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Electromagnetic interference (EMI) is a source of noise problems in electronic 

devices. The EMI is attributed to coupling between sources of radiation and 

components placed in the same media such as package or chassis. This coupling can 

be either through conducting currents or through radiation. The radiation of 

electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these 

surface currents is considered a major and critical step to suppress EMI. 

In this work, we present novel strategies to confine surface currents in 

different applications including packages, enclosures, cavities, and antennas. The 

efficiency of present methods of EM noise suppression is limited due to different 

drawbacks. For example, the traditional use of lossy materials and absorbers suffers 

from considerable disadvantages including mechanical and thermal reliability leading 

to limited life time, cost, volume, and weight. In this work, we consider the use of 

Electromagnetic Band Gap (EBG) structures. These structures are suitable for 



 

 

suppressing surface currents within a frequency band denoted as the bandgap. Their 

design is straight forward, they are inexpensive to implement, and they do not suffer 

from the limitations of the previous methods. 

 A new method of EM noise suppression in enclosures and cavity-backed 

antennas using mushroom-type EBG structures is introduced. The effectiveness of the 

EBG as an EMI suppresser is demonstrated using numerical simulations and 

experimental measurements. 

To allow integration of EBGs in printed circuit boards and packages, novel 

miniaturized simple planar EBG structures based on use of high-k dielectric material 

(εr > 100) are proposed. The design consists of meander lines and patches. The 

inductive meander lines serve to provide current continuity bridges between the 

capacitive patches. The high-k dielectric material increases the effective capacitive 

load substantially in comparison to commonly used material with much lower 

dielectric constant. Meander lines can increase the effective inductive load which 

pushes down the lower edge of bandgap, thus resulting in a wider bandgap. 

Simulation results are included to show that the proposed EBG structures provide 

very wide bandgap (~10GHz) covering the multiple harmonics of of currently 

available microprocessors and its harmonics. 

To speed up the design procedure, a model based on combination of lumped 

elements and transmission lines is proposed. The derived model predicts accurately 

the starting edge of bandgap. This result is verified with full-wave analysis.  

Finally, another novel compact wide band mushroom-type EBG structure 

using magneto-dielectric materials is designed. Numerical simulations show that the 



 

 

proposed EBG structure provides in-phase reflection bandgap which is several times 

greater than the one obtained from a conventional EBG operating at the same 

frequency while its cell size is smaller. This type of EBG structure can be used 

efficiently as a ground plane for low-profile wideband antennas. 
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Chapter 1 : Introduction 

 

 

1.1. Background on Electromagnetic Noise 

Electromagnetic Interference (EMI) adversely affecting electronic devices is a 

critical challenge facing designers of electronic equipment operating at low threshold 

voltage levels. These challenges are intensified by increase in system speed and 

integration driven by commercial imperatives to increase functionality while reducing 

space and power consumption, resulting in inexpensive hardware, wide range of 

functionality with longer battery life. EMI can be generated from or attributed to 

different hardware stages including the device, the chip, the package, the printed 

circuit board (PCB), the interconnects, the components, the chassis, and the 

peripherals. Mitigation of noise in all system levels is necessary due to strict 

requirements in new design technologies. It is important to note that in addition to 

disrupting interference due to unintentional radiation, EMI is also of concern when 

using intentional radiators (i.e., antennas) placed in close proximity of each other, or 

that share common reference planes. Continuous advances in communication and 

electronic circuits increase the need for complicated systems with several 

electromagnetic sources that operate in the same environment such as array of 

antennas or several electronic circuits located in different compartments in chassis. 

The proximity of these radiating sources increases the probability of interference, or 

mutual coupling between them. 
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The most common type of noise in high speed packages is simultaneous 

switching noise (SSN). SSN, also referred to as voltage bounce or delta-I noise, is 

caused by the switching of transistors between two different logic levels. When 

switching takes place, a surge of current travels between power and ground planes 

causing a voltage drop between them and a voltage drop across segments of the 

power plane itself. These voltage drops are directly proportional to the current 

switching rate and the effective inductance of current paths. SSN was studied 

extensively in the past decade  [1]- [4]. The propagating wave between metallic layers 

of laminated substrate acting as parallel plate waveguide which is supported by 

traveling current on planes can interfere with other via passing through or connected 

to these planes. When the traveling wave reaches the edges, it will partially radiate 

out and the rest will reflect back inside the package. The radiated wave from package 

can interfere with the other electronics located in the same media. Another design 

artifact that exacerbates the noise induced by switching is the natural resonance of the 

package itself. If the natural resonant frequencies of the package encompass the 

switching frequency or the clock frequency and its harmonics, then the potential for 

further disturbance to the reference voltage levels increase and equally important, the 

potential for EMI increases. The resonant frequencies of the package may be pushed 

out of the band of interest if the package size is reduced. However, such a solution is 

not viable as higher integration is demanding larger size packages.  

Packages are designed to provide structural and mechanical integrity and EM 

shielding to insure proper functionality of the integrated circuit (IC). A package is an 

intermediate stage which transfers input/output (IO) signals between IC and PCBs 
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through the connections such as pins and balls. The EMI noise with the 

external/internal sources can lead to currents that flow through the interconnects all 

over the package. Therefore mitigation of noise at the early stage such as IC package 

level becomes critical considering the increasing demands to produce electronic 

devices with higher speeds, compact size, longer life-time batteries, and higher 

functionality. As a result, it is necessary to develop new designs for IC packages. In 

between packaging techniques of microprocessor which is the heart of most 

electronic devices are developing fast. In typical modern processor architecture, the 

L2 cache memory and microprocessor chip are packaged together to speed up the 

CPU execution time. The forthcoming generation of processors will have several 

parts of chipsets integrated in the same package  [5], thus resulting in complex 

integrated circuits and highly dense power dies.  

Package integration is expected to reduce the cost and the complexity of 

interconnects. However, higher density and faster processors lead to higher levels of 

electromagnetic noise. If the noise is not managed effectively such that it remains 

below acceptable levels, then the performance can be compromised and the potential 

for the device to electromagnetically interfere with other independent devices 

increases. Therefore, one of the key challenges for package designers is noise 

mitigation at every stage of the system. In fact, design for electromagnetic noise 

management becomes one of the key imperatives in the design process.  

 Enclosures and chassis which are designed to provide structural and 

mechanical integrity are also intended to provide EM shielding to insure proper 

functionality of the system. The mechanism of coupling between internal 
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electromagnetic sources and the external electromagnetic environment takes place 

either by direct penetration of electromagnetic fields through openings or through 

induced currents on conducting surfaces. Once currents exist on the internal surface 

of an enclosure, they travel to the external surface through openings such as 

apertures, seams, gaskets, etc. Once currents reach external surfaces, they travel and 

penetrate other cavities sharing the same surface, thus creating fields in these so-

called victim cavities. Therefore, designs for enclosures and chassis managing 

electromagnetic noise are necessary. 

 

1.2. Problems and Challenges 

EMI can be generated from or attributed to different hardware stages 

including devices, chips, packages, printed circuit boards (PCB), interconnects, 

components, chassis, and peripherals. To minimize EMI, which could mean either 

reducing radiation from the equipment or increasing the immunity to external 

electromagnetic stimuli; various strategies are applied that are typically specific to 

each of these level. Electromagnetic noise or interference can be mitigated using one 

or more of several strategies. These strategies include, but are not limited to, isolation 

of critical components, shielding, grounding, matching, filtering, addition of lossy 

materials and absorbers and finally the possibility of redesigning the circuitry of the 

victim device or the circuitry of the source of EMI  [6]- [17].  Eliminating the source of 

EMI is clearly desirable, but does not necessarily translate or equate to reduction in 

the susceptibility of the device to external sources. In fact, strong interference can 

occur at frequencies different from the frequencies corresponding to the device 
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switching speed (and its significant harmonics), which makes the containment 

strategies even more challenging. 

The techniques proposed to reduce coupling noise between cavities as a 

constitutive part of the cavity-backed antennas include: placement of lossy materials 

and absorbers between the radiating elements, change in antenna configurations (E-

plane or H-plane), increasing the distance between radiating elements, cutting a slit 

on the common surface or a combination of these methods  [6]. However, while lossy 

materials have desirable electromagnetic features, mechanical and thermal properties 

can severely limit their applicability. Additionally, cost can be a detrimental factor as 

these materials need to be engineered to work over specific frequency bands.  Also 

the other mentioned methods are not efficient, as they lead to increase in size and 

weight, or change in the setup and structure of system. 

The problem of mitigating noise in IC packages remains a major challenge. In 

 [18], a solution based on stitching via and retreated power planes was introduced to 

reduce package radiation. Most noise mitigation strategies presented in the literature, 

however, were applied to PCBs. In  [9],  [12] dissipative and lossy materials were used 

to damp down the noise level. Yet, the thermal and mechanical factors can limit the 

reliability and the applicability of this method. In  [13], decoupling capacitors were 

applied which are effective for suppressing noise from DC to a few hundred mega 

hertz. In  [14],  [15], embedded capacitance was studied. In this method, decoupling 

level depends on the limitations in the fabrication techniques, such as: limitation in 

using different dielectric materials or minimum isolation distance between two 

metallic layers (minimum dielectric thickness between two consecutive layers). 
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Generally, by using embedded capacitance methodology, EM waves within the entire 

frequency band are still guided. Therefore, the application of this method completely 

depends on the level of noise tolerance in electronic circuits. In  [16], power islands 

method, which isolates the source of noise from susceptible components, was used. 

Efficiency of this method depends on the level of components’ density and topology. 

In  [17], via stitching was used. It is an effective method in reducing emission from 

PCB package and coupling to periphery. Efficiency of this method which increases 

the dimension of board depends on the size requirements and fabrication techniques. 

The concept of using electromagnetic bandgap (EBG) structures for suppressing SSN 

and EMI was introduced in  [3],  [19]- [25]. EBG structures consist of dielectric 

substrate with periodic metallic patterns. They are designed to function as band-stop 

filters. This method is effective in that band-stop or bandgap is located in a range 

from few hundred megahertz to above. The bandgap is a function of the dimensions 

and the materials of both metallic patterns and substrate  [26]- [28].  In  [4],  [19]- [25], 

an additional layer of metal for patches of the EBG structure is sandwiched between 

two layers of the package. Each patch is connected to one of these two metallic layers 

through a via. Recently, new planar EBGs were proposed to reduce fabrication cost. 

In these structures, the patterns were etched on one of the metallic layers instead of 

having additional third layer and vias  [29]- [31]. Although, these new planar EBGs 

reduced the fabrication cost, their size was impractical for numerous applications and 

for use in suppressing noise in IC packages. More recently in  [20],  [32], an EBG 

structure suitable for use in IC packages was proposed. While the size of the EBG 

structure introduced in  [32] was suitable for IC packages, it provided a narrow 



 

7 

bandgap which has to be fine tuned to coincide with a specific switching frequency, 

clock frequency, or higher-order harmonics.  

In enclosures, the integrity of shielding compromised with size and number of 

apertures designed for airflow and heat dissipation  [33]. To reduce EMI in enclosures, 

absorbers and lossy materials  [8],  [11] and combination of lossy materials and dual 

perforated ventilation screens  [10] have been used. Although, lossy materials have 

desirable EM features their mechanical and thermal properties can severely limit their 

applicability. In addition, cost can be a detrimental factor as these materials need to 

be engineered to work over specific frequency bands. Also, designs with dual 

aperture screens change the size and weight of enclosure. In other methods 

implemented to reduce EMI, designers change the dimensions of box or openings till 

natural resonances of box and openings do not coincide with clock frequency of 

system and its significant harmonics. Generally, methods which change the 

dimension and weight and others which apply additional materials may add cost and 

size to enclosures.   

Challenges with the present methods of noise reduction can be summarized as 

follows: 1) geometry dependence; 2) material dependence; 3) no guarantee of 

effectiveness in the microwave region; 4) presence of reliability issues. All these 

limitations and drawbacks in the methods of noise suppressions in the PCBs, the 

packages, the enclosures, the cavities, and the antennas are showing that the problems 

related to EMI noise suppression are not solved yet! In the following chapters, new 

solutions for EMI noise reduction in stages including: the packages, the enclosures, 

the cavities, and the antennas will be proposed and studied. 
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This dissertation is organized as follow. In  0, the EBG structures are 

introduced. Then, we study the characterization of EBG structures for applications 

where they are exposed to open media (they are not confined in closed media such as 

embedded EBGs in parallel plate waveguide). Also, we investigate the relationship of 

the suppression band versus different constituent materials and structures of EBG. 

In  Chapter 3, the concept of miniaturization of EBG structures using very 

high-k materials for mushroom- and planar-type structures is discussed. These novel 

EBGs are characterized. Also, we discuss the modeling of the proposed planar EBG 

structures. The developed model is providing efficient initial start in the design 

procedure. 

The SSN and EMI noise suppression in IC packages using very high-k 

material is discussed in  Chapter 4. We study analytically and numerically the 

limitations of using high-k materials in EM noise suppression in packages. 

In  Chapter 5, we discuss the new applications of EBG structures under two 

categories as follows: 1) EM noise reduction and 2) design of low profile antennas. In 

this chapter, the potential of EBG structures in suppressing EMI noise in enclosures 

and chassis, cavities and cavity-backed antennas, and packages are demonstrated. We 

assess the performance in enclosures and chassis numerically, in cavities and cavity-

backed antennas numerically and experimentally, and in IC packages numerically.  

The design of novel EBG structures using magneto-dielectric materials 

applied in the design of low profile wideband antennas is discussed in  Chapter 5. 

Finally the conclusions and the future work are presented in  Chapter 6. 
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Chapter 2 : Electromagnetic Bandgap Structures 

In this chapter, we present different methods to characterize EBG structures. 

We will study numerically the effect of different design parameters on the 

suppression bandgap. The data obtained in this chapter will be used in subsequent 

chapters in different case studies to develop the concepts and to validate the 

efficiency of the proposed methods. 

 

2.1. EBG Structures 

EBG structures operating in the high frequency and the microwave frequency 

bands are periodic or quasi-periodic patterns created by metallic inclusions in 

dielectric or magnetic material  [26]- [28]. In the literature, the EBG structures have 

been referred to as high-impedance surfaces (HIS), metallo-dielectric material, 

negative materials, and other designations. In this study, we adopt a simple structure 

of mushroom-type EBG patterns represented generically by the schematic shown in 

Figure  2.1. These structures are characterized by periodic metallic patches connected 

to a common ground (or reference) plane through shorted stubs or plated through-

holes (commonly referred to as vias). In essence, the EBG structures are comprised of 

a Frequency Selective Surface (FSS) positioned on top of a conductor-backed 

material with vias positioned between the FSS and the metallic backing, hence 

electrically shorting them together. The material between the patches and the ground 

plane can be dielectric, magnetic, or combination of the two. In this study, we 

consider the metallic patches to be square. However, this choice does not diminish the 



 

10 

generality of our study as other designed topologies of similar size can be ptimized to 

achieve higher suppression. Design parameters of the EBG structure under study are 

illustrated in Figure  2.1. These parameters include the size of individual patches, the 

gap between adjacent patches, the diameter of stubs (vias), the thickness, and the 

material of the substrate. The geometrical features of the structure and the material of 

the substrate are directly related to the frequency range of the stop band.  

 

 

Figure  2.1. Square patch mushroom-type EBG structure (a) Perspective view. (b) Top 

view. Relevant design parameters are shown on the diagrams. 

 

A major property of the EBG structure is the suppression of surface waves as 

originally postulated and experimentally demonstrated by the ground breaking work 

of Sievenpiper et al.  [26]- [28]. This fundamental property of EBG structures makes 
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them play a highly critical role in the field of EMI/EMC and signal integrity. In 

effect, the EBG structure acts as a medium with either effective negative µr or 

effective negative εr occurring within a specific frequency band. In fact, EBG 

structure could be viewed as a plasma medium resonating over a band of frequencies 

which can be produced inexpensively using PCB technology. 

 

2.2. Characterization of EBG Structures 

The frequency bandgap of EBGs is directly related to the geometrical 

parameters and material parameters of the host medium. The EBG structures are 

essentially electrically-small resonators. Within the bandgap where they provide wave 

suppression, their size is much smaller than the wavelength. Analytical formulation of 

a precise relationship between the effective bandwidth (bandgap) and the geometrical 

and material parameters is difficult. In  [34],  [35], the authors have obtained circuit 

models for EBGs embedded in power planes. However, for the cases of EBG 

structures used in open systems, as in this study, we could not find any analytical 

expressions or accurate circuit models to give a reasonably accurate prediction of the 

bandgap. Therefore, and until a highly accurate closed-form analytic expression is 

developed, the stop band of an EBG structure may be generated directly or indirectly 

using numerical simulation tools. There are different numerical techniques to extract 

the frequency stop band of a structure which vary in complexity and efficiency. Using 

the scattering parameters (S-parameters) to characterize the bandgap is the most 

direct method while the dispersion diagram  [36],  [37] is the indirect one. 
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2.2.1. Scattering Parameters 

In this method the bandgap can be specified by extracting the S-parameters 

numerically between two ports placed across the EBG structure as shown in Figure 

 2.2. For this purpose full-wave EM simulators such as Ansoft HFSS  [38] can be used. 

EBG structure with specific bandgap can be designed using this method by trial and 

error procedure. This method is the most direct one because not only it characterizes 

the location of the bandgap, the bandwidth, and the center frequency but also, it 

provides the attenuation level of the signal at different frequencies. 

 

 

Port 1 Port 2

EBG structures

 

Figure  2.2. A schematic showing the simulation setup used to extract the bandgap of 

an EBG structure using scattering parameters. In this setup S21 represents the power 

delivered at port 2 when port 1 is excited. 

 

2.2.2. Dispersion Diagram 

In this method, the bandgap is specified by extracting the dispersion diagram 

which describes the propagation characteristics of an infinitely periodic structure 

composed of EBG patches. Dispersion diagram is numerically extracted using full-

wave solver, by considering a single patch (unit cell) and applying periodic boundary 

condition (PBC) on the sides of the cell to mimic the presence of the cell in a inifinite 
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array of periodic structure, and absorbing boundary condition (ABC) or perfectly 

matched layer (PML) on the top open wall as shown in Figure  2.3 (a)  [36].   

Dispersion diagrams show the relationship between wave numbers and 

frequency. These diagrams present the propagating modes and the bandgaps that can 

potentially exist between such modes (in a periodic structure at a given frequency of 

operation, many modes propagating in different directions may be excited)  [37]. 

Brillouin, in his theory of wave propagation in periodic structures  [39], states that for 

any periodic structure there are certain vectors (i.e., directions) in the unit cell of the 

periodic structure that constitute a boundary region of propagation called irreducible 

Brillouin zone. According to that theory, deriving the propagating modes in the 

direction of these vectors suffices to cover all possible directions of wave propagation 

within the lattice. Therefore, the problem of deriving the propagating modes excited 

at a certain frequency reduces to finding such modes only in the directions of the 

vectors of the irreducible Brillouin zone. For the type of structure considered in this 

work, the border of the irreducible zone is illustrated in Figure  2.3 (b) and it consists 

of the direction pointing from Г to X, from X to M and from M back to Г.  

Therefore, in light of Brillouin theory, a dispersion diagram will consist of 

three regions. In each region, we consider the paropagation wave vector β which is 

translated into a phase shift between the sides of the unit cell shown in Figure  2.3 (a). 

This translation allows the derivation of dispersion diagram using traditional 

eigenmode solver based on full-wave analysis. In these simulations, the structure of 

unit cell and the required phase shifts (shown as Phase 1 and Phase 2 in Figure  2.3 

(a)) are given to the simulator. The simulator calculates the frequencies of 
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propagating waves that would generate such phase shifts. For a wave propagating in 

the x-direction with no y variation, Phase 1 is varied between 0 and 1800 and Phase 2 

is kept constant at zero degree. This corresponds to the Г to X direction. The X to M 

direction corresponds to Phase 1 being constant and equal to 1800 and Phase 2 

varying from 0 and 180o. This represents the second region in the dispersion diagram. 

The third region is represented by the M to Г direction in which both phases are equal 

and changing from 180o back to 0.  For wave propagation in free space, as there is no 

dispersion, the diagram constitutes of straight lines in the first and third regions and a 

quadratic graph in the second region. The following equation shows the frequency-

phase relationship for wave propagation in free space: 
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 Equation  2-1 

where d = a + g is the size of unit cell (periodicity length), c is the speed of light in 

free space, β1 = βx and β2 = βy are the wave numbers in the Г-X and the X-M 

directions. 

With the presence of EBG structures, the surface becomes dispersive; 

therefore the frequency-phase relationship of propagating modes will not be the same 

as in free space. A gap between the upper limit of any propagating mode and the 

intersection of the free space propagation line with the next propagating mode 

represents a region in which the surfaces do not support any propagation. 
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Figure  2.3. Schematic showing the simulation setup used to extract the bandgap of an 

EBG structure using dispersion diagrams. (a) Computational domain containing 

single cell. Periodic boundary conditions are placed at x-z and y-z planes and an 

absorbing condition (PML) is placed on the top face x-y plane. (b) The irreducible 

Brillouin zone triangle.  

 

 

As an example to show how the Brillouin theory is used, we consider a 4 mm 

patch with a substrate of εr = 2.2, g = 0.4 mm, d = 0.8 mm, and h = 1.54 mm. The 

dispersion diagram for this structure obtained using HFSS is shown in Figure  2.4. 

From the dispersion diagram, the frequency band where no propagating modes exist 

is the corresponding bandgap of the structure. From Figure  2.4, the bandgap is 

observed to be between 8.4 GHz and 9.6 GHz. Also, the dispersion diagrams of two 
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other cases are shown in Figure  2.5 and Figure  2.6. The bandgap of EBG with a = 4 

mm, εr = 4.8, g = 0.4 mm, d = 0.8 mm, and h = 1.54 mm is from 7 GHz to 8 GHz as 

shown in Figure  2.5. The bandgap of EBG with a = 2.6 mm, εr = 3, g = 0.4 mm, d = 

0.8 mm, and h = 1.54 mm is between 11.9 GHz and 16 GHz as shown in Figure  2.6. 
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Figure  2.4. Dispersion diagram for the EBG structure having 4 mm square patches on 

a substrate with εr = 2.2. 
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Figure  2.5. Dispersion diagram for the EBG structure having 4 mm square patches on 

a substrate with εr = 4.8. 

 

Figure  2.6 Dispersion diagram for the EBG structure having 2.6 mm square patches 

on a substrate with εr = 3. 
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2.3. Numerical Study of EBG Structures 

As we mentioned in Section  2.1, there are no exact analytical formulas that 

relate the structural parameters of the EBG structures to the frequency stop band. 

Therefore, our goal here is to determine the effect of varying the EBG parameters on 

the width of the bandgap and its lower and upper frequency limits based on direct 

numerical simulation using HFSS.  

The numerical setup consists of two parallel plate waveguides and the EBG 

structure to be tested is placed between them as shown in Figure  2.7. The EBG 

surface in Figure  2.7 is considered to be semi-infinite (infinite in the x-direction and 

finite in the y-direction) which is modeled in HFSS using symmetric boundary 

conditions. As a measure of the performance of the EBG structure, we consider the 

transmission loss (S21) between the two ports shown in Figure  2.7 with and without 

the EBG surface.  For example, in Figure  2.8 we show the magnitude of S21 for an 

EBG structure with the parameters a = 2.6mm, h = 1.54 mm, d = 0.8 mm, g = 0.4 

mm, and εr = 2 (parameters are shown in Figure  2.1). The bandgap used throughout 

this study is defined as the difference between the two frequency points where the S21 

suppression exceeds 3dB. The two frequency points defining the edge of the bandgap 

will be referred to as the lower and the upper frequency points. Figure  2.9-Figure  2.17 

summarize the results of numerous simulations showing the relationship between the 

bandgap and the different parameters of the structure. Since the EBG patches are 

positioned in the direction of propagation of the waves, it is expected that the more 

EBG patches are used the suppression goes higher as shown in Figure  2.9 (a) and 

Figure  2.9 (b) where 4 rows and 8 rows of patches were used, respectively. Also, 
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from these figures we realize that increasing the patch size shifts the bandgap 

downward. In the following simulations, the distance between patches is 0.4 mm and 

via diameter is 0.8 mm.  

Figure  2.10 and Figure  2.11 show the bandgap in relation to the separation 

between patches. We observe that increasing the gap between the patches causes the 3 

dB bandgap to shift upward. Figure  2.12 and Figure  2.13 show the relationship 

between the bandgap and the height of via. Increasing the height of via shifts the 

bandgap downward. Figure  2.14 and Figure  2.15 show the relationship between the 

bandgap and the diameter of via. The trend of change of bandgap with diameter of via 

is not very clear. Figure  2.16 and Figure  2.17 show the relationship between the 

bandgap and the relative permittivity of the substrate. Increasing the permittivity 

shifts the bandgap downward. Generally, the relationship between the bandgap and 

the design parameters are not linear.  
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Figure  2.7. Numerical setup used to extract the bandgap of EBG structures.  

 

Figure  2.8. Magnitude of S21 for the setup shown in Figure  2.7 with and without and 

EBG surface with the following parameters a = 2.6 mm, h = 1.54 mm, d = 0.8 mm, g 

= 0.4 mm, and εr = 2. The design parameters are shown in Figure  2.1.  
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Figure  2.9. Frequency bandgap versus the patch size. (a) 4 rows of EBG patches, (b) 

8 rows of EBG patches. EBG parameters: εr = 3, h = 1.54 mm, d = 0.8 mm, and g = 

0.4 mm. 
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Figure  2.10. Frequency bandgap versus the gap between patches. (a) 4 rows of EBG 

patches, (b) 8 rows of EBG patches. EBG parameters: a = 4 mm, εr = 4.4, h = 1.54 

mm, and d = 0.8 mm. 
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Figure  2.11. Frequency bandgap versus the gap between patches. (a) 4 rows of EBG 

patches, (b) 8 rows of EBG patches. EBG parameters: a = 2.6 mm, εr = 3, h = 1.54 

mm, and d = 0.8 mm. 
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Figure  2.12. Frequency bandgap versus the height of via. (a) 4 rows of EBG patches, 

(b) 8 rows of EBG patches. EBG parameters: a = 4 mm, g = 0.4 mm, εr = 4.4, and d = 

0.8 mm. 
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Figure  2.13. Frequency bandgap versus the height of via. (a) 4 rows of EBG patches, 

(b) 8 rows of EBG patches. EBG parameters: a = 2.6 mm, g = 0.4 mm, εr = 3, and d = 

0.8 mm. 
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Figure  2.14. Frequency bandgap versus the diameter of via. (a) 4 rows of EBG 

patches, (b) 8 rows of EBG patches. EBG parameters: a = 4 mm, g = 0.4 mm, εr = 4.4, 

and h = 1.54 mm. 
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Figure  2.15. Frequency bandgap versus the diameter of via. (a) 4 rows of EBG 

patches, (b) 8 rows of EBG patches. EBG parameters: a = 2.6 mm, g = 0.4 mm, εr = 3, 

and h = 1.54 mm. 
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Figure  2.16. Frequency bandgap versus the relative permittivity of substrate. (a) 4 

rows of EBG patches, (b) 8 rows of EBG patches. EBG parameters: a = 4 mm, g = 

0.4 mm, d = 0.8 mm, and h = 1.54 mm. 
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Figure  2.17. Frequency bandgap versus the relative permittivity of substrate (a) 4 

rows of EBG patches, (b) 8 rows of EBG patches. EBG parameters: are a = 2.6 mm, g 

= 0.4 mm, d = 0.8 mm, and h = 1.54 mm. 
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Chapter 3 : Miniaturized EBG Structures 

In this chapter, we investigate the use of very high-k dielectrics (εr ≥ 100) in 

the design of EBG structures as strong contenders of surface wave suppressor for 

EMI/EMC applications. The basic idea behind the designs presented here is the use of 

high-k dielectrics to increase the effective capacitive load. The increased effective 

capacitance shifts the bandgap to lower frequencies, or alternatively, allows for 

maintaining the same frequency performance but with smaller size patches.  

 

3.1.  Miniaturization of Embedded EBG Structures between a Single Pair of Planes 

using High-K Dielectrics 

The concept of embedding mushroom-type EBG structures for suppressing 

SSN and EMI has been studied in  [4],  [19]- [25]. Already there are several models 

based on the physics of structures and the lumped elements and transmission lines 

which characterize embedded EBGs and predicts the bandgaps  [35],  [40] with good 

approximation. Therefore, we do not intend to speak about the modeling of 

mushroom-type EBGs embedded in a plane pairs. However, briefly and using 

numerical tools we show the possibility of shrinking the dimensions of EBGs using 

very high-k dielectrics. This type of EBGs due to addition of layers and having vias 

are costly to manufacture. Recently, planar EBGs as a solution to these drawbacks 

were introduced  [29]- [31]. We continue our studies on planar EBGs in Section  3.2. 
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3.1.1.  Numerical Characterization of Embedded Mushroom-Type EBGs made of High-k 

Dielectrics 

The square patch mushroom-type EBG studied in  0 is embedded between two 

metallic layers as shown in Figure  3.1. The design parameters including size of the 

square patch, diameter of the via, gap between the patches, thickness of the filling 

dielectric materials; the one surrounding the EBG structures and the one located 

between the patch and the top metallic plane; and a relative permittivity of these 

dielectrics are shown on the same figure. The physical-based model for a unit cell of 

EBG embedded between pairs of plane is shown in Figure  3.2  [41]. The resonant 

frequency (center frequency) of the unit cell is given by ( )212
1

CCL
fc +

=
π

. 

Therefore, by increasing the capacitive load or the inductive load the bandgap can be 

moved to lower frequencies or the same frequency performance can be maintained by 

reducing the size of inclusions. The effect of design parameters on the first 

suppression band is demonstrated numerically as follows. 
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Figure  3.1. Side view of embedded mushroom-type EBG between parallel planes. 

The design parameters are included in the figure. 
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Figure  3.2. Physical-based model for a solid patch mushroom-type EBG embedded in 

between parallel planes. C1 models the capacitance between the patch and the top 

plane, C2 is the capacitance between the patch and the bottom plane, and L represents 

the inductance of via. 

 

The suppression bandgap of EBGs is extracted from the computed S-

parameters. For this purpose, we used the setup which is parallel plate waveguide 

loaded with 4 cells of EBG structures as shown in Figure  3.3. The EBGs are analyzed 

up to 20 GHz. The effective suppression band is defined to be the frequency band 

where suppression exceeds 20 dB. The relationship of the suppression band and the 

patch size for EBG structures, with the following parameters: εr1 = 4.4, h1 = 100 µm, 

εr2 = 50, h2 = 16 µm, g = 200 µm, and v = 200 µm, is shown in Figure  3.4. Increasing 

capacitive loads (C1, C2) through increasing patch dimension shifts the bandgap 

downward. The suppression band in relation to gap separation is plotted in Figure  3.5. 

The EBG parameters are as follows: εr1 = 4.4, h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 

1 mm, and v = 200 µm. As it is clear from graphs, in this scale the effect of gap on the 

lower edge of suppression band is not noticeable. The relationship between the 

suppression band and diameter of via is plotted in Figure  3.6. The EBG parameters 

are as follows: εr1 = 4.4, h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 1 mm, and g = 40 µm. 
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Decreasing the via diameter shifts the lower edge of the suppression band downward. 

This decrement equates the increment of the capacitive loads (C1, C2) due to 

increment of the effective patch area and the increment of inductance L  [40]. The 

relationship between the suppression band and dielectric relative permittivity of 

media 1 is shown in Figure  3.7. The parameters of the EBG structure are as follows:  

h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm. Using 

high-k materials in media 1 increases the capacitance C1. As a result, the suppression 

band shifts to lower frequencies. Decreasing h1 and h2 has similar effects, as it causes 

the capacitive loads (C1, C2) to increase correspondingly.  

 

 

Port 1

Port 2

Port 1

Port 2

 

Figure  3.3. Simulation setup used to extract the suppression band of the EBG 

structure from computed S21. The computational domain is ideal parallel plate 

waveguide with PMC boundary on the sides.  
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Figure  3.4. Magnitude of S21 for the embedded EBG structures in parallel planes with 

the different patch sizes. The EBG structures have the following parameters: εr1 = 4.4, 

h1 = 100 µm, εr2 = 50, h2 = 16 µm, g = 200 µm, and v = 200 µm (design parameters 

are shown in Figure  3.1).  
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Figure  3.5. Magnitude of S21 for the embedded EBG structures in parallel planes with 

the different gap sizes. The EBG structures have the following parameters: εr1 = 4.4, 

h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 1 mm, and v = 200 µm (design parameters are 

shown in Figure  3.1).  
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Figure  3.6. Magnitude of S21 for the embedded EBG structures in parallel planes with 

the different via diameters. The EBG structures have the following parameters: εr1 = 

4.4, h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 1 mm, and g = 40 µm (design parameters 

are shown in Figure  3.1).  
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Figure  3.7. Magnitude of S21 for the embedded EBG structures in parallel planes with 

different values of dielectric relative permittivity for media 1. The EBG structures 

have the following parameters: h1 = 100 µm, εr2 = 50, h2 = 16 µm, d = 0.4 mm, g = 40 

µm, and v = 40 µm (design parameters are shown in Figure  3.1).  
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In Figure  3.8, the magnitude of S21 versus frequency is plotted for three 

different EBG structures embedded between plane pairs. The design parameters of the 

first sample referred to by the symbol (a) on the figure are: εr1 = 4.4, h1 = 100 µm, εr2 

= 50, h2 = 16 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm. The parameters of sample 

(b) are: εr1 = 4.4, h1 = 100 µm, εr2 = 70, h2 = 16 µm, d = 0.4 mm, g = 40 µm, and v = 

40 µm. Sample (c) has the following parameters: εr1 = 4.4, h1 = 108 µm, εr2 = 70, h2 = 

8 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm. We can identify that increasing the 

capacitive loads (C1, C2) shifts the suppression band to lower frequencies. Additional 

type of samples are summarized in Table  3.I. Theses samples are sorted in such a way 

to show the effect of increment of the effective capacitive load on the suppression 

bandgap. The distance between two planes (the total thickness) is fixed at 116 µm and 

the permittivity of media 1 is equal to 4.4. It is obviously clear in Table  3.I the 

advantage of applying thin layer of very high-k material (εr ≥ 100) between patch and 

upper metallic plane to provide suppression band at lower frequencies.  
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Figure  3.8. Magnitude of S21 for different embedded EBG structures in parallel 

planes. The samples have the following parameters: (a) εr1 = 4.4, h1 = 100 µm, εr2 = 

50, h2 = 16 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm. (b) εr1 = 4.4, h1 = 100 µm, εr2 

= 70, h2 = 16 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm. (c) εr1 = 4.4, h1 = 108 µm, 

εr2 = 70, h2 = 8 µm, d = 0.4 mm, g = 40 µm, and v = 40 µm (design parameters are 

shown in Figure  3.1).  
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Table  3.I. Specifications of the different square patch mushroom-type EBG structures 

embedded in parallel planes and related suppression bands (design parameters are 

shown in Figure  3.1). The thickness of parallel plane is equal to 116 µm and εr1 = 4.4 

for all samples. 

0.8-20+111520100.44200

1.1-20+111520100.44150

1.2-20+111520100.44120

1.4-20+211420100.44150

1.5-20+211420100.44120

1.6-20+211420100.43120

1.9-20+211440100.43120

2.1-20+211440100.43100

2.5-20+311340100.43100

3.2-20+411240400.4100

3.8-20+411240400.470

5.4-20+810840400.470

7.7-20+1610040400.470

9.1-20+1610040400.450

Suppression 
Band (GHz)

h2
(µm)

h1
(µm)

v
(µm)

g
(µm)

d
(mm)

ε r2

0.8-20+111520100.44200

1.1-20+111520100.44150

1.2-20+111520100.44120

1.4-20+211420100.44150

1.5-20+211420100.44120

1.6-20+211420100.43120

1.9-20+211440100.43120

2.1-20+211440100.43100

2.5-20+311340100.43100

3.2-20+411240400.4100

3.8-20+411240400.470

5.4-20+810840400.470

7.7-20+1610040400.470

9.1-20+1610040400.450

Suppression 
Band (GHz)

h2
(µm)

h1
(µm)

v
(µm)

g
(µm)

d
(mm)

ε r2

+ Shows suppression band extends beyond 20 GHz  

 

3.2. Miniaturization of Planar EBG Structures using High-K Dielectrics 

A planar EBG structure consists of two metallic layers isolated by a substrate. 

It is constructed by periodically patterning one of those metallic layers. Using spiral-

inductors is the best choice to increase the net inductance of EBG structures leading 
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to a widening of the bandgap and decreasing the lower edge of bandgap. The 

innermost turn of spiral inductors are connected to other circuitries using wire-bonds, 

air-bridges or bridges through additional layers (In that case, the inductor isn’t 

planar). The value of inductance may increase because of having positive mutual 

inductance between turns. However, fabrication of this type of inductor is costly. To 

reduce manufacturing cost, planar inductors such as Archimedean spiral inductor or 

meander line inductor shown in Figure  3.9 can be used. The inductance per unit area 

provided with these types of inductors is not as high as the one obtained from spiral-

inductor with bridge. Reduction in the value of inductance is due to the negative 

mutual couplings between adjacent turns. Later, in the modeling section, we will 

discuss more about this effect. Choosing the planar inductor is a trade off between 

cost and performance. The efficacy of implementing meander lines was shown in 

 [42]. In this work, meander lines are used as inductive bridges connecting the patches. 

The top views of a unit cell of a few planar EBG structures consisting of different 

meander lines with dissimilar number of turns and unequal lengths are shown in 

Figure  3.10. The meander lines are connected to the patches at the edge without any 

margin. Figure  3.11 shows the top view of a unit cell of EBG pattern with two-turn 

meander lines connected with a margin to the patch. In this study, unless it is clearly 

stated, we are dealing with structures with no margins. A planar EBG structure 

consisting of two-turn meander lines and its critical design parameters are shown in 

Figure  3.12. The design parameters include: size of the patch, dimensions of the 

meander line, thickness and dielectric constant of the substrate. The number of line 
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turns in meander is represented by N. In this work, it is assumed that the meander line 

parameters (MG, MW, ML, MB) are constant along the line to simplify the study. 

 

(a) (b)(a) (b)  

Figure  3.9. Planar inductors. (a) Archimedean spiral inductor. (b) Meander line 

inductor.   

 

(a) (b) (c)(a) (b) (c)  

Figure  3.10. Top views of a unit cell of different planar EBG structures. The meander 

line as an inductive bridge connecting the patches in EBG structures consists of (a) 

one turn, (b) two turns, and (c) three turns.  
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MarginMargin

 

Figure  3.11. Top view of a unit cell of a planar EBG structure. The meander line as an 

inductive bridge providing current continuity between the patches in the EBG pattern 

is connected to two adjacent patches with a margin. 

 

The physical-based model of a unit cell of planar EBG structure existing in a 

1-D array of EBG structures is shown in Figure  3.13. In this model, the capacitance 

between patterned layer and ground is given by: 

hAC ε=  

 Equation  3-1 

where ε and h are the permittivity and the thickness of the substrate, respectively. A is 

the area of the patterned planar conductive part. According to  [26],  [43], coupling 

capacitance between two adjacent arms of the meander line can be approximated as: 

)(cosh)( 10
GW

L
cmm MMMC −+

=
π

εε  

 

 Equation  3-2 

Similarly, the coupling capacitance between each patch and its adjacent meander arm 

can be approximated as the geometrical mean of two capacitances as: 
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Figure  3.12. Planar EBG structure with two-turn meander lines as inductive bridges. 

(a) top view of the unit cell, (b) top view of the meander line bridge, (c) perspective 

view of the total structure, (d) top view of the total structure. The design parameters 

are shown in the diagram. 

 

cppcmmcpm CCC ′′=  

 Equation  3-3 

where C'cmm represents the coupling between two adjacent arms which are spaced 

from each other by a gap equal to MB. It is given similar to Equation  3-2 by: 

)(cosh
)( 10

BW
L

cmm MM
M

C −+
=′

π
εε  

 Equation  3-4 
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Similarly, C'cpp is the coupling between two adjacent patches which are spaced from 

each other by a gap equal to MB and given by: 

)(cosh
)( 10

BW
L

cpp MP
M

C −+
=′

π
εε  

 Equation  3-5 

The total mutual coupling between adjacent arms of meander line can be 

approximated by: ( )121 −= NCC cmm . Similarly, C2 showing the total mutual coupling 

between meander line and two adjacent patches is defined by: 22 cpmCC = . The total 

inductance of meander line is represented by L. The center frequency (resonant 

frequency) of the unit cell of EBG is moved to lower values by increasing the 

effective capacitance (Ceff) or the effective inductance (Leff) according to the 

relationship ( )effeffc CLf π2/1= . Leff is equal to L and ( ) ( )21 ||2||2 CCCCCeff += . 

Therefore, to have a bandgap at lower frequencies, one needs to increase Ceff or Leff. 

By inspection of formulas for C, Ccmm, and Ccpm, the capacitance is increased by 

increasing the metallic pattern dimensions or the dielectric constant. However, using 

high dielectric constant have the distinct advantage of allowing miniaturization of 

EBG patterns in addition to shifting the bandgap to lower frequencies. In following 

sections, we will discuss about the subject of accurate modeling. It will be shown that 

the effective inductance can be increased by increasing the length of meander line and 

the gap between adjacent arms of meander line. Increasing the gap will reduce the 

magnetic coupling. 

   The progress in material science has provided composite dielectric materials 

with very high dielectric constants (εr ≥ 100) known as high-k dielectrics. Currently, 
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several companies are producing these types of materials with low losses. Following, 

we will show that the miniaturization of EBG structures is possible due to availability 

of these commercial high-k materials. Also, we will show advantages of combining 

these high-k materials with high effective inductive loads to have wide suppression 

bands at low frequencies. 
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Figure  3.13. Physical-based model of the planar EBG structure. C1 represents the 

mutual coupling capacitance between arms of the meander line. C2 is the mutual 

coupling capacitance between meander line and two adjacent patches. C is the 

capacitance between the patch and the bottom plane, and L represents the inductance 

of meander line. 

 

3.2.1. Numerical Characterization of Miniaturized-Wideband Planar EBG Structures 

We used commercial software, Ansoft’s HFSS, to validate the improvement 

obtained from the combination of high-k dielectric substrate and meander line bridge 
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in the proposed planar EBG structure. The EBGs are analyzed up to 14 GHz. If the 

suppression band goes beyond 14 GHz, we have indicated the upper bound of band 

by 14+ GHz. The setup used to extract the effective suppression band is illustrated in 

Figure  3.14. The ports defined for this structure are separated by N cells (in our case 

N = 4). Each port is located between the patterned layer and ground. The magnitude 

of the S21 parameter (defined between two ports) is indicative of the suppression 

band. Figure  3.15 shows the magnitude of S21 for the EBG pattern consisting of two-

turn meanders as shown in Figure  3.12  with the following parameters: PW = 1.4 mm, 

h = 114.3 µm (4.5 mil), MW = 0.02 mm, MB = 0.02 mm, ML = 1.34 mm, MG = 0.02 

mm, εr = 140, and tan δ = 0.0015. The reference case which is a similar setup without 

EBG pattern is included in the same figure. The effective suppression band 

considered throughout this study is defined to be the frequency band where the 

suppression exceeds 20 dB. For the proposed structures, a very wide suppression 

band (3.5 – 13.9 GHz) is achieved.  

Few samples are summarized in the Table  3.II to show the effect of design 

parameters on the suppression bandgap. Samples No. 1 to 6 are tabulated in such a 

way that only one design parameter in each sample is different from the previous one. 

From these results, we conclude the following: 1) increasing the dimensions of patch 

shifts the bandgap to lower frequencies. This increment is equivalent to increasing the 

effective capacitive load. 2) The longer meander line which provides larger inductor 

not only shifts the bandgap to lower frequency but also widens the effective 

suppression band. In sample No. 6 compared to sample No. 5, a longer meander line 

with three turns is used. However, the patch size is decreased to keep approximately 
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the same unit cell size. As can be concluded from results of the suppression band, a 

comparable or even better performance is obtained. Generally, results in Table  3.II 

show the efficiency of using larger inductive load. Comparing samples No. 5 and No. 

7 in this table emphasizes that not only the length of meander line is an important 

factor to clarify the suppression band but also the connection point between the patch 

and the meander line is important too. Sample No. 6 with a margin equal to 0 mm is 

providing larger bandgap than sample No. 7 with a margin equal to 0.1 mm (refer to 

Figure  3.11). All other design parameters are the same for both samples. However, 

the length of meander line in sample No. 5 is slightly longer than the length of 

meander line in sample No. 7. The step discontinuity in microstrip line can be 

modeled by a T-equivalent circuit. The values of lumped elements modeling the 

discontinuities with different margins are different. Later, in modeling section, we 

will include the discontinuity effect in our modeling. 

 

 

Port 1

Port 2

Port 1

Port 2

 

Figure  3.14. Schematic showing the simulation setup and location of the ports to 

extract the suppression band of the EBG structure from computed S21. 
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Figure  3.15. Magnitude of S21 versus frequency for the EBG structure shown in 

Figure  3.12 using the setup shown in Figure  3.14. The parameters of the EBG 

structure are: PW = 1.4 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.34 

mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015 (design parameters are shown in 

Figure  3.12). The reference case which is parallel plane is included for the purpose of 

comparison. 

 

 Another set of samples consisting of two-turn meanders are listed in Table 

 3.III. These samples have been chosen in such a way that their suppression band 

covers the operating frequency of current microprocessors and resonant frequencies 

of the package. The data in this table clearly shows the advantage of using high 

permittivity dielectrics compared to conventional low ones (here FR-4) in reducing 

size of unit cell of EBGs. By comparing these cases, it is concluded that a size 
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reduction of more than 10 times is achieved. Also, we could approximately keep a 

similar wide suppression band. The effective wide suppression band in proposed 

planar EBGs can be easily tuned to filter EMI and electromagnetic noises in EMC 

applications. The sample designs provided here shows efficacy of combining very 

high-permittivity materials with inductive bridges in design of miniaturized wideband 

planar EBG structures. 

Generally, the design of samples provided in this section has not been 

optimized. Optimizing inductive part of the design to provide more inductive load in 

small area can lead to a wider band in addition to smaller unit cell size. In the 

following section, we will continue our study on the modeling and the 

characterization of the proposed EBG structure proposed in this section. 

 

 

Table  3.II Specifications of the different planar EBG patterns and related suppression 

band (design parameters are shown in Figure  3.12). For all samples h = 114.3 µm, εr 

= 140, and tan δ = 0.0015. 

3.85-14.11.580.021.240.020.021.42
(margin = 0.1 mm)

7

3.5-14+1.560.021.240.020.021.336

3.45-141.580.021.240.020.021.425

3.5-13.91.580.021.340.020.021.424

3.7-11.31.50.021.340.020.021.413

4.9-9.71.50.020.440.020.021.412

7.9-14+1.10.020.440.020.02111

Suppression 
Band (GHz)

d
(mm)

MG
(mm)

ML
(mm)

MW
(mm)

MB
(mm)

PW
(mm)

# Turns
N 

Sample 
N0.

3.85-14.11.580.021.240.020.021.42
(margin = 0.1 mm)

7

3.5-14+1.560.021.240.020.021.336

3.45-141.580.021.240.020.021.425

3.5-13.91.580.021.340.020.021.424

3.7-11.31.50.021.340.020.021.413

4.9-9.71.50.020.440.020.021.412

7.9-14+1.10.020.440.020.02111

Suppression 
Band (GHz)

d
(mm)

MG
(mm)

ML
(mm)

MW
(mm)

MB
(mm)

PW
(mm)

# Turns
N 

Sample 
N0.

+ shows suppression band extends beyond 14 GHz.  
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Table  3.III. Specifications of the different planar EBG patterns and related 

suppression band (design parameters are shown in Figure  3.12). For all samples h = 

114.3 µm and N = 2. 

1.9-10.81.780.021.60.020.021.60.00152007

3-11.31.380.021.20.020.021.20.00153006

3-11.31.580.021.40.020.021.40.00152005

3.4-11.51.380.021.20.020.021.20.00152004

2.9-12.51.780.021.60.020.021.60.00151403

3.5-13.91.580.021.340.020.021.40.00151402

1.3-13.821.80.2200.20.2200.024.31

Suppression 
Band (GHz)

T
(mm)

MG
(mm)

ML
(mm)

MW
(mm)

MB
(mm)

PW
(mm)

tan δεrSample 
N0.

1.9-10.81.780.021.60.020.021.60.00152007

3-11.31.380.021.20.020.021.20.00153006

3-11.31.580.021.40.020.021.40.00152005

3.4-11.51.380.021.20.020.021.20.00152004

2.9-12.51.780.021.60.020.021.60.00151403

3.5-13.91.580.021.340.020.021.40.00151402

1.3-13.821.80.2200.20.2200.024.31

Suppression 
Band (GHz)

T
(mm)

MG
(mm)

ML
(mm)

MW
(mm)

MB
(mm)

PW
(mm)

tan δεrSample 
N0.

 

 

3.3. Modeling of the Proposed Planar EBG Structures 

In the last few years, different methods have been used to characterize the 

EBG structures. The characterization is satisfied by relating the bandgap and center 

frequency to constituent materials and dimensions of inclusions. These methods 

include: 

• Numerical analysis using various methods such as the Finite Elements Method 

(FEM), The Finite-Difference Time-domain (FDTD) method, …etc.  

• Measurements 

• Equivalent circuit modeling  [20],  [26],  [33],  [34],  [41] 

• Equivalent circuit-transmission line models  [35],  [40],  [44] 

Among the characterization methods, experimental methods consisting of fabrication 

of structures followed by measurements is favored due to its accuracy, but it is costly 

and time consuming. The full-wave numerical analysis such as commercial software 
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Ansoft’s HFSS based on FEM, provides accurate results, however, at the cost of 

expensive computations in terms of time and memory. More often one encounters 

convergence or memory problem due to large number of meshes in the computational 

domain. The analysis using methods which are not full-wave based may compromise 

between accuracy, time, and cost. To use time and resources efficiently, several 

methods based on analyzing infinite periodic structures have been developed. These 

methods approximately characterize the required structures in a defined application 

based on analyzing a unit cell of the structure and implementing proper periodic 

boundary condition based on Floquet theorem  [45]. Simplified setups decrease 

simulation time significantly. However, they are not still efficient to characterize a 

large number of structures to prepare data tables which may be used as guide for 

designing new EBG structures for the required operating regimes. Model-based 

methods were developed as a solution to these drawbacks. Generally, model-based 

methods give a qualitative perspective about the relationship between the bandgap 

and the topology and the composition of EBG structures. However, deriving a model 

which may predict accurately the dispersive effects through the entire range of 

frequencies is not viable, because of several EM effects that become strong at the 

higher frequencies and are typically not included in the models. Therefore, for 

accurate designs, further tunings and adjustments of the specifications of EBG 

structures are necessary using full-wave numerical analysis methods. As a result, the 

combination of two or more of the above mentioned methods are used to design new 

EBGs using trial and error procedure. A good initial guess using models, may 

decrease the load of work needed.  
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In  [26], a simple lumped element model for the mushroom EBG structures 

was proposed. This model approximately works for normal wave incidence at low 

frequencies where the dimensions of the EBG are much smaller than the wavelength 

in media. Later, a model based on both transmission line theory and circuit elements 

was developed  [44]. This model partially overcoming previous limitation can predict 

the bandgap with higher accuracy. Authors in  [20],  [34] developed a method for 

extracting the parameters of the model for a mushroom-type EBG embedded in 

parallel plate waveguide. This method uses simple formulas to derive initially the 

value of the lumped elements in the model and later uses a numerical algorithm for 

curve fitting on the S-parameters graph. This method usually is not efficient for 

characterization and designing of new EBG structures. Mostly, this method could be 

used for post analyzing, such as computing the delay time for the logic change in 

digital circuits connected to power planes or computing reservoir capacitors needed in 

different locations in power planes to improve the functioning of electronic circuits. 

In  [41], a physical-based equivalent circuit model for mushroom EBGs embedded in 

parallel plate waveguide was derived. This model predicts only the center frequency 

of bandgap. Recently, authors in  [35],  [40] used the transmission line method to 

improve the modeling of embedded EBGs between parallel plate waveguide. Those 

models can predict the bandgap as well as the center frequency. Following, we are 

going to derive a model for planar EBG proposed in this study to get idea about the 

relation of bandgap to the constitutive materials and their dimensions. In Section  3.2, 

a physical-based equivalent circuit model was introduced to justify the advantage of 

using high-k materials in design of miniaturized planar EBG structure operating at 
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low frequencies. In this section, we derive an equivalent circuit-transmission line 

model which is more accurate in providing information about bandgaps.  

 

3.3.1. Setup and Model Formulation  

Detailed analysis of periodic structures based on transmission line theory and 

Floquet theorem is given in  [45],  [46]. A unit cell of planar EBG structure is shown in  

Figure  3.12. The computational domain and the boundary setup for extracting 

dispersion diagram for 2-D propagation is shown in Figure  3.16. A pairs of PBC 

setup for any two side walls in front of each other resembles the periodicity in that 

direction.  To extract a 1-D equivalent circuit-transmission line model for a wave 

propagating through EBG patterns in x-direction with xkk x ˆ= , the infinite 2-D array 

of EBG structures shown in Figure  3.12 may be reduced to a 1-D infinite array by 

applying perfect magnetic conducting (PMC) boundaries on both sides of the array as 

shown in Figure  3.17. Therefore, H-field is equal to zero on the sides of array. With 

this assumption, we have ignored the side coupling effects. A unit cell of the 

proposed planar EBG structure is shown in Figure  3.18. The setup shows the 

computational domain and the boundary setup which can be used to extract the 

bandgap using the dispersion diagram. This is the basic setup which will be used in 

later subsections for both the numerical full-wave analysis and the modeling for 1-D 

propagation (Γ-Χ region in the Brillouin zone).  To prevent confusion, it should be 

mentioned that if we consider periodic boundary instead of PMC boundary in Figure 

 3.18 then dispersion in Χ-Μ and Μ-Γ regions in the Brillouin zone can be extrated. 

Results characterize new 2-D structure where in one direction its patches are 
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connected to each other through a meander line and in the other direction there is a 

gap between the two adjacent patches. 

The frequency independent lumped elements used in the model represent the 

meander line, the patch, the mutual coupling between the meander line and the patch, 

and the step discontinuity between the patch and the meander line. The transmission 

lines connecting lumped elements are known to transfer impedance and to model the 

phase shift increasing with frequency. The transfer ABCD matrix presenting a unit 

cell of the EBG modeled with lumped elements and transmission lines is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
mm

mm

DC
BA

DC
BA  

 Equation  3-6 

Considering the infinite array of EBG structure as a transmission line made of 

engineered materials with the effective propagation constant kx and the effective 

characteristic impedance Z0,eff, the ABCD parameters for this transmission line 

corresponding to a unit cell of EBG are presented by: 

⋅⎥
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⎤
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⎣
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BA

xxeff

xeffx  

 Equation  3-7 

where d is the size of a unit cell (periodicity length). By equating Equation  3-6 and 

Equation  3-7 the dispersive behavior of structure is predicted. In the following 

subsections, we introduce the relationship between physical parameters of the 

structure and the lumped elements, and compute the elements of the transfer matrix 

Am, Bm, Cm, and Dm. Without loss of generalization, the metallization thickness t and 

the metallic and dielectric losses are neglected. 
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Figure  3.16. A unit cell of the planar EBG structure with two-turn meander bridges. 

(a) Setup used for extracting the bandgap of EBG structure in 2-D propagation using 

dispersion diagram. The boundary setup is shown in the figure. (b) Top view of EBG 

structure. 
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Figure  3.17. Infinite 1-D array of the proposed planar EBG. 
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(a) (b)

PBC boundary
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Figure  3.18. A unit cell of the planar EBG structure with two-turn meander bridge. (a) 

Setup used for extracting the bandgap of EBG structure in 1-D propagation using 

dispersion diagram. The boundary setup is shown in figure. (b) Top view of EBG 

structure. If PMC boundaries are replaced by a pair of PBC boundaries it resembles 

2-D propagation which is different from Figure  3.16. 

 

 

3.3.2. Characterization of EBG using Full-Wave Simulator 

In this subsection to assess the performance of the model that will be 

developed in the following subsections, we are extracting the dispersion diagram of a 

few selective planar EBG structures using the setup shown in Figure  3.18. We use 
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full-wave numerical simulator Ansoft’s HFSS and the irreducible Brillouin zone for 

this purpose. The selected samples are covering the combination of different 

specifications for the dielectric substrate such as high or low relative permittivity and 

thin or thick dielectric thickness. The first sample which is made of thin slab of high-

k material has the following parameters: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, 

MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. The 

dispersion diagram for this sample is shown in Figure  3.19.  The first three modes and 

the bandgaps in between are clarified in the figure. Also, the dispersion diagram of 

this sample for the unit cell shown in Figure  3.16 is plotted in Figure  3.20. 

Comparison of results in Figure  3.19 and Figure  3.20 shows that the first and second 

modes are similar in both structures. However, there is a degenerate or very close 

mode to the second propagating mode in the structure of Figure  3.16. Again the third 

mode in Figure  3.18 is compatible with the fourth mode of Figure  3.16. (This way of 

mapping between modes of two unit cells is seen in the other chosen samples. The 

samples will be introduced in the following paragraphs).  

The second sample which is made of thicker slab with the same permittivity is 

specified with the following design parameters: PW = 1.6 mm, h = 500 µm, MW = 0.02 

mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 

Figure  3.21 shows the dispersion diagram for the second sample. The first three 

modes and the bandgaps in between are clarified in the figure. The third case study is 

made of a thin slab with higher permittivity. This sample is specified by: PW = 1.6 

mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 

200, and tan δ = 0.0015. The dispersion diagram including the first three propagating 
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modes is shown in Figure  3.22. The bandgaps in between of those modes are marked 

in the figure. The fourth sample is made of thin slab of low permittivity material. The 

design parameters for this sample are as: PW = 20 mm, h = 114.3 µm, MW = 0.2 mm, 

MB = 0.2 mm, ML = 20 mm, MG = 0.2 mm, εr = 4.3, and tan δ = 0.02. The dispersion 

diagram for this case study is shown in Figure  3.23. The first three propagating modes 

and the bandgaps in between of these modes are clarified in Figure  3.23. 

The small sudden variations seen in the graphs of propagating modes such as 

zigzag changes are numerical errors. Later, we will return back to these graphs and 

continue our studies with curve fitting on the f-Βd points in the dispersion diagrams to 

characterize performance of EBG structures in detail. In the following subsections, 

we continue the modeling discussion. 
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Figure  3.19. Dispersion diagram of the planar EBG structure shown in Figure  3.18 

extracted using HFSS.  The design parameters of the EBG are: PW = 1.6 mm, h = 

114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and 

tan δ = 0.0015. 
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Figure  3.20. Dispersion diagram of the planar EBG structure shown in Figure  3.16 

extracted using HFSS.  The design parameters of the EBG are: PW = 1.6 mm, h = 

114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and 

tan δ = 0.0015. 
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Figure  3.21. Dispersion diagram of the planar EBG structure shown in Figure  3.18 

extracted using HFSS.  The design parameters of the EBG are: PW = 1.6 mm, h = 500 

µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ 

= 0.0015. 
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Figure  3.22. Dispersion diagram of the planar EBG structure shown in Figure  3.18 

extracted using HFSS.  The design parameters of the EBG are: PW = 1.6 mm, h = 

114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 200, and 

tan δ = 0.0015. 
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Figure  3.23. Dispersion diagram of the planar EBG structure shown in Figure  3.18 

extracted using HFSS.  The design parameters of the EBG are: PW = 20 mm, h = 

114.3 µm, MW = 0.2 mm, MB = 0.2 mm, ML = 20 mm, MG = 0.2 mm, εr = 4.3, and tan 

δ = 0.02. 

 

3.3.3. Model of Patch 

The characteristic impedances of the patch and the meander line are denoted 

by ZP and ZM, respectively (Formulas of the characteristic impedance and the 

effective relative dielectric permittivity for microstrip line are provided in Appendix). 

ZP is much smaller than ZM as the width of patch microstrip is much wider than the 

width of the meander line microstrip. At low frequencies, patch microstrip line 

behaves as an electrically short length line which has low impedance compare to 

adjacent meanders. For that scenario, the patch is modeled by a T-equivalent circuit 
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as shown in Figure  3.24  [47]. The series reactance and shunt susceptance are given 

by: 

cZ
P
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P

Z
B

P

rePW
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g
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P

ε
λ
π
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 Equation  3-8 
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≈  

 Equation  3-9 

where PW is the length of square patch, λg is the guided wavelength in dielectric 

substrate, c is the speed of light in free space and εreP is the effective relative 

permittivity of dielectric substrate. If ZP << ZM then the patch may be approximated 

only by capacitance CPH at low frequencies and the series inductance LPH could be 

neglected. 
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Figure  3.24. a) Patch of the planar EBG pattern which has short electrical length and 

low impedance. b) Equivalent lumped-element circuit. 
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3.3.4. Model of Patch-Meander Line Step Discontinuity  

The discontinuity between the patch and the meander line in our planar EBG 

design is asymmetrical as shown in Figure  3.25 (a). Here, the meander line is 

connected to the patch at the edge (margin = 0). PW is the width of patch and MW is 

the width of the meander line. The T-equivalent circuit modeling the discontinuity is 

shown in Figure  3.25 (b). This type of discontinuity can be modeled approximately as 

follows. If we ignore the fringing field-effect along the side where the patch is 

uniformly connected to the meander then we can place PMC boundary (or H-

symmetry boundary) along that side. With this assumption, we can replace the 

asymmetrical discontinuity with a symmetrical one as shown in Figure  3.26. The 

width of microstrip lines in the new step discontinuity is double the widths in original 

structure: W1 = 2PW and W2 = 2MW. The elements modeling the symmetrical 

discontinuity are given by  [47],  [48]: 
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 Equation  3-11 

where the inductance per unit length in the microstrip line Lwi (i = 1, 2) is given by: 

c
ZL reiCi

Wi
ε=  

 Equation  3-12 
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ZCi and εrei are the characteristic impedance and the effective relative permittivity of 

microstrip line with strip-width Wi, respectively. h is the dielectric thickness in micro 

meter. The capacitance is given by: 
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 Equation  3-14 

C is in pF, L and Li are in nH. The lumped elements of the model in Figure  3.25 and 

Figure  3.26 are mapped as follows: CD = C, LDP = L1, and LDM = L2. In this 

approximation, the value of capacitance CD is almost twice the value of capacitance 

for symmetrical step discontinuity with the same dimensions as the original 

asymmetrical one  [49],  [50]. 

It is to be noted that in this study we have not considered any case study with 

the general form of asymmetric step discontinuity where microstrips are connected 

with some margin from the sides. However, we propose to approximate the value of 

the capacitance and the inductance as the geometric mean of related values for two 

symmetric cases as shown in Figure  3.27. The accuracy of this proposal has not been 

verified and it remains as a point of investigation in future work. 
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Figure  3.25. (a) Asymmetrical discontinuity between patch and meander line with 

margin = 0 (refer to Figure  3.11). (b) Equivalent lumped- element circuit. 

 

 

(a) (b)

C

L1 L2

T TT

W1 W2

(a) (b)

C

L1 L2

T T

C

L1 L2

CC

L1L1 L2L2

T TT

W1 W2

T

W1 W2

 

Figure  3.26. (a) Symmetrical discontinuity between microstrip lines. (b) Equivalent 

lumped- element circuit. 
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Figure  3.27. (a) Asymmetrical discontinuity between microstrip lines with margin ≠ 0 

(refer to Figure  3.11). (b) and (c) Symmetrical discontinuity between microstrip lines. 

Design parameters are shown in the figure. (CD, LDP, LDM), (CD1, LDP1, LDM1), and 

(CD2, LDP2, LDM2) show the elements modeling the step discontinuity at the 

connections (a), (b), and (c), respectively. The equivalent circuit model is shown in 

Figure  3.25 (b). 

 

3.3.5. Model of Meander Line  

A 3-D view of a planar meander line and its design parameters is shown in 

Figure  3.28. The meander line which is placed on the top of metal backed dielectric 

substrate consists of N metallic arms and (N + 1) metallic bridges connecting arms. 

The meander line in Figure  3.28 has 6 arms and 7 bridges. For simplicity of study, it 
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is assumed that all traces in the meander have same width, MW; separation gap 

between two adjacent arms, MG; arm length, ML; input and output connecting bridges’ 

length, MBi = MBo = MB; and input and output arms’ length, MLi = MLo = ML. However, 

the introduced models are general and easily can be applied to any configuration. The 

thickness and relative permittivity of dielectric substrate are h and εr, respectively. 

The π-equivalent circuit model of meander line is shown in Figure  3.29.  The inductor 

is the dominant element in this model up to the first self resonant frequency. The 

capacitors model the parasitic effects. It should be noted, in this approximate 

modeling, we have not taken into account the effect of right angle bends in meander 

line which becomes important when a rigorous model is required at higher 

frequencies. 
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Figure  3.28. Three-dimensional view of meander line inductor. Design parameters are 

included in the figure.   
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Figure  3.29. Equivalent circuit model of meander line.   

 

3.3.5.A. Computation of Inductance  

In this subsection, we provide a formula for meander line inductance based on 

the Greenhouse formulas  [51]. The expression for inductance includes the self 

inductance of all sections in the inductor pattern (total of N arms and (N+1) bridges), 

the mutual inductance between all magnetically coupled arms and bridges, and the 

effect of ground. It is assumed that the meander line is electrically short (the total 

length of meander line is much less than the wavelength at the maximum operating 

frequency in the system). The root of this assumption is in the original formulation 

which was done assuming the magnitude and phase of current are constant across the 

line. Later, we will discuss about the effects related to phase changes along the 

electrically long lines. In the meander line, the mutual inductance between adjacent 

arms is negative due to opposite directions of current. The mutual inductance between 

arms separated by another arm is positive as the direction of current-flow is similar in 

both. Figure  3.30 (a) shows magnetic flux lines for two lines carrying current in the 

same direction providing positive mutual inductance. Figure  3.30 (b) shows magnetic 

flux lines for two lines carrying current in opposite directions providing negative 
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mutual inductance. Therefore, in the meander line the mutual inductance between one 

arm and all the magnetically coupled arms are sequentially alternating between 

negative and positive. The coupled arms are marked by solid line in Figure  3.31. The 

mutual inductance between one bridge and all the magnetically coupled bridges are 

positive. In this study, as a first-order approximation, we have considered only the 

coupling between adjacent bridges indicated by dashed marker in Figure  3.31. 

Coupling between other pairs of bridges are negligible as there is not any overlap 

along the traces as well as the increased gap between them. The total inductance of 

meander line pattern on top of thick dielectric or suspended in air (we have not 

discussed the effect of presence of ground yet) is given by: 

( )∑ ∑ ∑∑
−

=

−

= =
+−+

+

=

+−+=
1

1 1 1
12,12)(2,2

12

1

212
N

j

jN

i

N

i
iijii

j
N

i
iP MMLL  

 Equation  3-15 

where the first sum represents the total self inductance, the second sum gives the total 

mutual inductance between coupled arms, and the third sum gives the total mutual 

inductance between adjacent bridges. We intend to use the developed model in the 

design of EBG structures with miniaturized dimensions, where the small separations 

between the arms and the long overlap length between arms can produce considerable 

increase in the total mutual coupling. Therefore, to develop a highly accurate model, 

it is better not to approximate the term of mutual coupling between arms by a first-

order representation.  
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Figure  3.30. Magnetic flux lines showing the magnetic coupling between two 

adjacent lines for two cases: (a) positive mutual inductance and (b) negative mutual 

inductance. 
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Figure  3.31. Magnetically coupled traces in a meander line inductor. The mutual 

coupling between pairs of arms and bridges is marked with solid lines and dashed 

lines, respectively. 
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From topology and composition of the structure, the inductances can be 

defined. The self inductance of ith section is given by  [52],  [53]: 
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where it is assumed t = 0 and li is the length of line. All dimensions are in µm and Li 

is in nH. The mutual inductance between two parallel filaments which are completely 

overlapping, as shown in Figure  3.32 (a), with length m and geometric mean distance 

dGMD between them is computed by  [51],  [53],  [54]: 
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where all dimensions are in µm and M is in nH. The geometric mean distance 

between parallel strips in the meander which are distant from center to center by dave 

is calculated as  [51],  [54]: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++++

−=

L
108642 660

1
360

1
168

1
60

1
12

1

lnln

WaveWaveWaveWaveWave

aveGMD

MdMdMdMdMd

dd

 

 Equation  3-18 

 

To compute the mutual coupling between parallel strips, we need to consider different 

configurations  [54] including: 1) the case without any overlap shown in Figure  3.32 

(b). For that case, the mutual inductance, M, is given by: 

 ( ) ( )GMDGMDGMDGMD dpndpmdpdpnm MMMMM ,,,,2 ++++ +−+=  
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 Equation  3-19 

If the length p is equal to zero as shown in Figure  3.32 (c) then M is obtained from the 

relation: 

( )GMDGMDGMD dndmdnm MMMM ,,,2 +−= +  

 Equation  3-20 

2) The case with partial overlap shown in Figure  3.32 (d) where M is given by: 

( ) ( )GMDGMDGMDGMD dpndpmdpdpnm MMMMM ,,,,2 −−−+ +−+=  

 Equation  3-21 

3) The case with overlap but unequal strip-lengths as shown in Figure  3.32 (e). M is 

computed as: 

( ) ( )GMDGMDGMDGMD dqdpdqmdpm MMMMM ,,,,2 +−+= ++  

 Equation  3-22 

If the length p is equal to zero as shown in Figure  3.32 (f) then M is given by: 

( ) GMDGMDGMD dqdndm MMMM ,,,2 −+=  

 Equation  3-23 

In those examples we will study later to asses our modeling due to choice of equal 

arms along the meander, only cases (a) and (c) in Figure  3.32 will be used. However, 

for general modeling of a meander line with arbitrary shape all the cases mentioned 

above are needed. 
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Figure  3.32. Magnetically coupled strips. Design parameters for computing mutual 

coupling are shown in the figure. 

 

In the following, we apply the image theory to include the effect of ground 

plane on the total inductance of the meander line  [55]. It is very important to consider 

this effect because of the trends of size shrinking as followed in the design of 

electronics which are affecting design architectures. Figure  3.33 shows a meander 

line and its image modeling the effect of ground plane. The image is located at a 

distance equal to twice the substrate-thickness from the actual meander location. The 

current in the image meander is in the reverse direction leading to a total negative 

mutual inductance represented by LMIP. The mutual inductance between the 

magnetically coupled sections in the actual and the image meanders are computed 

through the formulas stated earlier. In those formulas, the geometric mean distance is 
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approximated by the distance between centers of strips. The decrement of the 

dielectric thickness leading to closer location of the ground plane to the meander 

pattern causes the total value of inductance to decrease. Therefore, the total net 

inductance of meander line is given by: 

MIPP LLL +=  

 Equation  3-24 

where the mutual inductance of image pattern is computed by: 
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 Equation  3-25 

It is noted that the mutual inductance between image and actual meanders does not 

need to be considered twice as the image pattern is not part of the actual one.  
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Figure  3.33. Image of meander line by ground plane. 
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3.3.5.B. Computation of Parasitic Capacitances  

There are two types of parasitic capacitances in meander line model, CL1 and 

CL2 as shown in Figure  3.29. CL1 representing the parasitic capacitance in the meander 

pattern consists of different interline capacitances such as Cin, Ctop, and Cbottom 

between adjacent arms and Ctop, Cbottom, and Cside between adjacent bridges as shown 

in Figure  3.34. In this modeling, due to our assumption of zero metallization 

thickness, t = 0, Cin and Cside are negligible. Also, Ctop and Cbottom between arms are 

much greater than Ctop and Cbottom between bridges in our meander designs where we 

intentionally want large value of inductance per area. Therefore, the parasitic interline 

capacitance between two coupled adjacent arms j and j+1 is given by: Cg_j = Ctop_arm_j 

+ Cbottom_arm_j or ( )jgdjgajgjg CClC ____ 5.0 += . lg_j representing the effective coupled 

length between two arms is approximated by: lg_j = Minimum(lj, lj+1). 0.5 × Cga_j and 

0.5 × Cgd_j are the total fringing capacitance per unit length in gap between two arms 

through air and dielectric, respectively. Regarding our assumption that the strip width 

is constant along the meander line, two adjacent arms in meander pattern are 

symmetric coupled lines. Also, in this modeling we are approximating the parasitic 

capacitance by considering only the coupling effect between adjacent arms. In 

another word, the coupling between the non-adjacent arms as well as the coupling 

between the patch and the non-adjacent arms is neglected. Therefore, due to the 

assumption of equal gap between arms MG, Cga = Cga_j and Cgd = Cgd_j for 1 ≤ j ≤ N-1.  

Later in this subsubsection, we will provide formulas to compute Cga and Cgd. Now, 

CL1 which is the equivalent capacitance resulting from series of gap capacitances 

Cg_j’s  in (N-1) consecutive inter-arm gaps is computed by: 
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As it is assumed that all arms are equal in length, CL1 is given by: 
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 Equation  3-27 
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Figure  3.34. Parasitic capacitances in the meander pattern. 

 

 

CL2 represents half of the parasitic capacitance between the meander line strip 

and the ground plane. To compute CL2, we have to consider bridge-sections and arm-

sections separately due to the different coupling effects. The capacitance per unit 

length between the strip and the ground in bridge-sections which are uncoupled 

microstrip lines is given by  [53]: 
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 Equation  3-28 

where εreM is the effective relative permittivity of the meander microstrip. CGD is the 

result of parallel combination of three capacitances: FPGD CCC 2+=  as shown in 

Figure  3.35. Cp, the per unit length parallel plate capacitance between the strip and 

the ground plane is given by: 

h
MC WrM

P
εε 0=  

 Equation  3-29 

Where εrM is the relative permittivity of the meander microstrip. The fringing 

capacitance per unit length between the uncoupled strip and the ground is given by: 
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 Equation  3-30 

For two symmetrically coupled microstrip lines, the capacitance per unit 

length between the strip and the ground is defined by  [47],  [48]: 
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Figure  3.35. Parasitic capacitances between the strip and the ground plane in a 

microstrip line. 
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eGD CC =  

 Equation  3-31 

The even mode capacitance per unit length, Ce, is given by FFPe CCCC ′++=  as 

shown in Figure  3.36 (a). It is worth to mention that the interline mutual capacitance 

between symmetric lines discussed earlier in this subsubsection can also be defined in 

terms of the odd and the even mode capacitances by ( )eojgjg CClC −= __ 5.0 . Co, the 

odd mode capacitance per unit length is given by gdgaFFPo CCCCCC ++′++=   [47], 

 [48], as shown in Figure  3.36 (b). C'F, the fringing capacitance between the meander-

strip and the ground in presence of another similar strip is given by  [48]: 
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where ⎥
⎦

⎤
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−−=

h
M

A W5.133.2exp1.0exp .  Cgd, the fringing capacitance per unit length 

between two symmetrical coupled microstrip lines through the dielectric gap is given 

by  [48]: 

( )esosgd CCC −= 5.0  

 Equation  3-33 

where Ces and Cos are representing the even and the odd mode capacitances per unit 

length in the symmetrically coupled strip lines, respectively. A pair of symmetrically 

coupled strip lines and the representing parasitic capacitances in the configuration are 

shown in Figure  3.37. The even and the odd capacitances for the configuration of two 

symmetrically coupled arm-strips are given by  [48]: 
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 Equation  3-34 

K(kx) and K(k'x) are the elliptic function and its complement, respectively. The 

functional ratio K(kx)/K(k'x) is approximated by  [48],  [56]: 
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 Equation  3-35 

The argument kx is given by  [48]: 
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Figure  3.36. Constituents of (a) the even mode capacitance and (b) the odd mode 

capacitance in a pair of symmetric coupled microstrip lines. 
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Figure  3.37. Parasitic capacitances for a pair of symmetric coupled strip lines. 

 

where 21 xx kk −=′ . Cga, the fringing capacitance per unit length between two 

symmetrical coupled microstrip lines through the air gap is given by  [48],  [57]: 

F
a
cpsga CCC ∆−= 5.0  

 Equation  3-37 

where Cªcps represents the fringing capacitance per unit length between the symmetric 

coupled coplanar lines when the dielectric material is air. The width of strips and the 

separation between them are similar to the arm-strips in the original meander 

structure and they are equal to MW and MG, respectively. Cªcps is given by  [48]: 

( )
( )kK
kKC a

cps
′

= 02ε  

 Equation  3-38 

where 
WG

G

MM
M

k
2+

=  and 21 kk −=′ . ∆CF is the fringing capacitance per unit length 

in the air not in the air gap between the two symmetric coupled arm-strips. It is 

approximated by  [57]: 

( ) ( )a
Fs

a
F

a
Fs

a
FF CCCCC ′−′+−=∆  

 Equation  3-39 
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a
FC , a

FC ′ , a
FsC , and a

FsC ′  are the fringing capacitances per unit length in the symmetric 

coupled microstrip and strip lines with air as a dielectric material. The value of those 

capacitances are obtained using the formulas discussed earlier in this subsubsection 

when substituting εr = 1. It should be considered that in the symmetric coupled strip 

lines the fringing capacitances are defined as 

a
Ps

a
es

a
gd

a
Ps

a
os

a
Fs

a
Fs CCCCCCC −=−−=′+ 5.05.0 , where a

P
a
Ps CC = . 

To model the parasitic capacitance of a meander line, we deal with other 

configurations such as having three or more symmetric coupled microstrip lines. 

However, as mentioned earlier, we are approximating our modeling by neglecting the 

coupling between non-adjacent lines. Figure  3.38 shows the approximated parasitic 

capacitances of three symmetric coupled lines. For the middle strip, the parasitic 

apacitance per length between the strip and the ground is given by FPGD CCC ′+= 2 . 
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Figure  3.38. Parasitic capacitances for the three symmetric coupled microstrip lines, 

where the coupling effect between the non-adjacent arms is neglected. 
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In our EBG structure, to compute both the parasitic capacitances between the 

strip and the ground for the first and the last arms, and the coupling effect between 

meander line and the adjacent patches, we need to model the asymmetric coupled 

microstrip lines. In the next subsection, the available model and expressions are 

discussed. 

 

3.3.6. Model of Coupling Effect between Patch and Meander line  

In the proposed planar EBG structures, the configuration of a patch and an 

adjacent arm is asymmetric coupled microstrip lines as shown in Figure  3.39 (a). All 

capacitances per unit length characterizing that configuration including the parallel 

plate capacitances and the fringing capacitances are shown in that figure  [58]. The 

unit cell of EBG structure under study may include several coupled microstrip lines 

parallel to each other such as a patch sandwiched between two arms from each side as 

shown in Figure  3.39 (b). The capacitances per unit length modeling those microstrips 

are shown in that figure. The capacitive equivalent circuit model of asymmetric 

coupled patch-arm configuration is shown in Figure  3.39 (c), where CGD_M is 

representing the capacitance between the first arm and the ground plane. CGD_P is the 

capacitance between the patch and the ground and CM_PM is the mutual coupling 

between the patch and the arm. To complete the total value of the parasitic 

capacitance between the meander line and the ground discussed in Subsubsection 

 3.3.5.B, the capacitance CGD_M is included in the value of CL2. We can replace CPH in 

Subsection  3.3.3 with CGD_P which is approximating the capacitive load with higher 

accuracy due to the consideration of the fringing capacitances in presence of coupled 
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lines. The lumped elements in Figure  3.39 (c) for the configuration shown in Figure 

 3.39 (a) are approximated by: 

( ) lCCCC PHFPHFPHPPGD ∆′′++= ____  

 Equation  3-40 

( ) lCCCC MRFMRFMRPMGD ∆′′++= ____  

 Equation  3-41 

( ) lCCC PMgdPMgaPMM ∆+= ___  

 Equation  3-42 

where ∆l is the effective overlapping length between the patch and the meander arm. 

For the EBG structures under study ∆l is equal to ML - MW. CP_PH and CP_MR represent 

the parallel plate capacitance per unit length for the patch and the meander-strip, 

respectively. CF_PH and C″F_PH demonstrate the fringing capacitances per unit length 

for the two coupled symmetric patch-microstrip lines. Similarly, CF_MR and C″F_MR 

represent the fringing capacitances per unit length for the two coupled symmetric 

meander-microstrip lines. The separation between the two symmetric strips is the 

same as the one in the original setup, MB. Referring to the expressions provided for 

the meander line model in Subsubsection  3.3.5.B, CP_MR = CP and CF_MR = CF. C''F_MR 

is obtained from the formula C'F by replacing a proper separation between coupled 

lines which corresponds to: (MB  MG). If in the provided expressions, we replace 

the specifications of meander with the specifications of patch including: the width 

(PW  MW), the characteristic impedance (ZP  ZM), and the relative effective 

permittivity (εreP  εreM) then the values of CP_PH, CF_PH, and C''F_PH are easily 



 

85 

obtained. Cgd_PM, the capacitance per unit length through the dielectric gap is given by 

 [58]: 

MRgdPHgdPMgd CCC ___ 5.0=  

 Equation  3-43 

where 0.5 × Cgd_MR represents the total fringing capacitance per unit length between 

the two symmetric coupled meander-strips through the dielectric gap. That 

capacitance is computed through the formula provided for Cgd in Subsubsection 

 3.3.5.B by replacing the proper separation gap (MB  MG). Similarly, 0.5 × Cgd_PH, 

the total fringing capacitance per unit length between the two symmetric coupled 

patch-strips through the dielectric gap is computed. The fringing capacitance per unit 

length through air gap is given by  [58]: 

PMF
a

PMcpsPMga CCC ___ 5.0 ∆−=  

 Equation  3-44 

where a
PMcpsC _  is the total fringing capacitance per unit length between the 

asymmetric coplanar strips that have same dimensional configuration as the patch-

arm microstrips under study. It means that width of strips is the same as width of the 

patch and the meander-arm (PW, MW) and the separation gap is also the same (MB). 

The dielectric material is air. That capacitance is given by  [58],  [59]: 

( )
( )kK
kKC a

PMcps
′

= 0_ 2ε  

 Equation  3-45 
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where 
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 and 21 kk −=′ . ∆CF_PM shows the fringing 

capacitance per unit length in the air not in the air gap between the asymmetric 

coupled patch-arm microstrips. It can be given by1: 

( )( )
( ) ( )a

MRFs
a

MRF
a

MRFs
a

MRF
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PHFs
a
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a
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CCCCCCCC
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=∆  

 Equation  3-46 

where a
PHFC _ , a

PHFC _′′ , a
MRFC _ , a

MRFC _′′ , a
PHFsC _ , a

PHFsC _′′ , a
MRFsC _ , and a

MRFsC _′′  represent 

the fringing capacitances per unit length in the symmetric coupled microstrip and 

strip lines between the strips and the ground where the dielectric material is air. The 

configurations of the two coupled lines are meander-meander and patch-patch which 

are labeled by the subscripts MR and PH. The expressions for these capacitances are 

identical to those provided earlier in Subsubsection  3.3.5.B, except the relative 

permittivity which should be considered as εr = 1. When the structure under study is 

consisting of several coupled lines similar to Figure  3.39 (b), the expressions defining 

the lumped elements in the equivalent circuit model should be modified to include the 

                                                 

 

 

 

1 Here, we are suggesting a more inclusive formula for the fringing field effects in air 

than the formula provided in  [58]. Therefore, our suggested formula may provide 

better approximation. 



 

87 

coupling effects (the same issue was discussed previously while modeling the 

meander line in Subsubsection  3.3.5.B).  
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Figure  3.39. (a) Side view of patch and meander-arm microstrips as a pair of 

asymmetric coupled microstrip lines. (b) Side view of a patch microstrip between 

four meander-arm mirostrips. The capacitances modeling the coupled lines are shown 

in the figure. (c) Capacitive equivalent circuit model of the asymmetric coupled 

patch-arm microstrips. 

 

To complete the modeling in this part, we should consider the bridge 

connecting the patch to adjacent arm as shown in Figure  3.40 (a). If the bridge-length, 

MB, is a considerable portion of the total distance separating the two consecutive 

patches, then we can complete the modeling by considering the bridge-trace 
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inductance, LB, the trace to ground capacitance, CB, and the mutual coupling 

capacitance between the patch and meander-arm, CM_PM, as one circuit block The 

complete π-equivalent circuit model of this case is shown in Figure  3.40 (b). 

However, if the bridge-length, MB, is very small then LB and CB may be included in 

the total inductance and capacitance modeling the meander line (L and CL2) discussed 

in Subsection  3.3.5. In this case, CM_PM is modeled in series with CL1 and the total 

combination is parallel to L as shown in Figure  3.40 (c). In another word, we can 

model the coupling capacitor between the patch and the meander as part of the 

interline parasitic capacitances in the meander pattern. That is acceptable because we 

are developing an approximate model for initial guess in EBG design procedure. 
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Figure  3.40. (a) A meander line between two patches. The bridge connecting the first 

arm to patch is marked in the figure. (b) Equivalent circuit modeling: 1) the mutual 

coupling effect between the patch and the adjacent meander-arm and 2) the 

connecting bridge-trace. (c) Equivalent circuit modeling the total meander line (refer 

to Figure  3.29). In this model, the effect of mutual coupling between the patch and the 

meander is considered as interline parasitic capacitance. 

 

Example—We are computing the parasitic capacitance between pattern and 

ground for a meander line with six arms, N = 6, as shown in Figure  3.41. The 

meander line is connected to adjacent patches at the edge (margin = 0). Specifications 

of the meander are as follows: 1) identical line-width along the pattern MW; 2) equal 

separating gap between the arms MG; and 3) equal arm-length ML. All the 

coupled/uncoupled traces are partially modeled with the different fringing 
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capacitances per unit length which are marked with different symbols and colors in 

that figure. The meander line consists of 7 (N + 1) bridge-sections which are 

uncoupled lines. The fringing capacitances per unit length in both sides of those 

traces are identical and they are equal to CF. The total length of those bridges in the 

pattern is equal to ( ) ( )( )WGWB MMNMM +−++ 15.02  and the parasitic capacitance to 

ground per unit length is given by FPGD CCC 2+= . In the meander pattern, four (N – 

2) arms are the symmetric coupled lines from both sides (one arm is sandwiched 

between two similar arms). Therefore, the fringing capacitances per unit length for 

both sides are identical and they are equal to C'F. The total length of that type of arm 

is equal to ( )( )WL MMN −− 2  and the parasitic capacitance to ground per unit length is 

given by FPGD CCC ′+= 2 .The last two remaining arms in the meander pattern (the first 

and the last ones) are the coupled lines sandwiched between a similar arm and a 

patch. Therefore, the fringing capacitance in the side corresponding to arm is C'F and 

in the side corresponding to patch is C''F. The total length of these two arms is equal 

to ( )WL MM −2  and the parasitic capacitance to ground per unit length is equal to 

FFPGD CCCC ′+′′+= . Therefore, for that 3-turn meander line the total parasitic 

capacitance to ground is given by: 

( ) ( )( )[ ]( ) ( )( )( )
( )[ ]

( ) ( )[ ]( ) ( )( )
( )[ ]FFPWL

FPWLFPWGWB

FFPWL

FPWLFPWGWBL

CCCMM
CCMMCCMMMM

CCCMM
CCMMNCCMMNMMC

′+′′+−+

′+−+++++=

′+′′+−+

′+−−+++−++=

2           
24255.02        

2           
22 215.022 2

 

 Equation  3-47 
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Figure  3.41. Different types of fringing capacitances per unit length for the coupled 

and uncoupled traces in the meander line are marked with different colors and 

symbols. The 3-turn meander has the following parameters: MLi = MLo = ML, (MBi = 

MBo = MB) ≠ MG, and PW ≠ MW (The design parameters are shown in Figure  3.25 and 

Figure  3.28). 

 

3.3.7. Model of Electrical Length in Planar EBG Structure 

As reported by other researchers and mentioned earlier, the equivalent circuit-

transmission line model can capture higher frequency effects more properly than the 

equivalent circuit model. The main reason for this superiority is that the transmission 

lines models the phase shift which is a function of frequency. The phase shift is the 

delay in the propagating field across the structure and it is increasing with frequency. 

To consider the phase delay across the unit cell of EBG structure, we are including 

two different types of microstrip transmission lines in our model consisting of patch-

microstrip and meander-microstrip with total length of d1 and d2, respectively. Where 

d = d1 + d2 represents the periodicity-length (or the length of a unit cell of EBG 

structure), d1 represents the length of a patch, and d2 represents the length of 
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separation between the two consecutive patches. Therefore, the patch-microstrip 

models the phase difference across the patch and the meander-microstrip models the 

phase difference across the meander line (not along the meander line). The basic idea 

of modeling the phase delay in a meander line by the proposed method which is 

working properly as will be shown in later subsections is coming from the concept of 

modeling of meander-antennas used by Endo et al.  [60]. In  [60], the meander-antenna 

was modeled as a linear dipole antenna with inductive loading. It is possible to 

include the effect of phase difference between adjacent arms in meander line with 

higher accuracy by considering the coupling effects vectorially as  [55]. However, in 

our applications the proposed level of accuracy is working well enough. The ABCD 

parameters for the microstrip line specified by the characteristic impedance, the 

relative effective permittivity, and the length (Z0, εre, d0) are available in microwave 

fundamental books such as  [46].  

 

3.3.8. The Model of a Unit Cell of the Proposed Planar EBG Structure 

In this subsection, different models with different levels of accuracy in 

predicting bandgaps of an EBG structure are studied. These models are showing the 

effect of added elements in the configuration. We realize that modeling is not easy 

when the frequency is increasing. However, we could predict lower edge of bandgap 

with good accuracy which may decrease the load of full-wave simulations during the 

design procedure of EBG structure. 

In Figure  3.42 a very simple circuit model for a unit cell of the proposed 

planar EBG structure including two capacitances each modeling half of the patch and 
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an inductance modeling the meander line is shown in Figure  3.18. The dispersion 

diagram of a unit cell of the first case study (defined previously in Subsection  3.3.2) 

extracted using this simple circuit model is shown in Figure  3.43. The design 

parameters of the EBG structure are repeated here for convenience:  PW = 1.6 mm, h 

= 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, 

and tan δ = 0.0015. The ABCD transfer matrix defined in Equation  3-6 is given by: 
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 Equation  3-48 

where ( ) 21 PHCjy ω=  and ( )Ljy ω12 = . The dispersion extracted from numerical 

analysis was demonstrated in Figure  3.19. Comparison in the Γ-Χ zone shows that 

this model which is describing the EBG structure as a low pass filter could not predict 

accurately the lower edge of the bandgap.  
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Figure  3.42. Simple physical-based circuit model for the proposed planar EBG 

structure. 
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Figure  3.43. Dispersion diagram of the planar EBG structure shown in Figure  3.18 is 

modeled by the simple physical-based circuit model shown in Figure  3.42. The 

specifications of EBG are as follows: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, 

MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 

 

An advanced physical-based model which includes physical specifications at 

low frequencies is shown in Figure  3.44. The model includes: 1) the inductances and 

the capacitances modeling the patch. 2) The inductances and the capacitances 

modeling the step discontinuities between the patch and the meander line. 3) The 

inductances and the parasitic capacitances modeling the meander line. 4) The 

capacitances modeling the coupling effect between the meander and the two adjacent 

patches. The dispersion diagram for the same EBG structure mentioned above is 
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extracted using this advanced circuit model shown in Figure  3.45. The ABCD matrix 

for this model is given by: 
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 Equation  3-49 

where ( )PHCjz ω
2

1 = , PHLjz ω=2 , DPLjz ω=3 , DMLjz ω=4 , ( )DCjz ω
1

5 = , 26 LCjy ω= , 

and ( ) ( )LjCCCjy PMMLPMM ωω 1|||| _1_7 += . Comparing this result with those in Figure 

 3.19 and Figure  3.43 shows the improvement in the prediction of the lower edge of 

bandgap. Also, the next propagating mode has appeared. However, the model is not 

still acceptable and the error is high.  
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Figure  3.44. Advanced physical-based circuit model for the proposed planar EBG 

structure. 
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Figure  3.45. Dispersion diagram of the planar EBG structure shown in Figure  3.18 is 

modeled by the advanced physical-based circuit model shown in Figure  3.44. The 

specifications of EBG are as follows: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, 

MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 

 

To improve our model, we consider the phase delay by including the 

transmission lines in the advanced circuit model. The simple equivalent circuit-

transmission line model under study is shown in Figure  3.46. The different 

transmission lines included in the model consider the phase shift across the patch and 

the meander line separately. The dispersion diagram for this configuration is shown in 

Figure  3.47. The ABCD matrix for this model is given by: 
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 Equation  3-50 

where ( )PHCjz ω
2

1 = , PHLjz ω=2 , DPLjz ω=3 , DMLjz ω=4 , ( )DCjz ω
1

5 = , 26 LCjy ω= , 

and ( ) ( )LjCCCjy PMMLPMM ωω 1|||| _1_7 += . The characteristic impedance and the 

propagation constant of patch-microstrip are shown by pairs of (ZP, ΒP), respectively. 

d1 is the length of a patch. The characteristic impedance and propagation constant of 

meander-microstrip are shown by pairs of (ZM, ΒM), respectively. d2 is the distance 

between two consecutive patches. Comparison between the dispersion diagram in this 

figure and the previous one shown in Figure  3.19 shows that although the second 

propagating mode is well predicted and the third propagating mode has inaccurately 

located, the model could not correctly predict the lower edge of the first bandgap 

which is our main target in this modeling. 
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Figure  3.46. Simple equivalent circuit-transmission line model for the proposed 

planar EBG structure. 

 

 

Figure  3.47. Dispersion diagram of the planar EBG structure shown in Figure  3.18 is 

modeled by the simple equivalent circuit-transmission line model shown in Figure 

 3.46. The specifications of EBG are as follows: PW = 1.6 mm, h = 114.3 µm, MW = 

0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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To improve our modeling we need to consider an important fact. We are 

modeling the wave propagation in the x-direction in a 1-D infinite array of EBG 

structures (refer to Figure  3.17) but when the frequency increases the propagation in 

the y-direction starts to be effective. In the Γ-Χ zone, the propagation constant in the 

y-direction is equal to zero (ky = 0). Therefore, to include the propagation in y-

direction in our model, it is enough to consider the following elements: 1) the open 

end (or the capacitance modeling the open end microstrip), 2) the patch-microstrips 

modeling the phase delay for wave propagating in y-direction across the patch, and 3) 

the inductances and capacitances modeling the patch in y-direction. The advanced 

equivalent circuit-transmission line model for the proposed planar EBG structure is 

shown in Figure  3.48. The dispersion diagram for this model is shown in Figure  3.49. 

The ABCD matrix for this model is given by: 
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Figure  3.48. Advanced equivalent circuit-transmission line model for the planar 

proposed EBG structure. 
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 Equation  3-51 

where ( ) zCjz
PH

+= ω
2

1 , ( ) PH
P

P Ljdj
Zz ωβ += 2tan 1

, PHLjz ω=2 , DPLjz ω=3 , 

DMLjz ω=4 , ( )DCjz ω
1

5 = , 26 LCjy ω= , and ( ) ( )LjCCCjy PMMLPMM ωω 1|||| _1_7 += . 

The characteristic impedance and the propagation constant of patch-microstrip are 

shown by pairs of (ZP, ΒP), respectively. d1 is the length of a patch. The characteristic 

impedance and the propagation constant of meander-microstrip are shown by pairs of 

(ZM, ΒM), respectively. d2 is the distance between two consecutive patches. The 

comparison of results in this diagram and the numerical ones in Figure  3.19 shows a 

prediction with high accuracy for the first three propagating modes indicated in the 

figures. The developed advanced equivalent circuit-transmission line model will be 

used in the rest of this study.  

 

 



 

101 

 

Figure  3.49. Dispersion diagram of the planar EBG structure shown in Figure  3.18 is 

modeled by the advanced equivalent circuit-transmission line model shown in Figure 

 3.48. The specifications of EBG are as follows: PW = 1.6 mm, h = 114.3 µm, MW = 

0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 

 

3.3.9. Case Studies and Performance of the Developed Model 

In this subsection, we are going to asses the performance of the developed 

circuit-transmission line model in the Γ-Χ region of the Brillouin zone for the 

samples defined in Subsection  3.3.2. In the Figure  3.50 for the first case study where 

εr = 140 and h = 114.3 µm the comparison between the dispersion diagrams extracted 

by (a) the developed model and (b) the full-wave numerical simulator is shown. 

Clearly, the agreement between graphs for the first three propagating modes is 

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

Wave Number, Kx

Fr
eq

ue
nc

y 
(G

H
z)

α x

βx
Light Line
in Dielectric
Brillouin Zone
Boundary (Kx = π / d)



 

102 

excellent. The attenuation diagram extracted from the equivalent circuit-transmission 

line model for a unit cell of the first sample is shown in Figure  3.51 (a). The 

attenuation diagram for the four samples is plotted in Figure  3.51 (b) which shows the 

suppression level that could be reached in the bandgaps if the source and the 

destination ports are distant from each other by four EBG unit cells. By increasing the 

number of EBG unit cells between the two ports, we can increase the attenuation 

level. The 20 dB suppression level is marked in Figure  3.51 (b). 
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Figure  3.50. Dispersion diagram in Γ-Χ zone for the planar EBG structure shown in 

Figure  3.18 is extracted using (a) advanced equivalent circuit-transmission line model 

and (b) numerical full-wave analysis by Ansoft HFSS. The specifications of EBG are 

as follows: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 

mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.51. The attenuation diagram in Γ-Χ zone for the planar EBG structure shown 

in Figure  3.18 is extracted using advanced equivalent circuit-transmission line model 

for (a) a unit cell of EBG and (b) 4 unit cells of EBG. The 20 dB attenuation level is 

marked in the graph. The specifications of EBG are as follows: PW = 1.6 mm, h = 

114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and 

tan δ = 0.0015. 

 

 

For the second case study where εr = 200 and h = 114.3 µm, the comparison 

between the dispersion diagrams extracted by (a) the developed model and (b) the 

full-wave numerical simulator is shown in Figure  3.52. Here, also the agreement is 

very good between the first three propagating modes. The comparison for the third 

case study where εr = 140 and h = 500 µm between the dispersion diagrams extracted 

by (a) the developed model and (b) the full-wave numerical analysis is shown in the 

Figure  3.53. The first and the third propagating modes are in excellent agreement. 

However, the second propagating mode extracted by the developed model covers 

larger frequency band around the frequency region predicted by the full-wave 
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analysis. This difference comes from approximate models implemented in our 

developed model for the different configurations of microstrips such as the step 

discontinuity discussed earlier in the modeling subsections. In Figure  3.54, for the 

fourth case study where εr = 4.3 and h = 114.3 µm the comparison between the 

dispersion diagrams extracted by (a) the developed model and (b) the full-wave 

numerical simulator is shown. Diagrams show that the first propagating mode and as 

a result the lower edge of the bandgap are predicted accurately. However, the higher 

order propagating modes are not accurately predicted.  
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Figure  3.52. Dispersion diagram in Γ-Χ zone for the planar EBG structure shown in 

Figure  3.18 is extracted using (a) advanced equivalent circuit-transmission line model 

and (b) numerical full-wave analysis by Ansoft HFSS. The specifications of EBG are 

as follows: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 

mm, MG = 0.02 mm, εr = 200, and tan δ = 0.0015. 
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It can be concluded that 1) the developed model based on the available low 

frequency approximated circuit models for the different microstrip configurations is 

working excellent for the thin slab of high-k dielectric materials in the range of 

couples of GHz. 2) The model is well behaving for the increasing thickness of slab of 

high-k materials in the range of couples of GHz. But, 3) the developed model is 

inaccurate for thin low permittivity dielectrics in the range of couples of GHz. 

However, 4) for all the combination of specifications in the dielectric the performance 

of model is excellent for extracting the first propagating mode. It means the 

developed model can predict the lower edge of the bandgap with high accuracy. 

Therefore, the model is excellent for low GHz frequency range. The main reason for 

the mentioned level of performance for the developed model is that: we have 

approximated a considerable portion of transmission lines in the structure as 

uncoupled microstrips. Also, we have neglected non-adjacent couplings. In the 

uncoupled microstrips the fields produced around the structures do not affect each 

other. This assumption in the structures under study is much more valid in the 

microstrips made of high-k materials than the ones made of conventional dielectrics 

such as FR-4. In the structures made of high-k, the fringing fields outside the strip are 

bounded to strip and concentrated at the edge of strip. Therefore, the approximation 

used in the developed model about the couplings between the constituting parts is 

working with higher accuracy in high-k materials. In another word, to improve the 

performance in the model we may need to consider non-adjacent coupling. 
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Figure  3.53. Dispersion diagram in Γ-Χ zone for the planar EBG structure shown in 

Figure  3.18 is extracted using (a) advanced equivalent circuit-transmission line model 

and (b) numerical full-wave analysis by Ansoft HFSS. The specifications of EBG are 

as follows: PW = 1.6 mm, h = 500 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, 

MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.54. Dispersion diagram in Γ-Χ zone for the planar EBG structure shown  in 

Figure  3.18 is extracted using (a) advanced equivalent circuit-transmission line model 

and (b) numerical full-wave analysis by Ansoft HFSS. The specifications of EBG are 

as follows: PW = 20 mm, h = 114.3 µm, MW = 0.2 mm, MB = 0.2 mm, ML = 20 mm, 

MG = 0.2 mm, εr = 4.3, and tan δ = 0.02. 
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We continue our studies in later subsections to investigate about the 

relationship between the bandgap and the elements included in the model. We will 

present how the values of elements are affecting the bandgap and controlling the 

location of the bandgap in different frequency regimes.  

 

3.3.10. Characterization of the Proposed Planar EBG Structure 

In this subsection, we investigate about characteristics of the planar EBG 

structures in more details. For this purpose, we continue our study on the first sample 

discussed in Subsection  3.3.2. We fit the best and the lowest order polynomials on the 

data points of propagating modes in dispersion diagrams extracted by the full-wave 

numerical analysis using Ansoft HFSS. We do not intend to fit a high order 

polynomial which exactly follows the variations of data points in dispersion diagram. 

We want a simple approximate graph to study and extract information about our 

suggested EBGs. The fitted polynomials are plotted for each region of irreducible 

Brillouin zone: Γ-Χ, Χ-Μ, and Μ-Γ in Figure  3.55 to Figure  3.57, respectively. The 

light lines in dielectric plotted in those regions are defined by: 
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 Equation  3-52 
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Figure  3.55. Dispersion diagram of the planar EBG structure shown in Figure  3.18 in 

the Γ-Χ region. The data points of the propagating modes representing the dispersion 

relation are extracted numerically by Ansoft HFSS. The polynomial fit of these data 

points of the propagating modes show dispersion graphs. The specifications of the 

EBG are as follows: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML 

= 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.56. Dispersion diagram of the planar EBG structure shown in Figure  3.18 in 

the Χ-Μ region. The data points of the propagating modes representing the dispersion 

relation are extracted numerically by Ansoft HFSS. The polynomial fit of these data 

points of the propagating modes show dispersion graphs. The specifications of the 

EBG are defined in Figure  3.55. 
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Figure  3.57. Dispersion diagram of the planar EBG structure shown in Figure  3.18 in 

the Μ-Γ region. The data points of the propagating modes representing the dispersion 

relation are extracted numerically by Ansoft HFSS. The polynomial fit of these data 

points of the propagating modes show dispersion graphs. The specifications of the 

EBG are defined in Figure  3.55. 
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At the edge of the bandgap, the lower and the upper propagating modes are 

slow modes. For slow modes compared to light line, the group velocity defined by 

ω
β

∂
∂=−1Vg  is much lower. Therefore, the slow modes are very dispersive. As it is 

clear from the dispersion diagrams of the sample under study in three regions, the 

variation of the frequency versus the phase for the second and the third propagating 

modes is very small. The dispersion graphs are approximately straight lines with zero 

degree tilt which show that the group velocities of these modes are very low. For the 

miniaturized planar EBG sample, the group velocity of the first three propagating 

modes and the light line in dielectric for the Γ-Χ, Χ-Μ, and Μ-Γ regions are plotted 

in Figure  3.58 to Figure  3.60, respectively. The group velocity of light line is defined 

by: 
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 Equation  3-53 

It is clear in the diagrams that the group velocity of the first propagating mode at the 

lower edge of the first bandgap abruptly and very sharply changes to zero. In the three 

regions of the Brillouin zone, the group velocity of the second and the third 

propagating modes are more than 10 times slower than the group velocity of the light 

in the dielectric. This means that for the existing modes, the media is completely 

dispersive.  
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From the dispersion diagrams and the group velocity diagrams in Brillouin 

zone we conclude that the lower edge of the first bandgap is located at 1.9 GHz. 

However, if we consider the 20 dB suppression band for this sample which is labeled 

in Table  3.III as sample No. 3, we notice that this band extends from 2.9 GHz to 12.5 

GHz. Therefore, the lower edge of the suppression band is not the same as the lower 

edge of the bandgap for this sample. In addition, it is expected although there is not 

such a rule that the suppression band is wider than the bandgap and it encompass the 

bandgap. The difference at the lower edge of the two extracted bands is attributed to 

the following reasons: 1) the dispersion diagram is extracted for an idealistic case 

where the periodic array of EBG structures is infinite. However, the suppression band 

is extracted for a finite number of EBG structures where in our case; we set up 4 units 

of EBG structure between the two measuring ports. 2) In a bandgap which is defined 

with upper cut off frequency (fCU) of lower propagating mode and lower cut off 

frequency (fCH) of upper propagating mode, evanescent modes are propagating. The 

power of these evanescent modes is decreasing at fCU and increasing at fCH. In another 

word, the attenuation diagram of bandgap is increasing at fCU and decreasing at fCH. 

Therefore, if there is not infinite number of EBG structures between the source and 

the receiver ports then the 20 dB suppression band limits might not locate precisely at 

the edge of the bandgap. This fact is shown in Figure  3.51. 

The 20 dB suppression band of this sample is very wide. It is consisting of 

upper part of the first bandgap, several higher order propagating modes, and several 

higher order bandgaps as partially shown in dispersion diagrams. A bandgap is a gap 

of propagating modes, however, a suppression band is not. A suppression band is a 



 

113 

gap of power. In another words: in the suppression band, the level of transferred 

power between two ports (S21), where EBG structures are located between them, 

either through evanescent modes or propagating modes is reduced by more than 20 

dB. It is noted that the bandgap is the inherent feature of periodic bandgap structure 

which directly relates to topology and composition of structure and not to losses of 

constructive materials. However, in measuring the suppression band we consider 

losses including metallic loss and dielectric loss. Lossess in the structure contribute to 

the attenuation level, however, considering the range of frequencies where we are 

studying these structures and the presence of limited numbers of structures in our 

setup reveals that the value of loss is not in the order of 20 dB.  So we need to find 

out what is happening to the energy of these slow propagating modes. Our guess is: 

these modes instead of propagating through structures may radiate out. Therefore, the 

EBG sample, similar to a bandstop filter, blocks through-propagation in the 

suppression band. 
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Figure  3.58. Group velocity of the propagating modes of the planar EBG structure 

and the light line in the dielectric in the Γ-Χ region as defined in Figure  3.55. The Vg 

graphs are obtained from the polynomials fit of the propagating modes. 
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Figure  3.59. Group velocity of the propagating modes of the planar EBG structure 

and the light line in the dielectric in the Χ-Μ region as defined in Figure  3.56. The Vg 

graphs are obtained from the polynomials fit of the propagating modes. 
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Figure  3.60. Group velocity of the propagating modes of the planar EBG structure 

and the light line in the dielectric in the Μ-Γ region as defined in Figure  3.57. The Vg 

graphs are obtained from the polynomials fit of the propagating modes. 
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Following, we investigate the hypothesis of energy radiation from opening of 

the patterned structure to surrounding media nearby the slow mode frequency 

regimes. The solid parallel plate radiates out energy at the edges to surrounding 

environment. The radiated power at the excited resonant frequency of the parallel 

plate is stronger. For example, if we consider a setup consisting of a finite parallel 

plate with two ports inside, the total sum of the normalized transferred energy 

between two ports and the normalized reflected energy to source at the considered 

frequency is not equal to unity. In a lossy-opened system, the radiation loss can be 

characterized by the quantity of radiation loss parameter which is defined as: 1- |S11|2 

- |S21|2. In our study, we calculate the radiation loss parameter for the EBG structures 

by using the S-parameters extracted from the setup shown in Figure  3.14. For 

comparison purpose, the radiation loss parameter for the solid parallel planes setup 

with the same dimensions and port locations as the EBG patterned structure is 

extracted.  

The radiation loss for the first sample is shown in Figure  3.61. The 20 dB 

suppression band of this sample which is extended from 2.9 GHz to 12.5 GHz is 

marked in the figure. The figure clearly shows that the local peaks of radiation loss 

from solid parallel planes are excessively reduced by the EBG patterning of one of 

the planes. Therefore, patterning not only does not increase the radiation to 

surrounding environment but also it decreases EMI in the band where EBG is 

effective. In the suppression band, there are few local peaks in the radiation loss 

diagram of the EBG patterned planes. Comparing the frequency band of these peaks 

with the frequency band of the slow propagating modes in the dispersion diagram of 
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Figure  3.20 shows that the frequency regions could be mapped with acceptable 

accuracy. The second and third local peaks which are compatible with the third and 

the fourth propagating modes are marked in Figure  3.61. Therefore, the results for the 

first sample verify our proposal about the radiating emissions from openings of EBG 

patterns to surrounding environment at the frequency bands where dispersive modes 

exist. We could say that these slow modes radiate out instead of propagating through 

structures. 

To investigate more about the slow modes which exists in the suppression 

band of planar EBG structures, we look to the second EBG sample. The radiation loss 

diagram for this sample and the reference case are plotted in Figure  3.62. The 20 dB 

suppression band which extends from 1.9 GHz to 10.8 GHz is marked in the figure. 

The reduction of radiation loss in the frequency band where the EBG pattern is 

effective is obvious in the figure. Also, comparing the propagating modes from 

dispersion diagram with the local peaks of radiation loss diagram for the EBG 

patterned planes proves the validity of our idea. Therefore, the dispersive slow modes 

radiate out instead of propagating through structure. These radiating emissions may 

interfere with the performance of other parts of a system which should be considered 

in design of a system with high functionality.  
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Figure  3.61. Radiation loss (1- |S11|2 - |S21|2) versus frequency for two cases: 1) the 

EBG patterned parallel planes and 2) solid parallel planes as reference. The S-

parameters are extracted using the setup shown in Figure  3.14. The planar EBG 

structure and the design parameters are shown in Figure  3.12. The parameters of the 

EBG structure are: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 

1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.62. Radiation loss (1- |S11|2 - |S21|2) versus frequency for two cases: 1) the 

EBG patterned parallel planes and 2) solid parallel planes as reference. The S-

parameters are extracted using the setup shown in Figure  3.14. The planar EBG 

structure and the design parameters are shown in Figure  3.12. The parameters of the 

EBG structure are: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 

1.6 mm, MG = 0.02 mm, εr = 200, and tan δ = 0.0015. 
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3.3.11. Effects of Variation of Elements in Circuit-Transmission Line Model on Bandgaps 

In this subsection, we study the effects of variation of the value of elements in 

the equivalent circuit–transmission line model of the planar EBG structure on its 

bandgaps. This study will help us to control the location of bandgaps by changing the 

physical parameters in the structure. Primarily, our focus is on the miniaturized EBG 

structures made of thin slab of high-k materials. At the end of this subsection, we will 

briefly speak about the possible existing differences in EBG structures made of 

dielectrics with low permittivity or higher thickness. Figure  3.63 to Figure  3.72 

present the relationships of the location of bandgaps and the attenuation levels versus 

the different values of elements modeling a unit cell of the first sample of planar EBG 

structure discussed in Subsection  3.3.2. We varied the value of elements once at a 

time in these figures where the values of other elements are equal to their nominal 

values. The nominal values are extracted using our developed model. For the first 

study case, the nominal values of elements in Figure  3.48 are as follows: CPH = 27.9 

pF, LPH = 0.0587 nH, L = 0.5921 nH, CL1 = 0.3039 pF, CL2 = 1.7926 pF, CM_PM = 

1.0633 pF, LDP = 5.9511 pH, LDM = 0.0936 nH, CD = 1.6468 pF, d = 1.78 mm, d1 = 

PW = 1.6 mm, and d2 = d - d1 = 0.18 mm. Figure  3.63 shows the variations of the 

dispersion/attenuation diagram for the different values of L = {0.2921, 0.5921, 

0.8921} nH. This change affects the lower edge of the first bandgap. Increasing L 

pushes the bandgap to lower frequencies. Also, this increment increases widths of the 

first three bandgaps which is clear in the plot. Also the attenuation level in the 

bandgaps increases. Generally, it is concluded that increasing L can provide a wider 

suppression bandgap with higher attenuation level. 
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Figure  3.63. Relationship between the dispersion/attenuation diagram and the 

inductance L modeling the meander line in the planar EBG structure shown in Figure 

 3.18. The value of L is equal to (a) 0.2921 nH, (b) 0.5921 nH, and (c) 0.8921 nH. 

Figure  3.48 demonstrates the equivalent circuit-transmission line model of EBG. The 

nominal values of elements in the model are extracted for the EBG with the following 

specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 

mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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The variations of the dispersion/attenuation diagram for the different values of 

CL2 = {1.2926, 1.7926, 2.2926} pF are presented in Figure  3.64. There is not any 

noticeable effect at the lower edge of the first bandgap by this change. However, 

increasing CL2 pushes the second and the third propagating modes to lower 

frequencies. Yet, these variations compared to the variations resulting from change of 

inductance are small. Increasing CL2 decreases the attenuation level in the first and the 

second bandgaps. Also, the second and the third propagating modes with the lower 

value of CL2 are more dispersive and slower modes which may widen the suppression 

band and increase the filtering effect. The change of CL2 obviously affects the higher 

order modes. The smaller CL2 provides the wider third bandgap. Therefore, we 

conclude that decreasing CL2 may provide a better effective suppression band. 

The variations of the dispersion/attenuation diagram for the different values of 

the equivalent capacitance which is resulting from the following combination (CM_PM 

|| CL1 || CM_PM) = {0.19337, 0.39337, 0.59337} pF are plotted in Figure  3.65. Change 

of the value of interline parasitic capacitances on the lower edge of the first bandgap 

is negligible. Increasing these capacitances slightly shifts the second and the third 

propagating modes to lower frequencies and at the same time the attenuation level in 

the second and the third bandgaps increases. It is concluded that increasing interline 

coupling capacitances provides a suppression band with higher efficiency. 
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Figure  3.64. Relationship between the dispersion/attenuation diagram and the 

capacitance CL2 modeling the meander line in the planar EBG structure shown in 

Figure  3.18. The value of CL2 is equal to (a) 1.2926 pF, (b) 1.7926 pF, and (c) 2.2926 

pF. Figure  3.48 demonstrates the equivalent circuit-transmission line model of EBG. 

The nominal values of elements in the model are extracted for the EBG with 

following the specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 

mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.65. Relationship between the dispersion/attenuation diagram and the (CM_PM 

|| CL1 || CM_PM) modeling the interline coupling between the meander line and two 

adjacent patches and between the arms of meander line in the planar EBG structure 

shown in Figure  3.18. The value of the equivalent capacitance is equal to (a) 0.19337 

pF, (b) 0.39337 pF, and (c) 0.59337 pF. Figure  3.48 demonstrates the equivalent 

circuit-transmission line model of EBG. The nominal values of elements in the model 

are extracted for the EBG with following the specifications: PW = 1.6 mm, h = 114.3 

µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ 

= 0.0015. 

 

Figure  3.66 presents the variations of the dispersion/attenuation diagram for 

the different values of LPH = {0.0287, 0.0587, 0.0887} nH. The effects of these 

variations are negligible on the lower edge of the first bandgap. However, increasing 
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LPH pushes the second, the third, and the fourth propagating modes shown in the plot 

to lower frequencies. Also, this increment decreases the attenuation level in the first 

and second bandgap. Therefore, designing for low values of LPH may be more 

efficient in providing a suppression band which will be starting at low frequencies. 
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Figure  3.66. Relationship between the dispersion/attenuation diagram and the 

inductance LPH modeling the patch in the planar EBG structure shown in Figure  3.18. 

The value of LPH is equal to (a) 0.0287 nH, (b) 0.0587 nH, and (c) 0.0887 nH. Figure 

 3.48 demonstrates the equivalent circuit-transmission line model of EBG. The 

nominal values of elements in the model are extracted for the EBG with following the 

specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 

mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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The variations of the dispersion/attenuation diagram for the different values of 

CPH = {17.903, 27.903, 37.903} pF are shown in Figure  3.67. Increasing CPH pushes 

the lower edge of the first bandgap to lower frequencies. The changes of the second 

and the fourth propagating modes are negligible and the third propagating mode shifts 

to lower frequencies. Therefore, by increasing CPH, widths of the first and the third 

bandgaps and their attenuation levels increase. However, the width of the second 

bandgap and its attenuation level decrease. The third propagating mode, by increasing 

CPH, becomes more dispersive or slower mode which may result in widening of the 

suppression band and increasing of the filtering effect. As a result, increasing the 

value of CPH increases the efficiency of suppression bandgap. Generally, in the 

designed EBG structures the value of inductance L is considerably high; therefore, 

variation in the value of L shows its effects more obviously than the variations in 

other elements. It should be considered that in the designs, the inductance is in the 

order of 10-9 but the capacitance is in the order of 10-12.  

Figure  3.68 shows the variations of the dispersion/attenuation diagram for the 

different values of d1 = {0.75 × PW, PW, 1.25 × PW}. Increasing the length of patch-

microstrip pushes all the propagating modes to lower frequencies. However, the 

changes in location of the second propagating mode are more than the changes in the 

locations of other propagating modes in these diagrams. Therefore, the first bandgap 

narrows down and reversely, the second bandgap widens. The level of attenuation in 

the first bandgap decreases and in the second bandgap increases. The visible higher 

order propagating modes in the diagrams are slow modes. So it is possible by 

increasing d1 we widen the suppression band and increase the filtering effect. 
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Therefore, we conclude that increasing d1 may increase efficiency and width of the 

suppression bandgap.  
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Figure  3.67.  Relationship between the dispersion/attenuation diagram and the 

capacitance CPH modeling the patch in the planar EBG structure shown in Figure 

 3.18. The value of CPH is equal to (a) 17.903 pF, (b) 27.903 pF, and (c) 37.903 pF. 

Figure  3.48 demonstrates the equivalent circuit-transmission line model of EBG. The 

nominal values of elements in the model are extracted for the EBG with following the 

specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 

mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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The variations of the dispersion/attenuation diagram for the different values of 

d2 = {0.75 × D2, D2, 1.25 × D2} where D2 = 2 × MB + N × MW + (N-1) × MG are shown 

in Figure  3.69. Increasing d2 negligibly pushes the first, the second, and the third 

propagating modes down in frequencies. Therefore, the change of the first and the 

second bandgaps are negligent. Increasing d2 shifts the fourth propagating mode to 

lower frequencies so the third bandgap narrows down. We conclude from these 

results that the decrease of d2 in the planar EBG structures made of thin slab of high-k 

dielectrics may increase width of the suppression band. 

The variations of the dispersion/attenuation diagram for the different values of 

LDP = {0.9511, 5.9511, 10.9511} pH are demonstrated in Figure  3.70. The change of 

value of this element affects the first, the second, and the third propagating modes and 

as a result the first and the second bandgaps are negligibly affected. Increasing LDP 

pushes the fourth propagating mode down in frequencies. Therefore, the third 

bandgap narrows down. It can be concluded that we can get a more efficient 

suppression bandgap by decreasing LDP. 

The variations of the dispersion/attenuation diagram for the different values of 

LDM = {43.576, 93.576, 143.576} pH are shown in Figure  3.71. Increasing LDM 

pushes the first propagating mode to lower frequencies. The effect of this change on 

the second and the third propagating modes is negligible. Therefore, the first and the 

second bandgaps slightly change. Increasing LDM shifts the fourth propagating mode 

down in frequencies; this will narrow the third bandgap. As a conclusion, decreasing 

LDM may widen the suppression bandgap but increasing LDM may push the bandgap to 

lower frequencies. Designing LDM with low value can be more efficient. 
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Figure  3.68. Relationship between the dispersion/attenuation diagram and the length 

of patch-microstrip d1 modeling the phase difference along the patch in the planar 

EBG structure shown in Figure  3.18. The value of d1 is equal to (a) 0.75 × PW, (b) PW, 

and (c) 1.25 × PW. PW is the width of patch-microstrip, the spacing between two 

consecutive patches d2 = 2 × MB + N × MW + (N-1) × MG, and the length of a unit cell 

of EBG d = d1 + d2. Figure  3.48 demonstrates the equivalent circuit-transmission line 

model of EBG. The nominal values of elements in the model are extracted for the 

EBG with following the specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, 

MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.69. Relationship between the dispersion/attenuation diagram and the length 

of meander-microstrip d2 modeling the phase difference across the meander line in 

the planar EBG structure shown in Figure  3.18. The value of d2 showing the spacing 

between the two consecutive patches is equal to (a) 0.75 × D2, (b) D2, and (c) 1.25 × 

D2 where D2 = 2 × MB + N × MW + (N-1) × MG. MW is the width of meander-

microstrip, the length of patch d1 = PW, and the length of a unit cell of EBG d = d1 + 

d2. Figure  3.48 demonstrates the equivalent circuit-transmission line model of EBG. 

The nominal values of elements in the model are extracted for the EBG with 

following the specifications: PW = 1.6 mm, h = 114.3 µm, MW = 0.02 mm, MB = 0.02 

mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ = 0.0015. 
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Figure  3.70 Relationship between the dispersion/attenuation diagram and the 

inductance LDP modeling the step discontinuity between the patch and the meander 

line in the planar EBG structure shown in Figure  3.18. The value of LDP is equal to (a) 

0.9511 pH, (b) 5.9511 pH, and (c) 10.9511 pH. Figure  3.48 demonstrates the 

equivalent circuit-transmission line model of EBG. The nominal values of elements in 

the model are extracted for the EBG with following the specifications: PW = 1.6 mm, 

h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, 

and tan δ = 0.0015. 

 

 

 



 

133 

 

 

 

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Wave Number, Kx

Fr
eq

ue
nc

y 
(G

H
z)

(a) Atte.
(a) Disp.
(b) Atte.
(b) Disp.
(c) Atte.
(c) Disp.
Kx = π / d

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Wave Number, Kx

Fr
eq

ue
nc

y 
(G

H
z)

(a) Atte.
(a) Disp.
(b) Atte.
(b) Disp.
(c) Atte.
(c) Disp.
Kx = π / d

 

Figure  3.71. Relationship between the dispersion/attenuation diagram and the 

inductance LDM modeling the step discontinuity between the patch and the meander 

line in the planar EBG structure shown in Figure  3.18. The value of LDM is equal to 

(a) 43.576 pH, (b) 93.576 pH, and (c) 143.576 pH. Figure  3.48 demonstrates the 

equivalent circuit-transmission line model of EBG. The nominal values of elements in 

the model are extracted for the EBG with following the specifications: PW = 1.6 mm, 

h = 114.3 µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, 

and tan δ = 0.0015. 
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Figure  3.72 shows the variations of the dispersion/attenuation diagram for the 

different values of CD = {0.6468, 1.6468, 2.6468} pF. Increasing CD negligibly 

pushes the first propagating mode down in frequencies. However, the second and the 

third propagating modes obviously shift to lower frequencies. As a result, the first 

bandgap narrows down but change the in width of the second bandgap is very small. 

The change of the fourth propagation mode is negligible. Therefore, width of the third 

bandgap increases. We conclude that decreasing CD may widen the first bandgap but 

effectsw on the suppression bandgap may be negligible. 

The conclusions up to this end are related to planar EBG structures made of 

thin slab of high-k materials. We can not generalize these results to materials with 

lower permittivity or higher thickness. For example, in the fourth sample discussed in 

Subsection  3.3.2 where εr = 4.3 and h = 114.3 µm the second and the third 

propagating modes are more sensitive to variation of LPH and CPH. The variation of 

elements of the step discontinuity does not affect these modes noticeably. However, 

in the third sample discussed in Subsection  3.3.2 where εr = 140 and h = 500 µm the 

variation of elements of the step discontinuity affects the second and the third 

propagating modes clearly. 
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Figure  3.72. Relationship between the dispersion/attenuation diagram and the 

capacitance CD modeling the step discontinuity between the patch and the meander 

line in the planar EBG structure shown in Figure  3.18. The value of CD is equal to (a) 

0.6468 pF, (b) 1.6468 pF, and (c) 2.6468 pF. Figure  3.48 demonstrates the equivalent 

circuit-transmission line model of EBG. The nominal values of elements in the model 

are extracted for the EBG with following the specifications: PW = 1.6 mm, h = 114.3 

µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ 

= 0.0015. 
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In continue of our discussion, the relationship between the 

dispersion/attenuation diagram and the capacitance of step discontinuity for the third 

and the fourth case studies are plotted in Figure  3.73 and Figure  3.74, respectively. 

The nominal values of the elements of the model shown in Figure  3.48 for the third 

sample are as follows: CPH = 6.5507 pF, LPH = 0.17897 nH, L = 0.62373 nH, CL1 = 

0.38232 pF, CL2 = 0.83432 pF, CM_PM = 1.5698 pF, LDP = 0.046319 nH, LDM = 

0.31122 nH, CD = 1.7066 pF, d = 1.78 mm, d1 = PW = 1.6 mm, and d2 = d - d1 = 0.18 

mm. The variations of the dispersion/attenuation diagram for the different values of 

CD = {0.7066, 1.7066, 2.7066} pF are shown in Figure  3.73. This figure shows that 

the increasing CD pushes the propagating modes and the bandgaps to lower 

frequencies. This increment narrows the first bandgap and widens the second and the 

third bandgaps. The third propagating mode becomes a slower mode by this 

increment. Therefore, if this increment combines the second and the third bandgaps 

then the suppression band is wide. We may conclude that decreasing CD widens the 

first bandgap and increasing CD pushes the first narrow bandgap to lower frequencies. 

Totally, the effect of this change on the suppression bandgap is not very clear.  

The nominal values of the elements of the model shown in Figure  3.48 for the 

fourth sample are as follows: CPH = 136.73 pF, LPH = 0.0703 nH, L = 22.847 nH, CL1 

= 0.074304 pF, CL2 = 4.074 pF, CM_PM = 0.69867 pF, LDP = 0.018134 nH, LDM = 

0.10791 nH, CD = 0.72452 pF, d = 21.8 mm, d1 = PW = 20 mm, and d2 = d - d1 = 1.8 

mm. Figure  3.74 shows the variations of the dispersion/attenuation diagram for the 

different values of CD = {0.22452, 0.72452, 1.22452} pF. Figure  3.74 demonstrates 

that this change has negligible effect on the propagating modes and the bandgaps. So 
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we can not clearly change the efficiency of the suppression band by varying this 

element. 

After studying the relationship between the dispersion diagram and the 

elements modeling the EBG, by considering 1) the frequency region or the 

suppression band where the EBG is effective and 2) the available spacing for a unit 

cell design we can change the proper elements in the model or basically the physical 

design parameters to get the required suppression band. Therefore, the procedures of 

design might be done by using recursive optimization code. We can manually define 

the priority to change the elements in model by defining weight coefficients for these 

elements. Similar studies to what we did in this subsection could introduce the weight 

coefficients. 
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Figure  3.73. Relationship between the dispersion/attenuation diagram and the 

capacitance CD modeling the step discontinuity between the patch and the meander 

line in the planar EBG structure shown in Figure  3.18. The value of CD is equal to (a) 

0.7066 pF, (b) 1.7066 pF, and (c) 2.7066 pF. Figure  3.48 demonstrates the equivalent 

circuit-transmission line model of EBG. The nominal values of elements in the model 

are extracted for the EBG with following the specifications: PW = 1.6 mm, h = 500 

µm, MW = 0.02 mm, MB = 0.02 mm, ML = 1.6 mm, MG = 0.02 mm, εr = 140, and tan δ 

= 0.0015. 
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Figure  3.74. Relationship between the dispersion/attenuation diagram and the 

capacitance CD modeling the step discontinuity between the patch and the meander 

line in the planar EBG structure shown in Figure  3.18. The value of CD is equal to (a) 

0.22452 pF, (b) 0.72452 pF, and (c) 1.22452 pF. Figure  3.48 demonstrates the 

equivalent circuit-transmission line model of EBG. The nominal values of elements in 

the model are extracted for the EBG with following the specifications: PW = 20 mm, h 

= 114.3 µm, MW = 0.2 mm, MB = 0.2 mm, ML = 20 mm, MG = 0.2 mm, εr = 4.3, and 

tan δ = 0.02. 
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Chapter 4 : Switching Noise and Electromagnetic Noise in High 

Speed Packages 

The most common type of noise in high speed packages is the simultaneous 

switching noise (SSN). SSN, also referred to as voltage bounce or delta-I noise, is 

caused by the switching of digital circuit between two different logic levels. When 

switching takes place, a surge of current travels between power and ground planes 

causing a voltage drop between them and a voltage drop across segments of the 

power plane itself. These voltage drops are directly proportional to the current 

switching rate and the effective inductance of current paths. SSN was studied 

extensively in the past decade  [1]- [4]. There are waves propagating between metallic 

layers of laminated substrate acting as parallel plate waveguide. These waves 

supported by traveling current on planes can interfere with other vias passing through 

these planes or connected to these planes. When the traveling waves reach the edges, 

part of their power radiate out and the remainder reflect back inside the package. The 

waves radiated out of package may interfere with other surrounding electronics. 

Another design artifact that exacerbates the noise induced by switching is the natural 

resonance of the package itself. If the natural resonant frequencies of the package 

encompass the switching frequency or the clock frequency and its harmonics, then the 

potential for further disturbance to the reference voltage levels increase and equally 

important the potential for EMI increases.  

In the following, we explain briefly the range of frequencies where we have to 

protect vias and interconnects from EM interference. There are vias in the package 

which are routing the signal lines through layers from one trace to another. The power 
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spectral density of the electrical signal on signal lines (also known as data bus and 

address bus) is concentrated around the operating frequencies and their harmonics. 

Therefore, to provide clean data we have to mitigate the electromagnetic noise around 

the operating frequency and its related harmonics. Suppressing noise from clock-

transmission lines is equally important. The bus and clock operate at the same 

frequency; however, the rate of external clock in a system discussed extensively in 

the subject of noise suppressions in PCB boards is a fraction of the internal clock or 

core clock of the state-of-the-art processors which is the subject of our discussion in 

this chapter. The internal bus or the backside bus in processor package is operating at 

the same speed of the processor. The external bus or front side bus (FSB) connecting 

the processor to external memory and peripherals is operating at the rate of external 

clock on the PCB.  

Other types of vias in the package connect the power planes to electronic 

circuits to provide power and ground. Switching or change of logic in those circuits 

leads to a surge of current from power planes to circuits through vias which induces 

EMI noise in whole band of frequencies. Therefore, for the suppression of switching 

noise, the interest is in broad band suppression. 

 

4.1. Analytical Model of EM Noise in Packages 

Coupling of EMI noise in a multilayer package occurs both transversally and 

vertically. The field propagating in transverse direction can couple to vias and 

interconnects passing through layers  [2],  [3] or can couple vertically, through cut-outs 

and apertures in the planes, to another layers  [63],  [64] and traps the vias in those 
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layers. Also, the field can penetrate through conductor plane; however this 

penetration is negligible beyond tens of MHz where the thickness of metallic planes 

is much larger than the skin depth. In this study, we mainly focus on the transverse 

coupling between vias and interconnects located in the same layer over the range of 

frequencies above hundreds of megahertz. Therefore, we analyze only a single plane 

pair. 

Characterization of scattering parameters between interconnects in boards or 

packages is important for understanding the potential of the board or the package to 

transfer electromagnetic energy or noise between two specific points or ports. 

Impedance parameters which could be extracted from S-parameters are alternatively 

used for characterization of interconnects  [43]. Analyzing S-parameters or Z-

parameters help the package designers to estimate the frequency range where the EMI 

noise and switching noise are strong. In this section, and without loss of generality, 

we consider impedance parameters. Our analysis is based on the principle of 

resonators modeled with lumped elements  [61],  [62]. Following, we introduce this 

model and verify its performance. 

A 3-D view of the single plane pair is shown in Figure  4.1 (a). The structure 

considered here is basically a parallel plate waveguide. The top and bottom metallic 

plates are rectangular with dimensions (a × b) and conductivity σ. A dielectric with 

thickness h, permittivity ε, loss angle δ, and permeability µ is sandwiched between 

the metallic plates. The dimensions of the microprocessor package satisfy the 

following conditions: a >> h, b >> h, and h << λ, where λ is the wavelength in the 

dielectric material. With such conditions, the complex impedance between two 
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different ports, as shown in Figure  4.1 (b), using planar resonator model  [61],  [62] is 

given by : 

 ( )∑ ∑
= = −
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 Equation  4-1 

Equation  4-1 may be approximated by an equivalent circuit model  [62] as: 
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where k = k' - jk″ is the wave number with εµω=′k  and ( ) 2tan hk sδδεµω +=′′ . 

)( 2 εω abhL mnmn = , habC mn ε= , ⎟
⎠
⎞

⎜
⎝
⎛ +=

hh
abG smn

mnmn
δδωε tan , and                                                             

)cos()cos( bynaxmN iimnmni ππεε= .                                                                                                      

Here, m and n are the indices of the (m,n) mode corresponding to the resonant 

frequency fmn. µεπω /2/1 mnmnmnmnmn kfCL ===  and 

( ) ( )22 // bnamkmn ππ += . )/(2 µσωδ mnsmn =  is the skin depth for the (m,n) mode 

and the ratio hs/δ  represents the normalized skin depth with respect to the separation 

between the metallic layers. εm, εn = 1 for m, n = 0 and √2 otherwise. (xi, yi) and (xj, 

yj) are the coordinates of the via (port) at the ith and jth locations, respectively. The 

dimension of each port is neglected. Zii is the input impedance at the ith port. Zij is the 

mutual impedance (trans-impedance) between the ith and jth ports. Input and mutual 

impedances introduce noise voltage and/or bounce in the voltage level in power 

planes.  
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Figure  4.1. Single plane pair in the package consisting of metal-dielectric-metal 

layers is modeled as parallel plate waveguide. (a) 3-D view.  (b) Top view. Typical 

dimensions of a microprocessor package are: a = b = 4 cm. Each via shown in the 

figure represents a port. Port 1 and Port 2 are located at (x1 = 1 cm, y1 = 1 cm), and (x2 

= 2 cm, y2 = 2 cm), respectively. 

 

 

In the following, we discuss a numerical experiment to validate the analytical 

expression for the impedance Zij extracted from the resonator model based on the 

planar structure. Ansoft’s HFSS is used to perform full-wave simulation. The case 

study is a 4 cm × 4 cm package. Conductor is copper and dielectric is FR-4 with 
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thickness of 200 µm. The first port is located at (1 cm, 1 cm) and the second one at (2 

cm, 2 cm). Figure  4.2 (a) and (b) show a comparison between the magnitudes of the 

impedances Z21 and Z22 calculated using full-wave simulation and the calculations 

obtained from two different analytical formulas including Equation  4-1 incorporating 

the resonator model and Equation  4-2 showing the resonator model approximated 

with the equivalent circuit lumped elements. These results confirm that Equation  4-2 

is a good approximation for Equation  4-1.   

Furthermore, the magnitude of Z21 from the planar analysis compares very 

favorably to that obtained using numerical full-wave analysis. However, the 

magnitude of the input impedance, Z22, is in close agreement at low frequencies and 

the discrepancy increases at higher frequencies. This difference is expected as in full-

wave simulation at the port discontinuity several modes including propagating and 

evanescent waves with fields in x, y, and z directions are excited. However, in planar 

analysis only E-fields in z-direction are considered. At the port junction, and at higher 

frequencies, the variation of the field in all directions becomes more complex causing 

more variation from planar analysis. Evanescent fields, on the other hand, diminish in 

strength as the distance from the excited port increases, therefore, we expect a good 

match between the different calculation methods for the trans-impedance Z21 as 

shown in Figure  4.2 (b). 
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Figure  4.2. Magnitude of (a) trans-impedance between ports 1 and 2, and (b) input 

impedance at port 2 for the package shown in Figure  4.1. The plane separation is h = 

200 µm. The Impedances are obtained through three different methods including: 

analytical method using Equation  4-1 plotted by the solid line, analytical method 

using Equation  4-2 plotted by the circle symbol line, and full-wave simulation using 

HFSS plotted by the dashed line. 
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4.2. SSN and EMI Noise Mitigation in Packages using High-K Embedded 

Capacitance 

Following we will discuss about the concept of EM noise mitigation in IC 

packages using very high value embedded capacitance. The embedded capacitance 

technique as a strong EM noise suppressor has been used in the microwave regimes in 

the PCBs. We investigate about this technique in IC packages using very high-k 

materials which are newly commercially available. We need this study to assess the 

performance of one of our proposals related to the application of EBG structures in IC 

packages.  

In the processor packaging compare to PCBs, we need to suppress EM noise 

at higher frequencies where the loss tangent becomes comparable or even higher than 

normalized skin depth. Therefore, in our analysis we include the dielectric losses as 

well as the skin depth effect for accurate modeling. Our Objective is to study 

analytically the effect of embedded capacitance and the limitations of using high-k 

materials. 

 

4.2.1. Analytical Relationship between Package Topology and Noise Suppression 

The complex resonant frequencies for each mode of the package layer are 

extracted from Equation  4-2. For typical dimensions of IC packages such as 

microprocessors, the ratio mnmnmn CLG 42 is much smaller than 1. For such case, the 

complex resonant frequencies of the package layer in S-domain (Laplace domain) 

reduce to:  
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where σsmn and ωsmn represent the wave attenuation and phase constant respectively.                       

Substituting Lmn, Cmn, and Gmn in Equation  4-3, the second term of the imaginary part 

is given by:  
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 Equation  4-4 

Equation  4-4 shows that both the dielectric losses and the skin depth are 

affecting the imaginary part of the resonant frequency. The normalized skin depth 

versus frequency is plotted in Figure  4.3 for a plane pair with the following 

parameters: a = b = 4 cm, h = 114.3 µm, and copper conductors. This figure indicates 

the range of frequencies where each type of loss term is dominant and where both of 

them need to be considered. If one of the terms is dominant over the other then 

Equation  4-4 can be rewritten as: 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

>>

<<
≅

h
h

ab

h
h
ab

Ι

smn
mn

smn

δδδ
εω

δδ
µσ
ε

tan)(tan
8

tan
4

2

3  

 Equation  4-5 

For the typical dimensions and materials used in microprocessor packages, the 

computed value of I is always close to few Hertz ( mnΙ ω<< ). Therefore, the complex 

resonant frequencies are approximated as: 

mn
mn

mn
mn j

C
GS ω±−=

2
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 Equation  4-6 

Substituting Cmn and Gmn in Equation  4-6, the wave attenuation constant σsmn is then 

expressed as: 

⎟
⎠
⎞

⎜
⎝
⎛ +−=

h
smnmn

smn
δδωσ tan

2
 

 Equation  4-7 
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Figure  4.3. Normalized skin depth versus frequency for a single plane pair in the 

package shown in Figure  4.1. The dimensions of the layer are: a = b = 4 cm, h = 

114.3 µm, and S/m. 108.5 7×=σ  

 

Equation  4-7 shows that increasing the dielectric losses or decreasing the dielectric 

thickness h, will lead to increase of the wave attenuation constant approximately at 
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the resonant frequency ωmn. If any of the terms in Equation  4-7 is dominant over the 

other, we can rewrite Equation  4-7 as: 

⎪
⎩
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 Equation  4-8 

Thus, for dielectrics where the loss tangent is much smaller than the normalized skin 

depth, the wave attenuation constant becomes inversely proportional to the layer 

separation h. Conversely, if the loss tangent is much larger than the normalized skin 

depth, the wave attenuation constant becomes directly proportional to the loss 

tangent. Shrinking the thickness of dielectric between the metallic layers and/or 

increasing dielectric loss lead to suppress of the EMI noise at the resonant 

frequencies. 

Including both, the dielectric losses and skin depth effect, and rearranging 

Equation  4-2, the mutual impedance can be expressed as: 
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where  
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The real part of mutual impedance at the resonant frequency of the (mk, nk) mode is: 
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 Equation  4-10 

If we assume that the resonant frequencies of the different modes are distant enough, 

then we can neglect effects of mutual coupling between different modes.  So, at each 

resonant frequency, the effect of the self resonant frequency on the real part of 

impedance is much larger than the effect of the resonant frequencies of other modes. 

The second term in Equation  4-10 which represents all the mutual coupling terms is 

neglected compared to the first term. The real part of the mutual impedance of the 

resonant frequency 
kk nmω  is approximated as: 
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 Equation  4-11 

Similarly, the imaginary part of the mutual impedance at the resonant frequency of 

the (mk,nk) mode can be written as: 
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 Equation  4-12 

At each resonant frequency of the (mk,nk) mode, the self resonant frequency does not 

contribute to the imaginary part of the  mutual impedance in Equation  4-12. The 

contribution of the other resonant frequencies to the double summation can be 
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estimated as follows. Let us define the ratio 
kk nmmn ωω to be equal x. Then the 

argument of the sum in Equation  4-12 is expressed as: 
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The practical dimensions and materials of the microprocessor packages imply the 

following conditions: 
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If the condition ( ) xxx 21
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approximations for the function f. The first approximation is: 
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γ  if ( ) γβ >>−12x . Therefore, the effect of high 

order resonant frequency modes on the (mk,nk)  mode can be ignored. The second 

approximation is: 
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kk nm

mn
22

)( ≤≅  for the lower-order resonant 

frequencies (x << 1). This value can be very small using high-k thin dielectric. Thus 

only around x = 1, f(x) ≠ 0. Therefore, with the assumption: 1) the resonant modes are 

not coupled to each other, and 2) the filling between layers is high permittivity, thin 

dielectric, it can be concluded that: 
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 Equation  4-13 
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From Equation  4-11 and Equation  4-13, the mutual impedance at the frequency 

kk nmω is represented as: 
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 Equation  4-14 

Validity of above mentioned assumptions through selection of dielectric 

material and its thickness in a package layer leading to approximate formula Equation 

 4-14 are studied through numerical examples. The magnitude, the real part, and the 

imaginary part of input and trans-impedances shown respectively by (a), (b), and (c) 

for a single plane pair defined in Figure  4.1 are illustrated in Figure  4.4 - Figure  4.9 

for the three different configurations. The solid line shows the actual value of 

impedance obtained by Equation  4-2 in the total frequency range under consideration. 

The square symbol shows the actual value of impedance at the resonant modes of a 

plane pair. The star symbol shows the approximate value of impedance at resonant 

modes obtained from Equation  4-11, Equation  4-13, and Equation  4-14. In the first 

configuration, FR-4 with thickness equal to 200 µm is used. Figure  4.4 shows the 

input impedance at port 2, Z22. Figure  4.5 shows the trans-impedance between port 1 

and 2, Z21. In the second configuration, a dielectric with permittivity equal to 140, 

loss tangent equal to 0.0015, and thickness equal to 200 µm is used. Figure  4.6 shows 

Z22 and Figure  4.7 shows Z21. In the third configuration, a dielectric with permittivity 

equal to 140, loss tangent equal to 0.0015, and thickness equal to 100 µm is used. 

Figure  4.8 shows Z22 and Figure  4.9 shows the Z21. These results show that the 

approximation for the real part of the impedance, (Equation  4-11), works well. 
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Neglecting the imaginary part at resonant modes (Equation  4-13) leads to an error in 

the actual value of the magnitude of the impedance. However, this error at excited 

resonant modes is negligibly small (the excited modes are defined by the location of 

the port in the package layer). In other words, at the excited resonant frequencies 

which are shown by local peaks at the magnitude of impedance graph (or more 

correctly the frequency at which the imaginary part of impedance is equal to zero), 

the approximate expression for the impedance (Equation  4-14) estimates the 

acceptable impedance. At other resonant modes (the ones that are not excited), the 

value of the impedance is expressed by the coupling effects. It means other adjacent 

modes which are not vanished at the frequency of interest contribute to the value of 

impedance. 

Equation  4-14 indicates that the mutual impedance at each resonant frequency 

mode is decreased by reducing the separation between the planes, h, increasing the 

permittivity of the dielectric, ε, or increasing the loss tangent of the dielectric. Again 

two cases for approximating Equation  4-14 occur: If h
kk nsm /tan δδ << , then Equation 

 4-14 simplifies to:  ( ) ( )
kkkkkkkk nsmnmnijmnmij hZ δεωω Γ≅ 2)( . This means that 2)( hZ

kknmij ∝ω  and 

75.0)( −∝ εω
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kk nsmδδ >>tan  then ( ) ( )
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Figure  4.4. (a) Magnitude, (b) real part, and (c) imaginary part of input impedance at 

port 2 for the package shown in Figure  4.1. The plane separation is h = 200 µm and 

dielectric material is FR-4. The Impedance from Equation  4-2 is plotted by the solid 

line. The impedance value at the resonant modes of a plane pair is marked by square 

symbol. The approximate value of impedance from Equation  4-11, Equation  4-13, 

and Equation  4-14 is marked by star symbol. 
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Figure  4.5.  (a) Magnitude, (b) real part, and (c) imaginary part of trans-impedance 

between ports 1 and 2 for the package shown in Figure  4.1. The plane separation is h 

= 200 µm and dielectric material is FR-4. The Impedance from Equation  4-2 is 

plotted by the solid line. The impedance value at the resonant modes of a plane pair is 

marked by square symbol. The approximate value of impedance from Equation  4-11, 

Equation  4-13, and Equation  4-14 is marked by star symbol. 
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Figure  4.6.  (a) Magnitude, (b) real part, and (c) imaginary part of input impedance at 

port 2 for the package shown in Figure  4.1. The plane separation is h = 200 µm and 

dielectric material has permittivity of 140 and loss tangent of 0.0015. The Impedance 

from Equation  4-2 is plotted by the solid line. The impedance value at the resonant 

modes of a plane pair is marked by square symbol. The approximate value of 

impedance from Equation  4-11, Equation  4-13, and Equation  4-14 is marked by star 

symbol. 
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Figure  4.7. (a) Magnitude, (b) real part, and (c) imaginary part of trans-impedance 

between ports 1 and 2 for the package shown in Figure  4.1. The plane separation is h 

= 200 µm and dielectric material has permittivity of 140 and loss tangent of 0.0015. 

The Impedance from Equation  4-2 is plotted by the solid line. The impedance value at 

the resonant modes of a plane pair is marked by square symbol. The approximate 

value of impedance from Equation  4-11, Equation  4-13, and Equation  4-14 is marked 

by star symbol. 
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Figure  4.8. (a) Magnitude, (b) real part, and (c) imaginary part of input impedance at 

port 2 for the package shown in Figure  4.1. The plane separation is h = 100 µm and 

dielectric material has permittivity of 140 and loss tangent of 0.0015. The Impedance 

from Equation  4-2 is plotted by the solid line. The impedance value at the resonant 

modes of a plane pair is marked by square symbol. The approximate value of 

impedance from Equation  4-11, Equation  4-13, and Equation  4-14 is marked by star 

symbol. 
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Figure  4.9. (a) Magnitude, (b) real part, and (c) imaginary part of trans-impedance 

between ports 1 and 2 for the package shown in Figure  4.1. The plane separation is h 

= 100 µm and dielectric material has permittivity of 140 and loss tangent of 0.0015. 

The Impedance from Equation  4-2 is plotted by the solid line. The impedance value at 

the resonant modes of a plane pair is marked by square symbol. The approximate 

value of impedance from Equation  4-11, Equation  4-13, and Equation  4-14 is marked 

by star symbol. 
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Therefore, in IC packages similar to PCB packages  [14],  [15], three factors 

contribute to noise suppression: Decreasing the thickness of the package, increasing 

the permittivity of the dielectric material of the package, or increasing the loss in the 

dielectrics. However, increasing loss is not an optimum solution for EMI and SSN 

noise suppression. The heat generated due to losses needs to be transferred out of the 

package, otherwise the performance of electronic circuit degrades and other types of 

noise related to heating of the circuit increases. Another drawback of using high-loss 

substrates is the decrease in the bandwidth of signal traces which is a concern for high 

data transfers rates in the future generation of microprocessors  [65]. Overall, the 

embedded capacitance method does not eliminate EM wave in any frequency range. 

Decoupling level depends to the limitations in fabrication techniques, such as: 

limitation in using different dielectric materials and minimum isolation distance 

between two metallic layers (dielectric thickness). 

 

4.2.2. Case Studies 

We follow our study on microprocessor package. In present microprocessor 

packaging technology, the typical dimension of a package is approximately 4 cm × 4 

cm. The height of layers is varying from tens of µm to hundreds of µm. Conductors 

are made of copper. The permittivity of the filling dielectric is 4.3. The speed of the 

processor is less than 4 GHz. Without any loss of generality, these practical 

dimensions are used in the numerical experiments provided here. The goal here is to 

provide a solution to minimize the EMI within a broad-band of frequencies including 

the operating frequency of the microprocessor and the package resonant frequencies. 
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To this end, we focus on the impedance parameters of two interconnects located 

within the package (see the ports in Figure  4.1). The first interconnect (port) is 

located at (x1 = 1 cm, y1 = 1 cm). The second one is located at (x2 = 2 cm, y2 = 2 cm). 

The magnitude of the input impedance at port 2 and the trans-impedance 

between the two ports, for two different cases h =100, 200 µm are shown in Figure 

 4.10. The first three resonances are marked with different symbols in the plot and 

table. The similar symbols in each graph show corresponding resonances. As can be 

seen from the tables, the corresponding resonance frequencies have changed slightly 

which is expected from smnω  in Equation  4-3. Here, mnω  is not function of h, and I 

(defined in Equation  4-4) is function of h but it is negligibly small. Figure  4.10 shows 

for the second case (case with larger h), the magnitude of impedance has decreased at 

resonances. Figure  4.11 and Figure  4.12 show the magnitude of trans-impedance 

between the ports and input impedance at port 2, respectively, for three different 

cases: (εr = 4.3, tan δ = 0.02), εr = 30, tan δ = 0.02), and (εr = 30 and tan δ = 0.0015). 

For these three cases, the dielectric thickness h = 150 µm. In Figure  4.11 and Figure 

 4.12, a couple of lower frequencies are marked with different symbols in the plot and 

table. In each plot, similar symbols on the curves show the corresponding resonances. 

For the second and third cases the resonant frequencies are shifted to lower values by 

the approximate ratio √ {εr1 / (εr2 or εr3)} = 0.3786 using smnω  in Equation  4-3 where 

smnω  is inversely proportional to square root of permittivity. I is function of ε and loss 

tangent but it is negligibly small. Those slight differences in resonance frequencies 

between the second and third case are due to the differences in the loss tangent.  At 

the corresponding resonant frequencies in the second case which has same loss 
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tangent as the first one, the decrease of the magnitude of the impedance by increasing 

εr is obvious in both figures. In the third case, we have increased the permittivity but 

decreased loss tangent in comparison to the first case which is inefficient in 

suppressing the magnitude of impedance at resonances. 

The progress in material science provides composite dielectrics with very high 

permittivity (εr ≥ 100) known as high-k dielectrics. In fact, several companies have 

started commercially producing such material with low loss. Those dielectrics are the 

one referred to during our analysis henceforth. They provide effective embedded 

capacitance for interference noise filtering in the packaging technologies. This fact is 

shown in Figure  4.13 (a) and (b) which respectively presents the input impedance at 

port 2 and the trans-impedance between ports in the package under study for three 

different cases of (εr = 4.3, tan δ = 0.02, h = 200 µm), (εr = 100, tan δ = 0.0015, h = 

100 µm), and (εr = 140, tan δ = 0.0015, h = 50 µm). The specifications of the high-k 

dielectrics used here are obtained from  [66]. As shown in Figure  4.13, the 

combination of parameters for the third case has provided the lowest maximum of 

magnitude of impedance in the entire band which leads to decrease in interference. 

Generally by using this method, the resonances with the decreased magnitude shift to 

lower frequencies.  
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Figure  4.10. Magnitude of (a) input impedance at port 2, and (b) trans-impedance 

between ports 1 and 2 for the package shown in Figure  4.1. Impedances are provided 

for two different configurations. The impedance for plane separation h = 200 µm is 

plotted by the dashed line and the impedance for h = 100 µm is plotted by the solid 

line. The first three resonances are marked with different symbols in the plot and 

table. The similar symbols in each graph show the corresponding resonances.  
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Figure  4.11. Magnitude of trans-impedance between ports 1 and 2 for the package 

under study shown in Figure  4.1. The impedance is illustrated for three different 

configurations: (a) (εr = 4.3, tan δ = 0.02), (b) (εr = 30, tan δ = 0.02), and (c) (εr = 30, 

tan δ = 0.0015). In all configurations, the plane separation is h = 150 µm. The first 

three resonances are marked with different symbols in the plot and table. The similar 

symbols on the curves show the corresponding resonances.  
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Figure  4.12. Magnitude of input impedance at port 2 for the package under study 

shown in Figure  4.1. The impedance is illustrated for three different configurations: 

(a) (εr = 4.3, tan δ = 0.02), (b) (εr = 30, tan δ = 0.02), and (c) (εr = 30, tan δ = 0.0015). 

In all configurations, the plane separation is h = 150 µm. The first four resonances are 

marked with different symbols in the plot and table. The similar symbols on the 

curves show the corresponding resonances. 
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Figure  4.13. Magnitude of (a) input impedance at port 2, and (b) trans-impedance 

between ports 1 and 2 for the package under study shown in Figure  4.1. The 

impedance is illustrated for three different cases of (εr = 4.3, tan δ = 0.02, h = 200 

µm), (εr = 100, tan δ = 0.0015, h = 100 µm), and (εr = 140, tan δ = 0.0015, h = 50 

µm). 
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Chapter 5 : Application of EBG Structures 

In the following sections we will demonstrate effectiveness of implementing 

EBG structures in few applications categorized under “EMI Reduction” and “Design 

of Low Profile Antenna”. 

 

5.1. EMI Reduction 

Under this category, we will study the advantages of using EBG structures for 

the suppression of EM noise. Suggested applications are: 

• Reduction of EMI in Enclosures and Chassis using the EBG Structures 

• Reduction of EMI Coupling between Cavities and Antennas using EBG 

Structures 

• EMI and SSN Noise Mitigation in IC Packages using Miniaturized Planar EBGs 

 

5.1.1. Reduction of EMI in Enclosures and Chassis using the EBG Structures 

In enclosures and chassis,  the mechanism of coupling between an internal 

electromagnetic source and the external electromagnetic environment takes place 

either by direct penetration of electromagnetic fields through openings or through 

induced currents on conducting surfaces. Currents on the internal walls supporting the 

fields inside the enclosure can travel out through openings and apertures to outside 

walls. Once these currents reach external surfaces or the currents induced by external 

fields on outer walls, they travel and penetrate other cavities sharing the same surface 

and create fields in these so-called victim cavities. A highly effective way to prevent 
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the field coupling as described is proposed here. This consists of employing EBG 

patches, which play a critical role in an important class of EMI/EMC applications  [4],  

 [19]- [28],  [67]- [70],  [71], on the surface of the structure thus blocking the flow of 

surface currents. The proposed technique consists of surrounding the perimeter of 

critical openings and apertures of an enclosure or package with a ribbon of EBG 

surface designed around the frequency of interest as shown in Figure  5.1. The EBG 

structure acts as a band stop filter which eliminates the interfering surface currents 

arising from radiators. 

 

 

Figure  5.1. Enclosure cavity with two EBG ribbons. 

 

5.1.1.A. Modeling 

From a purely electromagnetic perspective, this set of problems can be 

described and modeled as coupling between antennas or radiators. Therefore, it is 

necessary primarily to determine the frequency ranges that are important for accurate 
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functioning of the system. Then, we need to design EBG structure that covers the 

frequency range of interest. This frequency band can be either narrowbnad, wideband 

or even consisting of multiple bands  [20],  [23],  [24]. In our study, we use a simple 

form of EBG patterns known as mushroom structures which were discussed in  0.   

 

5.1.1.B. Numerical Case Study   

 To demonstrate the effectiveness of this technique, two identical metallic 

boxes of sizes 80 mm × 160 mm × 60 mm are joined together as shown in Figure  5.2. 

Both boxes are completely closed except for one side of each box which has a 20 mm 

× 4 mm aperture in the middle as shown in Figure  5.2. A 10 mm probe is located 

inside of each box normal to the aperture. The probe is distant by 20 mm from corner 

in both x and y directions. The direction of the probe is parallel to the shorter side of 

the aperture (in order to maximize its coupling to the aperture). This setup ensures 

that any possible coupling between the two boxes is only through surface currents. 

(Perfectly conducting boxes are used in order to eliminate any field penetration 

through the skin. However, for the frequency range of interest, the skin depth is much 

smaller than the thickness of metals used in practical enclosures.)   

This particular example represents a wide class of problems where coupling 

takes place between two separate compartments associated with a single chassis 

(common reference plane). In this chosen example, the emphasis is not on the type 

and geometry of excitation, but rather on the potential of EBG structures to reduce 

coupling through the suppression of surface waves. The frequency of significant 

coupling depends on several factors including the probe location and size, enclosure 
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and aperture dimensions.  Here, we consider coupling in the 7-10 GHz frequency 

range. This range includes the frequency at which the apertures and probes are 

resonant (7.5 GHz).  

The EBG structure chosen to suppress coupling in this example is picked up 

from those data obtained previously in Section  2.3, Figure  2.16, with εr of 2.2 and 

patch size of 4 mm. The effectiveness of the performance of the EBG ribbon can be 

gauged by considering the power coupling between the two different probes shown in 

Figure  5.2 (b). The power coupling between the two ports is proportional to the 

transmission coefficient S21. Figure  5.3 shows simulation results for the entire 

structure in Figure  5.2 with and without the presence of the EBG ribbon. The width of 

the ribbon is 88 mm. The application of the EBG ribbon resulted in coupling 

reduction between the two probes within the operating frequency range of interest. 

Figure  5.4 shows the magnitude of S21 between two ports with and without the 

presence of EBG for a second studied case. The specifications of this structure are 

chosen from Section  2.3, Figure  2.16, with εr of 4.8 and patch size of 4 mm. This 

pattern is effective in reducing the EMI coupling in the frequency range 5.8 GHz to 9 

GHz. 
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Figure  5.2. Schematic of two back-to-back perfectly conducting boxes. One of them 

contains the excitation probe and the second contains the receiver probe. Both of 

them have a small aperture in the middle of their external y-z plane with dimensions 

a= 20 mm, b= 4 mm. The EBG surface is placed as a ribbon completely surrounding 

the structure. (a) Front view. (b) Side view.  
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Figure  5.3. Magnitude of S21 between two probes positioned as shows in Figure  5.2 

(b). The EBG structures consists of 4 × 4 mm patches with 0.4 mm gap and εr = 2.2. 

 

Figure  5.4. Magnitude of S21 between two probes positioned as shows in Figure  5.2 

(b). The EBG structures consists of 4 × 4 mm patches with 0.4 mm gap and εr = 4.8. 
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5.1.2. Reduction of EMI Coupling between Cavities and Antennas using EBG Structures 

Continuous advances in communication and electronic circuits increase the 

need for complicated systems with several electromagnetic sources that operate in the 

same environment such as array of antennas and different electronics in 

compartments of a chassis. The proximity of these radiation sources increases the 

probability of interference, or mutual coupling between them. To this end, we 

consider the case of two apertures or cavities sharing a common reference plane.  

More specifically, we consider the cavities as a constitutive part of Cavity-Backed 

Slot (CBS) antennas. CBS antennas have been used in space vehicles, satellites, radar 

and mobile telephony as they are easy to manufacture, small in size, and light 

weighted.  In this study, we propose to implement EBG structures designed around 

the frequency of interest in the common surface between two cavities to reduce the 

coupling between them. 

 

5.1.2.A. Modeling 

In order to suppress surface current traveling between cavities, EBG structure 

is designed to cover the operating frequency of the cavity-backed antennas or the 

electronic systems located in cavities that are the compartments of chassis. EBG 

structure is designed using trial and error procedure educated by the data obtained 

from HFSS simulator mentioned in  0.   
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5.1.2.B. Numerical Case Study 

The case study chosen here will be that of a two CBS antennas system 

discussed in detail in  [7]. This two-antenna system is reproduced in Figure  5.5 and 

Figure  5.6. The common reference plane (Ground plane) is finite with dimension of 

10 cm × 6 cm and antennas are separated from each other by 4 cm. The EBG surface 

is placed between the two antennas as shown in Figure  5.7. 
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Figure  5.5. Air-filled rectangular cavity-backed antenna fed with a probe oriented in 

the y-direction. (a) 3-D view, (b) top view and (c) side view (x-y plane). 
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Figure  5.6. Three dimensional schematic diagram showing two identical cavity-

backed antennas mounted on a rectangular ground plane.  The structure of each 

antenna is as described in Figure  5.5. 
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Figure  5.7. (a) Side view and (b) top view of a CBS antennas system showing the 

placement of the EBG patches.   
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In order to design an EBG structure having the desired characteristics, the 

CBS antenna system (the two antennas and ground plane) without the EBG structure 

is first simulated and its operational frequencies are derived. These frequencies 

correspond to the frequencies at which each antenna has its maximum power 

emission, in another words, they are the frequencies of minimum reflection, S11. 

Figure  5.8 shows the result of this simulation and the resonant frequencies of 

antennas: 7.5 GHz, 10.7 GHz, and 12 GHz. It should be noted that since there is a 

strong reflection around 10.4 GHz (S11 is close to 0dB), the resonance at 10.7 GHz is 

not considered a working frequency both in  [7] and in this work. For the other two 

operating frequencies, two designs are considered: an EBG structure with an effective 

operating frequency range from 7 GHz to 8 GHz, and another with an effective 

operating frequency range from 11.9 to 16 GHz. For the 7 GHz to 8 GHz range, we 

choose an EBG structure, henceforth referred to as Pattern 1, with 4 mm patch size 

and substrate permittivity εr = 4.8. For the 11.9 GHz to 16 GHz, we choose an EBG 

structure, henceforth referred to as Pattern 2, with 2.6 mm patch size and permittivity 

εr = 3.0. These designs were obtained using the method described in  0, where the data 

were shown in Figure  2.16 and Figure  2.17.  

Figure  5.9 shows the transmission parameter, S21 (where one antenna is acting 

as a source and the other as a receiver) between the CBS antennas with and without 

EBG structures. These simulations show that significant coupling reduction is 

achieved, reaching up to 35 dB at certain frequencies. As a comparative reference, in 

 [7] the largest achieved coupling reduction obtained using lossy material was 7 dB.  

We note that over very narrow bands, the coupling reduction due to the 
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implementation of the EBG surface was slight, and in fact, an enhancement in the 

coupling was observed between 6.5 GHz and 7 GHz. However, we need to remember 

that the frequency band over which the coupling enhancement takes place is outside 

the operating frequency band of each antenna. 

 

 

 

Figure  5.8. Magnitude of S11 of two identical CBS antennas mounted on a rectangular 

ground plane (without the EBG structures). This antenna resonates at both 7.5 and 

12.6 GHz as marked on the plot. 
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Figure  5.9. Coupling between the two antennas is represented by the magnitude of the 

S21 parameter. Two different EBG designs for two operating frequencies are 

implemented and simulated. Pattern 1 corresponds to a patch size of 4 mm and εr of 

4.8. Pattern 2 corresponds to a patch size of 2.6 mm and εr of 3. 

 

Figure  5.10 shows the reduction of surface waves and currents due to the 

presence of EBG structures. As it is evident from these simulations, when one of the 

antennas is excited, surface currents are generated and travel to the second antenna, 

therefore creating strong coupling. In Figure  5.10 (b), the EBG structure with an 

operating frequency band from 7 GHz to 8 GHz was applied while the first antenna is 

excited at 7.5 GHz. The decrease in coupling is obvious compared to Figure  5.10 (a) 

which shows the surface currents without the EBG surface. Figure  5.10 (d) shows 

coupling reduction compared to Figure  5.10 (c) where an EBG structure with an 

effective bandgap from 11.9 GHz to 16 GHz is applied while the antenna is excited at 
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12.6 GHz. Figure  5.11 and Figure  5.12 show the E-field distribution in the y-z plane 

cross section intersecting the two antennas.   

A disadvantage of using EBG surface between the two CBS antennas is a 

change in the radiation pattern and directivity of each antenna. The amount of this 

change depends on the proximity of the EBG structures to the antennas. It is easy to 

infer such consequence from the surface current plots shows in Figure  5.10. The 

presence of EBG surface results an asymmetric distribution of the surface currents, 

consequently an asymmetric radiated field pattern.  Since the EBG structure does not 

support any wave propagation at a frequency that falls within its bandgap, it is 

expected that the directive pattern of the antennas would rotate in the direction 

opposite to the side in which the EBG structures are located. In other words, since the 

flow of energy in directions close to the EBG structure is prohibited, the antenna gain 

in such directions is expected to drop. In order to investigate this prediction, we 

extracted the radiation patterns of one of the antennas for three different cases: First, 

without the EBG structure; second, with the EBG structure of Pattern 1 (4 mm square 

patches with εr = 4.8), and third, with the EBG structure of Pattern 2 (2.6 mm square 

patches with εr = 3).  Figure  5.13 shows a comparison between the first and second 

case while Figure  5.14 shows a comparison between the first and third case. From 

these results, we conclude that the EBG structures lead to reduced coupling between 

the two antennas. However, this reduction takes place at the expense of symmetry in 

the antenna pattern, and more specifically, at the expense of radiated gain in the 

direction of the adjacent antenna. We note that the decrease of gain by implementing 

lossy material was previously reported in  [7]. 
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Figure  5.10. Top view of the magnitude of the total surface current density Jtot (a) 

without the EBG structure when the antenna is operating at 7.5 GHz, (b) with the 

EBG Pattern 1 when the antenna is operating at 7.5 GHz, (c) without the EBG 

structure when the CBS antenna is operating at 12.6 GHz, and (d) with the EBG 

Pattern 2 when the antenna is operating at 12.6 GHz. Due to symmetry, only half of 

the structure is shown. 
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Figure  5.11. E-Field distribution in the y-z plane (intersecting the two antennas) when 

one of the antennas is excited at 7.5 GHz while the second one is receiving. (a) 

Without and (b) with the EBG Pattern 1. 
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Figure  5.12. E-Field distribution in the y-z plane (intersecting the two antennas) when 

one of the antennas is excited at 12.6 GHz while the second one is receiving. (a) 

Without and (b) with the EBG Pattern 2. 
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Figure  5.13. Radiated field patterns at 7.5 GHz with and without EBG Pattern 1. The 

rgain pattern is in the y-z plane (E-plane) where 0 corresponds to the azimuth.  
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Figure  5.14. Radiated field patterns at 12.6 GHz with and without EBG Pattern 2. The 

gain pattern is in the y-z plane (E-plane) where 0 corresponds to the azimuth.  

 

5.1.2.C. CBS Antenna System with Presence of EBG Structures 

In this subsubsection, we continue our studies on the effects of presence of 

EBG structures in the CBS antennas system. We investigate about EMI coupling 

reduction between antennas as well as gain pattern. In the previous subsubsection, we 

concluded that the gain pattern is changing while reducing interference between two 

antennas. We investigate about EMI coupling reduction between antennas as well as 

gain pattern. For this purpose, we are covering not only the spacing between antennas 

but also all around the opening of CBS antennas by the EBG Pattern 2 which is 2.6 

mm square patches with εr = 3 as shown in Figure  5.15. The size of this patch of EBG 
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structures implemented on common surface is 12 cells × 28 cells which are covering 

around the apertures and the separation between antennas (intersections of apertures 

and EBG structures are removed from the slab). The size of slab of EBG structures 

implemented only between antennas was 12 cells × 14 cells. Figure  5.16 shows the 

magnitude of S21 for the setup covering around and between apertures. For 

comparison purpose, the insertion loss curves for setups without EBG and with EBG 

located only in between antennas are included in the same figure. The system with 

EBG structures located in between antennas is performing more efficient than the 

system with EBG structures placed all around the antennas reducing coupling effect. 

However, both systems have similar coupling reduction performance of 18 dB at the 

operating frequency of antennas 12.6 GHz. The radiation patterns of these setups are 

illustrated in Figure  5.17. As it can be seen from the radiation pattern, the broadside 

gain of the antenna with added EBG structures decreases. This reduction for the case 

with EBG in between is 3 dB and for the case with EBG around and between 

antennas is 2 dB. The presence of EBG structures all around the apertures of antennas 

prevent the flowing of surface current on the common surface in all directions at the 

operating frequency of EBG pattern. Therefore, the directivity of antenna in those 

directions is decreasing and the radiation bandwidth becomes narrower. The radiation 

pattern obtained for the case where the EBGs are in all sides is almost symmetric 

similar to the case without EBGs. 
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Figure  5.15. Top view of the CBS antennas system showing the placement of the 

EBG structures all around the apertures and between the antennas on a common 

plane.  
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Figure  5.16. Coupling between the two antennas operating at 12.6 GHz for three 

different setups is represented by the magnitude of S21. 1) Without EBG structures, 2) 

with EBG Pattern 2 only between antennas, and 3) with EBG Pattern 2 around and in 

between the apertures. Separation between antennas is 40 mm. 
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Figure  5.17. Radiated Gain patterns at 12.6 GHz for three different setups for the 

antenna system: 1) without EBG structures, 2) with EBG Pattern 2 only between 

antennas, and 3) with EBG Pattern 2 around and in between the apertures. The pattern 

is in the y-z plane (E-plane) where 0 corresponds to the azimuth. Separation between 

antennas is 40 mm. 

 

We have studied previously in  0 that the periodicity of EBGs is an important 

factor which affects the effective suppression bandwidth. As the number of EBGs 

between the two sources increases, we get wider and better suppression. However, the 

need for integrity and presence of several electromagnetic sources close to each other 

is another concern. Therefore, we are going to study the effect of placement of CBS 

antennas in proximity to each other. The separation between two antennas is reduced 

to 13.84 mm. A patch of 16 cells × 20 cells of EBG Pattern 2 is implemented on 

common surface, around and between the apertures of antennas. Between the two 
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antennas, we have only 4 rows of EBGs. The magnitude of S21 for this setup with and 

without EBGs is shown in Figure  5.18. Comparing the data in Figure  5.18 to Figure 

 5.16 shows that the interference coupling increases as we decrease the distance 

between these cavities. Also, we realize that the level of coupling suppression as well 

as the effective bandwidth for EBGs decreases. At the operating frequency of 

antennas 12.6 GHz, the EMI suppression is equal to 12 dB. Totally, the EMI coupling 

increases by more than 10 dB if we decrease the distance between antennas in 

presence of EBGs.  
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Figure  5.18. Coupling between the two antennas operating at 12.6 GHz for 2 different 

setups is represented by the magnitude of S21. 1) Without EBG structures and 2) with 

EBG Pattern 2 around and in between the apertures of antennas. Separation between 

antennas is 13.84 mm. 
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The radiation patterns of these setups, which are distant by 13.84 mm, are illustrated 

in Figure  5.19. Comparison between this figure and Figure  5.17 shows that the 

broadside gain for the setups without EBG is decreased from 10.2 dB to 8.5 dB. This 

is expected as we have more interference coupling between two cavities. 

Implementing EBGs is improving the broadside gain by almost 0.7 dB. This effect is 

different from the results of earlier setups.  
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Figure  5.19. Radiated field patterns at 12.6 GHz for 2 different setups for the antenna 

system: 1) without EBG structures and 2) with EBG Pattern 2 around and in between 

the apertures of antennas. The pattern is in the y-z plane (E-plane) where 0 

corresponds to the azimuth. Separation between antennas is 13.84 mm. 
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From the obtained results we conclude the following: when we are working 

with cavity-backed antennas we have trade off between different parameters such as: 

the separating space between radiators, the tolerating limit for EMI coupling, and the 

gain of antennas. For example, if we compare two antennas distant by 40 mm without 

presence of any EBGs with the case where two antennas distant by 13.84 mm and 

surrounded by EBG patterns then we see that in the second case we have almost 5 dB 

less EMI coupling but the first case has almost 1 dB better broadside gain. In the 

second case, the space between two antennas is decreased by more than 26 mm but at 

the same time we have added the engineered material to our common ground. 

Considering that the EBG structures used in this study are not optimized, we conclude 

that we could design cavity-backed antennas system where antennas are closer to 

each other and having acceptable radiation pattern and at the same time with less EMI 

coupling. 

In  0, it is mentioned that the relationship between different design parameters 

of EBG structure and the suppression band is not linear. Also, the results of this 

subsubsection, up to here, confirm that to study an antenna system in presence of 

EBGs we have to consider the entire system. The effect of implementation of 

different EBG structures on the specifications and performance of the antenna system 

is not consistent. Therefore, these types of antenna systems for efficient performance 

should be optimized in the presence of EBGs. For further investigation, we study the 

same antenna system separated by 40 mm at the operating frequency of 12.6 GHz. 

New EBG structure named Pattern 3 specified by 1.2 mm square patches with εr = 6 

and via diameter 0.5 mm is implemented between the two antennas. The size of this 
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slab of EBGs is 18 cells × 14 cells located in the middle of two antennas and its width 

is 22.4 mm as shown in Figure  5.20. The coupling between the two antennas is shown 

in Figure  5.21. The insertion loss curves for setups without and with EBG Pattern 2 

placed only in the gap between antennas are included in the same figure. The results 

show that at the operating frequency of antenna, Pattern 2 suppresses interference 

coupling by 8 dB better than Pattern 3. The radiation patterns of these three cases 

included in Figure  5.22 show that at the broadside, the gain is degraded by almost 0.6 

dB when using Pattern 3 while the degradation was 3 dB when using Pattern 2. 

Therefore, in this setup again we are experiencing a tradeoff between the EMI 

suppression and the gain pattern degradation.  
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Figure  5.20. Top view of the CBS antennas system showing the placement of a slab 

of the EBG structures between the antennas on a common plane. The slab is partially 

covering the separation between antennas.  
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Figure  5.21. Coupling between the two antennas operating at 12.6 GHz for three 

different setups is represented by the magnitude of S21. 1) Without EBG structures. 2) 

With slab of EBG Pattern 2 between antennas. The width of slab is 40 mm. 3) With 

slab of EBG Pattern 3 between antennas. The width of slab is 22.4 mm. Separation 

between antennas is 40 mm. 
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Figure  5.22. Radiated Gain patterns at 12.6 GHz for three different setups for the 

antenna system. 1) Without EBG structures. 2) With slab of EBG Pattern 2 between 

antennas. The width of slab is 40 mm. 3) With slab of EBG Pattern 3 between 

antennas. The width of slab is 22.4 mm. Separation between antennas is 40 mm. The 

pattern is in the y-z plane (E-plane) where 0 corresponds to the azimuth. 

 

Now we look at new configurations for the CBS antenna system in which the 

antennas are separated by 22.4 mm. The antennas are operating at 12.6 GHz. Three 

different cases are considered: 1) without EBG structures, 2) with EBG structures 

between antennas, and 3) with EBG structures around and between apertures of 

antennas. The EBG Pattern 3 is used in the simulations. For the second setup, the size 

of the slab of EBGs is 18 cells × 14 cells which fully cover the separation between 
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antennas. For the third setup, the size of the slab of EBGs is 22 cells × 36 cells which 

cover the area around the apertures and the seperation between antennas (intersection 

of apertures and the EBG structures are removed from the slab). The level of EMI 

coupling for these configurations is shown in Figure  5.23. For the second case, at 12.6 

GHz the EM suppression is equal to 13 dB. It means that in this configuration there is 

almost 8 dB less coupling between the two antennas compared to the case where 

antennas were separated by 40 mm without any EBG structures (refer to the original 

study case). The gain patterns of those three configurations are shown in Figure  5.24. 

The results indicate that by implanting EBG pattern between the antennas, the 

broadside gain is reduced by 2.4 dB. The setup with EBGs around the apertures and 

between antennas reduces the broadside gain by 1.2 dB. Applying EBGs all around 

the apertures did not improve the symmetry of radiation pattern. 

We present in Figure  5.17, Figure  5.19, and Figure  5.24 the gain patterns of 

three different antenna systems without EBG structures. These configurations have 

different separation distances between antennas. The results show that the broadside 

gain is 10.2 dB, 7.2 dB, and 8.5 dB for the separations 40 mm, 22.4 mm, and 13.84 

mm, respectively. Therefore, the change of gain versus the gap distance is not 

monotonic. However, the results obtaind from the figures presenting the magnitude of 

S21 for these configurations show that the coupling interference increases by 

decreasing the seperation between antennas. As a result, we do conclude that changes 

in the gain pattern are not certainly predictable.  
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Figure  5.23. Coupling between two antennas operating at 12.6 GHz for three different 

setups is represented by the magnitude of the S21. 1) Without EBG structures. 2) With 

EBG Pattern 3 only between antennas. 3) With EBG Pattern 3 around and between 

the apertures of antennas. Separation between antennas is 22.4 mm. 
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Figure  5.24. Radiated Gain patterns at 12.6 GHz for three different setups for the 

antenna system: 1) without EBG structures, 2) with EBG Pattern 3 only between 

antennas, and 3) with EBG Pattern 3 around and in between the apertures of antennas. 

The pattern is in the y-z plane (E-plane) where 0 corresponds to the azimuth. 

Separation between antennas is 22.4 mm. 

 

To complete our study, in what follows, we continue our investigation on the 

effect of proximity of EBG structures to the aperture of the CBS antenna on the 

directivity pattern when the perimeter of the opening of antenna is covered with EBG 

structures. Figure  5.25 shows the top view of a single antenna system in which a 

ribbon of EBG structures is surrounding the aperture of CBS antenna. The antenna 

has the same specifications as in Figure  5.5. The width of the ribbon is 4 unit cells. 

The distance of ribbon of EBGs from aperture is determined by the two parameters: 
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d1 and d2. In our numerical studies, we assume that the ground plane is infinite. 

Therefore, the radiation pattern occupies the upper half space. The EBG pattern, with 

square patch size of 5 mm and εr = 4.4 (FR-4) which is effective at the operating 

frequency of antenna 7.5 GHz, is used in the following numerical simulations.  
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Figure  5.25. Top view of the CBS antenna system showing the placement of a ribbon 

of EBG structures around the aperture. The distance of this ribbon from antenna is 

determined by the two parameters: d1 and d2.  

 

The case studies include the following antenna systems: 1) without EBG, 2) 

with EBG where d1 = 4.77 mm and d2 = 3.02 mm, 3) with EBG where d1 = 10.17 mm 

and d2 = 8.42 mm, and 4) with EBG where d1 = 15.57 mm and d2 = 13.82 mm. In the 

setups with presence of ribbon of EBGs we have changed the distance of ribbon from 

antenna aperture. Figure  5.26 shows the gain patterns of those four configurations. 

The results show that we can control the directivity pattern by changing the location 
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of EBG structures with respect to aperture of antenna. The setup without EBG has 

approximately a uniform gain pattern in the upper half space. By implementing EBG 

ribbon around the aperture in the second case study we have a broadside directive 

antenna with almost 3 dB increment in the gain. The third case study is a broadside 

directive antenna. It has almost 0.5 dB less gain at broadside compared to second case 

study. In addition, this configuration has side lobes. The fourth case study is a 

directive antenna with maximum gain at ± 30° and minimum gain at the broadside 

direction. These results confirm that we can use EBGs in designing directive 

antennas. 
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Figure  5.26. Radiated gain patterns at 7.5 GHz obtained for four different setups for a 

single antenna system. 1) Without EBG structures. 2) With ribbon of EBGs distant 

from antenna by d1 = 4.77 mm and d2 = 3.02 mm. 3) With ribbon of EBGs distant 

from antenna by d1 = 10.17 mm and d2 = 8.42 mm. 4) With ribbon of EBGs distant 

from antenna by d1 = 15.57 mm and d2 = 13.82 mm (refer to Figure  5.25). The pattern 

is in the y-z plane (E-plane) where 0 corresponds to the azimuth. 

 

5.1.2.D. Experimental Study 

In this subsubsection, we present the experimental results showing the 

performance of EBG surfaces of various patch sizes. The setup used in this 

experiment is shown in Figure  5.27 where two waveguides lead to two CBS antennas 

16 cm apart and sharing a common ground plane in a manner similar to the numerical 



 

202 

case study discussed in Subsubsection  5.1.2.B. The two ports of the waveguides are 

fed through SMA connectors and then connected to an Agilent PNA series vector 

network analyzer (VNA). Figure  5.27 also shows the placement of the EBG surface 

under study between the two antennas. The EBG structures used in this experiment 

are made of FR-4 substrate with via diameter and height of 0.8 mm and 1.54 mm, 

respectively. The distance between the patches is 0.4 mm and the width of EBG 

structures used is 6cm. EBG of different patch sizes ranging from 2 mm to 5 mm are 

tested and comparison is made to the reference case where EBG surface is removed.   

Figure  5.28-Figure  5.31 show the results of measurements. In each plot, the 

magnitude of S21 is presented for the cases with and without the EBG surface. The 3 

dB bandgap is marked in each graph. In Figure  5.32, we present the numerical 

simulation results obtained by the numerical simulation procedure depicted in Figure 

 2.7 with 8 infinite rows of EBG patches. Table  5.I summarizes the bandgap obtained 

from measurements and numerical simulations. 

While we have good agreement between the bandgaps calculated numerically 

and measured experimentally, we attribute the discrepancies observed between the 

bandgap edges primarily to: first, the non-ideal environment inherent in the 

experimental setup such as the finiteness of the EBG surface in contrast to the infinite 

rows which were numerically modeled using field symmetry boundary conditions, 

second, the assumption that the permittivity of the FR-4 is 4.4 whereas in reality the 

permittivity varies with frequency.  
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Figure  5.27. (a) Setup used to assess coupling mitigation using EBG structures. (b) 

Close up view of antenna system with presence of EBG structure. EBG structures 

with different configurations (patch sizes of 2 mm to 5 mm) in the area between two 

antennas separated by 16 cm are implemented. Width of EBG separator is 6 cm.  
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Figure  5.28. Experimental results show the coupling between the two antennas with 

and without the EBG surface as represented by the magnitude of S21. EBG 

parameters: 2 mm patch, h = 1.54 mm, g = 0.4 mm, d = 0.8 mm, and FR-4 substrate. 
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Figure  5.29. Experimental results show the coupling between the two antennas with 

and without the EBG surface as represented by the magnitude of S21. EBG 

parameters: 3 mm patch, h = 1.54 mm, g = 0.4 mm, d = 0.8 mm, and FR-4 substrate 
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Figure  5.30. Experimental results show the coupling between the two antennas with 

and without the EBG surface as represented by the magnitude of S21. EBG 

parameters: 4 mm patch, h = 1.54 mm, g = 0.4 mm, d = 0.8 mm, and FR-4 substrate 
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Figure  5.31. Experimental results show the coupling between the two antennas with 

and without the EBG surface as represented by the magnitude of S21. EBG 

parameters: 5 mm patch, h = 1.54 mm, g = 0.4 mm, d = 0.8 mm, and FR-4 substrate. 
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Figure  5.32. Bandgap obtained using numerical simulation. EBG parameters: εr = 4.4, 

h = 1.54 mm, d = 0.8 mm, and g = 0.4 mm. 

 

 

Table  5.I. Bandgap Obtained From Numerical Simulation and Experimental 

Measurements 

EBG Patch Size 

(in mm) 

Numerically Derived Bandgap 

(in GHz) 

Experimentally Derived Bandgap 

(in GHz) 

2 11.8 - 16.4 12.7 - 16.3  

3 8 - 12.8 9.7 - 14.6 

4 6.65 -11.85 7.8 - 12.1 

5 5.6 - 7.9 6.6 - 8.5 
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5.1.3. EMI and SSN Noise Mitigation in IC Packages using Miniaturized Planar EBGs 

By analyzing the S-parameters between different interconnects in parallel 

metallic layers of package, it is possible to estimate the range of frequencies where 

the EMI noise and power/ground bounce are strong. The EM noise with internal and 

external sources can interfere with the operation of electronic circuits in chip. 

Therefore, this analysis is necessary for accurate operation of IC. In this subsection, 

we investigate about EM noise suppression in IC packages using EBG structures. 

This novel method of noise suppression in IC packages as strong contender of surface 

wave suppression has become possible due to design of the miniaturized EBGs 

proposed in our research and discussed earlier in  Chapter 3.  

 

5.1.3.A. Modeling 

After analyzing the S-parameters to extract the range of frequency where the 

EM noise is strong enough to degrade the operation of electronics, we need to design 

EBG structure at the requested frequency band. This frequency band can be either 

narrowband, wideband or even consisting of multiple bands. In packages, the 

engineered structures are implemented surround the source or the receiver of noise to 

block the propagation of wave. This is an efficient method to suppress EM noise in 

the packages. 

 

5.1.3.B. Numerical Case Studies 

In this subsubsection, by mean of numerical studies we demonstrate the 

efficiency of this proposed method. We continue our studies on the typical 
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microprocessor package as our case of study as considered earlier in  Chapter 4. For 

convenience, the structure of this single layer package and the setup of ports are 

redrawn in Figure  5.33. The dimensions of the package are 4 cm × 4 cm. The 

dielectric thickness h = 114.3 µm. Following, two different EBG setups are studied. 

We use EBG sample No. 7 from Table  3.III, which has a suppression band from 1.9 

GHz to10.8 GHz, in both setups. The design parameters of this EBG structure shown 

in Figure  3.12 are:  PW = 1.6 mm, h = 114.3 µm (4.5 mil), MW = 0.02 mm, MB = 0.02 

mm, ML = 1.6 mm, MG = 0.02 mm, and εr = 200. 
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Figure  5.33. Single plane pair in the package consisting of metal-dielectric-metal 

layers is modeled as parallel plate waveguide. (a) 3-D view.  (b) Top view. Typical 

dimensions of a microprocessor package are: a = b = 4 cm. Each via shown in the 

figure represents a port. Port 1 and Port 2 are located at (x1 = 1 cm, y1 = 1 cm), and (x2 

= 2 cm, y2 = 2 cm), respectively. 

 

In the first setup, the two ports are isolated with the EBG patterns as shown in 

Figure  5.34. Each port is centered in a patch of EBG cells. Each patch is made of 5 
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cells × 5 cells in both x- and y-direction. The magnitude of S21 for this configuration is 

illustrated in Figure  5.35. In the second setup, only the second port is isolated with the 

EBG patterns as shown in Figure  5.36. The second port is centered in the patch of 

EBG cells. The size of patch in this experiment is 5 cells × 5 cells.  The magnitude of 

S21 for this configuration is also shown in Figure  5.35. Comparison is made with two 

different embedded capacitance cases studied in  Chapter 4. Embedded capacitance 

method is implemented to packages as an effective method of EMI suppression in the 

entire frequency band. These cases are applied to a single plane pair with two 

different materials of εr = 4.3 and tan δ = 0.02 (low value embedded capacitance), and 

εr = 200 and tan δ = 0.0015 (high value embedded capacitance). The magnitude of S21 

for both cases is included in Figure  5.35. The results show that to protect the ports 

from EMI noise in the package, it is enough to isolate either the source or the 

receiver. The level of EMI noise mitigation we can get from EBG patterned power 

planes compared to high embedded capacitance case is very high.  

In another study, we use the second test setup in two different cases. In the 

first case, the EBG patch is 5 cells × 5 cells. In the second case, it is 9 cells × 9 cells. 

The magnitude of S21 for each case is shown in Figure  5.37. The simulation results 

show that the level of electromagnetic noise suppression depends on the number of 

EBG unit cells. Therefore, if we increase the EBG cell population between source and 

receiver, more suppression is achieved. However, simulating a fully EBG-populated 

board is prohibitive due to the large number of meshes required to model meander 

bridges between patches.  
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Figure  5.34. Test Setup 1. The ports in the package under study are isolated with EBG 

pattern, (a) 3-D view and (b) top view. The specifications of package and ports are 

shown in Figure  5.33. In this experiment the EBG sample No. 7, specified in Table 

 3.III, is used. Each port is centered in the middle of the EBGs patch. The size of patch 

is 5 cells × 5 cells. 
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Figure  5.35. Magnitude of S21 between ports 1 and 2 in the single plane pair under 

study for four different scenarios (design parameters and port setup are shown in 

Figure  5.33). The first and second cases show embedded capacitance. The third case 

shows test setup 1 (refer to Figure  5.34). The fourth case corresponds to test setup 2 

(refer to Figure  5.36). In all configurations h = 114.3 µm. 
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Figure  5.36. Test Setup 2. The second port in the package under study is isolated with 

EBG pattern, (a) perspective view and (b) top view. Specifications of package and 

ports are shown in Figure  5.33. In this experiment the EBG sample No. 7, specified in 

Table  3.III, is used. The second port is centered in a patch of EBGs. The size of patch 

is dP × dP, where in two different experiments dP = {5 cells, 9 cells}. 
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Figure  5.37. Magnitude of S21 between ports 1 and 2 in the single layer package under 

study for two different cases in test setup 2 (refer to Figure  5.36).  

 

The efficacy of EBG patterning of the plane pairs in EMI and SSN noise 

suppression for through propagation was shown. In the next part of the study, we look 

at the radiation loss parameter (1- |S11|2 - |S21|2) to assess the possibility of 

interference due to outward radiation from plane pairs to surrounding media. Testing 

the performance of the other parts of a system with patterned layers is necessary to 

keep the functionality of a whole system. The radiation loss for the microprocessor 

package with the test setup 1 shown in Figure  5.34 is calculated and presented in 

Figure  5.38. For comparison purpose, the radiation loss from a single plane pair with 

two different materials of εr = 4.3 and tan δ = 0.02 providing low value embedded 
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capacitance and εr = 200 and tan δ = 0.0015 providing high value embedded 

capacitance are included in the same figure. The 20 dB suppression band of the EBG 

structure, from 1.9 GHz to 10.8 GHz, showing the effective operating frequency 

region is marked in that figure. 

It is seen that for the low value embedded capacitance case the radition loss at 

low frequency regions is negligible. However, by increasing the frequency strong 

local peaks are appearing that may interfere with other levels or parts in the package. 

The high value embedded capacitance case has reduced peaks of interference in the 

whole frequency band compared to the low embedded capacitance case. However, we 

can obviously see that the local peaks are distributed in the entire frequency band. In 

the effective band of EBG patterned case, the level of radition loss compared to two 

other cases is negligible. Out of this band, strong local peaks are seen in the plot. 

Therefore, EBG structures are effective in suppressing noise in their band not only for 

through propagation but also for radiation to surrounding environment. The effect of 

those strong local peaks, in the patterened case, on the other parts should be assessed. 

We need to evaluate the performance of system for purposes of signal integrity 

especially in low frequency regimes. 

Studies in Subsection  3.3.10 have shown that there are local peaks in the 

radiation loss diagram in the frequency bands compatible with the slow propagating 

modes of EBG pattern as shown in Figure  3.62. In those frequency regimes, shown in 

Figure  5.38, radiation exists. However, it is not strong enough to be clearly seen.  
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Figure  5.38. Radiation loss, (1- |S11|2 - |S21|2), versus frequency for a single plane pair 

under study for three different scenarios. The first case shows the test setup 1 (refer to 

Figure  5.34). The second and the third cases show the embedded capacitance (refer to 

Figure  5.33) 

 

This discrepancy may be attributed to different structural setups. In the 

package, the larger dimensions of the parallel planes are not populated with EBG 

patterns as reverse to those results in Figure  3.62 which are coming from fully EBG 

populated parallel planes with small dimensions. The EBG patterns are radiating 

waves in those bands, however, the solid parallel planes support propagating waves. 

Therefore, in the package case the power radiated out per unit area to surrounding 

environment (computational domain) from the EBG patterns is less than the second 
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case. As a general result, even by considering those peaks from slow modes, EBG 

patterning reduces radiating emissions to surrounding environment in the suppression 

bandgap. 

 

5.2. Design of Low Profile Antenna 

EBG structures show novel features which may not occur in nature such as in-

phase reflection phase and surface wave suppression. These features have led EBGs 

to a wide range of applications including antennas. Due to their  properties, it has 

been shown that EBG structures emulate good magnetic conductors, or high-

impedance surfaces, in their bandgap when used as ground plane in the design of low 

profile antennas  [72],  [73]. This could be explained as follows. When an antenna 

placed closely on top of an EBG surface is radiating, the reflected waves from this 

surface will add up constructively to waves radiated from the antenna. Therefore, 

unlikely to an antenna system with perfect electric conductor (PEC) reflector, there is 

no need to have that distance of approximately λ/4 between antenna and reflector. 

These results can be justified by reflection coefficient of plane wave normally 

incident on surface defined by: 

0

0

η
η

+
−

=Γ
s

s

Z
Z

 

 Equation  5-1 

where Zs is the surface impedance of the reflector and η0 is the wave impedance in the 

media filling the space between reflector and antenna.  
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Previous EBG structures made of dielectric materials had desirable properties 

over a narrow frequency range, thus, their application was limited in design of narrow 

band low profile antenna. In this study, we have proposed novel EBG structures 

which make the design of low profile antennas viable. 

 

5.2.1. Limitations in Design of Low Profile wideband Antennas 

Previous EBG structures made of dielectric materials, however, had desirable 

properties over a narrow frequency range thus limiting their application in the design 

of low profile wideband antennas such as spirals. In  [74]- [76], EBG structures were 

used as a ground plane to implement low profile spiral antennas, but in those works 

the frequency independent behavior of the spiral antenna was limited by the relatively 

narrow bandgap of the EBG surface. In  [77], negative impedance converters which 

are active loads (capacitors and inductors having negative values) were inserted 

within the EBG structure leading to a significant increase in the bandgap. However, 

the implementation of active circuits adds complications and cost to the design. 

Recently, magneto-dielectric substrates were used in several applications  [78], 

 [79]. In  [78], magneto-dielectric substrates were used for miniaturization of antennas. 

In  [79] it was demonstrated that using such substrates in woodpile EBG structures 

leads to an increase in its bandgap. Furthermore,  [80] showed a method of 

synthesizing meta-ferrites with desired permeability using novel EBG structures 

which makes these materials available. In this study, our objective is to show that the 

effective bandgap in mushroom EBGs can be increased significantly due to the use of 

magneto-dielectric materials. This achievement opens the doors for designing low 
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profile wideband antennas. However, this proposed EBG structure is based on 

development in design and fabrication of low loss magneto-dielectric materials in the 

microwave region.  

  

5.2.1.A. Concept and Modeling of Mushroom-Type EBG Structures Using Magneto-

Dielectric Substrates 

The square patch mushroom-type EBG structure and its design parameters 

shown in Figure  2.1 is redrawn in Figure  5.39 for convenience. The EBG structure 

has a HIS in its bandgap at normal incidence. This surface impedance can be modeled 

as an inductor in parallel with a capacitor close to the region that it is emulating a 

PMC surface [26]. The capacitance part is due to the gap between the adjacent patches 

and is equal to  [81]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
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g
DD

C r

 
 2ln

)1(0

ππ
εε

 

 Equation  5-2 

where D = a + g  is the period of unit cell. The inductance part is due to the adjacent 

vias and the metal backed substrate which can be calculated using transmission lines 

theory. The impedance of shorted transmission line while ignoring inductance of vias 

is calculated from: 

)tan( hjZ s βη=  

 Equation  5-3 

where η and β are the wave impedance and the phase constant in the substrate slab, 

respectively. When h << λ, and the substrate is lossless the above impedance 
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becomes purely inductive. λ is the wavelength in substrate slab. Therefore, L is given 

by: 

hL rµµ0=  

 Equation  5-4 

L is a monotonic function of h and µr up to the range governed by the tangent 

function in the impedance formula. 

To use EBG surface as a ground plane in the design of low profile antennas, 

the operational frequency band is defined as the overlap of the input-match frequency 

band and surface wave frequency bandgap  [72]. The in-phase reflection bandwidth is 

the range of frequencies over which the phase of the broadside reflected wave is 

bounded by ±45°. In this band, the antenna shows good return loss. In another words, 

the reflected wave from surface is in-phase with incident wave from the antenna. 

Therefore, the interaction of EBG surface with antenna is constructive. The surface 

wave frequency bandgap is the range of frequencies over which the surface wave is 

suppressed significantly. This band improves the radiation pattern of the antenna. 

These two bands for the square patch mushroom structure overlap completely 

providing an efficient operating frequency band.  

It is well known, that bandgap for a parallel LC circuit is proportional to 

√(L/C), while the resonance frequency is proportional to 1/√(LC). It can be seen that 

using magneto-dielectric materials with relative permeability µr > 1 leading to 

increase of L has distinct advantage of increasing the bandgap besides the shifting 

down the lower edge of the bandgap. The increase in L, for a specific resonance 

frequency, has the added advantage of reducing the size of the patch as a smaller 
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capacitance would be needed to achieve the same resonant frequency. Thus, the 

bandgap increases more than before due to reduction of capacitance, C. 

 

 

Figure  5.39. Square patch mushroom-type EBG structure (a) Perspective view. (b) 

Top view. Relevant design parameters are shown on the diagrams. 

 

5.2.1.B. Numerical Study of EBG Structures Made of Magneto-Dielectric Substrates 

To verify the concept, several square patch mushroom-type EBG structures 

with magneto-dielectric substrate of permeability higher than one are designed and 

compared with a conventional EBG structure (EBG with dielectric substrate). The 

antenna under study is a wideband spiral antenna operating between 8 GHz and18 

GHz. Therefore, for low profiling this antenna our ultimate goal is design of an EBG 

structure which can cover this band of operation. According to the physical model 



 

223 

mentioned in Subsubsection  5.2.1.A and the study of effect of the design parameters 

in Section  2.3, we consider new structures with the following parameters: a = 0.5 

mm, g = 0.15 mm (D = 0.65mm), h = 1.57 mm, d = 0.1 mm, εr = 2.51, and different 

values of relative permeability 1 < µr < 9. It is assumed that all the magneto-dielectric 

substrates have tan δm = 0.01. This is the lowest value of magnetic loss which has 

been achieved and reported in design of engineered magnetic materials  [82]- [84]. 

Ansoft HFSS is used to extract in-phase reflection band for EBG structures. The setup 

is shown in Figure  5.40. For this purpose a unit cell of these structures is simulated 

using plane wave excitation with normal incidence. Periodic boundary condition is 

assigned around the cell to model an infinite EBG structure. The phase shifts between 

corresponding boundaries is equal to zero. Absorbing boundary condition is placed on 

the top of the cell. The reflected waves are recorded at an observation plane which is 

far enough from the EBG surface to make sure that evanescent modes are vanished. 

Using recorded field, the reflection phase is computed on the observation plane which 

is linearly transferred to the top surface of EBG structure  [36]. The in-phase reflection 

band shows the range of frequencies in where the phase of broadside reflections on 

top of the EBG structure is bounded by ±45°. The center frequency shows the point at 

which the reflected phase on top of the EBG structure is equal to zero. The percentage 

bandwidth is defined as the ratio of the in-phase reflection bandwidth to the center 

frequency in percentage. 

Figure  5.41 demonstrates the result of the simulation for structure with µr = 6 

where the reflection phase is presented as a function of frequency. The in-phase 

reflection phase for this structure is 7.1 GHz to 14.6 GHz as marked on the figure. To 
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show advantages of using magneto-dielectric substrate as compared to dielectric 

substrate which is conventionally used to design EBG structures, one conventional 

sample is studied as a reference. The selected EBG which is designed and tested in 

 [85] has the following specifications:  a = 2.44 mm, g = 0.15 mm (D = 2.59 mm), h = 

1.57 mm, d = 0.25 mm, µr = 1, and εr = 2.51. The reflection phase of this structure is 

also plotted in Figure  5.41. The in-phase reflection phase for this structure is from 

12.1 GHz to 14.5 GHz as marked on the figure. Our EBG structure has same ε, g, and 

h as the conventional EBG structure, but its cell size is 4 times smaller. In addition 

the in-phase reflection band in the proposed EBG is 72.4% while this band is 18% for 

the conventional one. The result of simulations including in-phase reflection band, 

center frequency, and percentage bandwidth for EBG structures introduced earlier in 

this subsubsection are summarized in Table  5.II. It can be seen that the percentage 

bandwidth increases as the relative permeability increases. 

Interested readers can follow the subject of design of low profile wideband 

antennas using magneto-dielectric EBG structures in  [86]. This subject and design of 

magneto-dielectric materials in microwave frequency region is already under progress 

by members of other research groups. 
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Figure  5.40. Setup used to extract the reflection phase of an EBG structure. The 

schematic shows the boundary setup for a unit cell. The unit cell is excited through 

normal incident plane wave. The reflected waves recorded at the observation plane 

are used to compute the phase. 
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Figure  5.41. Reflection phase of EBG structures. The in-phase reflection phase is 

marked on each graph. The conventional EBG structure introduced in  [85] is 

specified by: a = 2.44 mm, g = 0.15 mm, h = 1.57 mm, d = 0.25 mm, µr = 1, and εr = 

2.51. The novel EBG structure is specified by: a = 0.5 mm, g = 0.15 mm, h = 1.57 

mm, d = 0.1 mm, εr = 2.51, µr = 6, and tan δm = 0.01. 

 

 

 

 

 

 



 

227 

 

 

 

 

Table  5.II. In-phase reflection band obtained from numerical simulation for different 

EBG structures. The EBG structures have common specification of a = 0.5 mm, g = 

0.15 mm, h = 1.57 mm, d = 0.1 mm, and εr = 2.51. The value of relative permeability, 

µr, is varying from 1 to 9. The magnetic loss tangent for material with µr > 1 is equal 

to 0.01 (tan δm = 0.01). 
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Chapter 6 : Conclusions and Future Work 

 

6.1. Conclusions 

The designs and analytical studies carried out through this work proved that 

EBG structures are strong contenders of EMI suppression in wide class of important 

problems where the EM wave interferes with the victim through surface wave or 

surface current, e.g., in applications where the source and victim share a common 

reference plane. 

In this research, the mushroom-type EBG structures for open media 

applications were numerically characterized. The nonlinear relationship of the 

suppression bandgap versus the constituent materials and dimensions of structure was 

studied. Through the use of full-wave modeling commercial software based on finite 

element method, High Frequency Structure Simulator (HFSS), the efficacy of the 

mushroom-type EBG structures in two generic problems involving radiating structure 

sharing a common ground plane were demonstrated. In the first problem, we 

demonstrated that EBG structures can suppress EMI in the enclosures and chassis. In 

the second application, we showed the performance of those structures in the cavities 

as a part of cavity-backed antennas system. Also, we verified the efficiency of those 

structures through laboratory measurements. From the numerical and experimental 

results presented, we conclude that the numerical simulation setup discussed in this 

work provides a reliable methodology for predicting the suppression band of the 

generic class of simple EBG structures compromising square patches on the metal 
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backed dielectric substrates with a via connection in between. We anticipate that EBG 

structures with more complex topology can be treated in identical manner. 

The EBG structures presented in this work were not optimized but rather 

arrived at using simple trial and error procedure coupled with educated guess. The 

optimization of EBG structures plays a strong role in more complex and sensitive 

applications where the radiators and victims are very close to each other and the 

higher EM noise suppression is required. In the antenna applications, it was shown 

that the design and implementation of EBG structures can amount to a balancing act 

between maintaining functionality and reducing coupling. Also, in the applications 

where several antennas are present in the same media such as array of cavity-backed 

antennas the spacing between antennas add up to mentioned trade off. Therefore, the 

entire multi antennas system with presence of EBG structure should be designed and 

optimized to satisfy the required performance.   

Through study of the effect of presence of EBG structure on the performance 

of cavity-backed antenna system by assessing the gain pattern, it was demonstrated 

that the design of directive CBS antennas using EBG structure is possible. Also, the 

gain of antenna at the direction of maximum directivity can be increased.  

In another study, we developed the concept of miniaturization of EBG 

structures using very high-k materials for mushroom- and planar-type structures. 

Also, we presented using very high value inductive bridges besides the high value 

effective capacitance made of very high permittivity dielectrics we could design 

miniaturized planar EBG structures providing wide suppression bands at the low 

frequency regions. Those novel EBG structures were numerically characterized. The 
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modeling of the proposed planar EBG structures was discussed. The effect of 

parameters in the model presenting the physical structure on the suppression band 

was studied. The developed model could provide a good initial guess for the EBG 

dimension and the structure as an initial starting point in the EBG design procedure. 

The miniaturized EBG structures presented in this study work were not optimized. 

Optimizing the structure may provide more effective ones.  

Availability of the miniaturized EBG structures promotes another set of 

EMI/EMC applications which were impractical due to sizing issues. We studied the 

efficiency of proposed EBG structures in EMI and SSN noise suppression in IC 

packages. Modern electronic designs are requiring high level of isolation in the 

integrated high power density circuits which demands more efficient methods of 

noise suppression. To asses the performance of the EBG structures we studied the 

embedded capacitance method which is well known as an efficient method of EM 

noise suppression in packages operating in microwave region. We studied 

analytically and numerically the limitation of using the embedded capacitance method 

made of very high-k dielectric materials. It was shown how a thin slab of very high-k 

material decreases the peak of EMI; however, EM waves are still guided in the entire 

frequency band. The comparison results between the two methods show that in IC 

packages the method of EM noise suppression using EBG structures is very 

promising. The applicability of the embedded capacitance method depends on the 

defined noise tolerance level in a system.  

The concept of design of novel wideband EBG structures using magneto-

dielectric materials is developed. These novel EBG structures could be applied in the 
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design of low profile wideband antennas. It was shown that the designed mushroom-

type EBG structures made of magneto-dielectric material are providing very wide 

bandgap compared to conventional designs made of only dielectric materials with 

smaller size patterns. This wide bandgap may extend from low frequencies. 

 

6.2. Future Work 

The development of the equivalent circuit-transmission line model of the 

proposed EBG structures in the two remainder regions of the irreducible Brillouin 

zone, Χ-Μ and Μ-Γ regions need to be completed. Completing that model can 

provide an initial start in design procedure with higher accuracy. 

The miniaturized planar EBG structures made of very high-k material should 

be fabricated and the performance has to be measured. However, the fabrication 

process with high-k materials is in very early stages and it is hardly possible to find 

laboratories dealing with the fabrication as a research. 

Also, time domain analysis of the proposed miniaturized EBG structures is 

necessary. The signal integrity with presence of these structures in packages should 

be assessed. 

Finally, experiments and measurements of packages with presence of the 

proposed EBG structures in the real scenarios have to be assessed. 
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Appendix 

The quasi-static value of the characteristic impedance ZC for microstrip line 

shown in Figure A. 1 is given by  [53]: 
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 Equation A- 1 

where η is the wave impedance in free space and η = 120π ohms. The effective width 

of microstrip we is obtained from  [53]: 
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To simplify the modeling it is assumed that the conductor thickness is negligible (t = 

0), therefore, we = w. The effective relative dielectric constant εre is given by  [53]: 
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ε . Therefore, in our modeling C = 0. Function F is given by  [53]: 
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 Equation A- 4 

A few points to improve modeling in Section  3.3: 

• For small values of 
h
t , the effect of strip thickness on ZC and εre is insignificant 

where we have good conductor. However, in applications such as IC packaging in 

which the dielectric thickness h, is shrinking by development in design and 

fabrication technology, for accurate modeling we need to take to account the 

metalic thickness (assuming t = 0 will introduce large error in modeling). 

• If 1
min

<<
λ

h , the effect of dispersion on ZC and εre is negligible. Yet, this is not the 

case when we are dealing with very high-k materials at high frequencies 

imperated by growing operating-speed in systems. Therefore, to get better 

compatibility with experimental results we need to consider the effect of 

dispersion on ZC and εre. 

• We need to remember that all the above mentioned formulas and the ones in the 

Section  3.3 are approximate. They are valid in certain ranges. For example, the 

accuracy of those expressions has not been confirmed for very high-k materials. 

However, those formulas are working accurate enough for quick analysis purpose 

as it is shown in our study. 
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Figure A. 1.  Microstrip line. Design parameters are shown in the figure. 
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