions for one of the 

presented proofs read, “Copy the proof of Cor. 2.4 with obvious notational changes.”  

These student-authored proofs were somewhat different than any of the other proofs 

given in class in that they were completely prepared significantly in advance of 

presentation.   

 The other four proof attempts were given during a class period without 

advance preparation on the part of the student.  In each case Dr. Hedge called the 

student to the board and asked him or her to give a proof that a property held in a 

given situation.  In two of these cases, the student was asked to write a proof that was 

essentially the same proof that Dr. Hedge had just written.  Consider this case where 

Dr. Hedge asks Jeff to demonstrate that a function preserves multiplication.  She had 

just completed a proof that the function preserves addition: 

Dr. Hedge:  Yes, f tilde preserves addition is what we just showed.  Good.  
Jeff, why don’t you come up and write down the next bit. 

 
Jeff comes to the front and writes without talking: 



 

 91 
 

f

ftffrf

tfrfrtf
frtf

ftfrf

∴

++=

==
+=

++

)ker()ker(

)()()(
)ker)((

))ker)(ker((

 

        preserves multiplication 
 
Dr. Hedge:  Okay, what do you guys think?  Is it good?  Any questions?  

[pause]  So, for this part, does it look like it matters that we’re using the 
kernel of f for the ideal here?  [pause]  Just coset operations and f is a 
homomorphism.  So, why do we need the kernel of f part?  Or, do we 
need the kernel of f part?  In other words, could we use any old I here, 
for this whole set up? 

 
In this case Jeff altered the proof that Dr. Hedge had just demonstrated.  This 

situation was nearly identical to the situation in which Nathan was called to the board 

and asked to demonstrate that a function preserves multiplication.  Once again, Dr. 

Hedge had just completed a participatory proof that the function in question preserves 

addition and the symbolic argument was still on the board.   

Nathan comes to the front and writes without speaking: 
f((a,b)(c,d))= f(ab, cd) 
[Nathan then looks directly at the addition, pauses 30 seconds] 
Nathan:  Where would this go next? 
[Pause 30 seconds] 
Nathan:  [inaudible]  Can I do?  Oh, that would be zero, and that would be bd.  
And that’s [inaudible]…   
Writes: 
  = bd  = f(a,b)f(c,d) 
 
Dr. Hedge:  So how was that so far?  [Pause, 10 seconds]  So what’s left? 

In both of these cases Dr. Hedge asked the students to demonstrate that a given 

property (multiplication) held immediately after she had given a very similar 

demonstration for addition that was still recorded on the board.  The requested proof 

could have been derived by students simply via a change in notation. 
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There was one other student-authored proof that I observed.  Aurora was 

asked to prove that R/I was associative given that R is a ring and I is an ideal.  What 

made this unique is that it was the first proof in the general setting of R/I.  Thus, while 

Aurora should have been quite proficient at verifying that a given structure is 

associative, the first property verified as part of the proof, this was the first time that 

any such work was done in the general structure, and she struggled to write the proof.   

Dr. Hedge:  So, let’s check a couple of the properties of the general R mod I.  
If we take any cosets, a + I, b + I, c + I, let’s check associatitivy of addition.  
What do you have to look at to do that?  Aurora, if you start to check that, that 
would be like this piece here [indicated appropriate section of polynomial 
proof on overhead], what do you have to do? 
Aurora:  You want to a + I, plus parenthesis b + I plus c + I and then close 
parenthesis, and, I don’t know, okay, yeah, then you put big parenthesis 
around all of them…   
Dr. Hedge:  The whole bit?  Why don’t you come up and show me? 

 
At this point it seems that Dr. Hedge made an on-line decision to switch from a 

participatory-proof to a student-authored proof due to Aurora’s response.  Hedge’s 

initial question seemed ask Aurora to describe how to begin a proof that associativity 

holds, but in all previous student-authored proofs the student was called to the board 

without Dr. Hedge asking any questions about the proof.  A proof from the text of a 

similar result in a polynomial ring was displayed on the overhead when Aurora came 

to the front.  She seemed to base her work on the displayed proof.  In the dialogue 

that follows observe that although Aurora’s text is analogous to that displayed from 

the book when Dr. Hedge asked if anyone had questions, Lynn, who observations 

indicated was a very strong student, asked for clarification and refused to accept 

Aurora’s assertion that her actions were equivalent to those in the text. 

Aurora comes to the front.  She does not say anything while writing. 
Written:  (a + I ) + ((b + I)+(c + I)) 
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=(a + I + b + I + c + I) 
=(a + I + b + I)+(c + I) 
=((a + I)+(b + I))+(c + I) 

Dr. Hedge:  Okay, so we’re looking for associativity, we want to show that 
when we’re adding any three cosets, it doesn’t matter, we can add any 
two of them first.  Do you guys have questions or comments about what 
she’s got?   

Lynn:  Is she justified going to her second thing? 
Dr. Hedge:  What do you think?   
Aurora:  It’s the same idea as that one. [indicating polynomial proof] 
Lynn:  I don’t know. 
Aurora:  It’s the same idea. 
Lynn:  You took out a lot of parenthesis. 

 
Here there is a whole-class discussion in which the students, prompted by Dr. 

Hedge’s earlier questioning, attempt to help Aurora add detail to her proof to better 

indicate the collapse and addition of parenthesis.   

Aurora:  I don’t understand what you’re asking. 
S:  She doesn’t like your parenthesis is what she’s saying. 
S:  Shouldn’t you have parenthesis around the b+c? 
Aurora:  [adds them] Why? 
S:  Take say, b+c and we’ll label it as b or something like that, so you’re 
trying to say that the b+c go together and you need to put parenthesis around 
those to make it clear that they go together. 
Aurora:  [inaudible] 
Dr. Hedge:  Why don’t one of you finish, from the back?   
 

At this point Jeff came to the front and wordlessly completed the proof by erasing all 

but the first line and writing work detailing the changes in parenthesis, turned and sat 

back down.  Dr. Hedge then asked the whole class “Are there any questions?”  No 

one said anything and then Dr. Hedge transitioned to the next part of the proof. 

This proof could be thought of as simply requiring a change in notation from 

previous proofs the students had seen, but, the exact model was not extant, either on 

the board or immediately at hand for the students as with previous student-authored 

proofs.  Thus, this proof could be thought of as significantly more cognitively 
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challenging for the students.  During the class period Dr. Hedge’s actions and speech 

made it seem that she believed the students would find this proof rather trivial and 

expected a reaction similar to the one Aurora gave in presenting her work, “It’s the 

same idea as that one.”  Instead, it seemed that the other students, and perhaps Aurora 

(she may have been transcribing without understanding) were struggling to 

understand how parenthesis can be removed and added in coset notation and because 

of that Dr. Hedge made an on-line decision to follow the student’s line of questioning 

and have more detail added the proof.     

 The governing characteristic of the types of proofs that Dr. Hedge selected for 

student authorship during my observations seemed to be that the proof required only a 

change in notation from previous proofs.  It could be that she asked students to author 

different types of proofs during class meetings that I did not observe.  It could be that 

copying proofs except for a change in notation is an important aspect of the learning 

of a new proof-type (for example, the proof of the homomorphism property) or in 

authoring a known proof-type using new a new set of symbols (such as in the ring 

R/I).   

 Dr. Hedge was fairly consistent in her response to student-authored proofs.  In 

all of the cases she asked the other students in the class to evaluate the proof.  After 

Aurora’s attempted verification of associativity in R/I she asked, “Do you guys have 

questions or comments about what she’s got?” Dr. Hedge asked a nearly identical 

question after Jeff’s attempt to demonstrate that a function preserve multiplication, 

“Okay, what do you guys think?  Is it good?  Any questions?”  Finally, after Nathan’s 

proof that a function preserves multiplication Dr. Hedge asked, “So how was that so 
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far?”  In each case she asked a neutrally phased question which did not intrinsically 

indicate whether she believed the proof attempt to be valid.  Although Dr. Hedge 

asked for questions after each of the eight students came to the board, it was only 

Aurora’s work that garnered any comments of questions.  All of the other proofs by 

the students were substantially mathematically correct and it could be that the 

students recognized this fact. But again, it is worth noting that Aurora’s proof attempt 

was the only spontaneous proof writing that required more than a notational change.   

Teacher-authored proof 

Although I observed some 15 class meetings, I only saw one example of a 

proof where Dr. Hedge did not interject questions or ask for student contributions as 

she worked he way through the proof.  Considering that I observed her giving four 

complete proofs, each of which involved verifying between two and five properties, 

not to mention the property verification proofs that she or the students did while 

discussing homework, it seems that in this traditional classroom the students were 

much more likely to be participating in, or to be lead through, proof creation rather 

than acting as the passive observers caricatured in more cynical descriptions of 

traditional teaching.  This suggests that the vision of a lecture-based class as one 

where the teacher does all of the talking and the students almost none is not always 

accurate.  While this style of teaching does exist, it was not the norm in Dr. Hedge’s 

traditional DTP instruction.   

The single teacher-authored proof that I observed was a verification that 

multiplication distributes over addition in R/I if R is a ring and I an ideal.  Dr. Hedge 

only asked two questions both of which could be interpreted as rhetorical. 
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Dr. Hedge:  If we want to prove, there’s distributivity, what do you think we’ll 
use?  Operations and…  the fact that there’s distributivity in R.  Let’s 
write that one down real quick and then the others are simple.  [erases 
previous work]  Let’s make sure that everyone’s okay.  I think once you 
get the associativity then life is good.  So, let’s check distributivity.  (a + 
I) times [(b + I) + (c + I)] that’s our set-up.  What should I do first?  The 
sum, then I multiply the sum.  So, let’s take the sum first.  So, what’s the 
sum of b + I and c + I, yeah, b + c, so now I have 

 
Written: (a + I) [(b + I)+(c + I)]  = (a + I)((b + c)+I) 
 
Dr. Hedge:  So, now let’s multiply.  How do I multiply cosets?  I multiply the 

representatives.  So, I’ll have a times b plus c is grouped together just by 
definition of multiplication.  So, now what am I going to use? 

Nathan:  well, you can say that since it distributes in R, that you’ve got ab + 
ac. 

Dr. Hedge:  Great.  Because it distributes in R since R is a ring.  Okay, now 
what do I do?  The coset of ab plus ac is the same as what?  The coset of 
ab plus the coset of ac, and that’s by the definition of addition, and now 
what?  The coset of the product ab is the same as the coset of a times the 
coset of b so that a + I times b + I plus the coset of a + I times the coset 
of c + I, and that’s distributivity.  How’s that?  [pause]   

 
This is the expected type of proof, where Dr. Hedge wrote the entire proof on the 

board while also stating it aloud.  On the board Dr. Hedge wrote only the symbols and 

text necessary to constitute a complete proof. This was her general practice, even 

when she was working in a more participatory style.  While Dr. Hedge only wrote the 

minimal necessary symbolic argument, her spoken argument also included 

substantially more information and contained a description of her thought process. It 

modeled the type of questions that a proof writer may ask during the writing process.  

Consider her dialogue during the proof, “What should I do first?  The sum, then I 

multiply the sum.  So, let’s take the sum first,” or “Okay, now what do I do?  The 

coset of ab plus ac is the same as what?”  Each of these can be understood as Dr. 

Hedge thinking aloud as a means of showing off the thought processes that lead to a 

complete and correct proof.   
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Summary of proof-writing in the DTP class 

Teacher-authored proofs were, as stated above, uncommon during the class 

meetings I observed.  It is quite possible that they were more common at the 

beginning of the semester when the students were still learning the form of the 

various new proof types such as the homomorphism proof or the verification of 

properties.  The one example of this type of proof offered little insight into this style.  

Although, while it featured only the necessary symbolic argument on the board, Dr. 

Hedge did model aloud her thought process.  This style of proof is similar to the 

student-authored proofs in that there was no discussion, although both Aurora and 

Nathan did engage in the same sort of thinking aloud process as Dr. Hedge, whereas 

Jeff was much more likely to work silently. 

The use of student-authored proof seems to be relatively frequent with 7 

instances during the 16 class meetings, thus making it far more common than teacher-

authored proofs.  The great majority of these student-authored proofs were 

participatory in the sense that they featured a large amount of dialogue between Dr. 

Hedge and the students.  Dr. Hedge would ask a series of questions about facts, the 

direction of the proof, and the progress of the proof, either directed at a particular 

student or, more commonly, at the class, and she expected a quick response.  The 

important characteristic of these questions is that they all had an appropriate or 

correct response.  In the case of the factual or proof-progress questions, these all had 

a correct response, such as “inverses remains to be checked,” or the fact that “f is a 

homomorphism” means that it preserves operations.  The proof-direction questions 

were all phrased in such a way as to give rise to an appropriate response such as 



 

 98 
 

making use of the homomorphism property to move from one symbolic statement to 

the next.  Thus, while they are participatory in the sense that student comments are 

involved, the students have very little authority or responsibility in the creation of 

these proofs.  Dr. Hedge was very much the author and seemed to make use of the 

questions to check for student understanding and to model the proof-creation strategy 

of an expert. 

Characterizing DTP Teaching 

The caricature that we have of a DTP teacher is one of a “Sage on Stage.”  In 

this caricature the teacher stands at the front of a classroom while talking and writing 

on the board.  Students are expected to sit quietly and take notes documenting what is 

on the board and what the teacher has said aloud.  Finally, students are expected to 

practice skills in their homework and to demonstrate their learning on exams.  In 

reality, most classrooms are far more complex than presented in any caricature.  

The DTP teacher in this study did not fit this caricature of “Sage on Stage.” 

One of the most important characteristics of her class was that she encouraged active 

classroom participation and engagement with the material.  She often asked if the 

students had questions and would answer a question whenever it was asked.  She 

gave extra credit points for catching mathematical mistakes in work that she 

presented.  She required each of the students in the class to present a proof during the 

course of the semester, and she asked many questions during the course of a class 

meeting.  There were also multiple class meetings where the students were working 

problems in class or performing some other activity designed to improve their 

understanding of the content.  Thus, while students were always expected to take 
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notes and to copy text from the board into their notebook, Dr. Hedge expected them 

to be more than passive consumers.  Perhaps half of the students would answer at 

least one of her questions in a class meeting, but there were a few students who only 

answered questions when called on by name.  In general, Dr. Hedge seemed to 

assume that Wu’s (1999) pedagogical contract held, as she principally used class time 

to outline the content that the students were expected to master and to demonstrate 

specific skill-sets that students needed to develop.  But her teaching scripts also 

included more on-line checking of student understanding, factual mastery, and class 

engagement than might be expected in a pure lecture class. 

Teaching Scripts 

Dr. Hedge made use of three principal teaching scripts during the class 

meetings I observed.  While it is important to consider the narrative arc of an 

individual course meeting, I do not believe this to be the proper unit of analysis.  Each 

course meeting had a particular rhythm or structure, but in terms of the analysis of the 

mathematical arc, ideas were generally developed over multiple class meetings. 

Examples and proofs often took days to develop—a pattern that could not be captured 

well in a class-by-class analysis.     

The first typical teaching script in Dr. Hedge’s class was an introductory 

dialogue that occurred in each class period. The second principal teaching script that 

Dr. Hedge used was the participatory proof, and the last was the exemplar dialogue.   

The Introductory Dialogue   

At the level of a single class meeting, Dr. Hedge’s class was fairly standard.   

The meeting opened with Dr. Hedge addressing administrative and bureaucratic 
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details. Of the 15 class meetings I observed she began 3 of them by asking for student 

questions first. 

Dr. Hedge entered the room, said hello and took off her bag.  She opened it, 
took out her text and started class. 
 
Dr. Hedge: Any questions from your homework? 
S: Shouldn’t there be a bracket in number 4 in five two? 
Dr. Hedge: So, this is what it says.  [Writes text on the board.] 
Dr. Hedge: You are correct, there should be a bracket here because this is an 

equivalence class.  Other questions? 
S: Can you do five point three, number 10? 
Dr. Hedge reads the problem aloud and writes the symbolic portions on the 

board and starts working through a proof by contradiction.  She 
approaches the point where she needs to derive a contradiction relating 
to the homomorphism property. 

 
For the most part though, she moved directly from addressing administrative details 

to a very brief participatory, introductory dialogue that served to recall previous work 

and to launch the day’s class.  This introduction almost always featured a few factual 

statements that began the recall process followed by a set of direct or implied factual 

questions addressed to the whole class.  Only one time did she address these 

questions to individual an student.  A typical introductory dialogue is shown below. 

Dr. Hedge:  Okay, we had, and we’re going to be talking about more 
examples today, we’ve got a ring R with an ideal in it [writing].  We said 
that working with congruence mod I was an equivalence relation and 
that gives us the set of equivalence classes R modulo I.  How did we 
realize last time that we could write these equivalence classes?  What 
did they look like?  [pauses 15 seconds while students flip through their 
notes] 

S:  a + I where a in R.  [writing all of this in symbolic form] 
Dr. Hedge:  a + I where a is in R …  Excellent.  We would have written this 

as square brackets a before.  These congruence classes have another 
name, we would have called these… 

S:  Cosets 
Dr. Hedge:  Beautiful.  Cosets are equivalence classes.  What else do we know 

about this set?  What do we claim to know about this set?  We have a 
theorem about this set… 
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Once this initial dialogue was complete, Dr. Hedge immediately transitioned to new 

mathematical material for the remainder of the class session, rejoining an ongoing 

episode that had begun in a previous class meeting.    

The participatory proof 

The second principal type of teaching script that Dr. Hedge made use of was 

the participatory proof.  Participatory proofs were the most common type of proofs in 

the DTP algebra class and one of the most common teaching scripts that she 

employed.  Proof happened on an almost daily basis in Dr. Hedge’s class.  Moreover, 

these proofs were the setting for the great majority of the questions that Dr. Hedge 

asked the students. Thus they offer a useful window into the types of questions that 

Dr. Hedge asked.   

Prior text in this chapter presented two examples of the participatory-style of 

proof which Dr. Hedge enacted in her class.  Both of these proofs involved crafting a 

proof that the students should already have some proficiency with.  In the first 

instance, Dr. Hedge wrote a proof that a given set K is an ideal. This proof included 

demonstrating that the set K is also a subring of the ring R and then demonstrating the 

ideal property.  By March 17, more than half-way through the semester the students 

should have been quite proficient at demonstrating a given set is a subring of a ring R.  

As such, a participatory proof would not make major cognitive demands upon the 

students and might be thought of as a way to check for understanding about the 

various topics and proof-structure.   

In these proofs the dialogue was always a teacher-initiated question followed 

by a student response that was both relatively short and easy to judge as appropriate 
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or inappropriate.  As with her questions during the daily introductory dialogue, the 

great majority of Dr. Hedge’s questions during proofs were addressed to the whole 

class.  She seemed to have three different types of questions that she asked, but there 

seemed to be a set of purposes that underlay all three question types.  Specifically, Dr. 

Hedge seemed to use all of her questions to: (1) keep the students engaged with the 

proof-writing task; (2) stimulate the student’s thinking about proof; and (3) assess the 

student’s developing proof proficiency.   

The first type of question that Dr. Hodge made use of was fact-checking.  This 

is the same type of question that Dr. Hedge used in the introductory dialogue.  These 

questions prompted the students to state a specific fact.  Consider the examples 

below:  

Example 1: 
Dr. Hedge:  Let’s see why the thing called K, which has a name, it’s the 

kernel, is an ideal all the time.  So, we need to get back to this ring 
homomorphism.  If we have any ring hom f from R to S, let’s show K is 
an ideal.  What do we have to do to show it’s an ideal?  [pause] You 
have to show it’s closed under addition, closed under multiplication, it’s 
non-empty, every element has an additive inverse.  What do those four 
things tell us? 

S:  Subring. 
 

Example 2: 
Dr. Hedge:  Okay, let’s take two things, not r and s, how about a and b.  If a 

and b are in K, I want to show their sum is in K.  How do I show their 
sum is in K?  You have to use the definition of big K.  The only thing 
you know about big K is, well, it consists of stuff that gets mapped to 
zero.  So, what do I have to show about a + b to show it’s in K? 

S:  It gets mapped to zero. 

These questions have answers that are either correct or incorrect without any 

reference to the proof-context and, in the case of Example 2, Dr. Hedge actually told 

the students the answer to the question just before she asked it.  During participatory 
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proofs Dr. Hedge seemed to use these questions to help students cement their 

knowledge of definitions and theorems.   

 The second type of question can be thought of as a complete-the-sentence 

task. Such questions typically had many possible correct responses. But, in the 

context of the proof, there was usually only one appropriate response.  In order to 

respond to these types of questions, the students need to use the proof context and Dr. 

Hedge’s phrasing of the question to determine how to correctly finish the proof-step 

that Dr. Hedge had started.  Consider the example below where the class is working 

on a proof about a ring homomorphism: 

Dr. Hedge:  Ok, so, let’s look at what f does to a + b.  So, S, what can I say 
about f(a + b)? 

S:  It equals f(a) plus f(b). 
Dr. Hedge:  Is there anything I know about f(a) now? 
S2:  It equals zero. 
Dr. Hedge:  Great, and f(b).  And what do I know about zero plus zero?  

That’s zero. Great.  So, a + b meets the condition it needs to be in K.  
[pause]  So, that’s the property of f preserving addition that we just used, 
and that gives us that the kernel is closed under addition.   

 
The appropriateness of this response is determined by the context. The proof is about 

a function that is a homomorphism.  The circumlocution is that which Dr. Hedge used 

when she wanted the student(s) to give a response making use of the homomorphism 

property, and, it was clear which operation the proof was currently describing.   

 The last type of question that Dr. Hedge repeatedly asked students to respond 

to might be thought of as proof-strategy questions.  One version of this type of 

question required the students to determine what must be shown in the proof-

archetype that they were working on, what had already been completed, and what 

remained to be shown.  Consider the example: 
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Dr. Hedge:  So in other words, it doesn’t matter, they’re both the same.  So, ra 
and ar are in K.  So, what do I need left to check that this is an ideal? 

S:  Inverses 
Dr. Hedge:  Good, additive inverses.   
 

Another way that Dr. Hedge used this type of question was to ask the students to 

describe proof archetypes.  The students had just verified that a function f preserved 

multiplication and Dr. Hedge asked the students to give a description of the proof 

archetype for verifying that the function preserved addition: 

Dr. Hedge:  So, what’s it going to look like when I check addition? 
S:  f of r plus kernel of f plus t plus the kernel of f. 
 
While Dr. Hedge may have intended to ask three different types of questions 

with different purposes for each type, the manner in which she asked them actually 

made most of the questions factual questions.  For example, in the complete-the-

sentence questions above, whenever Dr. Hedge asked the students a question where 

they were expected to use the homomorphism property, she used very similar 

phrasing and gave other verbal cues when asking about proofs of other properties.  

Even the questions that I have called proof-strategy questions were basically factual.  

In the first example above, Dr. Hedge had stated at the beginning of the proof what 

needed to be verified and at each step she clearly labeled what was being verified. All 

that was required to give a correct response was to read a list of properties and state 

those that had yet to be verified.  Thus, I suggest that the great majority of Dr. 

Hedge’s questions were factual in nature.   

 Throughout a typical proof, Dr. Hedge’s statements served as structural 

controls.  Dr. Hedge principally made three types of declarative statements during 

these proofs.  The first type validated student’s responses to her questions.  As shown 
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above Dr. Hedge would often respond to correct statements by saying, “Good,” and 

then repeating whatever the student had said, sometimes rephrased to be more 

mathematically complete or correct.  The second type of declarative statement that 

Dr. Hedge made during participatory proofs was a statement of fact needed in the 

proof.  In the second example shown above Dr. Hedge stated a fact that was needed 

for the proof.  She stated, “The only thing you know about big K is, well, it consists 

of stuff that gets mapped to zero.”  The last type of statement that Dr. Hedge made 

during the course of proofs was to state proof-goals.  There were times where she 

would describe the outline of the proof, such as in the first example above, and places 

where she would make statements that organized the verification of individual 

properties.  An example of Dr. Hedge organizing a verification of an individual 

property is when she stated, “Ok, so, let’s look at what f does to a + b.”  In this case 

she was telling the students the next part of the proof to work on.  

The exemplar dialogue   

As noted earlier the most profound difference between Edwards and Brenton’s 

(1999) DTPE caricature and the actuality of Dr. Hedge’s class seems to be the use 

that Dr. Hedge made of examples in her teaching.  Dr. Hedge included a large number 

of examples in her classes, often one to introduce a definition, one to situation a 

theorem, and it seems fairly clear that this increased number of examples was an 

attempt to help students develop deeper understanding of the topics.   

 Her practice was to give some number of examples of structures and to ask 

students to consider them before giving students the formal definition of the structure.  

This seemed to be an effort to help the students develop a concept image before 
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developing the concept definition, to use the language of Vinner (1991).  Yet, rather 

than give the students multiple examples of a structure and then ask them to discern 

the commonalities, she then stated the definition, and then, in both episodes I saw, 

asked the students to consider another example.  This second example took on a dual 

role, besides serving as an example of the structure. Dr. Hedge also chose to make 

this an example from which new mathematical generalizations were motivated.  Most 

of her examples served these two purposes: examples of and examples from which to 

generalize (except the ones that she used between a statement of a theorem and the 

proof).   

 That is, her pedagogical move was to ask the students to work an example, 

often for homework, and then to use that example to launch new mathematics, 

especially new definitions and theorems.  She used examples to help students develop 

increased understanding of a new structure, and then she used examples to motivate 

new mathematics by asking students to consider specific features of her examples.  At 

the end of these exemplar dialogues Dr. Hedge would usually give the students some 

understanding of the coming direction and flow of the course —often explaining how 

the next developments would be a generalization of that which the students had 

already done. 

This dual use of examples is illustrated by the example below.  The first day 

that Dr. Hedge introduced ideals she asked the students to consider a number of 

examples of ideals.  The last one that they discussed before class ended was the very 

familiar structure )(n
Z  where Z represents the integers and (n) represents the 

multiples of n.  The students concluded that (n) is an ideal in the integers.  Dr. Hedge 
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then ended class by saying, “In Chapter 6 we’re going to look more closely at ideals 

in an abstract setting, and we’ll redo many of these results using ideals instead of 

irreducible polynomials.”  The next day she took questions on the homework at the 

start of the class period and then began her introductory dialogue: 

Dr. Hedge: Ok, so, let’s move on.  Let’s recall… 
Dr. Hedge wrote: for n∈N we had )(n

Z .  For F, field, and p(x) ∈F[x], we had 

F[x]/(p(x)). 
Dr. Hedge: And we found that these were rings whose elements were 

equivalence classes.  Well, how did we define those equivalence 
classes? 

S1: By ax + by equals n. 
Dr. Hedge: Ok, was there another way? 
S1: ax is n minus by? 
Dr. Hedge: Ok, what about a – b, what can we say about that? 
S2: It’s a multiple of n? 
Dr. Hedge wrote: a≡b mod n ⇔ a – b = kn for some k∈Z 
Dr. Hedge: Then we can say in terms of ideals that if a minus b is in I, then a 

and b are equivalent mod I?  What if we say that a minus b equals an 
element in I? 

S2: That a minus b is in I. 
Dr. Hedge wrote: a – b = i for some i∈I. 
Dr. Hedge: How about we take that to be our definition, what does that get us? 
Dr. Hedge wrote: Goal:  If this relation, congruence modulo I, is an 

equivalence relation; then we’ll try considering equivalence classes 
modulo I & look at possible ring structures on the set of equivalence 
classes. 

 
During this interaction Dr. Hedge made three factual statements (two written 

but not spoken) and asked a number of questions.  Dr. Hedge would first state the 

example, often preceded by the word recall.  Then she would indicate the particular 

aspect of the example that she wanted to focus on for the discussion.  For example, in 

the script above she wanted to focus on the fact that )(n
Z  is a set of equivalence 

classes and that (n) could be defined in terms of an actual multiple of n, the element 

that generated (n).  Dr. Hedge’s last statement informed the students what the goal of 
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the coming classes was.  It was a written version of her statement from the previous 

class that, “In Chapter 6 we’re going to look more closely at ideals in an abstract 

setting and we’ll redo many of these results using ideals instead of irreducible 

polynomials.”  In each case Dr. Hedge’s statements were intended to frame the 

manner in which the students would be engaged with the material and to direct them 

to a particular explicit goal.   

All of the questions were factual questions directed at the class as a whole.  

Dr. Hedge was seeking a specific manner of defining a congruence class, and she kept 

asking questions until the students had stated that definition.  In other exemplar 

dialogues, Dr. Hedge asked factual questions about the results of computations, 

functions with particular characteristics, and other topics that should have been very 

familiar to the students—either because they had seen the example numerous times or 

had worked with it in the immediate past (most often the previous class or their 

homework).   

Salient characteristics of the observed teaching scripts 

The observed teaching scripts each had a number of different characteristics 

but there were many commonalities.  As noted above, in each of the teaching scripts 

described above Dr. Hedge asked a large number of questions and expected students 

to respond as a way to participate in class.  As such, the next level of analysis is to 

look for patterns across the teaching scripts as a way to better understand the 

characteristics of DTP teaching writ large.   

Declarative statements 

 Across the three teaching scripts, Dr. Hedge made consistent use of 
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declarative statements.  Her primary use of declarative statements was in making 

factual statements about the content of abstract algebra.  This type of statement took a 

slightly different form in each of the three teaching scripts, but it was always present.  

In the Introductory Dialogue she would prompt the students to recall the previous 

day’s material by use of phrases such as “we had…” or “we saw…” in each case 

following closely with a mathematical statement giving the context of the previous 

material.     

Dr. Hedge’s declarative statements in the Exemplar Dialogue were similar in 

both nature and purpose.  These dialogues often began with the statement, “Recall…” 

followed by a description of a mathematical structure that the students had studied 

previously, this might also include the statement of a mathematical definition, as in 

the case of the kernel of a homomorphism as shown above.  Subsequent declarative 

statements would structure the coming class by either stating a goal or a particular 

aspect of the example to focus on.  For example, in the example shown above, Dr. 

Hedge concluded the Exemplar Dialogue with the following: 

Goal:  If this relation, congruence modulo I, is an equivalence relation; then 
we’ll try considering equivalence classes modulo I & look at possible 
ring structures on the set of equivalence classes. 

 
 In both of these teaching scripts declarative statements are used for two 

principle purposes.  The first is to prompt the students to recall previous mathematical 

content that Dr. Hedge will reference in subsequent parts of the dialogue of class 

meeting.  The second purpose of Dr. Hedge’s declarative statements was to give the 

students directions for future work.  In many ways, these two purposes are closely 

tied in that Dr. Hedge would establish the context for the mathematical work and then 
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state how it would be carried out.  Clearly, these two teaching scripts featured very 

similar declarative statements.  On first inspection, it seems that those declarative 

statements Dr. Hedge employed in the Participatory Proof had a different purpose 

entirely. 

 In the Participatory Proof, Dr. Hedge made a number of declarative statements 

that were noted above.  Each of the different types seemed to be used as a structural 

control in the proof-creation process.  Consider that Dr. Hedge would validate 

student’s responses to questions with “good” or other similar phrases, she would re-

state student’s mathematical statements in ways that made them more mathematically 

complete and correct and lastly, she would state proof-goals.  In stating the goals of a 

proof Dr. Hedge is clearly directing the subsequent class.  The other two types of 

declarative statements can also be understood as performing the function of factual 

recall.  In each case, Dr. Hedge has solicited a student response to a prompt and the 

student has made a statement that either is complete and correct or needs correction.  

Dr. Hedge’s statements either confirm the correctness of the statement (that is, 

validate the factual recall) or reformulates the statement so that it is correct, serving 

the exact same purpose as stating the fact herself using the term “recall.”  As such, it 

seems that the two principle uses which Dr. Hedge made of declarative statements in 

her observed teaching scripts are stating facts for use during the class and stating 

goals for future work. 

Question types 

Dr. Hedge made consistent use of questions in each of her teaching scripts.  In 

the Introductory Dialogue she asked questions such as, “How did we realize last 
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time…?”  In the Participatory Proof she asked questions such as, “What do we have 

left to show?” or “What do I know about …?”  Finally, in the Exemplar Dialogue she 

asked questions such as “Well, how did we define those equivalence classes?”  In all 

of these instances Dr. Hedge’s questions were very factual in nature.  As described 

above, although a surface reading might indicate some of the questions were open-

ended, the context and circumlocutions that she used constrained students’ responses 

and effectively made all questions factual in nature.  In all of these teaching scripts 

her questions seemed to have three primary purposes: (1) to engage the students with 

the given task; (2) to stimulate the student’s thinking about mathematics; and (3) 

assess the student’s understanding and recall of the content.  In short, she seemed to 

use questions as a means of on-line checking on students’ understanding and 

engagement.     

Posing questions 

Dr. Hedge asked a large number of questions and also used incomplete 

sentences with hanging pauses as a second means of soliciting student participation.  

Although the vast majority of her questions were factual in nature, they were 

generally intended for students to respond to them.  During proof-writing, as noted 

above, she did ask some on-line questions that seemed more rhetorical in nature.  In 

those cases she seemed to be modeling her internal dialogue while writing proof.  As 

such, even these questions had a pedagogical purpose.   

 The most obvious commonality of Dr. Hedge’s questions is how she directed 

them.  The overwhelming majority were addressed to the class as a whole.  Unless 

there was a discussion between Dr. Hedge and a student in progress, she almost never 
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directed a question at a specific student.  In her observed Participatory Proof teaching 

scripts although she would ask numerous questions throughout, only a total of two of 

those questions were directed at an individual student, the rest were asked of the 

entire class.  Similarly, in the observed Exemplar Dialogues and Introductory 

Dialogues she directed only one question at a student with the remainder being asked 

of the whole class.  It was unclear from her manner of asking questions whether she 

intended for one student or some chorus-type response to these whole-class questions, 

but the responses were almost always by an individual student.  Periodically, two 

students would respond to the same prompt. 

Student Scripts 
The teaching scripts described above capture the majority of both Dr. Hedge’s 

expected student actions and actual student scripts. Most of the students participated 

in class discussions fairly regularly, usually by answering the questions that Dr. 

Hedge posed during the teaching scripts.  The students generally asked very few 

questions of Dr. Hedge or each other.  The majority of their questions were requests 

for clarification, usually about the purpose of a particular symbol or the meaning of a 

particular word.  Students did, when afforded the opportunity, ask Dr. Hedge to do 

problems from their homework on the board.   

There were a few instances where it was particularly easy to infer what the 

students expected to gain from their classroom actions.  There were multiple 

instances where a student would catch Dr. Hedge in a mathematical error.  By 

pointing out the error, the student expected some extra-credit points to be added to an 

exam score.  Similarly, when students asked for clarification or to see a homework 
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problem on the board it seemed that they were hoping for increased understanding of 

the content or use of the proof archetype.  In terms of their normal participation and 

note taking, I can only surmise that they too believed in Wu’s pedagogical bargain: if 

they took notes, did what was asked, and studied a bit, they would be able to 

demonstrate enough proficiency with the content to earn a passing grade in the 

course.  None of the students claimed to know, prior to enrollment, what the course 

content was. During the end-of-semester interviews there were still a few who could 

not articulate any overarching course themes.  As such, it is unclear if the students 

actually hoped to gain a deep understanding of the content of abstract algebra or if 

their only goal in taking the course was to fulfill departmental requirements. 

Summary of DTP teaching 

In almost all cases, Dr. Hedge’s statements and questions seemed very 

purposeful.  In each of her principal teaching scripts she expected students to be 

active participants, and she asked the class numerous factual questions.  She likely 

used these questions to check for understanding.  But another possible use of the 

questions was to explicitly model the type of thinking that a mathematician uses in 

the different tasks.  This later theory is supported by her actions when she gave a 

proof lecture.  There was an instance where Dr. Hedge delivered a standard lecture 

which included a proof.  She did not direct any questions at students, but, as she was 

writing the proof she verbalized the same types of questions that she asked the 

students during more participatory proof writing.  Consider this dialogue from that 

lecture, “What should I do first?  The sum, then I multiply the sum.  So, let’s take the 

sum first,” or “Okay, now what do I do?  The coset of ab plus ac is the same as 
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what?”  Each of these can be understood as Dr. Hedge showing the thought processes 

that lead to a complete and correct proof.   

 Similarly, Dr. Hedge’s questions and statements during the exemplar dialogue 

seemed intended to give the students insight into the process by which 

mathematicians abstract and generalize.  She asked questions about the conditions, 

but phrased them in a way so that a generalization seemed natural.  Consider the 

manner in which she introduced the generalization of I
R for R a ring and I and ideal: 

Dr. Hedge: Ok, so, let’s move on.  Let’s recall… 
Written: for n∈N we had )(n

Z .  For F, field, and p(x) ∈F[x], we had 

F[x]/(p(x)). 
Dr. Hedge: And we found that these were rings whose elements were 

equivalence classes.   
 

Dr. Hedge then asked the students to think about how the two sets of equivalence 

classes were defined and by doing so lead them to the generalization.  That is, she 

asked the students to look at two seemingly very different structures, and she modeled 

the type of questions that a mathematician might ask in leading to the generalization 

that both the known examples are instances of I
R .     

 Dr. Hedge used declarative statements relatively sparingly.  Her principal uses 

of declarative statements were to state facts that they would soon be using, to explain 

the structure of a proof or portion of a proof, and to validate student responses to her 

questions.  Generally these uses served to organize the class interactions and activities 

(proofs and examples) either by giving structure to proofs, specifying the important 

knowledge to be used in a proof, or stating the future direction for mathematical 

work.   
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 It is clear from her comments and actions that Dr. Hedge wanted her students 

to develop a deep and connected understanding of the mathematical material and to 

develop significant proficiency with a number of proof-types, especially property 

proofs and homomorphism proofs.  She encouraged student engagement and 

participation via frequent questions, encouraging students to ask questions, giving 

extra points for catching mathematical mistakes and her pedagogical choices, 

especially the copious use of examples.   

 She expected that the students would frequently answer her questions, attempt 

to make sense of the class activities, present at least one proof during the semester, 

and otherwise maintain the pedagogical contract.  She expected that they would take, 

maintain, and study their notes in order to master facts like vocabulary and statements 

of theorems.  Moreover, she expected the students to regularly complete homework 

that included practice with a number of skills—both computation and proof-writing.  

In general, this is exactly what the students did.  Almost all of them were active 

participants during course meetings, and, although they did not ask many questions, 

they did actively answer Dr. Hedge’s questions.  Moreover, they all seemed to take 

notes good notes from which they could quickly access information, and they all 

seemed to study outside of class hours.  What is most likely true is that the students 

had very mixed goals for the course with some students hoping to gain a lot of 

mathematical understanding and others hoping for a passing grade. 

Analysis of Teaching in the Investigative Class 

Although DTP is seen as the dominant mode of teaching in upper division 

undergraduate mathematics, it is also critiqued as intimidating and as misleading 
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students about the nature of mathematics (Thurston, 1986; Cuoco, Goldenberg, & 

Mark, 1996), hiding much of the process used in mathematical thinking (Dreyfus, 

1991), and ignoring the important role that mathematicians ascribe to ideas such as 

elegance, intuition, and cooperation (Burton, 1999; Dreyfus, 1991; Fischbein, 1987).  

The most fundamental critique that has been leveled against DTP is that it is not an 

effective way to promote student learning of the mathematics content (Leron & 

Dubinsky, 1995; MSEB, 1991; NSF, 1992).  However, none of those making this last 

critique provide student data to substantiate their claims.  The critiques of DTP and 

the strength of faculty beliefs about students’ corresponding lack of success have 

given rise to a variety of pedagogical approaches intended to improve student 

learning.  These new pedagogical approaches involve transition from a teaching 

method that everyone can recognize (i.e., traditional lecture format) towards the type 

of teaching suggested by the MSEB (1991) and NSF (1992) advisory reports which 

might be called investigative.  Although there is a growing body of literature 

describing different ways of structuring classroom interaction and the way that 

students encounter the mathematical material, thus far there have been no descriptive 

studies of the actual teaching of an investigative abstract algebra course.  One aim of 

the current study was to give such a description of one instance of an investigative 

abstract algebra class and to begin describing the range of pedagogies and teaching 

scripts that are used in actual classrooms.   

Teaching scripts 

The tone of the investigative class was significantly different than that of the 

traditional class in that students were much more likely to ask questions and to make 
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comments.  Moreover, what happened in the classroom on a given day was, to a great 

extent, reflective of the student’s questions and comments.  Because the class 

activities were varied and reflected the student’s input, I was able to discern very few 

repeated teaching scripts in Dr. Parker’s work.  There were three that I observed and 

noted.  The first was her repeated assertion that mathematics is about making 

meaning.  The second occurred during her repeated teaching of computation, 

especially composition of permutations.  The last teaching script occurred while Dr. 

Parker taught proof.   

Throughout the course, the vision of mathematics that Dr. Parker promoted 

was a humanistic one, in which she emphasized that mathematics was about making 

meaning.  She wanted the students to develop understanding of the underlying logic 

of mathematics.  Multiple pieces of evidence for that exist, but perhaps the most 

interesting was her attempt to help the students understand the reason that order is 

used to describe both the number of elements in a group and the least power to which 

an element can be raised to return the identity.   

The purpose of mathematics; Introducing a new concept 

Let us now consider the manner in which Dr. Parker introduced cyclic 

subgroups.  The students had just begun their study of groups but, because they had 

studied rings previously, were realizing that terms generally meant the same thing.  

Thus, they already knew the definition for the order of a group and the order of an 

element.  One of the students gave both definitions and Dr. Parker wrote them on the 

board.  A student asked to see an example from the homework about the order of an 

element in a permutation group.  This question inspired a short lesson and 
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conversation about composition of permutations.  Moving back to the side of the 

board where she had written the definitions of the order of a group and element, Dr. 

Parker asked, “Why would they use the same word to mean two different things?”  

Dr. Parker’s question here is asking the students explicitly to make connections about 

nomenclature in mathematics.  A student responded, “Because that’s how they do 

us.” 

Even though a student has indicated the common understanding that there is 

often similar language throughout mathematics (integers and integral domain in 

abstract algebra) they did not seem to have recognized that mathematicians 

purposefully made these choices.  Dr. Parker continued to insist that the students 

wrestle with this relationship, and she gave a brief explanation about one goal of 

mathematics as a field. 

Mathematics is all about making meaning, so it must be meaningful, it must 
be about making sense, so, it must be about making sense that they called both 
of these things orders. 
 

It was at this point that, while the students were struggling with these concepts that 

Dr. Parker introduced two new ideas—a subgroup and a cyclic subgroup—and she 

asked the students to recognize these new concepts as analogous to previous work in 

rings.  At this point Dr. Parker asked the class to consider the cyclic subgroup of S3 

generated by (123).  She taught an explicit lesson on how to compose permutations 

and answered a series of questions.  She finished by stating: 

Dr. Parker:  This is the subgroup that’s generated by that element.  What’s the 
order of that subgroup?  It’s three.  So, when you look at this as a set, it’s 
order is three.  What’s the order of this as an element?  It’s three.  So, actually, 
so calling that order does make sense.  You could also say that the order of an 
element is the cardinality of the subgroup generated by that element.  So, they 
are actually talking about the same thing, it just happens to be that the way 
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that we find the order is that we take successive powers until we reach the 
identity.  Does that make sense?  [pause]  Why they call it the same thing?  
[pause] 

 
Finally, Dr. Parker had answered the question that she posed near the beginning of the 

hour, a question about the logic of naming mathematical objects.  In fact, this 

question, about why two seemingly dissimilar mathematical objects carry the same 

name was used to motivate the introduction of two other mathematical structures; 

subgroups and cyclic subgroups.   

This episode offers a strong contrast to the manner in with new mathematical 

structures were introduced in the DTP class.  For example, in the DTP class a kernel 

of a homomorphism was presented as an example of an ideal. The new structure was 

an example of an existing structure whereas here, these new structures were brought 

into play as a set of tools that students could use to make sense of the mathematical 

concepts and the relationship between them.  This means of introducing mathematical 

structures affords students more understanding of the process by which a 

mathematician would invent new structures—a process otherwise mysterious to 

students.  In the DTP class Dr. Hedge introduced a mathematical concept and then 

asked questions about it.  This contrasted with the practice in Dr. Parker’s class where 

they typically started with a question and introduced new mathematical concepts in 

order to answer that question.   

The class meetings of Dr. Parker’s investigative class were directed towards 

substantially different goals than the meetings in the DTP class and could not be 

analyzed in the same way.  Attempting to categorize them based upon the 

presentation of mathematics—such as Definition-Example-Example-Theorem—
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would not give much insight into either Dr. Parker’s vision for the lesson or the actual 

activities of the classroom.  Because one of Dr. Parker’s goals was to help the 

students understand that mathematics is a human endeavor, in this case it seems more 

important to analyze Dr. Parker’s goals for the students and to explain the manner in 

which she expected the students to develop mathematical understanding.  It is worth 

noting that I have little basis for analyzing the manner in which Dr. Parker used proof 

in her class, because I only observed two instances where she wrote formal proofs.  

Because of the paucity of proof, the analysis of the teaching of the investigative class 

cannot exactly parallel the analysis of the teaching of the DTP class.  Yet, perhaps 

this is actually more appropriate because the vision of mathematics that the two 

teachers communicated to the students was sufficiently different that developing an 

understanding of the two classes requires thinking about them in substantially 

different ways.   

Teaching Computation 

 The most important repeated script I noted in Dr. Parker’s teaching was her 

insistence that mathematics is about making meaning, and this insistence shaped the 

manner in which she structured her classroom.  The second important script came 

about because she wanted theorems and definitions to arise from work with specific 

groups and rings.  This insistence on context meant that a large amount of Dr. 

Parker’s class time was spent teaching computation.   

I had the opportunity to observe 11 sessions of the investigative class, and Dr. 

Parker demonstrated, discussed, or explicitly taught computations in specific groups 

during 8 of those class meetings.  In two of the other class meetings the class 
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discussion was about the possible existence of an isomorphism between two groups, 

with most of the talk centered upon mapping specific elements in one group to the 

other and the order of each of the elements (in this case, discussing a computation but 

not as the focus of the conversation).  It was through these explicit and concrete 

discussions that she expected the students to derive questions and thoughts about 

mathematics, and it was in the concrete that she tried to keep all of her discussions 

grounded.  She explicitly stated that this is how she operated and how she wanted the 

students to be able to operate.  She said, “(It) is great when you know, well, the 

theoretical side, but I want to know in a group and given a subgroup you can actually 

find these things.”   

During this conversation about computation Dr. Parker asked a large number 

of questions, with most being factual in nature.  These ranged from factual questions 

in the same style as in the DTP class, but she also prompted students to consider 

issues of nomenclature as described above, and questions such as “what do you 

notice” which do not have a defined correct response. Consider her factual questions 

in the following exchange with a student: 

Dr. Parker: So, this isn’t a field.  How do I know? 
S: Well, in a field everything must have an inverse. 
Dr. Parker: Right, and x + 1 doesn’t have an inverse, in fact, it’s worse that 

that because x + 1 times itself is zero.  That makes is a zero divisor, and 
we can’t have a field if there’s a zero divisor.  Have we had another 
structure where we’ve had an entry appear multiple times in the same 
row or column? 

S: Yeah, Z6. 
Dr. Parker: Ok, so what kind of structure was that? 
S: A ring with identity 
Dr. Parker: So, not a field, not even an integral domain, bummer.  But, we’ve 

got an identity, anything else? 
S: It’s commutative. 
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Dr. Parker: Ok, so, when we don’t have an irreducible polynomial it looks like 
the best we can hope for is a commutative ring with a one.   

 

Similarly, she would ask, “So, how would I know if (a) that’s my inverse and (b) if 

my inverse is in there, in my subset?”  But, many of her other questions were asking 

about motivations or observations, such as, “Does everybody believe x2 + 1 is a 

reducible polynomial in Z2[x]?  So, how did I come up with x2 + 1?”  And lastly, she 

would ask questions which asked for alternatives methods like, “But, how else can 

you tell…?” and “Is there another way …?”   

 Because so much of Dr. Parker’s class was focused on computation in a 

number of different rings and groups, most of what Dr. Parker said was fairly explicit 

directions related to computing.  She spent a significant amount of time telling and 

showing students how to compute with cosets, permutations, functions, and 

polynomials with coefficients from a finite field among others.  But, the difference 

between Dr. Parker’s statements and Dr. Hedge’s seems to be that Dr. Parker was 

much more explicit about what she expected students to do during class.  For 

example, “Take a couple of minutes and check if you have all the right cosets,” or 

“Take 5 minutes and figure out what goes in the chart.”   

There was one teaching script that Dr. Parker returned to repeatedly—

teaching and talking about computations.  As I have noted above, she was quite 

explicit that theoretical work be grounded in some concrete example.  Because of 

that, once the content of the class turned to groups Dr. Parker spent a lot of class time 

talking about the permutation groups, and she explicitly discussed how to compose 

permutations six times on five different days that I observed.  Each time I observed 
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her she did nearly the same thing.  Either she or a student would nominate an example 

and then Dr. Parker would write it on the board and talk through the example while 

also tracing a path between the permutations with her finger.  In my observations she 

would do one example and then move on to whatever other topic she wanted to talk 

about.   

She first introduced the permutations on the set of three elements ),( 3 oS  and 

composition of permutations on March 18 near the end of class.  She showed the 

students how to compose two of the elements and then asked them to compose two.  

For homework she asked them to complete a Cayley table for the group.  The next 

class period, on March 22, she spent time talking about the conventional notation and 

then started writing the Cayley table. After a student nominated an element as the 

result of a composition, another student disagreed and a class discussion resulted.  Dr. 

Parker told the class that the easiest way to resolve the question would be to actually 

do the composition, and then she did it as an example.  She told the students again 

that their homework was to complete the Cayley table for the group.  Dr. Parker also 

showed examples on March 24, March 31 and April 1.  Her presentation of each of 

these examples was nearly identical.  Consider the two examples from March 24, one 

was near the beginning of the hour and the other near the end.   

Example 1: 
Dr. Parker:  Let’s look at a simple one.   
Written:  )123(=α  
Dr. Parker:  What’s the order of a three-cycle?  [pause]  Well, what’s alpha 

squared?  You’ve got to be a little careful because there’s baggage with 
that word, when we say alpha cubed or alpha squared or alpha to the 
fifth, there’s baggage with that word that it’s alpha times alpha times 
alpha, but when I write that what you have to picture in your mind is that 
it’s the star operation, because that’s the only operation that we have.  
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And, so this represents, in this case, alpha composed with alpha.  And 
so, what would that mean?   

Written:  (123)(123) 
Dr. Parker:  1 goes to 2 and in the other one 2 goes to 3 so 1 went to 3, so it’s 

almost like I’m leaping over.  And 3 goes to 1 goes to 2.  So, 2 goes to 3 
goes to 1.  So, alpha squared is 1, 3, 2.  [Dr. Parker points at each 
number when she says it aloud.] 

Written:  )132(2 =α  
 
 Example 2: 

Mark:  It says the (124)(23) is (1234), I didn’t know how you combine those. 
Dr. Parker:  So, these two are essentially the same.  I’m gonna go right to left, 

so I’ll show you how to combine them.  So, first we apply this one, then 
we apply this one.  So, I’ll start with 1, 1 goes to 2 and 2 goes to itself, 
so 1 goes to 2.  So, I applied this piece first. 

Written:  (13)(12) 
Mark:  So, if it’s missing then we just assume that… 
Dr. Parker:  It goes to itself.  I’m at 2, so 2 goes to 1, and then 1 goes to 3 so 2 

goes to 3.  I’m at 3 so 3 goes to itself an 3 goes to 1, so I’ve closed it 
back up.  So, this is a way of writing (123).  If you went the other way, 
did you get (132)? 

 
A week later, on March 31, she was again talking about permutations and again she 

did an example for the students:  

Dr. Parker:  So, there’s one of them, there’s a second one… 
Written: 
(23)(1)(23) = 1 
(23)(123)(23)=(132) 
(23)(132)(23)= (123) 
S:  Can you please run through the second one just to help me remember? 
[crosstalk] 
Dr. Parker:  Okay, so I’m working right to left.  I start with 1.  1 goes to 1, 1 

goes to 2, 2 goes to 3, so 1 goes to 3.  I’m at 3.  3 goes to 2, 2 goes to 3, 
3 goes to 2, so it must’ve been 2.  I’m at 2, 2 goes to 3, 3 goes to 1 and 1 
goes to itself, which is good, I was hoping so.   

 
Finally, she used almost the exact same language and actions the next day in class: 
 

Dr. Parker:  Let’s double check.  1 goes to 1, 1 goes to 3.  3 goes to 2, 2 goes 
to 1.  Let’s just double check, 2 goes to 3, 3 goes to 2.   

 
If Dr. Parker has any teaching scripts, one is certainly the manner in which she does 

examples of composition of permutations.   
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 During this teaching script I believe that she expected the students to take 

notes and to ask questions if they did not understand (as she did on March 24).  She 

also expected that her examples, especially the way that she deliberately talked 

through the permutation of each element, would help the students develop proficiency 

with composing permutations.  It seemed that most of the students did take notes 

during this part of the class.  Given the number of times that the students asked about 

it, it seems that they had not achieved the level of proficiency that Dr. Parker had 

hoped after nearly 2 weeks spent considering permutations. 

Teaching proof 

The final teaching script that Dr. Parker enacted arose in those instances 

where she wrote a proof.  I believe that this is a place where Dr. Parker’s vision for 

the class was most in conflict with the actual events in the course.  As I noted in the 

section describing the proof proficiencies that the students displayed, Dr. Parker 

intended the students to have significant opportunity to learn how to write algebraic 

proofs.  For example, the syllabus stated that students’ “facility with reading and 

writing proof will be used and extensively enhanced,” such that proof will be a means 

“for demonstrating and explicating their understanding.”  To that end, the students 

were expected to read and understand the text and were given a reading guide (for at 

least the first two chapters) that asked them to consider proof development.  

Moreover, on assessments (homework and exams) the students were responsible for 

making proof-based arguments.  For example, on the final exam for the course, the 

students were asked to demonstrate that a given set and operation form a cyclic 

group, to show that a given group is metabelian, and make a series of small 
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arguments that made use of Sylow-p subgroups.  I believe that this speaks to Dr. 

Parker’s intentions in that she wanted the students, even expected the students, to be 

developing significant skill with proof throughout the course. 

What actually transpired during course meetings is that, as noted above, there 

was a class discussion about computation more than half of the days that I observed 

(principally in response to student’s questions). When days spent in the computer lab 

using Exploring Small Groups are also included, that meant that a significant amount 

of time was used to think about specific rings, groups, calculations, and other 

localized discussions.  This use of class time mitigated against spending significant 

amounts of time discussing, teaching and demonstrating proof during class meetings.  

I only saw Dr. Parker’s class talk about proof during 4 of the 12 class meetings that I 

observed. Moreover, two of these discussions derived entirely from student’s 

questions about the homework that she assigned and were basically demonstrations of 

the proofs students were required to complete the homework correctly.   

It seems that Dr. Parker compromised on her vision for the amount of proof 

that happened in class. I believe that Dr. Parker had a different ideal for how proof 

would be written than what actuality unfolded in her course.  But I will give a 

description of what happened when Dr. Parker wrote proofs in class and how we can 

understand it as an enacted teaching script.  Afterwards, I will briefly note how I 

believe the actuality of class contrasted with her vision for teaching proof.   

One of the proofs that Dr. Parker demonstrated was the proof of Lagrange’s 

Theorem.  Dr. Parker’s presentation was a nearly uninterrupted lecture in which she 

presented the classical argument.  She wrote a set of symbols on the board and used 
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her commentary to tell students an outline of the proof, to explain how it would be 

built out of three lemmas, and then to tell students the logic of each step that she was 

doing.  During this presentation the students all seemed to be copying down the text 

on the board, but I was unable to tell if they were also summarizing her comments 

about proof structure.  This presentation had little in common with the other proofs 

that Dr. Parker wrote during class.   

In each of the other observed cases of proof in the investigative class, Dr. 

Parker was standing at the front board and all of the students were sitting in their 

seats.  Dr. Parker did all of the writing and the dialogue was very teacher centered.  

The students never talked directly to each other, but rather always talked to Dr. Parker 

who would respond to individuals or the class as a whole. The general pattern of the 

dialogue was teacher-student-teacher-student.  Periodically, two students would make 

concurrent or sequential comments, but not actually reacting with each other. 

Dr. Parker:  Again, it’s just intuitively what you’re thinking.  If these two 
groups are actually identical in their structures, then we should be able to 
make this association between elements and if we have this association 
between elements, then we should have this association between 
subgroup structures. 

Je:  [inaudible] 
Dr. Parker:  So? 
Je:  Say the element little g has an order, whatever, n, and then operate on g 

with the [inaudible]. 
Dr. Parker:  So, I’m gonna stick with k, okay?  [inaudible]   
Je:  If it mapped to an element of a different order, then wouldn’t it fail to be a 

homorphism? 
Dr. Parker:  Okay, so, what you want to do is…  [pause ,writing]  Consider 

that, then you know that phi of g to the k would equal phi of e. [pause] 
Written:  Suppose Gg ∈  has order k and consider eg k = , then 

)()( eg k ρρ = . 
Dr. Parker:  Now what?  [pause] 
Je:  Suppose, well, suppose phi of g has a different order. 
Dr. Parker:  Can we try to do it directly first rather than contradiction? 
Je:  I’m just feeling contrary today. 
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Dr. Parker:  Well, contrary right back at you.  So, what do you want to do with 
that? 

Je:  Break it up, phi of g, phi of g, phi of g… 
Dr. Parker:  So, the is phi of g k times, which is phi of g, phi of g, phi of g, 

which is phi of g to the k.  Yeah, I know I’m writing a lot of details right 
now, but bear with me.  So, this is the identity element in the group G, 
but down here, phi of g is an element that is in the group H.  So, if we’re 
trying to find the order of the element, we want to find the least integer 
so that when we raise the element to that power we get the identity, but, 
it’s the identity in H, so it’s not the same.  I’m going to patch this. 

Written: kk gggggggggg )()()...()()...()( ρρρρρρ ===  
= ee =)(ρ  
Dr. Parker:  And, we add the little box at the end…  Are you convinced?  

[pause]  The next natural statement is the one that I want you to deal…  
Someone can just come in on Thursday and just put it up there.   

 
Note that this entire dialogue-driven proof was basically a conversation between Dr. 

Parker and one student, here noted as Je.  At the time of the class, Je was a senior 

mathematics major recognized by the department as an outstanding undergraduate, 

and she had been selected as one of only four Undergraduate Teaching Assistants 

further illustrating her already proven success in math.  All of the other proof 

attempts are similar in that Je was often the only student giving responses to Dr. 

Parker’s prompts that moved the work forward.   

Let us more closely examine the types of questions that Dr. Parker asked here 

and in other proofs.  In the proof above, Dr. Parker began by asking, “Now what?” as 

a prompt to ask the students to supply the beginning of the argument.  This was a 

question that Dr. Parker asked multiple times while working through proofs at the 

board.  She expected students to provide the first line of a proof (and thus shape the 

structure) and to tell her how to move on to the next line.  Other variations on this 

question included, “So, how would you suggest that I do this?” at the start of a proof, 

and “So, now I stare” as a prompt for student participation.  Dr. Parker was willing to 
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take the student’s suggestions when she believed the step reasonable, even if it was 

not her preferred method.  In the proof shown above, Je suggested a proof-by-

contradiction, and although Dr. Parker tried to dissuade her, the demonstration was 

done by contradiction.    

Dr. Parker had other uses for questions as well. She used questions as a means 

of indicating to students that their suggestion was incorrect factually or invalid.  

Moreover, the students recognized this rhetorical move.  They seemed quite attuned 

to the difference between Dr. Parker’s validation of correct proof moves and incorrect 

moves.  When a student made a correct proof move Dr. Parker would restate the 

suggestion and often elaborate on the suggestion by providing more detail.  When a 

student made an incorrect proof move Dr. Parker would ask a question.  Consider the 

manner in which she responded to the student below who made incorrect statements.  

This proof was part of a homework assignment and multiple students had requested 

that Dr. Parker demonstrate it during class. 

 
},...,,{ 21 naaaG = group of order n.  G is abelian.  Prove that ex =2 when 

naaax ...21=  
Dr. Parker:  Okay, so, what’s problem 16 say?  It says, G is a group so I know 

I’m going to have closure, identity, associativity, inverses for all.  
Further, it’s abelian, so all the elements commute.  And, I need to show 
that the order of this element has order, well, that this element squared 
gives me the identity.  Now, one of these guys is the identity, but that 
doesn’t matter.  So, how would you suggest that I do this?   

S:  We know all the subgroups are order 2. 
Dr. Parker:  We do? 
S:  Well, in a subgroup we’re going to have the subgroup and the element, 

because the element times itself gives you the identity.   
Dr. Parker:  Are you talking about this element or every element? 
S:  Every element. 
Dr. Parker:  Every element has order two? 

 



 

 130 
 

Dr. Parker began by asking how to begin, a very open question, but once a student 

made an incorrect factual observation her questions changed significantly.  In fact, 

her questions were thinly veiled statements indicating that students had made factual 

errors.  She would often repeat the question.  Consider this exchange: 

Je:  I thought we proved that a long time ago. 
Dr. Parker:  Ah, but did we?  Do we have that, have we proven that the image 

of the identity is the identity?  That would seem the natural step.  Do we 
have that? 

Written:  Do we have, aka have we proven, that the image of the identity is the 
identity? 

Je:  Usually when you ask that many times the answer is no.   
 
In this case Je explicitly named what Dr. Parker was doing, using a question as a 

statement that an assertion was not currently warranted.   

 Dr. Parker also asked factual questions during proof-writing.  Consider the set 

of interactions below: 

Dr. Parker:  It’s a bijection. 
Je:  Yeah, a bijection. 
Dr. Parker:  Which gives us? 
Je:  1-1 and onto. 

 
And, while starting a different proof she asked:   
 

Dr. Parker:  Ah, it means that you’re a subset that’s a group.  So, in order to 
show that a subset of a group is a group, what do you have to show? 

 
In each case she used these questions to further the proof, but they served to solicit 

the exact information that she wanted in order to begin or continue the proof.  In the 

cases where Dr. Parker asked a factual question, she already had decided upon the 

next step and was asking a question of the students so that they could fill in the details 

of the proof structure upon which she had already decided.   
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 It is worth discussing the frequency of the two different types of questions that 

Dr. Parker asked.  She asked no questions of the students while proving Lagrange’s 

Theorem, but when she was writing each of the other proofs she asked questions of 

the students.  In one proof-writing activity she asked only two questions, both open-

ended.  In another she asked nine questions and made one statement that was 

interpreted as, “What next?”  Six of the questions were factual and the others were 

open-ended; asking students “What next?” or “How should I begin?”  In general, Dr. 

Parker seemed to expect that the students would talk, even if she did not ask a 

question, but her questions were more likely to be open-ended than factual.   

 While Dr. Parker’s use of questions was interesting, what was perhaps more 

interesting is what she would do in response to the student’s answers.  Specifically, as 

noted above, when a student gave an incorrect response to a question she would 

repeat the question or some variation as an indication that the response was incorrect.  

When the students gave a correct response to a question she would often repeat what 

was said, then reformulate the response to include more mathematical details than the 

students gave (possibly moving beyond what the students intended).  Almost every 

correct statement by a student was received this way.  Consider the interaction below 

where the student said 11 words and Dr. Parker repeated and expanded to nearly a 

paragraph. 

Je:  Break it up, phi of g, phi of g, phi of g… 
Dr. Parker:  So, the is phi of g k times, which is phi of g, phi of g, phi of g, 

which is phi of g to the k.  Yeah, I know I’m writing a lot of details right 
now, but bear with me.  So, this is the identity element in the group G, 
but down here, phi of g is an element that is in the group H.  So, if we’re 
trying to find the order of the element, we want to find the least integer 
so that when we raise the element to that power we get the identity, but, 
it’s the identity in H, so it’s not the same.  I’m going to patch this. 
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Written: kk gggggggggg )()()...()()...()( ρρρρρρ ===  
= ee =)(ρ  

 
In this case, Dr. Parker has repeated the student’s statement, written down the original 

statement, and reformulated it while writing it down so that, besides incorporating the 

student’s statement, it surpasses it to include the end of the proof as well.  Moreover, 

she also explained the rationale that supported each of the logical moves.  In that way 

she expanded the scope of the comment and stated the logical underpinnings when 

the student had said nothing about them.   

Je:  And we just order it so that it’s near it’s inverse or by it’s inverse.  We just 
rearrange it, the operation. 

Dr. Parker:  So, here you want me to rearrange it so that a-1 is next to its 
inverse? 

Mark:  You have two copies of x. 
Dr. Parker:  Oh, you didn’t tell me that.  Well, at least you didn’t tell me to 

write that down.  Okay.  So, you’re saying that another way to write this 
down is to write it as… a-1 times a-2 time blah blah blah, and then, 
someplace in here is a-1-inverse and a-2-inverse and a-3-inverse.  And, 
because it’s commutative I can write that down and say a-1-inverse, a-
sub2-inverse, and a-sub3-inverse.  Even better than that, that’s kind of a 
bad order, I could write it as a-subn-inverse, a-subn minus 1-inverse, 
blah and a-sub1-inverse.  I can do that… 

S:  Because the group’s abelian. 
Dr. Parker:  Because the group’s abelian, so I can swap elements and I can 

order them in any order I want to.  And so, now, I can go through a 
process of association and I can take off the parenthesis and put them 
around those two and then it kinda drops out and then this one’s going to 
be paired with it’s inverse and all the way down the line.  [inaudible] 

Je:  I was thinking that you could just take every element in G, and if you 
multiply every element in G together that you’ll get the identity.   

Written:   
Proof:  Let naaax ...21= .  Since G is a group then each element has an inverse 

among the elements of G.   
Consider == 2

21
2 )...( naaax  

   )...( 21 naaa )...( 11
2

1
1

−−−
naaa   [Dr. Parker crossed out this second 

parenthesis] 
   )...( 21 naaa )...( 1

1
1

1
1 −−

−
− aaa nn = 

   )...( 12
1

2
1

1 aaaa −−  
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In this case Dr. Parker took the kernel of an idea that Je and Mark have suggested and 

gave it the notation and structure that was necessary to make it a proof of the claim.  

Moreover, later conversation gave evidence that the students did not actually intend 

the claim to be understood the way that Dr. Parker decided to write it.  Her 

reformulation actually gave the students the key step in this proof without them 

having yet thought through all of the details.   

 In summary, this proof script seems to have been enacted differently than Dr. 

Parker intended.  In the script we see above, Dr. Parker used questions and similar 

prompts to solicit student comments and thoughts, often about the structure of the 

proof.  If the students gave a correct response, she would repeat it and then expand 

upon it.  If the students gave an incorrect response or one that she thought unhelpful, 

she would ask a factual question of the student(s) until the offending student retracted 

the assertion (“We do?”  “Do we have …?”).  In this script the students were 

envisioned to be active participants, making contributions to the proof and asking 

questions, but the reality is that only three or four students out of the class of 24 made 

any meaningful contribution to the proof writing.  The students were also expected to 

take notes on the proof and to record both the text on the board and some sketch of 

the logic that Dr. Parker said aloud.  It is unclear how much the students actually did 

take notes on the proof.  Moreover, because participation levels were very different, it 

is unlikely that there is any small set of expectations that the students might hold for 

this teaching script.  Most likely they expected to learn enough about proof to pass the 

class but the mechanism for this learning was probably not obvious to the students. 
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Salient characteristics of the observed teaching scripts 

 In each of the teaching scripts noted above, Dr. Parker was the primary actor.  

She did the majority of the talking and directed the conversation.  All of the 

conversation, if it existed, was very teacher-centered.  These scripts have relatively 

little in common, given that in the first teaching scripts described above Dr. Parker is 

presenting or telling information, whereas in the proof script she is attempting to 

solicit the ideas from the class and transcribe them.  But, in a deeper examination of 

what actually transpired in the proof script, Dr. Parker took amorphous suggestions 

from the students and added detail and expanded the explanation for each of the 

statements that the students made so that, in essence, she was telling the student the 

correct steps in the same way that she told the students the idea or procedural 

description in the other two scripts.  The major difference between the scripts was the 

number and type of questions.  In the first two scripts Dr. Parker asked almost no 

questions.  In the proof script she repeatedly asked questions, and those questions 

were often very open-ended with the (unrealized) potential to allow the students 

significant control over the direction of the proof.   

Declarative statements 

 Dr. Parker made extensive use of declarative statements in each of her three 

observed teaching scripts.  In her introduction of new mathematics Dr. Parker 

repeatedly emphasized that one of the goals of the field of mathematics is that 

“mathematics is all about making meaning, so it must be meaningful.”  She repeated 

this sentiment at other points in the class as well.  That is, she used declarative 

statements to communicate to students how she viewed the field of mathematics as a 
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means of helping them develop an understanding of the field.  Similarly, Dr. Parker 

used declarative statements to communicate which aspects of mathematics were most 

important to her in terms of student proficiency.  For example, during one Teaching 

Computation script she stated, “(It) is great when you know, well, the theoretical side, 

but I want to know in a group and given subgroup you can actually find these things.”  

That is, she was communicating to her students that she valued their ability to carry 

out computation, perhaps above their knowledge of definitions, theorems and proof 

abilities.   

 In all of her observed teaching scripts Dr. Parker used declarative statements 

to communicate mathematical facts.  She made statements such as “You could say 

that the order of an element is the cardinality of the subgroup generated by the 

element” during an Introducing Mathematics teaching script.  The Teaching 

Computation script featured very direct statements about the processes of computing.  

She made explicit statements about the process for combining permutations within a 

given group on multiple instances.  These statements would tell students what order 

to combine permutations, how to follow an individual element through a permutation 

and a validation of results.   

In the observed Teaching Proof script Dr. Parker’s statements were almost 

entirely stating the question that she would answer and restating student’s 

suggestions.  Dr. Parker’s restatement of student suggestions seems very similar to 

Dr. Hedge’s in that she would she could add detail to a student’s statement in order to 

make it more mathematically correct and complete.  As such, it seems that Dr. Parker 

made different uses of her declarative statements in the different teaching scripts.  In 



 

 136 
 

the first two teaching scripts Dr. Parker’s statements were generally giving students 

context as in the Introductory teaching script or direction as in the Computation 

teaching script.  Her statements in the Proof teaching script were factual statements.  

This differentiation of statement-types and uses is not unreasonable as the first two 

teaching scripts are primarily information-dissemination whereas the Proof teaching 

script seemed intended to be conversational or generative where responsibility is 

distributed between teacher and class.  Yet, as noted above, during the Proof script, 

Dr. Parker was, in essence, also telling students the correct steps in a writing a proof.  

In that sense, her statements during the Proof script were similar to the process-

directions in the Computation teaching script.   

Question types 

   Dr. Parker made very different uses of questions in the three observed 

teaching scripts.  In the first two teaching scripts Dr. Parker made very similar use of 

questions; they were factual or on-line checks for student understanding.  In the 

Introducing Mathematics teaching script Dr. Parker asked a number of factual 

questions such as, “How do I know,” and, “What kind of structure was that?”  In this 

case the students were supposed to recall and state previous facts.  During the 

Teaching Computation script students were expected to state previously learned facts, 

“What’s the order of a three cycle?”  In both of these teaching scripts Dr. Parker 

would also solicit student questions by asking questions such as, “Does that make 

sense?”  Dr. Parker also used questions in this script to give students direction for 

their subsequent investigation.  “What happens…,”  “What can we say…?”  She 

would use these question types in place of the more explicit directions for student 
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work and frame them with, “For homework I want you to explore…”  As such, this 

last type of question might be seen as framing the student’s work.  This question type 

seemed intended to help the students develop more understanding of the process of 

mathematical discovery in that they would engage in semi-directed exploration with 

no clear answer.   

Dr. Parker’s questions in the Teaching Proof teaching script seemed different 

in type than those in the other two teaching scripts.  She asked a greater number of 

questions in this teaching script and, on the face, they seemed to be of different types 

as well.  Dr. Parker asked questions to solicit student participation in proof creation at 

multiple points.  First, she asked the students for how to structure the proof, and then 

she asked multiple iterations of the question, “Now what?” requesting that the class 

supply the next step in the proof.  Neither of these question types should be seen as 

factual in that they were legitimately open-ended and Dr. Parker did allow student’s 

suggestions to structure the proof creation.  She was also observed asking a very 

closed, almost rhetorical, type of question during proof creation.  Dr. Parker would 

use questions as a means to indicate the factual correctness or validity of a student’s 

response to a previous question. This use of questions was recognized by students as 

a thinly veiled statement of error.   

Posing questions 

 Dr. Parker’s questions were varied in style and purpose.  As noted above, one 

type of question was actually a thinly veiled statement to indicate the correctness of a 

student’s response.  All of the questions Dr. Parker was observed asking during class 

were directed at the entire class.  She never addressed a question to an individual 
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student unless it was a direction question, “Would you please…?”  Again, it was 

unclear from the context whether Dr. Parker hoped for individual students to respond 

to her prompts or whether she preferred a chorus-type of response.   

Student Scripts 

It does not seem that the students were expected to participate in the same way 

in each of the teaching scripts.  In the first two, the students were expected to be 

passive participants, only asking questions for clarification, whereas in the proof 

script the students were expected to supply much of the direction for the proof 

writing.  But the student’s participation actually seemed to be rather similar across the 

scripts in that generally they were passive, perhaps taking notes on the presented 

material.  As noted above, even in the proof writing script, where Dr. Parker expected 

active participation, only a few students actually did participate.  Because of that we 

can safely conclude that despite Dr. Parker’s best intentions, the students were 

generally fairly passive during the three teaching scripts described above.  This is not 

to say that the students were passive throughout the class, but rather that once one of 

these scripts was initiated they became passive.  In fact, their questions were very 

likely to initiate one of the above scripts, especially the computation script.  Basically, 

there was a large range of student behavior.  At one extreme were the few students 

who took notes all of the time and were a nearly continuous part of the conversation.  

At the other extreme were those students who asked and answered questions, but 

whom I never observed taking notes.  As with the students in the DTP class, it is very 

likely that the students had very mixed goals for the course with some students 
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hoping to gain a lot of mathematical understanding and others hoping to earn a 

passing grade. 

A Comparison of the Observed Teaching Scripts 

 As described above, one of the major goals of the current study was to offer a 

researched description of the teaching of one DTP abstract algebra course and one 

investigative abstract algebra course.  As such, the current study offered a unique 

opportunity to compare the teaching of two sections of an introductory abstract 

algebra course at the same university.  Because the students from Dr. Hedge’s class 

and Dr. Parker’s class were expected to be ready to take a common second semester 

of algebra meaning, the two instructors needed to cover approximately the same 

content.  Because the two sections were to cover the same content during the same 

semester I believed it likely that it would be possible to look for similarities and 

differences in the teaching scripts that the two instructors employed.  The goal of this 

comparison was to use the similarities and differences to better understand teaching 

abstract algebra generally and to better describe the characteristics that might 

differentiate the two pedagogical approaches.   

However, the reader is cautioned that these two classes, as represented by 

their observed teaching scripts, represent just two possibilities in the broad spectrum 

to teaching.  Thus, this analysis which compares and contrasts the teaching of the two 

classes should be read as particular to these two classes.  Further, there were limited 

observed teaching scripts in each of the two courses.  As a result, the comparison is 

limited.   
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Dr. Hedge and Dr. Parker both encouraged active participation on the part of 

their students.  For example, Dr. Hedge often asked if the students had questions and 

would answer any question whenever it was asked.  She gave extra credit points for 

catching mathematical mistakes in work that she presented.  She required each of the 

students in the class to present a proof during the course of the semester and asked 

many questions during the course of a class meeting.  There were also multiple class 

meetings where the students were working problems in class or performing some 

other activity designed to improve their understanding of the content.  Thus, while 

students were always expected to take notes, copying text from the board into their 

notebook, which they all did, Dr. Hedge expected them to be more than passive 

consumers.  Perhaps half of the students would answer one of her questions in a class 

meeting, but there were a few students who only answered questions when called on 

by name.  Dr. Hedge principally used class time to outline the content that the 

students were expected to master and to demonstrate specific skill sets that students 

needed to develop.  Her teaching scripts also included more on-line checking of 

student understanding, factual mastery and class engagement than might be expected 

in a lecture class. 

The tone of the investigative class was significantly different than that of the 

traditional class in that students were much more likely to ask questions and to make 

comments.  Although Dr. Hedge encouraged questions, for the most part students did 

not ask many.  In the investigative class the students asked many questions, and what 

happened in the classroom on a given day was, to great extent, reflective of the 

students’ questions and comments.  As noted, one of the most common teaching 
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scripts in Dr. Parker’s class was a script where she taught computation.  She always 

started this script in reaction to a student question.  In comparison, none of Dr. 

Hedge’s teaching scripts were ever initiated in response to a student question.   

The actual teaching scripts revealed both similarities and differences.  

Consider the teaching scripts which most distinguish the two sections.  Dr. Hedge 

used three teaching scripts regularly but the one that most distinguished her from Dr. 

Parker was her exemplar dialogue.  While this script had an analogue in Dr. Parker’s 

insistence on grounding abstractions in concrete example, the manners in which they 

did so was quite different.  Dr. Parker’s most unique teaching script was her 

insistence on the human nature of mathematics.   

The evidence suggests that there are differences both in emphasis and tone 

between the two classes.  There were also differences between the characteristics of 

the observed teaching scripts in each of the classes.   As such, we recall the first of the 

research questions comparing the two pedagogical styles: 

Which, if any, of the observed teaching scripts seem to best differentiate an 
investigative abstract algebra class from a DTP abstract algebra class? 

In this case, our analysis of declarative statements and questioning suggests obvious 

choices.   

Teaching scripts which differentiate the sections 

Dr. Hedge’s exemplar dialogue was a way to introduce new concepts prior to 

stating a formal definition.  She would give the students several examples of a 

structure and ask them to consider them, to perform some calculations in the 

structure, or to write a proof about the structure.  It was only after the students had 

worked with an example or two of the structure that Dr. Hedge would give the formal 
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definition.  Moreover, these examples also served as a means for Dr. Hedge to 

motivate her generalizations.  Dr. Hedge generally described the new mathematics as 

a generalization of prior work, while emphasizing the fact that it was built on 

mathematics that the students had seen multiple times.  Dr. Parker had a similar 

pedagogical move in that she expected students to perform many calculations.  The 

significant difference between the two teachers comes in the next step, the stating of 

generalizations or theorems for proof.  Dr. Hedge gave every generalized statement 

that was proved in class whereas Dr. Parker allowed the students to make all of the 

general claims.  This seems a significant distinction, but it should be noted that Dr. 

Parker carefully crafted the student’s work so that they would be confronted with 

clear patterns that would lend themselves to many of the traditional group and ring 

theorems.  Because of this lesson crafting, the distinction between having students 

make the claims and the teacher stating them outright seems somewhat less important 

than might otherwise be the case. 

Because of the differences in the use of examples and the manner in which 

they were used to launch new mathematics, Dr. Hedge stated and proved more 

theorems and general claims during my observations.  Dr. Parker’s class only stated 

and proved only three generalizations and spent more time discussing computation.  

Dr. Hedge’s class was always cycling between examples, theorems and proofs.  

The teaching script that most differentiated Dr. Parker’s class from Dr. 

Hedge’s was her insistence that mathematics is about making meaning.  Although this 

was a relatively brief teaching script, it was important to Dr. Parker’s class.  She 

would consistently call mathematics a human endeavor that was an effort to make 
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meaning from patterns they had seen.  This script served to emphasize Dr. Parker’s 

point that students were learning mathematics by engaging in the process of making 

meaning and that by doing calculations, making and testing conjectures, and always 

grounding general statements in concrete examples.   

Dr. Parker’s teaching script offered a strong contrast to the presentation of 

mathematics in the DTP class.  Dr. Parker always insisted that mathematics was about 

making meaning, about asking questions.  For example, Dr. Parker’s means of 

introducing mathematical structures afforded students more understanding of the 

process by which a mathematician would invent new structures.  In Dr. Parker’s class 

they started with a question, and she introduced new mathematical concepts in order 

to answer that question.  This contrasted with the practice in the DTP class where Dr. 

Hedge introduced a mathematical concept and then asked questions about it.  For 

example, Dr. Hedge introduced a kernel of a homomorphism as an example of an 

ideal, that is, the new structure was an example of an existing structure.  In Dr. 

Parker’s class new structures were brought into play as a set of tools that students 

could use to make sense of the mathematical the relationship between mathematical 

concepts.  Dr. Hedge wanted the students to understand mathematics as a logical, 

ordered and interrelated body of knowledge, but I never observed her making any 

statement to the class about the development of mathematics as a human endeavor or 

about the role of questions in furthering mathematics as a field.   

Shared teaching scripts 

 The second of the comparative research questions focused on the shared 

teaching scripts in the two pedagogical styles: 
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Which, if any, of the observed teaching scripts do DTP and investigative 
abstract algebra classes have in common? 

 
As suggested in the analysis above, while the two professors presented different 

beliefs about the purpose of mathematics, Dr. Parker and Dr. Hedge also presented 

very different visions for teaching: One claimed to be a traditional, DTP-style teacher, 

and the other claimed to do very different things and to teach in an investigative 

manner.  Thus, the next piece of analysis addresses what teaching scripts the different 

teaching styles have in common. 

Even though these two teachers did present rather different visions of 

mathematics in class, they also both made use of a proof-writing script that had many 

common characteristics.  The two proof-writing scripts make for an interesting point 

of comparison because proof writing constituted one of the most common activities in 

Dr. Hedge’s class and the only one which had significant overlap with the daily 

activities in Dr. Parker’s class.   

In Dr. Hedge’s class the majority of the observed proofs were written in a 

participatory style.  In this style Dr. Hedge would generally begin the proof, 

providing the structure, and then, while writing the proof, ask factual questions that 

she intended the students to answer.  She would generally direct these questions to the 

whole class but was also observed calling on individual students.  Dr. Hedge seemed 

to use her questions to: (1) keep the students engaged with the proof-writing task; (2) 

generally stimulate the student’s thinking about proof; and (3) give her another means 

of assessing the student’s developing proof proficiency.  Her questions were almost 

always of two types.  She either was asking the students to state a specific fact, for 

example in asking, “And what do I know about zero plus zero,” or she was asking the 
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students to complete a sentence with an appropriate factual statement.  When Dr. 

Hedge asked a question of the class there were a small number of students who were 

very likely to respond, and there were a number of students who were unlikely to 

respond unless directly called upon.   

In terms of actually writing the proof, Dr. Hedge was always the author, in the 

sense of actually writing the text, in this proof-writing script (although there were a 

number of observed instances where the students were the authors).  At least as 

important though was the fact that Dr. Hedge also created the structure for the proof.  

In all of the participatory-proof-writing scripts I observed Dr. Hedge undertake, she 

always started the proof.  These were also all direct proofs, none involved 

contradiction.  It was not until after she had begun a proof that Dr. Hedge started 

asking the students questions.  In summary, Dr. Hedge asked factual questions that 

advanced the proof, but did not allow students the opportunity to structure the proof. 

Let us now turn to Dr. Parker’s version of the proof-writing script and see 

how it was similar to and different than Dr. Hedge’s.  As noted above, Dr. Parker also 

had a very participatory proof-writing script, but she did not write many proofs.  In 

the proof-writing script Dr. Parker was always the center of the discussion.  While 

writing she asked many questions of the class as a whole and of individual students 

responded, but there was one student who gave the overwhelming majority of all the 

responses.  The students who responded always spoke to her, never to each other.  In 

this regard the two instructor’s proof writing scripts were very similar.  Both were the 

actual writers, both directed the conversation, and both were at the focus of the 

conversation.  Moreover, in each of the classes the majority of the students’ responses 
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were from a small group of students with a larger group not part of the conversation.  

I believe that both teachers envisioned a class where most or all of the students would 

be active participants, perhaps even to the point where they, the instructors, would act 

more as transcribers for the students’ responses in crafting the proof. 

 Let us now turn to the types of questions that Dr. Parker asked the students.  

Dr. Parker asked three principle types of questions.  In addition to factual and open-

structural questions she asked a third type that was actually a thinly veiled statement 

that the student had just made an incorrect statement.  Dr. Parker asked factual 

questions with some frequency, but less than Dr. Hedge.  Almost all of Dr. Hedge’s 

proof writing consisted of an almost call-and-response interaction where nearly every 

utterance she made was in the form of a question.  Dr. Parker made many more direct 

statements and, because of that, her question frequency was lower.  Similarly, she 

also asked different types of questions, and because of that, factual questions were not 

as prevalent in her proof-writing script.  Consider the question, “So, in order to show 

that a subset of a group is a group, what do you have to show?”  While Dr. Parker 

asked this question, it was a question that would also have been consistent with Dr. 

Hedge’s questioning style.  Their factual questions were all simply stated with easily 

verifiable correct responses.   

 One of the principle ways that Dr. Parker’s proof-writing script was different 

than Dr. Hedge’s was that she asked two types of questions that Dr. Hedge did not.  

Dr. Parker asked a significant number of open questions that were generally asking 

students to supply structural elements of the proof that she was writing.  She asked 

questions such as, “How should I begin?” at the start of proofs and took the students’ 
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suggestion.  She asked questions such as, “Now what?” in the middle of proofs and 

waited until a student suggested a direction.  Dr. Parker asked open questions nearly 

as often ask she asked factual questions.  These questions seemed to indicate Dr. 

Parker’s expectation that the students would bear primary responsibility for proof 

writing and that she would almost act as a transcriber rather than as an author.  She 

actually wanted and expected the students to provide the structure and impetus for 

writing the proof.  But, they also realized that she was still the authority on proof 

within the classroom and was controlling the flow of the proof.  Her third type of 

question, and the way that students responded to it, showed that they recognized her 

role as authority and may have never actually felt or assumed the hoped-for proof-

writing authority.   

 Dr. Parker’s third type of question was always in response to an incorrect 

statement by a student.  When a student made an incorrect statement such as, “We 

know…” Dr. Parker would respond with a question such as, “We do” or “Have we 

…?”  She responded to correct statements very differently.  She would repeat them 

and add the type of detail needed to use them to substantiate a proof.  This repetition 

and expansion was also mirrored by what she wrote on the board during proof 

writing.  Sometimes Dr. Hedge’s restatement of the student’s idea would go beyond 

the student’s thought or even be a slight alteration that better fit the needs to the 

proof.  In this way she was very much exercising authority over the direction of the 

proof, even while asking open questions of the students that demanded answers which 

directed the structure of the proof. 
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Dr. Parker’s students had learned that she reacted differently to their correct 

and incorrect statements.   In doing so, Dr. Parker actually ensured that only correct 

mathematical statements that advanced the proof were written on the board.  That is, 

she validated warranted statements and kept unwarranted statements from the board, 

acting in the capacity as a mathematical gatekeeper.  This also contrasted with Dr. 

Hedge’s class.  In Dr. Hedge’s class the students made almost no mathematical 

inappropriate statements. Because of that Dr. Hedge did not have to filter their 

responses to ensure the correctness and completeness of the proof.  But, this fact 

should not be taken to indicate that Dr. Hedge’s students were necessarily more 

competent with proof or had a better command of mathematical facts.  It was a 

function of the different types of questions that the two instructors asked.  When Dr. 

Parker asked a factual question, the student’s response was almost always correct.  It 

was when Dr. Parker asked an open question that students were likely to make 

misstatements.  Thus, it seems that Dr. Parker assumed the responsibility as 

mathematical gatekeeper in reaction to her use of open questions.   

Summary 

 Comparison of the observed teaching scripts revealed a number of similarities.  

Both instructors expected the students in their classes to be active participants during 

meetings.  Both of the instructors expected the students to ask and respond to 

questions throughout the meetings.  But, although both teachers encouraged active 

participation there were some distinctions in terms of the types of participation that 

were observed.  For example, the students in the investigative class were much more 

likely to ask questions than were the students in the DTP class, and these questions 
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covered a wide range of relevant algebra expanding beyond homework problems.  In 

contrast, the students in the DTP class all presented a proof at the board or overhead 

projector and were much more likely to participate in a proof-writing script.  There 

were students in the investigative class who did not speak as part of the teacher-

centered dialogue in any of the class periods that I observed (although everyone 

seemed to be an active participant during computer-lab sessions).   

 The two instructors both made use of a number of teaching scripts that reveal 

how the two sections were similar and different.  For example, the two teachers each 

had a participatory proof-writing script.  For Dr. Hedge it was one of at least three 

proof-writing scripts that she made use of and it was the only proof-writing script that 

I observed Dr. Parker use consistently.  In this script each of the instructors would 

stand at the front of the classroom and ask a series of questions of the students.  The 

students’ responses to these questions were incorporated into the proof that the 

teacher was writing.  Both teachers made significant use of factual questions which 

had a correct answer.  Both of the teachers asked either all or the majority of their 

questions to the whole class and waited for individual students to respond.   

 The proof-writing scripts were different in the level of responsibility for proof 

structure that the two teachers gave the students, the frequency of open questions the 

teachers asked, and the different manners in which the teachers reacted to the 

students’ responses to the questions.  In all of the observed proofs, Dr. Hedge set the 

structure for the proof whereas Dr. Parker gave the students more responsibility for 

the structure, going so far as to write a proof-by-contradiction because a student 

wanted to.  This increase in responsibility for the structure of the proof also meant 
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that Dr. Parker asked more open questions than Dr. Hedge.  Dr. Parker asked multiple 

open-ended questions during proof writing whereas almost all of Dr. Hedge’s 

questions were factual in nature.  

Lastly, because Dr. Hedge’s questions were almost always factual, they had 

correct responses which she then repeated.  In all of her uses of the proof writing 

script I never observed the students make an incorrect or unwarranted assertion in 

response to her question.  That is, the students always gave the response that she 

expected and thus, I never observed her react to an incorrect student statement.  In the 

case of Dr. Parker’s class, because she asked a larger number of open-ended 

questions her students made a reasonably large number of incorrect or unwarranted 

assertions.  Dr. Parker reacted to these unexpected responses very differently than to 

correct responses.  When a student gave a correct response she repeated it and added 

detail.  When a student made an incorrect response she would ask a question, often 

repeating the question.  The last difference in the proof-writing scripts was the 

frequency with which the two teachers enacted them.  Dr. Parker only wrote a handful 

of proofs in the observed class meetings while Dr. Hedge enacted this script in nearly 

all of the observed class meetings. 

 There were also teaching scripts which showed that the two classrooms were 

quite different.  Dr. Parker repeatedly emphasized the human nature of mathematics 

and the importance of understanding mathematics as a way to answer questions.  She 

emphasized that mathematics was about making meaning of experience.  Dr. Hedge 

also wanted the students to develop an understanding of mathematics as a meaningful 

and logical discipline, but she did so via an exemplar dialogue in which she would 
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ask students to think about a structure that they knew very well in a new way.  Most 

frequently, she wanted the students to understand that the new concept was actually a 

generalization of an idea they had long known.  In short, the teachers had both a 

shared teaching script and, more importantly, a shared goal for their students,  but 

attempted to achieve that goal by different means.  
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CHAPTER 5:  STUDENT PROFICIENCY WITH ABSTRACT ALGEBRA 

 Abstract algebra is a pivotal point in the educational trajectory of mathematics 

majors and future teachers.  Students’ understanding of the fundamental concepts of 

identity, inverse, unit, and polynomial are the key building blocks from which they 

develop their proficiency with the basic structures of the discipline— groups and 

rings.  A number of studies have attempted to document the ways that student 

understanding of specific algebraic content develops (Asiala, Brown, DeVries, 

Dubinsky, Mathews, & Thomas, 1996; Asiala, Dubinsky, Mathews, Morics, & Oktac, 

1997; Brown, DeVries, Dubinsky, & Thomas, 1997; Dubinsky, Dautermann, Leron, 

& Zazkis, 1994; Findell, 2000).  To that end, one of the central goals of this study 

was to describe the level of understanding that a typical student might develop after a 

semester of study of abstract algebra.  This chapter responds to that research goal 

using data from two written instruments and interviews with individual students. 

 After a brief description of the proposed and implemented methodology of the 

study, this chapter provides a description of the proficiencies that the students 

developed after one semester studying abstract algebra.  These data were analyzed by 

content strands.  First, the analysis examines the students’ proficiency with the 

concepts of identity, inverse and units, followed by consideration of the students’ 

proficiency with polynomials and the basic structural concepts of groups and rings.  

Finally, there is some analysis of the students’ proficiency with crafting algebraic 

proofs.  Each of these data and analysis sections includes a brief description of the 

relevant mathematical content, the expectations that an instructor might hold after an 
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introductory course, the students’ opportunity to learn the content, and an analysis of 

data gathered by the different assessments. 

Introduction and Methodology 

 
The original intent of the study was to write a description of the proficiency 

with group theory that students develop after an introductory semester of abstract 

algebra.  At the start of the course, the two instructors believed that they would spend 

approximately one-third to one-half of the semester on group theoretic content.  To 

that end, I proposed a study in which I would assess the student’s proficiency with 

group theoretic topics via two written instruments—a short mid-semester survey and 

a longer end-of-semester survey—and interviews with individual students.  Almost 

all of the questions on the proposed surveys probed the student’s proficiency with 

group theory—including questions about Lagrange’s Theorem, cyclic groups, cyclic 

subgroups, group homomorphisms, group isomorphisms, and quotient groups.  The 

assessments were fairly comprehensive with respect to introductory group theory.   

These assessments of knowledge of group theory were designed to permit a 

comparative description of the proficiency with group theory that students in the DTP 

and Investigative classes demonstrated.  Unfortunately, the DTP class spent only four 

class meetings on group theoretic content, while the investigative class spent 

approximately one month on group theory.  Thus the DTP students had very limited 

opportunity to learn specific group theoretic content, while the investigative students 

were exploring quotient structures and the characteristics necessary in the modulus to 

produce a quotient group.  This discrepancy of course content meant that it was 
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impossible to craft a group theory assessment that would fairly infer the impact of the 

instructional approach on students’ proficiency with those topics.  Students in the 

DTP and investigative sections not only experiences differing instructional 

approaches, they had different opportunities to learn. 

As a result the research goal was modified and a new set of assessments were 

developed which focused on ring theory and fundamental algebraic concepts such as 

identity, inverse, and unit.  Thus, this study has assessed students’ proficiency with 

concepts that underlie the study of both groups and rings and contributes information 

not provided by earlier research that had been limited to group theory. 

 Because there had been no prior published research regarding student 

understanding of ring theoretic content, there were no readily available written 

assessment instruments— other than an interview addressing students’ proficiency 

with homomorphism proofs (Weber, 2001).  As a result, this study’s assessments 

have had limited validation and refinement.  Nonetheless, the assessments still 

elicited student responses that permit meaningful description of the proficiencies that 

these students developed after an introductory semester of abstract algebra.   

 This study of student’s learning was also compromised by limited student 

participation in the written assessment and interview phase.  Only 5 of the 13 students 

in the DTP class and 7 of the 24 students in the investigative class agreed to complete 

the two written surveys of algebraic knowledge.  Only six of those students 

completed an individual interview—one from the DTP class and the other five from 

the investigative class.  This small sample size, the differences in content covered, 

and discrepancy in rate of interview participation made it inappropriate to craft a 
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comparative description of the proficiency that the DTP and Investigative students 

developed from their experience in a semester of abstract algebra.  As a result, the 

following reports of student performance should be interpreted as exploratory probes 

into student learning, not as comprehensive descriptions or comparative evaluations 

of effects from the two teaching approaches. 

I first attempted to analyze the data in terms of the students’ responses to the 

individual assessment items.  This reading allowed for a thorough description of the 

students’ ability to answer a single question but this type of analysis obscured the 

patterns of responses that illuminated students’ understandings of the important 

content strands.  While this first reading of the data generated some interesting 

patterns (notably about student response rates to individual items) the most important 

result of note was the lack of complete exams.  The type of analysis that would have 

resulted would have been a description of what the students could not do.  But rather 

than writing a study framed in the negative I wanted to focus on what the students 

showed that they can do.  As such, I changed the manner in which I was reading the 

data and instead of focusing on the responses to individual questions, I separated the 

responses into groups based upon content strands.  This yielded the structure and 

analysis that follows.  The analysis is based on content strands.  Within each strand 

the students’ responses are organized by question, yielding patterns in the responses 

of individual students within each of the strands as well as larger patterns in 

responses.  The analysis that follows initially presents an examination of the students’ 

proficiency with the concepts of identity, inverse and units that inform students’ 
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proficiency with both groups and rings, followed by a characterization of their 

understanding of polynomial and proof. 

Identities, Inverses, and Units 

The concepts of identity and inverse elements are among the most important 

in abstract algebra. A group is a set with an associative binary operation for which 

there is a unique identity element and every element has an inverse. Rings are 

algebraic structures with two binary operations, one of which satisfies the properties 

of a commutative group. Fields are special kinds of rings that have identity and 

inverse elements for the second operation as well.  

Understanding Identities, Inverses, and Units  

Whether an abstract algebra course begins with groups or with rings, the 

concepts of identity and inverse are almost certainly introduced early. The first 

theorems and proofs almost always involve use of those ideas, and they are used 

throughout the developments that follow. There are some proficiencies in use of those 

concepts and factual knowledge about the concepts common to every abstract algebra 

course. 

Identity Element  

In a set S with binary operation * an element e is called an identity element for 

the algebraic structure (S, *) if and only if e*x = x*e = x for any x in S.  Successful 

students in an abstract algebra course need to be able to apply this definition to 

recognize identity elements in specific examples of algebraic structures. They need to 
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use the definition of identity element in proofs of properties for specific examples and 

for general classes of algebraic structures.   

Inverse Elements 

In an algebraic structure (S, *) with identity element e, two elements a 

and b are said to be inverses of each other if and only if a*b = b*a = e. If we know 

only that a*b = e then a is called a left inverse of b and b is called a right inverse of 

a. Successful students in an abstract algebra course need to be able to apply the 

definitions to see which elements of an algebraic structure have inverses and to use 

the connection between inverse and identity elements in proving properties of specific 

or general algebraic structures.   

Units 

In an algebraic structure (S, *) with identity element e, whenever a*b = e, we 

say that a and b are units. The concept of unit is, in some sense, a bridge between the 

notions of identity and inverse elements.  It is of particular interest when only some 

pairs of elements in a system can be combined to produce the identity.  Students in an 

abstract algebra course that deals with two operation systems such as rings need to be 

able to identify units and to use the concept of unit in analyzing structure of an 

algebraic system because, it is an important aspect of understanding the mathematical 

systems and it is a good habit to ask, “What has an inverse?” 

Opportunities to Learn  

Although I was not present in the classes when the concepts of identity, 

inverse, and unit were introduced, subsequent observations made it clear that those 

concepts were presented and used often in both classes. Students were asked to 
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describe the identity elements in particular rings, to demonstrate that inverses exist in 

particular structures like extension fields, and to use the concepts of identity and 

inverse in proofs of group and ring theorems. In work with Cayley tables for groups, 

students were frequently asked to determine identity and inverse elements and to 

describe the order of invertible elements.  Lastly, the students in the investigative 

class had a refrain “Inverses for all” they used to describe fields.  These tasks required 

the students to manage concepts related to both identity and inverses.   

Assessment of Student Understanding  

The principal measure of student learning involving the concepts of identity, 

inverse, and unit was five items on the end-of-semester assessment.  There were two 

principal types of items.  The first assessed the student’s ability to make use of 

identity and inverse in proof (items 1 and 3).  The second type of item asked the 

students to determine the identity or elements with inverses in a given structure (items 

2 and 3).  Items 4 and 5 expected students to generalize their work from item 3.  

Because only three students successfully responded to item 3, this analysis does not 

address items 4 and 5.  

Identity Elements 

The students were able to state and use the definition of identity elements in 

appropriate ways.  Almost all of the students, 10 of 12, did cite the identity as a 

member of the set (U, •) on Item 1a.  For example, Lynn wrote, “Since S contains an 

identity e, and e*e=e, e is a unit and U is non-empty and has an identity.”  This is a 

type of proof and a specific statement that the students had all practiced a number of 

times.  Because of that, it is not surprising that the students were proficient at such 



 

 159 
 

work because throughout each of the courses, whenever students were expected to 

show that a set was non-empty, they would show that the identity is an element of the 

set.   

While students displayed skill in determining and verifying identity elements 

for familiar sets, the students had great difficulty in determining the identity in an 

unfamiliar setting as evidenced by their work on Item 3.  But, this difficulty was 

probably caused by an interaction of the context (functions of a discrete variable) and 

the students’ difficulty with notation rather than an actual lack of ability to determine 

an identity element.   

Elements with Inverses, Also Called Units 

Similarly, the students were able to identify elements with inverses in a 

reasonably familiar context but struggled to do so in an unfamiliar context.  The 

students were generally able to make use of the formal definition of inverse elements 

when writing a proof.  However, in their proofs, many of the students had difficulty 

giving a complete proof of the closure of the set U under the operation.  It seems 

likely that this difficulty was more derived from problematic proof proficiencies 

rather than problems with the content.  Students stated that the product of units is a 

unit but did not supply a proof for this statement.   

The students wrote proofs which, when the misstatements were taken as true, 

were logically complete in terms of the structure, but many students made factual 

misstatements which indicated that they did not make use of basic facts about 

inverses to monitor their proof-production.  They also struggled to interpret or 
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manage the additional cognitive complexity which came with adding quantification to 

the concept of inverse.   

Identification of elements with inverses 

Item 2 and Item 3 both asked the students to identify elements of a structure 

that have inverses, that is, to identify the units.  Item 2 asked the students to 

determine all of the units of the Gaussian integers and to demonstrate that their list is 

complete.  The students should have been reasonably familiar with the Gaussian 

Integers (or at least the complex numbers) through their work on ring theory in which 

they studied the complex numbers as a field and demonstrated and made use of the 

Fundamental Theorem of Algebra.  Item 3 asked the students to determine all of the 

units in a less-familiar structure, specifically, the set of all functions that map a set of 

three elements back to itself.  While the students did work with functions of a finite 

variable during their study of ring homomorphisms, the use of functions as a context 

was unfamiliar and challenging with notation that seemed to deter many of the 

students. 

In their work on Item 2, students attempted one of two different paths.  There 

was a group of 8 students who simply listed the units that they knew from their work 

with the complex numbers, 1, -1, i¸ and –i.  (Three of the students listed incorrect 

units and one of the students gave an incomplete list.).  These students established 

that each of their listed elements had an inverse by demonstration; two students 

‘showed’ incorrect elements had ‘inverses’ in this manner.  The other group of 

students attempted to solve the item more analytically by writing two arbitrary 

Gaussian integers, multiplying them together and writing a pair of equations in four 
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variables, which they then attempted to manipulate such that the units are derived 

from the equations.  Only one of the students who attempted this path, James, was 

able to carry it far enough to be successful, the others all stopped in mid-process.  

But, these manipulations did not draw upon the content knowledge of inverse or 

identity and thus, his response is not treated here in detail. 

Five (out of twelve) students (James, Mark, Stephanie, Rebekah, Kenny) were 

able to list all of the correct units of the Gaussian integers.  All but one (Rebekah) of 

these five students attempted to show that their proposed elements are units.  One of 

these students, Stephanie, had complex arithmetic errors leading her to ‘demonstrate’ 

that three non-units were actually units.  Three of the students attempted to justify the 

completeness of their list but do not do so correctly.  Mark’s work is an example of 

this type of work.   

Since Gaussian integers have to be integers there are no fractions. i.e. 2’s 
inverse would be ½ and 2i’s inverse would be -1/2i.  1 and -1 are there [sic] 
own inverse.  i and –i  are each others [sic] inverse. 
 

All of these students knew the definition of unit and recognized what it meant in the 

context of the Gaussian integers.  Except for Stephanie, they listed all of the correct 

units and no others.   

Moreover, two of these five students (Kenny and Mark) attempted to justify 

the completeness of their lists by relying on reasonable premises, albeit with incorrect 

language.  For example, Mark stated that fractions are not allowed and that for any 

other elements to have an inverse, a fraction would be necessary.  But, Mark did 

develop this good idea into an actual formal justification.  Kenny stated that all units 

in C are on the unit circle, which is incorrect.  Yet again, this is a reasonable 
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assumption given that these are the only elements that have a vector length of 1.  If 

Kenny had stated that the units in the Gaussian integers must be on the unit circle, he 

would have made a correct, but unsupported, assertion.  In short, both of these 

students seem to have the fundamental proficiencies with inverse and identity 

necessary to do this problem but were lacking the necessary proof skills. 

 Two of the students, Steven and Aurora, derived a list of candidate units and 

then demonstrated that their candidates are units, sometimes employing faulty 

arithmetic.  One of the students, Steven, listed a correct unit.  Initially, he wrote the 

expected formal statement for multiplying units to arrive at the identity.  From that 

statement, he seems to intuit that the only unit is the identity element. 

We already have the identity of G, which is 1+0i= G1 .   
Thus, we need to find all elements that have an inverse in G.   
Also, because G is a squadron we know that there is at least one inverse.   
For a, b, c, d∈Z we have (a+bi)(c+di)=1+0i 
(ac-bd)+(ad+bc)i = 1+0i 
The units are therefore such that b, d = 0 and a, c = 1.   
(1⋅1-0⋅0)+(1⋅0+1⋅0)i = 1+0i.   
 

It seems that Steven knows what a unit is, recognizes that he has at least 1 unit, and 

then tries to decide what the other units must be.  His unwarranted assumption in this 

case is that b,d=0 and a,c = 1.  He does offer proof that 1 is a unit.  The only 

possibility that he recognizes for (ac-bd) = 1 is that a=c=1.  He proved in both group 

and ring theory that -1*-1=1.  As such, he has simply failed to draw upon his existing 

knowledge.  He does not even seem to recognize that -1 would be a unit.  It may be 

that the unfamiliar context has caused him difficulty, and that he is unable to make 

use of long-held knowledge.  His shortened list seems at least partially derived from 

not thinking more creatively about arithmetic.   
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 The other student, Aurora, offered a general candidate for a unit and then 

showed, via faulty arithmetic, that her candidate is a unit.   

The units in G are [boxed] 
Zaaia ∈∀+−−± ,)1(  

22)1()1()1())1()()1(( aiaiaaiaaaiaaia +−−−−−+−−−=+−−−+−−+
11)1( =−+=−−−− aaaa  

 
Why or how she derived this element as a ‘unit’ is really quite puzzling.  It seems 

unlikely that she spontaneously wrote it down.  It seems that she tried experimenting 

with ai+±1  but found that she had an extra a term and wanted some way to 

eliminate it (she included some scratch work, but had crossed it out).  As such, she 

thought that she had determined how to make it go away, and she did not recall that 

she needed to square terms.  She provided incorrect justification that her candidates 

are all units as her approach relied on faulty distribution, but, in terms of this strand, 

her mistaken multiplication was not as relevant.  She does not make any argument to 

explain why her list is complete, and she likely does not recognize a need to do so. 

 These two students at least made an attempt to generate a list of units, and in 

fact, did offer some result.  There was one other student who also listed units.  

Nathan’s work: 

Since n,m∈Z, the units of G are 1+i, -1+i, 1-i, and -1-i.  I’m not quite sure 
how to demonstrate that they are all the units. 
 

Nathan recognized that he was being asked to list the units of G and understood that 

he should demonstrate the completeness of his list.  His assertion that he is “not quite 

sure how to demonstrate that they are all the units” is problematic.  It seems to 

include two discrete and related statements: He is unsure how to a) demonstrate that 

his listed elements are units, and b) demonstrate that there are no other units.  This 
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second task, demonstrating that his list is complete, is fairly complex and loads at 

least as heavily on proof proficiency as it does content knowledge regarding inverses.  

Yet, he does not demonstrate that his proposed elements are, in fact, units and he 

implies that he does not know how to do so.  Yet, in Item 1a, he wrote, “Let a, b be 

units in U.  Then by definition, there exists some u∈U such that au=1…”  This 

indicates that he is able to write the formal definition of unit.  As such, he should be 

able to apply this definition to a specific context.  If he had attempted to demonstrate 

that his candidates are units, he may have discovered that none of the elements on this 

list are actually units in the Gaussian integers.  Fundamentally, this response is 

troubling both in the candidates that Nathan lists and in his implications regarding his 

ability to provide justification.  This response suggests that Nathan’s proficiency with 

the concepts of inverse and identity is low, perhaps limited to writing the formal 

statement in appropriate contexts and deriving quite basic conclusions from that 

statement.   

 Lastly, four students in the class (Johnny, Ned, Lynn and Jeff) were unable to 

make any real progress on the item.  These students did indicate that they are able to 

express the form of inverse elements in a new context even if they are unable to 

determine what the units are.  As such, they do demonstrate some level of 

proficiency, just not the expected level.  All of these students know the definition of 

unit and recognize what that means in the Gaussian integers.  None of them make use 

of the idea that G has more constraints on the elements than the students made use of.  

All of the students but Ned set up the usual equations and completed some 

derivations, but they did not know how to proceed from there.  Ned’s work included 
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odd use of notation, which in this case seems to indicate a lack of understanding of 

the problem situation.  He wrote that o,p∈G, which is incorrect.  Specifically, o,p∈Z 

and as a pair form an element of G.   

Item 3 required the students to list all of the elements of a squadron and state 

which are units.  As described in the analysis of symbolic fluency, it seems that this 

item had a high barrier for entry related to the symbolic notation used, but three 

students (Kenny, Lynn and Jeff) all gave complete and correct responses, and three 

additional students (Johnny, Mark and James) gave the correct list of elements but did 

not correctly identify the units.  Thus, there is some small amount of information to 

be gleaned regarding the students’ understanding of unit and identity from their 

responses to this item.   

 Kenny, Lynn and Jeff clearly recognized that, in the context of functions from 

a finite set to itself, the only functions that have inverses are the permutations.  They 

each gave a correct list of functions and found some means of indicating the 

permutations.  For example, Kenny wrote, “This function is a permutation, and so is a 

bijective function.  Therefore all elements of S must be mapped to all elements of S, 

but in any order.”  Similarly, Lynn, “The only elements of sS  with inverses are the 

bijective elements, i.e., those belonging to S(S).” 

Three additional students from the investigative  class were able to give the 

correct list of triples, but did not give a correct list of units.  One of the students, 

Johnny, identified two candidates and the other two students did not list any.  Johnny 

listed all of the correct functions and then stated: 

The elements of SS  that have inverses are the elements where SSf →:  
generate the entire set of S.  (The range of f=S).   



 

 166 
 

 
He later crossed out this characterization, wrote “this is wrong” next to it and added:   

















cab
abc

bca
abc

,  <- These are the elements with inverses. 

He never stated exactly why he changed his list of units.  He did, initially, seem to 

identify the six elements with inverses as the permutations on three elements; he had 

written 1, 2, and 3 in pencil below a, b, and c respectively on a number of his listed 

elements.  Yet, this made his response even more difficult to analyze.  He has the 

appropriate level of proficiency to answer the question correctly and even makes the 

appropriate connections to his prior content knowledge, but then doubts himself and 

changed his response.   

The next two students (Mark and James) did not offer any unit-candidates.  

Instead, they both stated that they were unable to determine which elements have 

inverses.  Mark wrote, “Depending on what the identity is, the function ° is, and the 

nature of the group determines who has inverses.”  James’s statement regarding his 

inability to determine which elements have inverses, “I’m not sure what the identity is 

here, but if I did, I’m sure I could determine the inverses.” 

Both Mark and James believed that if he had known what the identity was, 

they would have been able to identify the elements with inverses.  In this case, other 

evidence suggests that the students’ assertions of proficiency, if given the identity, are 

somewhat questionable.  If they were proficient with functions, they should have 

recognized that the function 







abc
abc

 is the identity, as each element is mapped to 

itself.  In effect, I told them which function was the identity.  I stated:   
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That is, the identity is the function which returns the input.  The only function that 

does this is that listed above.  What this suggests is that the students had great 

difficulty in making sense of the function notation used, and were unable to use this 

to state the identity.   

All of the remaining students (Stephanie, Ned, Rebekah, Aurora, Steven, 

Nathan) did not sufficiently understand the context of the problem, and their work 

offered very little insight into their proficiency with identities, inverses, or units.  In 

terms of what these students have demonstrated, I believe that Nathan best 

summarized the situation that these students find themselves in.  He wrote, “I don’t 

quite understand this question.  I’m not sure how to find the sets.”   

Summary of Student Identification of Units 

On the end-of-course assessment 11 of the students were able to list elements 

in a set that they believed had an inverse either on Item 2, Item 3, or both (all but 

Ned).  Moreover, Ned did make some progress on Item 2 and wrote a pair of 

equations indicating that he recognized the form of a unit in the Gaussian integers.  

Because of this level of success, it is reasonable to argue that the students in the study 

had some ability to determine which elements have inverses in a given structure.  In 

general, they were more successful with the Gaussian integers, a somewhat familiar 

structure with relatively little symbolic notation, than they were at working with 

functions, a relatively abstract and unknown structure with a large amount of 

symbolic notation.   
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Use of Inverses in Proof 

The students demonstrated a number of levels of proficiencies on the proof 

task of Item 1a, but there were definite themes that emerged.  The students generally 

fell into two groups.  The first group recognized that it was necessary to prove that 

the product of two units is a unit; the other group asserted it without proof.  All of the 

students were able to state and use the definition of unit in a formal proof.   

There are four different components of this item wherein the students needed 

to make use of the definitions of identity and inverse.  The students were asked to 

demonstrate that a structure is a group.  This required the students to show that the 

structure is closed, has an identity, that each element has an inverse and that the 

elements are associative.  This last requirement, associativity, has no relation to the 

fact that the elements of the structure are units.  As such, the students’ work on that 

section of the task is not presented.   

 All of the students, except one in each class, stated that the identity of the 

squadron is also the identity of the set of units.  Two of the students did not make any 

statement about the identity—it is very likely that each of the students recognized the 

essential fact.  All of the students were able to state that if an element is a unit, then 

by definition, it has an inverse.  Lynn and Jeff from the traditional class and James 

from the modern class all gave responses that indicated that they had all the 

appropriate proficiencies.  Lynn’s work is shown below. 

Since S contains an identity e, and e*e=e, e is a unit and U is non-empty and 
has an identity. 
Suppose a,b∈U.  Then a,b are units, so ∃ Sba ∈−− 11,  st ebbeaa == −− 11 , .  
So, Uba ∈−− 11, .  Then eaaaeaaabbabab ==== −−−−−− 111111 ))(( .  So, 
ab∈U, and U is closed. 
Since (S,•) is associative, U inherits this property. 
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For a∈U, ∃ Sa ∈−1 st eaa =−1 .  Then 1−a  is a unit and 1−a  ∈U, so every 
element of U has an inverse.   
Thus, (U,•) is a group. 
 

This response indicates that Lynn is proficient with the definition of identity, inverse 

and unit and can make use of each in a proof as appropriate.  That is, Lynn, as well as 

James and Jeff, demonstrated all of the proficiencies required to complete this item.  

Steven did not submit a correct response, but the manner in which he used the 

definition of unit also placed him within this group of students.  Steven also made a 

mistake in this proof, but his mistake was based upon faulty proof proficiency rather 

than content-related difficulties.  That is, Steven incorrectly chose his elements x and 

y in (U, •) such that xy=1.  He then claimed that, since 1∈U, the set satisfies the 

closure requirement.  That is, he set a condition on x and y rather than choosing 

arbitrary elements; and as such, his argument was incorrect.   

While other students were able to make use of the definitions of identity and 

inverse in appropriate ways, they also included much more questionable assertions in 

their responses.  The group with these problematic responses was larger than the 

group with correct responses.  This group principally had difficulty in demonstrating 

closure.  For example, both Ned and Kenny stated that by definition of the set it is 

closed.  Consider Ned’s work:  

Since U is the set of units in S and (S,•) is a squadron, then we know by 
definition that it satisfies closure for multiplication, associativity and identity.  
Also, since U is the set of units in S, then by def or a unit u∈U has an inverse.  
Thus, U satisfies the four axioms needed to be a group. 
 

While it is true that closure will derive almost directly from the definition of a unit, 

there is nothing inherent in either the definition of the set of units or in the definition 

of unit that would guarantee that the set of units would be closed.  The students seem 
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to have read too much into the problem.  Other students offered incorrect responses 

relating to closure that were less instructive.  Johnny, Stephanie  and Rebekah also 

asserted that the set is closed without any sort of rationale, although it seems likely 

that they made the same assumption as Kenny and Ned.   

Nathan’s work also contained problematic statements about closure, but, it 

also included statements indicating he did not have all the basic facts about units.  

Suppose that (S, •) is a squadron.  Let U be the set of Units in S.   
Prove that (U, •) is a group.   
Let a,b be units in U.  Then by definition, there exists some u∈U such that 
au=1=bu.  Then ab=aubu=u(ab)=1.  So, U is closed.  Now observe that 
multiplication in S is associative, so U is associative.  The identity of S is a 
unit, so U has an identity element.  Finally, U has inverses by the definition of 
unit.  Therefore U is a group.  
 

Nathan’s response is problematic for multiple reasons.  First, Nathan uses 

idiosyncratic language in his work; he wrote, “U has inverses by the definition of a 

unit.”  It seems likely that he meant that the elements of U all have inverses, but this 

is unclear from his work. 

 He exhibits some interesting understandings of inverse as he allowed both a 

and b to have the same inverse.  He does not use the fact that inverses must be unique 

to actively monitor his proof production.  There are two possible explanations for his 

mistake.  He may not know that inverses must be unique.  Second, he may not able to 

monitor his proof production or to check his work.  

 Nathan also used commutivity in an inappropriate setting and in a non-

standard way when he wrote ab=aubu=u(ab)=1.  This statement makes use of the 

commutative property of the operation even though this has not been established.  

Further with, “aubu=u(ab)=1” he has claimed that u is the inverse of a and that u is 
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the inverse of b, but then he claimed that u is the inverse of the product ab.  Again, 

Nathan did not monitor his proof production: If u is the inverse of a, then 2u  is the 

inverse of 2a  (or in this case ab).  While Nathan wrote the definition of unit in an 

appropriate context, he only evidenced a rudimentary, almost rote, proficiency with 

inverses and units.  He could not reliably use what should have been basic definitions 

and modes of thought about units.   

Both Aurora and Mark wrote responses that were somewhat problematic to 

analyze.  Consider Aurora’s work: 

By definition we know a squadron is a group so ∃ a,b∈G st ab∈G, and also a 
and b have an inverse, namely 1−a  and 1−b  st eaa =−1  and ebb =−1  so 

1−a and 1−b are units, and 1−a , 1−b ∈G, but also to H.  If 1−a , 1−b ∈G, 1−a 1−b  
must belong to G.  Since ab∈G and 1−a 1−b ∈G  (ab)( 1−a 1−b )= 1−aa 1−bb =e, 
so 1−a 1−b must be a unit and 1−a 1−b ∈H.  For 1−a ∈H, aa 1− =e, so a is also a 
unit and belongs to H.  Therefore, H is a subgroup of G and is a group. 
 
This response begins with a fundamental error that seems to derive from a 

misunderstanding of the context of the problem, but Aurora’s faulty assumptions 

allowed her insight into the problem.  She did give a correct statement of the 

definition of an inverse, but she never stated or made reference to the definition of the 

inverse.  This response indicates that Aurora was fundamentally confused in the 

context and calls into question her understanding of groups.  As such her response 

does not allow much insight regarding her ability to use the definitions of inverse and 

identity in creating a proof. In addition she did not properly write the inverse of an 

arbitrary product of units; instead she assumes commutivity.  She should have known 

that the inverse of a general product (ab) is ( 11 −− ab ) or 1)( −ab , but she either did not 

know to make use of this fact here or she did not know the fact.   
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  Similarly, the work of Mark is difficult to interpret given the limited evidence.  

It is shown below: 

Proof:  Let x, y, z be units in the squadron S. 
S1:  x*y will be in S and U because the result will be x, y or z (let z be an 
arbitrary unit).  If x or y is the identity, then the result will be the opposite.  If 
neither is the identity, x or y (being a unit) will “divide” z because they 
“divide” every element. 
S2: (x*y)*z=x*(y*z) 
Following the same steps as above, A unit “divides” every element and x, y, 
and z are all units. 
S3:  The identity is always a unit.  Therefore it is included in U.  Thus, U is a 
group. 
 

Mark’s attempts at closure and associativity suggest a fundamentally unique notion of 

unit.  While he indicated via quotation marks that he realized that division is not one 

of the available operations, he seems to lack any other language to approach the 

problem.  More interesting is his assertion that xy will be equal to some arbitrary unit 

z.  He suggests this must be true because a unit “divides” all other elements.  I believe 

what he was attempting to argue is that ‘the multiplicative inverse of x times z is an 

element in the squadron.’  Yet, this argument is either conceptually incomplete or 

circular.  He may mean the ‘in the squadron’ idea, but then his ‘proof’ fails to make 

the critical argument that the product of xy is a unit.  Or, his argument is that 

Uzx ∈−1 and this assumes what he wants to prove. 

Item 1b required students to make use of the concept and notation for inverse 

elements in proof.  This item also added some cognitive complexity by asking the 

students to consider right inverses and left inverses, that is inverses with 

quantification.  Research shows that quantification is difficult for students to 

understand and manage (Dubinsky, Elterman & Gong, 1988; Bills & Tall, 1998).  

Because of that, this task was more demanding.  In terms of the students’ actual work, 
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there were only a few completely correct responses.  Most of the students made some 

sort of factual misstatement that may have been motivated by difficulty understanding 

the quantification.   

While some students displayed proficiencies, the overwhelming majority of 

the students made similar errors indicating a substantially incomplete understanding 

of the problem situation.  Two of the traditional students submitted work that was 

fundamentally complete.  All of the other students submitted work in which they 

assumed that an element with a left inverse and a right inverse must be a unit.   

Two students, Lynn and Jeff, submitted responses that were essentially 

correct.  Moreover, both of them correctly made use of the left inverse and right 

inverse as appropriate.  Lynn’s work is shown below. 

Suppose x∈L∧R.  Then yx=e ∃ y∈S and xz=e ∃ z∈S.  So, yx=e.  If we 
multiply on the right by z we get (yx)z=ez=z.  Since our operation is 
associative (yx)z=y(xz)=ye=y, and thus, y=z.  So, 1−= xy  and x is a unit.  Thus, 
L∧R⊆U.  Suppose x∈U. Then ∃ 1−x  st exxxx == −− 11 , so x∈L∧R.  Then 
U⊆L∧R.  Thus, U=L∧R. 
 

Most importantly to her argument, she recognized that asserting that x is a unit 

actually required demonstrating that a left inverse is a right inverse.   

The next three students (Kenny, Ned, Stephanie) wrote the correct pair of 

equations (e.g., “yx=e and xz=e”) and from this concluded that x has an inverse, 

leaving an unproven assertion.  Consider Ned’s work: 

Let x∈L have a left inverse of y if yx=e.  Let x∈R have a right inverse of z if 
xz=e.  Let’s say L ∩ R, so, yz=e ∩ xz=e, since yx=e and xz=e, then we and 
conclude that y=z, so we’ll call it t and label it so, y=z=t.  Thus, t∈U and 
tx=xt=e, thus t is the inverse of x and t is a unit and ∴ in U.   
 

This implies an insufficient strategy for proof rather than specific content knowledge.  

They simply did not know how to proceed, although they knew what they needed to 
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demonstrate.  The only thing that these students were missing was the application of 

one of the inverses to both sides of their equation.  This has implications for proof 

proficiency because it loads more heavily on students’ cognitive actions in the writing 

of a proof than any particular aspect of content knowledge. 

 Five students (Rebekah, James, Johnny, Steven, Aurora) all assumed that if 

an element x has both a left inverse and a right inverse, then those are the same 

element.  Of the students in the investigative class, three out of seven asserted this.  

Only one of the DTP students did so.  Rebekah’ formulation is the most succinct: 

L ∩ R gives us all of the elements with both left and right inverses.  
L ∩ R={x|nx=xn=e} where e is the identity.  Therefore, L∩ R=U.  
 

These students all failed to recognize that an element in L ∩ R, while having both a 

left and a right inverse, does not come with a guarantee that those two elements are 

necessarily the same.  It seems most likely that these students are having difficulty 

with the quantification of left and right inverses.  Yet, consider the definition of left 

inverse and right inverse that the students were given as part of the assessment: 

 

Had the students simply written down the definitions of left inverse and right 

inverse that they were given, they would have exhibited a more correct proof.  

Instead, it is worth asking why these students did this.  The students had to actually 

make an effort to write a new symbol string that includes this error.  In effect, that 

required the students to make more cognitive effort.  In considering why they would 

do this, I believe they did not see an immediate way to proceed from the more correct 

formulation, “yx=e=xz,” and they attempted to locate a cognitive short-cut.  That is, it 
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has been shown that students often attempt to minimize the abstraction of a problem 

(Hazzan, 1999) via a number of means, and students expect their faculty to make 

problems easier for them (Fukawa-Connelly, 2005) in a number of ways.  This seems 

to be some combination of the two, perhaps a learned behavior.   

It is possible that the students were actively looking for a hint in the problem 

that would make it less challenging.  They have likely developed a number of 

strategies that they use to reduce cognitive difficulty.  It appears that, in this case, the 

students assumed that because of the language of the problem, making use of 

elements that have both a left inverse and a right inverse implied that the two 

elements must be the same.  This would make sense if you were to assume that the 

problem must contain a hint to make it easier.  The wording suggested that the 

problem is about inverses of a sort, and the requirement that an element have a left  

and right inverse could be taken as assurance that those elements will be the same.  

Now, it is important to note that these two elements are, in fact, the same, but it 

requires some proof to demonstrate this fact.  The students relied on the suggestive 

power of language and symbols to derive this conclusion without proof.   

Summary of Student Use of Identity and Inverse in Proof 

All of the students made use of the definition of unit and identity in the 

context of this problem.  Students in each class demonstrated that they were able to 

write “ eaa =−1 ” or some other iteration.  As such, the students could write a formal 

statement that an arbitrary element of a structure is a unit.   Moreover, they were able 

to recognize an appropriate context for doing so (although the problem should be 

considered fairly standard).   
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 In terms of more advanced levels of proficiency, such as using facts to 

monitor proof production, the students were more varied in their levels of proficiency.  

All of the students in the traditional class attempted to prove that the product of 

arbitrary units is a unit.  That is, they attempted to show closure.  Three of the 

students made fundamental errors that have been discussed above.  Four students 

simply asserted that (U, •) is closed without explanation.  Two more asserted that (U, 

•) is closed by definition of a unit.  While it is likely that the four who asserted this 

without explanation have misconceptions, the two students who asserted closure by 

definition are not distinguishing between properties that were proven from the 

definition and the definition itself.  That is, they seem to not be using the formal 

definition in their monitoring of their proof production. 

 Lastly, there were multiple instances of students not using basic facts about 

inverses and units in their monitoring of proof production.  Most of the students had 

not developed proficiency with units, inverses and identity to the extent that they 

were able to ensure that all of their statements in a proof were warranted.   

 There were three students who offered complete and correct results.  Lynn is, 

unusual as she is a sophomore in abstract algebra, indicative of advanced 

mathematical proficiency and above average ability.  While these students evidenced 

strong knowledge there is no indication that the majority of the students have that 

proficiency.  

Summary of Demonstrated Proficiency with Identity, Inverse, and Unit  

The students demonstrated mixed levels of proficiency with the concepts of 

identity, inverses, and units.  They generally seem to have mastered the notation 
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mathematicians use to denote an identity, an inverse of a given element, and a unit.  

Moreover, most of the students were able to make appropriate use of that notation in 

writing the proofs for Item 1.  All of the students but one, Nathan, were able to write 

the formal definition of a unit in context or to list pairs of elements that are inverses.   

As such, it is reasonable to claim that the students have a flexible enough proficiency 

with the formal definition to be able to apply it in a reasonably familiar setting.   

The students struggled to manage the notation when an additional quantifier 

(left or right) was added to the notion of an inverse.  Previous research indicates that 

students have difficulty with quantification generally (Bills & Tall, 1998), and 

because of these difficulties it was expected that the students in the current study 

would display a wider range of proficiencies on an item that included unusual 

quantifiers.  But, the student’s work on Item 1b indicated that many of the students 

immediately concluded that any element with both a left inverse and right inverse 

must have an inverse.  Approximately half of the students simply made this assertion 

without proof.  While this may be a valid conclusion, in the context of this assessment 

it required proof.  It seems likely that this difficulty was more derived from 

problematic proof proficiencies rather than problems with the content.   

The students offered proofs which, when the misstatements were taken as 

true, were logically complete in terms of the structure, but many students made 

factual misstatements which indicated that they were or could not make use of basic 

facts about inverses to monitor their proof production.  They also struggled to 

interpret or manage the additional cognitive complexity which came with adding 

quantification to the concept of inverse.   
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In terms of their ability to identify the identity element and units in different 

structures, the students were more capable in more familiar structures and less so in 

less familiar structures.  Item 2 and Item 3 required students to identify units.  They 

should also have demonstrated that their proposed elements were units and then 

shown that their list was complete.   

Item 2 required students to apply the formal definition of a unit in the context 

of multiplication in the Gaussian integers.  Three students were able to give a 

complete list of units and to give either a justification or to state that all units in the 

Gaussian integers must be on the unit circle.  One other student was able to give a 

correct list of units but she did not offer any justification of the completeness of her 

list.   

 There were three students who included incorrect candidates on their unit list 

but, due to lack of proficiency with complex arithmetic, were unable to rule them out.  

That is, these students seemed to have the correct understanding of unit, had the 

ability to apply it in context, and knew how to demonstrate that their candidates were 

units, but they lacked proficiency with arithmetic.  Steven seemed to exhibit a similar 

tendency.  Although, instead of listing incorrect unit candidates, he failed to list 

obvious candidates, simply stating that the only unit is the identity.  Lastly, there were 

four students who made almost no progress on the problem other than writing the 

formal definition of unit in the context of multiplication in the Gaussian integers.  

These students did not even list the obvious candidate of the identity.   

 In short, it appears that all of the students could apply the definition of unit in 

a reasonably familiar setting, and that most could identify unit candidates and then 
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use their applied definition to demonstrate the appropriateness of candidate choices.  

One of the students seemed unable to check his candidates; he may not have known 

how to apply the definition of unit in this context.   

 Two of the strongest students in the study, Lynn and Jeff, did not list any 

candidates.  The other two students who did not list candidates were mid-level 

students.  It seems that the strongest students did not want to hazard a guess without 

analytic support, whereas the other students were more willing to offer partial 

answers or to make informed guesses.  This is somewhat aligned with Jaffe and 

Quinn’s (1993) exploratory mathematics.   

 The students were less successful at determining either the identity element or 

elements with inverses in an unfamiliar setting.  They were not very successful at 

identifying the identity element for the set of functions of a discrete variable in Item 

3.  In fact, only four of the students were able to do so.  But, it is likely that a 

significant portion of this difficulty was attributable to their difficulty making sense 

of the notation and the use of functions as the context of the problem.  There were 

only six students who were able to correctly list the elements of the set, meaning that 

half of the students had no opportunity to demonstrate their proficiency at 

determining either the identity or units in the set.  Of the six students who were able 

to list all of the elements in the set, four of them were able to identify all of the units 

(although Johnny later changed his mind and crossed out a number of his candidates).  

The other two students, Mark and James, claimed that they were unable to determine 

the identity of the set and because of that were unable to make more progress.   
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In summary, it seems that the context was more problematic than the students’ 

proficiency with identity and units, but there was not enough data to claim that the 

students had proficiency identifying the identity element and units in unfamiliar 

contexts.  As with all of the other content strands, the students demonstrated more 

proficiency with more familiar tasks and struggled when either the task or the context 

of the task was less familiar. 

Polynomials 

 Polynomials are a major object of study of abstract algebra, and the search for 

solutions and methods for solving to polynomial equations is a root of the discipline 

of abstract algebra (Kleiner, 1986).   

Understanding polynomials 

The definition of a polynomial  

In algebra, a polynomial is a mathematical expression involving a sum of 

powers of a variable (indeterminate) multiplied by coefficients.  In algebra we require 

that the coefficients all belong to the same ring.  Generally, we discuss expressions of 

the form 01
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Factors of polynomials 

A factor of a polynomial 
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−  is another polynomial (of 

degree less than n) Q(x) which can be multiplied by another polynomial R(x) such 

that P(x)=Q(x)R(x).  Just as with numbers, a factor divides the original polynomial 
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evenly.  We often require that all of the coefficients of the factors are elements of the 

same ring as the coefficients of the polynomial.  Linear factors of polynomials are 

often considered the most important, they are polynomials of the form 

01)( axaxQ +=  which give rise to roots of the polynomial.  A root is a value of x that 

the polynomial maps to zero, that is .0)( =xP    

Idealized Student Proficiency with Polynomials 

Each of the observed course sections devoted a number of hours to the study 

of polynomial rings, polynomial equations, and constructing roots algebraically.  

Developing proficiency with polynomials is one of the major expected outcomes of 

an introductory course covering ring-theoretic topics.  Moreover, the students should 

be able to draw upon their previously developed proficiencies with the topic. By this 

point in their mathematical careers, students should be able to write polynomials with 

real coefficients, to factor and find roots of quadratics with real coefficients, and to 

write polynomials with given roots.  In their abstract algebra class, students should 

start thinking about polynomials from a structural perspective, as they consider the 

ring of coefficients, determine the ring where the polynomials are irreducible, 

reducible, and completely factorable, and practice factoring and determining roots.  

The students also learn how to construct a root of an irreducible polynomial 

algebraically via the creation of an extension field. That is, the students should 

develop the ability to: 

• recognize and write polynomials with coefficients from a specified ring.   
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• decide if a polynomial is reducible or irreducible in a given ring (which means 

that students must know what it means to be reducible and be able to 

distinguish this from having a root).   

• factor a polynomial with integer coefficients in the rational numbers, the real 

numbers, and the complex numbers.   

• algebraically construct a root of a polynomial irreducible in a given ring/field.   

• make and demonstrate the truth of conjectures about polynomials (with real 

number coefficients). 

Opportunities to Learn  

  In both sections, instruction addressed the definition of a polynomial and a 

polynomial ring, as well as what it means to have coefficients from a specific field.  

In both courses the students were responsible for demonstrating that a given 

polynomial is irreducible in a given ring, although it seems that most, or possibly all 

of the polynomials that the students examined were quadratics or cubics.  Students in 

both courses were taught and asked to use the rational root test.   

Additionally, both of the teachers demonstrated an algebraic construction of 

the square root of two.  Both teachers repeatedly stated that if F is a field, x is an 

indeterminate, and p(x) is an irreducible polynomial element of F[x], then 

))((
][

xp
xF is a field.  Students from both classes constructed a number of Cayley 

tables of extension fields created by this process; students in the investigative class 

constructed more of these tables.  While both instructors were careful to use both 

bracket notation for cosets and the expanded form )()()( xgxpxf +  during classes to 
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indicate that they were working in the quotient field, I observed that students never 

explicitly articulated either form. 

 The DTP class was asked to determine whether )2(
][

2 +x
xQ  is isomorphic to 

)3(
][

2 +x
xQ .  Because the students seemed to struggle with this, on March 22, Dr. T 

conducted a teaching episode on the question that lasted approximately 20 minutes.  

The students in that class were also asked to find all of the roots of the polynomial 

12 ++ xx in the field )1(
][

2
2

++ xx
xZ  for homework and they briefly discussed this 

problem in class.  

The students in the investigative class constructed the Cayley tables for 

)1(
][

2
2

++ xx
xZ during class.  This was done partly in groups and partly during a 

whole-class teaching episode in which Dr. Parker discussed how to determine which 

element in the field represented ][ 3x .  During the construction of these Cayley tables 

for the field )1(
][

2
2

++ xx
xZ  the students did not consider which of the elements of 

the field were roots of the polynomial 12 ++ xx .   

The students in the investigative class were repeatedly asked to state the form of 

elements in polynomial quotient rings and regularly articulated possible degrees and 

elements.   

In another instance the students in the investigative class were to consider 

what Dr. Parker called “two weakenings” of their hypotheses for the theorem that 

))((
][

xp
xF is a field; they were asked to construct the Cayley tables of two rings 
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))((
][6

xp
xZ  where p(x) is an irreducible polynomial in the ring Z6[x] and 

))1((
][

2
2

+x
xZ and “see what happens.”  In the following class meeting, the students 

worked in groups to construct the Cayley tables for the first ring, and they determined 

that the structure was a commutative ring with identity that had zero divisors.  Then 

in the next session the class had a discussion in which they agreed that if the 

polynomial is reducible then there will be zero divisors in the quotient structure.  

Later, the students in the investigative class also saw a demonstration and proof that 

all elements of the fields )2(
][

2 +x
xQ  and ))((

][
xp

xF  have inverses. 

Assessment of Student Understanding  

While I believe that students should learn how to identify a polynomial as an 

element of a given ring and to write a polynomial with coefficients from a specific 

ring, these skills were not directly assessed on my final exam.  Instead the exam 

contained items which assumed that the students were proficient at these skills and 

would make use of these skills in their work on the item.  Because of the limits of the 

design, allowing students to complete the exam while having access to their text and 

notes, such questions did not seem appropriate.   

The second set of questions on the final exam was designed to assess students’ 

proficiency with the polynomial content strand (see Appendix B).  In this section, 

students were asked: (1) to demonstrate that the domain in which a polynomial is 

factored leads to very different factorization possibilities and to show fluency at 

factoring in different domains; (2) to offer a conjecture and proof related to the 
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greatest degree of an irreducible polynomial with real coefficients; and (3) to 

construct roots of a polynomial via construction of an extension field.  The 

polynomial that they were asked to consider would likely be familiar to any advanced 

high school student.  Because the students were not as proficient as I assumed, the 

prompts that I wrote actually assessed a different set of proficiencies than I intended.  

Specifically, the proficiencies I actually assessed were: 

• Demonstrate fluency in writing polynomials with real and complex 

coefficients; 

• Demonstrate fluency in factoring polynomials in the rational numbers, 

real numbers, and complex numbers (including showing when a 

polynomial cannot be factored); 

• Demonstrate the ability to construct all of the roots of a polynomial by 

constructing the minimal extension field; and   

• Demonstrate an ability to make and prove conjectures about 

polynomials.   

Four weeks elapsed between the time the students studied polynomials and 

this exam.  During this time, students studied different topics and likely only 

completed one homework assignment about polynomials.  Upon reflection, it is not 

surprising that the students exhibited very low levels of proficiency with polynomials.   

Evidence of Student Proficiency 

 On the assessment, there were many students who made little or no progress 

on the three items assessing learning in the polynomial strand, suggesting that these 

items were significantly beyond their abilities.  Because of that, this exam does not 
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allow for much meaningful differentiation between the students’ abilities.  This 

should not be read as a critique of either the instruction or the students, but rather as a 

point for beginning a discussion about the nature of expectations for students and the 

structure of the introductory abstract algebra course.   

Demonstrate fluency in writing polynomials  

with real and complex coefficients 

On Item 3 the hint suggested that the students write a polynomial with two 

complex roots, a complex number z and its conjugate.  Of the 12 students in the 

study, only 7 gave a response which allowed analysis of their ability to write 

polynomials with specific characteristics.  Two of those students, Jeff and Lynn, 

showed that they were proficient at writing a polynomial with an arbitrary complex 

root.  One student, James, provided a response that suggested that he conceptually 

understood the requirements of the problem, but seemed to encounter difficulty in 

managing the necessary symbolic systems.  The other four students gave responses 

which suggested that they were not able to write a polynomial with an arbitrary 

complex root.  In general, it seems that the students were not able to write a 

polynomial with an arbitrary complex root, but at least four of them were able to 

write a quadratic polynomial with real coefficients which they correctly identified as 

irreducible over the real numbers. 

Six students submitted work that did not allow for interpretation with respect 

to this proficiency, and two students, Nathan and Rebekah, simply did not attempt the 

item.  The other four students, Steven, Stephanie, Kenny and Mark, submitted 

responses which provided little basis for discussing their proficiency writing 
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polynomials with either real or complex coefficients.  Steven claimed that “any 

polynomial of the form 1+αx  is irreducible in Q[x],” a response that failed to address 

the question.  Mark made no progress on the item, and Stephanie seemed to be trying 

to make sense of the term irreducible: “If p(x) has a root then it’s reducible and if p(x) 

had degree greater than 1 then it has no real roots, thus its [sic] irreducible.  If deg 

p(x)≤3 and p(x) has no roots in the field then p(x) is irreducible.” 

Three students demonstrated that they were able to write a polynomial with an 

arbitrary complex root; two of those students further showed that they were able to 

correctly expand the polynomial into one with real coefficients.  Here is a portion of 

Lynn’s response to Item 3 in which she demonstrated her proficiency with 

polynomials: 

By Gauss’ theorem there exists at least one root, say z =a+bi.  You provided 
us that iyaz −= is also a root of p(x).  So, in C[x],  

),())())((()( xqbiaxbiaxxp −−+−=  there is q(x)∈C[x], 
 )())()()(( 222 xqbaxbiaxbiax ++−−+−=  
 )())(2( 222 xqbaaxx ++−=  
  
James’s work suggests that he was able to write a polynomial with an 

arbitrary complex root, but had difficulty managing the notation associated with 

functions and complex numbers when used together.  He began by writing a 

polynomial with a variable of a but then claimed that this polynomial would divide 

another with a variable of x.  James: 

yixyix +⇒−  so )(|))(( xpyixayixa −−+− . 
222 yxyiayixyixaxayiaxa +−+++−−−  

)(|2 222 xpyxaxa ++−  
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His confusion seems to have resulted from the fact that the hint presented an arbitrary 

complex number as z =x+yi, but he was asked to consider a polynomial with a 

variable of x as well.  He successfully wrote a polynomial with a variable of a, but 

then seemed unsure how to relate the new polynomial that he had written to the 

requirements of the item.  In retrospect, the more standard notation of a+bi may have 

been preferable.  Some of the cognitive complexity that James, and perhaps others, 

encountered may have resulted from my use of less familiar notation. 

 One other student demonstrated that she could write a polynomial that she 

knew to be irreducible in R[x] but reducible in C[x].  Aurora wrote, “ 12 +x  is an 

irreducible polynomial p∈R[x].”  She then demonstrated that the polynomial is 

reducible in C[x]. 

 Ned and Johnny attempted to write an appropriate polynomial.  For example, 

consider Ned’s: 

Note the complex roots iyxz +=  and its conjugate iyxz −=  multiply 
together to get 22222))(( yxiyxiyxiyx +=−=−+  which will divide p∈R[x]. 
 

Both he and Johnny attempted to write a polynomial in R[x], but both used two 

variables, x and y, in their work.  This inclusion of a second variable raised serious 

concern that these students understood the context of the problem as polynomials.  

 In general the students did not display an ability to write a polynomial with an 

arbitrary complex root or an ability to write a polynomial that is irreducible over the 

real numbers, but factors over the complex numbers.  This lack of progress was 

surprising.   
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Fluency in factoring polynomials  

Item 1 asked students to factor a polynomial over the complex numbers and 

the real numbers and then to demonstrate that the polynomial is irreducible over the 

rational numbers.  In effect, this required the students to demonstrate two different 

proficiencies with factorization.  The first required them to demonstrate fluency in 

factoring over two different fields.  The second required them to write a proof 

demonstrating that a polynomial is irreducible and therefore does not factor.   

 The students were asked to factor x4 + 1 over the complex and real numbers.  

Of the 12 students in the study, only two gave a correct factorization in the complex 

numbers.  These two were also the only students who were able to give a factorization 

over the real numbers.  It should have been possible for a student to give a correct 

factorization over the real numbers without giving one over the complex numbers, 

because the factorization over the real numbers could have been done by making use 

of knowledge of polynomials from high school.  The students could have written two 

quadratic factors with an indeterminate for a coefficient (a here) and solved the 

resulting equation for a: 1)1)(1( 422 +=+−++ xaxxaxx . 

The other 10 student’s responses showed varying levels of proficiency with 

finding a factorization of a polynomial.  One student gave a linear factorization which 

demonstrated good fluency with polynomial skills but not complex numbers.  One 

student essentially gave a proof of the Fundamental Theorem of Algebra to claim that 

14 +x  must have four linear factors but seemed unable to actually give a factorization 

of the polynomial in either R[x] or C[x].  The rest of the students either did not give a 
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response or gave a response which suggested more conceptual problems than 

proficiencies with factorization or arithmetic in R[x] and C[x].  

Upon reflection, it is not surprising that the students had difficulty in finding a 

correct factorization because they did not have much practice factoring over the 

complex or real numbers.  Instead they primarily factored polynomials over the 

integers.   

The students who demonstrated the highest level of proficiency with factoring 

polynomials over the complex and real numbers were Lynn and Kenny.  Both of them 

wrote a complete factorization of p(x) in C[x] and multiplied pairs of linear terms to 

produce a pair of quadratic polynomials with real coefficients.   

On the first item, Lynn and Kenny each gave a complete factorization of p(x) 

in C[x] thus demonstrating their fluency with complex polynomials.  Jeff’s work was 

somewhat different.  Instead he argued analytically that all polynomials split in C[x] 

and that four unique linear factors must exist.  He did not show that p(x) is reducible 

in R[x].  Lynn’s work was as follows: 

For 1)( 4 += xxp ∈C[x], since C[x] is a field, we may have no more than 4 
roots of p(x).  Notice that the following four elements of C are roots of p(x): 

ia 2
1

2
1 += , ib 2

1
2

1 −= , ic 2
1

2
1 +−= , id 2

1
2

1 −−= .  

Thus, by the factor theorem, p(x)=(x-a)(x-b)(x-c)(x-d), four linear factors in 
C[x]. 
For 1)( 4 += xxp ∈R[x], 1)( 4 += xxp = )12)(12( 22 +++− xxxx .  Since 
these are irreducible in R[x], p(x) is the product of these. 
 

I believe that in the first line, Lynn meant C is a field and not C[x].  As part of her 

response, she cited a result that was shown in class, the factor theorem.  She made 

appropriate and correct use of the result in this context.  Lynn made an important 

statement that the other students with similar work did not, she argued that she had 
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exhibited all of the roots.  Secondly, Lynn exhibited a factorization of p(x) in R[x] 

that satisfies the problem.  VH’s work was similar. 

Aurora also gave a linear factorization, but instead of expressing each root in 

the form a+bi, she left her roots in the form i±  and wrote the polynomial as 

))()()((1)( 4 ixixixixxxp −−−+−+=+= .  With this factorization Aurora 

demonstrated that she was able to factor creatively, including factoring ix +2  as a 

difference of squares although in a highly unusual manner.  She was the only other 

student who demonstrated a high level of fluency with polynomial factorization.  

Aurora was not able to write a pair of quadratic factors of 1)( 4 += xxp  with real 

coefficients.  

Jeff’s work is also complete and correct.  He, in effect, crafted a proof of the 

Fundamental Theorem of Algebra from a collection of theorems that are given in his 

text and used his proof to argue that the polynomial splits in C[x].  Jeff demonstrated 

that he was capable of writing an analytic proof that p(x) must factor in C[x] but he 

did not actually demonstrate a factorization of p(x) in C[x], moreover his work on 

other parts of the exam indicated that he likely could not.  His proof is as follows:  

p(x) is a product of four first degree polynomials in C[x]: 
By Thm 4.13, p(x) is a product of irreducible polynomials in C[x].  By 
Corollary 4.26, each of these polynomials is of degree 1.  By thm 4.2, the 
number of these first degree polynomials is equal to the degree of p(x), and 
thus, p(x) is the product of four first degree polynomials in C[x]. 
 

Jeff seemed to have a very high level of proficiency with analytic reasoning about 

polynomials.  All of the hypotheses are met when he made use of a result and he used 

the results correctly.  In effect, he argued that C[x] is a unique factorization domain 

and that polynomials will factor completely by making use of some very powerful 
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results.  He then showed that these two facts are sufficient to demonstrate that p is the 

product of four first degree polynomials.  That is, he seemed to identify the theorem 

that he needed to prove, and he was then able to demonstrate a very marked ability to 

reason about the ring of polynomials with complex coefficients by building an 

analytic proof of that theorem.   

 The remainder of the students made a collection of errors.  Two made 

mistakes in complex arithmetic.  Many of the students seemed to search for 

polynomial factorizations by writing plausible factorizations and then multiplying 

them out.  Two students (Rebekah and Nathan) made no attempt at the item 

whatsoever. 

Two additional students, Steven and James, made a reasonable beginning on 

the item.  They each indicated that they were searching for roots of p(x) and 

recognized that, should they find those roots, they could construct an appropriate 

polynomial.  In James’s scratch work he wrote, “ ))((1 224 ixixx −+=+ .”  He then 

attempted to factor in a number of unsuccessful ways, until he seems to have realized 

that he needed to find the square root of the imaginary number. 

As his response James wrote:  “+/-√i = x.  But √i isn’t in C I don’t think.”  

The difference between James and Aurora was small based upon this set of evidence.  

Both recognized the correct form of the first factorization, but James did not continue 

and thus did not demonstrate the ability to think about polynomials with the same 

level of fluency as Aurora. 

James did offer a brief response to the prompt relating to real numbers.  He 

wrote, “-1 = 4x , x to an even power, where x∈R will always be ≥0, same applies to 
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Q.”  This response is fairly consistent with those offered by other students on this 

section.  James seems to be indicating that he believes that p cannot be factored over 

R[x] because it does not have any roots in R.  This implies that he does not fully 

understand the relationship between reducible, irreducible, and roots.   

 Two students, Ned and Stephanie, both gave the same incorrect proposed 

complex factorization.  Johnny wrote a few factorizations, expanded the products, and 

decided that none were giving the appropriate polynomial.  None of the students 

made any meaningful progress in demonstrating that p(x) is the product of two 

irreducible polynomials in R[x].  Both Ned and Stephanie  understood that they were 

asked to demonstrate that p(x) factors completely in C[x], and realized that exhibiting 

four linear factors would be a complete answer to the question.  Stephanie  showed in 

the first problem set that she did not have much proficiency with complex arithmetic, 

and her lack of fluency may mean that she did actually expand her factorization.  She 

gave no indication on her materials that she did so.  Similarly, Ned gave no indication 

on his materials that he has actually expanded his factorization.  He did not attempt 

the second item in the first set, thus, I have no means to evaluate his proficiency with 

complex arithmetic.  Ned’s work: 

Notice (x+1i)(x-1i)(x+1i)(x-1i)= 14 +x .  Thus, p is the product of four first 
degree polynomials from C[x]. 

 

Notice 
)1(
11

2

42

++−
+++

xRxx
xxx .   

 
He gave no indication why he chose to do polynomial division or what he believed he 

had demonstrated; he did not indicate where he derived 12 ++ xx .   
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The last student to attempt a response on this item was Mark.  His response 

was particularly troublesome, as he did not seem to even understand what a response 

to the item requires.  Mark’s work: 

Since y is attached to i it takes 4 polynomials to turn i into 1.  i⋅i = -1, -i⋅i = 1.  
Since x is not attached to i it will be multiplied by itself 4 times to get 4x . 

2114 =+ , 1212 =•  
14 +x  = if x is odd, the function will be a prime times 2, both irreducible.  If x 

is even, the function will be a prime times 1, both irreducible. 
17124 =+  17*1 
82134 =+  41*2 
258144 =+  257*1 
626154 =+  313*2 

 
Mark’s first assertion seems to be the claim that 1)( 44 +=+ xix and he has therefore 

found a correct factorization of p(x).  It seems highly unlikely that he thought through 

the implications of his claim.  He provided no indication that he was thinking about 

what his proposed solution implies for the problem.  He seemed to claim that p(x) = 

4)( ix + , but then p has a root at –i.  He does not seem to recognize that his implied 

solution is incorrect.  That is, should he substitute -i into p(x)  he will not get 0, 

moreover, this is not what he does to verify that his work is incorrect.  Instead, his 

subsequent assertion is that, “ 2114 =+ , 1212 =• ”  It seems that he was not 

thinking about what a root means when he answered this question.  Instead he was 

simply experimenting with complex arithmetic in search of a plausible-seeming 

factorization.  Moreover, the statement that y is attached to i was curious.  It is likely 

that he was not thinking of polynomials with complex coefficients, but rather thinking 

of ‘x+iy’ as a complex polynomial, as James did. 
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Mark stated in his interview that he did not know the definition of such terms 

as group and ring.  In his response, he focused his attention on the values that p(x) can 

assume when evaluated at integers.  This seems a fundamental misunderstanding of 

the problem and indicates that Mark does not know what he has been asked to do.  It 

seems highly likely based upon his work and his admission that he does not know the 

meaning of the term reducible.   

Showing that a polynomial is irreducible   

The students were unable to show when a polynomial is irreducible in Q[x], 

and their efforts indicated that many have an incorrect definition of irreducible.  

Instead of meaning no factors, they take it to mean no roots; 6 of the 12 students 

made a claim indicating that they believed this incorrect definition.  Two students 

gave a complete and correct proof that p(x) is irreducible in Q[x] and a third student 

wrote the most important fact but did not give an actual proof.   

Both Jeff and Lynn gave a complete proof that p(x) is irreducible in Q[x] 

whereas Kenny explained in a sentence why p(x) could not have factors.  Jeff’s work 

is very similar to Kenny’s in execution and level, but, he adds slightly more detail to 

his result, correctly arguing that for p to factor in Q[x] it must also factor in Z[x]. 

Suppose, to the contrary, that p(x) is reducible in Q[x] so it can be factored as 
the product of two non-constant polynomials in Q[x].  If either has degree 1, 
then p(x) has a root in Q.  But, the rational root test shows p(x) has no roots in 
Q (the only possible roots are +/-1 and neither is a root of p(x)).  Thus, if p(x) 
is reducible, the only possible factorization is as a product of two quadratics; 
by thm 4.2.  By Thm 4.22, there is such a factorization in Z[x].  Furthermore, 
p(x) can be factored as a product of monic quadratics in Z[x], say 

1))(( 422 +=++++ xdcxxbaxx , with a, b, c, d∈Z.   
 
We get 1)()()( 4234 +=++++++++ xbdxadbcxdbacxcax .  Equal 
polynomials have equal coefficients so a+c=0, ac+b+d=0, bc+ad=0, and 
bd=1. We see that a=-c, so  ac+b+d= 02 =++− dbc  or 02 =++ dbc . 
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But, bd=1, so either b=d=1 or b=d=-1. 
Thus, either 0112 =−−c or 0112 =++c  
  22 =c   22 −=c  
There is no integer whose square is 2 or -2, so a factorization of p(x) as a 
product of quadratics in Z[x], and hence in Q[x], is impossible.  Thus, p(x) is 
irreducible in Q[x]. 
 

Lynn and Jeff gave a complete and correct response, both indicating that they 

understand what it means for a polynomial to be irreducible in a given domain and 

how to demonstrate this.  Additionally, they demonstrated that they are able to write 

two arbitrary polynomials and reason generally about polynomials via algebraic 

manipulation.  Moreover, both of these students recognize that the important 

contradiction to derive is the fact that the square root of two is irrational.  Lynn and 

Jeff both displayed quite high levels of proficiency on this item; they are the only two 

students to give a complete and correct argument. 

In comparing this portion of Jeff’s response to that of the first part of Item 1, it 

is important to note that he has, in fact, derived enough knowledge about the 

necessary coefficients in the factorization of p into two quadratics to give a 

factorization in R[x].  He has stated that “ 1))(( 422 +=++++ xdcxxbaxx ,” and he 

has determined that: 

a=-c 
 2c =2 
 b=d=1 or b=d=-1 
 
However, none of his submitted work provided evidence that he substituted these 

derived values into the general quadratics that he had written.  Given the level of 

work that Jeff exhibited, it seems quite obvious that he would have been capable of 

such substitution.  Yet, on his submission he wrote, “p(x) is the product of two 

irreducible polynomials in R[x]:” and then wrote nothing below that.  It seems that he 
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does not realize that he has all of the necessary information to write these two 

polynomials.  He certainly realized that he left that part of the problem incomplete.  

His analytic argument that p factors into linear terms, and inability to list inverse on 

Item 2 in the first problem set, may indicate one of two things: It may be that that he 

does not have great facility with computation, or, that he simply does not fluidly 

switch between formal proof (and abstract manipulation) and explicit values in the 

appropriate systems.  This is definitely a case that would merit further exploration, as 

this hypothesized set of proficiencies appears to be quite uncommon. 

Kenny, another student who gave a correct response in the first part of this 

item, seemed to know the kernel of the argument that he needed to give, but did not 

supply enough detail to have a response that can be considered correct. He wrote: 

Coefficients such as √2 are not in Q, so the polynomial is irreducible in Q. 

Here he was referencing his earlier work on the problem, and his statement is correct 

in that the polynomials that he wrote do not have coefficients from the rational 

numbers.  Had he argued that this is the only possible factorization of p, his response 

would have been complete.  It seems likely that he believes this to be a unique 

factorization, but it is unlikely that he has learned that R[x] is a unique factorization 

domain.  As such, his response should be judged incomplete. 

 The rest of the responses to this item were far less complete, but did allow 

students to display a misconception relating to polynomials.  Six students argued that 

because p(x) has no roots in Q[x] it is irreducible.  For example, James wrote: 

41 x=− .  x to an even power, where x∈R will always be ≥0, same applies to 
Q. 
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[Scratch work]  If there is a solution, there’s a factor and is reduc.  But, 4x ≠1 
in Q[x].  So, it’s irreduc in Q[x]. 

 
For each of these five students, this is the first time that they had to 

demonstrate what it means for a polynomial to be irreducible as opposed to simply 

not having roots in the proposed domain.  Stephanie submitted the work that was the 

most difficult to parse.  She showed some correct reasoning around irreducibility in 

Q[x] and, I believe, indicated that she had an incorrect definition of irreducible. 

p is the product of 2 irreducible polynomials in R[x] if the two polynomials in 
R[x] are of degree 2 or less then its irreducible.   
Since p is irreducible in R[x] then it must be irreducible in Z[x] and therefore 
irreducible in Q[x]. 
 

Specifically, Stephanie correctly asserted that if p is irreducible in R[x] it is then 

irreducible in both Q[x] and Z[x].  She seemed to believe that she has demonstrated 

that p is irreducible in R[x] in the first part of this item—in light of this belief, her 

work here should be judged correct.  In fact, she correctly asserted a relationship 

between elements of the three rings.  Yet, it also seems that in the first part of the item 

she claimed that p could both be factored and irreducible.   

Summary of student proficiency with reducible and irreducible 

Reading across both parts of this item, the majority of the students did not 

exhibit a good working definition of irreducible.  Jeff, Kenny and Lynn were the only 

three students who exhibited a mathematically correct definition.  Six of the students 

believed that irreducible means that a polynomial has no roots in a given ring.  Three 

students did not exhibit any understanding of the item.  Yet, as all of the polynomials 

that the students examined during my observations were either quadratics or cubics, 

reducibility was equivalent to having a root.  Thus, the students could quite 
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reasonably form a naïve understanding in which not having a root is logically 

equivalent to irreducible.   

 Another very curious aspect of the students’ work was the statements they 

made which indicated beliefs about polynomials.  Johnny and Steven both made 

remarks that raise substantial questions about their understanding of the domain from 

which coefficients come.  Johnny was attempting to show that p is the product of two 

irreducible polynomials in R[x] and that p was irreducible in Q[x].  To demonstrate 

this he wrote plausible factorizations and then expanded in an effort to arrive at 

14 +x .  What was most interesting is that all of his factorization candidates drew all 

of their coefficients from the ring of rational numbers.  He never wrote a candidate 

with any irrational coefficients.  Steven’s work was also quite interesting.  He wrote 

that complex polynomials “look like ax + bi.”  This is a possible form of a complex 

polynomial, but it seems to indicate that he was not able to write a linear polynomial 

with two complex coefficients.  These two students showed a very low level of 

proficiency with managing the relationship between the polynomials and the domain 

from which the coefficients are drawn.  In general, there were two students whose 

work was of a much higher caliber than the others, Lynn and Jeff, and two students, 

Mark and Aurora whose work was highly problematic.  The great majority of the 

students demonstrated that they had some misconceptions, but also had at least some 

fluency with polynomials.    

 As noted in discussion of student work in other content strands, this problem 

did not allow for much differentiation between students.  Because the students 

performed so poorly in terms of writing the factorization of p in C[x], they had almost 
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no ability to write p as a pair of irreducible polynomials in R[x].  The responses that 

the students submitted for that part of the item provided almost no useful information 

about their proficiencies.  As such, observations about the learning were limited by 

problematic item design.   

Constructing the minimal extension field   

This proficiency was assessed by Item 2 where the students were asked to 

determine all of the roots of the polynomial 1)( 4 += xxp in the field.  Both teachers 

repeatedly demonstrated the construction of extension fields in this manner, and 

students in the DTP class had been asked a similar question as part of their 

homework.  It was probably unreasonable to expect any of the students to 

demonstrate that they had found all of the roots.  I expected that, at minimum, the 

students would all state and demonstrate that [x] is a root of the polynomial p(x) in the 

field )(
][

xp
xQ  and that many students would make more progress on the item by 

finding two or even all four of the roots.  In fact the students seemed to experience 

significant difficulty with the item.   

Two students, Jeff and Lynn, stated that [x] is a root of the polynomial.  These 

were the only two students who demonstrated that they were working in the correct 

field.  Consider Jeff’s work: 

We search for all functions t(x) such that 014 =+t .  This is similar to the 
initial function 1)( 4 += xxp .  0]0[]1[)]([ 4 ==+= xxp .  So, we look for all 
functions t(x) so that )]([]1[ 4 xpt =+ . 
So, )]([]1[ 4 xpt =+ = ]1[ 4 +x  
 ]1[][]1[][ 44 +=+ xt   
 ][][ 44 xt =   
 ][][ xt = . 
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Thus, all functions t(x) that leave a remainder of x when divided by 14 +x  
satisfy 014 =+t . 
 

Both Lynn and Jeff correctly identified one of the roots of p in the field E[x], but, this 

should not necessarily be taken as demonstrating understanding of the problem 

situation.  While these two students spent significant classroom time on similar 

questions, their teacher gave the students so much explicit help that they did not have 

to make sense of the constructs, but only manipulate the symbols.  Thus, the fact that 

these two students can state that [x] is a root of the equation is unsurprising.  The fact 

that neither of them were able to find any other roots demonstrates that neither of 

them had developed substantially more proficiency with the concepts than the ability 

to re-write material they saw during the lectures. 

 The rest of the students were not able to make any progress on the item 

whatsoever.  Yet, some of them did give responses that are informative.  Four of the 

students (Rebekah, Mark, Kenny and Johnny) provided responses indicating that they 

were not operating in the correct field.  Johnny’s work is shown: 

1 is multiplicative identity and 0  is the additive identity.  The  field 

][
][

xp
xE Q=  with 1)( 4 += xxp .  We must find t∈E st 014 =+t .   

11 ±= in Q[x] 
00 = in Q[x] 

So, we want 014 =+t  for t∈Q.  This seems very similar to the previous 
problem that I could not solve. 
 

Each of these students recognized they are being asked to find the roots of the 

polynomial equation 014 =+x .  Yet, all of them indicated that they were writing a 

root in the field C[x] rather than in the field E[x].   
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Unlike the other three students who stated that the root is the fourth root of 

negative one, Johnny made use of coset notation, but also stated that the problem 

“seems very similar to the previous problem that I could not solve.”  This implied that 

he did not understand how to construct the roots of an irreducible polynomial.   

The investigative class also covered the construction of roots via extension 

fields.  All of these students also made use of coset notation as part of their class 

activity.  Thus, this work should be taken as an indication that they most likely saw 

the material as a series of symbolic manipulations and never developed any meaning 

for the process.  They were unable to recall the fact that [x] is a root of the 

polynomial. 

 Perhaps because he did not know how to make much progress on the item as it 

was stated, James chose to create an entirely new mathematical structure that 

operated according to the rules of the rational numbers: 

][
][

xp
xQE =  014 =+t ; 

1
00 4 +

=
x

; & 
1
11 4

4

+
+=

x
x  

  
1
1

4

4
4

+
+−=

x
xt  

  4
4

4

1
1

+
+−±=

x
xt  

Which again, I have no idea how to reduce. 

He failed to recognize quotient fields as a construct, but, did construct a structure 

involving quotients.  He then looked for a root of the polynomial in this newly 

constructed structure.  He relied on older understanding of quotient (fractions) and 

attempted to find a way to make the problem situation (i.e., creation of quotient 
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fields) conform to his understanding of quotients.  Finally he gave the same response 

as his classmates above, writing that the root of the polynomial is the fourth root of -

1.  This response does, at the very least, show a willingness to do significant 

mathematical exploration, even when he is quite clear that he did not really 

understand the problem.  This is indicative of a quite strong affective response.  Most 

students, when confronted with a seemingly impossible problem will simply omit it. 

 Lastly, there were three students who simply restated the problem; Ned, 

Stephanie  and Steven and one student, Nathan, did not attempt the item. 

Summary of student proficiency with constructing roots 

Many of the students did not seem to understand what a quotient field is, as 

most of the students who submitted a response attempted to find roots in either C or a 

newly created field.  Even the two strongest students, Lynn and Jeff, seemed to be 

merely copying mathematics that they had seen in their class.  

This item afforded very little information about those students who did not 

immediately recognize the construct of a quotient field.  The item exceeded the 

students’ proficiencies. 

Making and proving conjectures about polynomials   

In order to demonstrate significant levels of proficiency on this item, the 

students needed to write polynomials with an arbitrary complex root.  Given that only 

a few of the students were able to do so, it was therefore unlikely that they would 

create a reasonable hypothesis about polynomials and a proof of that conjecture.  

Only three students gave a conjecture, and two of them offered a complete proof.  
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The remainder of the responses were not sufficiently developed to allow any insight 

into the student’s abilities to develop and prove a conjecture about polynomials. 

 Lynn and Jeff are the two students who made and proved a conjecture about 

polynomials.  Both of them provided similar responses, although Lynn’s included a 

small error that seemed typographical.  Jeff’s response is shown below. 

We know that every polynomial of degree 1 is irreducible in R[x], so we 
suppose f(x) is irreducible in R[x] and deg(f(x))≥2.  Then, since f(x) is a non-
constant polynomial in C[x] it has complex roots iyaz +=  and iyaz −= .  
So, by the factor theorem:  

f(x)=(x-(a+iy))(x-(a-iy))h(x), for some ][)( xxh C∈ . 
 We let 222 2))())((()( yaaxxiyaxiyaxxg ++−=−−+−= and so the 

coefficients of g(x) are real numbers.  The Division Algorithm shows that 
there are polynomials in ][)(),( xxrxq R∈   such that 

0)(),()()()( =+= xrxrxqxgxf  or deg(r(x))<deg(g(x)). 
In C[x], we have 0)()()( += xqxgxf .  Since q(x), r(x) are also in C[x], the 
uniqueness part of the Division Algorithm in C[x] shows that q(x)=h(x) and 
r(x)=0. 
Thus, h(x)=q(x) ][xR∈ .  Since f(x)=g(x)h(x) and f(x) is irreducible in ][xR , 
and deg(g(x))=2, h(x) must be a constant… 
So, f(x) is a quadratic polynomial…  and the largest possible degree of an 
irreducible polynomial in ][xR  is 2. 
 

Jeff’s work demonstrated a very high level of proficiency with proof, and also a high 

level of proficiency with polynomials.  He correctly used the factor theorem to write a 

polynomial with complex roots, was able to make use of Euclidean Division in a 

formal argument, and correctly made use of the two possible domains from which the 

polynomial might draw coefficients.  This demonstration of proficiency was 

unmatched by any of the other students, although Lynn’s work was also quite good 

with only minor errors. 
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 Kenny is the only other student who made significant progress on the item in 

terms of creating an appropriate and reasonable conjecture.  Instead of making use of 

the hint that I provided, he relied upon a more intuitive understanding of polynomials. 

 Every polynomial of degree 0 is obviously irreducible.  Also we know 
that every polynomial of degree 1 is irreducible since it cannot be expressed 
as the produce of two polynomials of lesser degree, in this case 0.  From the 
quadratic theorem we know that we do not always have roots in R.  Thus, 
polynomials of degree two or less are sometimes irreducible.  However 
multiplying a polynomial of degree 1 by a polynomial of degree 2 gives a 
polynomial of degree 3.  By our theorem, this p(x) is reducible.  Thus, 3 is the 
lower bound for all polynomials p(x)⊆R[x] to always be reducible.  

)2)(1( 2 −+ xx . 
 

His argument can be summarized in the following way: We know that there are 

polynomials of degree 2 that are irreducible, but, even if we have one of those, 

multiplying it by a linear polynomial gives us a degree three polynomial that is 

reducible.  His response does not include an argument that the greatest degree of an 

irreducible polynomial is 2 and it does not seem likely, based upon the work that he 

has shown, that he would be able to craft a proof.     

Summary of Demonstrated Proficiency with Polynomials 

 The final assessment did not give students much opportunity to show what 

proficiencies they had with polynomials.  Instead it produced a rather negative 

reading which described what they could not do.  Because the students were able to 

make use of their class materials, these items were slightly non-standard while 

assessing skills that they should have developed during their semester of study. 

 In terms of allowing students to show their skill with writing polynomials, the 

context of the complex number system caused difficulty, because the students were 

not proficient enough with complex arithmetic to write the fourth roots of unity, and 
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those who attempted the item were very likely to make arithmetic errors.  The other 

unanticipated difficult point for the students was that those who attempted to factor 

p(x) in R[x] without having a correct factorization in C[x] only attempted 

factorizations with integral or rational coefficients, almost as if they had not read the 

last part of the question which stated that there is no factorization in Q[x].   

 Only three students demonstrated that they had a correct definition of 

irreducible, and most gave indications that they believe irreducible to be equivalent to 

has no roots.  Given that most of their previous experience was with polynomials of 

degree two or three, it is understandable that the students would have no basis for 

distinguishing between the two concepts, because with polynomials of degree two or 

three the terms are equivalent.   

 The most surprising result of the assessment about polynomial proficiency 

was that only two of the students in the study gave any indication that they knew how 

to construct the roots of an irreducible polynomial by constructing an extension field.  

Specifically, the students were presented with an extension field created by modding 

Q[x] out by an irreducible polynomial and asked to determine the roots.  Two 

students correctly listed [x] as a root in the new field.  The great majority of the 

students gave responses which did not indicate that they recognized this new 

construct, instead attempting to give roots in C[x] or some other field.  One student 

attempted to write the roots as rational functions (in an attempt to make sense of the 

notation of quotient field).  In general, the students demonstrated a low level of 

proficiency with root construction or even quotient fields as a construct that was 

lower than expected, given that each of the sections spent multiple class meetings 
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discussing the construct and each had a homework assignment requiring work with 

the construct. 

 Lastly, the students were generally unable to make and prove conjectures 

about the polynomials with real coefficients.  The students were generally unable to 

articulate the greatest degree at which a polynomial might be irreducible over the real 

numbers.  The students did not have sufficient proficiency at writing a polynomial 

with complex roots.  Many of them attempted to write a polynomial with an arbitrary 

complex root and used notation suggesting they were unable to parse the difference 

between a polynomial with a complex root and a complex number.  This is not 

surprising given the low level of fluency with complex factoring that the students 

demonstrated in their responses to the first item in the set. 

Structure/substructure and what is inherited 

Groups, rings, and fields are three of the fundamental and most studied 

structures in mathematics; these are the principal objects of study in an abstract 

algebra class.  Often, the study of these three structures defines the organizing 

principles of the abstract algebra class, and the classes of MWU were no different.  

Students in the investigative class spent nearly two-thirds of the semester studying 

rings and fields and one-third of the semester studying groups.  Students in the DTP 

class spent only eight class periods on group theoretic material, and the rest studying 

rings and fields.  In both classes, the students were also repeatedly asked to look for 

substructures and morphisms between structures.   
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Understanding groups, rings and fields 

The definition of a group   

A group is a set with an operation that satisfies four properties, (1) closure, (2) 

associativity, (3) existence of an identity, and (4) existence of inverses for each 

element. 

One common example of a group is the set of integers under the operation of 

addition. The integers under addition possess the additional property of 

commutativity— regardless of the order in which integers are added the sum is the 

same.  This makes the integers under addition a commutative or abelian group.   

 A subgroup is defined in relation to a group.  For a given set and operation 

that form a group, any subset which, under the same operation, satisfies the four 

group properties is a subgroup of the original group.  For example, the even integers 

form a subgroup of the integers under addition. 

The definition of a ring  

A ring is a set together with two operations that satisfy eight properties.  The 

set and first operation must form a commutative group.  The second operation must 

satisfy three properties: (1) it must be closed on the given set; (2) it must be 

associative; and (3) it must distribute over the first operation.  One common example 

of a ring is the set of integers with the operations of addition and multiplication.  

Given a ring, if there is a subset of the original set that itself forms a ring under the 

two operations, it is called a sub-ring.  Again, the even integers under the operations 

of addition and multiplication form a sub-ring of the ring of integers. 

The definition of a field   
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A field is a set with two operations that satisfies all of the ring properties 

along with three further properties: (1) the second operation has an identity, (2) the 

second operation is commutative; and (3) each element of the set has an inverse under 

the second operation.  The set of rational numbers under the operations of addition 

and multiplication is a field.   

A brief summary of other structures that the students study   

Students in both the DTP and Investigative abstract algebra classes studied 

specific examples of each of the above structures and learned about additional 

properties that such structures might have.  For example, as noted above, a group 

might be commutative.  Many of the further properties give rise to additional 

structures that are given names which describe their behavior.  For example, both 

classes studied normal subgroups, quotient groups, quotient rings, ideals (a type of 

sub-ring), kernels and images (which can be either a subgroup or a sub-ring 

depending on the context). 

Idealized Student Proficiency with Structure 

After a semester in a typical abstract algebra course, students should be able to 

define each of the primary algebraic structures and to give multiple examples of each.  

They should know the structural properties of the classical number systems and be 

able to explain why those properties hold.  Within each of the specific algebraic 

topics, the students should be able to: 

• explore examples and perform computations. 

• identify elements of these examples. 

• give basic classifications based upon properties. 
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• identify and create homomorphisms that map from one structure to 

another, and be able to use isomorphisms to identify identical 

structures. 

• reason from the definitions about properties of elements and the entire 

structure. 

• create new structures by use of cosets. 

• evaluate candidates to determine whether they satisfy the appropriate 

axioms. 

• recognize elements (and elements with particular characteristics), 

make arguments about the elements, and make conjectures and 

demonstrate the truth of those same conjectures.   

Opportunities to Learn  

The two abstract algebra classes in this study addressed the definitions of a 

ring and a group.  Both teachers demonstrated a number of proofs showing how given 

sets and operations satisfied the properties for groups rings, fields, integral domains, 

and ideals.  Similarly, both classes repeatedly engaged in class discussion about 

isomorphism and homomorphism.  Thus, the students could be expected to have 

mastered those definitions as well.  I observed multiple instances in each class of the 

instructors asking the students to list the properties that a given structure must satisfy.  

Moreover, multiple students in the DTP class (both those in the study and others) 

were asked to come to the front of the class and present a proof (either prepared or 

constructed on the spot) that a structure satisfies a given property.  In each class, the 
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students were also given homework tasks where they were expected to make an 

argument that a structure either satisfied or failed to satisfy the appropriate properties.   

The students also spent time studying sub-groups, sub-rings, and extension 

fields.  As a result, it was reasonable to expect that they could state the definitions of 

these structures, to determine whether a proposed structure satisfied the appropriate 

axioms, and to give examples of sub-structures when asked.   

The students in both classes saw multiple examples of each type of algebraic 

structure as both instructors used examples with great frequency in their teaching.  

Moreover, the students’ homework included questions about additional examples of 

each type of structure.   

 The students in the DTP class were also expected to develop an understanding 

of the first isomorphism theorem, and Dr. Hedges showed them how to use that result 

in discerning relationships between structures.  The DTP students were consistently 

encouraged to look for similarities between structures they knew and the new 

constructs that Dr. Hedges asked them to consider.  In the investigative class the 

students were repeatedly encouraged to describe groups based upon their subgroup 

lattice, to study cosets, as well as orders of elements and, in general, to make use of 

thinking about structure to understand groups.   

Assessment of Student Understanding  

The students’ ability to state the definitions of group, ring, and field, as well 

as their ability to give examples of any relevant structures were not directly assessed 

as part of the quiz or exam. They were assessed as part of the interview. Because only 

six students were interviewed, the findings described in this section are preliminary.   
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Definitions and examples 

During the interview each of the students was asked to give an example of a 

ring, to describe its properties, and then to give the definition of a ring.  They were 

asked to describe any other types of rings that they knew.  Most of the students who 

were interviewed were asked to state the definition of a group and an isomorphism. 

When many of the students struggled to give the definitions of particular types of 

structures, I suggested an example, such as the complex numbers, and asked the 

students to identify the properties that the example satisfied. 

 The students were expected to demonstrate their ability to use the definition of 

a group on the exam.  In their work on Item 1a of Set 1, students needed to determine 

whether a proposed set and operation was a group.   

   

The proposed set is a subset of a given structure.  The students should have been able 

to determine that associativity is inherited and then to demonstrate proficiency in 

verifying the other properties that a group must satisfy.   

Determining if a structure is an example   

During the interview I asked many of the students to decide whether Z3 is a 

subgroup of Z6.  Specifically, the difficulty with this problem results from students 

not understanding that the operation in a subgroup must be the same as that in the 

original group, albeit restricted to a subset of the original group. This difficulty offers 

a lens that reveals the student’s proficiency with groups and subgroups.    
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Evidence of Student Proficiency 
Definitions and examples of groups.   

During the interview the students were directly asked to state the definitions 

of a group.  Rebekah and Johnny both gave correct formulations.  As stated by 

Rebekah, “A group is a set of elements that is closed under whatever the operation is, 

it’s associative, it has inverses and it has identity.”  Then she added, “Groups seem to 

me to be half a ring because it only has to satisfy those things for one operation 

whereas rings have to satisfy those things for two operations.”  This is a reasonable 

interpretation of the relationship between a group and a ring for a first semester 

algebra student.  She understands that they both must satisfy a collection of 

properties, and she recognizes that rings have to satisfy more properties because they 

have two operations.  Kenny also gave a correct definition and noted that many 

groups have a fifth property, specifically, “and it could be abelian, that’s 

commutative, that’s a fifth property, just like with a ring you have the original eight 

properties and then you add on the special types.” 

Johnny’s understanding seemed to be quite similar.  Johnny stated his 

understanding of the relationship between a group and a ring in his initial statement of 

the definition.   

I look at a group as a little bit less than a ring.  I mean it has the four 
properties that a ring has and you only have to worry about one binary 
operation.   
 
He then listed the four properties that a group must satisfy.  But, then on the 

exam he and three other students (Ned, Kenny, Stephanie ) claimed that the closure of 

a subset was inherited—raising questions about their ability to make use of the 

definition of a group.  Consider Johnny’s work as exemplary of the four: 
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A) we want to prove that (U, •) is a group.  Since U⊆S, and since S is a 
squadron, (U, •) is preserved under the binary operation, is associative and 
has identity e.  This is all by the definition of a squadron.  Since U consists of 
the units of the set S, by definition of a unit, for each u∈U, ∃ Uu ∈−1 st 

euu =−1 .  Therefore, (U, •) is a group.  
 

I believe that by “preserved” Johnny meant closed.  Multiple times during the course 

meetings, students in the investigative class (Johnny included) misused the word 

“preserved” to mean “closed” and claimed that the set and operation was preserved 

when the context indicated that “closed” would be the appropriate term.  These 

students correctly identified associativity as inherited from the super structure, but 

they assumed that too much is inherited in claiming that closure is also inherited by 

any subset.   

When asked the definition of a group James stated that the operation must 

have, “Closure, non-empty, and inverses.”  He omitted associativity in his response, 

which was consistent with his work on Item 1a on the exam as shown: 

e∈G and ex=xe so e satisfies the conditions to be a unit in G, so e∈U.  Thus, 
U is non-empty.  Dy DEF, a is a unit if au=e=ua for some unit u.  So, u is the 
inverse of a.  So, all units have inverses that are units in U.  For a, b∈U, 
ab∈U since (ab)( 11 −− ab )=e and so ab has an inverse.  ( 11 −− ab )(ab)=e also, so 
ab satisfies the definition of a unit. 
 

He correctly demonstrated all of the necessary properties except associativity.  Thus, 

it seems that his working definition of a group does not depend upon associativity.  

Yet, he also stated that he has difficulty with definitions, “I’m not a very good 

memorizer … on a lot of our homework and exams I would always have to go back 

and find the definitions because, well, they’re not complicated definitions but there’s 

just so many of them.”  This suggests that, while James did not know the definitions 

well, he was quite proficient at using them and did so correctly after looking them up.   
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 When I asked Mark to give the definition of a group, he paused for 

approximately 10 seconds and then stated, “When I look at groups, it’s like, [pause] 

oh, wait, that’s abelian.  And, you want me to do it without looking in here [indicates 

text] right?”   

 I replied, “I want to know if you can.”  He replied, “There’s an identity, 

there’s inverses, see I’ve been dealing with normality and commutativity lately, so 

those are the sticking out in my head, so, transitivity, is that part of it?  Where a times, 

b times c equals a times b, times c.”  Here it is obvious that Mark does not know the 

definition of a group and it was only after looking in his text that he was able to 

correctly give the four properties necessary for a structure to be a group.  This 

conclusion was only reinforced by Mark’s work on Item 1 of the exam.  He made two 

fundamental errors: First he did not prove the correct list of properties, and second he 

tried to discuss division.  He did not attempt to show that all elements of U will have 

an inverse in (U, •).   

Proof:  Let x, y, z be units in the squadron S. 
S1:  x*y will be in S and U because the result will be x, y or z (let z be an 
arbitrary unit).  If x or y is the identity, then the result will be the opposite.  If 
neither is the identity, x or y (being a unit) will “divide” z because they 
“divide” every element. 
 

This willingness to make use of an undefined operation raised serious questions about 

Mark’s understanding of groups.  Mark’s work suggested that he had very little 

understanding of groups even after many weeks of study.   

Summary 

The students’ ability to state the definition of a group during the interview was 

generally good.  The students showed a fairly wide range of proficiencies from Mark 
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not knowing the definition of a group to Lynn who was able to state and use the 

definition without attributing any additional properties to the structure. 

Definitions and examples of rings 

Just as the students displayed different proficiencies in stating and applying 

appropriate limits to the definition of a group, they displayed different abilities in 

describing and checking properties of examples for rings.   

I began each of the interviews by asking the student to describe an example of 

a ring.  All of the students stated that their canonical ring is the integers, except for 

Johnny who suggested the real numbers.  Because all of the students gave an example 

with more properties than necessary, I asked them to state the additional properties 

that their example satisfied.  Rebekah, Johnny, and Kenny quickly identified the 

correct additional properties that their example satisfied.  Rebekah stated, “It’s 

commutative, it’s got identity and doesn’t have zero divisors so that makes it an 

integral domain.”  Similarly, Johnny quickly identified the additional properties that 

his example satisfied.  He stated, “The real numbers have everything, it’s an integral 

domain, it has, every element has inverses.  I think of the real numbers as basically 

the real thing, everything that a ring can have.”   

The other students struggled to state these properties and the type of ring. For 

example, Mark was not able to give the properties that the integers satisfy that are not 

part of the ring definition, “As far as properties?  [pause, 20 sec] Honestly, I couldn’t 

tell you right now.”  In my questioning of James he never directly responded to this 

question. 
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 When I asked the students to identify examples of rings with fewer properties, 

they started to struggle more.  Kenny, Lynn, and Rebekah gave nearly identical 

responses.  Rebekah said: 

The reals are a field so that gives you inverses.  Z mod 6 has zero divisors so 
that’s just a commutative ring with identity.  …[pause, 10 sec] I’m trying to 
picture some of the rings that we’ve dealt with.  The even integers doesn’t 
have multiplicative identity, but it is commutative.  2x2 matrices are not 
commutative but they do have identity…  I can’t think of anything off the top 
of my head that’s just a ring. 
 

She correctly identified a field, a commutative ring with identity, and a non-

commutative ring with identity.  She did not seem to have any example of a ring 

without an identity, either commutative or non-commutative.  In general though, she 

demonstrated a good ability to state examples of different types of rings.  Moreover, 

she gave her response fairly quickly with little prompting from me.   

 Johnny gave a similar set of responses to my questions and also listed 

“matrices” as a non-commutative ring.  In this regard, Kenny, Rebekah, Lynn, and 

Johnny demonstrated a good ability to give examples of particular types of structures 

with the difference being that the first three were able to give a correct example of a 

field while Johnny was not.  He suggested that the rational numbers were “between a 

ring and an integral domain.”   

 The remaining two students struggled to identify either an example with 

specific properties or to identify the properties of their stated examples, and they 

ended up relying on the book to make progress.  Both James and Mark stated that 

they did not know the definitions and that they relied upon the text to recall 

properties. The interview bore that out.  The following interaction with James 

illustrates his struggle with definitions and properties without using his text: 
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TFC:  What’s your favorite example of a commutative Ring? 
James:  I’m pretty sure Z still fits for that.  It’s a nice one. 
TFC: What more do you need to be an ID? 
James: Shoot, this again goes to the definition thing.  I know it has 

commutativity, and I want to say that it has units.  I know there’s two or 
three steps in between and I know commutative ring was one of them.  
Shoot.  I want to say it’s units, but I don’t think that’s right because I 
don’t feel like the one with units…  But, I’d have to use a book for that 
because, well... 

TFC: What do fields have? 
James: What do fields have that integral domains don’t?   
TFC:  Or, are any of these [indicating examples on the handout] fields?  
James: As we went up, I know that we’d have different sets.  I know we went 

from Z to R, but I think we did go to Q, from Z to Q and Q to R.  Shoot.  
Uhm…  [pause, 30 sec]  Again, I’m really bad with definitions. 

TFC: Let me give you a hint.  Q is a field. 
James: So, if Q is a field, then Z is a …  oh, it’s inverse right, to get you back 

to the identity.  I mean 1 goes to 1, but, no other number would go back 
to 1, which is the multiplicative identity.  So, we need, so if Q is a field, 
in n/m has the inverse m/n which would get you back to 1, so, fields 
have units, no, inverses.  Z might be an integral domain. 

TFC: Is R a field? 
James: Yes, I would think so, because R is the same idea, you can put a 

number over a number, I mean they don’t have to be integers, but if you 
have r, then you can put 1 over r and that gets you back to 1. 

 
While James did not know the definitions of the structures, he was able to determine 

at least some of the different properties that the structures have after I told him that 

the rational numbers are a field.  Moreover, he was then also able to correctly assert 

that the real numbers are a field.  It seems that he had good ability to think about the 

differences between structures.  He has good mathematical habits but has not 

developed the level of content knowledge that he needs in order to correctly give 

examples of specific types of structures. 

 Mark did not display the same level of ability to reason about the properties 

that structures have, although he was quick to identify the rational numbers as having 
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inverses for all elements. Instead he relied on his text and his ability to find 

descriptions of each of the types of rings in his text.   

TFC: If you go to the rationals, what does that give you the integers don’t 
have? 

Mark: It gives you fractions.  We never had a ring dealing with rational 
numbers, it was either integers or complex.  As far as rationals, granted, 
it was, [pause]  we never did that, which surprises me now that I look at 
it or real numbers.  We did Z or Z adjoin x.  [pause, 10 seconds]  More 
elements. 

TFC: What about properties?  
Mark: As far as commutative and, uhm…  [pause, 15 seconds]  I’m taking out 

my book.  I always look in my book for these. 
 

Once Mark opened his text, he was able to start to identify the different properties 

that the examples have, although he was still making errors.  For example, he stated 

that he did not believe the integers to be a field, “I really don’t think that Z is unless 

it’s cyclic, but we don’t have cyclic in rings.”  The integers are cyclic, and the 

rational numbers are not.  Moreover, he has certainly seen a proof of this fact.   

Summary 

In terms of the content knowledge that the students displayed, there was a 

substantial difference between the students who knew and could state definitions and 

examples, and those who could not.   Lynn, Rebekah, Johnny, and Kenny were all 

able to give a number of examples of rings and to discuss the properties that their 

examples satisfied.  They all struggled to name a ring without any additional 

properties, and all suggested that some collection of matrices would likely satisfy the 

requirements.  In terms of their ability to identify commutativity, identity, and fields, 

they were quite good and gave a diverse list of examples.  On the other hand, James 

and Mark demonstrated significantly less proficiency, as neither of them were able to 

indicate the properties a ring might satisfy or to offer examples of rings.  They both 
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stated that they generally make use of their textbook.   This difference also seemed to 

underlie Mark’s problems with Item 1a on the exam as he did not list the correct set 

of properties for proof and made use of “division” as an operation.   

While the students generally seemed able to state the definition of a group, 

they were also very willing to assume too much of a group in proofs.  Nearly half of 

the students either suggested that closure is inherited by a subset or gave the group 

additional properties (such as commutativity).  The fact that they did this during 

proof, but not when asked directly, seems to suggest that they had difficulty 

separating what a group is (meaning a structure that satisfies some minimal 

requirements) from other properties that a group might satisfy.   

Determining if a structure is an example   

The next type of proficiency that the students were asked to demonstrate was 

to determine if a given set and operation(s) is an example of some particular algebraic 

structure.  That is, there were asked to determine if it satisfied all of the required 

properties.  In essence, this required the students to list the necessary properties and 

then to demonstrate some proficiency at verifying them.  In order to assess students’ 

proficiency with structure rather than proof, I made use of an interview task that did 

not ask for proof, but rather asked students to deal with ambiguous language and the 

lack of a specified operation.  The prompt was “Is Z3 a subgroup of Z6?”  This prompt 

has been used in a number of research studies and the responses of the students in this 

study were consistent with those reported earlier (Findell, 2000; Brown, et al., 1997).  

James and Lynn both gave responses which indicated substantial understanding.  

James’s is shown below:   
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Over addition right?  Well, I mean, most of the other problems we’ve done 
with Z6 we’ve always done adding.  So, I guess, I ran into this problem on the 
test because I was thinking we were talking about regular addition.  I guess if 
we were going to do subgroup, then we’d have to …  I guess I’d just, I guess, 
it’s because in class we always jump to conclusions so I’d say yes.  [pause, 
while writing—1 minute]  Oh, I got no.  Well, like, Z3 would be 0, 1, and 2.  
But, 2+2 is 4 and so, it’s not closed.  So, no.   
 

He correctly identified the necessary operation and then noted that the set {0, 1, 2} 

would not be closed if the operation from Z6was carried over.  This is an ideal 

response for novice students according to previous research (Findell, 2000).  Rebekah 

began by indicating that she believed Z3 to be a subgroup of Z6.  I began probing 

further.   

TFC:    Is Z3 a subgroup of Z6? 
Rebekah:  [pause, 90 sec]  I know Z3 is a group, and it’s elements are a subset 

of Z6.  Yeah… 
TFC:  When you take your two favorite elements in Z6, when you put them 

together, what do you get?   
Rebekah:  Ok, I got 2 and 3, so if I do multiplication with them, I end up with 

6 and that’s zero.  With addition, that’s five. 
TFC:  If you did 2 elements in Z3, how would you put them together? 
Rebekah:  So, 0 is boring, so we’ll do 1 & 2.  1 times 2 is 2 and 1 plus 2 is 

zero. 
TFC:  You reduced in both cases, but you reduced by a different number.  Is 

that okay when you move between a group and a subgroup? 
Rebekah:  Hmmm…  [pause, 30 sec]  I was just thinking about creating an 

isomorphism, and mapping 6, well, 6 doesn’t exist in the other one 
[draws chart on page] and, well, there’s some way that you can make 
that association there.   

 
It seems that rather than confront her misconceptions, she changed the subject.  She 

never returned to the question of the operation, nor did I force her to revisit her 

answer to the original question.  The other three students, Johnny, Mark, and Kenny 

all made a common mistake.  Each of them was willing to allow Z3 to be a subgroup 

of Z6 even though they understood that they reduced by different values when 

working in the different sets.  Consider Johnny’s argument that because Z3 is a group 
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and its elements are also elements of Z6, then Z3 is a subgroup of Z6.  He has not 

considered the operation at all.     

Yes, I would say it is, because Z3 has an identity, any time you combine an 
element in Z3 with another in Z3, it’s gonna be Z3, say you combine 1 
with 2 that’ll give you zero.  And that’s Z3.  So, z3 itself is a group, and, 
yes, cause any element that’s in Z3 is in Z6, but I guess that the problem 
I’m thinking of right now is that if you were to combine an element of 
Z3 with an element of Z6, I can’t think of where you would put it.  I was 
using addition as the operation, and when you add 4 and 4 you like, 
you’d think that would be 8, but since it’s Z6 you’d go back to 2, so you 
reduce it because these are all the congruence classes…   

TFC:  I want to make sure it’s not a problem to reduce by a different number? 
Johnny:  Nope, in Z3 you look at numbers that are multiples of three and that’s 

the important part.  I guess I’d have to think about that more because I 
don’t see where it would be based on the subgroup lattice. 

 
I explicitly asked Kenny if this change of base was acceptable: 

TFC:  Is it okay to mod out by different things when you move between a 
group and a subgroup? 

Kenny: Yeah.  On the surface, yeah, I just want to make sure.  Yeah, I would 
say so. 
 

But, Kenny was also operating on Z6 under the operation of multiplication which does 

not form a group.  Although each of these students was able to state that a group 

includes a set and an operation, it seems that none of them has connected the idea that 

the cosets which make up Z3 are not the same cosets that make up Z6 nor is the 

operation on these sets the same.  Yet according to previous work (Findell, 2000) this 

is the most common response, and thus it is not unexpected even after a semester of 

study of groups rather than the few weeks that these students had.   

Summary 

The strongest two students on this item were Lynn and James who correctly 

responded that Z3 was not a subgroup of Z6.  None of the other students correctly 

asserted that Z3 cannot be a subgroup of Z6. In fact, Rebekah, Mark, Johnny and 
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Kenny all gave responses which indicated that they did not consider the change in 

modulo (or the means of reducing) to be a problem.  As noted above, this is an 

expected response for novice students, but it indicates that they had not fully 

developed their understanding of groups as a set and operation that satisfies given 

properties.   

Summary of Demonstrated Proficiency with Structure  

 Generally, the students all knew the definition of a group.  They were able to 

give an example of a ring, to identify additional properties that a ring (or group) 

might satisfy, and to state a variety of examples of rings with a range of properties.  

They showed a good depth of knowledge here—citing matrices as non-commutative 

rings, the real numbers and Z mod p (p prime) as fields, the integers as an integral 

domain, and the even integers as a commutative ring without a multiplicative identity.  

None of the students was correctly able to identify a ring without any additional 

properties.  Two of the students, Mark and James, stated that they did not know 

definitions or examples and needed to use their textbooks to respond to any such 

questions.  The students were generally able to make use of their definition of a group 

in proof.   

 The students’ responses to the prompt “Is Z3 a subgroup of Z6?” also 

suggested that they have not yet fully developed their understanding of the sub-group 

concept.  The majority of the students made an expected assertion that Z3 is a 

subgroup of Z6, meaning that although they recognized that the modulo is different, 

they did not recognize that the operation must be the same in a group and subgroup.  

Iaonnone and Nardi (2002) noted that novice students often understand a group as a 
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set and do not see the operation as integral.  Their research gives a good explanation 

for this tendency of students and helps researchers better describe the development of 

student understanding of groups.   

 In general, the students had some proficiency at stating definitions and 

examples, but their understanding of groups and rings was still rather tenuous and 

developing as is appropriate after one semester of study.  Their ability to state a range 

of examples with different properties suggested good familiarity with the basic 

concepts and will provide them a base from which to grow.  But it is fairly clear that 

at the end of one semester they had not yet developed enough understanding to not 

over-attribute properties to structures, nor had they fixed into their understanding the 

fact that the set and operation(s) together form a structure.   

Proof proficiency 

 Developing students’ proof proficiency is one of the major foci of most 

abstract algebra courses.  Many students arrive in an abstract algebra course with 

some exposure to proof, such as epsilon-delta arguments in calculus, but they often 

have not developed significant proficiency.  Abstract algebra is often the first course 

where students are exposed to proof as the primary means of developing the 

mathematical content of the course.  Moreover, at many institutions, this is the first 

course where students are expected to regularly produce proofs on their own.  In the 

specific context of this study, the students had completed a course on proof writing 

prior to enrolling in abstract algebra. 
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Idealized Student Proficiency with Proof 

From a logical perspective, proofs in all branches of mathematics have a 

common underlying logical structure.  Beginning from axioms, prior theorems, and 

definitions, they provide chains of logical inferences leading from the hypothesis to 

the conclusion of the conjectured result.  However, successful application of this 

overall logical scheme to proving results in specific mathematical topics requires 

more nuanced understanding of subject-specific concepts, techniques, and reasoning 

strategies.  

In a semester of abstract algebra students are exposed to and expected to 

develop proficiency with a large number of proof archetypes (Rossi, 1997) as well as 

a number of unique proofs of named results, such as Lagrange’s Theorem, that they 

are expected to memorize.  These proof archetypes include proving properties such as 

that an operation in a set is closed or assembling logical arguments such as that a 

function is a homomorphism from one structure to another. 

Crafting a proof implies that the students possess a number of other 

proficiencies as well.  For example, deciding whether to construct a proof by direct 

argument or to assume the opposite of the result and derive a contradiction.  In 

addition, students should be able to take a newly proposed structure and to explore 

the features of that new structure, ensuring that hypotheses are satisfied and that 

conclusions are meaningful. 

Finally, the students should be able to assess both the completeness and 

correctness of their arguments.  Most often, this arises as proof validation.  Students 

are expected to read their own work critically to ensure that the proof covers all the 
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possible cases, that the proof gives an argument for all necessary assertions, and that 

all the statements in the proof are valid and warranted (Weber, 2005).   

After a single semester studying abstract algebra, no one expects students to 

have achieved the same level of proficiency as experts, but most teachers believe that 

their students should be able to make some progress on the above types of proofs 

using appropriate knowledge.  In general, students will be far more successful at 

crafting those types of arguments that they attempt more frequently and less 

successful at crafting those types of arguments that they attempt less frequently (this 

seems to be the analogue of time-on-task from process-product research).   

So what is a reasonable expectation for student proof skills resulting from a 

semester of abstract algebra?  In almost every abstract algebra course, students 

repeatedly see and create arguments about properties on operations.  Thus, I expected 

that the students would demonstrate proficiency with proving and offering counter-

examples related to the group and ring axioms.  

The local situation 

The situation at Midwestern State University is different from that of many 

other institutions in that abstract algebra has an introduction to proofs course as a 

prerequisite.  This proofs course was intended to mitigate the overwhelming nature of 

the abstract algebra class by teaching students many of the proof archetypes before 

they begin studying the content of algebra.  The catalog description of “Mathematical 

Proofs” reads: 

The prime objective of this course is to involve the students in the writing and 

presenting of mathematical proofs. The topics in this course will include logic, 
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types of proof, sets, functions, relations, mathematical induction, proofs in an 

algebraic setting such as divisibility properties of the integers, proofs in an 

analytic setting such as limits and continuity of functions of one variable. 

Additional topics may include elementary cardinal number theory, paradoxes 

and simple geometric axiom systems. 

(MSU Math Department Page, http://www.MSU.edu/math/coursedesc/, 4/18/06). 

Opportunities to Learn  

Students in the DTP class saw a proof of basic properties in nearly every class 

meeting and during class they were often called upon to supply a part of a property 

proof or a homomorphism proof.  In her syllabus, Dr. Hedge wrote that “proofs form 

the backbone of this course,” and that she expected students to develop the “ability to 

conceive of and write up proofs.”  To that end, she demonstrated and expected 

students to take part in demonstrations of proofs in class.  Moreover, the questions 

that students asked about homework and exams indicated that proof was one of the 

principle components of each of those types of assessment as well.  Thus, as is to be 

expected, the students in the DTP class saw many proof models, took part in proof 

creation, and wrote a number of proofs of properties of operations and functions.   

 The students in the investigative class saw and made many fewer proof-

arguments as part of their class meetings, but there still were some proofs presented 

in class.  As part of class discussions, the students were regularly asked to state the 

necessary properties that a specific structure must fulfill, with the implication that 

they should be able to demonstrate those properties.  The syllabus for the class stated 

that the student “facility with reading and writing proof will be used and extensively 
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enhanced,” such that proof will be a means “for demonstrating and explicating their 

understanding.”  To that end, the students were expected to read and understand the 

text, and were given a reading guide (for at least the first two chapters) that asked 

them to consider proof development.  Moreover, on assessments the students were 

responsible for making proof-based arguments.  For example, on the final exam for 

the course, the students were asked to demonstrate that a given set and operation 

formed a cyclic group, to show that a given group was metabelian, and to make a 

series of small arguments that made use of Sylow-p subgroups.  In short, while they 

did not seem to see proof or practice it in class as much as the DTP students, they 

were still expected to have developed quite high levels of proficiency with proof.   

Assessment of Student Understanding 

Due to limited time and the constraints of the exam, I decided to only assess 

the students’ proficiencies on two types of proofs:  (1) proofs about properties of 

operations, with a special emphasis on inverses; and (2) proofs about polynomials, 

with a special emphasis on factors and roots.  (See Appendix B)   

Evidence of Student Proficiency 

Group and ring axiom proofs  

As expected, the students proved to be quite proficient with these proof types.  

All but one of the students gave a correct response to the quiz question and 

demonstrated an understanding that a single counterexample is sufficient to show that 

a property does not hold.  Similarly, all of the students did quite well with the proof 

form on the item which asked them to demonstrate a set with an operation formed a 



 

 229 
 

group.  On each of these items some of the students did demonstrate some 

questionable understanding of both content and logical structures, but on balance they 

showed they were capable of creating the appropriate proof structure and giving a 

reasonable proof for most group and ring axioms. 

Proofs and counterexamples 

On the quiz I proposed a structure and asked the students to determine if the 

structure was a ring.  The students had to determine that the distributive property did 

not hold, and thus demonstrate that the structure was not a ring.  To demonstrate that 

the distributive property did not hold in the structure, the students needed to show a 

counterexample.  Interestingly, this item also gave the students the opportunity to 

demonstrate proficiency in writing proofs of the ring axioms.  Because the students 

were not told whether or not the proposed structure was a ring, many of them started 

by writing proofs for each of the properties until realizing that the distributive 

property did not hold.   

Only 1 student of the 12 incorrectly concluded that R is a ring; the other 11 

students correctly stated that R is not a ring and concluded that the distributive 

property was the problem.  The one student who concluded that R is a ring fell victim 

to overgeneralization and thus, incomplete reasoning.  Two students claimed to 

demonstrate that distribution failed, but did not actually do so.  All but one of the 

students demonstrated that they knew that a single instance is all that is necessary to 

demonstrate that a property does not hold, and that a single property not holding is 

sufficient to confirm that a candidate is not a ring.  Lynn’s response was correct and 

also the most succinct: 
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No, R is not a ring, because it doesn’t satisfy associativity distributivity.  We 
provide here a counterexample.   
3*(2+2) = 3*(4) = 4, but 
(3*2)+(3*2)= 3+3 = 6. 
The distributive property does not hold so, R is not a ring. 
 

Although she does not state why she only evaluated whether associativity and 

distribution hold, Lynn demonstrated that she understood exactly what was required 

to show that the candidate is not a ring, and she demonstrated that she knew that the 

property which did not hold was the distribution of the maximum operation over 

addition.   

All of the 11 students who wrote that R is not a ring attempted to show 

counterexamples to demonstrate that the distributive property did not hold.  Due to 

the number of attempts that the students made to show a counterexample, it is 

reasonable to suggest that all of the students understood that showing a 

counterexample is sufficient to demonstrate that a conjecture is not true.   

All of the students but one wrote down the eight properties that a ring needs to 

satisfy and then proceeded to demonstrate that each holds.  While working through 

the eight properties, six of the students [Bob, Ned, Kenny, Aurora, Jeff, Mark] 

realized that all of the addition properties were inherited from the integers and stated 

such.  For example, Mark, a student in the investigative class, wrote: 

Addition Closure ⇒ Same as + √ 
Associative (Add.) ⇒ Same as + √ 
Commutative (Add.) ⇒ Same as + √ 
Zero Element = 0 √ 
 

Most of the students, when they arrived at distribution, wrote something like Ned, 

“3(1+6) = 3(7) = 7 ≠ (3)(1) + (3)(6) = 3 + 6 = 9.  Thus a(b+c) ≠ ab + ac and (dots) the 



 

 231 
 

distributive axiom fails.”  There were two students who claimed that they showed that 

distribution did not hold, but did not do so correctly.  Consider Steven’ work: 

m*op*(n+l) = max(m, n) + max(m, l) or max(m, n+l) 
(m+n)*op*l = max(m, l) + max (n, l) or max (m+n, l) 
This property fails because say m = 1, n = 2 and l = 3 
Then max (1, 2) + max (1,3) = 2 +3 = 5 
Max (1, 3) + max (2, 3) = 3+3 = 6. 
 

Similarly, James did not actually demonstrate what he claims that he did.  

Consider his work: 

a*(b+c) = a*(b+c) = (a  b+c) 
(a+b)*c = (a+b) * c = (a+b  c) 
So, a = a+b or a= c 
B+c = a+b or b+c = 0 
B = 0 
Conditional a must be c 
Conditional b must be 0 
Not always true 
So not a ring 
 

It was exactly at this point of generalizing from the properties of the integers 

under addition that Jeff made his error.  Let us now consider the student with the 

incorrect response.   

Suppose, wolog, a<b<c, then a(bc) = ac = c= bc = (ab)c.  So, multiplication is 
associative in R. 
Since multiplication is distributive in Z, it is distributive in R as well.  
Therefore, R is a ring. 
 

His assumption regarding the ordering of the elements would actually allow a quick-

check of distributivity to seem as if it behaved as appropriate 

[b+c=a(b+c)=ab+ac=b+c].  He apparently did not realize that his assumption leaves 

unchecked the case where a>c in which case distributivity fails.  That is, he was 

unable to determine that his reasoning was incomplete in the given situation.   
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 All of the students gave evidence on the quiz that they had good proficiency 

with the proof archetypes for the group and ring properties  They gave more evidence 

for this with their work on Item 1a of the exam.  On this item the students were given 

a candidate structure and asked to show that it is a group: 

 

The first line references a structure (squadron) defined as part of the introduction to 

the exam.  This problem assesses students’ ability to give a proof that a set and 

associated operation form a group.  On this item the students needed to demonstrate 

that they knew the correct proof archetype and could complete an argument for each 

of the four properties of closure, identity, inverses and associativity.   

The students demonstrated a number of levels of proficiency on Item 1a, and 

definite themes emerged.  For example, there were multiple students who 

demonstrated that they possessed all the proficiencies necessary to craft a proof about 

the group properties.  Lynn is an example of such a student and her response is below.   

Since S contains an identity e, and e*e=e, e is a unit and U is non-empty and 
has an identity. 
Suppose a,b∈U.  Then a,b are units, so ∃ Sba ∈−− 11,  st ebbeaa == −− 11 , .  
So, Uba ∈−− 11, .  Then eaaaeaaabbabab ==== −−−−−− 111111 ))(( .  So, 
ab∈U, and U is closed. 
Since (S,•) is associative, U inherits this property. 
For a∈U, ∃ Sa ∈−1 st eaa =−1 .  Then 1−a  is a unit and 1−a  ∈U, so every 
element of U has an inverse.   
Thus, (U,•) is a group. 
 

Two other students demonstrated a similarly high level of proficiency; Jeff and 

James.  Both Jeff and James were missing a proof of one of the properties, but their 

omission had no impact on the validity of their proofs.  Both submitted proofs that 
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were correct in details and logically complete.  Jeff never explicitly stated that (U, •) 

is non-empty.  But he demonstrated that (U, •) has an identity and thus is non-empty.   

James never demonstrated that the operation on the elements of (U,•) must be 

associative.  This seems a larger omission than that of Jeff. When showing that a 

given structure is a subgroup, associativity is omitted because it is inherited.  This is 

true in this case, and it could be that James recognized this and simply did not 

mention it.   

 Six students (Kenny, Ned, Stephanie, Johnny, Rebekah and Nathan) crafted 

proofs which would have been complete and correct had they not made content-based 

mistakes (as discussed in the identity strand or the structure strand as appropriate).  

All of these six students made an error in their demonstration that the operation is 

closed; typically they simply asserted that the operation was closed.   Johnny’s 

response was representative of the mistake, and it also included idiosyncratic 

language, which may indicate that he had a misconception related to basic facts.   

A) We want to prove that (U, •) is a group.  Since U⊆S, and since S is a 
squadron, (U, •) is preserved under the binary operation, is associative 
and has identity e.  This is all by the definition of a squadron.  Since U 
consists of the units of the set S, by definition of a unit, for each u∈U, ∃ 

Uu ∈−1 st .1 euu =−   Therefore, (U, •) is a group.  
 

When read without interpretation, Johnny’s work does not demonstrate that (U, •) is 

closed.  Yet, observation of his classroom sessions indicated that he and other 

students incorrectly use “preserved” when they meant “closed.”  Thus, if we assume 

that he is likely to make the same errors in his written work as he does in his spoken 

work, he, meant to argue that (U, •) is closed.  Assuming that Johnny did mean 

closed, he has made a content-based error in his proof, which has already been 
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discussed above.  Thus, Johnny should be considered as part of the group that has 

demonstrated the appropriate proof proficiencies on this item.   

 The three remaining students all made significant errors that indicated 

problems with proof-proficiency.  For example, Steven incorrectly chose his elements 

x and y in (U, •) such that xy=1.  She then claimed that, since 1∈ U the set satisfies 

the closure requirement.   

Proof:  Since S is a squadron, SUyx ⊆∈∃ ,  such that Sxy 1= .  We have 
closure: 
 SUxy ⊆∈= 1  
For, SUzyx ⊆∈,,  we have 
 )()( yzxzxy = and thus we have associativity. 
According to S3, there is an identity element, say e such that xexex == , 

SUx ⊆∈∃ . 
Now we need an inverse. 
 Because x, y are units, we have  
 Sxy 1=  and thus,  
 every element is an inverse. 
Therefore (U, •) is a group. 
 

Steven needed to choose arbitrary elements x and y in the set U and show that the 

product xy is an element of the set.  That is, he set a condition on x and y rather than 

choosing arbitrary elements; thus, his argument was incorrect.  This is the type of 

argument with which he should have developed significant proficiency during his 

proofs class.  Moreover, he certainly had opportunity to improve his proficiency 

during his semester of abstract algebra.     

 Aurora made a number of serious errors.  First, she believed that (S, •) is a 

group and that she needed to demonstrate that (U, •) is a subgroup, although her 

notation makes this interpretation somewhat unclear.  Consider her work: 

By definition we know a squadron is a group so ∃ a,b∈G st ab∈G, and also a 
and b have an inverse, namely 1−a  and 1−b  st eaa =−1  and ebb =−1  so 
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1−a and 1−b are units, and 1−a , 1−b ∈G, but also to H.  If 1−a , 1−b ∈G, 1−a 1−b  
must belong to G.  Since ab∈G and 1−a 1−b ∈G  (ab)( 1−a 1−b )= 1−aa 1−bb =e, 
so 1−a 1−b must be a unit and 1−a 1−b ∈H.  For 1−a ∈H, aa 1− =e, so a is also a 
unit and belongs to H.  Therefore, H is a subgroup of G and is a group. 
 

Even if we accept that she intends to show that (U, •) is a subgroup of (S, •), her 

proof is still incomplete.  If we ignore her content mistakes, she seems to have 

demonstrated that each element has an inverse and that (U, •) is closed.  Her proof of 

closure seems complete, although when she demonstrated that the product of two 

arbitrary elements is a member of the set U, she chose to make use of inverse 

notation.  At no point does Aurora demonstrate that the set U is non-empty, nor does 

she argue that e is an element of U.  Thus, although she has demonstrated some 

proficiency at showing that certain properties hold, she did not demonstrate that she 

knows what must be shown in order to write a valid proof that a structure is a 

subgroup.   

 The last student, Mark, may have submitted the most problematic response to 

the item.  He made numerous content errors, and he did not demonstrate that he 

knows what he needs to prove in order to demonstrate that (U, •) is a group or that he 

has the ability to correctly verify the properties that he has attempted to show.  His 

work: 

Proof:  Let x, y, z be units in the squadron S. 
S1:  x*y will be in S and U because the result will be x, y or z (let z be an 
arbitrary unit).  If x or y is the identity, then the result will be the opposite.  If 
neither is the identity, x or y (being a unit) will “divide” z because they 
“divide” every element. 
S2: (x*y)*z=x*(y*z) 
Following the same steps as above, a unit “divides” every element and x, y, 
and z are all units. 
S3:  The identity is always a unit.  Therefore it is included in U.  Thus, U is a 
group. 
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In each of the cases above, Mark has, rather than writing a proof, given a description 

of the intuitive understanding he sees as necessary to write a proof.  In analyzing his 

attempted proof, it seems that he attempted to show that (U, •) is closed, associative, 

and that (U, •) has an identity.  He has not attempted to show that eac element of (U, 

•) has an inverse.  When we examine his attempt to show that (U, •) is closed, we see 

that he has made errors in terms of both content and proof-proficiency.  He attempted 

to claim that xy must be x, y or z where z is an arbitrary unit and then gave some 

explanation.  In terms of his proof proficiency, because he did not give an argument it 

is impossible to evaluate his fluency with symbolic argument and, further, his use of 

non-standard phrasing makes it unclear whether he has mastered the concepts.   

Summary of proofs and counterexamples for property arguments  

All of the students knew the properties that they needed to check in order to 

demonstrate that a proposed structure is a ring.  They all knew how to check whether 

the properties were satisfied.  Most were able to recognize that they did not need to 

address the additive properties, because, in this case, they were inherited from the 

integers.  Of the 11 students who determined that R is not a ring, all of them 

recognized that the distributive property was problematic and attempted to present a 

counter-example. This implies that they realize that a single counterexample is 

sufficient to show that a proposed structure is not a ring.  This was a case where the 

students should have been quite proficient with this type of problem, and, in general, 

they were. 

 There were two students who believed that they showed a counterexample of 

the distributive property, but instead showed something else.  One of the students was 
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from each class and thus, it seems that there is not a class effect that needs to be 

explored.  The data from the quiz are fairly consistent and suggest that the students 

developed proficiency with this type of exercise through practice.   

The proof proficiencies that the students demonstrated on the exam question 

about sub-groups were much more mixed.  The great majority of the students knew 

the properties they needed to demonstrate in order to prove that (U, •) is a group.  

Except for a few content-based errors, they demonstrated appropriate proof 

proficiencies in carrying out these arguments.  This is a proof type that the students 

had practiced many times, as reflected in their substantial proficiency.   

Polynomial Proofs 

 There were three types of proofs related to polynomials on which I was able to 

evaluate the students.  The students needed to demonstrate that a given polynomial 

factored in one domain and was irreducible in another.  To show the first of these, the 

students should have constructed the factors of the given polynomial and then 

demonstrated that their factorization was correct via polynomial multiplication.   

 In demonstrating that a polynomial is irreducible, the students should 

recognize that this is a non-existence proof and choose an argument by contradiction.  

They should make this choice because almost all non-existence proofs are done by 

contradiction.  A proof should begin with the assumption that some factorization 

exists, derive facts about this factorization and then conclude that the facts contradict 

some part of the hypotheses or known facts.   

 Lastly, I asked the students to craft a conjecture and proof about the existence 

of irreducible polynomials with real number coefficients.  Unfortunately, not many 
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students made much progress on crafting a conjecture, so their responses did not give 

much evidence about their proof proficiency. 

 Let us first consider the proof proficiency that the students demonstrated with 

factoring a polynomial.  In their responses to Item 1 of the second set many of the 

students gave a plausible factorization of the polynomial 14 +x . But only one, 

Aurora, gave a possible factorization and then expanded her factorization.  Neither of 

the other students who gave a correct factorization, Kenny and Lynn, showed that 

their factorization expanded correctly.  The two students who gave incorrect 

factorizations, Ned and Stephanie, also did not attempt to actually expand their 

factorizations.  Instead, each of these other four students simply asserted that their 

factorization was correct without any demonstration.  For example, consider Ned’s 

assertion, “Notice 1)1)(1)(1)(1( 4 +=−+−+ xixixixix .  Thus, p is the product of 

four first degree polynomials from C[x].” 

In fact, Aurora was the only student who gave a factorization and then 

expanded to show that her work was correct.  Besides Aurora though, there was 

another student who showed exceptional proof-proficiency on Item 1.  Jeff did not 

factor the polynomial, but instead he crafted a proof of the Fundamental Theorem of 

Algebra from a collection of theorems that are given in his text.  Jeff demonstrated 

that he was capable of writing an analytic proof that p(x) must factor in C[x] but he 

did not actually demonstrate a factorization of p(x) in C[x].  His work: 

p(x) is a product of four first degree polynomials in C[x]: 
By Thm 4.13, p(x) is a product of irreducible polynomials in C[x].  By 
Corollary 4.26, each of these polynomials is of degree 1.  By thm 4.2, the 
number of these first degree polynomials is equal to the degree of p(x), and 
thus, p(x) is the product of four first degree polynomials in C[x]. 
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Jeff seemed to have a high level of proficiency with analytic reasoning about 

polynomials.  All of the hypotheses are met when he made use of a result (which is 

not common) and he used the results correctly.  In effect, he argued that C[x] is a 

unique factorization domain and that polynomials will factor completely.  He then 

showed that these two facts are sufficient to demonstrate that p is the product of four 

first degree polynomials.  That is, he seemed to identify the theorem that he needed to 

prove, and then was able to demonstrate a very marked ability to reason about the 

ring of polynomials with complex coefficients by building an analytic proof of that 

theorem.   

 The remainder of the students made a collection of errors in their responses or 

did not respond at all because of incomplete knowledge of polynomials or complex 

arithmetic.  These errors meant that the students could or did not progress far enough 

to then demonstrate any fluency with polynomial proof on this part of Item 1.   

Showing that a polynomial is irreducible 

The students were unable to show that a polynomial is irreducible in Q[x]; 

their efforts indicated that many have an incorrect definition of irreducible.  But the 

students also did not seem to use the correct type of argument.  Two students gave a 

complete and correct proof that p(x) is irreducible in Q[x]. A third student wrote the 

most important fact, but did not give an actual proof.  The other students failed to 

make significant progress on the item or demonstrated that they confused irreducible 

with has no roots.  The students were quite good at showing that the polynomial did 

not have roots in the field Q[x].   
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Both Jeff and Lynn gave a complete proof that p(x) is irreducible in Q[x] 

whereas Kenny explained in a sentence why p(x) could not have factors.  Jeff’s work 

was very similar to Kenny’s in execution and level, but, he added slightly more detail 

to his result, correctly arguing that for p to factor in Q[x] it must also factor in Z[x].  

Jeff wrote: 

Suppose, to the contrary, that p(x) is reducible in Q[x] so it can be factored as 
the product of two non-constant polynomials in Q[x].  If either has degree 1, 
then p(x) has a root in Q.  But, the rational root test shows p(x) has no roots in 
Q (the only possible roots are +/-1 and neither is a root of p(x)).  Thus, if p(x) 
is reducible, the only possible factorization is as a product of two quadratics; 
by thm 4.2.  By Thm 4.22, there is such a factorization in Z[x].  Furthermore, 
p(x) can be factored as a product of monic quadratics in Z[x], say 

1))(( 422 +=++++ xdcxxbaxx , with a, b, c, d∈Z.   
We get 1)()()( 4234 +=++++++++ xbdxadbcxdbacxcax .  Equal 
polynomials have equal coefficients so a+c=0, ac+b+d=0, bc+ad=0, and 
bd=1. We see that a=-c, so  ac+b+d= 02 =++− dbc  or 02 =++ dbc . 
But, bd=1, so either b=d=1 or b=d=-1. 
Thus, either 0112 =−−c or 0112 =++c  
  22 =c   22 −=c  
There is no integer whose square is 2 or -2, so a factorization of p(x) as a 
product of quadratics in Z[x], and hence in Q[x], is impossible.  Thus, p(x) is 
irreducible in Q[x]. 
 

Lynn and Jeff gave complete and correct responses, both indicating that they 

understand what it means for a polynomial to be irreducible in a given domain and 

how to demonstrate this.  Additionally, they demonstrated that they are able to write 

two arbitrary polynomials and to reason generally about polynomials via algebraic 

manipulation.  Moreover, both of these students recognized that the important 

contradiction to derive is the fact that the square root of two is irrational.  Lynn and 

Jeff both displayed quite high levels of proficiency on this item—they were the only 

two students to give complete and correct arguments. 
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In comparing this portion of Jeff’s response to that of the first part of Item 1, it 

is important to note that he has, in fact, derived enough knowledge about the 

necessary coefficients in the factorization of p into two quadratics to give a 

factorization in R[x].  He has stated that “ 1))(( 422 +=++++ xdcxxbaxx ,” and he 

has determined that: 

a=-c 
 2c =2 
 b=d=1 or b=d=-1 
 
However, none of his submitted work provided evidence that he substituted these 

derived values into the general quadratics that he had written.  Given the level of 

work that Jeff exhibited, it seemed that he would have been capable of such 

substitution.  Yet, on his submission he wrote, “p(x) is the product of two irreducible 

polynomials in R[x]:” and then wrote nothing below that (this line is on the same 

page as the above work).  It seems that he does not realize that he has all of the 

necessary information to write these two polynomials.  He certainly realized that he 

left that part of the problem incomplete.  His analytic argument that p factors into 

linear terms and his inability to list inverses on Item 2 in the first problem set may 

indicate one of two things.  It may be that that he does not have great facility with 

computation.  It may be that he simply does not fluidly switch between formal proof 

and explicit values in the appropriate systems.  This is a case that would merit further 

exploration, as this hypothesized set of proficiencies appears to be quite uncommon. 

Kenny, another student who gave a correct response in the first part of this 

item, seemed to know the kernel of the argument that he needed to give, but he did 

not supply enough detail to have a correct response.  
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Coefficients such as √2 are not in Q, so the polynomial is irreducible in Q. 

Here he was referencing his earlier work on the problem, and his statement is correct 

in that the polynomials that he wrote do not have coefficients from the rational 

numbers.  Had he argued that this is the only possible factorization of p, his response 

would have been complete.  It seems likely that he believes this to be a unique 

factorization, but it is unlikely that he has learned that R[x] is a unique factorization 

domain.  As such, his response should be judged incomplete. 

 Stephanie also gave a logical chain that demonstrated correct logic with 

regard to proof.  She wrote: 

Since p is irreducible in R[x] then it must be irreducible in Z[x] and therefore 
irreducible in Q[x]. 
 

Her response correctly claimed that a polynomial which is irreducible in R[x] is thus 

irreducible in both Z[x] and Q[x].  Her only logical problem was that she relied on an 

incorrect premise, although she believed it to be true based upon her 

misunderstanding of irreducible.  Thus, in terms of proof proficiency, this is a very 

reasonable demonstration of proficiency.   

 The rest of the responses to this item were far less complete, but did allow 

students to display a misconception relating to polynomials.  Six students argued that 

because p(x) has no roots in Q[x] it is irreducible.  For example, James: 

41 x=− .  x to an even power, where x∈R will always be ≥0, same applies to 
Q. 
[Scratch work]  If there is a solution, there’s a factor and is reduc.  But, 4x ≠1 
in Q[x].  So, it’s irreduc in Q[x]. 
 

For each of these five students, this is probably the first time that they had to 

demonstrate that they understand what it means for a polynomial to be irreducible as 
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opposed to simply not having roots in the proposed domain.  Thus, their lack of 

proficiency with this type of proof is somewhat understandable.  Moreover, the 

number of non-existence proofs that they wrote in a semester of abstract algebra is 

probably also relatively small. Thus it is not surprising that the students did not 

demonstrate high levels of proficiency at actually showing that the given polynomial 

was irreducible. 

On the other hand, almost all of the students who submitted work were quite 

capable of showing that the polynomial did not have rational roots.  Most of the 

students correctly applied the rational root test to the polynomial and then concluded 

that it could not have rational roots.  This demonstrated that they knew when and how 

to use the test, they knew all of the hypotheses to fulfill, and they knew how to 

correctly interpret the results of the test.  That is, the students demonstrated some 

proficiency with polynomial proof, although of a less developed nature than 

anticipated. 

 The last item on which a reasonable number of students made any proof-

attempt was Item 3 in the second problem set.  Students’ poor performance on this 

item was directly related to their inability to access the item. But some of the students 

who made an attempt also made significant errors that were directly related to their 

proof proficiencies.  On this item, Jeff submitted a response that was nearly ideal, and 

Lynn’s work also exhibited a very high level of proficiency with proof.  Jeff’s work: 

We know that every polynomial of degree 1 is irreducible in R[x], so we 
suppose f(x) is irreducible in R[x] and deg(f(x))≥2.  Then, since f(x) is a non-
constant polynomial in C[x] it has complex roots iyaz +=  and iyaz −= .  
So, by the factor theorem:  

)),())((()( iyaxiyaxxf −−+−=  for some h(x) ∈C[x]. 
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We let ,2))())((()( 222 yaaxxiyaxiyaxxg ++−=−−+−=  and so the 
coefficients of g(x) are real numbers.  The Division Algorithm shows that 
there are polynomials in q(x), r(x) ∈R[x] such that f(x)=g(x)q(x)+r(x), r(x)=0 
or deg(r(x))<deg(g(x)). 
In C[x], we have f(x)=g(x)h(x)+0.  Since q(x), r(x) are also in C[x], the 
uniqueness part of the Division Algorithm in C[x] shows that q(x)=h(x) and 
r(x)=0. 
Thus, h(x)=q(x)∈R[x].  Since f(x)=g(x)h(x) and f(x) is irreducible in R[x], and 
deg(g(x))=2, h(x) must be a constant… 
So, f(x) is a quadratic polynomial… and the largest possible degree of an 
irreducible polynomial in R[x] is 2. 
 

In this instance, Jeff has again demonstrated that he was able to craft an argument that 

supported his hypothesis.  For example, he made use of the necessary results such as 

the division algorithm in appropriate ways.  After he noted that one complex root of a 

polynomial gives rise to a quadratic with real coefficients, he made use of the division 

algorithm to demonstrate that h must then be a constant in the ring R[x].  Since he had 

assumed that f was irreducible, he realized that he had then demonstrated that the 

power of f is two.  This proof is nearly identical to the proof that I gave the students 

as a solution, including assuming that f is irreducible to start.  The reason to assume f 

is irreducible is to be able to declare, without further argument, that f must be a 

quadratic.  Lynn did not do so, and was then forced to argue that any polynomial 

which had a degree larger than 2 was reducible.  This seems minor, but could be read 

as indicative of a difference in their levels of proof proficiency.  Jeff seems to have 

slightly more strategic knowledge when it comes to proof-construction than Lynn 

(Weber, 2001).  Yet, in comparison, none of the other students in either class 

demonstrated nearly their level of proficiency with analytic argument. 

Kenny stated that there are irreducible polynomials of degrees 0, 1, and 2 and 

claimed that the quadratic theorem supports his assertion. 
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Every polynomial of degree 0 is obviously irreducible.  Also we know that 
every polynomial of degree 1 is irreducible since it cannot be expressed as the 
produce of two polynomials of lesser degree, in this case 0.  From the 
quadratic theorem we know that we do not always have roots in R.  Thus, 
polynomials of degree two or less are sometimes irreducible.  However 
multiplying a polynomial of degree 1 by a polynomial of degree 2 gives a 
polynomial of degree 3.  By our theorem, this p(x) is reducible.  Thus, 3 is the 
lower bound for all polynomials p(x)⊆R[x] to always be reducible.  

)2)(1( 2 −+ xx . 
 

I interpreted Kenny’s work as meaning that the quadratic formula shows that not all 

quadratic equations have roots in R.  While he made a good beginning of an 

argument, in an attempt to show that there are irreducible polynomials of degree two, 

he then encountered difficulty in completing his argument that all polynomials of 

degree greater than two must be reducible.  He may have been drawing on his 

previous knowledge of functions in claiming that “multiplying a polynomial of 

degree 1 by a polynomial of degree 2 gives a polynomial of degree 3.”  He knew that 

all cubic polynomials have at least one real root and can thus be factored over R.   

But, he did not recognize that this was a non-existence argument and thus required a 

proof by contradiction.  This may be because he had not mastered polynomial 

content, but it seems more likely that he had not yet developed enough fluency in 

determining situations appropriate for argument by contradiction.  This item, and 

proof generally, is the place where the differences between the two most proficient 

students, Jeff and Lynn, and Kenny become apparent.  Both Jeff and Lynn gave 

nearly perfect responses to all of the proof items while Kenny struggled, submitting 

more logically incomplete work and proof attempts in which he failed to identify the 

correct proof archetype.   
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 Aurora made some progress towards a proof. For example she began by 

demonstrating that irreducible polynomials with real coefficients of degree two exist. 

In C[x] 12 −=x  
 x= 1−±  
 x=+/-i ->Both roots in C[x]. 

))((12 ixixx +−=+  
In general, 22222))(( yxyixiyxiyx +=−=−+ , the highest degree in R[x] is 
2. 
 

The work that followed this initial step was less helpful in her attempt to make and 

demonstrate a claim about polynomials.  It seemed that her lack of fluency with 

complex numbers prevented her from making significant progress on the item, but 

what she did do is still logically problematic.  She demonstrated that multiplying two 

linear terms with complex conjugates as roots gives rise to a real quadratic.  She then 

claimed to have demonstrated that the greatest degree of an irreducible polynomial in 

R[x] is two.  She did indicate the highest degree of an irreducible polynomial, but her 

attempt at proof highlighted her lack of proficiency with polynomials with complex 

coefficients.  Reading past her incorrect knowledge about polynomials, she did note 

that multiplying complex conjugates always gives rise to real numbers and used this 

idea to support her claim.  Her work is a reasonable use of the material that she has 

mastered and at least acknowledged the task.   

 James also made an attempt at the problem and his efforts included stating the 

existence of irreducible polynomials in R[x]. He showed an irreducible quadratic, but 

he did not give a greatest degree for irreducibility.  His work did not include any 

mistakes, but it also did not allow any real insight into his proof proficiency other 

than the fact that he recognized that he should exhibit an irreducible quadratic. 
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Seven students, (Nathan, Rebekah, Ned, Johnny, Mark, Stephanie , Steven) 

either made no attempt or their work did not give any indication of their proof 

proficiencies.  These students did not seem to have the level of fluency with 

polynomials or complex numbers that they needed to demonstrate proof proficiency 

on this item.   

Summary of polynomial proof proficiency   

In general, the level of difficulty of this item did not allow seven of the 

students any meaningful opportunity to demonstrate proof proficiency.  The five 

students who made some progress on this item all correctly noted that there are 

irreducible polynomials of degree two and most exhibited such a polynomial.  This is 

a good first step for proving a conjecture about the greatest degree of an irreducible 

polynomial.  It was the ability to make more progress on the item that truly 

distinguished those students with highly developed proof proficiencies from all of the 

others, even those with quite high levels of content proficiency.  In this case Aurora, 

James and Kenny all made some further attempt on the item.  Kenny and Aurora also 

both asserted that, “multiplying a polynomial of degree 1 by a polynomial of degree 2 

gives a polynomial of degree 3.”  In this case they were both likely claiming that a 

cubic polynomial must always have a real root which is useful in the context of the 

problem.   

None of the three students (Aurora, James or Kenny) made use of an argument 

by contradiction, the type of argument that was most likely to help them make real 

progress on the item.  It was their correct choice of an argument by contradiction that 

gave Lynn and Jeff the ability to give a complete proof.  The most curious aspect of 
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the item was that Kenny offered a non-existent theorem in support of his claim.  He 

did this in other places on the exam as well such as on Item 2 in the first problem set.   

Jeff crafted an argument that is nearly identical to that which I wrote as a 

solution and Lynn’s work showed nearly the same level of proficiency, except that 

she did not explicitly state her assumption that her polynomial was irreducible.  Thus, 

when she reached the end of her proof, her conclusion of contradiction was not 

completely warranted.   

While it is certain that all but two of the students lacked the content 

knowledge to make real progress on this item, the proof proficiency that they 

demonstrated was still somewhat less than expected.  The students made unsupported 

assertions, made assertions that were not logically supported by the justification that 

they did offer and, in one case, did not even attempt to prove the correct result.  

Overall, the students’ work on this non-traditional problem was really quite 

ineffective.   

Summary of Demonstrated Proof Proficiency 

 There were three significant types of proficiencies related to proof that this 

section assessed; (1) the student’s ability to create proofs about group and ring 

properties, (2) the student’s ability to write proofs about polynomials, and (3) the 

student’s ability to select the correct proof-archetype for a given proof challenge.   

 Overall, the students were most proficient at the types of proofs that they 

practiced most often and demonstrated less proficiency in crafting non-routine proofs.  

On two different items the students were asked to prove or disprove that a set and 

operation  
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• is associative 

• distributes over a second operation ○ 

• has an identity 

• gives rise to inverses for elements (some, all, none) 

• is closed 

On the quiz the students needed to demonstrate that the distributive property did not 

hold.  All but one of the students correctly did so by exhibiting a counter-example, 

thus demonstrating that they recognized that a single counter-example is sufficient to 

prove that a property does not hold.  All but one of the students correctly determined 

that because the maximum operation did not distribute over addition, the proposed 

structure could not be a ring.  The last student seemed to not be paying sufficient 

attention to his proof, as he demonstrated a very high level of analytic proficiency on 

all of the other items.  As such, it seems that most of the students are capable of 

demonstrating that a property does not hold, and they understand that if a single 

property does not hold, then the structure cannot be a group or ring 

 Similarly, in their work on the quiz and test item, the students all 

demonstrated good proficiency, barring difficulties derived from their content 

knowledge, in proving that group or properties hold in particular structures.  

Moreover, the majority of the students also demonstrated that they knew which 

properties they needed to verify in order to show that a set and operation formed a 

sub-group.  

Not surprisingly, the students demonstrated less proficiency with polynomial 

proofs than with the group and ring property proofs.  Most students were quite good 
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at showing when a polynomial does not have rational roots, and they were also very 

good at demonstrating the existence of irreducible polynomials with real number 

coefficients.  Almost all of the students were able to determine when a given 

polynomial does not have rational roots by correctly using the rational root test.  

Similarly, the majority of the students seemed to know that a polynomial such as 

12 +x  is irreducible over the real numbers and they cited this as evidence that the 

maximal degree of an irreducible polynomial over the real numbers must be at least 

two.   

 However, while the students were quite proficient at demonstrating some facts 

about polynomials, they struggled to create more advanced or non-routine proofs 

about polynomials.  For example, the students were generally unable to demonstrate 

that the particular fourth degree polynomial x4 + 1 is irreducible over the rational 

numbers.  Part of this difficulty likely stemmed from an incomplete understanding of 

the term irreducible, but part of the problem was likely due to the fact that the 

students did not recognize that a non-existence proof needed a contradiction proof-

archetype.  That is, they lacked the appropriate strategic knowledge.  Similarly, the 

students struggled to demonstrate that the given polynomial had four linear factors 

over the complex numbers.  Only one of the students actually offered an analytic 

proof. The other students who made an attempt all exhibited four linear factors (some 

of which were actually correct). 

  The most surprising aspect of the student’s difficulties with polynomials and 

polynomial proof was their lack of progress on Item 2.  The item asked them to 

construct a root of an irreducible polynomial by creating an extension field.  They 
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were expected to cite the fact that [x] is a root of the polynomial in the new field.  To 

complete the claim that [x] satisfied the conditions of the problem, the students should 

have shown that [x] is a root of the given polynomial.  Only one of the students both 

stated and demonstrated that [x] is a root of the polynomial.  None of the other 

students demonstrated that they could show a given value is a root of a polynomial. 

Comparing the Demonstrated Proficiencies of the Two Classes 

During meetings of the two different classes of abstract algebra, the students 

saw and helped write very different amounts of proof.  The students in the DTP class 

saw and helped write at least one proof per class period, whereas the students in the 

investigative class saw one proof a week or less.  Because of this difference in 

classroom experience, it is plausible to expect to see very different types of proof 

proficiencies on the part of students in the two classes.  The current data were not rich 

enough to provide a means for comparison, with only one item actually assessing 

student’s proficiency with property proof and such a small student sample from each 

of the two classes 

A very preliminary reading of the differences between the classes would note 

that Lynn and Jeff were both students in the DTP class.  They exhibited the most 

proficiency with proof of all of the students in the study.  However, Nathan and 

Aurora were also students in the DTP class, and they exhibited the least proficiency 

with proof of the students in the study.  It is also interesting to note that almost all of 

the students in the investigative class exhibited a willingness to create statements that 

had the correct conclusions, to match hypotheses appropriately to what they had 

shown, and then to claim that they had written a complete proof.  Kenny was the most 
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prominent example, although Stephanie, Rebekah, and Mark did so as well.  For 

example, the investigative students all attempted to show that their candidates for 

units in the Gaussian integers were integers.  Taken together we can assert that in 

writing proof, the students demonstrated good proficiency with property-verification 

arguments, struggled with quantification (as expected), and did not have much 

opportunity to demonstrate real proficiency with polynomial arguments due to the 

unfamiliar context.  

Conclusion 

This chapter addresses the mixed levels of proficiencies that the students 

demonstrated on the content strands of identity, inverse and unit, polynomials, 

structure, and proof.  On the end-of-semester assessment, none of students gave 

complete and correct responses to all of the items and the responses that were given 

showed significant variation in quality.  In terms of the proficiency that the students 

demonstrated it seems that Dr. Kenneth Berg’s assertion, “I find that students 

generally learn what they’ve been taught” provides a succinct summary.  Generally, 

the students did quite well on items in which both the question type and the context 

were relatively familiar, and they did quite poorly when both the question type and 

the context were unfamiliar.  Because I needed to design an assessment on which 

access to class notes and a text would not be an aid, more of the items relied on an 

unfamiliar context or type of question.  For that reason the results were generally 

lower than they would have been on a more traditional abstract algebra exam.   

This use of unfamiliar context and questions meant that, in general, the 

students’ submitted rather incomplete results.  Yet, while the responses were 
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incomplete, there was also significant variation in terms of the types of proficiencies 

that the students did display.  While some students revealed very little proficiency 

with any of the assessed concepts, two students were extremely capable with almost 

all of the concepts.  For example, there were two students, Rebekah and Nathan, who 

did not submit any response to any of the last four items giving no basis to describe 

their proficiency with polynomials.  In contrast, Lynn and Jeff submitted bodies of 

work that demonstrated extremely high levels of proficiency with all of the concepts 

under study and gave responses to all but one of the items.   

Lynn and Jeff were the only students who made meaningful progress on Item 

4 and Item 5 in the first problem set (proficiency with proof about inverses and 

fluency with quantification) and similarly the only students who made meaningful 

progress with multiple of the items in the second problem set.  Both gave a 

mathematically correct (although incomplete response) to Item 2 when no other 

students did, gave a complete and both gave a correct response to Item 1 and Item 3 

when no other students did.  Moreover, during her interview, Lynn was the only 

student who was able to correctly respond to all of the prompts, including the prompts 

about group theoretic concepts which she had never studied.  Interestingly enough, 

neither of these two students identified a single unit in the Gaussian integers.  It was 

almost as if they were so focused on the symbolic-proof aspects that they were not 

able to make use of previous knowledge about complex numbers.  Lynn and Jeff were 

strong students who were in the DTP class and had many opportunities to develop 

significant proficiency with proof, proficiencies that no other student was able to 

demonstrate.  Thus, while there was significant variation when viewing the student’s 
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responses across the whole of the tests, their responses also showed somewhat 

different proficiencies when analyzed in light of specific content strands.   

Consider the proficiency that the students demonstrated with the concepts of 

identity, inverses, and unit.  The students generally seem to have mastered the 

notation mathematicians use to denote an identity, an inverse of a given element, and 

a unit, and the students had a flexible enough proficiency with the formal definition to 

be able to apply it in a reasonably familiar setting.  Moreover, most of the students 

were able to make appropriate use of that notation in writing the proofs.  But, they 

struggled to manage the notation when an additional quantifier (left or right) was 

added to the notion of an inverse.  It seemed that many of the errors that the students 

made on the items with the familiar content and context of identity and inverse 

derived from the cognitive complexity of quantified inverses or resulted from 

problematic proof-proficiencies rather than actual difficulties with the concept of 

inverse.  For example, the students gave proofs which, when the misstatements were 

taken as true, were logically complete in terms of the structure, but they made factual 

misstatements which indicated that they were or could not make use of basic facts 

about inverses to monitor their proof-production.   

In terms of their ability to identify the identity element and units in different 

structures, as expected, the students were more capable in more familiar structures 

and less so in less familiar structures.  Half of the students were able to give a 

complete and correct list of units in the Gaussian integers but all of them struggled to 

justify the completeness of their list of units.  There were three students who did 

include incorrect candidates on their list but, due to lack of proficiency with complex 
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arithmetic, were unable to rule them out.  That is, generally, the students seemed to 

have the correct understanding of unit, could apply it in the context, and knew how to 

demonstrate that their candidates were units, but they lack proficiency with 

arithmetic.   

It appears that all of the students could apply the definition of unit in a 

reasonably familiar setting.  Most could identify unit candidates and then knew to use 

their applied definition to demonstrate the appropriateness of candidate choices.  One 

of the students seemed unable to check his candidates, meaning that he may not know 

how to apply the definition of unit in this context.  It is also worth noting that two of 

the strongest students in the study, Lynn and Jeff, were the students who did not list 

any candidates.  It seems that the strongest students did not want to hazard a guess 

without analytic support, whereas the average students were more willing to give 

partial answers or make informed guesses.   

 The students were less successful at determining either the identity element or 

elements with inverses in an unfamiliar setting.  They were not very successful at 

identifying the identity element for the set of functions of a discrete variable.  In fact, 

only four of the students were correctly able to do so.  But, it is likely that a 

significant portion of this difficulty was attributable to their difficulty making sense 

of the notation and the use of functions as the context of the problem as only six 

students gave a correct list of the elements of the set.  This task required the students 

to operate in an unfamiliar context and to manage complex functional notation.  This 

combination presented too high a barrier for entrée for the majority of the students to 

manage.  Generally, the students were able to recognize and list elements with 
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inverses in a familiar structures and were able to apply and manage the notation of 

identities, inverse and units in proof.   

 The students did not have as much opportunity to show their proficiency with 

polynomials as they did with inverse, identity and units.  The end-of-course 

assessment used a fourth-degree polynomial as its principle context.  I never saw the 

students study a fourth degree polynomial during class, only quadratic and cubic 

polynomials.  Moreover, I asked them to consider factorization in the rational and real 

numbers.  Again, these were unfamiliar domains for the students.  Most of the 

students who attempted to factor p(x) in R[x] without having a correct factorization in 

C[x] only attempted factorizations with integral or rational coefficients, almost as if 

they had not read the last part of the question which stated that there is no 

factorization in Q[x].  Because factoring with irrational coefficients was not often 

practiced, it is no surprise that the students did not think to make use of them.  But, 

that also meant that they had no possibility of completing the item without first 

finding a correct factorization in the complex numbers.  Because of the unfamiliar 

context for the items, the assessment produced a rather limited reading of their 

understandings.   

 Only three students demonstrated that they had a correct definition of 

irreducible; most students gave indications that they believed irreducible to be 

equivalent to “has no roots.”  Given that most of their previous experience was with 

polynomials of degree two or three, it is understandable that the students had no basis 

for distinguishing between the two concepts, because with polynomials of degree two 
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or three the terms are equivalent.  It is not until students study polynomials of degree 

four or more that the more complex definition of irreducible becomes necessary.   

 The most surprising result of the assessment addressing polynomial 

proficiency was that only two of the students in the study gave any indication that 

they knew how to construct the roots of an irreducible polynomial by constructing an 

extension field.  Specifically, the students were presented with an extension field 

created by modding Q[x] out by an irreducible polynomial and asked to determine the 

roots.  Only two students correctly listed [x] as a root in the new field.  The other 

students did not give any indication that they understood the goal of the construction 

of a quotient field.  In general, the students demonstrated a very low level of 

proficiency with root construction or even quotient fields as a construct.  

The students did not demonstrate much proficiency at writing a polynomial 

with complex roots.  Instead many of them attempted to write a polynomial with an 

arbitrary complex root and used notation suggesting they were unable to parse the 

difference between a polynomial with a complex root and a complex number.  This 

meant that, for the most part, they were not able to demonstrate any proficiency with 

making and proving conjectures about polynomials.  It seemed that, generally, the 

students had poor fluency with complex numbers meaning that they had difficulty 

factoring a polynomial in the complex plane or writing a polynomial with arbitrary 

complex roots. 

 While the students were not able to demonstrate much proficiency with 

polynomials, the mid-semester instrument and interview did allow them to 

demonstrate that they had strong knowledge of and ability to state definitions and to 
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offer examples of groups and rings.  Generally, the students all knew the definition of 

a group and a ring.  They were able to give an example of a ring, to identify 

additional properties that a ring (or group) might satisfy, and to state a variety of 

examples of rings with a range of properties.  They showed a good depth of 

knowledge here—citing matrices as non-commutative rings, the real numbers and Z 

mod p (p prime) as fields, the integers as an integral domain, and the even integers as 

a commutative ring without a multiplicative identity.  None of the students was 

correctly able to identify a ring without additional properties.   

The majority of the students were quite proficient at determining when 

properties are inherited from a super-structure to a sub-structure.  They demonstrated 

this both on the quiz and on Item 1a of the exam.  Five of the twelve students did 

overstate what properties could be inherited by a sub-group or sub-ring and over-

attributing properties that a group or ring posses generally.  That there were multiple 

students with a tendency to attribute additional properties to a structure is not 

surprising, because most of the examples of rings and groups that the students worked 

with during their semester were commutative.  Thus, their experience had taught them 

that commutativity is often a valid assumption.  The most significant problem that the 

students had was differentiating properties that a group (or ring) must satisfy from 

those that it might satisfy and managing that distinction in the context of proof. 

 Four students, Mark, James, Nathan, and Aurora, did not adequately 

demonstrate knowledge of definitions or examples for rings and groups.  During their 

interview both Mark and James stated that they had to look in their text when 

working on problems.  Nathan’s work also demonstrated significant problems with 
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abstract computation.  He attempted to operate in a way that violated rules of 

uniqueness for both identity and inverses.  He exhibited fundamental 

misunderstandings of structure that indicated minimal concept development around 

groups. 

 In general, the students had some proficiency at stating definitions and 

examples, but their understanding of groups and rings was still rather tenuous and 

developing as is appropriate after one semester of study.  Their ability to state a range 

of examples with different properties suggested familiarity with the basic concepts 

and will provide them a base from which to grow.  But it is fairly clear that at the end 

of one semester they had not yet developed enough understanding to not over-

attribute properties to structures, nor had they fixed into their understanding the fact 

that the set and operation(s) together form a structure.   

Lastly, in terms of proof, the students were most proficient at the types of 

proofs that they practiced most often and demonstrated less proficiency in crafting 

non-routine proofs.  On two different items the students were asked to prove or 

disprove that a set and operation is associative, distributes over a second operation ○, 

has an identity, gives rise to inverses for elements (some, all, none), and is closed. 

It seemed that most of the students were capable of demonstrating that a property 

does not hold, and they understand that if a single property does not hold, then the 

structure cannot be a group or ring.  Similarly, in their work on the quiz and test items 

the students all demonstrated proficiency, barring difficulties derived from their 

content knowledge, in proving that group properties hold in particular structures.  

Moreover, the majority of the students also demonstrated that they knew which 
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properties they needed to verify in order to show that a set and operation formed a 

sub-group.  

Not surprisingly, the students demonstrated less proficiency with polynomial 

proofs than with the group and ring property proofs.  Most students were quite good 

at showing when a polynomial did not have rational roots, and they were also very 

good at demonstrating the existence of irreducible polynomials with real number 

coefficients.   However, while the students were quite proficient at demonstrating 

some facts about polynomials, they struggled to create more advanced or non-routine 

proofs about polynomials.  For example, the students were generally unable to 

demonstrate that the particular fourth degree polynomial x4 + 1 is irreducible over the 

rational numbers.  Part of this difficulty likely stemmed from an incomplete 

understanding of the term irreducible, but part of the problem was likely due to the 

fact that the students did not recognize that a non-existence proof needed a 

contradiction proof-archetype (that is, they lacked the appropriate strategic 

knowledge).   

 Across all of the content strands the students repeatedly showed that they were 

quite proficient at those things they practiced frequently.  They generally knew the 

definitions of different types of structures, could state the definitions using the 

appropriate symbols, and use the definitions in writing proofs.  Moreover, the 

students seemed to have a ready store of examples of different types of structures and 

could generally state if and what additional properties their example satisfied.  The 

students showed good fluency working in specific examples of structures, especially 

verifying that properties hold.  They were also very capable of listing units in the ring 
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of Gaussian integers.  Similarly, they also demonstrated good proficiency at using the 

rational root test to demonstrate that a given polynomial has no roots in the rational 

numbers.  Yet, just as the students were quite proficient at familiar problem types 

they were less proficient at less practiced problem types.  For example, the students 

demonstrated very little proficiency with demonstrating that a fourth degree 

polynomial is irreducible or at constructing the root of an irreducible polynomial via a 

quotient field.   

In short, the students displayed a very wide range of proficiency no matter 

whether we analyzed their proficiency by content strand or by class.  Future studies 

should take this fact into account in instrument design by creating instruments with a 

low barrier for entry and high ceiling for exit.  Despite the tendency to write a single, 

general, description of the proficiency that a student will develop as a result of an 

abstract algebra course, it may be more credible to give a description of the range of 

proficiencies and to determine how students distribute along that range.   
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CHAPTER 6:  SUMMARY, IMPLICATIONS AND DIRECTIONS FOR THE 

FUTURE 

The present study examined teaching and learning in two sections of an upper 

division abstract algebra course, one consciously using a DTP style of instruction and 

the other intentionally using an investigative approach to instruction.  The first 

primary goal of the study was to describe, compare, and contrast instruction within an 

abstract algebra course under these two different pedagogical approaches.  The 

second primary goal of the study was to describe the understandings and proof 

proficiencies that students developed during these offerings.   

 Classroom observations were conducted in order to collect instructional data.  

These entailed observing meetings of both classes, making video recordings, and 

transcribing the classroom discussions.  To develop descriptions of the students’ 

mathematical proficiencies I drew upon the classroom observations as well as a brief 

mid-semester written instrument, a longer end-of-semester written instrument, and a 

set of interviews  that were administered to those students who consented to the 

interview and testing.   

Teaching 

 While both of the instructors hoped that their students would develop a 

knowledge base that was deep and connected.  The two instructors described their 

intended classes quite differently.  However, they both envisioned a participatory 

classroom where students were actively engaged with the material, asking and 

answering questions.  Both teachers repeatedly asked the students if they had 
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questions and answered any questions that were asked.  Moreover, during instruction 

both teachers asked many questions and expected the students to answer them.  

Lastly, both teachers used many examples in class and expected the students to 

calculate within these structures, write proofs about these structures, or to use an 

example to create entirely new structures.  Both teachers used these examples as the 

impetus for study of new mathematical content.  Thus, in many ways, instruction as 

delivered within the two approaches was very similar. 

 Both instructors used a participatory proof-writing script, emphasizing 

questioning of the class as a whole.  In the DTP class, the observed data as recorded 

in teaching scripts consisted entirely of factual questions, with students always giving 

correct responses that were represented by Dr. Hedge.  In the investigative class, the 

observed data recorded in teaching scripts included substantially more open questions 

with students often offering unexpected or incorrect answers.  Dr. Parker responded 

differently to correct and incorrect answers.  When a student gave a correct response, 

she would repeat the statement; when students offered an incorrect response, Dr. 

Parker would ask a question which indicated in a thinly-veiled way that the student 

was incorrect.   

 Dr. Hedge used an exemplar dialogue to introduce new mathematical 

structures by connecting them to structures that the students had seen and worked 

with before.  She seemed to do this in order to help the students develop an 

understanding of the interrelated nature of mathematics.  Dr. Parker had a script 

which was also intended to help the students develop some understanding of the 

discipline of mathematics.  She repeatedly invoked the role of mathematics as a tool 
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for furthering human understanding, as a way to make meaning out of the patterns 

they saw and experiences they had during their work computing in specific examples 

of structures.   

 The actual teaching of the DTP class and the investigative class did not 

actually enact the stereotypes.  In particular, the DTP class did not actually proceed in 

a repetitive sequence of Definition-Theorem-Proof-Example, as Dr. Hedge made 

much more frequent use of examples.  For example, in one teaching episode where 

Dr. Hedge introduced a new concept, she then followed the following pattern:  

DEETPETPCETPEE (where C is a corollary).  While Dr. Hedge did repeat TPE in 

multiple instances, it is important to note that she used the examples in two different 

ways.  She used an example to illustrate the ideas of a theorem, but then she also used 

an example to introduce the next generalization, to give the students a context for the 

next theorem.  In this case, the example might be seen as preceding the theorem and 

the sequence might be better understood as DE-(ETPE).  Moreover, the anticipated 

“sage on stage” approach was clearly not the manner in which Dr. Hedge operated in 

class.  While she controlled the content and direction of the class, she also demanded 

significant student participation as illustrated within her participatory proof-writing 

script, her near constant prompt for questions, and by her requirement that each 

student give a formal proof at the board or overhead during the semester.  Each of 

these practices departed from the expected model for a DTP class. 

 Dr. Parker’s actions were similarly unexpected.  I anticipated a class in which 

students were often at the board presenting computations, conjectures, and proofs.  

But, students were more likely to be at the board in Dr. Hedge’s DTP class.  In all of 
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my observations of the investigative class I only observed two class meetings in 

which students wrote on the board.  One of them was when they were to display the 

results of their explorations with the software package Exploring Small Groups.  The 

students who came to the board listed a number of different subgroups.  I also 

observed one student write a proof on the board before the beginning of class that Dr. 

Parker then referred to during class time.  Thus, while much of the daily activity of 

the class was driven by student’s questions (especially about computation) Dr. Parker 

generally served as the principle author of board work and filtered what was written 

on the board so that only correct mathematics appeared.  The two significant 

departures that Dr. Parker made from traditional pedagogy was the use of the 

software Exploring Small Groups as a teaching tool and a decrease in the number of 

proofs presented in class.   

Students’ Demonstrated Proficiencies  

Students demonstrated mixed levels of proficiency on the content strands of 

identity, inverse and unit, polynomials, structure, and proof.  The end-of-semester 

assessment showed that no student gave complete and correct responses to all of the 

items.  Generally, the students did quite well on items in which both the question type 

and the context were relatively familiar, and they did quite poorly when both the 

question type and the context were unfamiliar.  Because students had access to class 

notes and a textbook, most of the assessment items relied on an unfamiliar context or 

a question that required a transfer of knowledge or an application in a new context.   

There was significant variation in terms of the types of proficiencies that the 

students did display.  Some students demonstrated very little proficiency with any of 
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the concepts failing to respond to four or more items while and two students 

demonstrated high levels of proficiency with all of the concepts under study, offering 

responses to all but one of the items.   

Students generally seemed to have mastered the notation mathematicians use 

to denote an identity, an inverse of a given element, and a unit.  They had sufficient 

proficiency with the formal definitions to be able to apply them in familiar settings.  

Moreover, most of the students were able to make appropriate use of that notation in 

writing proofs.  But they struggled to manage the notation when an additional 

condition (left or right) was added to the notion of an inverse.  The students were less 

successful when determining either the identity element or elements with inverses in 

an unfamiliar setting. 

All of the students could apply the definition of unit in a familiar setting.  

Most could identify unit candidates and then use their applied definition to 

demonstrate the appropriateness of candidate choices.  It is worth noting that two of 

the strongest students in the study, Lynn and Jeff, were the students who did not list 

any unit candidates.  It seems that the strongest students did not want to hazard a 

guess without analytic support, whereas the other students were more willing to give 

partial answers or make informed guesses. 

 The students had limited opportunity to display their proficiency with 

polynomials.  The end-of-course assessment used a fourth-degree polynomial as its 

principle context.  Because of the unfamiliarity of this context, the assessment did not 

establish what the participants did understand.   
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 Only three students demonstrated a correct understanding of irreducible, as 

most indicated that irreducible was equivalent to “has no roots.”  Given that most of 

their previous experience was with polynomials of degree two or three, it is 

understandable that the students would have no basis for distinguishing these two 

concepts.  For polynomials of degree two or three the terms are equivalent.   

 Only two of the students in the study gave any indication that they knew how 

to construct the roots of an irreducible polynomial by constructing an extension field.  

Specifically, the students were presented with an extension field created by modding 

Q[x] out by an irreducible polynomial and asked to determine the roots.  Two 

students correctly listed [x] as a root in the new field.  In general, the students 

demonstrated a very low level of proficiency with root construction or even quotient 

fields as a construct.  

 While the students were not able to demonstrate much proficiency with 

polynomials, the mid-semester instrument and interview did allow them to 

demonstrate their knowledge of and ability to state definitions and examples of 

groups and rings.  In general, the students had proficiency at stating definitions and 

examples, but their understanding of groups and rings was still rather tenuous and 

developing.  Their ability to state a range of examples with different properties 

suggested good familiarity with the basic concepts and will provide them a base from 

which to grow.  But, at the end of one semester, the students had not yet developed 

enough understanding to not over-attribute properties to structures, nor had they 

established an understanding that a set and operation(s) together form a structure.   
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Lastly, in terms of proof, the students were most proficient at the types of 

proofs that they practiced most often and demonstrated less proficiency in crafting 

non-routine proofs.  Most of the students were capable of demonstrating that a 

property did not hold, and they understood that if a single property does not hold, 

then the structure cannot be a group or ring.  Similarly, in their work assessments, the 

students all demonstrated proficiency, barring difficulties derived from their content 

knowledge, when proving that group properties hold in particular structures.  

Moreover, the majority of the students also demonstrated that they knew which 

properties needed to be verified in order to show that a set and operation formed a 

sub-group.  

Not surprisingly, the students demonstrated less proficiency with polynomial 

proofs than with the group and ring property proofs.  Most students could show when 

a polynomial did not have rational roots, and they could demonstrate the existence of 

irreducible polynomials with real number coefficients.   However, they struggled to 

create more advanced or non-routine proofs about polynomials.   

 Across all of the content strands, the students repeatedly demonstrated 

proficiency with those things they practiced frequently, no matter whether their 

proficiency was assessed by content strand or by class.  This analysis did not present 

a description of the mathematical proficiency that a set of students developed after a 

semester of abstract algebra, rather it offered a description of the range of 

proficiencies that a set of students demonstrated.  There will always be substantial 

differences in student proficiencies.  Future studies should create instruments with a 

low barrier for entry and a high ceiling.  Similarly, future studies will need to be 
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mindful of this variation in terms of research goals.  Rather than provide a single, 

general, description of the proficiency that a student will develop with algebra 

content, it may be informative to describe the range of proficiencies and to describe 

how students distributed along that range. 

Limitations of the Current Study 

 The current study should be interpreted as an initial exploration of the 

teaching and learning in two sections of an abstract algebra course.  This abstract 

algebra course was unique as all of the students had completed an introduction to 

proofs course prior to enrollment in abstract algebra.  This prerequisite likely had a 

substantial impact on expectations instructors had for their students, the classroom 

activities, and the types of proficiencies that the students were able to demonstrate.  

Similarly, this was a course that followed a less standard content sequence as the 

students first studied ring theory and then group theory; the reverse is more common.  

Finally, while MSU is a doctoral granting university, it is not the flagship campus in 

mathematics, mathematics education, or teacher training.  The enrolled students 

viewed this school as a regional institution, with a caliber of students substantially 

different from that at a flagship campus or a selective liberal arts college.  The 

students in both sections were predominately Caucasian, with only two students of 

color in the DTP section.   

 While the above are context-based based limitations to the current study, there 

were also a number of structural limitations.  Due to the limited number of student 

participants, it was not possible to make a true comparison between the mathematical 

proficiencies that the students in the two classes developed and demonstrated.  Of the 
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12 student participants, 5 were from the DTP class and 7 were from the investigative 

class.  There were only 13 students in the DTP class, so 5 participants from the DTP 

class represented a significant proposition of the total students enrolled in that 

section.  But, there were 25 students enrolled in the investigative section, and there is 

no reason to believe that the seven participating students were at all representative of 

the class as a whole.  Because interviews were scheduled at the end of the semester 

concurrent with final exams, only six students completed the interview, including 

only one from the DTP class. 

 Lastly, and more importantly, I envisioned this study would focus on group 

theory but the two instructors did not progress as rapidly though the material as they 

had intended.  Because of that the classes spent significantly different amounts of 

time studying group theoretic material with the DTP class spending only the last 

week of the semester studying groups.   

 This change was significant for a number of reasons.  First, in terms of a 

comparative study there is an assumption of approximately equal opportunity to learn.  

In the case of group theoretic material this assumption would have been 

fundamentally violated.  Thus, this study was recast to address student learning and 

proficiency with ring-theoretic material and the more general content topics such as 

identity and inverse.  This need to change the content focus of the study raised 

significant problems because almost all of the research into student understanding of 

abstract algebra content has focused on group theory, and all of the published 

assessment tools focus on understanding of group theory.  This meant that an entirely 

new assessment instrument had to be crafted.  Moreover, because the instrument was 
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completed by students at home where it would be assumed that they had access to 

class notes, textbooks, and the internet, the written instruments had to consist of items 

that would not be compromised by access to these resources.  For this reason, the 

assessment asked students to consider novel algebraic structures.  This required 

substantial use of set-theoretic, quantification, and functional notation which seemed 

to create a very high unintended barrier for student entrée.  Many of the participating 

students made minimal progress on a number of the items.  Since the pool of 

participants was already small and many of the items yielded very little useful data, 

the conclusions about student proficiency after a semester of algebra are based on a 

very small sample indeed.  This study should not be read as any attempt to describe 

what students can do after a semester of algebra but rather as a localized description 

of what these students demonstrated. 

Implications for the Field 

 Undergraduate abstract algebra instructors have flexibility in course design 

and pacing.  There is no common exit exam, nor is there even a common curriculum 

for such classes even within the same institution.  While at MSU students study rings 

before groups, this is the less common order for mathematical content, and individual 

instructors have a great deal of autonomy in selecting the content they will cover.  Dr. 

Hedge, in the DTP class, spent all but a few weeks of the semester covering rings 

whereas Dr. Parker had essentially finished ring theory with two months left in the 

semester.  In this study these two teachers were both preparing students to enter the 

same section of second semester abstract algebra.  Thus it is reasonable to presume 

that similar or greater variation exists across abstract algebra offerings at differing 
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institutions.  This level of variation complicates any discussion about what students 

learn in an introductory abstract algebra class.   

 The differences in proficiencies and mathematical habits that the two groups 

of students demonstrated raises significant questions about goals for an introductory 

abstract algebra course.  There has been work in which modules of abstract algebra 

instruction were designed to help students meet very specific goals such as 

developing proof proficiency, strategic knowledge or specific types of content 

knowledge (Weber, in press; Larsen, 2004).  Yet, there is no general discussion about 

the relative importance of any of the goals that might be accomplished in an 

introductory abstract algebra course.  The different teaching scripts that the two 

instructors employed in this study illustrate two possible sets of goals for an abstract 

algebra course, and both have mathematical validity.  As such, this study may prompt 

discussion about the relative importance of developing proof proficiency, students’ 

ability to formulate and investigate hypotheses, developing students’ content 

knowledge, students’ ability to operate in and analyze novel structures.  Without 

agreement about the relative importance of each of the possible goals of an 

introductory abstract algebra course, it seems impossible to determine either how to 

determine what approach is most effective, or, a curricular approach that gives 

students the greatest chances of success. 

 There is substantial discussion addressing the importance of recruiting and 

retaining more mathematics majors.  Yet, the different levels of proficiency that the 

DTP students developed suggests that this goal may be significantly more difficult 

than previously anticipated, without also reforming the process of undergraduate 
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education.  In the traditional course there were two students who developed the level 

of proficiency with analytical argument which is necessary for success in graduate 

study.  But the other students from the DTP course in the study performed very 

poorly on the assessment instrument.  If the most important goal of an undergraduate 

mathematics preparation is to separate the most able students and to develop their 

analytical skills to a very high level, the DTP course seems to do just that.  But, when 

contrasted with the stated desire to increase the percentage of mathematics majors, it 

seems that such an approach would imply that a significantly greater number of 

students must enroll in mathematics courses so that the same winnowing process can 

occur.  The investigative course seems to present at least one alternative, although it 

implies a compromise in terms of the proficiencies that students develop.  The 

investigative students in the study all seemed to display similar levels of proficiency 

and could thus serve as a model for increasing the percentage of mathematics majors 

by not filtering the students so severely.   

 Taken together the three assessment instruments (the quiz, the end-of-course 

assessment and the interview) yielded significantly less data and ability to 

discriminate between the students’ proficiencies than hoped.  Many of the questions 

did not allow the weaker students any entrée to the material.  Thus their responses 

contained almost no data from which to draw inferences about their proficiency.  The 

overwhelming majority of the useful data came from only four of the eight items on 

the end-of-course assessment.  The interview protocol significantly over-estimated 

the students’ proficiency and was therefore adapted during the study in favor of one 

that more directly assessed knowledge of facts.  In general this study illustrated the 
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tensions inherent in instrument design for assessment.  In attempting to create a set of 

assessments that students could complete at home, with the working assumption that 

they would use their text and notes, the items made use of non-standard structures and 

also drew heavily upon proficiency with functions of a discrete and finite variable, all 

written in symbolic form. The students made little progress on those items.  Yet, any 

other choice also seemed likely to yield little useful information as then students 

would have been able to locate extremely similar items in their text and notes and 

would have all made excellent progress.  While this would have provided more data, 

it would have created a different problem with analysis, specifically, disentangling 

the student’s proficiency with the content from their ability to adapt work in their text 

or notes.  Moreover, it seems likely that this approach would also have yielded little 

ability to discriminate between the students in terms of their proficiencies.   

Fundamentally, the most important conversation that this study can inform is 

that about the relationship between goals and pedagogy and assessment.  While there 

is conversation about new classroom activities and different pedagogies, there is no 

agreement on the goals towards which any classroom activities should be directed, 

nor are there currently means of assessing student’s progress in achieving these goals.  

Directions for Future Study 

The present study was a first exploration of the teaching and learning in two 

instances of an introductory abstract algebra course; it is neither comprehensive nor 

exhaustive.  Fundamentally, it was designed to explore what happened in abstract 

algebra classrooms and what students gained from instruction.  Yet, it examined only 

one section each of DTP and investigative courses.  These descriptions of classroom 
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activities should not be interpreted as either exhaustive of the range of activities that 

took place or might take place in these two instructional approaches.  Moreover, 

because the study examined only a single version of each type of class, it offered no 

means to determine characteristics which might be shared by all such courses.  The 

same research questions could quite productively be applied to other instances of 

traditional and investigative courses in order to give more depth to the initial sketches 

of classroom activity presented in the current study.   

 Similarly, the student proficiencies described in this study were preliminary 

and raised more questions than they answered.  As became clear though the course of 

the study, there are no assessment instruments that enable researchers to assess 

student proficiency in the manner needed to capture an accurate picture of student 

abilities.  As such, if the field hopes to arrive at some consistent means of assessing 

students and courses, significant work is needed in this area, both in terms of written 

assessments and interview protocols.  Existing items only assess student’s proficiency 

with limited group theoretic material.  There is no pool of items from which to draw 

to assess student’s proficiency with rings and fields and, as needed, non-standard 

structures.  More work is clearly needed in this area. 

 The present study drew upon a small sample of students from a single 

institution who had similar mathematical preparations. This study should not be 

generalized to all introductory abstract algebra students.  Thus, additional studies 

using these research questions could develop a more broad-based understanding of 

the range of proficiencies that students develop across the undergraduate setting.  

This work would certainly be helpful in grounding any conversation about 
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appropriate goals for an introductory abstract algebra course and may indicate that 

different types of instruction would be necessary in order to meet the needs of 

different groups of students.  Finally, the current study could serve as a base for a 

research program investigating and describing the development of algebraic thinking 

at the undergraduate level.  This could include the different uses to which students put 

such thinking after they graduate, including how secondary teachers make use of the 

algebraic thinking developed during their abstract algebra course in their K-12 

classrooms.   
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APPENDIX A:  STUDENT BACKGROUND ASSESSMENT 

 Student Background Data Assessment:   

 
Name_____________________  

Pseudonym you wish to have during the study: 
       

______________________ 

 
Background Information 
1. Please indicate your sex:   male  female    

      
2. Please indicate your racial/ethnic background    

(Mark all that apply) 
African American/Black   Native Hawaiian/Pacific Islander 
American Indian/Alaska Native   Puerto Rican 
Asian American/Asian    Other Latino 
Mexican American/Chicano   White/Caucasian 
Other (please specify) _____________________________ 
 

3. How many semesters have you enrolled at any college or university? 
 
4. Indicate your current class rank: 
 
 
Freshman  Sophomore   Junior   Senior 
 
 
5. Approximately, what is your college and university GPA? ______________ 

  
 
 
6. What is the highest degree that you plan to obtain in any field?  (Mark one)  

None     A.A. or equivalent 
Bachelor’s degree (B.A., B.S, etc.) Master’s degree (M.A., M.S., M.B.A., 

etc.) 
Ph.D. or Ed.D.    Professional Degree 
Other (Please specify) _______________________ 
 

7. What is your current major?  _____________________ 
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8.  Please indicate the mathematics classes you have taken, and if you can 
remember, your approximate grade in each class 

 
Calculus and Analytic 

Geometry (Calc 1) 
 Second semester calculus  

Vector calculus (or third 
semester calculus) 

 Linear or Matrix Algebra at 
the 200 level 

 

Real Analysis  Number Theory  

Introduction to Proof  Introduction to Differential 
Equations 

 

Geometry  History of Math  

Other? 
Please indicate class as 

well as the grade 

  

 
 
9. Please evaluate the importance of each of the following items in your choice of 

major 
[1 not important at all; 2 of little importance; 3 very important; 4 essential]  
(Mark one answer for each possible reason)     
o A parent, mentor or friend suggested this area of study 
o The person(s) paying for my education insisted that I major in this area   
o A parent, mentor, or friend pressured me into this major   
o My father, mother, a close family member, or friend has a career in this 

field   
o A good math teacher inspired me to pursue this degree   
o A bad math teacher inspired me to pursue this degree 
o I enjoy studying mathematics   
o I am good at math and science   
o Not many people are pursuing this degree   
o I want to get a high paying job   
o I want a highly respected career   
o Mathematics is a useful subject to study 
o Other (Please explain) ____________________________________ 
 

10. Relating to your experience in past mathematics courses, please briefly describe: 
a) How frequently you study. 

 
 
 

b) The types of activities that you engage in while studying. 
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c)    How frequently you study with others. 
 
 
11. Have you been asked to be a tutor or grader for any mathematics course?  If so, 

did you accept?  Please briefly explain below the circumstances. 
 
 
 
 
12. What, if any, other classes are you taking this semester?  Which course do you 

expect to be the most difficult?  The easiest? 
 
 
 
13. Have you ever thought of leaving your current major?  If so, why? 
 
 
14. Please evaluate the following statements regarding this class: 

• I wanted to take this class regardless of who taught it because I am interested 
in abstract algebra 

• I am taking this class because it is required 
• I wanted to take a class from this instructor 
• I know and like the instructor 
• A friend suggested I take this class with this instructor 
• I am friends with at least one person in this class 
• I already have plans to study for this class with someone  
• I think this course will be well taught  
• I expect to have to work hard  
• I expect this course to be relatively easy 
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APPENDIX D:  END-OF-SEMESTER WRITTEN ASSESSMENT 
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