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In order to identify high-spin organic intermediates that could potentially be used as 

building blocks for the construction of high-spin organic ferromagnets, density 

functional theory (DFT) computations were performed to assess the singlet-triplet 

state energy gaps for a number of substituted aryl ionic intermediates.  The 

quantitative accuracy of these DFT computations was benchmarked by high-level 

multireference second order perturbation theory (CASPT2) computations for 

representative species.  These computations led to the discovery of a novel meta pi 

donor effect, wherein substituting the meta positions of aryl cationic species such as 

arylnitrenium ions (Ar-N-H+), arylsilylenium ions (Ar-SiH2
+), aryloxenium ions (Ar-

O+), and benzyl cations (Ar-CH2
+), with pi donors stabilizes a π,π* triplet state 

analogous to the electronic state of the m-xylylene diradical.  Two of these benzylic 

cations were generated experimentally through photochemical methods and analyzed 



  

by laser flash photolysis, chemical trapping studies, and product analysis.  The 

experimental results were consistent with the existence of low-energy triplet states.   

 

Additionally, species with an inverted connectivity (e.g. an anionic donor with two pi 

electron withdrawing groups) were also found to have low-energy triplet states by 

density functional theory computations.  These anions were generated chemically and 

studied by NMR and EPR spectroscopy as well as quenching studies.  The 

preliminary results of the experimental studies are consistent with the intermediacy of 

triplet ground state benzyl anions, in line with the theoretical predictions.   

 

Vinyl cations substituted with β pi donors were also found to have triplet ground 

states, as computed by DFT and CBS-QB3 methods.  In many cases, the singlet vinyl 

cations are anticipated to have facile rearrangement pathways, but incorporating the 

pi donors into rings appears to discourage obvious rearrangement pathways.   

 

To permit the photogeneration of congested arylnitrenium ions, a new method for 

photochemically generating these species was developed through photolysis of 

protonated 1,1-diarylhydrazines.  Additionally, the carbazolyl nitrenium ion was 

generated photochemically and studied by laser flash photolysis, chemical trapping 

studies, product analysis and computational studies.  This nitrenium ion is found to be 

more short-lived and reactive than similar diarylnitrenium ions as a likely result of 

destabilizing antiaromatic character.    
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1. Chapter 1: Introduction 

1.1. Background 

One of the long-standing unsolved problems in physical organic chemistry is the 

design and synthesis of stable ferromagnetic organic materials.1,2  Such organo-

magnetic materials hold the promise of combining the flexible properties and 

diversity of organic molecules with the property of ferromagnetism commonly found 

in transition metal-derived materials.  Although the possible applications of organo-

magnetic materials are limited only by the imagination, practical applications may 

include the creation of magnetic materials with greater flexibility in material 

properties, such as lightweight magnetic materials that can be made with less energy 

consumption, materials for high-density information storage systems exploiting the 

change in magnetic properties upon exposure to light, or magnetic organic plastics 

and polymers, which could find use in a number of household appliances and 

electronic devices.  The primary goal of the work in this dissertation was to contribute 

to that effort by finding novel organic building blocks that could potentially be used 

to construct such stable organomagnets.   

 

This chapter outlines the origins of the property of magnetism and reviews current 

strategies for preparing room temperature stable organic ferromagnets.  Additionally, 

since the search for these building blocks can most conveniently be carried out using 

computational methods, this chapter concludes with a discussion of modern 
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computational methods including Hartree-Fock and post-Hartree-Fock ab initio 

methods, as well as density functional theory.   

1.2. Magnetic states. 

Magnetism is generally not a property inherent to a molecule, but rather is a 

macroscopic property of a large number of interacting atoms or molecules, such as a 

bulk solid.  However, in general only materials made from atoms or molecules that 

possess a net spin (that is, atoms that have unpaired electrons) have the possibility of 

having this macroscopic property of magnetism.  In most organic molecules, all spins 

are paired and the bulk is diamagnetic (Figure 1.1).  If an atom or molecule has a net 

spin, a number of different alignments of these spins are possible depending on the 

nature of the interaction between the spins.  If the spins between the individual atoms 

or molecules are non-interacting, the spins orient randomly, leading to paramagnetism 

(the spins will align only in the presence of a large external magnetic field).  If the 

spins interact, they can adopt an antiparallel orientation leading to the bulk property 

of anti-ferromagnetism.  In mixed spin systems, it is also possible to have two spins 

with magnetic moments of different magnitudes.  In a mixed spin system containing 

two spins of different magnitudes, if the two kinds of spins align antiparallel there is 

still a net magnetic moment in the direction of the spins aligned with the larger 

magnetic moment, a state called ferrimagnetism.  Alternatively, all spins can adopt a 

uni-directional orientation, leading to the bulk property of ferromagnetism.  It is this 

ferromagnetic orientation that is most desirable since it leads to the strong magnetism 

found in common household magnets such as iron oxide refrigerator magnets.   
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paramagnetic anti-ferromagnetic ferromagneticdiamagnetic ferrimagnetic  

Figure 1.1.  Schematic diagram of possible magnetic states 
 

1.3. Entropic barrier to ferromagnetism.   

While the search for ferromagnetic organic materials has been underway for many 

decades, this remains a challenging problem, and progress has been limited.  Part of 

the problem is that while organic molecules with net spin (such as stable radicals) are 

known, the coupling between the individual spins in a packed solid or crystal is 

usually very weak.  Since entropy disfavors a ferromagnetic assembly (because of 

entropy loss following spin ordering), weak spin coupling leads to molecules that are 

ferromagnetic at low temperatures, but paramagnetic at higher temperatures.  

Consequently, all ferromagnets must lose their magnetism at some temperature.  The 

temperature at which the magnetism is lost and the material becomes paramagnetic is 

called the Curie temperature (TC).  For most high-spin organic molecules that form 

ferromagnetic assemblies, the through-space spin coupling is small enough that the 

Curie temperature is usually < 2 K, although a derivative of C60 has been synthesized 

with a Curie temperature as high as 16 K.3,4   
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paramagneticferromagnetic

low temperature higher temperature

TC

 

Scheme 1.1.  The Curie temperature (TC). 
 

1.4. An alternative strategy to increase TC for magnetic organic assemblies. 

These Curie temperatures are far from the range of being practical, since a desirable 

TC for a working material would be 300 K or higher.  An alternative strategy for 

strongly coupling the individual spins in order to obtain a molecule with higher TC 

has been proposed. 5-7  Rather than relying on the weak “through-space” exchange 

interaction between the spins of individual molecules in a solid or crystal to form a 

ferromagnetic assembly, it has been proposed that the spins might be more strongly 

coupled via “through-bond” conjugated linkages on the same molecule.  That is, pi 

linkages could be used to conjugate high-spin organic monomeric units.  In this way, 

the spins on individual units would strongly “feel” the presence of the spins on 

adjacent units, which would result in much stronger spin-coupling, and, presumably, 

higher TC values as a consequence.   

 

The basic roadmap2,7 for the successful creation of an organic ferromagnetic system 

exploiting this strategy is shown in Scheme 1.2, and consists of four discrete steps: 
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(1) discovery and characterization of a stable organic molecule with one or more net 

spins (such as a radical or polyradical); (2) Synthesis and characterization of an 

oligomer containing several of these radical units with large net spin; (3) 

Transformation of the simple high-spin oligomeric unit into a mesoscopic material 

with magnetism; (4)  Synthesis of an assembly or bulk solid with the property of 

ferromagnetism.  Because of some very difficult challenges encountered at each stage 

(discussed below), it should be noted that chemists remain far from step (4) with 

regard to completion of the roadmap.  
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STEP 1: Base Camp
Paramagnetic molecule

n

Stable bulk solid
organomagnetic 
materials

STEP 4: $ummit

STEP 3:  2nd Waypoint
High-spin polymers

STEP 2:  1st Waypoint
High-spin oligomers

FCU FCU

FCU FCU

FCU

FCU

 

Scheme 1.2.  Roadmap for climbing the mountain of organic magnetism (summit), 
shown here for a triplet diradical monomeric unit.  FCU = Ferromagnetic Coupling 
Unit.  

 

1.5. Step 1: Finding stable high-spin organic molecules 

The base-camp on the climb to the successful creation of organic ferromagnets is a 

stable high-spin organic molecule.  While stable high-spin molecules are common in 

inorganic molecules containing transition metals, they remain the exception to the 

rule in organic molecules containing only first and second-row atoms.  Organic 

molecules with high-spin are typically unstable reactive intermediates. The most 

common strategy is to find persistent reactive intermediates that have high spin. 1,2,8-16   
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Common high-spin organic molecules include free radicals, and both free and atom-

centered di- and polyradicals. 17,18  The next section discusses the different types of 

known high-spin organic molecules.   

1.5.1. Molecules with a single unpaired electron: free radicals  
 
Free radicals are molecules that contain one unpaired electron and are paramagnetic.  

Radicals are common reactive intermediates in organic transformations, but few are 

persistent (kinetically stable).  The first stable organic radical discovered was the 

triphenylmethyl radical, found by Gomberg11 at the turn of the twentieth century.  

Generally, persistent organic radicals are stabilized by both steric (kinetic) and 

electronic (thermodynamic) structural elements.   Some persistent organic free 

radicals are shown in Figure 1.2.19,20   

 

Ph

C
PhPh

N

O

OO
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tBu

tBu

N
Ph
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Ph

 

Figure 1.2. Persistent organic radicals. 
 

1.5.2. Molecules with multiple unpaired electrons: di- and tri-radicals 

A more attractive building block than simple free radicals is high-spin di- and tri-

radicals (triplet and pentet states, respectively), because these units pack a higher spin 

density into a single structure than monoradical units, and thus have the potential to 

lead to molecules with stronger magnetism.   
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In general, triplet states are favored over singlets in polyradicals because of the so-

called exchange interaction of parallel spins, discovered by Heisenberg and Dirac in 

1926.   It is instructive to examine the origin of the preference for a high spin state 

triplet or quartet (spin unpaired) state over a singlet (spin-paired) state. The exchange 

energy arises in quantum mechanics from the antisymmetrized nature of the one-

electron wavefunctions (that is, interchange of any two electrons reverses the sign of 

the wavefunction).  Mathematically, the antisymmetrized nature of the one-electron 

wavefunctions leads to a lower electronic energy when two electrons have the same 

spin function  (the origins of this quantum mechanical exchange is derived below).  

From a molecular view, the motions of two electrons of the same spin are said to be 

correlated—that is, their motions are highly coupled so that the two electrons are 

never found adjacent to each other, creating a region of zero electron density around 

them called the Fermi hole, which reduces their electron-electron repulsion. 

 

For diradicals, this exchange energy leads to a triplet state in preference to the singlet 

state whenever the frontier orbitals are degenerate.  In such a case, the electrons 

prefer to occupy separate orbitals with the same spin—a molecular orbital extension 

of Hund’s Rule for atomic electron configurations (see Figure 1.3).   
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E

degenerate frontier
orbitals

small HOMO-
LUMO gap

large HOMO-
LUMO gap

exchange energy

 

Figure 1.3.  A molecular orbital extension of Hund’s rule. 
 

In cases where the frontier orbitals (HOMO and LUMO) are non-degenerate, the 

expected spin state is less clear.  To a first approximation, molecules with exchange 

energies larger than the HOMO-LUMO gap still prefer a triplet state (that is, when a 

molecule has a small HOMO-LUMO gap).  On the other hand, when the magnitude 

of the HOMO-LUMO separation is larger than the magnitude of the exchange energy, 

the singlet state is preferred.  Although this analysis does not offer a specific 

prescription for finding molecules with high spin, it provides a general criterion for 

finding high-spin organic molecules: find a molecule with degenerate frontier 

orbitals, or orbitals with small separation between the HOMO and LUMO orbitals.  In 

these cases, the exchange energy will make the triplet state favored over the closed-

shell singlet state. 

 

Triplet diradicals can be classified into space-separated diradicals and atom-centered 

diradicals.  The essential feature of these high-spin diradicals is that the two spins 
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interact strongly with each other so that the exchange energy makes the high-spin 

form (triplet diradical favored over the low-spin form (singlet diradical).   

 

1.5.3. Space-separated diradicals: The non-Kekule diradicals.  

The non-Kekule diradicals are molecules that cannot be described by a classical 

Kekule structure (that is, it’s impossible to draw a closed shell Kekule structure for 

that molecule consistent with the valence bond rules).  An example of a non-Kekule 

structure is trimethylenemethane (Figure 1.4).21  This molecule cannot be described 

by a closed-shell Kekule structure, but rather must be described using a diradical 

formalism.  Conversely, an isomer of TMM, butadiene, does have a resonance 

structure that can be described by a closed-shell Kekule structure.  Molecules that can 

be described by a closed-shell Kekule structure (most organic molecules), often have 

large HOMO-LUMO separations and are therefore ground-state singlets.  Conversely, 

non-Kekule diradicals can exist as either singlet diradicals or as triplet diradicals 

depending on whether the radicals are disjoint or non-disjoint.   

 

trimethylene
methane (TMM)

butadienenon-Kekule

Kekule  

Figure 1.4.  A non-Kekule diradical (TMM) and a standard closed-shell Kekule 
structure (butadiene).  
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1.5.4. Triplet non-Kekule structures: Disjoint and non-disjoint diradicals. 

Diradicals by definition have two singly occupied molecular orbitals (SOMOs).  If 

both of the two SOMOs have wavefunction amplitude on one or more of the same 

atoms, the diradical is said to be non-disjoint.  If the SOMOs occupy separate atoms, 

the diradical is said to be disjoint.  Translating this to the valence-bond model 

represented by Lewis structures, to a first approximation if a resonance structure 

exists for both radicals that place the radical on the same atom, the radical is said to 

be non-disjoint.  If all resonance structures place the radical on different atoms, the 

diradical is said to be disjoint.  TMM is an example of a non-disjoint diradical.21  

Both SOMOs have amplitude on the same atoms (Figure 1.5).  Tetramethylenethane 

(TME) is an example of a disjoint diradical.22 To a first approximation, the 

wavefunctions for both SOMOs occupy separate atoms.   

 

SOMO 1 SOMO 2non-disjoint

SOMO 2

TMM

TME
disjoint

SOMO 1
 

Figure 1.5.  Approximate SOMO representations of TME (disjoint) and TMM (non-
disjoint) diradicals. 
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Non-disjoint diradicals in general have triplet ground states. As a consequence of 

having finite wavefunction amplitude on one or more shared atoms, the two radical 

electrons “feel” the presence of each other, and so the stabilizing exchange energy 

(exchange integral) is large for the triplet state, making this high-spin configuration 

preferred over a singlet diradical configuration that does not have this exchange 

stabilization. 

 

Conversely, disjoint diradicals have only small exchange energies.   Since the radicals 

occupy separate spaces, for disjoint diradicals the exchange energy is non-existent (or 

very small) for the triplet state.  Consequently, the singlet and triplet energies are 

predicted to be very nearly degenerate for disjoint diradicals, and the singlet state may 

be the ground state as a result of higher-level correlation effects that stabilize the 

singlet state in preference to the triplet.  The TME diradical discussed in the example 

above is thought to have essentially degenerate singlet and triplet state energies, but 

with the triplet state slightly lower in energy than the singlet.17 Figure 1.6 gives some 

examples of disjoint and non-disjoint diradicals.  All of the non-disjoint diradicals 

shown have been experimentally confirmed to have triplet ground states, in line with 

the predictions from the simple theories described above.    For the disjoint diradicals, 

some debate still surrounds the ground-state spin assignment, but in most cases these 

are thought to be ground state triplet species with nearly degenerate singlet states.   
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Ph Ph

Ph

Ph

N

N

Ph Ph

Ph

Ph

non-Disjoint diradicals

Ar Ar

Disjoint  diradicals  

Figure 1.6.  Examples of disjoint and non-disjoint diradicals.   
 

1.5.5. Atom-centered diradicals.    

Another class of diradicals that have the possibility of having triplet ground states is 

atom-centered diradicals.   Atom-centered diradicals are generally reactive 

intermediates, and include neutral reactive species such carbenes, nitrenes, and 

silylenes, and positively-charged species such as oxenium ions and nitrenium ions 

(Figure 1.7).   

 

R
C

R R
Si

R
R N

carbenes silylenes nitrenes

R
N

R R O

nitrenium ions oxenium ions  

Figure 1.7.  Diradical reactive intermediates.  
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The possible electron configurations for a nitrenium ion are shown in Figure 1.8.  

Similar elecronic states exist for the other atom-centered diradical reactive 

intermediates (they all have a second-row atom with six valence electrons).  Three 

singlet states are possible: a closed-shell n2 singlet state, an open-shell n,p singlet 

state, and a closed shell p2 singlet state.  In general, the n,p and p2 singlet states are 

higher in energy than the n2 singlet state because of the energy cost of placing an 

electron in a higher-energy orbital.23 In simple systems, the only accessible triplet 

state is an n,p triplet state (in arylnitrenium ions, a π,π* triplet state is also 

possible).24-26  

 

R N
R

n

p

n2 singlet

R N
R

n

p

n,p singlet

R N
R

n

p

p2 singlet

R N
R

n

p

n,p triplet  

Figure 1.8.  Possible carbene electronic states.  
 

Whether a nitrenium ion exists as a singlet ground state or a triplet ground state 

depends on both steric and electronic factors.23 On a most basic level, the exchange 

energy favors the triplet state, following Hund’s rule.  Acting antagonistically to the 

favorable exchange energy is the cost of putting an electron into a higher energy p 

orbital rather than the lower laying n orbital.  A large energy gap between the n and p 

orbitals, therefore, favors the singlet spin state, whereas a small gap favors the triplet.  

To phrase it another way, for ground-state singlets the cost of putting an electron into 

the higher energy p orbital is greater than the exchange term.   
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Therefore, the singlet state is favored by substituents that increase the orbital energy 

gap either by lowering the energy of the n orbital or by raising the energy of the p 

orbital.  For triplets just the reverse is true, and this spin state is favored when there is 

a small orbital energy gap, with substituents that either raise the n orbital in energy or 

lower the p orbital in energy (Figure 1.9).     

 

n

p

n

p

E

singlet triplet  

Figure 1.9.  Singlet vs triplet ground state for nitrenium ions 
 
 

To the extent that substituents can influence the bond angle, the electronic states can 

also be altered by steric factors.  Qualitative MO theory (QMOT) in the form of a 

Walsh diagram can be used to show that the triplet and singlet states should prefer 

different bond angles.  The Walsh diagram for the valence orbitals and valence 

electrons for NH2
+ are shown in Figure 1.10 for a linear (left) and bent (right) 

geometry.  In the linear geometry the two p orbitals are necessarily degenerate by 

symmetry, and degenerate frontier orbitals favor a triplet state following Hund’s rule.    

In the bent geometry, the degeneracy is broken, and the in-plane p orbital is 

significantly stabilized as a result of mixing with the highest-energy orbital shown 

(which stabilizes the p orbital and destabilizes the anti-bonding orbital); the out-of-



 

 16 
 

plane p orbital remains unperturbed.  This breaks the frontier orbital degeneracy, 

which favors the singlet state in preference to the triplet.  
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Figure 1.10.  Walsh diagrams for linear and bent NH2
+.   

 

Of course, this analysis only suggests that the triplet should favor a more linear 

geometry and that the singlet should favor a bent geometry; this model is not 

sophisticated enough to predict the ground state of NH2
+ (except to say that at the 

linear geometry where the frontier orbitals are degenerate the triplet state should be 
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the lower-energy state following Hund’s rule). These qualitative conclusions from 

QMOT are supported by theoretical calculations.  Figure 1.11 shows a plot that we 

computed of the singlet and triplet energies of NH2
+ as a function of bond angle at the 

DFT (B3LYP/6-31G*) level of theory.  At wide bond angles, the triplet state is the 

predicted ground state for NH2
+; at more acute bond angles, the singlet state is the 

predicted ground state.  High level ab initio calculations show that the H-N-H bond 

angle is 108 deg for the singlet, whereas the triplet is found to be nearly linear, with a 

bond angle of 153 deg and a barrier to inversion smaller than the zero-point 

vibrational energy.27 

 

 

Figure 1.11. Singlet and triplet energies as a function of bond angle for NH2
+ 

(B3LYP/6-31G*). 
 

Theoretical and experimental studies derived from photoelectron spectroscopy 

experiments definitively assign the ground state for NH2
+ to the triplet state. The 

singlet-triplet gap (ΔEST) for nitrenium ions, which is defined as the energy difference 

between the lowest energy singlet state and the lowest energy triplet state, appears to 

be subject to large swings upon changing the nature of the substituents. Parent 

nitrenium ion, NH2
+,  is a triplet by 29.9 kcal/mol, as determined by photoelectron 
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spectroscopy experiments.28,29 Replacing one of the hydrogens on NH2
+ with a phenyl 

ring shifts the energy gap in favor of the singlet by 50 kcal/mol, going from a triplet 

ground state species by roughly 30 kcal/mol to a singlet ground state species by 20 

kcal/mol.30,31 This swing in the ΔEST is readily explained by the pi-donating ability of 

the aromatic ring, which acts to raise the energy of the p orbital on the nitrenium 

center, increasing the energy gap between the n and p orbitals, favoring the singlet.   

For all but a few select cases, arylnitrenium ions have been found to have singlet 

ground states, whereas alkyl nitrenium ions, in which the nitrenium center is 

substituted with much poorer pi donors, are likely to have triplet ground states. 23,25,32  

 

These geometrical preferences found for NH2
+ appear to be generally true for other 

nitrenium ions.  Singlet states, being approximately sp2 hybridized, prefer smaller 

bond angles than do the roughly sp-hybridized triplets.  This geometric preference of 

the singlet state for more acute bond angles can be exploited to alter the singlet-triplet 

energy gap.  Forcing a wider bond angle at the nitrenium center by substituting the R 

groups with large, sterically-demanding substituents destabilizes the singlet state 

more than the triplet, increasing the energy gap in favor of the triplet.  

 

The N-t-butyl-N-(2-acetyl-4-nitrophenyl) nitrenium ion (Figure 1.12) is an example 

of a nitrenium ion with a spin state manipulated by both steric and electronic 

factors.33 While most arylnitrenium ions are ground-state singlets because of the pi-

donating ability of the aromatic rings, this arylnitrenium ion is a ground state triplet.  

Two factors contribute to making the triplet state the ground electronic state.   First, 
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the pi-donating ability of the phenyl ring is decreased because of the pi-withdrawing 

effect of both the nitro group and the acetyl group.  This acts to lower the energy of 

the p orbital on the nitrenium center relative to unsubstituted phenylnitrenium ion.  

Second, the bulky tertiary butyl group forces the wider bond angle preferred by the 

triplet.  While this nitrenium ion has not been observed directly, trapping studies and 

other experiments as well as DFT theoretical studies leave little doubt that this 

nitrenium is a ground state triplet.    

 

N

O2N

O

 

Figure 1.12.  A triplet arylnitrenium ion. 
 

Similar electronic state arguments can be made for carbenes.  In general, carbenes34 

have triplet ground states except those substituted with strong pi donors such as 

halogen substituents (like Cl, F), amino or alkoxy groups, or electron-rich aromatic 

rings (unsubstituted phenyl carbene is a ground-state triplet).   

1.6. Forays to Waypoint 1: Exploiting ferromagnetic coupling units 

Once high-spin organic molecules have been made and characterized (such as triplet 

diradicals), in principle they can be linked to make oligomers with very high spin 

values.  Of course, there is no guarantee that coupling two high-spin molecules will 

lead to a new molecule with increased spin.  If the two monomeric units are linked so 

that the spins on the monomeric units are not strongly coupled to each other (that is, 
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the spins on one monomeric unit do not “feel” the presence of the spins on the other 

unit), the spins will orient randomly and paramagnetism will result.  However, if a 

linker that strongly couples the spins between the two monomeric is used to attach the 

two monomeric units, the spins may orient in the same direction and create a new 

molecule with very high spin values (Figure 1.13).   

poor 
coupling
unit

no net spin

good
coupling
unit

high spin (S=2)  

Figure 1.13. Coupling units.   
 

Fortunately, a number of ferromagnetic coupling units have been identified that can 

be used to link two high spin monomers to create oligomers with very high spin 

values.   These are shown in Figure 1.14.  These linkers allow the spins from the two 

joining units to couple.  In the case of the meta-disubstituted benzene linker, the spins 

from the joining units can both occupy the same carbon atoms in the ring; in the case 

of the vinyl linker, spins from the joining units can both delocalize onto the primary 

double bond carbon.   The cyclobutane linker relies on a “through-space” interaction 

of the two spins.   

 

 

Figure 1.14.  Ferromagnetic coupling units.   
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A few examples of very high-spin oligomers that use known high-spin units with 

these ferromagnetic coupling units are shown in Figure 1.15.8,9,16,35 These species 

have been experimentally generated and studied by EPR spectroscopy to determine 

the ground spin state.   Unfortunately, while these species can be generated and 

characterized in frozen matrices, they are unstable at room temperature.   

 

S = 4

S = 2

S = 2  

Figure 1.15.  High-spin oligomers.   
 

1.6.1. Spin defects.    

 
In addition to the kinetic instability of many high-spin organic building blocks, 

another problem that can plague the formation of very high-spin oligomers is 

disruptive spin defects in oligo(poly)meric spin systems.  Figure 1.16 shows a 

hypothetical one-dimensional polymer  consisting of radical monomeric units.  A spin 

defect is introduced in the middle.  Given that the spin coupling is linear, this spin 
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defect can disrupt the oligomer into two strands with smaller spin, significantly 

reducing the magnetic moment of the oligomer.   

 

spin defect  

Figure 1.16.  Disruptive spin defect in a hypothetical one-dimensional polymer.   
 

Spin defects can arise from a number of different sources.  One source of these 

defects is twisting of a conjugated bond out of planarity (See Figure 1.17).  The effect 

of such a bond twist is to remove the conjugation, and, consequently, the spin 

coupling.  Often, this causes the oligomer to break into two segments with smaller S 

values.   

 

out of plane twisting
removes spin coupling

spin defect  

Figure 1.17.  Spin defects introduced by bond twisting. 
 

A second source of spin defects arises from incomplete generation of the radical 

centers.   Incomplete generation by chemical or photochemical methods can result in 

an sp3 atom in the core, which decouples the joining branches as a result of this spin 
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defect.  An example is shown in Scheme 1.3.  Additionally, if photochemical means 

are used to generate the spin center (radical, carbene, etc), the radical may not be 

photostable.  For example, polycarbenes generated by photolysis of polydiazo 

compounds often crosslink to form spin defects.16  

 

 

OMe

OMeOMe OMe OMe

1. Li
2. I2

sp3 carbon

 

Scheme 1.3.  Hypothetical incomplete generation of radical centers.   
 

1.6.2. Reducing detrimental spin defects by incorporation of spins into 

macrocycles. 

Perhaps the best solution to prevent problems associated with introducing defects is to 

incorporate spins into macrocyclic polymers.  In this way, should a spin defect be 

introduced into the macrocycle, a second ferromagnetic coupling unit exists to keep 

the two ends of the polymer spin coupled.   Two spin defects would need to be 
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introduced to break the ferromagnetic coupling, a lower probability event.  An 

example of a system created by Rajca is shown in Figure 1.18.36 
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Figure 1.18.  Incorporation of spin centers into macrocycles prevents a single defect 
from causing significant spin annihilation. 
  

The organic molecule with the highest-known magnetic moment is the polymeric 

system of Rajca (Figure 1.19).   This system consists of a macrocyclic tetraradical 

core with triphenylmethyl radical linkers.  At 3.5 K, it has the highest known spin 

value for an organic system (S ~ 5000).  Additionally, it has a higher Curie 

temperature (TC) of 10 K, better than the 2 K value for TC seen for most organic 

ferromagnetic systems, but still far from becoming a practical organic 

ferromagnet.37,38 



 

 25 
 

 

S = 5000, 3.5 K; TC = 10 K  

Figure 1.19.  Rajca’s magnetic polymer.   
 

1.6.3. Stabilizing high-spin building blocks.  

In addition to the low Curie temperatures of the known high-spin oligomeric systems 

shown in Figure 1.15, one of the principal problems associated with these structures 

and related species is that these high-spin building blocks are generally kinetically 

unstable.  These high-spin oligomers can be made in low-temperature glassy matrixes 

and studied, for example, with Electron Spin Resonance sprectroscopy (ESR), but 

they decompose once brought to room temperature.  Therefore, to reach the ultimate 
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goal of a room-temperature organic ferromagnet, there is a need for stabilized high-

spin (e.g. triplet) building blocks that can be linked into stable oligomeric structures.   

 

Tomioka has carried out one of the most comprehensive and elegant studies designed 

to stabilize high-spin intermediates on triplet carbenes.8,12,39 This decades-long effort 

has resulted in the identification of stabilized triplet carbenes that have the potential 

to be used as building blocks for constructing stable oligomeric assemblies.  As a 

result of numerous mechanistic studies, Tomioka found that diarylcarbenes with 

bulky substituents in the ortho and para positions, led to persistent triplet carbenes in 

solution.  The bulky ortho groups prevent reactions at the carbene center due to steric 

blocking  (ortho alkyl groups such as t-butyl have little value because the carbene can 

undergo C-H insertion into the alkyl groups).   The blocked para position prevents 

reactions at the para position resulting from spin density leakage at the para position.  

These stabilized triplet diarylcarbenes have lifetimes of days or weeks in de-aerated 

solution (Figure 1.20).     

 

PhPh

CF3

Br

F3C

Br

Lives 1 day in solutionLives 2 s in solution Lives 1 week in solution  

Figure 1.20.  Stabilized triplet carbenes.   
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1.7. Electronic structure theory. 

While significant strides have been made towards obtaining practical organomagnets, 

the two most challenging fundamental problems remain: 1) Stabilization of high-spin 

monomeric units, and 2) Increasing the TC of the resulting ferromagnetic polymers to 

room temperature or higher.  New paramagnetic building blocks with large spin 

coupling (often represented by molecules with large singlet-triplet state energy 

differences), that are either stable or can be made stable, are needed.  Given the 

advances in theoretical methods, identifying new paramagnetic species with large 

singlet-triplet splittings is most easily accomplished using computational modeling.  

This chapter outlines the electronic structure theory and evaluates the methods with 

regard to their use for describing open-shell structures such as radicals.   

 

1.7.1. The Schrodinger Equation 

The foundation of modern quantum mechanical methods is the Schrödinger equation:   

 

 

 

where  represents the Hamiltonian operator, E represents the system energy, and  

represents the wavefunction.  The square of a wavefunction gives a function with 

units of electron probability density.  The wavefunction is an eigenfunction, and so 

the application of quantum mechanical operators (such as operators describing kinetic 

energy, potential energy, position, momentum, dipole moment, magnetic 
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susceptibility, etc) returns the eigenvalue (a scalar) of the operator multiplied by the 

unperturbed wavefunction.  

 

The full Hamiltonian operator for the energy of a molecule (ignoring relativistic 

effects) is given by the equation: 

 

 

 

where Z is the nuclear charge, e is the electron charge (in some notations labeled –e), 

rij is the distance between electrons i and j, and rAi is the distance between nucleus A 

and electron i, and ∇2 is the kinetic energy operator given by the following 

differential equation for a three-dimensional system:    

 

 

 

The full Hamiltonian consists of five terms: The first term of the Hamiltonian 

represents the kinetic energy of the nuclei;  the second term represents the nuclear-

nuclear repulsion; the third term represents the kinetic energy of the electrons; the 

fourth term represents the nuclear-electron attraction; and the fifth (and most 

troubling) term represents the electron-electron repulsion.   
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Solving the Schrodinger equation for the energy can be accomplished by the 

following equation (where τ represents all space):  

 

 

 

Rearranged to solve for the energy, in bracket notation this equation becomes:  

 

 

 

Unfortunately, the Schrödinger equation cannot be solved exactly for all but the 

smallest systems containing a single electron.  Consequently, approximations to this 

equation are necessary to make the equation tractable to systems of interest.   

 

1.7.2. The Born-Oppenheimer approximation. 

The most benign approximation to the Schrodinger equation is the Born-

Oppenheimer approximation, which relies on a simplification of the Hamiltonian 

operator.  Virtually all modern theoretical methods rely on this approximation.  Under 

the Born-Oppenheimer approximation, it is assumed that because electrons are so 

much smaller in mass than nuclei, the motions of the nuclei and the electrons can be 
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decoupled without significant loss of accuracy.  That is, because electrons are more 

than 2000 times less massive than protons, any motion of the nuclei is compensated 

by a rapid redistribution of electrons.  As a result of this approximation, the nuclei are 

not treated as wavefunctions but rather are represented by stationary point charges.   

This approximation eliminates the first term of the full Hamiltonian (nuclear kinetic 

energy term) and simplifies the Hamiltonian to the following:   

 

 

 

This results in a simple expression for the nuclear-nuclear repulsion, and a 

complicated expression for the electronic energy: 

 

 

Thus, once the electronic energy is computed, it is a simple task to find the total 

energy by adding the nuclear-nuclear repulsion term.  The rest of this discussion 

concerns the more difficult treatment of the electronic energy.   

 

1.7.3. Independent electron approximation and spin orbitals 

A second commonly employed approximation is the assumption that the total 

wavefunction, Ψ, for a molecule can be approximated as the product of single-

electron wavefunctions, ψ.  Additionally, to account for a further degree of angular 
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momentum inherent to electrons—spin—the one-electron wavefunctions (orbitals) 

are multiplied by the spin function, of which two values are possible, designated α 

and β; the product of the spin function and the one-electron wavefunctions results in a 

spin orbital.  Notationally, this approximation can be given by the following: 

 

 

 

where ψa(1)α(1) represents the spin orbital for the first electron, ψb(2) β(2) represents 

the spin orbital of the second electron, and so forth. This approximation assumes that 

the one-electron wavefunctions are independent of all the other electrons.   

 

1.7.4. Slater determinants and the Pauli principle 

A consequence of the Pauli principle is that the total wavefunction must be 

antisymmetric with respect to changing the coordinates of any two electrons.  That is, 

changing any two electrons should lead to a sign change in the overall wavefunction.  

For example, switching electrons 1 and 2 on a molecule by using a permutation 

operator (notated P1,2) must lead to a new wavefunction with opposite sign, e.g.: 

 

 

 

Note, though, that switching any two electrons does not change any physical 

observables (electrons are indistinguishable particles since they are fermions), 

because physical observables relate to Ψ2, which is the same as (-Ψ)2. 
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A convenient notation of a total electronic wavefunction that retains the antisymmetry 

of the one-electron wavefunctions is through the use of a determinant (often called a 

Slater determinant), since exchange of any two rows in a determinant flips the sign of 

the resulting wavefunction, in keeping with the Pauli principle.  Additionally, if two 

columns are identical (suggesting that two electrons with the same spin occupy the 

same orbital) the resulting determinant is 0.  This is a manifestation of the Pauli 

exclusion principle.  For a system with n electrons, the total wavefunction represented 

by the product of all the anti-symmetrized one-electron wavefunctions is given by the 

following determinant:   

 

 

 

1.7.5. Restricted and unrestricted wavefunctions. 

As shown in the Slater determinant above, each electron can be represented by a spin 

orbital consisting of a spatial component and a spin component.  This is called the 

unrestricted formalism because it allows each one-electron orbital to have a different 

spatial component.  A common approximation, called the restricted formalism, 

permits two electrons of opposite spin to occupy every spatial wavefunction (the 

resulting α and β spin orbitals are still orthogonal because α and β spin functions are 

orthogonal).  In this way, the wavefunction is simplified because only half the 
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number of spatial single-electron wavefunctions is required to approximate the total 

wavefunction.   

1.7.6. Hartree-Fock theory 

One of the most conceptually elegant approximations to the Schrodinger equation is 

given by the Hartree-Fock formalism.  In this method, the repulsion between 

electrons is considered in an average way.  That is, each electron sees an average 

electric field created by all the other electrons in the system.  The approximation 

inherent to this theory is that electron correlation, or the instantaneous movement of 

an electron in response to nearby electrons, is ignored.  Since the ability of an 

electron to move out of the way of an approaching electron is a stabilizing feature, the 

energies obtained by the Hartree-Fock theory will always be greater than the exact 

energy.  In other words: 

 

 

 

Because the Hartree-Fock theory always provides an energy that is higher than the 

true energy, the variational method can be employed to find the Hartree-Fock 

wavefunction. That is, any change to a trial wavefunction that lowers the energy 

results in a value for the energy (and presumably, equations for the wavefunction) 

that more closely resemble the true energy (and wavefunction).   

 

For a one-electron wavefunction (an orbital), the Fock operator ( ) can be used to 

find the approximate energy of that one-electron wavefunction.  The sum of the Fock 
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energies for each of the occupied one-electron orbitals for a system with n electrons 

gives the total Hartree-Fock energy.  This can be described by: 

 

 

 

The form of the one-electron Fock operator is given by the equation: 

 

 

The Hii term of the Fock operator is the so-called core integral.  This term represents 

the  kinetic energy of the electron (term 3 in the complete Hamiltonian) and the 

electron-nuclear attraction terms (term 4 in the complete Hamiltonian).  

  

 

 

The Jij term, or the Coulomb integral, approximates the electron-electron repulsion 

term in the exact Hamiltonian (term 5).  This Coulomb integral represents a double 

integral between each one-electron wavefunction and every other one-electron 

wavefunction; Coulombic repulsion is also dependent on the distance between the 

two electrons (the r term in the operator).  The molecular interpretation of this double 

integral is that it represents the repulsion between the electron and the average 

electron cloud of another electron, and this calculation is repeated between each 

electron in the molecule.   
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The final term of the Fock operator is the exchange integral, Kij.  This term arises 

from the antisymmetrized nature of the wavefunction required by the Pauli principle.  

This term takes into account the correlation between electrons with the same spin, 

following: 

 

 

 

If two electrons have opposite spins, the Kij integral becomes zero, because the spin 

functions α and β are orthogonal (integration of the product of two orthogonal 

functions gives a value of zero).  However, this integral has magnitude if the spins are 

identical.  This stabilization of electrons having the same spin is called the exchange 

energy, and is the quantum mechanical foundation for Hund’s rule.  At the molecular 

level, this suggests that electrons of the same spin have correlated motions that allow 

them to avoid each other, which helps minimize electron-electron repulsion.  

 

1.7.7. Linear combination of atomic orbitals approximation and basis sets. 

A convenient way of computing the energy of a molecule is to represent 

wavefunctions as a linear combination of other functions.  Chemical intuition 

suggests that atomic orbital functions will be useful for making molecular orbitals.  
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That is, molecular orbitals can be conveniently formed from a linear combination of 

atomic orbitals following:   

 

 

where c is the atomic orbital coefficient and φk represents an atomic orbital.   

 

The atomic functions that are used to approximate the molecular orbitals make up the 

so-called basis set.  However, one inconvenient feature associated with this method is 

that standard Slater-type atomic hydrogen-like orbitals cannot be integrated 

analytically.  For example, the Slater type orbital for the s orbital is shown in Figure 

1.21.  This function has a cusp at the nucleus, making it impossible to integrate 

analytically, following the equation: 

 

 

 

Much slower numerical methods would be needed to integrate this function.  The 

most common solution is to represent the Slater-type orbitals themselves using 

functions that are integrable—most commonly, Gaussian type functions.  Guassian 

type functions are represented by: 
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for which analytical integrals are available.  Although a single Gaussian function 

poorly represents a Slater-type orbital, the linear combination of several Gaussian 

functions can be made to mimic the STO reasonably closely.  Even though more 

functions are required in order to use Gaussian functions, a significant savings in 

computational cost is achieved because the integrals can be computed analytically.  

Thus, in most cases molecular orbitals are made from a linear combinations of atomic 

functions, and the atomic functions are made in turn from a linear combination of 

Gaussian functions (Figure 1.21).  

 

Slater-type s orbital 2 Gaussian functions approximate Slater s orbital

H H H H

Making MOs using approximate Slater orbitals  

Figure 1.21.  Approximating a Slater orbital using Gaussian functions 
 

Thus, the atomic Slater orbital (φi) can be represented by two or more Gaussian type 

functions.  For two Gaussian functions, this follows the equation: 

 

 

 

where the coefficients a1 and a2 are optimized to best mimic the Slater type function 

(usually these coefficients are optimized beforehand over some test set).  A common 
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small basis set is the STO-3G basis set, where 3 Gaussian functions are used to 

represent each Slater type orbital (STO).  More sophisticated basis sets such as the 

popular 6-31G basis set of Pople can be used.  These basis sets are called split-

valence basis sets, because they give more basis-set flexibility to valence orbitals, 

while core orbitals are treated more crudely.  For example, a 6-31G basis set informs 

that 6 Gaussian functions will be used to approximate the core orbitals.  The 31 

suggests that the valence will be made up of two basis functions, the first of which is 

formed from a linear combination of 3 gaussian functions and the second from a 

single gaussian function.  Since the valence is made up of two functions, this basis set 

is called a double ζ basis set.  If the valence orbitals are made from three basis 

functions, such as in the 6-311G basis set, the basis set is called triple ζ, and so forth.  

 

Polarization functions can also increase the flexibility of a basis set.  For example, 

allowing some d orbital character to mix with p functions generates a new 

asymmetric orbital with larger amplitude on one side.  For example, such “leaning” p 

functions often better approximate pi orbitals than do lone p orbitals.  Of course, it’s 

important to note that the LCAO method is an approximation and any additional 

mathematical flexibility that can be permitted for obtaining the proper wavefunction 

is always welcome; chemical intuition should not get in the way of increased 

mathematical flexibility for describing the overall wavefunction.   

 

mix
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Adding d orbital polarization functions to a basis set is designated with a (d) or a *, 

such as in the popular 6-31G(d) (also represented as 6-31G*) basis set.  Additionally, 

p polarization functions can be mixed into hydrogen functions, such as in the 6-

31G(d,p) basis set (or, commonly, 6-31G**) to give more basis set flexibility for 

treating X-H bonds.    

 

1.7.8. Self-consistent field (SCF) theory  

One problem with solving the Hartree-Fock equations is that to determine the 

molecular orbitals, the Fock equations for J and K need to be solved for every 

pairwise interaction between each electron in the molecule.  In addition to the 

computational expense involved in such a calculation, this is a chicken and egg 

problem because to determine the wavefunction of a one-electron orbital you need to 

already know the wavefunction of all the other one-electron orbitals.  In practice, 

then, the first one-electron wavefunction is found by guessing all the other one-

electron MOs, and then using those guessed functions to find the approximate one-

electron wavefunction at hand.  This approximate one-electron wavefunction is then 

stored and then the next one-electron wavefunction is computed using this improved 

one-electron wavefunction to give a better guess of the second one-electron 

wavefunction.  After each iteration, the improved one-electron MOs are plugged back 

into the Fock equations, and this process is repeated until the change in the energy has 

reached below some pre-defined threshold, and the wavefunction is said to have 

reached self-consistency.   
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1.7.9. Electron correlation methods: Configuration interaction (CI). 

Since the Hartree-Fock theory ignores the correlation energy, the correlation energy 

can be found by the equation:   

 

 

 

Hartree-Fock theory, as described above, overestimates the system energy because it 

ignores the instantaneous interaction of electrons, or the electron correlation energy.  

While Hartree-Fock theory is often adequate for obtaining energy differences for 

molecules that have roughly equal electron correlation (and thus cancel each other out 

reasonably well), electron correlation becomes very important for modeling more 

difficult systems that have elecron correlation such as transition states, radical 

species, heats of formation, etc.  In these cases, the Hartree-Fock method performs 

poorly, and better methods that take into account electron correlation are needed.  

Methods that take into account this electron correlation take a number of different 

forms.  The most conceptually simple method is called configuration interaction (CI).  

In a complete CI, the total wavefunction is found as the sum of all the possible 

electronic configurations (or Slater determinants) for a molecule with coefficients 

representing the weight of each determinant in the expansion (typically, the largest 

coefficient precedes Ψ1, the ground-state HF wavefunction).  
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where Ψ1 represents the ground-state Hartree-Fock wavefunction and the other 

wavefunctions represent excited-state Slater determinant wavefunctions.  Visually, 

this can be represented for a four-electron molecule by the diagram shown in Figure 

1.22.    

 

+ + + +
...

!CI =

!HF

+c1
c2 c3

c4 c5

 

Figure 1.22. Schematic of CI wavefunction for a four-electron molecule. 

 

Conceptually, mixing excited state wavefunctions into the ground-state wavefunction 

allows the electrons to avoid each other because it increases the size and flexibility of 

the wavefunction.  Ignoring relativistic effects (usually negligible for organic 

molecules), a full CI calculation with an infinite basis set represents the exact solution 

to the Born-Oppenheimer-approximated Schrodinger equation.   Of course, a full CI 

calculation quickly becomes intractable as the system size increases, because of the 

computational expense associated with finding all the coefficients and Slater 

determinants.  Shown in the equation below is the computational route to a full CI 

computation of H2.  First, the Slater-type orbitals are approximated using Gaussian 

functions, and then combined to make the one-electron wavefunctions (shown here 
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using the restricted formalism).  Then the CI expansion is made as the sum of all 

possible configurations (Slater determinants) of the one-electron wavefunctions.   

Finally, the coefficients of each Slater determinant are optimized to minimize the 

system energy.   For a molecule made with two molecular orbitals, under the 

restricted formalism the total CI wavefunction could be written:  

 

ΨCI= c1ψ1
2 + c2ψ1ψ2 +  c3ψ2ψ1 +  c4ψ2

2 

 

where the coefficients (cn) are scalar values optimized to minimize the energy of the 

CI wavefunction.   The problem with CI is that this method quickly becomes 

computationally impractical as the number of atoms and basis functions increase, 

simply because of the sheer number of possible determinants for which expansion 

coefficients and wavefunctions will need to be optimized, which increases 

exponentially with the number of basis functions.  Thus, to expand the practical 

application of computational methods that include electron correlation, 

simplifications must be made.   

 

A common simplification of the Full CI wavefunction is to allow only a certain 

number of excitations to mix into the ground-state wavefunction.  For example, under 

the CISD method, only single and double-excitation Slater determinants are allowed 

to mix into the ground-state wavefunction (in Figure 1.22 above, for example, the last 

Slater determinant would not be included since it represents a triple excitation).  With 
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the CISDT method, single, double, and triple excitation wavefunctions are permitted, 

but at a significant increase in computational expense.   

 

1.7.10. Complete active space (CAS) methods. 

Alternatively, a complete active space method can be employed (often annotated 

CASSCF).  In this method, certain orbitals are designated as active orbitals from 

which all excitations are allowed. Shown in Scheme 1.4 is a diagram representing a 

CASSCF(2,2) wavefunction.   In this case, the active space is confined to 2 orbitals 

and 2 electrons and all excitations with those electrons and those orbitals are 

considered.   All other excitations outside the active space are not considered.  The 

larger the active space, the more the electron correlation energy is captured, but at 

considerable additional computational expense. Typically the active space is chosen 

to consist of the largest number of frontier orbitals that are computationally tractable.  

However, selection of an active space is not always chemically intuitive.  In some 

cases, such as with extended pi systems, the active space is reasonably obvious, and 

should probably include at least all pi electrons and pi orbitals, but in saturated 

molecules, the best orbitals to include are not always apparent.   In these cases, 

chemical intuition and experience are good guides, but in inscrutable systems simply 

testing a number of different active orbitals with small basis sets in trial CASSCF 

calculation to see which contribute significantly to a CAS expansion is the best way 

out of this dilemma.   
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+ +!CASSCF(2,2) =

!HF not included

active
space

+

  

Scheme 1.4.  Schematic of a CASSCF(2,2) wavefunction. 
 

A modern flavor of the CASSCF method is the so-called CASPT2 method, which 

uses a complete active space calculation to capture any major non-dynamical 

correlation (correlation from contributions of higher excited state wavefunctions to 

the ground-state), and then uses second order perturbation theory to capture 

dynamical correlation outside of the active space.  This CASPT2 method has been 

shown to be particularly robust for excited states and “problem” molecules that often 

are treated poorly by other methods (such as non-Kekule diradicals, hypovalent 

reactive intermediates, strained systems, etc).  However, analytical gradients of the 

CASPT2 energy are not widely available, so geometry optimizations must be 

computed numerically (as a result, CASPT2 optimizations can only be performed on 

the smallest of systems).  Often a CASPT2 single point calculation is performed at a 

geometry computed at a lower level of theory (often CASSCF).  It should be noted, 

though, that these CASPT2 computations are often incredibly computationally 

expensive.     
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1.7.11. Density functional theory 

Density functional theory (DFT) has become one of the most popular computational 

methods.  This method is not based on building wavefunctions as a product of one-

electron orbitals, such as in the Hartree-Fock theory, but rather computes the energy 

of a system as a function of the electron density.  The basic idea for DFT is that, 

rather than computing a multidimensional function (Ψ) that is a function of the three 

spatial coordinates and the spin for every electron in the system (number of 

dimensions = 4n, where n is the number of electrons), the problem would be much 

simpler if one could work with a function that consists of only four-dimensions: the 

total molecular electron density as a function of the spatial coordinates and the spin.  

 

Kohn-Sham orbital approximations.  Unfortunately, while an operator that directly 

computes the exact system energy from the electron density must exist (as proven by 

Hohenberg and Kohn), the form of this operator is still unknown.  Kohn and Sham 

realized that solving for the energy would be simpler if the total density could be built 

as the sum of one-electron density functions that did not interact (similar to Hartree 

orbitals), but coincidentally had an overall density that was the same as a system that 

did have interacting electrons.  The density function is built essentially in the same 

way as the Hartree-Fock wavefunction as the product of one-electron density 

functions.  The resulting density functions are called the Kohn-Sham orbitals.   

 

Within the Born-Oppenheimer approximation, the DFT energy can then be computed 

computed as follows: 
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The first three terms are classical and are similar to the terms in the wavefunction 

Hamiltonian, where ET is the electron kinetic energy term, similar to the single kinetic 

energy integral seen in HF theory (Ψ represents density orbitals under the Kohn-

Sham approximation and ρ represents the electron density): 

 

 

 

EV defines the potential energy involving the nuclear-nuclear repulsions and the 

nuclear-electron attraction: 

 

 

 

And EJ is the Coulombic electron repulsion term: 

 

 

 

The final and most interesting term, EXC, represents (among other things) the non-

classical terms arising from exchange and electron correlation and corrections to the 
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kinetic energy term.  The exact operator for computing this term is unknown  

(although a form must exist), so this term must be approximated.   

 

1.7.12. Modern exchange-correlation methods.  

The basis of Kohn-Sham DFT is that it results in three reasonably simple classical 

terms (ET, EV, and EJ), with all the unpleasant non-classical operators and the electron 

correlation lumped into the EXC term (ie.  it puts all the rotten eggs into one basket).  

The operator that gives the exact EXC energy is unknown (although Hohenberg and 

Kohn proved that such an operator must exist), so modern density functionals must 

make approximations to this term.     

 

The most common approximation to the exchange-correlation functional is through 

assuming that the correlation of electrons in a molecule has similar correlation to a 

hypothetical substance called the uniform electron gas (or “jellium” as it is sometimes 

called). The uniform electron gas is a number of electrons interacting with a uniform 

potential (such that the potential plus the electronic charge is zero).  The correlation 

energy has been computed for these hypothetical systems to a high level of accuracy.  

Consequently, the electron correlation for a given density can be computed by 

comparison to the correlation found for that density in a uniform electron gas.  In 

practice, this is carried out by placing a grid over a molecule and for each point on the 

grid the correlation energy at each of the points is computed.  The grid size is a 

tradeoff between accuracy and computational cost.  Density functionals that derive 



 

 48 
 

the correlation energy from such a method are called local density functionals (or 

LDA functionals, representing the Local Density Approximation).   

 

Inherent to the local density DFT method is the implicit assumption that the 

correlation energy for a molecule doesn’t change significantly as a result of a gradient 

in the electron density (there is no density gradient in the uniform electron gas). A 

better method for computing the correlation over a grid is to also consider the 

gradient in the electron density at each of the points on the grid when computing the 

energy, viz:    

   

 

 

where the first term represents the corresponding energy corresponding to the local 

density and the second term provides the correction to the correlation energy as a 

result of the density gradient.   

 

A variety of gradient-corrected exchange and correlation functionals have been 

developed.  Becke developed the most popular exchange functional.  This method 

includes a single empirical parameter derived from the exact known exchange energy 

seen in the noble gases (thus functionals exploiting the Becke exchange functional are 

not strictly “ab initio”).  Another popular exchange functional incorporating three 

empirical parameters into the exchange functional of Becke is termed the Becke3 (or 

B3) exchange functional.  Popular correlation functionals include those of Lee, Yang, 
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and Parr (abbreviated LYP) and Perdew and Wang (PW91, for the correlation 

functional developed in 1991).  Thus the acronym Becke3LYP or simply B3LYP 

suggests that the three-parameter exchange functional of Becke and the correlation 

functional of Lee, Yang, and Parr was used to find the DFT energy.   BPW91 informs 

that the calculation used the exchange functional of Becke and the correlation 

function of Perdew and Wang.  While these gradient-corrected functionals are more 

computationally expensive than local density DFT methods, they offer such an 

improved performance that local density functionals that the local density functionals 

are seldom seen outside of specialized computational studies.   

 

In conclusion, we have described two popular computational methodologies that 

include explicit incorporation of the electron correlation energy—the configuration 

interaction method and the density functional theory method.  The complete 

configuration interaction method is essentially intractable for most interesting 

systems and so approximations to this method such as CISD and CASSCF are made.  

The disadvantage of these ab initio wavefunction methods is that, within a given basis 

set, these methods tend to be more computationally expensive than DFT methods.   

They offer the advantage, however, over DFT in that there is a clear path to the 

complete solution of the Schrodinger equation by adding more of the possible 

configurations (Slater determinants) and increasing the basis set—at an exponential 

increase in the computational cost.   For DFT, since the form of the operator that 

connects the ground state density to the system energy is currently unknown, there is 

no set path to complete solution of the Schrodinger equation within Kohn-Sham DFT.  
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However, comparison of DFT results to experimental or high-level ab initio methods 

leads to the conclusion that DFT can offer good computational accuracy at a fraction 

of the computational cost of comparably accurate wavefunction methodologies.   
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2. Chapter 2: Development of a New Photochemical Method for 
Generating Nitrenium Ions 1 

 

2.1. Introduction 
 
The idea of adapting high-spin nitrenium ions to make building blocks for high-spin 

oligomers was of particular interest, in large part because nitrenium ions often have 

very high spin couplings (as evidenced by large singlet-triplet gaps) that could lead to 

building blocks with improved magnetic properties (for example, large spin couplings 

are anticipated to lead to higher Curie temperatures).  As part of our initial efforts to 

find stable high-spin nitrenium ion building blocks, we first looked to find a more 

facile and convenient method for generating nitrenium ions with bulky adjacent 

substituents.     

 

Nitrenium ions are reactive intermediates characterized by a dicoordinate, positively 

charged nitrogen atom.23-26 The simplest example is NH2
+. Like the isolectronic 

carbenes, nitrenium ions have two low-energy electronic configurations, which are 

depicted schematically in Figure 2.1. For NH2
+, the lowest energy state is the np 

triplet state, with the n2 singlet state being +29.9 kcal/mol higher in energy.23,28 The 

p2 and np singlets are higher in energy and are generally not considered to be 

chemically significant.  For substituted nitrenium ions, the singlet-triplet state energy 

difference (ΔEST) has been the subject of numerous theoretical23-25,30,40,41 and 

experimental studies.26,40-51 Aromatic nitrenium ions, in particular, have received the 

                                                
1 Taken in part from Winter, A. H.; Thomas, S. I.; Kung, A. C.; Falvey, D. E. Org. Lett.  2004; 6(25); 4671-4674. 
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most experimental attention due to their suspected roles in carcinogenesis50,52 and in 

the synthesis of conducting polymers.51,53  

 

H
N

H

n

p

H
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H

n

p

singlet (n2) triplet (np)  

Figure 2.1 Singlet and triplet NH2
+.  

 

While carbenes have been explored as possible building blocks for construction of 

high-spin assemblies (refer to Ch. 1), to our knowledge there have been no attempts 

to adapt triplet nitrenium ions towards such an effort.   One of the lessons learned by 

Tomioka in his studies directed towards finding stable triplet carbene species was that 

imparting kinetic stability to the triplet carbene in the form of large sterically-

demanding substituents most successfully led to persistent carbenes in solution than 

other efforts.  Unfortunately, we felt that the current methods for generating nitrenium 

ions were sufficiently limited that they would not permit the formation of nitrenium 

ions with very bulky substituents.   

 

Three primary methods have been used for making nitrenium ions photochemically, 

and each has limitations.  The first involves photolysis of azides in the presence of 

acids (Scheme 2.1).  Excitation of the azide results in loss of nitrogen gas and 

formation of a nitrene intermediate, which is then protonated by acid to make the 

nitrenium ion.  Unfortunately, this method is limited to formation of primary 
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nitrenium ions (e.g. nitrenium ions with only one substituent).  A second method is 

photolysis of anthranilium salts.  This method is inherently limited to formation of 

nitrenium ions having an acetyl group in the ortho position.  The most general 

method, however, is photolysis of N-amino pyridinium salts.  Upon photolysis, these 

compounds undergo heterolytic N-N bond scission to generate the nitrenium ion and 

a pyridine derivative.  This method is currently the most general and popular 

precursor for studying nitrenium ions; however, the collidine leaving group is large 

and bulky and thus is not expected to permit the formation of much steric bulk around 

the nitrogens.   
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Scheme 2.1  Methods for generating nitrenium ions.   

 

2.2. Photolysis of 1,1-diarylhydrazinium ions. 

Therefore, we sought to find a new method for photochemically generating nitrenium 

ions that had a smaller leaving group so that steric bulk could be built around the 

resulting nitrenium ion.  We considered that an ammonia leaving group would be 
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small enough to permit bulky substituents to be attached to the nitrenium ion, but still 

retain the good leaving group quality (Scheme 2.2).   
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Scheme 2.2.  Proposed photogeneration of nitrenium ions. 
 
Thus, in order to expand the available routes to nitrenium ions, we examined the 

photochemistry of protonated 1,1-diarylhydrazines.  Through a combination of LFP 

experiments, product analysis, and time-dependent density functional theory (TD-

DFT) calculations, it is demonstrated that photolysis of protonated 1,1-

diarylhydrazines generates the corresponding nitrenium ions in high yields. 

2.3. Product studies. 

Three 1,1-diarylhydrazine derivatives were studied: 1,1-diphenylhydrazine 2.1a, 1,1-

di(4-chlorophenyl)hydrazine 2.1b and 1,1-di(4-bromophenyl)hydrazine 2.1c. 

Protonation of the hydrazines using HBF4 to make the hydrazinium ions was followed 

by UV spectroscopy. In each case the free bases have strong absorption bands with 

maxima in the 295-305 nm region. Upon addition of a stoichiometric amount of 

HBF4, this highest wavelength absorption band is replaced with a long absorption tail 

that extends from 240 to ca. 300 nm. Consequently, compounds 2.1a, 2.1b, and 2.1c 

require lower wavelength light for excitation than do the corresponding N-

aminopyridinium salts. The latter can generally be excited with wavelengths as high 
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as 400 nm. The protonated hydrazines show only weak fluorescence (Φfl <0.03) in 

CH3CN. 

 

Photolysis of the pyridinium ions 2.6 (BF4
- salts) in CH3CN produces stable products 

that are characteristic of the nitrenium ions 2.2 (Scheme 2.3). The product mixtures 

were analyzed by GC, and the products identified by co-injection with authentic 

samples. Photolysis of diphenylhydrazinium ion (2.1a) in CH3CN with added Cl- (as 

nBu4N+Cl-) gives a mixture of 4-chloro-N-phenylaniline 2.4 and diphenylamine 2.5. 

Likewise, the para-substituted examples 2.1b and 2.1c each give a mixture of chloride 

adduct 2.3 and the reduction product 2.5.  
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Scheme 2.3.  Photochemical generation of nitrenium ions.   
 

2.4. Laser flash photolysis studies. 

Laser flash photolysis (266 nm, 4 ns, 10-25 mJ/pulse) shows that the corresponding 

nitrenium ions 2.2 are formed following photolysis.  Figure 1 shows the transient UV-

Vis spectra generated from pulsed laser photolysis of protonated 1,1-

diphenlyhydrazine 2.1a in CH3CN.  The spectrum immediately following the laser 

pulse, having bands at 650 nm and 410 nm, is experimentally indistinguishable from 
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the spectrum generated from the corresponding N-aminopyridinium salt 2.6 (Scheme 

2.4).  In a previous work the identity of this intermediate was established as the 

diarylnitrenium ion 2.2 by a variety of experiments, including trapping studies and 

time-resolved infrared as well as resonance Raman spectroscopy.  

X

N

X

N

a: X=H

b: X=Cl

c: X=Br

2.6

hv

X

N

X
N

2.2 2.7

 

Scheme 2.4.  Previous method to generate diarylnitrenium ions. 

 
The other two hydrazinium ions 2.1b and 2.1c give similar transient spectra upon 

laser flash photolysis (Figure 2.2). Both of these initial intermediates decay within 5-7 

ms to give a second, longer-lived intermediate. For reasons discussed below, this 

secondary transient is attributed to the radical cation, deriving from an electron 

transfer reaction between 2.2 and 2.1.  
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Figure 2. 2. Transient UV-vis spectra derived from LFP (266 nm excitation) of 2.1a 
(top), 2.1b (middle), and 2.1c (bottom) in CH3CN solutions. The spectra at early 
times (filled circles) are assigned to the corresponding diarylnitrenium ions 2.2; those 
at later times (open circles) are assigned to the corresponding cation radicals 2.5+•.  
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Table 2.1. Rate Constants for Reaction of 2.1 and 2.6 with Chloride Ion. 
 
Precursor kCl (M-1s-1)a 
2.6a 1.0 x 1010 

2.1a 5 x 109 

2.6b 1.1 x 1010 

2.1b 4.7 x 109 

2.6c 9.8 x 109 

2.1c 5.5  x 109 

a. Derived from one trial  

Two experiments confirm that the absorptions seen immediately after the laser  

pulse correspond to the nitrenium ions. First, laser flash photolysis (355 nm, 20-30 

mJ, 6 ns) of the corresponding NAPs (2.6) give transient absorption peaks at the same 

maxima as those observed for the corresponding hydrazinium ions (Table 2.1). With 

the NAP-generated transients, however, no long-lived intermediate was detected 

following the decay of the arylnitrenium ion. In fact, the lifetimes of the NAP-

generated transients were significantly longer (>100 ms) than the initial intermediates 

generated from 2.1b and 2.1c.    

 

Table 2.1. Calculated and Experimental Absorption Maxima (nm) [Lifetimes (µs)] of 

2.2 a, b, c.  Derived from LFP of 2.1a, 2.1b, and 2.1c.   

 

Precursor 2.2a 2.2b 2.2c 
2.1 420, 640 [1.3] 440, 680 [6.1] 450, 690 [4.5] 

2.6 420, 640 
[1.2]a 

440, 670 [159]  440, 690 [125]  

DFT 645 637 647 
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2.5. Chemical trapping  studies. 

The assignment of 2.2 was further verified by kinetic quenching studies. In 

each case, addition of Cl- was found to diminish the lifetime of the initially formed 

transient species.  A pseudo first-order analysis of the decay rates with varying 

concentrations of the trap provides second-order rate constants that are near the 

diffusion limit. In these experiments, we note that the trapping rate constants are 

slightly smaller when the nitrenium ions are generated from 2.1 than those from the 

NAPs 2.6. This difference can be traced to the acid (HBF4) that is added to the 

solutions of 2.1 in order to protonate the hydrazine. It is likely that the acid protonates 

some of the Cl- ions as well (which are much more basic in CH3CN than in H2O), 

reducing their reactivity. This was supported by repeating the experiment with 2.1a in 

the presence of a 40-fold excess of HBF4, which reduced the trapping rate constant by 

a factor of ten.  

As a final confirmation of the assignments, TD-DFT calculations were 

performed to predict the absorption spectra for nitrenium ions 2.2a-c. TD-DFT 

calculations have been shown to reasonably predict the UV spectra of organic 

compounds including organic free radicals. Structures for the singlet states of each 

example were optimized at the RB3LYP/6-31G level. Analytical force field 

calculations verified that the optimized structures corresponded to minima on their 

respective potential energy surface. In each example, the TD-DFT calculations 

predict a strong absorption band in the 600-700 nm region.  As shown in Table 1, 

theoretical-experimental agreement is excellent for the unsubstituted system 2.1a, and 
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reasonable for the cases of 2.1b and 2.1c, given the approximations inherent in the 

formalism.  

 

 

 

Figure 2. 3  Transient spectra derived from LFP (355 nm excitation) of a mixture of 
2.6c and 1,4-dicyanobenzene (50 mM) in CH3CN.   

 

The long-lived intermediates detected in the LFP experiments on 2.1b and 

2.1c are assigned to the cation radicals of the corresponding amines 2.5.  Two 

experiments confirm this assignment. First, we generated the same cation radicals by 

LFP using an alternative route. Specifically, both 2.5b and 2.5c were photolyzed in 

the presence of an electron acceptor, 1.4-dicyanobenzene (DCB). It was expected that 

the excited singlet states of these amines would transfer an electron to DCB, 

following Scheme 3. The resulting radical ion pair can then be detected by LFP. The 

results from this experiment with 2.1c are illustrated in Figure 2.3. The two other 
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amines, 2.5b and 2.5b, both give very similar results.  A sharp absorption band is 

seen at 720 nm for 2.5b and at 730 nm for 2.5c.  

 

2.6. Formation of the cation radical 

The mechanism by which 2.5+• is formed is shown in Scheme 2.5. It is 

postulated that nitrenium ion 2.2 abstracts an electron from unreacted hydrazinium 

ion 2.1. Under the acidic conditions required to protonate the hydrazine, the resulting 

aminyl radical is also protonated to give 2.5+•. This mechanism is supported by 

additional LFP experiments. In this case, the NAPs 2.6b and 2.6c were excited in the 

presence of the corresponding hydrazinium ions using 355 nm excitation. At this 

wavelength, the NAPs but not the hydrazinium ions absorb light. In both cases long-

lived absorption bands at 720 nm and 730 nm, attributed to 2.2b and 2.2c respectively 

were detected following the laser pulse. This result confirms that the postulated 

electron transfer reaction occurs rapidly.   It should be noted that the same 

intermediates could also form from a direct H atom abstraction; further experiments 

would be necessary to rigorously distinguish these pathways.  
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Scheme 2.5.  Photogeneration of amine radical cations 
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The unsubstituted system, 2.1a, shows only a very weak signal for the cation radical 

2.5a+• following the decay of the nitrenium ion 2.2a. This can be traced to the short 

lifetime of the latter intermediate in the absence of hydrazine. Previous studies have 

shown that this diarylnitrenium ion undergoes a unimolecular cyclization reaction, 

eventually forming carbazole.   This apparently competes with the reaction shown in 

Scheme 2.6.   
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Scheme 2. 6. Generation of amine radical cation 

2.7. Conclusions 

In conclusion, photolysis of 1,1-diarylhydrazinium ions generates diarylnitrenium 

ions via N-N bond heterolysis. The chief advantage to this method is these photolytic 

precursors are easier to obtain than the NAPs 2.6 that have been used previously. On 

the other hand, protonated hydrazines 2.1 require the use of lower wavelength UV 

light (<300 nm) than NAPs. An additional limitation is the rapid reaction of the 

photogenerated nitenium ion intermediate with unconverted hydrazinium ion.  
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3. Chapter 3: Theoretical Investigations of Meta-substituted 
Arylnitrenium Ions1 

 

3.1. Introduction. 
 
In this chapter we describe computational studies aimed at identifying novel triplet 

nitrenium ions with the potential of being stabilized by chemical substitutions.  In 

order to find such high-spin nitrenium ion species, we turned to computational studies 

to assess the singlet and triplet state energies for substituted arylnitrenium ions.     

 

For substituted nitrenium ions, the prevailing view is that the singlet-triplet state 

energy gap (abbreviated ΔEST) is determined by both steric and electronic factors. For 

the parent system (NH2
+), the singlet state has a bent geometry with a bond angle of 

107 deg, whereas the triplet is quasilinear, having an equilibrium bond angle of 150 

deg and a very low barrier to inversion. Thus, increasing the RNR bond angle with 

large, sterically-demanding substituents is predicted to destabilize the singlet state 

more than the triplet.31 Non-symmetric substituents that interact differentially with 

the two nonbonding orbitals will tend to stabilize the singlet state. For example, the 

filled π−orbitals on an aromatic ring act to raise the energy of the p orbital and thus 

stabilize the singlet. 19,41,42 In fact, calculations at various levels of theory predict 

phenylnitrenium ion to be a ground state singlet with ΔΕST ≈ –20 kcal/mol (a positive 

value of ΔEST  indicates a triplet ground state). 19,41,43 Although an experimental 

measurement of this value is not available, the sum of the indirect evidence on 

phenylnitrenium ion and similar systems is consistent with this prediction. 3,22,25,44,45   

                                                
1 Taken in part from: Winter, A. H.; Falvey, D. E.; Cramer, C. J.  J. Am. Chem. Soc.  2004; 126(31); 9661-9668 
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The trend predicted from this simple picture is supported by a variety of experimental 

and computational studies.  For example, Sullivan et al.43 calculated ΔEST values for a 

series of para-substituted phenylnitrenium ions (3.1). It was found that π−donor 

substituents (e.g. OCH3, NH2, NMe2) favor the singlet state and that π−acceptor 

substituents (CHO, NO2, etc) favor the triplet state. In fact, ΔEST in this series shows a 

reasonable Hammett linear free energy correlation with the σ+ parameter, which 

represents the resonance electron-withdrawing effect of para substituents.  In a 

related study46 it was demonstrated that replacing the benzene ring carbons with 

nitrogens (e,g. 2-triazolylnitrenium ions 3.2) also favors the triplet state. Such 

heteroaromatic rings are expected to be less effective π donors due to the 

electronegative nitrogen atoms.  

 

N

N

N

N

H

N

H

X

3.1 3.2  

Figure 3. 1.  Aryl and heteroarylnitrenium ions. 
 

Organic molecules with stabilized triplet states have attracted interest due to the long-

term promise of designing materials with interesting magnetic and electronic 

properties. 47,48 As a rule, however, paramagnetic organic entities such as free radicals 

and triplet carbenes are kinetically unstable. Thus, there is interest in identifying 

novel organic groups that are both paramagnetic and capable of being stabilized 

through appropriate substitution. To our knowledge, there has been no effort to 
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exploit triplet nitrenium ions to this purpose. This is understandable given the short 

lifetimes of these species in condensed media,49,50 and that simple structural 

modifications of NH2
+ tend to stabilize the singlet in preference to the triplet. 

 

We anticipated that a computational study would show how various substitution 

patterns affected ΔEST  values in phenylnitrenium ions. In particular, we hoped to 

identify triplet species having sufficient structural complexity that stabilizing 

elements could be incorporated into the structures without compromising the 

electronic state. Secondly, it was hoped that analysis of several such structures would 

lead to some simple qualitative generalizations that would be useful in guiding future 

computational and experimental efforts. While the earlier study had addressed the 

effects of para substitution on ΔEST for phenylnitrenium ion derivatives, we set out to 

examine the effects of meta substituents.  

 

The qualitative picture developed from the previous studies led us to expect only 

modest effects of meta substituents. Surprisingly, it was found that meta donors 

dramatically stabilize the triplet states in arylnitrenium ions. It is argued that such 

nitrenium ions have a triplet state that is not well described by Fig 3.1. Rather, the 

meta donor systems have π,π∗ orbital character and are better described as meta-

xylylene analogs.  
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3.2. Theoretical methods 

 

Several earlier studies have demonstrated the utility of density functional theory 

(DFT) calculations in quantitatively predicting various nitrenium ion properties. For 

example McIlroy et al.51 compared the theoretical and experimental ΔEST  for a stable 

nitrenium ion 3.3. Because this species is stable, it was possible to measure ΔEST 

experimentally using standard photophysical techniques. The value derived from 

BPW91/cc-PVDZ computations (-64.7 kcal/mol) agrees well with the 

experimentally-derived value (-66±3 kcal/mol). Similar DFT computations 

successfully predict experimental IR frequencies (measured by time-resolved 

techniques) for diphenylnitrenium ion52 and N-(4-substituted)phenyl-N-

methylnitrenium ions.45  More recently Phillips et al. 53-55 have successfully computed 

nitrenium ion Raman frequencies using this approach. Also relevant to this work is 

the application of DFT methods to the study of ΔEST values in arylcarbenes. 19,39,56-61 

 

N
N
N

CH3

CH3

3.3  

Figure 3. 2.  A stable nitrenium ion. 
 
Structures for all of the nitrenium ions in the present study were determined using 

density functional theory (DFT) at the UB3LYP/6-31G(d,p) level.  Both the geometry 

optimizations and the vibrational modes were calculated at this level.  Energy 

differences (ΔEST) include zero point vibrational energy corrections, which were 
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unscaled. All singlet and triplet states were found to be local minima with no 

imaginary vibrational frequencies. As discussed in a subsequent section of this 

chapter, several alternative basis sets were examined. The trends described below are 

robust irrespective of the size of the basis set or the absence or presence of 

polarization functions.  

 

3.3. Computed singlet-triplet gaps 

Table 3.1 lists all of the substituted phenylnitrenium ions examined along with their 

corresponding ΔEST values. Also included in that table are some key geometric data 

including the ArN bond length (r1), the ArNR bond angle (θ), and the torsional angle 

(ω) between the N-R bond and the phenyl ring.  The first two examples, 

phenylnitrenium ion 3.4 and N-methyl-N-phenylnitrenium ion 3.21, have been studied 

previously. These are computed at the present level of theory to be ground state 

singlets by –19.5 and –14.3 kcal/mol, respectively. The smaller ΔEST value predicted 

for the N-methyl system has been attributed to the steric effect of the N-methyl group, 

where the methyl group forces a wider bond angle preferred by the triplet state. We 

note that for the triplet states of these two nitrenium ions, the N-R bond (R=H, Me) is 

approximately perpendicular to the phenyl ring.  This was also predicted by the 

previous study. 19,40,62  
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Table 1. Singlet-Triplet Gaps and Selected Geometric Parameters for Substituted 
Phenylnitrenium Ions (UB3LYP/6-31G(d,p)). 

N

R

X

Y

R'

 
No. R R’ X Y ΔEST

 

(kcal/mol) 
Spin 
State 

θ 
(deg) 

R1
 

(ang) 
ω 
(deg) 

3.4 H H H H -19.2 Singlet 
Triplet 

112.5 
131.8 

1.294 
1.326 

0.00 
92.63 

3.5 H H CH3 H -18.9 
 

Singlet 
Triplet 

112.3 
129.8 

1.295 
1.330 

0.00 
92.36 

3.6 H H (CH3)3Si H -19.2 Singlet 
Triplet 

112.2 
130.2 

1.294 
1.326 

0.07 
97.31 

3.7 H H F H -17.1 Singlet 
Triplet 

112.5 
130.2 

1.295 
1.331 

0.00 
92.81 

3.8 H H CN H -17.4 Singlet 
Triplet 

112.8 
132.4 

1.295 
1.327 

0.01 
92.74 

3.9 H H OH H -13.6 Singlet 
Triplet 

112.2 
122.7 

1.297 
1.349 

0.00 
91.53 

3.10 H H CH=CH2 H -10.7 Singlet 
Triplet 

112.2 
110.9 

1.296 
1.339 

0.00 
0.00 

3.11 H H PH2 H -9.8 Singlet 
Triplet 

112.4 
110.9 

1.295 
1.336 

0.23 
0.48 

3.12 H H SH H -6.4 Singlet 
Triplet 

112.3 
111.1 

1.296 
1.336 

0.02 
0.00 

3.13 H H OCH3 H -6.9 Singlet 
Triplet 

112.1 
111.1 

1.296 
1.335 

0.00 
0.00 

3.14 H H NH2 H +0.4 Singlet 
Triplet 

112.0 
111.0 

1.298 
1.336 

0.00 
0.00 

3.15 H H N=O H +2.3 Singlet 
Triplet 

112.6 
111.1 

1.295 
1.346 

-0.17 
0.00 

3.16 H H P(CH3)2 H +5.7 Singlet 
Triplet 

112.1 
110.4 

1.294 
1.337 

0.24 
-0.38 

3.17 H H NH2 NH2 +7.7 Singlet 
Triplet 

111.6 
111.0 

1.303 
1.334 

0.00 
0.00 

3.18 H H (CH3)2N (CH3)2N +11.8 Singlet 
Triplet 

111.2 
110.6 

1.305 
1.335 

0.00 
0.00 

3.19 H H 1-azirinyl H +11.0 Singlet 
Triplet 

112.0 
110.4 

1.300 
1.335 

1.03 
-0.27 

3.20 H H C4H3 H +21.2 Singlet 
Triplet 

111.7 
110.5 

1.310 
1.343 

-0.15 
0.00 

3.21 CH3 H H H -14.3 Singlet 
Triplet 

124.4 
144.0 

1.310 
1.324 

0.00 
92.39 

3.22 CH3 H NH2 NH2 +3.0 Singlet 
Triplet 

123.6 
122.0 

1.317 
1.341 

0.00 
0.00 

3.23 t-Bu H NH2 NH2 -4.7 Singlet 
Triplet 

131.7 
135.6 

1.321 
1.342 

0.00 
93.19 

3.24 H CH3 Me2N Me2N +3.6 Singlet 
Triplet 

111.4 
110.7 

1.300 
1.331 

-2.15 
-1.10 
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For several of the mono-substituted systems (3.5-3.16, 3.19, 3.20) there exists the 

possibility for two rotational isomers. The first isomer, which we label “anti,” has the 

nitrenium center NH bond directed away from the substituent. The second isomer, 

which we label “syn” has the NH bond directed toward the substituent. Likewise, 

some substituents themselves can isomerize through rotation about their bond to the 

phenyl ring.  For the mono-substituted systems, this results in 4 isomers for each 

state: anti-anti’, anti-syn’, syn-anti’, and syn-syn’. These are shown in Fig 3.3.  The 

relative stabilities of these isomers were compared at the semi-empirical level (AM1).   

In most cases, the anti-anti’ isomers were found to be the more stable. The differences 

were not large, in most cases being less then 1 kcal/mol within a given spin state. 

Therefore, the detailed DFT calculations were carried out only for the anti and the 

ant-anti’ isomers.  
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Figure 3. 3.  Rotational isomers of substituted phenylnitrenium ions.  
 

Extrapolation of the earlier Hammett correlation43 predicts that meta substituents will 

have only a very modest effect on ΔEST. Indeed, calculations on the systems with m-
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Me (3.5), m-SiMe3 (3.6), m-F (3.7), and m-CN (3.8), support this prediction. None of 

these substituents alters ΔEST by more than 2.1  kcal/mol relative to the unsubstituted 

system 4..  It is also noteworthy that these arylnitrenium ions show singlet and triplet 

geometries that are not greatly altered from PhNH+. That is, the singlets all have 

ArNR bond angles in the range of 112-113 deg and the N-H bond is essentially 

coplanar with the ring (ω ~ 0 deg).  In the case of the triplets, the NH bonds are 

perpendicular to the plane of the phenyl ring  (ω ~ 90) and the ArNH bond angles fall 

in the range of 129-132 deg. 

 

Substitution with meta-donor substituents, however, dramatically alters the nature of 

the triplet state.  First, m-NH2 3.14 m,m’-diNH2 (3.17)  m,m’-diNMe2(3.18), m-PMe2 

(3.16), m-cyclobutadienyl (3.20), m-azirinyl (3.19), and m-nitroso groups (3.15)  

substantially alter ΔEST increasing it by over 19 kcal/mol. In fact, all of these 

derivatives are predicted to be ground state triplets. Second, in each case the triplets 

show planar geometries (ω~ 0 deg). Third, and more remarkably, the triplet states of 

these derivatives all have ArNR bond angles (θ) that are ca. 20 deg smaller than the 

bond angle for the triplet states of the non meta-donor systems (3.5-3.8). Indeed, the 

meta-donor triplets all have bond angles that are smaller than the corresponding 

singlets. Finally, the C-N bond lengths (where C refers to the ipso carbon in the 

phenyl ring) are ca. 0.005 Å longer than the non meta-donor triplets.  Figure 3.4 

shows the geometries of the 3-amino-phenylnitrenium ion and the 3-fluoro-

phenylnitrenium ion, which are typical examples of the non meta-donor and meta-

donor series.    
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Figure 3.4. Geometries of the singlet (triplet) states of nitrenium ions 3.7 and 3.17 
(bond lengths in Å) 
 

In contrast, meta-donor substitution seems to have only a modest effect on the singlet 

states of the corresponding nitrenium ions. The singlet ArNH bond angles are 

relatively insensitive to the presence of meta-donor substituents.  Likewise, the 

singlets in every case we have examined are planar (ω ∼ 0  deg). The only parameter 

showing any significant effect is the Ar-N bond distance r1. This is consistently 

shorter in the meta-donor systems than it is in the non-meta donor derivatives.  

 

The significance of the conjugation by the meta-donor groups is further emphasized 

by nitrenium ion 3.24, shown in Fig 3.5. In this species the two dimethylamino 

groups flank an additional para-methyl substituent. The steric effect of this methyl 

group requires that the dimethylamino groups rotate out of the phenyl ring plane by 

58 deg in the singlet and 23 deg in the triplet. This appears to destabilize the triplet 
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more significantly than the singlet as ΔEST decreases by over 8 kcal/mol compared 

with 3.18, where this group is not present.  

 

N
H

C

H
HH

NN

CH3

CH3

CH3

CH3

3.24  

Figure 3.5.   Geometry of 4-methyl-3,3’bis(dimethylamino)phenylnitrenium ion 3.24 
in the triplet state (left) and the singlet state (right).  
 

The meta π-donor systems also differ in how ΔEST responds to N-alkylation. The 

current study (see examples 1 and 2), as well as previous reports, indicates that N-

alkylation of phenylnitrenium ions destabilizes the singlet relative to the triplet state. 

This is generally attributed to a steric effect wherein the singlet state, preferring the 

smaller ArNR bond angle, is destabilized more than the triplet.  By our computations, 

N-methylation of phenylnitrenium ion shifts ΔEST by ca. 5 kcal/mol in favor of the 

triplet. In contrast, consider examples 3.22, and 3.23. Here the methyl and tert-butyl 

group shifts ΔEST in favor of the singlet by 5 and 9 kcal/mol, respectively. Of special 

note is that the tert-butyl group in the triplet of 3.23 is actually out of plane in the 

same way that the N-R bonds in the meta non-π-donor triplets. As might be expected, 

N-alkylation increases the bond angle for both the singlet and the triplet state.  
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Nitrenium ions 3.14-3.20 all differ in rather substantial ways from phenylnitrenium 

ion, and its simple para derivatives. First, these species all have triplet, rather than 

singlet, ground states. Second, they respond in the opposite way to N-alkylation. 

Finally, the triplet state geometries of these species are qualitatively different from 

the geometries of the parent system. These rather substantial differences suggest that 

the effect of the meta donors goes beyond a simple quantitative perturbation of the 

electronic structure depicted in Fig 3.2.  

 

The diradical, meta-xylylene (also known as meta-benzoquinodimethane or 

MBQDM), shown in Fig. 3.6, has a triplet ground state with 3A’ state symmetry, and 

ΔEST  of +9.6 kcal/mol. 63-69 This species has been the subject of numerous 

computational and experimental studies, as have many of its simple derivatives. In 

contrast to the carbenes and simple nitrenium ions, where the two SOMOs are 

orthogonal , meta-xylylene’s triplet ground state is attributed to degenerate but 

nondisjoint SOMOs. 70-72 

 

CH2CH2

meta-xylylene  

Figure 3.6.  The non-Kekulé diradical meta-xylylene.  
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3.4. Electronic structure of the stabilized triplet state 

We considered the possibility that the meta-donor phenylnitrenium ions might adopt 

an electronic structure analogous to meta-xylylene. This can be visualized in a 

schematic way by starting with the arylnitrenium ion’s singlet state, and then 

transferring an electron from a non-bonding orbital on the donor substituent(s) to the 

out-of-plane non-bonding orbital on the nitrenium ion center. This would create a 

species that would have aminyl radical character at the original nitrenium ion center 

and a cation radical site on the meta substituent(s).  

 

Figure 3.7 illustrates simple models for the lowest electronic states of meta-donor 

substituted nitrenium ions. The lowest singlet state is designated “n2”, referring to the 

occupancy of the HOMO. The lowest triplet state typical of non meta-donor 

arylnitrenium ions is designated “n,π∗.”  This state is derived from promotion of an 

electron from the n orbital on the nitrenium center to a π* orbital which results from 

the mixing of the non-bonding orbital on the N and the π* orbitals of the phenyl ring. 

Finally, the lowest triplet state of the meta π-donors is designated “π,π*” indicating 

that this state is derived from promotion of an electron on a substituent non-bonding 

orbital of π symmetry to the π∗ level.  

 

One potential source of confusion in Fig 3.7 is the nature of the non-bonding orbitals. 

In our studies, every n,π* triplet has the N-R bond nearly perpendicular (ω=90 deg) 

to the plane of the aromatic ring.  Thus, the relevant N-localized nonbonding orbital 

that is antisymmetric with respect to the plane of the phenyl ring is approximately sp2 
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hybridized. Likewise, the N-localized nonbonding orbital that is symmetric with 

respect to the phenyl ring plane is unhybridized. In contrast, the n2 singlet and π,π∗ 

triplet both have an unhybridized p nonbonding orbital, which interacts with the 

phenyl π-orbitals, and an sp2-like orbital which is designated “n”.  

 

This qualitative picture leads to three specific predictions. (1) The two SOMOs in the 

π,π∗ triplet state should have π-symmetry. That is, they should both have a nodal 

plane that coincides with the phenyl ring’s plane. (2) Such a π,π∗ triplet state should 

exhibit substantial spin delocalization onto the substituent(s). (3) The nitrenium ion 

center, having a doubly occupied n-orbital, should be approximately sp2 hybridized 

and thus have geometric characteristics similar to that of the anilino radical (PhNH•). 

More specifically the doubly-occupied n-type orbital on nitrogen should lead to a sp2-

like geometry and a CNH angle <120 deg due to the in plane lone pair.  

N

X

n2 singlet

N

X

n,!" triplet

N

X

!,!* triplet  

Figure 3.7.  Models of the electronic states of meta-substituted phenylnitrenium ion.  
 

 

The first prediction, regarding the nodal properties of the SOMOs, is illustrated in Fig 

7, which shows visualizations of the Kohn-Sham SOMOs derived from the DFT 

calculations for triplet m-fluorophenylnitrenium ion 3.7 along with the those 
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calculated for m,m’-bis(diamino)phenylnitrenium ion 3.17. The former is 

representative of the non meta-donor series and the latter of the meta-donors.  

 

As the simple model predicts, the triplet state of ion 7 has the characteristics of a n,π* 

state. One SOMO is symmetric and the other is antisymmetric with respect to the 

phenyl ring’s plane. Similar SOMOs are observed for 3.4-3.6, 3.8, 3.9 (data not 

shown). In contrast, the triplet state of ion 3.17 is has the characteristics of a 

π,π∗ state.  The two SOMOs are anti-symmetric with respect to the phenyl ring plane. 

Similar pictures are derived from the triplet states of the other meta-pi donor systems: 

3.10-3.14 and 3.16-3.20. The meta nitroso derivative, 3.15, is considered below.  
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Figure 3. 8. SOMO densities (top and side views) for the UB3LYP computed triplet 
states of nitrenium ions 3.7 (below) and 3.16 (above). 

 

The second prediction is illustrated by the Mulliken spin densities shown in Fig 3.9.  

The numbers in the figure represent the Mulliken spin densities on the non-hydrogen 

atoms in the substituent. It is clear that the non meta-donor systems (e.g. 3.5-3.8) 

show very little (<0.08) spin delocalization onto the meta substituents. In contrast, the 

meta-donor species (3.11-3.20) all show significant (>0.3) spin density on the 

substituents. Structures 3.22 and 3.23 are interesting because, as noted above, N-

alkylation actually acts to destabilize the π,π∗ triplet state relative to the singlet and 
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the n,π* triplet. This is seen in the reduced spin delocalization in these structures. In 

the case of the N-tert-butyl derivative (3.23) the perpendicular (ie. ω~ 90 deg) 

geometry of N-substituent as well as the nodal properties of the SOMO indicate that 

the lowest triplet for this species is n,π*.  
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Figure 3. 9. Mulliken spin densities on substituent heavy atoms on meta-substituted 
phenylnitrenium ions derived from UB3LYP/6-31G(d,p) calculations.   
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Finally, the geometry of the anilino radical (PhNH•) was computed using the same 

methodology as was applied to the nitrenium ions.  This species shows an NH bond 

that is coplanar with the phenyl ring and has an equilibrium PHNH bond angle of 

111.0 deg. This small bond angle is readily attributed to a filled n orbital on the 

nitrogen that is in the plane of the ring. This bond angle resembles the triplet meta-

donor nitrenium ion bond angles (110-111 deg) far more than the non meta-donor 

arylnitrenium ions, whose bond angles are >130 deg. 

 

Nitrenium ions 3.10-3.13 having vinyl, phosphino, sulfhydryl, and methoxy 

substituents  illustrate intermediate cases. Each of these species is predicted to be a 

ground-state singlet. However their lowest triplet states are apparently π,π*. All of 

these have CNH bond angles closer to the ideal of the anilino radical, in the range of 

110-111 deg. Visualization of the SOMOs also verifies that these are π,π* in nature. 

Apparently these substituents interact sufficiently with the phenyl π-system to make 

π,π∗ the lowest triplet state, but not so sufficiently as to make that state more stable 

than the singlet. Thus we concluded that meta substituents have their strongest effect 

on the π,π* triplet states. This is illustrated in Figure 9. In some cases, the 

computations identified two geometrically and energetically distinct triplet states. For 

example initial calculations on 3.7 showed a π,π* triplet state, with ω= 0.02 deg, 3.84 

kcal/mol higher in energy than the n,π* triplet (ω =92.81 deg) reported in Table 3.1. 

We hope to undertake a more systematic study of these higher energy triplet states in 

the future.   
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Figure 3.9. Proposed qualitative state orderings for substituted phenylnitrenium ions, 

illustrating the effect of increasingly effective meta pi donation from left to right 

 

The nitroso derivative 15 is an interesting exception to the trends described above. 

This ion is predicted be a ground state triplet and its triplet state has the small bond 

angle characteristic of the π,π∗ states. However, calculations constrained to Cs 

symmetry show that the triplet state has 3A’’ orbital symmetry. Visualization of the 

Kohn-Sham SOMOs for the triplet is given in Figure 3.10. Note the conspicuous lack 

of n-SOMO density on the formal nitrenium center.  It is clear that this triplet state 

can be approximated as being derived from promotion of an electron from the nitroso 

lone pair to the π∗  orbital. Thus we term 3.15 and similar systems n’,π∗  triplets. 

Here the prime indicates that the electron is derived an orbital primarily on the 

substituent, rather than the formal nitrenium ion center.  A similar, albeit less 

pronounced, effect has been proposed for the triplet states of certain 

heteroarylnitrenium ions 46.  
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Figure 3.10. Geometry and SOMO densities for nitrenium ion 3.15.  
 

All geometry optimizations and vibrational frequency calculations were carried out 

using the Gaussian03 suite of programs.73 The values in Table 3.1 were calculated 

using density functional theory, and in particular the hybrid B3LYP functional, 

comprised of Becke’s B3 three-parameter gradient-corrected exchange functional
74,75 

with the LYP correlation functional of Lee, Yang, and Parr
76 as originally described 

by Stevens et al.
77

 For these calculations, the 6-31G(d,p) basis set78 was employed. 

We note that <S2> for all triplet states was computed to range from 2.0002 to 2.0021, 

implying negligible spin contamination.  

 

For the singlet spin states, the values in Table 3.1 were computed using restricted 

DFT. We examined in several instances whether the restricted Kohn-Sham solutions 

were stable with respect to symmetry breaking, since broken-symmetry solutions 
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more accurately account for non-dynamical correlation effects that are often present 

in singlet biradicals.54,55   In the case of 3.7, which is a typical member of the set of 

nitrenium ions having the singlet state much more stable than the triplet, the restricted 

solution was found to be stable. In the case of 15, the restricted singlet was also found 

to be stable. In the case of 3.14, on the other hand, symmetry-breaking was found to 

lower the energy of the singlet state by 1.9 kcal/mol (thereby inverting the ordering of 

the singlet and triplet states). Finally, for 3.17, symmetry breaking also was observed 

to lower the energy of the singlet state by a similar margin as for 3.14, which was 

therefore not enough to invert the state ordering in this system. As we were here 

concerned more with the qualitatively novel aspects of meta substitution than we 

were with obtaining quantitatively accurate gas-phase predictions, we did not 

examine the propensity to break symmetry in additional cases, judging that 3.7, 3.14, 

3.15, and 3.17 were sufficiently representative. We note that <S2> values for the 

broken-symmetry non-interacting Kohn-Sham wave functions of 3.14 and 3.17 were 

0.0246 and 0.0606, respectively, indicating that the restricted solutions are very 

nearly stable. 

 

Although the 6-31G(d,p) basis set was chosen on the basis of size and balance, it is 

conceivable that one might wish to employ more economical (but less well balanced) 

basis sets in much larger systems. In order to evaluate the likely success of such an 

approach, Table 3.2 compares the performance of other basis sets for several 

examples from this series, including phenylnitrenium ion 3.4, and m-

fluorophenylnitrenium ion 3.7. These species are taken to be representative of the 
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nitrenium ions that show no meta-donor effect. Likewise 3-aminophenylnitrenium ion 

3.14 and 3,3’-diamino-phenylnitrenium ion 3.17 were also studied. These latter two 

species are taken to be representative of species that show the meta-donor effect.  

 

Several generalizations can be made. All of the methods predict very similar 

geometries. For example the triplet states of 3.4 and 3.7 are predicted to give out-of-

plane NH bonds (ω ~  90 deg) regardless of the basis set or method applied. In 

contrast, the triplet states of 3.14 and 3.17 are predicted to have in-plane NH bonds 

(ω ~ 0 deg). Likewise, the singlets are all predicted to have in-plane NH bonds (ω=0 

deg) with much more acute bond angles. Arylnitrenium geometries are well 

converged with the unpolarized 6-31G basis set.   

 

For the meta pi-donor systems (3.14 and 3.17) discrepancies in ΔEST values are small, 

being <2 kcal/mol when 6-31G is compared with 6-311G and 6-31G(d,p).  On the 

other hand, the H-atom polarized basis sets show systematically smaller ArNH bond 

angles, differing by <4 deg for the singlets and as much as 9 deg for the triplets. 

Likewise, the polarized basis sets show smaller Ar-N bond distances for the singlets 

by 0.011Å.  Thus for these systems, we conclude that 6-31G is overall adequate for 

calculating ΔΕst and predicting general trends in this value as the structures are 

modified.  

 

In contrast, ΔEST values in the non meta-donor systems 3.4 and 3.7 show a much 

stronger dependence on the inclusion of H-atom polarization functions. In both cases, 
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use of the 6-311G and 6-31G basis sets consistently overestimated the stability of the 

triplet state by 3-6 kcal/mol compared to the polarized, cc-pVDZ and 6-31G(d,p) 

basis sets. We note that the triplet state meta fluoro compound shows two local 

minima. One is at the ω=90 deg dihedral. There is another minimum ca. 3.5 kcal/mol 

higher in energy at the planar geometry. 

3.5. Basis set effects 

Finally, to gauge how well converged ΔEST values may be considered to be with the 

6-31G(d,p) basis set, we carried out calculations with the cc-pVTZ basis set of 

Dunning56 for 3.7 and 3.14. As can be seen in Table 2, the significant increase in 

basis set size has fairly little effect on the predicted splittings and geometrical 

parameters. The most noteworthy effect is the systematic shortening of the CN bonds 

in both states with the larger basis set. As noted above, when symmetry breaking was 

allowed for the singlet state of 3.14 with the larger basis set, the energy lowering 

effect was small and reoptimization of the restricted geometry afforded less than 0.1 

kcal/mol additional energy lowering. 
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Table 3.2. The effect of basis set on predicted singlet-triplet gaps ΔEST  (kcal/mol) 

and various geometric parameters of selected meta- substituted phenylnitrenium ions.  

 

Nitrenium ion Basis set ΔEST θ  (deg) 
singlet / triplet 

r1 (Å) 
singlet / triplet 

ω 
triplet 

3.4 6-31G -15.4 115.4 / 139.4 1.306 / 1.330 92.4 
 6-311G -15.5 115.2 / 139.7 1.305 / 1.330 92.2 
 6-31G (d,p) -19.2 112.5 / 131.8 1.294 / 1.326 92.6 
      
3.7 6-31G -13.5 115.6 / 139.1 1.306 / 1.332 92.1 
 6-311G -13.7 115.3 / 139.5 1.306 / 1.332 92.6 
 6-31G (d,p) -17.1 

(-17.1)** 
112.5 / 130.2 1.295 / 1.331 92.8 

 cc-pVDZ -21.9 112.3 / 111.2 1.297 / 1.337 93.3 
 cc-pVTZ -17.3* 112.9 / 130.4 1.289 / 1.325 92.0 
      
3.14 6-31G +1.3 114.9 / 113.5 1.310 / 1.351 0.0 
 6-311G -1.2 114.6 / 113.2 1.310 / 1.353 0.0 
 6-31G (d,p) +0.4 

(-1.4) 
112.0 / 111.0 1.336 / 1.335 0.0 

 cc-pVDZ -1.4 111.6 / 110.8 1.303 / 1.339 0.0 
 cc-pVTZ -0.1* 

(-1.9)** 
112.3 / 111.5 1.293 / 1.331 0.0 

      
3.17 6-31G +8.8 114.4 / 113.4 1.315 / 1.350 0.0 
 6-311G +8.7 114.1 / 113.2 1.315 / 1.351 0.0 
 6-31G (d,p) +7.7 111.6 / 111.0 1.303 / 1.334 0.0 
 cc-pVDZ +7.7 111.2 / 110.6 1.304 / 1.335 0.0 
**Numbers in parentheses derived from broken-symmetry calculations. Geometry reoptimization lowers 
the energy by less than 0.1 kcal/mol, so different geometric data for the broken-symmetry solution are not 
reported. b Zero-point vibrational corrections added from cc-pVDZ calculations. 
 

3.6. Conclusions 

These computations identify a novel class of triplet organic species: arylnitrenium 

ions having electron-donating meta substituents. Analysis of the structures of these 

species suggests that the effect of these substituents is to stabilize a π,π∗ triplet state 

that is qualitatively similar to the well-characterized non-Kekulé meta xylylene 
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diradicals. The generalizations derived from this study suggest that triplet diradical 

ions of this nature are not confined to the phenylnitrenium ion series. Any species 

with a strong electron acceptor and a strong donor that are conjugated with non-

disjoint π−orbitals could, in principle, have a triplet ground state. While this 

generalization has been appreciated for many years with respect to neutral diradicals, 

to our knowledge there have been few, if any, studies of ionic species having this 

connectivity. We note that preliminary calculations on m,m’-

bis(dimethylamino)benzyl cation suggest that this species is also a ground state triplet  

with ΔEST= +2.0 kcal/mol ( in contrast to unsubstituted benzyl cation, which  is 

predicted to have ΔEST = -40 kcal/mol (B3LYP/6-31G(d,p)). Attempts to generate 

and characterize these triplet nitrenium ions experimentally are discussed in Chapter 

5.  
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4. Chapter 4: Application of Meta Effect to other Cationic 

Reactive Intermediates.1 

4.1. Introduction 

In this chapter, the meta effect described in the previous chapter is extended to 

species other than arylnitrenium ions, including aryloxenium ions, arylsilylenium 

ions, and arylcarbenium ions.  DFT (B3LYP/6-31G(d,p)) calculations are used to 

compute the singlet-triplet energy splittings, and multireference second order 

perturbation theory (CASPT2) calculations are used to benchmark the quantitative 

accuracy of the DFT calculations for representative systems.  

 

As reported in the previous chapter, we were surprised to find that meta substitution 

of phenylnitrenium ions with π donors stabilizes a π,π* triplet diradical state with an 

electronic configuration similar to meta-xylylene.   Meta-xylylene is a well-known 

triplet diradical that has been the subject of extensive theoretical17,57 and experimental 

studies.2,57-63 This change in the electron configuration of phenylnitrenium ions to a 

meta-xylylene-like triplet state upon meta donor substitution can be pictured by 

promoting an electron from the lone pair associated with the meta donor substituent 

(D, e.g. NMe2) into the LUMO formally associated with the nitrenium based p orbital 

(see Figure 4.1). 

                                                
1 Taken in part from: Winter, A. H.; Falvey, D. E.; Cramer, C. J.; Gherman, B. F.  J. Am. Chem. Soc.  2007; 
129(33); 10113-10119. 
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Figure 4.1 General schematic representations of a typical singlet state and a π,π* 
triplet state.   
 
Thus, while the unsubstituted phenylnitrenium ion (PhNH+) is predicted to be a 

ground state singlet by 19 kcal/mol, adding sufficiently strong π electron donors (such 

as two N,N-dimethylamino substituents, NMe2) to the meta positions stabilizes the 

triplet state sufficiently to make the π,π* triplet state the predicted ground state by 

DFT.   

 

We considered that this same ‘meta effect’ might translate to other cationic species.   

In particular, we were interested if this triplet stabilization by meta π donors would 

occur with benzylic cations, since these intermediates hold a central place in the 

historical development of physical organic chemistry in general, and the 

understanding of electronic effects of substituents in particular.  For example, 

historically the first experimental observation of cationic carbon has been accredited 

to Baeyer and others for the discovery of the triply-benzylic triphenylmethyl cation 

using conductivity measurements at the beginning of the 20th century.64-66  These 

types of benzylic cations were further characterized by NMR in the mid 1960s under 
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stable ion conditions.67,68  There are also several linear free energy relationships in 

use based on the quantitative effects of substituents on the reactivity of benzylic 

cations, including the Hammett σ+ substituent parameters.69,70 Despite this intense 

activity over many decades, there are to our knowledge no investigations of the 

effects of extremely strong meta-π-donors (e.g. 3,5-bis(N,N-dimethylamino) 

substitution) on the behavior of benzylic cations.   

 

4.2. Triplet benzylic cations. 

 

The prospect that such an important species could have a stabilized triplet state 

caused us to turn our attention towards these intermediates.  In fact, the DFT 

calculations described below predict low-energy or ground-state triplet states for 

benzyl cations substituted with strong π donors in the meta positions.  Moreover, the 

current computational investigation suggests that the previously reported meta-

substituted triplet arylnitrenium ions71 are just one member of a broad class of ion 

diradicals exhibiting the connectivity of a π donor linked through non-disjoint π 

orbitals to a π acceptor. 

 

The cationic species calculated in this study include aryloxenium ions (Ar-O+), 

arylnitrenium ions (Ar-NH+), arylsilylenium ions (Ar-SiH2
+), and benzyl cations (Ar-

CH2
+).  As with the previously reported phenylnitrenium ions,71 all of these species 

show a stabilization of a π,π* diradical state when substituted with meta π donors, as 

shown by a marked change in the singlet-triplet state energy gaps (ΔEST) with strong 
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donors. Here the symbol ΔEST is used to refer to the 0 K adiabatic energy differences 

(plus zero point vibrational energies) between the singlet and triplet states.  In nearly 

all cases the triplet state is stabilized sufficiently to make it the predicted ground state 

when the cationic intermediates are substituted with the strongest meta π donors.  

4.3. Computational methods 

 
 State-energy calculations.  In order to model the cations, we chose two 

different levels of electronic structure theory. The first, multireference second-order 

perturbation theory (CASPT2),72 provides a rigorous method for constructing singlet 

and triplet states and comparing their relative energies. It is a particularly appropriate 

method for describing singlet states with small frontier orbital separations (which is 

typical for molecules having nearly degenerate singlet and triplet states) because it 

incorporates non-dynamical electron correlation directly into its multireference 

complete active space self-consistent field formulation.73 Moreover, a recent level-

shift modification to the CASPT2 model has corrected for a small bias in earlier 

formulations that favored high-spin states over low-spin analogs by 1–5 kcal/mol.74 

 

While the CASPT2 model is rigorous, as a highly correlated wave-function theory 

(WFT) model it imposes high demands on computational resources, in part because 

good convergence in relative energies typically requires reasonably complete one-

electron basis sets, e.g., polarized valence-triple-ζ or better. Given the size of some of 

the molecules in which we are interested, we also explored the utility of density 

functional theory (DFT) calculations, noting that we can benchmark DFT against 
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CASPT2 in smaller instances in order to gauge its effectiveness for the problem at 

hand. In prior studies, DFT models have been shown to predict singlet-triplet state 

energy gaps to within 2–4 kcal/mol of experiment (or converged quantum chemical 

calculations) at a fraction of the cost of high-level WFT methodologies for 

hypovalent species like nitrenium ions and carbenes,40,75-78 and somewhat more 

delocalized diradical species like vinylidenes.79 For example, DFT accurately predicts 

the singlet-triplet energy gap of the two nitrenium ions for which experimental values 

are available for comparison: the parent nitrenium ion, NH2
+, for which the DFT 

(BLYP/cc-pVTZ) value of 30.6 kcal/mol agrees closely with the 30.1 kcal/mol gap 

found by photoelectron spectroscopy;80 and the triazolium cation, a stable nitrenium 

ion for which the DFT value of -64.7 kcal/mol (BPW91/cc-pVDZ) is within the 

experimental error of the value determined by traditional photophysical methods (-

66±3 kcal/mol).40  However, in cases where two configurations for a singlet state 

have nearly equal weight in a multireference expansion, Kohn-Sham DFT has been 

shown to be less robust, e.g., for cases like arylnitrenes81 and trimethylenemethane 

(TMM).82,83 Given the similarity of the π,π triplets considered here to, say, TMM, a 

careful calibration of DFT against CASPT2 seems particularly important. 

 

Using unrestricted broken-symmetry formulations for the singlet state can improve 

the accuracy of Kohn-Sham DFT predictions in the event of narrow frontier orbital 

separations.73  Thus, the restricted Kohn-Sham determinants for all singlets were 

tested for instability to breaking spin-state symmetry (i.e., a restricted --> unrestricted 

instability).  For those singlets that were found to have such an instability, single-
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point broken symmetry calculations were performed at the restricted geometries.   As 

expected, most singlet wavefunctions were stable, but instabilities were found in 

cases where the triplet state was either very close to or lower in energy then the 

singlet. In such cases, the energy of the singlet state was computed using the 

equation:84-87 
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where Esinglet is the desired singlet energy, E<Sz>=0 is the broken-symmetry energy, 

<S2> is the expectation value of the total-spin operator for the broken-symmetry 

calculation (anywhere from about 0.2 to 1.0), and E<Sz>=1 is the energy of the triplet at 

the singlet geometry. The largest effect of R/U instability was observed for 

aryloxenium ion 4.17 where the projected broken-symmetry singlet energy relative to 

the triplet was 3 kcal/mol lower than that for the restricted singlet. 

 

4.4. Molecular geometries. 

Although we expect the CASPT2 model to provide the most accurate description of 

the molecular energetics examined here, this level of theory is not particularly 

convenient for the determination of molecular structures because analytic gradients of 

the energy are not available for use in geometry optimization. DFT, on the other 

hand, is well established to provide excellent molecular geometries, particularly when 

hybrid functionals (incorporating exact Hartree-Fock (HF) exchange) are used; 
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B3LYP is particularly accurate based on many benchmark studies.73 Thus, we began 

by optimizing the molecular geometries for all of the molecules listed in Table 1 at 

the B3LYP/6-31G(d,p) level of theory, using the restricted and unrestricted Kohn-

Sham formalism for the singlets and triplets, respectively. However, for the particular 

case of 4.9, which was chosen because it falls roughly in the middle of the predicted 

spectrum of S-T splittings for the arylnitrenium ions, we examined the sensitivity of 

the geometries to choice of functional. Thus, we optimized the more difficult singlet 

state not only with the B3LYP functional, but also the BLYP, mPWPW,88-90 

mPW1PW,88-90 and TPSSh91,92 functionals employing the 6-31G(d,p) basis set. We 

then assessed the variation in energy at the B3LYP/6-31G(d,p) level:  over all 5 

structures the total variation in energy was less than 0.8 kcal/mol. On that basis, we 

elected to continue to use B3LYP geometries for all purposes, noting that any error 

introduced by this choice is likely to be no more than 1 kcal/mol. 

 

A separate question, in cases where the singlet state is subject to breaking spin-

symmetry, is whether one should ideally use the restricted singlet or unrestricted 

mixed-spin-state geometry. Restricted singlet geometries are sometimes found to be 

superior to broken-symmetry geometries after spin purification,93 since the broken-

symmetry formalism introduces spin contamination. In the case of 4.17, which 

exhibits the largest value of <S2> for the broken-symmetry Kohn-Sham determinant, 

allowing the broken-symmetry geometry to reoptimize at the unrestricted B3LYP 

level led to a change in the spin-projected singlet energy of 3.6 kcal/mol. As this 

value is reasonably small, and is moreover likely to be considerably reduced in the 
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other molecules because of their smaller values of <S2>, we adopted restricted singlet 

geometries throughout. 

4.5. Singlet-triplet splittings. 

Meta disubstituted cations were chosen to enhance the meta effect described above 

and also to take computational advantage of the molecular symmetry of the 

disubstituted systems. Table 1 provides the computed singlet-triplet energy gaps 

(ΔEST) for these species and the Ar-X bond length predicted for the triplet state. 

Because of their smaller size, it proved possible to compute S-T splittings at the 

CASPT2/pVTZ level for 4.4, 4.7, 4.9, 4.16, and 4.19. Repeating the calculation with 

a smaller pVDZ basis set led to a systematic stabilization of the triplet state relative to 

the singlet in all of these cases except for 4.19, by 1.3 to 2.4 kcal/mol. This trend is in 

the expected direction, since electron correlation is more important for the singlet 

than the triplet (owing to its additional set of paired electrons) and reducing the size 

of the basis set degrades the CASPT2 model’s ability to capture this correlation 

energy. However, the effect is small and systematic, suggesting that it should be 

transferrable to the remaining systems, where molecular size restricts the CASPT2 

calculations to use of the pVDZ basis set. Such calculations were completed for 4.8, 

4.10, 4.11, and 4.13. 
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X

Y Y 

Table 1.  ΔEST (kcal/mol) and triplet Ar-X bond distances (ang).a 

 

a All S-T splittings include differential zero-point vibrational energy computed at the B3LYP level. A negative value for ΔEST 
indicates a singlet ground state.  b Indicates a spin-projected broken symmetry calculation on the singlet state (energies in 
parentheses refer to a singlet geometry reoptimized using UB3LYP) 
 

    ΔEST   

Structure 
Number 

X Y CASPT2/ 

pVTZ 

CASPT2/ 

pVDZ 

B3LYP/ 

6-31G(d,p) 

Triplet Ar-X 
bond distance  

4.4 CH2
+ H -44.6 -43.2 -39.7 1.403 

4.5  F   -26.8  1.401 

4.7  CH=CH2 -27.7 -26.5 -17.4  1.403 

4.9  NH2 -10.1 -7.7 -4.4b 1.402 

4.10  NMe2  -0.1 +1.9b 

(+1.4) 

1.403 

4.11 CHCF3
+ NMe2  +2.0 +5.1b 1.410 

4.12 C(CF3)2
+ H   -29.8 1.433 

4.13  NMe2  +8.7 +12.2b 1.430 

4.14 CF2
+ NMe2   -7.8b 1.391 

4.15 O+ H   -13.5  1.263 

4.16  NH2 +4.5 +5.9 +11.4b 

(+8.8) 

1.250 

4.17  NMe2   +15.4b 

(+11.8) 

1.252 

4.18 SiH2
+ H   -47.7   1.880 

4.19  NH2 -19.1 -20.4 -9.7   1.875 

4.20  NMe2   -4.6  1.874 

4.21 Si(CF3)2
+ NMe2   +5.1b 1.878 
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Comparing the CASPT2 calculations to the B3LYP calculations, we see that the DFT 

model predicts the triplet state to be too stable relative to the singlet. Comparing to 

the CASPT2/pVTZ values, or to the value derived from adding -2 kcal/mol to the 

CASPT2/pVDZ value (this being a conservative estimate of the transferrable basis set 

effect), we see that the B3LYP model’s error is a fairly consistent 5-10 kcal/mol. 

 

Turning to specific substitutions, as shown in Table 1, the unsubstituted benzyl cation 

4.4 is predicted at this level of theory to be a ground-state singlet by 39.7 kcal/mol (a 

negative value for ΔEST indicates a singlet ground state).   Substituting the meta 

position with weak π donors (like fluoro 4.5) has a modest effect on the singlet-triplet 

energy gap.  However, substituting with moderate to strong π donors significantly 

stabilizes the triplet state and dramatically increases the ΔEST.  In all cases, increasing 

the strength of the pi donor (e.g. going from NH2 to NMe2) or making the cationic 

acceptor more electron deficient (such as by adding CF3 groups) favors the triplet 

state as a result of decreasing the gap between the frontier molecular orbitals.  With 

the 3,5-bis(dimethylamino) benzyl cation 4.10 the meta substituents are sufficiently 

strong π donors to make the triplet state the predicted ground state by 1.9 kcal/mol at 

the B3LYP level.   However, the systematic error in the DFT model and the 

CASPT2/pVDZ prediction suggest that the correct ground state will still be the 

singlet for 4.10, albeit by only a small margin.  Adding one or two trifluoromethyl 

(CF3) substituents to make the cationic center even more electron-deficient (and thus 

a better electron receptor) enhances the importance of the meta effect, and cations 

4.11 and 4.13 are predicted to have still more stable triplet states relative to their 
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singlet states.  In the case of 4.11, uncertainty in the theory does not allow a firm 

prediction of the ground state:  the singlet and triplet are likely to be nearly 

degenerate. In the case of 4.13, on the other hand, the preference for a triplet ground 

state is sufficiently large that remaining quantitative uncertainty in the theory is 

unlikely to affect this prediction. 

 

It is a significant finding from this study that the benzylic carbocation 4.13 has a 

triplet ground state, and triplet reactivity from carbocations 4.10 and 4.11 may be 

thermally accessible if intersystem crossing is facile.  Virtually all previous studies on 

simple substituted carbenium ions have assumed that these species have singlet 

ground states.  Moreover, the extant chemical and spectroscopic behavior of typical 

carbenium ions is consistent with strongly electrophilic singlet states.  Exceptions to 

this are limited to the antiaromatic cyclopentadienyl cation94 and some substituted 

phenyl cations (X-Ph+).95,96  The current study is to our knowledge the first to identify 

a new class of carbocations with triplet ground states.  

 

Similarly, phenylsilylenium cations and phenyloxenium cations show an increase in 

the ΔEST by substituting the meta position with π donors.97   Substituting the 

phenylsilylenium cation 4.18 with two bis(N,N-dimethylamino) groups, 4.20,  

stabilizes the triplet state by approximately 41 kcal/mol relative to the singlet, but not 

sufficiently enough to overcome the 47 kcal/mol required to make the triplet the 

ground state; 4.20 is predicted to be a singlet by about 5 kcal/mol at the B3LYP 

level.98  By making the silylenium center more electron-deficient (and thus a better 
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acceptor) by substituting the silicon with two electron-withdrawing trifluoromethyl 

(CF3) substituents, 4.21, the triplet is predicted to be the ground state by 5.1 kcal/mol 

at the B3LYP level. Given the magnitude of the systematic error in B3LYP, this 

suggests that the two spin states will be nearly degenerate, but with the singlet being 

more likely to be lower.  With phenyloxenium ion 4.15, which is predicted to be a 

singlet by approximately 14 kcal/mol at the B3LYP level, adding either two amino 

groups (4.16) or two bis(dimethylamino) groups (4.17) is enough to make the triplet 

the ground state by margins sufficiently large that they exceed likely uncertainty in 

the theory; we expect these species to be ground state triplets. 

 

We close our discussion of the substituted phenyl systems with a brief assessment of 

the more general utility of DFT in this context. As B3LYP incorporates exact HF 

exchange, which stabilizes systems having a larger number of unpaired electrons, it is 

consistent that the model appears biased in favor of the triplet state in 4.4-4.21. In 

Table 4.1a, we compare a variety of functionals and broken-symmetry protocols with 

respect to their ability to predict ΔEST for 4.9. The CASPT2/pVTZ value of -10.1 

kcal/mol is likely to be reasonably converged and serves as a benchmark against 

which to judge the DFT models. The conclusions to be drawn from Table 4.1a are 

that spin-purified broken-symmetry singlet energies (i.e., computed using eq. 1 

above) are to be preferred over either raw broken-symmetry energies or restricted 

singlet energies, and that pure functionals (i.e., those not incorporating any HF 

exchange) are superior to hybrid functionals, but in the latter instance by a margin 

that is moderate in magnitude. Thus, comparing BLYP to B3LYP, the spin-projected 
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broken-symmetry S-T splitting predicted by the former is -7.2 kcal/mol, which 

represents a 2.9 kcal/mol improvement over the B3LYP result; the B3LYP functional 

incorporates 20% exact HF exchange. Similarly, the mPWPW prediction of -6.1 

kcal/mol improves on the hybrid mPW1PW prediction by 4.4 kcal/mol; the latter 

functional incorporates 25% HF exchange. We note that for 4.9 all functionals predict 

a singlet Kohn-Sham determinant that is unstable to symmetry breaking, although the 

pure functionals deliver smaller values of <S2> for the converged unrestricted 

solution. 

  

Table 4.1a.  Singlet-triplet state energy gaps (kcal/mol) from various DFT protocols 

for 4.9. 

Functional Restricted singlet BS singlet Spin-purified BS 

singlet 

BLYP -6.0 -6.2 -7.2 

B3LYP -2.5 -3.0 -4.3 

mPWPW -4.7 -5.0 -6.1 

mPW1PW 0.7 -0.2 -1.7 

TPSSh -0.7 -1.4 -2.8 

 

4.6. Substituted naphthalenes. 

We also chose to explore if this same triplet-stabilizing effect would be found in 

systems that were analogous to non-Kekule diradicals other than m-xylylene. 1,8-

naphthaquinodimethane (1,8-NQM), 4.22, is a well-known non-Kekule triplet 
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diradical with a recorded ESR spectrum.  The 1,3- and 1,6-naphthaquinodimethane 

diradicals (4.23 and 4.24) are also thought to have low energy triplet states as 

predicted by the Borden-Davidson method17 (Figure 2).  Therefore, we examined the 

effect of applying this electron-donor electron-acceptor motif to select naphthyl 

systems containing a positively charged center (nitrenium ion or oxenium ion) at the 

1 position, and π-donating amino substituents at the 3, 6, and 8 position.  The 

B3LYP/6-31G(d,p) results are given in Table 2; the size of the naphthyl systems, with 

typically 16 electrons in 14 active π orbitals, just exceeds the current practical limit 

for CASPT2, so we do not present any results from this level of theory, but bear in 

mind that the B3LYP model is likely to retain a systematic bias in favor of the triplet 

state.     

1,8-NQM 1,3-NQM 1,6-NQM

4.22 4.23 4.24

 
 
Figure 2.  Naphthaquinodimethanes.   
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W

XY

Z

 
 
Table 2.  Singlet-triplet energy gaps (ΔEST) for select naphthyl systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Indicates a spin-projected broken-symmetry (UB3LYP) calculation on the singlet state 

 

As the results in Table 2 show, both parent naphthylnitrenium ion 4.25 and 

naphthyloxenium ion 4.30 are ground state singlets with singlet-triplet energy gaps of 

ca. -23 kcal/mol.  In all cases, substituting the 3, 6, or 8 position with amino groups 

stabilizes the triplet state relative to the singlet, although only in the case of the tri-

substituted naphthylnitrenium ion 4.29 is the triplet stabilized sufficiently to make it 

the predicted ground state at the B3LYP level.  Given the likely bias in this 

calculation, even 4.29 is probably a ground state singlet, although not by a very large 

Structure  
Number 

W X Y Z ΔEST 
(kcal/mol) 

Ar-W 
bond 
length 

4.25 H H H -23.0 1.352 

4.26 NH2 H H -8.5 1.333 

4.27 H NH2 H -4.3 1.328 

4.28 H H NH2 -4.8 1.337 

4.29 

NH+ 

NH2 NH2 NH2 +0.6a 1.334 

4.30 H H H -23.1 1.263 

4.31 NH2 H H -6.8 1.242 

4.32 H NH2 H -3.2 1.247 

4.33 

O+ 

H H NH2 -7.5 1.257 

4.34  NH2 NH2 NH2 -2.9a 1.254 
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margin. The lack of state switching in these cases may be due to the extended π 

system of the naphthyl system as compared to the phenyl system.  Extended 

conjugated systems tend to favor the singlet state because of their π -donating ability, 

which acts to raise the energy of the p orbital on nitrogen.  Indeed, the singlet-triplet 

energy splitting in phenylnitrenium ion is predicted to be -19 kcal/mol at this level of 

theory, 4 kcal/mol smaller than the naphthylnitrenium ion (-23 kcal/mol). 

4.7. Geometric effects. 

In the previous report on phenylnitrenium ions,71 geometrical changes were observed 

for the triplet states upon changing the character of the substituent attached to the 

meta position.  These geometrical changes are consistent with the change in the 

nature of the triplet electronic state from n,π* to π,π*.  For example, upon changing 

the character of the meta substituent from electron-withdrawing (or weakly donating) 

to strongly donating, a systematic increase in the Ar-N bond distances and a decrease 

in the Ar-N-H bond angles was observed.  Moreover, while the N-H bond for the 

non-meta donor systems was found to be orthogonal to the aromatic ring, it was 

typically found to be coplanar to the aromatic ring for those systems substituted with 

π donors. 

 

In agreement with the previous report,71 the naphthyl nitrenium ions included in this 

study show a decrease in the bond angle for the triplets upon substitution with π 

donors. For example, the unsubstituted naphthyl nitrenium ion 4.25 has an Ar-N-H 

bond angle of 120o. whereas all the amino-substituted analogs have bond angles 

between 110-111o. Also consistent with the previous report, the NH bond is 
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orthogonal to the ring in the unsubstituted naphthyl nitrenium ion 4.25, but coplanar 

in all others substituted with π donors 4.26-4.29. On the other hand, all meta donor-

substituted naphthylnitrenium ions show an increase in the Ar-N bond of between 

0.018Å and 0.024Å for the triplets. For the aryl oxenium ions included in this study, 

a decrease in the triplet Ar-O bond length was observed upon appropriate substitution 

with π donors.  Conversely, for the phenyl silylenium ions and benzyl carbenium 

ions, no major geometrical changes were observed between the non-meta-π-donor 

systems and those substituted with π donors (the aryl silylenium ions show a slight 

shortening of the Ar-Si bond).   

 

This lack of systematic geometrical change in the triplet states upon meta-donor 

substitution of the benzyl carbenium ions and benzyl silylenium cations may be 

explained by observing the nature of the starting electronic states between the 

oxenium ions and nitrenium ions as compared to the silylenium ions and carbenium 

ions. That is, for the nitrenium ions and oxenium ions, the triplet electronic states for 

most of the non-meta donor systems adopt electron configurations that are n,π* in 

nature, and change to π,π* upon meta substitution with π donors. Observing the 

Kohn-Sham SOMOs for these molecules shown in Figure 4.2 demonstrates this 

change.   The unsubstituted phenyloxenium ion 4.14 is taken as representative of the 

former case, and the diamino oxenium ion 4.16 is taken as representative of the latter.  

Conversely, because aryl silylenium ions and benzyl cations lack a lone pair on the 

positively-charged atom, the triplet states begin as π,π* in the unsubstituted system 

and do not change upon adding the meta-donating substituent.  Figure 4.2 shows the 
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Kohn-Sham orbitals of the unsubstituted benzyl cation 4.4 which is taken as 

representative of the former case as well as the diamino substituted benzyl cation 4.9 

which is taken as representative of the latter.  Thus, it appears that large systematic 

geometrical changes between the non-meta π donors and those substituted with meta 

π donors are observed primarily for those systems undergoing a change in the 

electron configuration of the triplet state.   

 

One interesting exception to this trend is found with the unsubstituted 

naphthyloxenium ion 4.30.  In this case, the lowest energy triplet state is found to be 

π,π* in nature rather than n,π* like the phenyloxenium ion 4.15.  Apparently, the 

additional conjugation of the naphthyl system relative to the phenyl system stabilizes 

the π,π* triplet state sufficiently to make it lower in energy than the n,π* triplet state.  

For all species, however, significant Mulliken spin density was found to be located on 

all π-donating substituents, but little or none was observed on weak donors (like F) or 

electron-withdrawing groups (like CN).   
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Figure 4. 2   Kohn-Sham SOMOs for representative triplet phenyl oxenium ions and 
benzyl cations. 

 

4.8. Conclusions. 

In conclusion, these calculations predict that substituting the meta position (or the 3, 

6, and 8 positions for the naphthyl series) of aryl cationic species with π donors 

stabilizes a π,π* triplet state analogous to non-Kekule diradicals.  While we have only 
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demonstrated this effect for phenyl and select naphthyl systems, in principle this π-

donor – π-acceptor connectivity should hold for alternative ionic species analogous to 

other non-Kekule diradicals conjugated with non-disjoint SOMOs, such as other 

variants of the naphthoquinodimethane system (e.g. those with the cationic center at 

the 3, 6 and 8 position), the biphenylquinodimethanes, and the trimethylenemethane 

diradical.   Theoretically, any system with a strong π donor coupled to a strong 

electron acceptor with non-disjoint SOMOs could see a stabilization of a π,π∗ triplet 

(or at least diradical) state similar to the ones described in this paper.  Such benzylic 

cations can be generated and characterized using a variety of well-known methods, 

such as photolysis of meta-substituted esters or alcohols.  In fact, preliminary 

experiments show that benzylic cations 4.10 and 4.12 can be generated 

photochemically in protic solvents from appropriate precursors.  An initial product 

study shows that the corresponding toluene derivative is the minor product of 4.10 but 

is the major product for 4.12, suggestive of the intermediacy of a triplet cationic 

species, but by no means definitive evidence (the major product of 4.10 and the minor 

product of 4.12 are typical solvent alcohol addition products). Additionally, 

preliminary DFT investigations suggest that the reverse connectivity also stabilizes a 

π,π* triplet state in analogous fashion (e.g. a π electron-donating group conjugated 

through non-disjoint π orbitals to π-withdrawing groups).  Thus, the 3,5-dinitrobenzyl 

anion is predicted to have a ΔEST of ca. -1 kcal/mol at the B3LYP/6-31+G(d,p) level, 

in contrast to the unsubstituted benzyl anion which has a predicted ΔEST of roughly -

40 kcal/mol. These further computational studies and experimental investigations 

aimed at characterizing these ion diradicals will be reported in due course.   
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5. Chapter 5:  Experimental Studies of Triplet Aryl Cationic 
Species and Preliminary Studies of Triplet Benzylic Anions 

 

5.1. Introduction. 

 
In Chapters 3 and 4, we examined the effects of meta substitution on the singlet-

triplet energy gaps (ΔEST) of substituted aryl cationic species using density functional 

theory (DFT) and multireference second order perturbation theory (CASPT2).  The 

overall conclusion from this computational study was that while unsubstituted aryl 

cationic species (Ar-X+) are ground state singlet species with a very large gap to the 

lowest-energy triplet state, substituting the meta positions of these cations with pi 

donors stabilizes a π,π* triplet state similar to the electronic state of the m-xylylene 

diradical.  In cases where the meta positions are substituted with very strong pi 

donors, this π,π* triplet state is stabilized sufficiently to make this high-spin 

electronic state the computed ground state.    To confirm these computational 

predictions, this chapter describes our efforts to generate two of these computed 

triplet cations experimentally.  Additionally, computational studies of the singlet-

triplet gaps of ionic species with an inverted connectivity (ie. anionic electron donors 

with two meta electron acceptors) are discussed, as well as preliminary attempts to 

generate and characterize these triplet anionic species experimentally.    
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5.2. The 3,5-bis(dimethylamino) benzyl cation. 

 

On the basis of our previously described computations (Chapter 4), the 3,5-

bis(dimethylamino) substituted benzyl cation 5.1 is computed to have essentially 

degenerate singlet and triplet state energies (Figure 5.1).   In order to test this 

computational prediction, the substituted benzylic cation 5.1 was generated 

photochemically and the stable product distributions from its decay reactions were 

analyzed.  

 

N N

!EST = +0.5 (B3LYP)

              -0.1 (CASPT2)

5.1

 

Figure 5.1.  The 3,5-bis(dimethylamino)benzyl cation 
 

5.2.1. Generation of the cation 

While the most common method for generating benzylic cations is thermal 

heterolysis of leaving-group-substituted benzyl systems under acidic conditions (such 

as benzyl alcohols or benzyl halides), this method was deemed unsatisfactory for our 

purposes as even moderately strong acids would protonate the amine groups. 

Therefore we chose a photochemical route that could be employed under less acidic 

conditions. Specifically we exploited the so-called meta-effect wherein meta-electron 

donors are known to promote photoheterolysis of benzylic C-O bonds. For example, 
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Zimmerman showed that while photolysis of para-methoxy benzyl acetate 5.2 gives 

predominantly radical-derived photoproducts (Scheme 5.1), benzyl acetates with meta 

methoxy substituents yield a water-addition solvolysis product resulting from 

benzylic cation intermediates.  In fact, with the 3,5-dimethoxy benzyl acetate 5.3, 

only a single product resulting from photoheterolysis was observed. To our 

knowledge, the effect of meta amino groups have not been examined to test the 

ability of these donating groups to facilitate photoheterolysis. However, the meta 

effect is well established for methoxy and hydroxy groups, and amino groups are 

anticipated to be better pi donors than methoxy or hydroxy groups.  Consequently, we 

expected these groups to be even better facilitators of this C-O heterolytic scission 

upon photolysis than previously described donors such as OH or OMe. 

OCH3

OAc

OCH3

O

O

hv

aqueous
dioxane

OMeMeO

OAc

OMeMeO

H2O

OMeMeO

OH

aq. dioxane

hv

5.2

5.3  

Scheme 5. 1.  Demonstration of the meta effect by Zimmerman, et al.   
 

Consistent with the general predictions of the meta-effect, we find that the precursor 

alcohol 5.4 photolyzes rapidly in polar protic solvents (Scheme 5.2). For example 254 

nm irradiation of 4 mg of the benzyl alcohol 5.4 in 2,2,2-trifluoroethanol (3.0 mL) for 
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60 min results in 80% conversion of the reactants. Good conversion was also 

observed in 1,1,1,3,3,3-hexaflouro-2-propanol (HFIP) (44% in 60 min) and in ethanol 

(>99% in 60 min). In contrast, photolysis in nonpolar solvents is less efficient if it 

occurs at all. For example photolysis of 5.4 in diethyl ether and dichloromethane 

shows no observable photoproducts by GC after 18 hours of photolysis.   

5.2.2. Product analysis. 

Typically benzylic cations decay through addition of nucleophiles to the exocyclic 

carbon. On the other hand, triplet diradicals often react via sequential H atom 

abstraction reactions. The latter pathway would be expected to produce 3,5-

bis(dimethylamino) toluene  5.6.   Under low concentration conditions (ca. 5 mM), 

photolysis of the benzylic alcohol 5.4 in TFE provides two main products: the ether 

adduct 5.5 and the reduction product 5.6 (Scheme 1), in a 12:1 ratio (after 1 hr of 

photolysis).  Under high-concentration preparative conditions (ca. 0.1M) a Friedel-

Crafts heterodimer 5.7 was also isolated and characterized by 1H and 13C NMR and 

mass spectrometry.  Photolysis of the benzyl alcohol 5.4 (5 mM) in ethanol and HFIP 

also gave similar ratios of the solvent-derived ether 5.5 and the reduction product 5.6. 

NN

HO

hv

ROH NN

RO

NN

N N

OH

N N

(high conc. only)

5.4 5.5 5.6 5.7  

Scheme 5. 2.  Products from photolysis (254 nm) of solutions of benzyl alcohol in 
alcoholic solvents.   
 



 

 111 
 

5.2.3. Effect of the leaving group 

We note that switching the leaving group from OH to OAc or OCOCF3 gives 

identical products in essentially the same ratio. However, the benzyl alcohol proved 

to be a more convenient photoprecursor since it was bench stable.  On the other hand, 

the acetate and trifluoroacetate derivatives hydrolyzed slowly over several days even 

when stored at below 0oC to give the benzyl alcohol, although the trifluoroacetate 

derivative could be conveniently stored as its stable trifluoroacetic acid salt and free-

based with saturated bicarbonate when needed.  However, because of the bench 

stability of the benzyl alcohol precursor, except where noted all subsequent 

discussions refer to the benzyl alcohol 5.4 as the photoprecursor.   

 

5.2.4. Kinetics of decomposition. 

In trifluoroethanol (TFE), the product distributions from photolysis of 5.4 (5 mM) 

were determined.  Yields were determined using gas chromatography using the peak 

area percent corrected for the GC response factors.  The results are shown in Figure 

5.2.  As the plot in Figure 5.2 demonstrates, the TFE adduct 5.5 and the reduction 

product 5.6 grow in at roughly a 12:1 ratio as the benzyl alcohol was photolyzed.  

Significant mass balance begins to be lost after 60 minutes of photolysis, presumably 

because of the formation of secondary photoproducts.  After 24 hours of photolysis, 

the major product by GC is the reduction product 5.6. Interestingly, photolysis of the 

benzyl alcohol in an ethanol glass at 77K occurs very slowly to give exclusively the 

reduced product 5.6. 
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Figure 5.2.  Products of 254 nm photolysis of 5.4 (5 mM) in TFE as a function of 

photolysis time. 

5.2.5. Mechanism of product formation. 

Upon photolysis, the benzyl alcohol is presumed to undergo C-O heterolytic bond 

cleavage to generate the benzyl cation.  The cation is expected to be generated 

initially in the singlet state, irrespective of whether this is the ground electronic state.  

Solvent addition to the intermediate singlet cation then generates the major ether 

adduct.  This ether adduct 5.5 is assumed to arise from reactions of the predominantly 

closed-shell singlet benzylic cation, as it reflects typical decay reaction of simple 

benzylic cations.   Moreover, the Friedel-Crafts heterodimer is presumed to arise from 

reaction of the intermediate singlet benzylic cation with an unreacted molecule of the 

benzyl alcohol 5.4.   
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N N

HO

hv

CF3CH2OH N N

OH-

CF3CH2OH

N N

OCH2CF3

N N

HO

N N

OH

N N

(high conc. only)

5.4
5.5

5.7  

Scheme 5. 3. Proposed mechanism for formation of  TFE adduct and Friedel-Crafts 
heterodimer.   

 

While the solvent-addition product 5.5 and the Friedel-Crafts heterodimer 5.7 are the 

expected products of a typical singlet carbocation, the toluene derivative 5.6 does not 

derive from typical cation chemistry.  This product is particularly unusual because 

Zimmerman et al. reported only solvolysis products from photolysis of the similar 

3,5-dimethoxybenzyl acetate.  Mechanistic possibilities that account for its formation 

are shown in Scheme 5.4.   

 

We considered the possibility that 5.6 might originate from a parallel homolytic 

pathway.  Two experiments suggest that this pathway is unlikely.  First, such a 

homolytic pathway is expected to be reasonably insensitive to the polarity of the 
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solvent since no ionic intermediates are formed. The lack of formation of any 

observable products by GC following exhaustive photolysis of 5.4 in diethyl ether 

and dichloromethane argues against this alternative.  Additionally, switching the 

leaving group from hydroxide to acetate or trifluoroacetate does not increase the 

amount of reduction product 5.6 observed after initial photolysis, despite the change 

in the nature of the leaving group and the decreased C-O bond strength of acetate as 

compared to hydroxide.  The fact that the product distributions do not change upon 

switching the leaving group is strongly suggestive of a common intermediate.  It 

should be noted that upon photolysis of the acetate derivative the amount of reduction 

product increases exponentially over time in contrast to the rough linear dependence 

as seen for the benzyl alcohol, presumably as a result of secondary photolysis or 

reactions with accumulated byproducts.  

 

N N

HO
hv

CF3CH2OH

N N

OH

hv

CF3CH2OH

N N

CH3

F3CHC OH

N N

CH2

3

N N

CH2
CF3CH2OHISC

N N

CH3

H atom
abstraction

N N

CH3H atom
abstraction

H atom
abstraction

-H+
N N

CH3

hydride
transfer

5.4
5.6

 

Scheme 5. 4  Possible mechanisms leading to the reduced product 5.6.   
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Another possibility for formation of the reduced product is through a hydride transfer 

mechanism from the solvent to the benzyl cation.  Some evidence for this mechanism 

is provided by photolysis of 5.4 in t-butyl alcohol solvent, since t-butyl alcohol is a 

poor hydride donor.  The lack of any observable reduced product in this solvent 

appears to support this mechanism.     

N N

HO

hv

OH
N N

O

N N

not formed   

Scheme 5.5.  Photolysis of 5.4 in t-BuOH.   

 

The final possibility is that the initially formed singlet carbocation undergoes 

intersystem crossing to give the triplet, which then decays via hydrogen atom 

abstractions to the toluene derivative.  However, at this time we have no further 

evidence to distinguish these possibilities, except to note that the dimethoxybenzyl 

cation as observed by Zimmerman, et al, gives exclusively solvent adducts.  It is 

unexpected that switching from meta methoxy groups to meta dimethylamino groups 

would alter the hydride affinity of the intermediate cation significantly.   Irrespective 

of whether the reduced product 5.6 derives from a hydride transfer mechanism or a 

triplet diradical mechanism, it seems clear that the major products from photolysis of 

the alcohol 5.4 are singlet-derived products.   Therefore, we tentatively assign the 

ground state of this cation to predominantly closed shell singlet state.   
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5.2.6. Triplet-sensitized photolysis. 

Attempts were made to generate the triplet benzyl cation via triplet sensitization 

experiments.  Triplet sensitized photolysis with benzophenone as the triplet sensitizer 

was carried out in TFE using 355 nm excitation.  No products were observed when 

the benzyl alcohol was used as the precursor, but switching the leaving group from 

OH 5.4 to OCOCF3 5.8 gave the same stable products as seen from direct photolysis 

and in nearly the same ratio after extended photolysis under N2 (slightly more 

reduced product was observed).  Presumably, the meta effect dominates only from the 

singlet excited state and not from the triplet excited state, which is why a better 

leaving group is required for triplet-sensitized photolysis.  Under air atmosphere, a 

complex mixture of products was obtained, which were not characterized.  The 

mechanism for the formation of these products is discussed below.   

N N

O

hv
Ph2CO O

F3C

+

TFE

N2

slow!

N N

OCH2CF3

N N

8 1hv

air
TFE

Complex Residues And Products

5.8 5.5 5.6

 

Scheme 5.6.  Product studies from 355 nm irradiation of Ph2CO in the presence of 5.8 
under air and N2 atmosphere.   
 

5.2.7. Direct laser flash photolysis studies 

Since the product studies following photolysis of the benzyl alcohol 5.4 in protic 

solvents are suggestive of the intermediacy of a benzylic cation, laser flash photolysis 
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(LFP) studies were performed in an attempt to directly observe the intermediate 

cation.  Direct laser flash photolysis of the benzyl alcohol 5.4 in TFE gave the 

transient spectrum shown in Figure 5.3.  Similar spectra were seen in TFE/H2O and 

EtOH.  A large long-lived peak at 470 nm was observed.  This absorption was not 

trapped by 1,4-cylohexadiene, oxygen, or chloride, suggesting this peak absorption 

does not correspond to an intermediate carbenium ion.  

 

Figure 5.3.  LFP (266 nm, 10 µs after pulse) from direct irradiation of 5.4 in TFE.   

 

Additionally, an identical transient was observed from LFP of 1,3-

bis(dimethylamino)benzene, suggesting the transient derives from photochemistry of 

the aromatic ring and not from heterolytic cleavage of the exocyclic alcohol moiety.  

Moreover, the signal amplitude was found to depend exponentially on the laser power 

output (Figure 5.4), suggesting that the transient derived from two-photon absorption 

chemistry, a reasonably common event with very electron-rich aromatics.  No 

transients were observed by LFP when the benzyl alcohol 5.4 was photolyzed in non-

polar solvents such as CH3CN and CH2Cl2. The obvious candidate, the radical cation 

resulting from photoionization of 5.4, is shown later in this chapter to have an 
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absorption at 560 nm in TFE.  However, once the transient was found to be derived 

from photochemistry of the aromatic ring, its identity was not explored further. 

 

Figure 5. 4.  Exponential dependance of the signal (ΔOD) of direct 266 nm 
photolysis of 5.4 (monitored at 470 nm) as a function of laser output power.  

 

5.2.8. Triplet-sensitized laser flash photolysis studies. 

Since the carbenium ion was not observed by direct photolysis, laser flash photolysis 

experiments were also carried out using triplet sensitization.  Benzophenone was used 

as the triplet sensitizer since this molecule has a reasonably large triplet energy, and 

this sensitizer was excited using 355 nm laser light.  The expectation was that the 

triplet benzophenone would sensitize the substrate and lead to formation of the triplet 

benzyl cation.  The observed LFP spectrum is shown in Figure 5.5.  Based on a 

number of further LFP experiments described below, the peak(s) at 540 nm at the 0.1 

µs time interval is assigned to the initial triplet excited state of benzophenone.  This 

decays to another peak, which is found to be two overlapping absorptions of the 

benzophenone anion radical and the cation radical of the benzyl trifluoroacetate 5.8.  
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The peak at 400 nm has not been further characterized but is presumed to arise from 

decay of the cation radical.   

 

 

 

Figure 5. 5. Transient spectrum from LFP of benzophenone and benzyl 
trifluoroacetate 5.8 in TFE (355 nm) under air.  Insert shows waveforms at 400 nm 
(blue) and 540 nm (red). 
 

Rather than observing a triplet sensitization reaction,  the observed transients are 

consistent instead with an electron transfer reaction from the substrate to the excited 

state of benzophenone.  The next section describes how the absorption bands were 

assigned.   

 

The location of the anion radical signal of benzophenone was found by LFP of N,N-

dimethylaniline and benzophenone in TFE (Figure 5.6).  Transients were observed for 

the known absoption of the dimethylaniline cation radical signal at 470 nm and the 

benzophenone radical anion signal at 540 nm.  The anion radical signal was 
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confirmed by oxygen quenching experiments wherein purging the solution with 

oxygen was observed to quench the signal.   

Ph Ph

O
N

Ph2CO

hv

TFE

540 nm

N

470 nm 

 

Figure 5. 6.  Transient LFP spectrum from 355 nm laser photolysis of benzophenone 
plus dimethylaniline in trifluoroethanol.   

 

Secondly, the location of the cation radical  signal of the benzyl trifluoroacetate 5.8 

was obtained by LFP of benzophenone plus the alcohol in CH3CN (Figure 5.7).  The 

aprotic nature of the CH3CN red shifts the benzophenone anion radical signal to ca. 

700 nm, and leaves the cation radical signal of the benzyl alcohol at 560 nm.   
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Figure 5. 7. Transient LFP spectrum from 355 nm photolysis of benzophenone and  
benzyl trifluoroacetate 5.8 in CH3CN. 
 

5.2.9. Proposed mechanism for benzophenone photolysis. 

It is interesting to note that the products of these studies using benzophenone show 

that triplet sensitization appears to be successful under nitrogen, whereas complex 

uncharacterized product mixtures result from ambient air (or O2 purged)  photolysis.  

On the other hand, all LFP spectra show exclusively electron transfer intermediates.  

We believe that these seemingly discordant results can be explained by the 

mechanism shown in Scheme 5.7, wherein electron transfer is the predominant 

pathway.  Under nitrogen, the major pathway following electron transfer is a non-

destructive back electron transfer to return the unchanged starting materials.  Under 

oxygen (or ambient air) conditions, some of the anion radical is quenched by oxygen, 
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preventing a back electron transfer pathway, leading to complex products resulting 

from decomposition of the cation radical of the benzyl trifluoroacetate 5.8.   

 

Ph Ph

O

N N

OCOCF3

hv

Ph Ph

O

3*

N N

OCOCF3

Ph Ph

O

N2

520 nm 540 nm
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Ph Ph
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N N

OCOCF3

??

400 nm

 

Scheme 5. 7.  Proposed mechanism of reaction in presence of oxygen.   
 

While the electron transfer is the major pathway, the triplet sensitization is proposed 

to be a minor concomitant pathway so that it is not observed by LFP.  The basic 

proposed mechanism for the triplet sensitization experiments is given in Scheme 5.8.  

We hypothesize, that the major pathway under nitrogen is a non-destructive electron-

transfer – back electron transfer pathway, but that the minor pathway is triplet 

sensitization to yield the TFE-adduct and the reduced product.  Given that even this 

triplet sensitization experiment results in products that could be characterized as 

predominantly singlet-derived products, this mechanism suggests that the singlet state 

of the benzyl cation is the ground state.  An alternative explanation is that the triplet 

state is in dynamic equilibrium with the singlet state but that reactions occur faster 

from the singlet state than the triplet.  However, the fact that triplet sensitization 

occurs at all provides evidence that the triplet benzyl cation is a reasonably low-
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energy species, since triplet-sensitized photolysis to give an unstable triplet cation 

(such as in the case of the triplet benzyl cation where the triplet state is ca. 45 

kcal/mol higher in energy than the singlet) would be anticipated to be unsuccessful.   

Ph2CO

N N

O

O

F3C

K1

K2

N N

O

O

F3C

3*

K1 >> K2

N N

O

Ph Ph

O
3* O

CF3

Products Ph2CO

N N

O

O

F3C

back electron

transfer

 

Scheme 5. 8. Proposed mechanism of reaction of benzophenone and substrate in the 
presence of nitrogen.   
 

In conclusion, the products of the photolysis of both the 3,5-

bis(dimethylamino)benzyl alcohol 5.4 and triplet-sensitized photolysis of the 

trifluoroacetyl derivative 5.8 are indicative of the intermediacy of the expected benzyl 

cations.  Although direct and triplet-sensitized laser flash photolysis (LFP) do not 

give any additional clues to the identity of the intermediate because of undesirable 

artifacts associated with the electron rich nature of the ring, product studies from 

direct photolysis of the precursor are indicative of the intermediacy of the singlet 

benzyl cation.  Photolysis of 5.4 gives primarily singlet-derived products, although a 

small quantity of reduced product can be attributed either to a hydride transfer from 

the solvent or to a product derived from the triplet benzyl cation.   On the basis of 
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these studies, we believe that the singlet state is likely the ground state for this cation, 

but that the triplet state is low in energy.   

 

5.3. The 3’,5’-bis(dimethylamino)-1-bis(trifluoromethyl) benzyl cation. 

While the 3,5-bis(dimethylamino)benzyl cation is computed to have nearly 

degenerate singlet-triplet state energies (and the early experimental studies are 

consistent with this prediction, but with a singlet state lower in energy than the 

triplet), a derivative with two exocyclic CF3 groups 5.9 (shown in Figure 5.8) is 

computed to be a ground state triplet species with a gap to the lowest energy singlet 

state that is larger than the likely error inherent in the computational methods.   

 

F3C CF3

NN

!EST =  + 12 kcal/mol (B3LYP)
               + 9 kcal/mol (CASPT2)

5.9

 

Figure 5.8.  The 3’,5’-bis(dimethylamino)-1,1-bis(trifluoromethyl) benzyl cation 5.9: 
A computed triplet benzyl cation. 
 

The method to generate this cation was photolysis of the benzyl alcohol 5.10, as 

shown in Scheme 5.9, in analogous fashion as employed with the unsubstituted 

derivative.   
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F3C CF3

NN

F3C CF3
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OH

hv

5.10 5.9  

Scheme 5.9.  Method for formation of benzyl cation 5.9. 
 

Photolysis of the benzyl alcohol 5.10 in TFE occurred slowly, with 5% 

decomposition after 1 h.  The major product was the reduced toluene derivative 5.12  

(55% by GC area percent) and two isomeric TFE adducts 5.11 were also observed.   

 

N N

HO
hv

N N

O

N N

CF3

CF3 F3C

45%

(2 isomers)
55%

F3C CF3

CF3CH2OH

CF3

CF3

slow (1 h. 5%)

5.10 5.11 5.12

 

Scheme 5.10.  Photolysis of 5.10 in TFE.   

 

In ethanol or t-butyl alcohol solvent, consumption of the benzyl alcohol 5.10 through 

photolysis occurred quickly, but no significant products were observed by GC.  Most 

likely, non-volatile products were formed, making them invisible by GC.  While this 

is simply a preliminary study, we note that this appears to represent significantly 

different chemistry than that observed for the unsubstituted benzyl alcohol, 

suggestive of a fundamentally different intermediate.  However, further experiments 

are required to confirm this prediction.   
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or

 
Scheme 5. 11.  Photolysis of 5.10 in EtOH or tBuOH. 

 

5.4. Theoretical studies of benzyl anions. 

We considered the possibility that a reverse connectivity might also stabilize a triplet 

state.  That is, rather than having two meta electron donors (amino groups) attached to 

an acceptor (cation), we considered that a similar triplet state might be stabilized by 

an anionic donor with two meta electron accepting groups.  To test this hypothesis, 

we computed the singlet-triplet energy gaps for a number of benzyl anions using 

density functional theory (B3LYP/6-31+G(d,p)).  Acceptors included cyano and nitro 

groups, and donors included phenyl silyl anions, aniline anions, benzyl anions, and 

phenolates.   The results of these computations are shown in Table 5.1.   
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A A

D

 

Table 5.1.  ΔEST  of meta disubstituted anionic species.  A negative value indicates a 

singlet ground state.  

 

 

 

 

 

 

 

 

 

As shown in Table 5.1, in all cases the parent anionic species is a singlet ground state 

with a very large computed energy gap to the lowest-energy triplet state.  Moreover, 

in all cases, substitution of the two meta positions with cyano or nitro groups 

stabilized the triplet state in preference to the singlet, although in no case was this 

effect strong enough to make the triplet state the computed ground state.   In the case 

of the 3,5-dinitrobenzyl anion, the singlet-triplet states are computed to be nearly 

degenerate, with the singlet state computed to be the ground state with a ΔEST of 1.3 

kcal/mol to the lowest energy triplet state.   

D A ΔΕST 

(Kcal/mol) 
CH2

- H -41.9  
 CN -21.5 
 NO2 -1.3 
SiH2

- H -50.5 
 CN -26.0  
 NO2 -6.0 
NH- H -50.8 
 CN -32.8  
 NO2 -12.5 
O- H -61.5  
 CN -43.8 
 NO2 -26.6 
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5.4.1. Effect of α heteroatoms on ΔEST.   

Substituting the alpha positions with heteroatoms on the 3,5-dinitrobenzyl anion 

shifts the singlet-triplet gap in favor of the triplet.  Table 5.2 shows the singlet-triplet 

gaps of the benzyl anions substituted with oxygen or sulfur constrained in five- or six-

membered rings.  In all cases, the heteroatoms shifted the singlet-triplet gap in favor 

of the triplet, but the effect of oxygen is greater than the effect of sulfur.  

Qualitatively, this result can be readily explained by a donor-acceptor motif, wherein 

a better donor (with a higher HOMO) or a better acceptor (stabilized LUMO) favors 

the triplet state by reducing the frontier orbital separation.  Heteroatoms adjacent to 

the anionic carbon appear to raise the energy of the HOMO, presumably as a result of 

a destabilizing α effect of the adjacent lone pairs in the singlet state. 

 

YX
n

NO2O2N  

Table 5.2.  Effect of adjacent heteroatoms on ΔEST of benzyl anions.   

X Y n ΔEST   
(Kcal/mol) 

S S 1 0.0 
S S 2 +0.3 
S O 1 +3.5 
S O 2 +1.7 
O O 1 +5.5 
O O 2 +5.8 
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5.4.2. Dramatic effect of counter ion on ΔEST of benzyl anions. 

Additionally, the anion counter ion appears to have a significant effect on the ΔEST  in 

the gas phase.   Inclusion of the counter ion into the calculation dramatically 

stabilizes the triplet state in preference to the singlet relative to the naked anion. 

Figure 5.9 shows the effect of counter ion on the ΔEST.  With a lithium counter ion, 

the triplet is computed to be the ground state by 26 kcal/mol in the gas phase.  With a 

potassium counter ion, the anion is computed to be a triplet by 12 kcal/mol.   

O2N NO2

SS

!EST = + 26 kcal/mol

O2N NO2

SS

!EST = + 12 kcal/mol

O2N NO2

SS

!EST = + 0.3  kcal/mol

K
+Li

+

5.13 5.13 Li
+

5.13 K
+

 

Figure 5. 9 Effect of counterion on ΔEST. 
 

The computed geometries for the dithiane singlet and triplet states with potassium and 

lithium counterions are shown in Figure 5.10.   We note that a number of minima 

were found with the counter ions in different locations for the singlet and triplet 

states; however, in the singlet states, the counterion attaches to the exocyclic carbon 

in the lowest energy configuration.  In the triplet state, the counterion attaches to one 

of the nitro groups in the lowest-energy configuration.   

 

 

 

 



 

 130 
 

 

 

 

 

 

 

 

 

Figure 5. 10.  Computed geometries (B3LYP/6-31+G(d,p)) for 5.13 singlet (left hand 
structures) and 5.13 triplet (right hand structures) with potassium (top structures) and 
lithium (bottom structures) counter ions.   
 

One explanation for the effect of counter ion on the singlet-triplet gap is that the 

counter ion preferentially stabilizes the negative charge in the triplet state relative to 

the singlet state.  This explanation is most apparent by observing the resonance 

contributors in the singlet and triplet state (Figure 5.11).  In the singlet state, most of 

the charge is localized on the exocyclic benzylic carbon; in the triplet state, the charge 

is found predominantly on the nitro group oxygens.  It appears that the counter ion 

forms the most favorable ionic salt interaction in the triplet state, in which the counter 

ion bridges the two oxygens on the nitro group holding the negative charge.  In the 

singlet state, the counter ion is more weakly associated to the exocyclic carbon, as 

shown by the longer distance between the exocyclic carbon and the counter ion.   
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O2N NO2

SS

singlet

O2N N

SS

O

O

triplet  

Figure 5. 11.  Major resonance contributors to the singlet and triplet benzyl anion 
5.13. 

 

5.4.3. Attenuation of counter ion effect by solvent consideration. 

Incorporation of dimethyl ether (DME) solvent into the lithium-coordinated benzyl 

anions was performed to test whether solvent can attenuate the effect of counterion on 

the ΔEST.  The prediction is that solvent would weaken the ionic bond between the 

anion and the counter ion by forming a solvent sphere around the counter ion, 

reducing its ability to interact with the negative charge. We chose to incorporate 

solvent explicitly with two dimethylether (DME) solvent molecules and three DME 

molecules starting with the lowest energy geometries found in the absence of solvent.   

Consistent with the prediction described above, adding two DME molecules reduces 

the ΔEST from +26 kcal/mol to +17 kcal/mol, and addition of three DME molecules 

reduces the gap still further to +14 kcal/mol.   The solvent sphere can be seen in the 

optimized geometries with explicit solvent consideration in Figure 5.12.  We note that 

we were unable to perform frequency calculations on the optimized structures 

because of the system size, so no corrections for the zero-point vibrational energies 

were made for the anions with explicit solvent incorporation.   

 



 

 132 
 

O2N NO2

SS

!EST = + 17 kcal/mol
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Figure 5. 12.  Effect of solvent on singlet-triplet splittings on 5.13 Li+.  
 

The computed geometries for the singlet and triplet states with explicit solvent 

inclusion are shown in Figure 5.13.   

 

 

 

 

Figure 5.13.  DFT geometries (B3LYP/6-31+G(d,p)) of the singlet (left-hand 
structures) and triplet states (right hand structures) from the dinitrobenzyl anion 5.13 
Li+ with 2 explicit dimethylether molecules (top) and three dimethylether molecules 
(bottom).   
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5.5. Experimental studies of benzyl anions. 

We were interested to see whether we could make and observe a triplet benzyl anion.  

To our knowledge, no benzyl anion with a triplet ground state has been observed 

previously.   The synthetic scheme for making the precursors is shown in Scheme 

5.12.  

NO2O2N

OH

PCC

NO2O2N

O

HX XH

TosOH

Dean-Stark NO2O2N

XX

n

n

 

Scheme 5.12.  Synthesis of benzyl anion precursors.    
 

We started with the dinitrodithiane 5.14 shown in Scheme 5.13.  Unfortunately, 

reaction with potassium hydride appeared to lead to loss of ethylene and formation of 

a dithioic acid 5.15.   

 

NO2O2N

SS

KH

O2N NO2

S S

CH2H2C

5.14 5.15  

Scheme 5. 13.  Decomposition of five-membered dithianes. 
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To eliminate this pathway, we synthesized analogs with one additional carbon in the 

ring.  However, rings containing one or two oxygens did not lead to benzylic 

deprotonation, but rather to ring deprotonation.  This ring deprotonation was observed 

by quenching studies with CD3OD which returned the starting material with ring-

substituted deuterium rather than benzylic-substituted deuterium (Scheme 5.14).   

O2N NO2

OX

X= S,O

1. KH

2. CD3OD

O2N NO2

OX

D  

Scheme 5. 14.  Alpha oxygens lead to ring deprotonation.  
 

However, with the dithiane 5.16, deprotonation occurs cleanly as hoped in the 

benzylic position.  Deprotonation was followed by reaction with potassium hydride, 

followed by quenching with deuterated methanol.  The incorporation of deuterium 

could be followed by 1H NMR, observing the decrease in the benzylic C-H signal 

relative to the aromatic C-H signals.  Incoporation of deuterium was confirmed by 

GC-MS (M+ peak one unit higher) and 13C NMR from benzylic C-D coupling (triplet 

in the proton-decoupled spectrum).    
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O2N NO2

SS
1. KH, 77 K, 1h

THF
2. CD3OD

O2N NO2

SS

D

 88%5.16  

  

Starting material After KH addition & quench with CD3OD 

Figure 5. 14. 1H NMR of starting material 5.16 aromatic and benzylic protons (left), 
and product quenched after 1 hr, with 88% 2H incorporation (right). 
 

Using potassium hydride suspended in mineral oil, deprotonation of 5.16 at 77 K 

under nitrogen atmosphere (Schlenk line techniques) does not occur instantaneously.  

The kinetics of deprotonation were followed by quenching the deprotonation reaction 

at different times with CD3OD and following the decrease in the benzylic C-H signal 

in the 1H NMR spectrum.  The kinetic plot of the deuterium incorporation over time 

is shown in Figure 5.15.  
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Figure 5.15  Deprotonation kinetics of 5.16 using KH in mineral oil. 
 

On the other hand, addition of solid potassium hydride at room temperature in a glove 

box under argon atmosphere led to essentially an instantaneous deprotonation 

reaction with observable hydrogen gas bubbling ceasing after a few minutes.  In these 

cases, up to 99% deuterium incorporation following quenching with CD3OD (or 

CH3OD) was observed.  Similar results were observed for LDA in THF, t-butyl 

lithium in THF, and KH in DMSO.  Apparently, the KH dispersion in mineral oil 

slows the deprotonation reaction considerably.   

 

Deuterium incorporation into the benzylic position following quenching provides 

good evidence of the successful generation of the benzyl anion.  Therefore, we 

attempted to take an NMR spectrum of the anion.  A triplet species is expected to 

have highly broadened (or invisible) peaks due to magnetic relaxation.  Conversely, 
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singlet benzyl cations can be observed by an upfield shift in the aromatic and benzylic 

carbon signals in the 1H and 13C NMR spectra.   

 

Consistent with the prediction of an NMR-silent triplet anion, upon addition of base 

in THF at low NMR temperatures (performed in a sealed Young NMR tube under 

argon), the only observable peaks in the 1H NMR spectrum were the starting material 

5.16.  Raising the NMR temperature , however, showed peak broadening of the 

starting material, particularly of the aromatic peaks and the benzylic C-H peak.  Less 

broadening was observed for the dithiane ring C-H peaks.  Cooling the NMR tube 

back down and retaking the NMR returned the sharp peaks, and allowing the NMR to 

warm regenerated the broad peaks.  Despite the absence of any peaks that could be 

attributable to the anion, quenching of this solution with CD3OD or CH3OD led to 

>80% deuterated product.  Figure 5.16 shows the spectrum with NaH in THF, but 

identical starting material peak broadening was observed using LDA or KH in THF.   
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 -70oC 20oC 

Figure 5. 16.  1H NMR spectrum of dithiane 5.16 and NaH in THF-d8 at -70oC (left) 
and 20oC (right).  
 

The broadening of the starting material peaks as the temperature is raised is difficult 

to interpret.  Often, NMR peak broadening is due to a chemical exchange; however, 

in those cases, the chemical shifts move to give the average of the chemical shifts of 

the two species in exchange.  Here, the chemical shifts remain the same.  Given that 

it’s reasonably clear that the desired benzyl anion is being formed based on the 

deuterium incorporation following quenching, one possible explanation is a dynamic 

equilibrium between starting material and an NMR silent anion (shown in Scheme 

5.15).  At low temperatures, diffusion is slower and so unchanged dithiane may not 

encounter other molecules of anion on the NMR time scale.  At higher temperatures, 

diffusion becomes quicker and protons can be exchanged between units on the NMR 

time scale, resulting in peak broadening.  This explanation assumes, however, that the 

benzyl anion exists as a triplet ground state or is in a rapid dynamic equilibrium 
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between the singlet and triplet states, which would explain why no peaks for the 

anion are observed.  

O2N NO2

SS

O2N NO2

SS

singlet triplet

O2N NO2

SS

NMR silent due to spin relexation  

Scheme 5.15.  Possible mechanism for peak broadening. 
 

Another possible explanation for the absence of any signals attributable to a benzylic 

cation may be solubility issues.  While the dithiane starting material is completely 

miscible in THF, the solution becomes deep purple upon addition of base and some 

purple solid does precipitate. However, it’s unexpected that the NMR spectrum shows 

no peaks for the benzyl anion, as the phenyldithiane (without nitro groups) has 

previously been observed by 1H NMR in THF solution.   

 

5.5.1. Evidence for a paramagnetic species in solution 

Further evidence for a paramagnetic species in solution comes from the Evans’ NMR 

method.  In this NMR experiment, a thin capillary is placed inside an NMR tube 

containing only the deuterated solvent (THF-d8).   See Figure 5.17. In the outer NMR 

tube, the sample is prepared (dithiane plus KH) in deuterated THF.  The NMR is 

locked onto the center solvent capillary containing pure solvent.  If the solvent 

containing the outer sample is interacting with a paramagnetic species, the chemical 
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shift is expected to be shifted.  Conversely, if the solvent interacts only with closed-

shell diamagnetic species, the solvent peaks for the inner capillary and the outer tube 

should be the same.   

 

solvent

solvent + sample

Evans' NMR tube  

Figure 5.17.  Evans’ NMR method.   

 

Indeed, when pure THF-d8 is placed in the inner capillary and THF-d8 plus the 

dithiane 5.16 and KH are placed in the outer NMR tube, two signals appear to be 

observed for the solvent, as two sets of THF signals are observed.  We believe this 

provides good evidence for the formation of a paramagnetic species in solution, 

although it does not give any evidence for the identity of the paramagnetic species.    
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THF THF

 

Figure 5. 18.  Evans’ 1H NMR method. 

 

5.5.2. Further NMR evidence for a paramagnetic intermediate 

The anion appears to be more soluble in DMSO-d6 than THF-d8, giving a viscous 

apparently homogeneous, rich purple solution upon addition of 1 equivalent of solid 

KH with vigorous hydrogen gas evolution.  Despite the apparent solubility of the 

anion in DMSO, taking the 1H NMR spectrum in a sealed Young NMR tube under 

argon showed only the signals of diamagnetic impurities, in spite of the high 

concentration of substrate 5.16 (15 mg dithiane in ca. 1 mL DMSO-d6).   Note the 

very large solvent residual peak in spite of the very high concentration of substrate.  

However, quenching with CH3OD, followed by neutralization of the solution and 

extraction with ether returned the starting material with essentially 100% deuterium 

substitution at the benzylic position.   In addition to the deuterated dithiane, some 

impurities were also evident, possibly from decomposition of the anion.  We believe 
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that this experiment provides good evidence of a paramagnetic species.  We 

hypothesize that the anion itself is a triplet species and is NMR silent, but returns to 

being NMR active upon protonation to give a diamagnetic species; however, further 

studies are required to make a definitive case.   

 

  

1H NMR of dithiane 5.16 plus KH in DMSO-d6 Quenched solution with CD3OD.   

Figure 5. 19. 1H NMR spectra of 5.16 and KH in DMSO.  

 

5.5.3. EPR studies of the benzyl anions. 

Additionally, attempts were made to observe the triplet anion by EPR spectroscopy. 

Unfortunately, we have so far been unsuccessful in observing the triplet anion by 

EPR.  Triplet diradicals often are distinguishable from doublet monoradicals in an 

EPR spectrum because of the zero-field splitting of the triplet states.  While most 

organic doublet radicals have peaks in the EPR structrum between 3200-3400 Gauss, 

triplet diradicals are often found in different locations of the spectrum or have broader 

peaks than double radicals.  For m-xylylene and other non-Kekule species, zero field 
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splitting appears to be much smaller than atom-centered triplet diradicals such as 

carbenes, making them somewhat more difficult to distinguish than doublet radicals.   

 

Samples were prepared in a sealed EPR tube in distilled degassed THF under argon.  

Bases tested included potassium hydride and LDA.  In THF, we observed the EPR 

spectrum shown in Figure 5.20 regardless of base used.  No other peaks were seen in 

the EPR spectrum at different external magnetic field strengths.  Temperatures in the 

EPR cavity were varied from 100K to room temperature using a liquid nitrogen blow-

off method.  No new peaks were seen at lower or higher temperatures.   

 

We believe that the signal seen in the EPR spectrum is that of the anion radical of the 

starting material because an identical spectrum was observed on treating the starting 

material with sodium metal in THF.  Part of the difficulty in observing a triplet 

diradical absorption may be the solubility of the anion.  At low temperatures, it is 

clear that a dark purple solid precipitates from solution; at higher temperatures more 

of it dissolves.  However, at high temperature where more of the sample is dissolved, 

spin relaxation may broaden the peaks of the EPR sufficiently so that no signals can 

be observed.  The anion appears to be more soluble in DMSO; however, we were 

unable to lock the solvent signal in a sample dissolved in DMSO due to the polarity 

of DMSO solvent (which absorbs the microwave irradiation).  Thus, the EPR studies 

are inconclusive at this time as to the ground state of the benzyl anion.   
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Figure 5. 20.  EPR spectrum of dithiane 5.16 and KH in THF.   
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6. Chapter 6:  Vinyl Cations Substituted with β Pi Donors Have 
Triplet Ground States 

 

6.1. Introduction 

In this chapter, computations at the CASSCF, CBS-QB3, and B3LYP levels of theory 

are performed to demonstrate that β substitution of vinyl cations with pi donors 

stabilizes a carbene-like triplet state similar to the electronic state of triplet phenyl 

cations.  Although the parent vinyl cation is a ground-state singlet species with a 

seemingly insurmountable energy gap of a computed 48.5 kcal/mol to the lowest 

energy triplet state, substituting the beta hydrogens with just one strong pi donor (e.g. 

NH2, NMe2, OMe), or two moderate pi donors (eg. F, OH, Ar, vinyl) makes the triplet 

state the expected ground electronic state.  In many cases the singlet states for these 

β pi donor-substituted vinyl cations are prone to rearrangements, although 

spontaneous rearrangements can be discouraged through incorporation of the pi 

donors into rings.  In contrast to the singlet states, the triplet states appear to be well 

behaved and more immune to rearrangements.   

 

Phenyl cations (Ph+) are a member of the carbenium family of intermediates having 

an electronic structure similar to vinyl cations.96,99-102 One of the most interesting 

features of phenyl cations is that they are one of only a few known classes of 

carbenium ion that can exist in either a singlet state or a triplet electronic state.94,103,104 

The unsubstituted phenyl cation is a ground-state singlet, but the triplet state becomes 

the lower-energy state when the ortho or para positions of the phenyl ring are 
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substituted with pi donors (e.g. OR, NR2).  The triplet state of a phenyl cation bears 

some resemblance to a triplet carbene105 (see Figure 6.1 for an example.).  

H2N

triplet

H2N

singlet  
 
Figure 6. 1.  A ground-state triplet phenyl cation.   
 

Given that triplet phenyl cations can be exploited to undergo useful synthetic 

transformations,106-110 and given the similarity of phenyl cations to vinyl cations, we 

thought it worthwhile to test whether similar pi-donor group substitutions could 

stabilize a triplet state in vinyl cations. Vinyl cations are intermediates in many 

important industrial and commercial reactions, and they are typically formed from the 

solvolysis of leaving-group-substituted olefins, from the photolysis of vinyl halides, 

and from electrophilic addition reactions (including protonations) of allenes and 

alkynes. 99,100,111-114 Vinyl cations have been studied by laser flash photolysis,115-117 

mass spectrometry,118-120 stable ion media NMR,121-123 trapping studies and product 

analyses, 99,100,115,124 and, in one exceptional case, x-ray crystallography.125  Although 

numerous theoretical and experimental studies have been published on the effect of 

substituents on the stabilities of vinyl cations,99,124,126 to our knowledge none have 

explored the possibility of a stabilized triplet state.  To the extent that the parent vinyl 

cation is a ground-state singlet with a very large energy gap (48.5 kcal/mol) to the 

lowest-energy triplet state, this is understandable.  However, as discussed below, 

DFT, CBS-QB3, and CASSCF calculations show that β substitution of vinyl cations 

with pi donors dramatically stabilizes a carbene-like triplet state with an electronic 
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structure similar to triplet phenyl cations.  When the β position is substituted with a 

single moderate pi donor (e.g. F, OH, Ar), the singlet is still the ground state but with 

a small gap to the lowest-energy triplet state.  In cases where the β position is 

substituted with one or two strong pi donor groups (e.g., OMe, NH2, NMe2) or two 

moderate pi donor groups (e.g. OH, F, Ar, Vinyl), the triplet state is the predicted 

ground state.    

 

6.2. Computational methods. 

We chose to examine the singlet-triplet state energy gaps (ΔEST) of the vinyl cations 

examined in this study by three computational methods: complete active space self-

consistent field theory (CASSCF), the complete basis set (CBS-QB3) method of 

Petersson, and density functional theory (B3LYP). Here, the singlet-triplet energy 

gap, or ΔEST, refers to the gas phase adiabatic energy difference between the lowest 

energy singlet and the lowest energy triplet state (including unscaled zero point 

vibrational energies).  A negative value for ΔEST indicates a singlet ground state.    

 

CASPT2 is a particularly appropriate method to model these electron-deficient 

species because this method explicitly takes into account non-dynamical correlation 

resulting from any near-degeneracy of the frontier orbitals, and accounts for 

dynamical correlation outside of the active space using second order perturbation 

theory.  When employed with a large and flexible basis set and a well-chosen active 

space, this method typically gives quantitative estimates of the ΔEST to within 5 

kcal/mol of the actual value for similar hypovalent species, and in favorable cases to 



 

 148 
 

within 2-3 kcal/mol.  For all the CASSCF calculations, the active space was chosen to 

include all pi electrons (including pi lone pairs) and all pi orbitals plus the empty σ 

orbital on the cationic vinylic carbon. For example, the 2,2-difluorovinyl cation was 

computed at the CASSCF(6,5) level.  We note that in all cases we observe virtually 

no changes in the molecular geometries on going from CASSCF/cc-pVDZ to 

CASSCF/cc-pVTZ, indicating that the geometries are well converged with respect to 

basis set size.  

 

We also used the complete basis set CBS-QB3 method of Petersson, which employs a 

DFT (B3LYP) optimization, and a coupled cluster single point energy calculation 

using an extrapolation procedure to find the electronic energy at the basis set limit 

(along with an empirically determined correction for spin contamination).  Since the 

electronic energy is derived from a coupled cluster calculation, this method tends to 

perform poorly when an electronic state cannot be well described by a single 

reference wavefunction.  However, the CASSCF calculations show that all the singlet 

states in this study consist almost entirely of a single closed-shell determinant.  While 

CBS-QB3 is fairly new and has therefore not been benchmarked for a large number 

of similar systems, we note that this method gives excellent quantitative estimates for 

the singlet-triplet gaps for hypovalent species with experimentally known ΔEST 

values or values obtained from converged ab initio methods.  These include the 

parent carbene methylene (CBS-QB3 predicted ΔEST = +8.6 kcal/mol, experimental = 

+9 cal/mol127),  difluorocarbene (CBS-QB3 predicted ΔEST = -56.1 kcal/mol, 

experimental = -57 kcal/mol128), phenyl carbene (CBS-QB3 predicted ΔEST = +4.5 
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kcal/mol, experimental = +2.3 kcal/mol129), the parent nitrenium ion NH2
+ (CBS-QB3 

predicted ΔEST  = +28.6 kcal/mol, experimental = +29.9 kcal/mol29,46 ), and the parent 

phenyl cation Ph+ (CBS-QB3 predicted ΔEST  = -24.9 kcal/mol, CAS-MP2/6-

311+G(3df,2p) = -24.6 kcal/mol96).  This method has also successfully predicted the 

ground states of simple nitrenes.130-132  These benchmarks for related species lead us 

to anticipate good quantitative accuracy from this method in the current study.     

 

While both the CASSCF and CBS-QB3 models are rigorous computational methods, 

DFT has also shown to be quite robust for predicting relative energies of many 

hypovalent species that have wavefunctions consisting of primarily a single closed-

shell determinant.  Since DFT can be employed at a fraction of the computational cost 

of the CASSCF and CBS-QB3 methods, this method is applicable to larger systems 

that are intractable at the higher levels of theory.  Thus, we also chose to model these 

vinyl cations using DFT, employing the hybrid B3LYP functional along with the 

polarized double-zeta 6-31G(d,p) basis set.  

 

6.3. Computed singlet-triplet splittings. 

Except where noted, geometries were optimized at the same level of theory as the 

single point energy calculation.  The results of these computations are summarized in 

Table 6.1.   
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Table 6.1.  Predicted singlet-triplet splittings for substituted vinyl cations 

   ΔEST 
Compound 

Number 
R1 R2 R3 B3LYP/ 

6-31G(d,p) 
CASSCF/ 
cc-pVDZ 

CASSCF/ 
cc-pVTZ 

CBS-QB3 
(CBS-APNO) 

6.1 H H H -41.9 -38.7a -38.1a -48.5 (-49.0) 
6.2 OH H H -2.4c -6.6 -7.9 S.R 
6.3 OMe H H +3.8c +13.6 +12.1 S.R 
6.4 NH2 H H +3.8 +12.7 +10.8 S.R. 
6.5 NMe2 H H +11.1 +13.1 +12.8b +8.2 
6.6  NH2 NH2 H +17.1d +14.4 +13.1 S.R. 
6.7 NH2 H F  +5.5 -0.5 -1.0 +2.0 
6.8 F F H +4.6 -3.9 -4.1 +0.1 
6.9 F F F +2.9   -1.6 
6.10 F H CH3 -19.2   -25.5 

S.R. = Singlet Rearranges.  A negative value for ΔEST indicates a singlet ground state.  a. ΔEST using the 
open form of the vinyl cation.  b.  ZPVE added at cc-pVDZ level. cA.  Single point calculation at 
CASSCF/cc-pVTZ geometry (singlet rearranges spontaneously by 1,2-hydride shift at DFT level).  D. Single 
point at CASSCF/cc-pVTZ geometry (singlet rearranges spontaneously by formation of a three-membered 
ring at DFT level; see Scheme 6.1) 
  

6.4. Structure of the parent vinyl cation. 

In most cases, the computed values of ΔEST  at the CASSCF, CBS-QB3, and B3LYP 

levels show reasonably good  quantitative agreement, although the B3LYP values 

tend to systematically underestimate the singlet stability by 3-6 kcal/mol as compared 

to the higher-level methods.  Poorer agreement between the methods is observed for 

the ΔEST of the unsubstituted vinyl cation 6.1.  This poor agreement results from the 

non-classical structure of the singlet state of the parent species.  The classical open 

and non-classical (or bridged) forms of the singlet vinyl cation are shown in Figure 

6.2.  The non-classical structure resembles a proton-coordinated acetylene.  Early 

computational studies suggested that the classical open form was energetically 

C C

R3R1

R2
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favored, but the best modern computational methods and even some recent 

experimental studies suggest that the non-classical bridged form is the preferred 

structure in the gas phase.133 The CBS-QB3 method used here predicts the bridged 

form to be more stable than the classical form by 3.7 kcal/mol. Virtually identical 

values for the energy difference between these two structures have been reported in 

previous high-level computational studies.133,134 The CASSCF values for the ΔEST 

reported in Table 6.1 represent the difference in energy between the classical open 

singlet structure and the triplet state (to accurately model the non-classical singlet 

state using CASSCF, an expensive full valence active space calculation would likely 

be required).  As seen recently,133 DFT appears to poorly model the non-classical 

structure, as the two forms are found to have essentially degenerate energies at this 

level of theory.  Consequently, both the CASSCF and DFT values underestimate the 

singlet stability of the parent vinyl cation.  The best estimate for the ΔEST of the 

parent vinyl cation comes from the CBS-QB3 method that gives a value for ΔEST of -

48.5 kcal/mol (-49.0 kcal/mol from CBS-APNO).  

C C H

H

H

open bridged

C C HH

H
+

 

Figure 6.2. Two forms of the singlet vinyl cation 

 

6.5. β-pi donor substituted vinyl cations. 

Substituting the β-position on the vinyl cations with pi donors clearly leads to a 

stabilized triplet state.  For example, the parent vinyl cation 6.1 is predicted to have a 
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singlet-triplet gap of 48.5 kcal/mol in favor of the singlet state (CBS-QB3), but 

substituting just a single dimethylamino substituent in the β position 6.5 causes the 

triplet state to be the predicted ground state by 8.2 kcal/mol—a swing in the ΔEST of 

roughly 57 kcal/mol!  Even traditionally weak pi donors cause remarkable changes in 

the singlet-triplet state energy gaps.  For example, substituting two fluorines 6.8 in the 

β position makes the singlet and triplet states have essentially degenerate state 

energies.   

 

Conversely, CASSCF shows that substituting just a single moderate pi donor such as 

a hydroxyl group 6.2 or fluorine 6.10 for hydrogen stabilizes the triplet state 

significantly, but not sufficiently enough to make the triplet state the computed 

ground state.  In these two cases, the singlet state is still the predicted ground state but 

with a substantially smaller gap to the lowest-energy triplet state. (As discussed 

below, rearrangements in the singlet states for these species occur spontaneously at 

the DFT level).  Apparently, the methoxy group is a better pi donor than the hydroxy 

group, as the methoxy-substituted vinyl cation is predicted to be a ground-state triplet 

at this level of theory.     

 

6.6. Molecular geometries and rearrangements. 

Table 2 shows select computed geometrical parameters at the DFT (B3LYP/6-

31G(d,p)) and CASSCF/cc-pVTZ levels (CASSCF geometries in parenthesis). The 

triplet geometries resemble a vinyl radical with a roughly sp2-hybridized cationic 

carbon.  From these values, it is clear that the triplet geometries do not change 
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significantly with substitution.  Bond angles of between 135 and 145 degrees are seen 

in all cases for the triplet states of the primary vinyl cations, and the bond lengths are 

a consistent 1.4 (± 0.015) Å.   Moreover, the CASSCF/cc-pVTZ and B3LYP/6-

31G(d,p) computed geometries are in generally good agreement for the triplet states, 

although the C-C-R3 bond angles computed at the DFT level are systematically 3-9 

deg. more acute than the bond angles computed at the CASSCF/cc-pVTZ level.  

More variation in the geometries is seen in the singlet states upon substitution with pi 

donors.  Substituting the β position with pi donors dramatically increases the vinylic 

C-C bond length in the singlet state, while simultaneously decreasing the C-C-R3 

bond angle.  For instance, substituting the β positions with two amino groups 

increases the computed C-C bond length from 1.270 A in the parent system to 1.471A 

(at the CASSCF/cc-PVTZ level), while the bond angle changes from an essentially 

linear 179.9 degrees in the parent vinyl cation to a more acute 109.0 degrees in the 

diamino-substituted vinyl cation 6.6.   We attribute these geometrical changes in the 

singlet states to increasing carbene character and less double bond character in the 

singlet states as the β positions are substituted with increasingly strong pi donors.  

The geometries for the singlet states computed at the CASSCF/cc-pVTZ geometries 

and the level and the B3LYP level show only fair agreement.  In particular, the 

vinylic C-C bond length is consistently longer at the CASSCF level of theory.   
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C C

R3R1

R2 r0

a0  

Table 2.  Select singlet and triplet geometrical parameters for 1-10: r0 represents the 
vinyl CC bond length, a0 represents the vinyl C-C-R3 bond angle.  B3LYP/6-
31G(d,p), (CASSCF/cc-pVTZ). 
Compound 
Number 

R1 R2 R3 Singlet 
r0 (Å)  

Singlet 
a0 (deg) 

Triplet 
r0 (Å) 

Triplet 
a0 (deg) 

6.1 H H H 1.262 
(1.270) 

180.0 
(179.9) 

1.400 
(1.385) 

137.6 
(133.8) 

6.2 OH H H -- 
(1.317) 

-- 
(172.0) 

1.394 
(1.407) 

138.3 
(131.5) 

6.3 OMe H H -- 
(1.342) 

-- 
(139.4) 

1.389 
(1.412) 

138.3 
(131.2) 

6.4 NH2 H H 1.309 
(1.338) 

142.4 
(137.1) 

1.386 
(1.411) 

140.0 
(132.3) 

6.5 NMe2 H H 1.359 
(1.438) 

126.7 
(111.5) 

1.371 
(1.407) 

143.7 
(135.3) 

6.6 NH2 NH2 H -- 
(1.471) 

-- 
(109.0) 

1.422 
(1.445) 

136.6 
(130.0) 

6.7 NH2 H F  1.421 123.9 1.392 126.4 
6.8 F F H 1.338 

(1.344) 
156.2 
(177.5) 

1.402 
(1.409) 

136.9 
(129.9) 

6.9 F F F 1.439 127.4 1.416 125.2 
6.10 F H CH3 1.306 125.3 1.932 119.9 
a.  classical singlet form. a.  B3LYP/6-31G(d,p).  b.  CASSCF/cc-PVTZ  

 

For many of these species, the singlet states are predicted to be prone to 

rearrangements.135  In some cases, minima were found for the singlet states at the 

CASSCF/cc-pVTZ level but rearrangements were found to occur apparently without 

a barrier at the DFT level of theory (since CBS-QB3 employs a B3LYP optimization, 

any structures that rearrange at the B3LYP level likewise rearrange when employing 

CBS-QB3).  This was the case for the hydroxy- 6.2, methoxy- 6.3,  and diamino- 6.6 

substituted vinyl cations.  Given that CASSCF is a more rigorous model theory than 

DFT, these structures probably have minima on their singlet potential energy 
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surfaces, but likely with a barrier for rearrangement that is very small.  In other cases, 

such as with the amino- 6.4 and dimethylamino- 6.5 substituted vinyl cations, minima 

were found for the singlets at the DFT level, but the barriers for undergoing 1,2-

hydride shifts were predicted to be smaller than the zero-point vibrational energy (a 

barrier of 0.1 kcal/mol for 6.4 and 0.8 kcal/mol for 6.5).  In contrast, the triplet states 

for 4 and 5 appear less likely to rearrange.  The hydride shift rearrangement for triplet 

4 and 5 are predicted to be downhill by 0.4 kcal/mol for 4 , but with very large energy 

barriers of 56.4 kcal/mol.  Thus, the triplet states are not anticipated to be prone to 

rearrangments by hydride shifts.  These computations lead to the conclusion that 

generation of these species in the singlet states will lead to rapid rearrangement prior 

to intersystem crossing.  On the other hand, the triplet states in these substituted vinyl 

cations may be stabilized sufficiently to permit photochemical generation by triplet 

sensitization to access reactions from the triplet manifold where rearrangements 

appear unlikely at ambient temperature.    

 

Other “spontaneous” rearrangements seen at the DFT level for various β pi-donor 

substituted species were observed for the singlet species shown in Scheme 6.1. The 

left-most structure corresponds to the approximate input geometry and the structure to 

the right of the arrow indicates the optimized structure.  We note that we were unable 

to locate any minima corresponding to non-classical structures similar to the bridged 

structure seen in the parent vinyl cation for the singlet substituted species.  Inputting 

geometries for non-classical bridged vinyl cations 6.2-6.10 leads to either the 

rearranged structure or the classical open singlet structure upon optimization.  Of 
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course, there is always the possibility that other low-energy non-classical structures 

exist that we have not considered.   

 

H2N

H2N H
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6.11
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6.13

6.14

6.15 6.16  

Scheme 6. 1.  Examples of singlet rearrangements at the DFT (B3LYP/6-31G(d,p)) 
level.  

 

Particularly revealing is the rearrangement observed for the singlet 2,2-

bis(dimethylamino)vinyl cation (Scheme 2).  No minimum was found for a classic 

vinyl cation structure; rather, this singlet vinyl cation spontaneously undergoes an 

insertion at the DFT level of theory to give a four-membered ring.  This 

rearrangement appears to agree with the idea that strong β pi donors make the singlet 

state resemble a singlet carbene, as this rearrangement appears to be a carbene-like C-

H insertion.   
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Scheme 6. 2  Spontaneous C-H insertion  
 

6.7. Incorporation of the pi donors into rings. 

We close by noting a series of these vinyl cations that are particularly inviting for 

experimental studies because they appear less likely to rearrange. These are systems 

where the pi donors have been incorporated into rings (see Figure 3).  In all but one 

case, the magnitudes of the singlet-triplet gaps are large enough to be considered 

outside the likely error of the calculations.  We anticipate 6.11-13, 6.15 to be ground-

state triplet vinyl cations.   For 6.14, 6.15 the system size was sufficiently large to 

permit only a DFT calculation.  Since the DFT results typically underestimate the 

singlet stability by 3-6 kcal/mol relative to the higher-level methods, no firm 

predictions can be made for 6.14 on its expected ground state, except to say that the 

singlet and triplet state energies are likely to be nearly degenerate.   

 

 

CH

 + 17

Me2N NMe2

CH

 + 4.6

O O MeN NMe

B3LYP/6-31G(d,p)

CBS-QB3 +9.2

+13.5 +15.4 +14.3

+11.2 +10.0

COMPOUND # 6.17 6.18 6.19 6.20 6.21

 

Figure 3.  ΔEST values for ring-constrained pi donor-substituted vinyl cations. 
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The only obvious rearrangement pathway for 6.11-15 in the singlet state is a ring 

expansion, much like the expansion that occurs apparently without a barrier for the 

cyclopentadienylidene vinyl cation to the phenyl cation.  For the dioxane 6.11, this 

ring expansion is computed to be a downhill process by 10.7 kcal/ mol, but with an 

energy barrier of 14.9 kcal/mol.   For the nitrogen analog 6.12, this rearrangement is 

computed to exergonic by 41.7 kcal/mol, but with a larger barrier of 33.5 kcal/mol.  

Since most of the methods used to generate carbenium ions generate the cations 

initially in the singlet state, these barriers to singlet rearrangement may be large 

enough to permit experimental observation of the singlet state by laser flash 

photolysis, and potentially large enough to allow the singlet to intersystem cross to 

the triplet state prior to rearrangement (we note that the ring-expanded vinyl cation is 

also computed to be a ground-state triplet by 1.8 kcal/mol by B3LYP136).   
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Scheme 6. 3.  DFT rearrangement energies. 
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The fluorenylidene vinyl cation 6.14 may have been made previously.  The reaction 

of the amino-substituted compound shown in Scheme 6.2 is with an alkyl nitrite and 

cyclohexene gives a carbene-like insertion product.  Two mechanistic possibilities 

were considered.  The reaction is thought to proceed through a vinyl diazonium ion 

intermediate.  One possibility is loss of a proton from the diazonium intermediate to 

form a diazo compound, followed by loss of N2 to give a vinylidene carbene, which 

undergoes cyclohexene insertion.  The other considered mechanism involves loss of 

N2 from the diazonium ion to give the vinyl cation, followed by deprotonation to give 

the vinylidene carbene.  In light of this study, we propose a third possibility—

involvement of a triplet vinyl cation.   That is, formation of 16.14 could be followed 

by intersystem crossing to give the triplet vinyl cation 36.14.  Insertion into the 

cyclohexene double bond followed by loss of a proton could give the ultimate 

product.  Even if 6.14 proves to have a singlet ground-state (we anticipate near-

degenerate singlet and triplet state energies for this species), a low-energy triplet state 

may be thermally accessible if intersystem crossing is facile.  Zollinger has also 

studied a system in which 6.14 may be an intermediate, obtaining singlet-like 

products resulting from a ring expansion in the presence of σ nucleophiles.   
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Scheme 6.5.  An alternative mechanism for C-H insertion. 

6.8.  The nature of the stabilized triplet state. 

Three canonical forms appear to be important for these pi-donor substituted vinyl 

cations (Scheme 6.3).  Based on the geometrical parameters noted in Table 6.2 and 

the atomic charges computed at the APT level (Figure 6.3), the singlet states for the 

unsubstituted system or systems substituted with weak donors consist of primarily 

canonical structure I.  When strong pi donors are added to the β position, all three 

canonical forms appear to be important, with the weights of II and III appearing to be 

directly correlated to the strength of the pi donor.  All the triplet states appear to 

consist of II and III.  The APT charges for 6.4 are shown in Figure 6.3. The 

stabilized triplet states for these β-substituted vinyl cations have significant carbenoid 

character, and closely resembles the electronic state of triplet phenyl cations.  
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X X X

I II III  

Scheme 6. 4.  Important canonical forms for the β-substituted vinyl cations 

 

 

Figure 6. 3.  APT charges for 2-aminovinyl cation (BL3YP/6-31G(d,p)) singlet (top) 
and triplet (bottom).  Fixed charges range from +1 (bright green) to -1 (bright red). 
 

The triplet state of the cycloheptatrienyl vinyl cation 6.13 has a particularly intriguing 

triplet electronic structure.   As shown by computed APT charges, the charge in the 

singlet state is highly localized on the two vinyl carbons and there is little 

delocalization throughout the ring.  The triplet state, on the other hand, resembles an 
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aromatic cycloheptadienyl cation-substituted triplet carbene. Representations for the 

singlet and triplet state of 13 are shown in Figure 5.  Significant delocalization of the 

positive charge is seen throughout the ring in the triplet state (but not in the singlet 

state), and inspection of the Mulliken atomic spin densities shows that essentially 

both spins reside on the exocyclic carbon in the triplet state (spin density = 1.68).     

 

H

triplet

H

singlet  

Figure 5. The singlet and triplet states of 6.13.   

 

In conclusion, substitution of vinyl cations with β pi donors leads to stabilization of a 

carbene-like triplet state similar to the electronic state of triplet phenyl cations. 

Should many of these cations be experimentally generated in the singlet state, 

spontaneous rearrangements are likely to occur prior to intersystem crossing, 

although triplet sensitization methods may allow selective generation of the triplet 

vinyl cations.  Vinyl cations with the pi donors incorporated into rings are particularly 

inviting for experimental studies because these species have no obvious singlet 

rearrangement pathways; these structures may be less prone to rearrangements from 

the singlet state prior to intersystem crossing.  

 

Thus, while an implicit assumption in the discussion of most intermediate 

carbocations is that they adopt closed-shell singlet configurations, recent 
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computational studies performed in our lab71,104 and others, however, have caused us 

to re-examine this assumption, particularly for charged systems where substitutions 

with pi donors have been shown to cause dramatic swings in the electronic state 

orderings.  For example, recently reported CASPT2 calculations show that the parent 

benzyl cation (Ph-CH2
+) adopts a closed-shell singlet state electronic configuration 

with a large energy gap to the lowest-energy triplet state (45 kcal/mol).  Upon 

substituting the two meta positions with strong pi donors, however, the triplet state is 

dramatically stabilized.  At the CASPT2 level of theory, for instance, the 3,5-

bis(dimethylamino)benzyl cation is predicted to have essentially degenerate singlet-

triplet state energies!  

 

These studies demonstrate that a very large singlet-triplet energy gap for the parent 

species is no guarantee that even simple substituted analogs will remain closed-shell 

singlets.  Perhaps part of the reason these triplet vinyl cations may not have been 

postulated before experimentally is that a large number of the experimentally 

generated vinyl cations contain an α donating group, often the anisyl group.  This α 

anisyl group appears to significantly stabilize the singlet state.  To give one example, 

the unsubstituted xanthyl vinyl cation 6.16 is computed to be a triplet by 11.8 

kcal/mol at the DFT level.  The cation 6.17 (with the α anisyl substituent), studied 

experimentally, is computed to be a singlet by 19.6 kcal/mol. See Figure 6.4.  

However, some published reports on β−substituted vinyl cations may reward re-

examination in light of this finding.   
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Figure 6.4.  Effect of an α  anisyl group on ΔEST   

 
 

6.9. Computational methods.   

All DFT calculations were performed using the Gaussian03 software suite  employing 

primarily the B3LYP functional that consists of Becke’s three-parameter gradient-

corrected exchange functional 137,138 and the LYP correlational functional of Lee, 

Yang, and Parr 139 along with the 6-31G(d,p) polarized double zeta basis set  

Geometries, energies, and analytical frequencies were calculated at this level of 

theory. In all cases, optimized geometries were found to have zero imaginary 

frequencies, and corrections for the zero point vibrational energy were added 

unscaled.  CASSCF optimizations were performed using Gaussian03, 140 but CASPT2 

calculations were accomplished with the Molcas 7 program.  Active spaces were 

comprised of all π electrons (including the two double bond electrons and any 

conjugated double bonds or lone pairs of the substituents) and all π orbitals.   

 

Given that the CASSCF calculations show that all the singlet states for these vinyl 

cations consist almost entirely of a closed-shell determinant (weights greater than 0.9 

for the principle closed-shell determinant were observed for all singlet states 

O O

OMe

16 17

!EST

(B3LYP) +11.8 kcal/mol -19.6 kcal/mol
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computed at the CASSCF level), we elected to use only restricted DFT energies and 

geometries for the singlet states. 
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7. Chapter 7:  Carbazolyl Nitrenium Ion:  Electron 
Configuration and Antiaromaticity1  

 

7.1. Introduction 

In this chapter, we demonstrate that laser flash photolysis of 1-(carbazol-9-yl)-2,4,6-

trimethylpyridinium tetrafluoroborate generates the carbazolyl nitrenium ion (τ = 333 

ns, kobs = 3.0 x 106 M-1s-1) having absorption bands at 570 nm and 620 nm in CH3CN.  

The nitrenium ion is found to have reactivity comparable to structurally similar 

closed-shell diarylnitrenium ions, but spectroscopic evidence favors an open-shell 

singlet diradical assignment for the observed nitrenium ion. The carbazolyl nitrenium 

ion is also more reactive than diarylnitrenium ions as a likely result of antiaromatic 

character.    Ab initio and hybrid DFT calculations were performed to address the 

degree of antiaromaticity in this and similar nitrenium ions through analysis of 

optimized geometries, nucleus independent chemical shifts, and isodesmic reactions. 

 
Nitrenium ions are nitrogen-containing reactive intermediates of the formula RNR’+; 

they are isoelectronic to the more-familiar carbene family of intermediates, and have 

lifetimes that seldom exceed 100 µs.23-26   Many of the studies of nitrenium ions have 

come as a result of evidence that arylnitrenium ions (Ar-N-R+) are formed in vivo 

from enzymatic oxidation of arylamines.  Due to their extreme electrophilicity, 

nitrenium ions add to weakly nucleophilic cellular moieties such as proteins and 

DNA.45,50,141  The addition of nitrenium ions to DNA has the potential to kill a 

healthy cell or begin the process to convert it into a cancerous one, and nitrenium ions 

                                                
1 Taken in part from: Winter, A. H.; Gibson, H. H.; Falvey, D. E.  J. Org. Chem. 2007; 72(22); 8186-8195. 
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have been implicated as the “ultimate carcinogen”142 of certain anilines and other 

nitrogen-containing aromatics.52  On a more positive note, nitrenium ions have also 

been proposed to be intermediates in the synthesis of the conducting material 

poly(aniline),51,53 and have been exploited for useful synthetic purposes, particularly 

in ring-forming reactions.43,44,143,144  While most of the recent work on nitrenium ion 

chemistry has focused on arylnitrenium ions (Ar-N-H+), less attention has been given 

to other kinds of nitrenium ions such as alkylnitrenium ions or nitrenium ions derived 

from heteroaromatic systems.   

 

To distinguish between nitrenium ions with the formally cationic nitrogen located 

outside of a ring and those with the cationic nitrogen contained within a ring, we use 

the term endocyclic nitrenium ions to describe nitrenium ions with the formally 

cationic nitrogen contained within a ring (e.g. all nitrenium ions in Figure 1), and 

exocyclic nitrenium ions for those with the formal nitrenium center outside of a ring 

(e.g. Ph-N-H+).   

N N
N

7.1 7.2 7.3  

Figure 7.1  Endocyclic nitrenium ions. 
 

We were particularly interested in the structures of the endocyclic nitrenium ions 

shown in Figure 1 because each possibly has antiaromatic character. The 

cyclopentadienyl cation is one of the most well known antiaromatic ring systems, and 

it has a recorded ESR triplet spectrum.94  The pyrrolyl nitrenium ion 7.1 is its 
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nitrenium ion analogue, and the indolyl nitrenium ion 7.2 and the carbazolyl 

nitrenium ion 7.3 both contain this formally antiaromatic core.  While the carbocation 

analogues of 7.1-3 have seen extensive studies and debate regarding the degree of 

antiaromaticity in these cations,94,145-150 the nitrenium ions 7.1-3 have received little 

study.151-153   Moreover, we were intrigued by the possibility for unusual ground state 

or low-energy electron configurations in these nitrenium ions that may be favored to 

avoid any antiaromatic character present in their closed-shell singlet configurations. 

 

For any nitrenium ion, three possibilities for the electronic configuration of the singlet 

state are typically considered (see Figure 7.2).23  The only electron configuration of 

the singlet state that has been observed experimentally is the n2 singlet state, in which 

both of the electrons reside in a hybridized non-bonding n orbital.  An open shell n,p 

singlet configuration and a closed shell p2 configuration are usually ruled out on 

principle because they put electrons into a higher energy p orbital.  In the cases of 

structures 7.1, 7.2, and 7.3, however, certain energetic advantages can be envisaged 

for both of these configurations that might compensate for placement of the electrons 

in higher energy orbitals. For example, in both the p2 singlet state and the open shell 

n,p singlet state any antiaromaticity (if present) is avoided.  Moreover, the p2 singlets 

may have the added stabilization of additional aromatic character.   
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n2 singlet n,p singlet p2 singlet n,p triplet  

Figure 7.2.  Possible electronic configurations for carbazolyl nitrenium ion 

 

Additionally, one expects that each of these three configurations for the singlet state 

should exhibit different reactivity. Typical closed shell n2 singlet arylnitrenium ions 

react with nucleophiles at the ortho and para sites of the phenyl rings (addition to 

nitrogen is sometimes observed with certain pi nucleophiles).  Little is known of the 

reactivity of open-shell n,p singlet states for carbenes or nitrenium ions, but intuition 

suggests that they would likely react more like diradicals than typical closed-shell 

singlet species.  Likewise, little is known of p2 singlet states for carbenes or nitrenium 

ions (certain palladadiphosphanyl carbenes154 are thought to be p2 singlets), but a p2 

singlet nitrenium ion would be anticipated to react like an aryl or vinyl carbenium 

ion, with exclusive nucleophile addition at the cationic nitrogen (which cannot 

delocalize the charge through resonance like the n2 singlet can).  All of the known 

examples of triplet nitrenium ions react by hydrogen atom transfer mechanisms, 

usually to form the reduced amine as the ultimate photoproduct.   

 

We chose the carbazolyl nitrenium ion 7.3 as the best candidate for experimental 

studies.  As a result of its greater conjugation, we anticipated that it would be longer 

lived and have more favorable absorption properties than 7.1 and 7.2, and thus have a 

greater chance of direct observation using our LFP system.   
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7.2. Generation of the nitrenium ion. 

The carbazolyl nitrenium ion was generated by photolysis of 1-(carbazol-9-yl)-2,4,6-

trimethylpyridinium tetrafluoroborate 7.4a as shown in Scheme 1.  Upon absorption 

of ultraviolet light, N-aminopyridinium salts are known to undergo heterolytic N-N 

bond scission to generate the nitrenium ion and the pyridine derivative 7.5.42,48,155  

Barring rapid intersystem crossing of the excited singlet state of the pyridinium salt 

precursor 7.4 to its excited triplet state prior to N-N bond scission, nitrenium ions 

generated from these precursors are initially made in a singlet state, irrespective of 

whether this configuration is the ground state electron configuration.   

N

R

R RCH3CN

hv

7.4a, R=Me
7.4b, R=Ph

N

NR R

R

BF4
- N

7.3

BF4
-

5a, R=Me
5b, R=Ph

 

Scheme 7. 1.  Generation of the carbazolyl nitrenium ion. 

 

Upon laser flash photolysis (LFP) of 7.4a, a short-lived species (τ = 333 ns, kobs = 3.0 

x 106 M-1s-1) having absorption bands at 570 nm and 620 nm was observed (Figure 

7.3). Based upon diagnostic LFP studies, chemical trapping experiments, and product 

analyses discussed below, we assign this transient to the singlet carbazolyl nitrenium 

ion 7.3.   
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Figure 7. 3.  LFP of 7.4a in CH3CN.  Timescale in µs.  Inset shows waveform at 620 
nm. 
 

7.3. Evidence for a nitrenium ion intermediate. 

Consistent with the proposed intermediacy of a nitrenium ion intermediate, LFP 

experiments of 7.4a in the presence of electron donors show that the observed 

intermediate undergoes electron transfer reactions. For example, LFP of 7.4a in the 

presence of dimethylaniline (DMA) or dimethoxybenzene (DMB) shows transients 

corresponding to the carbazolyl radical 7.6 and the cation radical of the donor.  See 

Scheme 7.2.   

CH3CN

hv
N

N
BF4

-
N

DMA

7.4a
7.3

N

+  DMA

(or DMB)

(DMB)e- transfer

7.6
 

Scheme 7.2.  Electron transfer between 7.3 and electron donors. 
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Figure 4 shows the transient spectrum of 7.4a in the presence of DMA (see 

Supporting Information for LFP of 7.4a in the presence of DMB).  The peak at 470 

nm is readily assigned to the known absorption of the radical cation of DMA and the 

peaks at 570 and 620 to the carbazolyl radical 7.6.  The reference spectrum of the 

carbazolyl radical was obtained by LFP of N-nitrosocarbazole in CH3CN which gave 

absorption bands at 570 nm and 620 nm that are qualitiatively indistinguishable from 

a previously published spectrum of this radical.156 

  

Figure 7. 4. LFP of 7.4a in the presence of DMA Timescale in µs.  

  

Previous studies by Bogdal152,153 on the photoproducts of the triphenylpyridinium 

precursor 7.4b in the presence of mesitylene suggested that the photochemistry of  

7.4b derives from its triplet state because of the formation of products characteristic 

of radical intermediates.  Based on his studies, we considered the possibility that the 

N

N
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trimethylpyridinium salt 7.4a might follow a similar photochemical pathway.  

However, we find no evidence that the photochemistry of 7.4a proceeds through its 

triplet excited state.  On the contrary, as described below, product analyses and 

trapping rate constants are more consistent with the intermediacy of a singlet 

nitrenium ion than a triplet. Additionally, attempts to generate the nitrenium ion 

through triplet sensitization of 7.4a were unsuccessful.  For example, we observed no 

quenching of the triplet excited states of benzophenone or xanthone upon addition of 

7.4a.  Given that benzophenone and xanthone have reasonably large triplet energies 

of 69 kcal/mol and 74 kcal/mol, respectively, this result suggests that the triplet state 

of 7.4a is higher in energy then 74 kcal/mol and is likely not an intermediate in the 

photochemical pathway from direct photolysis.   

   

One potential hazard of analyzing the photoproducts of 7.3 is that the nitrenium ion 

reacts with carbazole via electron transfer to give the carbazolyl radical 7.6 and the 

carbazolyl radical cation (see Figure 4).  LFP of 7.4a in the presence of carbazole 

gives absorptions that can be assigned to the carbazolyl radical (570 nm and 620 nm) 

and the carbazolyl radical cation 7.6 (660 nm, 720 nm),157 derived from electron 

transfer from carbazole to the nitrenium ion 7.3.158 Therefore, any accumulation of 

carbazole or carbazole addition photoproducts could spuriously give stable products 

consistent with triplet radical chemistry from electron transfer between the 

photoproducts and 7.3. In fact, while we observe no transients in the LFP spectrum of 

the freshly-prepared triphenylpyridinium salt 7.4b, after 20 pulses of 355 nm laser 

light on a solution of 7.4b in CH3CN, a signal corresponding to the carbazolyl radical 
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is observed that increases in intensity with further laser photolysis.  LFP of freshly 

replenished 7.4b in the presence of carbazole likewise shows a transient consistent 

with the carbazolyl radical.  

 

Figure 7. 5.  LFP of 7.4a in the presence of carbazole.  Timescale in µs.  

 

A simpler explanation of why triplet products are observed from photolysis of 7.4b 

while singlet behavior is seen from photolysis of 7.4a is that 7.4b may undergo rapid 

intersystem crossing of the precursor excited singlet state to its triplet excited state 

before N-N bond scission, while 7.4a undergoes N-N bond scission from the excited 

singlet state.  That is, excitation of 7.4b into its excited singlet state is followed 

rapidly by intersystem crossing to the excited triplet state and subsequent N-N bond 

scission to make the triplet nitrenium ion.  The triplet nitrenium ion could be too 

short-lived to be detected using our LFP system, or it may have too weak (or 

unfavorably positioned) absorption bands to be observed. This explanation agrees 

most closely with the results obtained by Bogdal and the lack of any observable 

transient species upon LFP of fresh 7.4b in CH3CN. 
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7.4. Product studies. 

Analysis of the products obtained from photolysis of 7.4a in the presence of traps is 

consistent with the intermediacy of a singlet nitrenium ion (Scheme 3).  While triplet 

nitrenium ions react primarily by hydrogen atom abstraction reactions, the hallmark 

experiment for closed-shell singlet arylnitrenium ions is their reaction with 

nucleophiles in the ortho and para positions of the aromatic ring.  Consistent with the 

chemistry of other closed-shell singlet arylnitrenium ions, when the photolysis of 7.4a 

is carried out in solvent methanol, two methoxy adducts are obtained.  These adducts 

are 3-methoxycarbazole 7.9 and 1-methoxycarbazole 7.10 as identified by 

comparison (TLC, GC, GC-MS) with authentic samples (in approximately a 64:36 

ratio of the 3-chlorocarbazole to 1-chlorocarbazole based on GC area percent). 

Similarly, two chloro adducts are obtained when 7.4a is photolyzed in the presence of 

chloride ion (as n-Bu4NCl) in CH3CN.  One of the chloro adducts is definitively 

identified as 3-chlorocarbazole 7 by comparison (TLC, GC, GC-MS) with an 

authentic sample; the identity of the other chloro adduct has not been rigorously 

established but is presumed, by analogy to the reactivity of the carbazolyl nitrenium 

ion with methanol (and the known reactivity of other singlet arylnitrenium ions with 

chloride) to be the 1-adduct 7.8 resulting from addition of chloride to the 1 position of 

the carbazole (in approximately a 60:40 ratio of the 3-chlorocarbazole to the 1-

chlorocarbazole based on GC area percent). 
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Scheme 7. 3.  Trapping product studies of 7.4a.  
  

One principal covalent adduct 7.11 is obtained when 7.4a is photolyzed in the 

presence of the pi nucleophile 1,3,5-trimethoxybenzene (TMB), resulting from 

addition of the aromatic ring of TMB to the carbazole nitrogen.159  This result is 

surprising in light of the previously-reported finding that diphenylnitrenium ion gives 

predominantly covalent adducts of TMB to the ortho and para carbons of the 

nitrenium ion rather than to nitrogen (30% N adduct, 66% o/p ring adducts for 

Ph2N+).48  The selective N-addition of TMB to 7.3 may be due in part to the forced 

planarity of the carbazole ring that could lead to more favorable rates for N addition 

than with the diphenylnitrenium ion, which opts to twist out of plane to minimize 

steric repulsion.  Additionally, computations predict a high localization of positive 

charge on the nitrogen in the carbazolyl nitrenium ion (discussed in more detail 

below).   



 

 177 
 

7.5. Trapping rate constants.  

For several traps, pseudo first order trapping rate constants were also obtained (see 

Table 1).  The nitrenium ion 7.3 reacts with both n and π nucleophiles at or near the 

diffusion limit.  For example, the trapping rate constants for methanol, chloride, and 

1,3,5-trimethoxybenzene were found to be 9.8 x 108 M-1s-1, 3.5 x1010 M-1s-1, and  9.5 

x109 M-1s-1, respectively.160  Additionally, 1,4-cyclohexadiene (CHD) was found to 

react near the diffusion limit with a rate constant of 9.1 x109 M-1s-1.  The latter trap 

can serve as both a hydrogen atom donor (BDE = 74 kcal/mol161) or as a hydride 

donor depending on the reactivity of the nitrenium ion.162  To distinguish between 

these two possibilities, a full transient LFP spectrum in the presence of excess CHD 

was obtained.  If CHD were reacting as a hydrogen atom donor one would expect to 

observe transients corresponding to the carbazolyl radical cation.  However, no such 

transients were observed upon LFP of 7.4a in the presence of CHD.  Given this 

negative result, it seems more likely that CHD is reacting as a hydride donor rather 

than a hydrogen atom donor.    

 
Table 7.1.  Comparison of trapping rate constants between 7.4a and Ph2N+. 
Trap 

 
Rate Constant 
for trapping  
(M-1s-1) 

Rate constant 
for trapping 
Ph2N+  (M-1s-1) 

MeOH 9.8x108 5.2 x 106  
1,3,5-Trimethoxybenzene 9.5 x109 3.1 x 109  
Bu4NCl 3.5 x1010 1.0 x1010  
1,4-cyclohexadiene 9.1 x109 6.5 x 106    
  

Comparison of these trapping rate constants to previously reported rate constants for 

trapping of the diphenylnitrenium ion in CH3CN suggests that the carbazolyl 

nitrenium ion 7.3 is a significantly more reactive species.  Particularly noteworthy is 
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that both methanol and 1,4-cyclohexadiene react with the carbazolyl nitrenium ion 

roughly three orders of magnitude faster than with the diphenylnitrenium ion.   One 

possible explanation for these faster rates is that the destabilizing antiaromatic 

character of 7.3 (discussed in more detail below) leads to more favorable rates for 

nucleophilic attack and hydride transfer than with the diarylnitrenium ions.  

Alternatively, the forced planarity of 7.3 might lead to slightly more favorable rates 

for hydride transfer through less steric crowding of the nitrogen as compared to 

diphenylnitrenium ion.  

 

As further evidence of the chemical similarity to the diarylnitrenium ions, the 

carbazolyl nitrenium ion forms observable sigma adducts in the presence of pi 

nucleophiles.  In particular, LFP of 7.4a in the presence of 1,3,5-trimethoxybenzene 

(TMB) gives rise to a weakly absorbing long-lived transient at 400 nm in CH3CN 

(Figure 7.6).163  We assign this transient to the sigma complex resulting from 

nucleophilic addition of the pi nucleophile to the nitrenium ion.  See Scheme 7.4. One 

might expect that the lifetime of the sigma complex would decrease in more basic 

media (such as added pyridine) because of an accelerated rate of deprotonation.  This 

is indeed the case, as the lifetime of the 400 nm transient decreases proportionally to 

the amount of pyridine added to the solution.  
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Figure 7. 6.  LFP of 7.4a in the presence of TMB. Timescale in µs. 
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Scheme 7. 4. Addition of TMB to the nitrenium ion. 
 

7.6. Computed singlet-triplet state energy gaps.  

The energies of the singlet and triplet states of nitrenium ions 7.1-3 were computed 

using density functional theory (DFT) to obtain the adiabatic singlet-triplet energy 

gaps (ΔEST).   The merits of DFT as a method for obtaining good quantitative 

estimates of the singlet-triplet gaps for nitrenium ions and other hypovalent species 

have been discussed elsewhere.40,71,73,76 All three intermediates are predicted to be 
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ground state singlets, with the pyrrolyl nitrenium ion 7.1 predicted to have the 

smallest singlet-triplet energy splitting of -2.3 kcal/mol (a negative value indicates a 

singlet ground state).  Benzannulation of the pyrrolyl nitrenium ion 7.1 to obtain 7.2 

and 7.3, as might be expected, alters the singlet-triplet gap in favor of the singlet, 

giving ΔEST values of -5.8 and -7.8 kcal/mol, respectively.  

Table 7.2.  Singlet-triplet gaps.   
Structure 
Number 

ΔEST (B3LYP/6-31G(d,p)) 

7.1 -2.3, -2.3a 
7.2 -5.8 
7.3 -7.8 

a. B3LYP/6-311G(2d,p)//B3LYP/6-31G(d,p) 

 

7.7. Electron configuration of the observed nitrenium ion. 

While all of the reactivity of the observed transient is similar to the reactivity seen for 

previously-characterized closed-shell n2 nitrenium ions, three observations are 

suggestive of an n,p open-shell singlet diradical configuration.   

 

First, the absorption spectrum of the nitrenium ion transient is very similar to that of 

the carbazolyl radical, with both intermediates having absorption maxima at 570 nm 

and 620 nm (± 5 nm) in CH3CN (the two species can be distinguished from each 

other by the much longer lifetime and more defined 570 nm absorption of the 

radical).  Assuming that the absorption bands derive principally from excitations of pi 

electrons, one would expect that the closed shell singlet carbazolyl nitrenium ion and 

the carbazolyl radical would have very different absorption spectra.  On the other 
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hand, this same assumption leads to the prediction that the open-shell n,p diradical 

carbazolyl nitrenium ion would have an absorption spectrum very similar to the 

carbazolyl radical as a result of having the same electron occupation of the pi orbitals.  

 

Second, the decay of the transient appears to be first order (see Figure 7.3). While the 

diphenylnitrenium ion (Ph2NH+) has a facile unimolecular decay channel in the form 

of a Nazarov-like cyclization (τ = 1.5 µs) to ultimately form carbazole,47 no such 

decay channel presents itself for the closed-shell singlet carbazolyl nitrenium ion.  

Despite this lack of an obvious decay channel, the carbazolyl nitrenium ion has a 

much shorter lifetime (τ = 0.3 µs) than Ph2N+ in solution. The lifetime of the 

carbazolyl nitrenium ion transient is the same in CH3CN and CH2Cl2 (suggesting that 

the decay does not involve solvent), is insensitive to the presence of oxygen, laser 

intensity (and thus the concentration of nitrenium ions), and concentration of the 

precursor 7.4a.  The isolable photoproducts in the absence of traps were found to be 

carbazole and collidine (27% yield of carbazole and ca. 100% yield of collidine after 

54% decomposition of a 0.01M 7.4a solution in CH3CN).  The remaining 

uncharacterized product(s) is an insoluble residue that is presumably poly(carbazole) 

oligomers similar to those seen for diphenylnitrenium ion from reaction of the 

nitrenium ion with accumulated photoproducts.4742  

 

Lastly, while previously-reported time-dependent density functional theory (TD-

DFT) calculations of diphenylnitrenium ion and its halogen-substituted analogs give 

predicted absorption band locations in good agreement with those found from 



 

 182 
 

experiment,155 the predicted bands for the carbazolyl nitrenium ion do not match well 

with the observed spectrum of the carbazolyl nitrenium ion.  In the previous study, 

TD-DFT calculations predicted absorptions at 645 nm, 637 nm, and 647 nm for the 

diphenylnitrenium ion, 4,4’-dichlorodiphenylnitrenium ion, and 4,4’-

dibromodiphenylnitrenium ion, respectively, close to the experimentally found 

absorptions of 640 nm, 670 nm, and 690 nm.   Also of relevance, TD-DFT predicts 

absorption bands for the carbazolyl radical at 643 nm and 525 nm, in reasonable 

agreement with the observed bands at 620 nm and 570 nm.  However, a TD-DFT 

calculation (B3LYP/6-311G(d,p)) on the closed-shell singlet carbazolyl nitrenium ion 

gives predicted absorption bands at 249 nm and 488 nm, in poor agreement with the 

observed absorptions at 570 nm and 620 nm  

  

Few reasonable decay pathways can be proposed that are consistent with these results 

and the identity of the transient as the closed-shell n2 singlet nitrenium ion.  One 

possibility is that the nitrenium ion 7.3 decays to give a nitrenium ion of a different 

electron configuration that has unfavorable absorption properties or absorption bands 

outside the detection window of our LFP spectrometer.  For example, the singlet 

nitrenium ion could undergo intersystem crossing to give the triplet carbazolyl 

nitrenium ion.  This possibility is unlikely given that DFT predicts the closed-shell 

singlet to be the ground state with a reasonably large energy gap (7.8 kcal/mol) to the 

triplet state.  (Further, when DFT errs in predicting the singlet-triplet gap, it is almost 

always by overly favoring the triplet state.)  Another possibility is that the closed-

shell nitrenium ion decays to give a different singlet state configuration of 7.3.  This 
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possibility is also not supported by calculations, however, as both DFT (B3LYP) and 

small basis-set CASSCF(10,10)/3-21G calculations predict the closed-shell singlet 

state to be the lowest energy singlet electron configuration.  The closed-shell singlet 

DFT wavefunction was found to be stable with respect to breaking orbital symmetry 

(restricted  unrestricted stability), and CASSCF predicts that the lowest energy 

singlet configuration consists of primarily the n2 singlet state (0.82 determinant 

weight).  On the other hand, if the observed transient is the n,p singlet excited state, 

an obvious unimolecular decay pathway is relaxation to the n2 singlet ground state.  

While a lifetime of ~0.3 µs is unusually long for an excited state, such a 

configurational change would be expected to be slow for the carbazolyl nitrenium ion 

because the change in orbital angular momentum resulting from the electron 

switching from the p to the n orbital is not similarly compensated by a change in spin 

angular momentum. In terms of chemical reactivity, however, the lifetime of the 

observed transient nitrenium ion is short, and product formation could arise from 

either the excited n,p singlet state or from the ground (n2) singlet state depending on 

the concentration and reactivity of the trap.   

 

Thus, while the product studies, trapping rate constants, and LFP spectra in the 

presence of traps leave little doubt that the observed transient is a singlet nitrenium 

ion, the specific electronic configuration of the observed singlet nitrenium ion is less 

certain.  The absorption spectrum and the first-order decay kinetics are most 

consistent with the detection of an excited n,p singlet state that relaxes to a lower-

energy n2 state.  However, the observed reaction products (which may arise from both 
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states) are not qualitatively distinct from those products formed from previously 

characterized n2 singlet diarylnitrenium ions. Given this consideration, along with our 

inability to directly detect any intermediates following the decay of the nitrenium ion, 

the current evidence for this transient being the n,p singlet carbazolyl nitrenium ion 

should be considered suggestive rather than definitive.  

     

Part of the difficulty in determining a specific state assignment is that it is currently 

unclear whether an open-shell singlet  n,p nitrenium ion would give products distinct 

from a closed-shell n2 singlet nitrenium ion.  While to our knowledge no open-shell 

singlet nitrenium ion has been reported, certain arylnitrenes (Ar-N) have open-shell 

singlet states lower in energy than the closed-shell singlet states.18 Unfortunately, the 

reactivity of these species offer little insight into the potential reactivity of an open-

shell singlet nitrenium ion, as open-shell singlet arylnitrenes typically decay by 

formation of diazirines, followed by ring expansion to didehydroazepines.164  The 

reactivity of open-shell singlet carbenes is likely more relevant to nitrenium ions than 

the reactivity of nitrenes; unfortunately, there are very few reports of open-shell 

singlet carbenes.165   Certain 1,3- and 1,4- open-shell singlet diradicals have been 

shown to be trapped by nucleophiles such as chloride or alcohols, providing some 

precedence for an open-shell species with reactivity similar to closed-shell 

species.166,167  However, because of the paucity of open-shell diradicals similar to 

nitrenium ions, the chemical behavior of an open-shell singlet nitrenium ion is 

unclear at this time. Therefore, further experiments and computations would be 
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necessary to rigorously identify the electron configuration of the observed singlet 

nitrenium ion. 

7.8. Computational studies of antiaromaticity. 

Computational studies were performed to assess the antiaromaticity of the carbazolyl 

nitrenium ion and its smaller congeners 7.1 and 7.2.  As one of the central ideas of 

organic chemistry, the concepts of aromaticity and antiaromaticity continue to 

generate considerable interest and debate for various ring systems.168-171  Hückel’s 

rules, which are used to predict potentially aromatic and antiaromatic planar ring 

systems, postulate that ring systems containing 4n+2 π electrons are aromatic and 

ring systems with 4n π electrons are antiaromatic.  While each of the nitrenium ions 

7.1, 7.2, and 7.3 is predicted to be antiaromatic by Hückel’s rules, we turned to 

computational studies to assess the degree of antiaromaticity (if any) in each of these 

nitrenium ions.   

 

Three primary measurements related to physical observables have found widespread 

use for describing the aromaticity or antiaromaticity of a given ring system.   These 

include magnetic measurements such as nucleus independent chemical shifts 

(NICS)172 and magnetic susceptibilities,173 comparison of the thermodynamic stability 

between a closed ring system and its analogous open ring system,171 and inspection of 

the preferred geometries of the ring.174,175  While each of these criteria has debatable 

merit for assigning aromaticity/antiaromaticity in the absence of other evidence, there 

is general agreement that a case for aromaticity or antiaromaticity can be built by 

looking at the results of several of these measurements in combination.  We chose the 
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following computational measures to assess the antiaromaticity of 7.1, 7.2, and 7.3—

the degree of double bond localization (or equalization) in the optimized geometries, 

the relative energies of the cyclic nitrenium ions versus their open-chain counterparts 

(as assessed by isodesmic reactions), and the nucleus independent chemical shift 

(NICS) values.    

 

Typically, double bond localization and deviations from planarity are suggestive of 

anti-aromatic systems, whereas bond length equalization and planarity are suggestive 

of aromatic systems.  Given these criteria, the pyrrolyl nitrenium ion 7.1 appears to 

have the most antiaromatic character and 7.3 the least (See Figure 7.7). The 

geometries for each of the ring systems were optimized with density functional theory 

(B3LYP/6-31G(d,p)).  The optimized geometry of the pyrrolyl nitrenium ion shows 

slight puckering from planarity and highly localized double bonds, as demonstrated 

by alternating bond lengths around the ring.  Both 7.2 and 7.3 retain double bond 

localization in the five-membered ring, although it is less pronounced in 7.2 than in 

7.1, and less still in 7.3 than 7.2.   Little, if any, double bond localization is seen in the 

six-membered rings of 7.2 and 7.3.    
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Figure 7.7.  Bond lengths (Å) and APT charges for singlet states of 7.1, 7.2, and 7.3.  
Fixed charges range from -1 (bright red) to +1 (bright green).   

 

If the double bonds are localized, it follows that the positive charge should be 

localized as well.  See Figure 7.  Indeed, in the pyrrole nitrenium ion 7.1, most of the 

positive charge (+0.92), as predicted by the APT method,176 is assigned to a carbon 

adjacent to the nitrogen.  The indolyl nitrenium ion 7.2 is predicted to have significant 

charge delocalization off the nitrogen with three carbons carrying significant charge.  

However, the carbazolyl nitrenium ion 7.3 is predicted to have most of the positive 

charge (+0.75) reside on the nitrogen, in contrast to 7.1 and 7.2, with nitrogens 

predicted to be negatively charged.  This charge accumulation on the nitrogen in the 

carbazolyl nitrenium ion is consistent with the exclusive formation of the N-adduct of 

1,3,5-trimethoxybenzene in preference to ring-substituted products. 

 

Nucleus independent chemical shifts are also consistent with significant antiaromatic 

character in each of the endocyclic nitrenium ions 7.1-3.  For each of the five-

membered rings, the NICS values were plotted over a range of distances starting with 

the probe (Bq) positioned in the plane of the ring (r=0 Å) and moving it to a distance 

above the ring (r = 4 Å) using the method recently suggested by Stanger,177 with 

separation of the in-plane and out-of-plane contributions  (Figure 7.8).   The 
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magnitude of the positive values for the out-of-plane components and the shape of the 

isotropic and out-of-plane curves for all three of these nitrenium ions are indicative of 

significant antiaromatic character in each of the five-membered rings.   While it is 

tempting to use the magnitude of the NICS values to compare the relative 

antiaromaticities of 7.1-7.3, it has been shown that the absolute NICS values cannot 

be compared for polycyclic ring systems because of the confounding effects of the 

neighboring rings.177   
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Figure 7. 8. 7.1 (top), 7.2 (middle), and 7.3 (bottom).  Triangles represent the out of 
plane component of the NICS value, squares the in-plane components, and diamonds 
the isotropic values.  All values were obtained at the center of the five-membered 
rings.   

  

Isodesmic reactions are consistent with the geometrical predictions of 1 being the 

most antiaromatic and 3 the least.  Ideal isodesmic reactions balance strain, resonance 

energy, bonds and orbitals, σ (anti)aromaticity, and hyperconjugation between the 

reactants and products, and provide estimates of the aromatic stabilization energy or 

antiaromatic destabilization energy for a given ring system.149,178  While ideal 

isodesmic systems are rarely available because of difficulties in perfectly balancing 

these parameters (these difficulties have been appreciated in particular for charged 

rings149), and because of difficulties in defining appropriate reference systems, well-

chosen isodesmic reactions can show trends in a series from most (anti)aromatic to 

least and give estimates of the (anti)aromatic (de)stabilization energy.179  We chose 

the three isodesmic reactions for hydrogen (H2) transfer, shown in Scheme 5, to 

compare the relative thermodynamic stabilities between 7.1, 7.2, and 7.3.   Hydrogen 

(H2) transfer rather than hydride (H-) transfer was chosen for these isodesmic 

reactions to avoid imbalances between the starting materials and products due to the 
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formation of a new aromatic ring.  In all cases, H2 transfer between the ring-opened 

amines and the nitrenium ions 7.1-3 was significantly favored energetically, 

suggesting antiaromatic character in each of these endocyclic nitrenium ions.  

Additionally, these reactions suggest that the pyrrolyl nitrenium ion 7.1 is the most 

destabilized by antiaromatic character (33.4 kcal/mol) and the carbazolyl nitrenium 

ion 7.3 the least (8.4 kcal/mol).   

  

N
N

N
N

+ +

- 8.4 kcal/mol

N N N N
+ +

N N N N
+ +

1

2

3

-15.7 kcal/mol
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H H
H H

H H H
H

H H H H

 

Scheme 7. 5.  Isodesmic reactions for hydrogen (H2) transfer (B3LYP/6-31G(d,p)). 

 

An alternative isodesmic reaction involving H2 transfer between the pyrrolyl 

nitrenium ion and pyrrolidenyl nitrenium ion is shown in Scheme 7.6.  Similar 

isodesmic reactions have been used to estimate the antiaromatic destabilization 

energy of cyclobutadiene.180  In principle, this isodesmic reaction gives an improved 

balance of strain energy from starting material to product than the isodesmic reaction 

in Scheme 7.5 by constraining all structures in five-membered rings.  Unfortunately, 

analogous isodesmic reactions for the indolyl nitrenium ion 7.2 or the carbazolyl 

nitrenium ion 7.3 are less desirable because of imbalances in resonance energies and 
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aromaticity between the reactants and products.  However, a significant energy 

difference of 16.5 kcal/mol between the isodesmic reaction shown in Scheme 6 and 

the isodesmic reaction in Scheme 7.5 suggests imbalances in one (or both) of these 

equations.  Aside from steric imbalances, one possible explanation for the energy 

difference between these isodesmic reactions is that the reaction shown in Scheme 6, 

unlike the isodesmic reaction in Scheme 7.5, separates the resonance energy 

contribution of the two adjacent double bonds.   While the differences in the energies 

for these two isodesmic reactions further emphasize the elusiveness of the concept of 

the  (anti)aromatic (de)stabilization energy, and in particular the difficulty in 

obtaining appropriate reference systems, the qualitative conclusions that can be made 

from these reactions are still valid.  These conclusions are that all three endocyclic 

nitrenium ions 7.1-3 are antiaromatic, and that 7.1 is the most destabilized by 

antiaromaticity and 7.3 the least.  

 

N
2N N

+

-49.9 kcal/mol

 

Scheme 7.6.  An alternative isodesmic reaction. 
 

In conclusion, while the carbazolyl nitrenium ion 7.3 is more reactive than the 

diphenylnitrenium ion, it shares many of the same chemical behaviors, undergoing 

nucleophile addition at roughly diffusion-limited rates, accepting electrons from 

electron-rich species, and forming σ complexes in the presence of the pi nucleophile 

trimethoxybenzene.  The sum of both the computational and experimental evidence 

presented above suggests that the carbazolyl nitrenium ion 7.3 is destabilized 
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sufficiently by antiaromatic character to make it more reactive than the 

diphenylnitrenium ion, but not so sufficiently as to make it favor an unusual ground 

state electron configuration. For the nitrenium ion observed by laser flash photolysis, 

spectroscopic evidence is most consistent with the assignment of an n,p singlet 

excited state configuration; however, the resulting products are not sufficiently 

distinct from those seen for previously-studied closed-shell singlet nitrenium ions to 

permit a definitive assignment.  Experimental investigations of endocyclic nitrenium 

ions 7.1 and 7.2, which are predicted by these computations to have a greater degree 

of antiaromaticity than the carbazolyl nitrenium ion, would be of considerable 

interest, as well as related endocyclic nitrenium ions with aromatic character such as 

those shown in Figure 7.9. 

X

N
N

 

Figure 7. 9.  Potentially aromatic endocyclic nitrenium ions 
 

7.9. Computational methods. 

All calculations were performed using the Gaussian03 software package.140  

Geometries were optimized with density functional theory, in particular the B3LYP 

functional consisting of Becke’s three-parameter correlation functional137,138 and Lee, 

Yang, and Parr’s exchange functional,139,181 along with the polarized double-zeta 6-

31G(d,p) basis set.  All optimized geometries, except where noted, were found to 

have zero imaginary frequencies, and the singlet states were found to be stable with 

respect to orbital symmetry breaking.  Zero-point vibrational energy corrections were 
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added unscaled.  A preliminary CASSCF(14,13)/STO-3G calculation, which included 

all pi orbitals (minus the highest antibonding a2 pi orbital) and the  n orbital on 

nitrogen in the active space, was performed on the singlet carbazolyl nitrenium ion at 

the DFT-optimized geometry.  From this calculation, orbitals in the active space with 

occupations greater than 1.96 or less than 0.04 were removed for the larger basis set 

calculations.   These included the highest remaining pi* orbital (b1 symmetry), the n 

orbital (a1 symmetry), and the second pi bonding orbital (a2 symmetry).  After 

removal of these orbitals, the remaining 10,10 active space was used for all larger 

basis set calculations.  NICS values were computed using the GIAO method at the 

Hartree-Fock level with the 6-31+G(d) basis set at the DFT-optimized geometries.  

 

Materials and methods.   

 

Laser flash photolysis was carried out using an ND:YAG laser that uses a harmonic 

generator to create an excitation beam at 355 nm.  The probe beam was generated 

from an 350 W Xe arc lamp.  Transient waveforms were digitized by a digital 

oscilloscope with a bandwidth of 350 MHz at a rate of 1 point per 10 ns.  

 

Samples were prepared in CH3CN that was distilled from CaH2.  Stock solutions of 

7.4a were prepared to have an optical density of between 1.5 and 2.0 at the excitation 

wavelength (355 nm).  The LFP spectra were plotted from waveforms (typically 5 

shot signal averaged) obtained every 10 (or 20) nm.  To prevent unwanted buildup of 

photoproducts, the sample was replenished every 10-15 shots.  
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Pseudo-first order trapping rate constants were acquired by measuring the observed 

decay rate constant kobs for 7.4a at five different concentrations of the trap.  The 

trapping rate constant is the slope of the line made from plotting the observed rate of 

decay (kobs) vs. the concentration of trap.   

 

Product analysis was performed using a GC-MS equipped with an SPB-5 column (30 

m, 0.25 mm).   Carbazole, collidine, 1- and 3-methoxycarbazole, 3-chlorocarbazole, 

and 1-(carbazol-9-yl)-2,4,6-trimethoxybenzene 7.11 were identified by coinjection 

with authentic samples.  Carbazole, collidine, and 3-methoxycarbazole were obtained 

commercially. The trimethoxybenzene adduct 7.11 was prepared from thermolysis of 

7.3b in the presence of a large excess of trimethoxybenzene in CH3CN, followed by 

component separation using preparatory thin-layer chromatography (15% MeOH, 

85% EtOAc).   3-chlorocarbazole was made by reacting carbazole with SO2Cl2 using 

a known procedure.182  
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8. Chapter 8:  Experimental 

  

8.1. Materials and methods. 

 

Computational methodology. All density functional theory and CBS-QB3 

computations were performed using the Gaussian03 software suite.  CASPT2 

calculations were performed using the MOLCAS software suite.  For the benzylic 

cations, Dr. Ben Gherman and Dr. Chris Cramer performed the CASPT2 calculations 

at the Minnesota Supercomputer Institute.  Unless otherwise indicated all optimized 

geometries were found to have zero imaginary frequencies, suggesting the optimized 

structures correspond to minima on their respective potential energy surfaces.  

Conversely, all transition states were found to have 1 imaginary frequency that 

converted the starting structure into the product.  Singlet-triplet gaps include 

corrections for the zero-point vibrational energies, which were added unscaled.   

 

8.2. Solvents. 

Dichloromethane and acetonitrile was distilled over calcium hydride.  THF was 

distilled over Na/benzophenone ketyl.  THF-d8 was distilled over LiAlH4 using a 

vacuum transfer technique.  
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8.3. Laser flash photolysis studies.  

Laser flash photolysis was carried out using an ND:YAG laser that uses a harmonic 

generator to create an excitation beam at 355 nm.  The probe beam was generated 

from an 350 W Xe arc lamp.  Transient waveforms were digitized by a digital 

oscilloscope with a bandwidth of 350 MHz at a rate of 1 point per 10 ns.  

 

Samples were prepared in CH3CN that was distilled from CaH2.  Stock solutions were 

prepared to have an optical density of between 1.5 and 2.0 at the excitation 

wavelength (355 nm).  The LFP spectra were plotted from waveforms (typically 5 

shot signal averaged) obtained every 10 (or 20) nm.  To prevent unwanted buildup of 

photoproducts, the sample was replenished every 10-15 shots.   Alternatively, a flow 

cell technique was used to replace photolyzed solution with fresh sample.   

 

Pseudo-first order trapping rate constants were acquired by measuring the observed 

decay rate constant kobs at five different concentrations of the trap.  The trapping rate 

constant is the slope of the line made from plotting the observed rate of decay (kobs) 

vs. the concentration of trap.   
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Figure 7. 10.  Determination of trapping rate constant for trimethoxybenzene of the 
carbazoylyl nitrenium ion.   
 

Product analysis was performed using a GC-MS equipped with an SPB-5 column (30 

m, 0.25 mm).   Yields were determined by GC area percent corrected for the GC 

response factors.  Response factors were determined were determined from the slope 

of the line plotting the concentration of the material versus the GC peak area percent.   
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Figure 7. 11. GC response factor for 3,5-bis(dimethylamino)benzyl alcohol. 
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8.4. Synthesis of photoprecursors.  
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3,5-diaminobenzoic acid ethyl ester (7.2).   10.01 g of 3,5-diaminobenzoic acid (7.1, 

Aldrich, 65.85 mmol) was added to 250 mL of absolute ethanol in a 500 mL RBF.  60 

mL of concentrated sulfuric acid was then added slowly and the solution was refluxed 

for 3 days.  Excess ethanol was removed by rotary evaporation, and 400 mL of H2O 

was then added.  The solution was made basic with saturated Na2CO3 and extracted 

three times with 100 mL of ethyl acetate.  The organic layers were combined, dried 

with MgSO4, and condensed in vacuo to yield the ester 7.2 as a yellow oil (10.8 g, 

95%), which was used in the next step without further purification.  1H NMR (400 

MHz, DMSO): δ 6.4 (d, 2.0 Hz, 2H), 6.0 (t, 2.0 Hz, 1H),  5.1 (s, 4H), 4.2 (q, 7.0 Hz, 

2H),  1.2 (t, 7.0 Hz, 3H).  Spectra match authentic sample (see Chen, et al. Chem. 

Eur. J.  2001, 7 (3) 686-699).   
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3,5-bis(dimethylamino)benzoic acid ethyl ester (7.3). Formalin (15 mL 37%) and 

24 mL 3M H2SO4 were combined in a 250 mL flask and placed in an ice bath.  Over 

the course of an hour, a suspension containing 1.15 g (6.39 mmol) of the ester 7.2, 50 

mL THF, and 7.90 g of NaBH4 (208 mmol) was added, never letting the reaction 

temperature exceed 20oC.  Another 100 mL THF was then added and the solution was 

allowed to stir for an additional 30 min.  The reaction was then made basic with 

aqueous NaOH, diluted with 150 mL of H2O, and then extracted 3 times with ether.  

The ether was dried with MgSO4, and then evaporated to yield an orange solid, which 

was purified by flash chromatography with 50:50 hexane/ethyl acetate eluant 

followed by recrystallization in EtOH to give 0.90 g of the methylated ester 7.3 as a 

white solid (61%).  1H NMR (400 MHz, CD3CN):  δ 6.74 (d, 2.4 Hz, 2H), 6.24 (t, 2.4 

Hz, 1H), 4.27 (q, 7.2 Hz, 2H), 2.9 (s, 12H), 1.13 (t, 7.2 Hz, 3H). 13C NMR (100 MHz, 

CD3CN): δ 167.7, 152.1, 131.8, 102.8, 101.6, 61.2, 41.1, 15.1.  MS (EI). 236.17 (M+).   

 

3,5-Bis(dimethylamino)benzyl alcohol (7.7).  0.70 g (2.8 mmol) of the methylated 

ester 7.3 was dissolved in 5 mL of anhydrous THF and added slowly to a suspension 

containing 0.17 g LiAlH4 (4.5 mmol) and 5 mL THF in an icebath.  After the reaction 

was stirred for 1 hr, the flask was removed from the icebath and allowed to stir at r.t. 

overnight.  The reaction was quenched with 50 mL of wet THF and then with 5% 

H2SO4 until bubbling ceased.  The solution was made basic by addition of aqueous 

NaOH, then extracted twice with 100 mL portions of ether.  The organic layers were 

combined, dried over MgSO4, and evaporated to yield a yellow oil, which was 
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purified by flash chromatography with ethyl acetate eluant to yield 7.7 as a clear oil 

(0.39 g, 68%).  1H NMR (400 MHz, CD3CN):  δ 6.14 (d, 2.0 Hz, 2H), 5.99 (t, 2.0 Hz, 

1H), 4.43 (s, 2H), 3.05 (s, 1H), 2.85 (s, 12H). 13C NMR (100 MHz, CD3CN):   

δ 152.4,  143.6, 101.3,  97.0, 65.3, 40.5.  MS(EI): 194 (M+).   

 

3,5-bis(dimethylamino)benzyl trifluoroacetate 7.10.  0.97 g (5.0 mmol) of the 

benzyl alcohol (7.7) was dissolved in 10 mL of dry ether and stirred at –78o C for 15 

min.  Then, 0.7 mL of trifluoroacetic anhydride was added dropwise and the solution 

was stirred 20 min.  The reaction was warmed to r.t. and stirred an additional 10 min, 

then filtered to obtain 1.20 g (3.0 mmol) of the trifluoroacetate 7.10 as its pure TFA 

salt (60%).  The salt, which was stable for weeks at 0oC, was freebased with sat. 

bicarbonate to the unstable conjugate base when needed.  1H NMR (400 MHz, 

CD3CN):  δ 6.17 (d, 2.0 Hz, 2H), 6.05 (t, 2.0 Hz, 1H), 5.24 (s, 2H), 2.90 (s, 12H). 13C 

NMR (100 MHz, CD3CN): 152.5, 135.2, 101.3, 97.9, 71.7, 65.7, 40.3. MS(EI): 290 

(M+) 

 

3,5-bis(Dimethylamino)benzylacetate 7.8.  0.36 g (1.9 mmol) of the benzyl alcohol 

7.7 was dissolved in 5 mL of DCM and 0.25 mL triethylamine.  To this was added 

dropwise a solution containing 0.20 mL acetyl chloride in 5 mL dichloromethane.  

After addition was complete, the reaction was allowed to stir for 15 min.  It was then 

placed in a separatory funnel and washed with water and saturated NaHCO3.  The 

organic layers were separated, dried with MgSO4, and evaporated to obtain the ester 

as a yellow oil.  The crude was then purified by flash chromatography (80:20 
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hexane/ethyl acetate) to yield 0.41 g of 7.8 (94%) as a colorless oil.   1H NMR (400 

MHz, CD3CN):  δ 6.12 (d, 2.4 Hz, 2H), 6.01 (t, 2.4 Hz, 1H), 4.93 (s, 2H), 2.88 (s, 

12H).  13C NMR (100 MHz, CD3CN): 21.7, 41.1, 67.6, 97.6, 102.6, 137.8, 152.3, 

171.2.  HRMS 236.1529 (calc. 236.1525).   

 

3,5-bis(Dimethylamino)toluene 7.9.   The toluene 7.9 was synthesized from the 

benzyl acetate 7.8 using the NiCl2/NaBH4 reduction as described by He et al.  (He, 

Y., Pan, X., Zhao, H., Wang, S.  Synthetic Communications.  1989, 19 (17), 3051-

3054).  1H NMR (400 MHz, CD3CN):  δ 6.03 (d, 2.0 Hz, 2H), 5.94 (t, 2.0 Hz, 1H), 

2.9 (s, 12H), 2.24 (s, 3H). 13C NMR (100 MHz, CD3CN): 152.43, 139.17, 103.37, 

95.58, 40.50, 21.83.  MS(EI): 178 (M+).   

 

Diacid homodimer 7.11.    Exhaustive methylation of 7.1 using the procedure as 

employed to synthesize 7.3 yielded an unexpected diacid homodimer 7.11 (52%).  1H 

NMR (400 MHz, CD3CN):  7.0 (d, 2.8 Hz, 2H),  6.9 (d, 2.8 Hz, 2H), 4.6 (s, 2H), 3.0 

(s, 6H),  2.7 (s, br, 6H).  13C NMR (100 MHz, CD3CN): 175.8, 151.1, 145.9, 142.0, 

115.8, 112.8, 105.9, 46.0, 39.3, 25.7.   HRMS: 429.2979 (calc. 429.2457).   

 

3,5-bis(Dimethylamino)benzoic acid 7.4.  1.00 g of ester 7.3 was suspended in 3 mL 

MeOH in a 25 mL RBF.  0.80 g KOH (3 eq) was added and the reaction stirred at 40o 

C 50 min.  10 mL H2O was added and the reaction was extracted with 15 mL ether.  

The aquous layer was acidified with 3M H2SO4 until pH 3-4 and cooled at which time 

the highly pure (GC, NMR) acid crashed out of solution (0.86 g, 98%).  1H NMR 
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(400 MHz, CD3CN): 6.7 (d, 2.4 Hz, 2H), 6.3 (t, 2.4 Hz, 1H), 2.9 (s, 12H).  13C NMR 

(100 MHz, CD3CN): 168.4, 152.2, 131.3, 103.1, 101.5, 40.3 

 

3,5-bis(Dimethylamino)benzoic acid pentaflurophenyl ester 7.5.  0.22 g (1.05 

mmol) of acid 7.4, 0.21 g pentafluorophenol (1.15 mmol), and 3 mL distilled CH2Cl2 

were combined in a 3-neck RBF on a Schlenk line and stirred under nitrogen 5 min.  

Then 0.24 g of DCC was added and the reaction stirred an additional 3 h at room 

temperature under N2.  The urea precipitate was filtered off, and the filtrate was 

pumped down en vacuo.  The orange solid was recrystallized from ether and then 

hexanes to yield a fluffy straw-colored solid of 7.5 (0.19 g after recrystallization, 

49%).    1H NMR (400 MHz, CD3CN):  6.9 (d, 2.4 Hz, 2H), 6.3 (t, 2.4 Hz, 1H), 3.0 (s, 

12H).  13C (100 MHz, CD3CN): 164.3, 152.4, 127.9, 103.3, 102.5, 40.2.  19F NMR 

(376 MHz, CD3CN):  -154.9, -160.5, -164.6.  HRMS 375.1137 (calc: 375.1132).  

 

2-(3,5-bis(Dimethylamino))-1,1,1,3,3,3-hexafluoro-2-propanol 7.6.  0.32 g of ester 

7.5 was added with a stirbar to a 50 mL 3-necked flask attached to an N2 Schlenk 

line.  0.32 g Me4NF (anhydrous)  and 2 mL anhydrous glyme were added and the 

reaction stirred at -50o C (CH3CN, dry ice) for 10 min.  Then 0.6 mL of of 

trimethylsilyl trifluoromethane was added and the reaction stirred 1 min before 

replacing with a -30o C bath (CCl4, dry ice).  This was stirred under N2 for three days, 

allowing the solution to warm to room temperature.  The glyme was evaporated and 

to this was added 10 mL 1.5M H2SO4.  The liquid was decanted leaving a gummy red 

residue.  To the acidic filtrate was added sat NaHCO3 solution, and a white solid 
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precipitated.  This was dried, weighed (0.14 g, 50%), and found to be pure 7.6 by 

NMR.  1H NMR (400 MHz,  CD3CN):  6.4 (d, 2.0 Hz, 2H), 6.2 (t, 2.0 Hz, 1H), 5.6 (s, 

br, 1H), 2.9 (s, 12H).  19F (376 MHz, CD3CN): -75.5.  13C (100 MHz, CD3CN): 

152.2, 131.7, 125.0, 122.2, 100.2, 98.7.  HRMS 331.12455 (calc. 333.12451).   

 

N N

OH

N N

O CF3

hv, 254 nm

CF3CH2OH

HO

N N
N

N

7.12 7.137.7  

 

Isolation of TFE adduct and Friedel-Crafts heterodimer.  0.080 g 3,5-

bis(dimethylamino)benzyl alcohol was dissolved in 5.0 mL of distilled TFE and 

photolyzed on a Rayonet photoreactor with 254 nm bulbs for 8 h.  The photolysate 

was purified by flash chromatography (80:20 hexanes/ethyl acetate).  The first 

fraction yielded the TFE adduct 7.12.   The second fraction yielded the Friedel-Crafts 

heterodimer 7.13.    TFE Adduct, 7.12.    1H NMR (400 MHz, CD3CN):  δ 6.16 (d, 

2.4 Hz, 2H), 6.06 (t, 2.4 Hz, 1H), 4.56 (s, 2H), 3.93 (q, 8.8 Hz, 2H), 2.90 (s, 12H). 13C 

NMR (100 MHz, CD3CN): 152.47, 138.36, 126.44, 102.21, 97.48, 75.12, 67.00 (q, J 

= 33.3 Hz), 40.47.  MS(EI): 276 (M+).   Friedel-Crafts hetero-dimer 7.13.  1H 

NMR (400 MHz, CD3CN):  δ 6.50 (d, 2.0 Hz, 1H), 6.37 (d, 2.0 Hz, 1H), 6.12 (d, 2.0 

Hz, 2H), 5.97 (d, 2.0 Hz, 1H), 4.38 (s, 2H), 4.25 (s, 1H), 4.01 (s, 2H), 2.90 (s, 18H, 

overlapping singlets), 2.78 (s, 6H). 13C NMR (100 MHz, CD3CN): 153.65, 152.44, 
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150.03, 143.63, 143.19, 122.30, 110.14, 102.95, 101.29, 97.00, 65.28, 64.19, 45.50, 

40.48, 40.28, 22.82.  HREI+: 371.2800  (calc. 371.2811) 

 

NH2

N
H

O

N3

N
H

O

N3

NH2

1 NaNO2 / H
+

2. NaN3

NaOH

7.14 7.15 7.16  

A shorter and more convenient procedure than the one reported (Smith, et al.  J. Am. 

Chem. Soc.  1961, 84, 485-489) was chosen to synthesize 3-aminophenylazide. 

 

3-azido acetanilide 7.15.  3-amino acetanilide 7.14 (5.00 g, 33.3 mmol, Aldrich) was 

dissolved in 5 mL of H2O and 15 mL of conc. H2SO4, and stirred on an icebath 10 

min. Sodium nitrite (2.30 g, 33.3 mmol) was added slowly over 10 min, and the 

reaction was allowed to stir for an additional 25 min.  The solution was neutralized 

with a saturated NaHCO3 solution.  Then, sodium azide (2.17 g, 33.4 mmol) was 

added, and the reaction was stirred an additional 30 min.  A red solid precipitated.  

This was filtered and washed with copious amounts of water to yield 3-azido 

acetanilide 7.15 (5.45 g, 93%).  After drying, the product was found to be sufficiently 

pure by NMR and TLC to be used in the next synthetic step without further 

purification.   1H NMR (Acetone): 2.06 (s, 3H); 6.78 (td, 6Hz, 2.4Hz, 1H); 7.35 (m, 

2H); 7.62 (s, 1H); 9.32(s,1H).  13C NMR (DMSO): 24.9, 109.9, 114.4, 116.3, 130.8, 

140.5, 141.7, 169.5  FAB MS (abundance): 176.8 (100, M+), 151.3 (22), 118.4 (30), 

106.6 (31), 84.6 (29) 43.1 (13) 
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3-azidoaniline 7.16.  The 3-azidoacetanilide  7.15 (2.50 g, 14.2 mmol) was dissolved 

in a minimal amount of methanol.  This was added slowly to a solution containing 

sodium hydroxide (35 g) dissolved in 150 mL of water.  The reaction was attached to 

a reflux condenser and stirred for 40 h at 40oC.  The reaction was then stopped, 

extracted twice with chloroform, dried with MgSO4, and then condensed to dryness in 

vacuo. The product was purified by flash chromatography with 1:2 MeOH/CHCl3, 

with the first band collected.  This gave pure 7.16 as a red oil (1.65 g, 92%). 1H NMR 

(DMSO): δ 5.31 (s, 2H); δ6.16 (dd, 1.6Hz, 7.2Hz); δ6.26 (t, 2Hz, 1H); δ6.34 (dd, 

2Hz, 9.6Hz, 1H); δ6.98 (t, 8 Hz, 1H).  13C NMR (DMSO): 104.5, 107.3, 111.6, 130.8, 

140.6, 155.4   EI MS (abundance): 134 (25, M+), 105 (19), 84 (100), 79 (23), 66 (98).  

IR: 2110 cm-1 (S) 

 

1-(4,6-Bis-dimethylamino-[1,3,5]triazin-2-ylamino)-2,4,6-trimethyl-pyridinium 

tetrafluoroborate  

N

N

N

Cl

Cl Cl

(CH3)2NH N

N

N
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N N

N

N

N

NHNH2

N N

N2H4 O
N

N
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N
N

CH3NHNH2

N

N

N

N

N N

NH2

N

N

N

N

N N

N
O

7.17
7.18

7.19 7.20

7.21
7.22  
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Procedure for converting cyanuric chloride 7.17 into bis(dimethylamino) cyanuric 

chloride 7.18 has been reported previously.  (See Simmonds and Stevens.  J. Chem. 

Soc. Perk. Trans. I.  1982, 1821-1825).  

 

Bis(dimethylamino)cyanuric chloride 7.18.   Cyanuric chloride 7.17 (27.00 g, 148 

mmol, Aldrich) was dissolved in 200 mL acetone, and stirred on an icebath.  To this 

solution was added 70 mL of 40% dimethylamine in water over 15 min. The reaction 

was stirred an additional 1.5 h at room temperature.  The acetone was then 

evaporated, and the resulting mixture of white precipitate and water was filtered.  The 

solid was washed with water, and recrystallized in iPrOH/H2O, to yield the pure 3,5-

bis(dimethylamino)-triazinyl chloride 7.18 as a white solid (26.2 g, 89%; mp 49-

52oC).  1H NMR (400 MHz, CD3CN): 3.08(d, 12Hz, 6H,).  13C NMR (100 MHz, 

DMSO): 168.5, 165.9, 36.4, 36.5  FAB MS: 203 (40), 202 (100, M+), 200(35).      

 

Bis(dimethylamino)cyanuric hydrazine 7.19.  Into 170 mL of EtOH, was dissolved 

bis(dimethylamino)triazinyl chloride 7.18 (12.50 g, 62 mmol).  To this was added 

hydrazine hydrate (10.86 g, 217 mmol), and refluxed 4 h.  The ethanol was 

evaporated, and the resulting precipitated solid was filtered and collected to yield 7.19 

as a solid (6.8g, 56%) pure enough to proceed to the next step without further 

purification.   1H NMR (400 MHz, DMSO): 3.03 (s, 12H).  13C NMR (100 MHz, 

DMSO): 36.4, 36.5, 165.9, 168.2, 168.5  EI MS (abundance): 198 (15), 197 (100, 

M+), 182 (47), 168 (13), 138 (14), 96 (20), 71 (35). 
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Bis(dimethylamino)cyanuric trimethylpyridinium tetrafluoroborate 7.20.   

The hydrazine 7.19 (0.51 g, 2.5 mmol) was suspended in 50 mL of EtOH. To this 

suspension was added freshly-prepared trimethyl pyrylium salt 7.20 (1.2 g, 5.7 

mmol).  The solution turned red.  The reaction was stirred for 2 days at room 

temperature.  The precipitated solid was filtered and recrystallized in 95% EtOH to 

yield 7.20 (0.23 g, 23%) as sallow yellow crystals (m.p. 190-192).   1H NMR (400 

MHz, CD3CN): 2.64(s, 3H); 2.79(s, 6H); 3.17(s broad, 12H); 7.68(s, 2H), 9.5 (m, 

2H).   13C NMR (100 MHz, DMSO): 9.1,  19.7, 26.0, 31.6, 36.6, 123.7, 127.9,  

155.2, 159.0  FAB MS (abundance): 303 (15, M+), 302 (70, M+), 238 (100), 123 

(40). 

 

Bis(dimethylamino)cyanuric-N-methyl hydrazine 7.21.  8.00 grams of the 

bis(dimethylamino)cyanuric chloride 7.18 was added to 80 ml of EtOH .  8 g of solid 

NaHCO3 was then added followd by 10.0 mL of methyl hydrazine.  This suspension 

was refluxed for 2 h, and then evaporated to dryness. The residual solid was extracted 

with ether, dried with MgSO4, and then evaporated to give 3.80 g pure hydrazine 

7.21, which was used in the next step without further purification.  1H NMR (400 

MHz, CD3CN).  4.46 (s, 2H), 3.17 (s, 3H), 3.05 (s, 12H).   13C (100 MHz, CD3CN): 

167.2, 166.1, 35.4, 27.1.  EIMS 211.1540 (calc 211.1545).   

 

Bis(dimethylamino)cyanuric-N-methyl-2,4,6-trimethylpyridinium 

tetrafluoroborate 7.22.  10.00 g N-methylhydrazine 7.21  and 0.90 g freshly-

prepared trimethylpyrilium tetrafluoroborate were added to 10 mL of ethanol and 
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stirred at 50oC for 1 h.  The EtOH was removed by rotary evaporation, and then the 

solid was washed with ether and filtered to give 0.12 g of the pyridinium salt 7.22 as 

a pale yellow solid.  1H NMR (acetone): 7.95 (s, 2H), 3.75 (s, 3H), 3.19 (s, 3H), 3.14 

(s,3H), 3.03 (s, 3H),  2.70 (s, 6H) 2.67 (s, 6H).   13C (acetone): 166.0, 165.6, 163.8, 

161.4, 158.4, 128.5, 35.7, 35.5, 35.3, 21.6, 18.7. HRMS: 316.2261 (calc. 316.2250). 

 

N

O

O

OH

(CF3O2S)2O
N

O

O

O S

O

O

CF3

-78oC

7.23
7.24  

N-Triflic Phthalamide 7.24.  Triflic anhydride (5.00 g) and N-hydroxy phthalamide 

7.23 (2.41 g) were added to 75 mL of dichloromethane and stirred for 15 min at           

–78oC (dry ice-acetone mixture).  Then, 2,6-lutidene (1.90 g, 2.06 mL) was added, 

and the reaction was allowed to warm slowly to room temperature.  The color 

changed from a peach color, to pinkish.  The reaction was allowed to stand at room 

temperature for 15 min. The reaction mixture was then washed with water, 10% HCl, 

and brine, and the water layers discarded.  The organic layer was condensed to 

dryness in vacuo, and recrystallized in EtOH to yield 7.24 as white  crystals (3.45 g, 

79%; mp 104-105oC).  1H NMR (400 MHz, CD3CN): 8.03 (m, 2H); 8.06 (m, 2H) 13C 

NMR (100 MHz, DMSO):  125.7, 129.8, 137.8, 160.8, 165.0   FAB MS: 296 (M+), 

256, 213, 177, 119, 103, 85, 47, 23; HREI MS: observed 295.9849 (calculated: 

295.9841) 
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Cl Cl

NH2

Cl Cl

N3
1. NaNO2 H

+

2. NaN3

7.25 7.26  

3,5-dichlorophenylazide. 3,5-dichloroaniline 7.25 (2.0 g, Aldrich) was dissolved in 8 

mL of trifluoroacetic acid and 5 mL of acetic acid, and stirred on an icebath.  Then, 

sodium nitrite (0.47 g), dissolved in a minimal proportion of water, was added slowly, 

followed by 0.2 mL of conc. H2SO4.  Then, sodium azide (0.44 g), dissolved in a 

minimal amount of water, was added dropwise.  The reaction was allowed to stir for 2 

h, and the precipitate from the reaction was filtered and recrystallized from methanol 

to yield 7.26 as yellow crystals (0.71g, 58%; mp 30-32oC).  1H NMR (400 MHz, 

CD3CN): 7.07(d, 2Hz, 2H); 7.25(t, 2Hz, 1H).  13C NMR (DMSO): 119.2, 125.4, 

135.9, 143.5  MS (EI): 189  (40, M+2),  187 (60, M+), 163 (70), 159 (85), 124 (100), 

97 (43), 88 (25) 

 
 

O2N NO2

NH2

O2N NO2

NHAc

O2N NO2

N
Ac

H2N NH2

N
Ac

N N

N
Ac

AcCl

pyridine

1. NaH

2. MeI

SnCl2

EtOH

H2CO
NaBH4
H+

7.27 7.28 7.29 7.30

7.31  
3,5-dinitroacetanilide 7.28.  5.00 g of dinitroaniline 7.27 was dissolved in 25 mL dry 

THF.  Then, 2.4 mL pyridine was added and the reaction stirred on an icebath 10 min.  

Then, 3.5 mL acetyl chloride was added slowly and the reaction stirred 20 min.  The 
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reaction was then dumped onto water and the product filtered (5.45 g, 89%), which 

was used in the next step without further purification.  1H NMR (CD3CN) 9.0 (s, 1H), 

8.8 (d, 2.0 Hz, 2H), 8.6 (t, 2.0 Hz, 1H), 2.1 (s, 3H).  13C NMR (100 MHz, CD3CN): 

170.1, 149.2, 141.6, 118.9, 113.0, 23.9.  EIMS  225 (M+).  

 

N-methyl-3,5-dinitroacetanilide 7.29.  4.00 g of the dinitroacetanilide 7.28 was 

dissolved in 100 mL dry THF.  Then 4.50 g of NaH (cleaned by washing with 

pentane) was added, and stirred for 1 h at r.t.  Then, 13 mL of MeI was added and the 

solution stirred a further 1 h.  H2O was slowly added to quench unreacted NaH and 

the solution was then made acidic with dilute H2SO4.  It was then exctracted 3x with 

EtOAc and the organic layer dried under vacuum to yield 2.61 g of product 7.29 that 

was used in the next step without further purification. 1H NMR (CD3CN): 8.8 (s, 1H), 

8.5 (s, 2H), 3.3 (s, 3H), 2.2 (s, 3H).   13C (100 MHz, CD3CN): 195.1, 149.1, 111.1, 

105.0, 29.9, 22.5.  EIMS 239 (M+) 

 

N-methyl-3,5-diaminoacetanilide 7.30.  2.00 g of the N-methylacetanilide 7.29 was 

added to 100 mL of abs. EtOH.  16.00 g SnCl2 dihydrate was then added and the 

reaction stirred at 75o C for 45 min.  The reaction was dumped onto water, neutralized 

with NaHCO3, and then extracted with EtOAc.  The organic layer was condensed to 

dryness to yield 0.85 g 7.30, which was used in the next step without further 

purification. 1H NMR (CD3CN): 5.9 (s, 1H), 5.8 (s, 2H), 4.1 (s, 4H), 3.1 (s, 3H), 1.8 

(s, 3H).   13C NMR (100 MHz, CD3CN): 169.9, 150.2, 147.0, 103.0, 99.5, 30.1, 20.6.  

EIMS 179 (M+) 
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N-Methyl-3,5-bis(dimethylamino)acetanilide 7.31. 0.85 g of the diamine 7.30 was 

added to 40 mL THF and 5.80 g NaBH4.  This suspension was added over the course 

of an hour to a stirred solution of 11 mL 37% formalin and 18 mL 3M H2SO4 stirred 

on an icebath.  Care was taken to ensure the reaction temperature never exceeded 20o 

C.  The reaction was stirred an additional 30 min once addition was complete.  The 

reaction was then neutralized with aqueous NaHCO3, and extracted 3 x with EtOAc.  

The organic layers were separated and dried with MgSO4, and condensed en vacuo.  

The resulting black oil was recrystallized in acetone to give a pure tan solid (0.44 g, 

40%).  1H NMR (CD3CN): 6.0 (s, 2H), 5.9 (s, 1H), 3.3 (s, 3H), 2.8 (s, 12H), 1.8 (s, 

3H).  13C NMR (100 MHz, CD3CN): 170.0, 152.9, 146.8, 100.8, 96.0, 40.2, 36.5, 

21.7.   EIMS 235 (M+) 

 

O2N NO2

Br

O2N NO2 H2N NH2

Br

N N

Br
HNO3

H2SO4

SnCl2 H2CO

NaBH4
H
+

7.32 7.33
7.34 7.35  

 

1-Bromo-3,5-dinitrobenzene 7.33.  15.00 g of 1,3-dinitrobenzene 7.32 was 

dissolved in 150 mL of conc. H2SO4 and 5 mL conc. HNO3.  To this solution was 

added 11.0 mL of Br2 slowly through a dropping funnel and the solution was refluxed 

5 days.  The reaction was poured onto cold water and the yellow precipitate was 

filtered and dried to yield 21.70 g of the brominated product (99%).   The compound 

was deemed sufficiently pure by 1H NMR and was continued to the next step without 
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further purification.  1H NMR (CD3CN): 8.87 (t, 2.0 Hz, 1H) 8.74 (d, 2 .0 Hz, 2H). 

13C NMR: 149.4, 123.6, 123.5, 118.3.  FABMS: 247 (M+).   

 

5-bromo-1,3-phenylenediamine 7.34.  To a solution containing 1.00 g of the 

dinitrobenzene 7.33 (4.1 mmol) and 100 mL of abs. EtOH was added 7.30 g SnCl2 

dihydrate.  The solution was stirred at 70o C under nitrogen for 40 min.  It was then 

poured onto cold water, extracted twice with EtOAc, and the organic layer washed 

with brine and condensed to dryness to give 0.43 g of 7.34 (57%). 1H NMR 

(CD3CN): 6.1 (d, 1.6 Hz, 2H), 5.9 (t, 1.6 Hz, 1H), 4.1 (s, 4H).  13C NMR (CD3CN).  

150.7, 123.2, 107.0, 99.2.  EIMS: 187 (M+).   

 

5-bromo- (N,N,N’,N’-tetramethyl)-1,3-phenylenediamine.  1.50 g of the phenylene 

diamine (8.2 mmol) 7.34 was added to a suspension of 11 g NaBH4 in 75 mL THF.  

This was added slowly to a solution of formalin (22.5 mL, 37% in water), and 36 mL 

H2SO4 (3M) on an icebath.  When addition was complete the reaction was stirred a 

further hour, then added to 150 mL water, exctracted with ether, and the organic layer 

evaporated to dryness.  This gave 1.42 g (72%) of the product as an oil, which was 

found to be pure by NMR.  1H NMR (CD3CN):  6.2 (d, 2.4 Hz, 2H), 5.9 (t, 2.4 Hz, 

H), 2.9 (s, 12H).  13C (100 MHz, CD3CN): 153.1, 124.0, 104.6, 95.7, 40.1.  EIMS:  

243 (M+).   
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H
N

NaNO2

H2SO4

N
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LiAlH4
N

NH2

O
BF4
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N

N
BF4

-

76%
60%

7.407.37 7.38 7.39

80%

SO2Cl2

H
N

7.41

Cl

 

The synthesis of 7.37-7.41 was performed by Dr. Harry H. Gibson who visited us 

on sabbatical from Austin College.   

 

9-Nitrosocarbazole 7.38. The 9-nitrosocarbazole was synthesized using a 

modification of Kyziol’s procedure. (Kyziol, J., Tarnawaski, J.  Revue Roumaine de 

Chimie.  1980, 25(5), 721-727).  A 500-ml reaction flask was fitted with a magnetic 

stirrer, a reflux condenser and an addition funnel.  Then 10.0 g (0.06 moles) of 

carbazole 7.37, 120 ml of ethyl ether and 30 ml of 50% sulfuric acid were added.  A 

solution of 8.28 g (0.12 moles) of sodium nitrite in 30 ml water was then added 

dropwise to the vigorously stirred suspension.  After the addition, stirring was 

continued for 15 minutes, when most of the solid dissolved.  The organic layer was 

separated, with any suspended solid being put into the discarded water layer, dried 

over anhydrous sodium sulfate and concentrated to a volume of about 25 ml. A solid 

quickly formed in the flask.  25 ml of ether was added, and the mixture warmed up so 

that all solid redissolved. The solution was then cooled to -20 degrees overnight and 

the golden-yellow needles of 9-nitrosocarbazole 7.38 were filtered, rinsed with about 
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15-20 ml cold ether and dried in vacuo.  The filtrate was put in a freezer for 1 h, with 

more crystals appearing.  They were filtered and rinsed with ether.   To remove the 

greenish discoloration within the solid, all the material was dissolved in ~75 ml of 

ether, washed with ~ 5% Na2CO3, then with water, dried with Na2SO4, and cooled. 

After collection of crystals, the ether layer was concentrated two or three times 

eventually down to 25 ml, producing pale-yellow crystals at every stage; mp 80-82 

(lit. mp 81-82). 1H NMR (300 MHz, CDCl3) δ 7.4-7.6 (m, 4 H), 7.9-8.0 (m, 2 H), 8.6 

(m, 1 H). 

 

9-Aminocarbazole (7.39).  The 9-nitrosocarbazole 7.38 was reduced with LiAlH4 to 

the N-amino compound 7.39 using the procedure of Kyziol (76% yield) (Kyziol, J., 

Tarnawaski, J.  Revue Roumaine de Chimie.  1980, 25(5), 721-727). 1H NMR (300 

MHz, CD3CN) δ 5.0 (s, 2 H), 7.2 (t, 2 H), 7.5 (t, 2 H), 7.6183 (d, 2 H), 8.1 (d, 2 H).183 

 

1-(9H-carbazol-9-yl)-2,4,6-trimethylpyridinium tetrafluoroborate (7.40).  9-

aminocarbazole 7.39 (0.365 g, 2 mmol) was dissolved in 20 ml of 100% ethanol and 

then 0.380 g (1.8 mmol) of freshly prepared 2,4,6-trimethylpyrilium tetrafluoroborate 

was added in small portions to the solution.  The solution immediately turned bright 

yellow.  Stirring was continued at room temperature for 15 minutes. The mixture was 

then heated to reflux for 30 minutes and the homogeneous mixture put into a 

refrigerator overnight.  Pale yellow crystals formed.  The crystals were isolated, 

washed with cold ethanol, and dried under vacuum.  Based on the limiting amount of 

pyrilium, a 60% isolated yield (0.41 g; 1.1 mmol) of pale yellow crystals of 7.40 was 
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obtained: mp 141-143 oC; IR (solid) 1635 (m), 1483 (m), 1438 (m), 1090 (vs, br), 761 

(s) cm-1;  1H NMR (300 MHz, CH3CN) δ 8.31 (d, 2 H), 7.92 (s, 2 H), 7.58 (t, 2 H), 

7.50 (t, 2 H), 7.14 (d, 2 H), 2.73 (s, 3 H), 2.22 (s, 6H);  13C NMR (CD3CN) δ 164.1, 

158.7, 137.1, 130.1, 128.5, 123.8, 122.6, 122.1, 108.8, 22.1, 18.2; MS (FAB) m/z 

(relative intensity) 287 ([M – BF4]+, 100), 166 (75); HRMS (FAB) calcd for C20H19N2 

[M – BF4]+  287.1548 , found 287.1556.     

 

3-Chlorocarbazole 7.41. 3-chlorocarbazole was prepared by a modification of 

synthesis of Lopatinskii (Lopatinskii, V.P., Zherebtsov, I.P.  Metody Polucheniya 

Khimicheskikh I Preparatov.  1964, 11, 102-104).  Into a 100-ml rbf equipped with 

stir bar, a reflux condenser, and addition funnel, 6.4g (3.83 ml, 47 mmol) SO2Cl2 was 

added dropwise to a heterogeneous mixture of 6.68 g. carbazole and 20 ml 

ClCH2CH2Cl at 30°, producing a frothy mixture that did not stir well.  The mixture 

was boiled with vigorous stirring (magnetic) 1 hr. and cooled, with a solid forming.  

After adding ca. 20 ml of additional ClCH2CH2Cl and cooling the reaction mixture, 

the brownish yellow solid was filtered off and washed with 25-30 ml of cold 

ClCH2CH2Cl. The solid was dried under vacuum.  1.4 g of the material was 

recrystallized from ~ 20 ml EtOH.   Multiple recrystallizations were necessary to free 

the 3-chlorocarbazole from unreacted carbazole;  mp 194-197o (lit 201.5o).  

N

N

Ph

Ph Ph

BF4
-

7.42

1,3,5-trimethoxybenzene

N

OMe

MeO OMe

7.43
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1-(carbazol-9-yl)-2,4,6-trimethoxybenzene (7.43).  A solution of 1-(carbazol-9-yl)-

2,4,6-triphenylpyridinium tetrafluoroborate 7.42 (0.10 g, 0.18 mmol), 1,3,5-

trimethoxybenzene (0.85 g, 5.0 mmol), and trifluoroacetic acid (0.30 mL, 0.46 g, 4.0 

mmol) in 9 mL of acetonitrile in a heavy-walled tube was degassed (two freeze-thaw 

cycles), sealed, and thermally decomposed for 22 h at 160oC.  The acetonitrile was 

removed, the mixture taken up in ethyl acetate and neutralized with a 10% NaHCO3 

wash. After evaporation of solvent the residue was applied to preparative TLC plates 

(silica gel, 20 X 20 cm, 1000 microns) and developed twice with 15% ethyl 

acetate/85% hexanes giving numerous distinct bands.  Isolation of material from the 

band having Rf = 0.4 provided colorless crystals of 1-(carbazol-9-yl)-2,4,6-

trimethoxybenzene: mp 175-177oC; IR (thin film, NaCl, cm-1) 3053, 2934, 1590, 

1454, 1144);  1H NMR (300 MHz, CD3CN) δ 8.13 (d, 2 H), 7.36 (t, 2 H), 7.22 (t, 2 

H), 6.96 (d, 2 H), 6.44 (s, 2 H), 3.92 (s, 3 H), 3.61 (s, 6 H); 13C NMR (100 MHz, 

CDCl3) δ 161.6, 158.9, 141.9, 125.8, 123.4, 120.5, 119.4, 110.4, 107.8, 91.7, 56.4, 

56.0. MS m/z (relative intensity) 333 (100), 275 (11), 204 (10), 109 (14); HRMS 

(FAB)  333.1373 (calc. 333.1365).  

 

Determination of decomposition of 7.40 in the absence of traps: 

A solution of 7.40 (0.010 M, 0.41 mmol dissolved in 40.0 mL CH3CN) was 

photolyzed for 3.5 h at 350 nm.  There was 53.5% decomposition as measured by 

NMR in an identical solution in CD3CN (because of its charged nature, 7.40 is not 

observed by GC and therefore percent decomposition could not be determined by 

GC).  A quantitative analysis of collidine and carbazole via GC analysis showed that 
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0.22 mmol of collidine was formed as well as 0.06 mmol of carbazole. (GC response 

factors were determined from the slope of the line made by plotting 5 concentrations 

of the material against the area of the peak seen on the GC).  This provides essentially 

a 100% yield of collidine and a 27% yield of carbazole. From the NMR it is quite 

obvious that the salt of collidine (generated because of acidic conditions as reaction 

occurs) is a major product and that carbazole is dramatically slower in forming.  The 

same is true when one inspects the GC/MS trace.  The photolysis reaction mixture 

was worked up by careful evaporation of the 40 mL of acetonitrile, uptake of the 

reaction mixture into homogeneous ethyl acetate layer, followed by extraction with 

10% bicarbonate and back-extraction of the water layer.  The ethyl acetate layer was 

dried and evaporated to a volume of 10.0 ml for GC analysis.  A small amount of a 

gooey and insoluble (in ethyl acetate) residue was also obtained, presumably 

poly(carbazole) oligomers.  
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